xref: /linux/drivers/net/ethernet/renesas/sh_eth.c (revision 2c684d892bb2ee31cc48f4a8b91e86a0f15e82f9)
1 /*  SuperH Ethernet device driver
2  *
3  *  Copyright (C) 2014  Renesas Electronics Corporation
4  *  Copyright (C) 2006-2012 Nobuhiro Iwamatsu
5  *  Copyright (C) 2008-2014 Renesas Solutions Corp.
6  *  Copyright (C) 2013-2014 Cogent Embedded, Inc.
7  *  Copyright (C) 2014 Codethink Limited
8  *
9  *  This program is free software; you can redistribute it and/or modify it
10  *  under the terms and conditions of the GNU General Public License,
11  *  version 2, as published by the Free Software Foundation.
12  *
13  *  This program is distributed in the hope it will be useful, but WITHOUT
14  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
16  *  more details.
17  *
18  *  The full GNU General Public License is included in this distribution in
19  *  the file called "COPYING".
20  */
21 
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/spinlock.h>
25 #include <linux/interrupt.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/etherdevice.h>
28 #include <linux/delay.h>
29 #include <linux/platform_device.h>
30 #include <linux/mdio-bitbang.h>
31 #include <linux/netdevice.h>
32 #include <linux/of.h>
33 #include <linux/of_device.h>
34 #include <linux/of_irq.h>
35 #include <linux/of_net.h>
36 #include <linux/phy.h>
37 #include <linux/cache.h>
38 #include <linux/io.h>
39 #include <linux/pm_runtime.h>
40 #include <linux/slab.h>
41 #include <linux/ethtool.h>
42 #include <linux/if_vlan.h>
43 #include <linux/clk.h>
44 #include <linux/sh_eth.h>
45 #include <linux/of_mdio.h>
46 
47 #include "sh_eth.h"
48 
49 #define SH_ETH_DEF_MSG_ENABLE \
50 		(NETIF_MSG_LINK	| \
51 		NETIF_MSG_TIMER	| \
52 		NETIF_MSG_RX_ERR| \
53 		NETIF_MSG_TX_ERR)
54 
55 #define SH_ETH_OFFSET_INVALID	((u16)~0)
56 
57 #define SH_ETH_OFFSET_DEFAULTS			\
58 	[0 ... SH_ETH_MAX_REGISTER_OFFSET - 1] = SH_ETH_OFFSET_INVALID
59 
60 static const u16 sh_eth_offset_gigabit[SH_ETH_MAX_REGISTER_OFFSET] = {
61 	SH_ETH_OFFSET_DEFAULTS,
62 
63 	[EDSR]		= 0x0000,
64 	[EDMR]		= 0x0400,
65 	[EDTRR]		= 0x0408,
66 	[EDRRR]		= 0x0410,
67 	[EESR]		= 0x0428,
68 	[EESIPR]	= 0x0430,
69 	[TDLAR]		= 0x0010,
70 	[TDFAR]		= 0x0014,
71 	[TDFXR]		= 0x0018,
72 	[TDFFR]		= 0x001c,
73 	[RDLAR]		= 0x0030,
74 	[RDFAR]		= 0x0034,
75 	[RDFXR]		= 0x0038,
76 	[RDFFR]		= 0x003c,
77 	[TRSCER]	= 0x0438,
78 	[RMFCR]		= 0x0440,
79 	[TFTR]		= 0x0448,
80 	[FDR]		= 0x0450,
81 	[RMCR]		= 0x0458,
82 	[RPADIR]	= 0x0460,
83 	[FCFTR]		= 0x0468,
84 	[CSMR]		= 0x04E4,
85 
86 	[ECMR]		= 0x0500,
87 	[ECSR]		= 0x0510,
88 	[ECSIPR]	= 0x0518,
89 	[PIR]		= 0x0520,
90 	[PSR]		= 0x0528,
91 	[PIPR]		= 0x052c,
92 	[RFLR]		= 0x0508,
93 	[APR]		= 0x0554,
94 	[MPR]		= 0x0558,
95 	[PFTCR]		= 0x055c,
96 	[PFRCR]		= 0x0560,
97 	[TPAUSER]	= 0x0564,
98 	[GECMR]		= 0x05b0,
99 	[BCULR]		= 0x05b4,
100 	[MAHR]		= 0x05c0,
101 	[MALR]		= 0x05c8,
102 	[TROCR]		= 0x0700,
103 	[CDCR]		= 0x0708,
104 	[LCCR]		= 0x0710,
105 	[CEFCR]		= 0x0740,
106 	[FRECR]		= 0x0748,
107 	[TSFRCR]	= 0x0750,
108 	[TLFRCR]	= 0x0758,
109 	[RFCR]		= 0x0760,
110 	[CERCR]		= 0x0768,
111 	[CEECR]		= 0x0770,
112 	[MAFCR]		= 0x0778,
113 	[RMII_MII]	= 0x0790,
114 
115 	[ARSTR]		= 0x0000,
116 	[TSU_CTRST]	= 0x0004,
117 	[TSU_FWEN0]	= 0x0010,
118 	[TSU_FWEN1]	= 0x0014,
119 	[TSU_FCM]	= 0x0018,
120 	[TSU_BSYSL0]	= 0x0020,
121 	[TSU_BSYSL1]	= 0x0024,
122 	[TSU_PRISL0]	= 0x0028,
123 	[TSU_PRISL1]	= 0x002c,
124 	[TSU_FWSL0]	= 0x0030,
125 	[TSU_FWSL1]	= 0x0034,
126 	[TSU_FWSLC]	= 0x0038,
127 	[TSU_QTAG0]	= 0x0040,
128 	[TSU_QTAG1]	= 0x0044,
129 	[TSU_FWSR]	= 0x0050,
130 	[TSU_FWINMK]	= 0x0054,
131 	[TSU_ADQT0]	= 0x0048,
132 	[TSU_ADQT1]	= 0x004c,
133 	[TSU_VTAG0]	= 0x0058,
134 	[TSU_VTAG1]	= 0x005c,
135 	[TSU_ADSBSY]	= 0x0060,
136 	[TSU_TEN]	= 0x0064,
137 	[TSU_POST1]	= 0x0070,
138 	[TSU_POST2]	= 0x0074,
139 	[TSU_POST3]	= 0x0078,
140 	[TSU_POST4]	= 0x007c,
141 	[TSU_ADRH0]	= 0x0100,
142 
143 	[TXNLCR0]	= 0x0080,
144 	[TXALCR0]	= 0x0084,
145 	[RXNLCR0]	= 0x0088,
146 	[RXALCR0]	= 0x008c,
147 	[FWNLCR0]	= 0x0090,
148 	[FWALCR0]	= 0x0094,
149 	[TXNLCR1]	= 0x00a0,
150 	[TXALCR1]	= 0x00a0,
151 	[RXNLCR1]	= 0x00a8,
152 	[RXALCR1]	= 0x00ac,
153 	[FWNLCR1]	= 0x00b0,
154 	[FWALCR1]	= 0x00b4,
155 };
156 
157 static const u16 sh_eth_offset_fast_rz[SH_ETH_MAX_REGISTER_OFFSET] = {
158 	SH_ETH_OFFSET_DEFAULTS,
159 
160 	[EDSR]		= 0x0000,
161 	[EDMR]		= 0x0400,
162 	[EDTRR]		= 0x0408,
163 	[EDRRR]		= 0x0410,
164 	[EESR]		= 0x0428,
165 	[EESIPR]	= 0x0430,
166 	[TDLAR]		= 0x0010,
167 	[TDFAR]		= 0x0014,
168 	[TDFXR]		= 0x0018,
169 	[TDFFR]		= 0x001c,
170 	[RDLAR]		= 0x0030,
171 	[RDFAR]		= 0x0034,
172 	[RDFXR]		= 0x0038,
173 	[RDFFR]		= 0x003c,
174 	[TRSCER]	= 0x0438,
175 	[RMFCR]		= 0x0440,
176 	[TFTR]		= 0x0448,
177 	[FDR]		= 0x0450,
178 	[RMCR]		= 0x0458,
179 	[RPADIR]	= 0x0460,
180 	[FCFTR]		= 0x0468,
181 	[CSMR]		= 0x04E4,
182 
183 	[ECMR]		= 0x0500,
184 	[RFLR]		= 0x0508,
185 	[ECSR]		= 0x0510,
186 	[ECSIPR]	= 0x0518,
187 	[PIR]		= 0x0520,
188 	[APR]		= 0x0554,
189 	[MPR]		= 0x0558,
190 	[PFTCR]		= 0x055c,
191 	[PFRCR]		= 0x0560,
192 	[TPAUSER]	= 0x0564,
193 	[MAHR]		= 0x05c0,
194 	[MALR]		= 0x05c8,
195 	[CEFCR]		= 0x0740,
196 	[FRECR]		= 0x0748,
197 	[TSFRCR]	= 0x0750,
198 	[TLFRCR]	= 0x0758,
199 	[RFCR]		= 0x0760,
200 	[MAFCR]		= 0x0778,
201 
202 	[ARSTR]		= 0x0000,
203 	[TSU_CTRST]	= 0x0004,
204 	[TSU_VTAG0]	= 0x0058,
205 	[TSU_ADSBSY]	= 0x0060,
206 	[TSU_TEN]	= 0x0064,
207 	[TSU_ADRH0]	= 0x0100,
208 
209 	[TXNLCR0]	= 0x0080,
210 	[TXALCR0]	= 0x0084,
211 	[RXNLCR0]	= 0x0088,
212 	[RXALCR0]	= 0x008C,
213 };
214 
215 static const u16 sh_eth_offset_fast_rcar[SH_ETH_MAX_REGISTER_OFFSET] = {
216 	SH_ETH_OFFSET_DEFAULTS,
217 
218 	[ECMR]		= 0x0300,
219 	[RFLR]		= 0x0308,
220 	[ECSR]		= 0x0310,
221 	[ECSIPR]	= 0x0318,
222 	[PIR]		= 0x0320,
223 	[PSR]		= 0x0328,
224 	[RDMLR]		= 0x0340,
225 	[IPGR]		= 0x0350,
226 	[APR]		= 0x0354,
227 	[MPR]		= 0x0358,
228 	[RFCF]		= 0x0360,
229 	[TPAUSER]	= 0x0364,
230 	[TPAUSECR]	= 0x0368,
231 	[MAHR]		= 0x03c0,
232 	[MALR]		= 0x03c8,
233 	[TROCR]		= 0x03d0,
234 	[CDCR]		= 0x03d4,
235 	[LCCR]		= 0x03d8,
236 	[CNDCR]		= 0x03dc,
237 	[CEFCR]		= 0x03e4,
238 	[FRECR]		= 0x03e8,
239 	[TSFRCR]	= 0x03ec,
240 	[TLFRCR]	= 0x03f0,
241 	[RFCR]		= 0x03f4,
242 	[MAFCR]		= 0x03f8,
243 
244 	[EDMR]		= 0x0200,
245 	[EDTRR]		= 0x0208,
246 	[EDRRR]		= 0x0210,
247 	[TDLAR]		= 0x0218,
248 	[RDLAR]		= 0x0220,
249 	[EESR]		= 0x0228,
250 	[EESIPR]	= 0x0230,
251 	[TRSCER]	= 0x0238,
252 	[RMFCR]		= 0x0240,
253 	[TFTR]		= 0x0248,
254 	[FDR]		= 0x0250,
255 	[RMCR]		= 0x0258,
256 	[TFUCR]		= 0x0264,
257 	[RFOCR]		= 0x0268,
258 	[RMIIMODE]      = 0x026c,
259 	[FCFTR]		= 0x0270,
260 	[TRIMD]		= 0x027c,
261 };
262 
263 static const u16 sh_eth_offset_fast_sh4[SH_ETH_MAX_REGISTER_OFFSET] = {
264 	SH_ETH_OFFSET_DEFAULTS,
265 
266 	[ECMR]		= 0x0100,
267 	[RFLR]		= 0x0108,
268 	[ECSR]		= 0x0110,
269 	[ECSIPR]	= 0x0118,
270 	[PIR]		= 0x0120,
271 	[PSR]		= 0x0128,
272 	[RDMLR]		= 0x0140,
273 	[IPGR]		= 0x0150,
274 	[APR]		= 0x0154,
275 	[MPR]		= 0x0158,
276 	[TPAUSER]	= 0x0164,
277 	[RFCF]		= 0x0160,
278 	[TPAUSECR]	= 0x0168,
279 	[BCFRR]		= 0x016c,
280 	[MAHR]		= 0x01c0,
281 	[MALR]		= 0x01c8,
282 	[TROCR]		= 0x01d0,
283 	[CDCR]		= 0x01d4,
284 	[LCCR]		= 0x01d8,
285 	[CNDCR]		= 0x01dc,
286 	[CEFCR]		= 0x01e4,
287 	[FRECR]		= 0x01e8,
288 	[TSFRCR]	= 0x01ec,
289 	[TLFRCR]	= 0x01f0,
290 	[RFCR]		= 0x01f4,
291 	[MAFCR]		= 0x01f8,
292 	[RTRATE]	= 0x01fc,
293 
294 	[EDMR]		= 0x0000,
295 	[EDTRR]		= 0x0008,
296 	[EDRRR]		= 0x0010,
297 	[TDLAR]		= 0x0018,
298 	[RDLAR]		= 0x0020,
299 	[EESR]		= 0x0028,
300 	[EESIPR]	= 0x0030,
301 	[TRSCER]	= 0x0038,
302 	[RMFCR]		= 0x0040,
303 	[TFTR]		= 0x0048,
304 	[FDR]		= 0x0050,
305 	[RMCR]		= 0x0058,
306 	[TFUCR]		= 0x0064,
307 	[RFOCR]		= 0x0068,
308 	[FCFTR]		= 0x0070,
309 	[RPADIR]	= 0x0078,
310 	[TRIMD]		= 0x007c,
311 	[RBWAR]		= 0x00c8,
312 	[RDFAR]		= 0x00cc,
313 	[TBRAR]		= 0x00d4,
314 	[TDFAR]		= 0x00d8,
315 };
316 
317 static const u16 sh_eth_offset_fast_sh3_sh2[SH_ETH_MAX_REGISTER_OFFSET] = {
318 	SH_ETH_OFFSET_DEFAULTS,
319 
320 	[EDMR]		= 0x0000,
321 	[EDTRR]		= 0x0004,
322 	[EDRRR]		= 0x0008,
323 	[TDLAR]		= 0x000c,
324 	[RDLAR]		= 0x0010,
325 	[EESR]		= 0x0014,
326 	[EESIPR]	= 0x0018,
327 	[TRSCER]	= 0x001c,
328 	[RMFCR]		= 0x0020,
329 	[TFTR]		= 0x0024,
330 	[FDR]		= 0x0028,
331 	[RMCR]		= 0x002c,
332 	[EDOCR]		= 0x0030,
333 	[FCFTR]		= 0x0034,
334 	[RPADIR]	= 0x0038,
335 	[TRIMD]		= 0x003c,
336 	[RBWAR]		= 0x0040,
337 	[RDFAR]		= 0x0044,
338 	[TBRAR]		= 0x004c,
339 	[TDFAR]		= 0x0050,
340 
341 	[ECMR]		= 0x0160,
342 	[ECSR]		= 0x0164,
343 	[ECSIPR]	= 0x0168,
344 	[PIR]		= 0x016c,
345 	[MAHR]		= 0x0170,
346 	[MALR]		= 0x0174,
347 	[RFLR]		= 0x0178,
348 	[PSR]		= 0x017c,
349 	[TROCR]		= 0x0180,
350 	[CDCR]		= 0x0184,
351 	[LCCR]		= 0x0188,
352 	[CNDCR]		= 0x018c,
353 	[CEFCR]		= 0x0194,
354 	[FRECR]		= 0x0198,
355 	[TSFRCR]	= 0x019c,
356 	[TLFRCR]	= 0x01a0,
357 	[RFCR]		= 0x01a4,
358 	[MAFCR]		= 0x01a8,
359 	[IPGR]		= 0x01b4,
360 	[APR]		= 0x01b8,
361 	[MPR]		= 0x01bc,
362 	[TPAUSER]	= 0x01c4,
363 	[BCFR]		= 0x01cc,
364 
365 	[ARSTR]		= 0x0000,
366 	[TSU_CTRST]	= 0x0004,
367 	[TSU_FWEN0]	= 0x0010,
368 	[TSU_FWEN1]	= 0x0014,
369 	[TSU_FCM]	= 0x0018,
370 	[TSU_BSYSL0]	= 0x0020,
371 	[TSU_BSYSL1]	= 0x0024,
372 	[TSU_PRISL0]	= 0x0028,
373 	[TSU_PRISL1]	= 0x002c,
374 	[TSU_FWSL0]	= 0x0030,
375 	[TSU_FWSL1]	= 0x0034,
376 	[TSU_FWSLC]	= 0x0038,
377 	[TSU_QTAGM0]	= 0x0040,
378 	[TSU_QTAGM1]	= 0x0044,
379 	[TSU_ADQT0]	= 0x0048,
380 	[TSU_ADQT1]	= 0x004c,
381 	[TSU_FWSR]	= 0x0050,
382 	[TSU_FWINMK]	= 0x0054,
383 	[TSU_ADSBSY]	= 0x0060,
384 	[TSU_TEN]	= 0x0064,
385 	[TSU_POST1]	= 0x0070,
386 	[TSU_POST2]	= 0x0074,
387 	[TSU_POST3]	= 0x0078,
388 	[TSU_POST4]	= 0x007c,
389 
390 	[TXNLCR0]	= 0x0080,
391 	[TXALCR0]	= 0x0084,
392 	[RXNLCR0]	= 0x0088,
393 	[RXALCR0]	= 0x008c,
394 	[FWNLCR0]	= 0x0090,
395 	[FWALCR0]	= 0x0094,
396 	[TXNLCR1]	= 0x00a0,
397 	[TXALCR1]	= 0x00a0,
398 	[RXNLCR1]	= 0x00a8,
399 	[RXALCR1]	= 0x00ac,
400 	[FWNLCR1]	= 0x00b0,
401 	[FWALCR1]	= 0x00b4,
402 
403 	[TSU_ADRH0]	= 0x0100,
404 };
405 
406 static void sh_eth_rcv_snd_disable(struct net_device *ndev);
407 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev);
408 
409 static void sh_eth_write(struct net_device *ndev, u32 data, int enum_index)
410 {
411 	struct sh_eth_private *mdp = netdev_priv(ndev);
412 	u16 offset = mdp->reg_offset[enum_index];
413 
414 	if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
415 		return;
416 
417 	iowrite32(data, mdp->addr + offset);
418 }
419 
420 static u32 sh_eth_read(struct net_device *ndev, int enum_index)
421 {
422 	struct sh_eth_private *mdp = netdev_priv(ndev);
423 	u16 offset = mdp->reg_offset[enum_index];
424 
425 	if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
426 		return ~0U;
427 
428 	return ioread32(mdp->addr + offset);
429 }
430 
431 static bool sh_eth_is_gether(struct sh_eth_private *mdp)
432 {
433 	return mdp->reg_offset == sh_eth_offset_gigabit;
434 }
435 
436 static bool sh_eth_is_rz_fast_ether(struct sh_eth_private *mdp)
437 {
438 	return mdp->reg_offset == sh_eth_offset_fast_rz;
439 }
440 
441 static void sh_eth_select_mii(struct net_device *ndev)
442 {
443 	u32 value = 0x0;
444 	struct sh_eth_private *mdp = netdev_priv(ndev);
445 
446 	switch (mdp->phy_interface) {
447 	case PHY_INTERFACE_MODE_GMII:
448 		value = 0x2;
449 		break;
450 	case PHY_INTERFACE_MODE_MII:
451 		value = 0x1;
452 		break;
453 	case PHY_INTERFACE_MODE_RMII:
454 		value = 0x0;
455 		break;
456 	default:
457 		netdev_warn(ndev,
458 			    "PHY interface mode was not setup. Set to MII.\n");
459 		value = 0x1;
460 		break;
461 	}
462 
463 	sh_eth_write(ndev, value, RMII_MII);
464 }
465 
466 static void sh_eth_set_duplex(struct net_device *ndev)
467 {
468 	struct sh_eth_private *mdp = netdev_priv(ndev);
469 
470 	if (mdp->duplex) /* Full */
471 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
472 	else		/* Half */
473 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
474 }
475 
476 /* There is CPU dependent code */
477 static void sh_eth_set_rate_r8a777x(struct net_device *ndev)
478 {
479 	struct sh_eth_private *mdp = netdev_priv(ndev);
480 
481 	switch (mdp->speed) {
482 	case 10: /* 10BASE */
483 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_ELB, ECMR);
484 		break;
485 	case 100:/* 100BASE */
486 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_ELB, ECMR);
487 		break;
488 	default:
489 		break;
490 	}
491 }
492 
493 /* R8A7778/9 */
494 static struct sh_eth_cpu_data r8a777x_data = {
495 	.set_duplex	= sh_eth_set_duplex,
496 	.set_rate	= sh_eth_set_rate_r8a777x,
497 
498 	.register_type	= SH_ETH_REG_FAST_RCAR,
499 
500 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
501 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
502 	.eesipr_value	= 0x01ff009f,
503 
504 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
505 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
506 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
507 			  EESR_ECI,
508 	.fdr_value	= 0x00000f0f,
509 
510 	.apr		= 1,
511 	.mpr		= 1,
512 	.tpauser	= 1,
513 	.hw_swap	= 1,
514 };
515 
516 /* R8A7790/1 */
517 static struct sh_eth_cpu_data r8a779x_data = {
518 	.set_duplex	= sh_eth_set_duplex,
519 	.set_rate	= sh_eth_set_rate_r8a777x,
520 
521 	.register_type	= SH_ETH_REG_FAST_RCAR,
522 
523 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
524 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
525 	.eesipr_value	= 0x01ff009f,
526 
527 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
528 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
529 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
530 			  EESR_ECI,
531 	.fdr_value	= 0x00000f0f,
532 
533 	.trscer_err_mask = DESC_I_RINT8,
534 
535 	.apr		= 1,
536 	.mpr		= 1,
537 	.tpauser	= 1,
538 	.hw_swap	= 1,
539 	.rmiimode	= 1,
540 };
541 
542 static void sh_eth_set_rate_sh7724(struct net_device *ndev)
543 {
544 	struct sh_eth_private *mdp = netdev_priv(ndev);
545 
546 	switch (mdp->speed) {
547 	case 10: /* 10BASE */
548 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_RTM, ECMR);
549 		break;
550 	case 100:/* 100BASE */
551 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_RTM, ECMR);
552 		break;
553 	default:
554 		break;
555 	}
556 }
557 
558 /* SH7724 */
559 static struct sh_eth_cpu_data sh7724_data = {
560 	.set_duplex	= sh_eth_set_duplex,
561 	.set_rate	= sh_eth_set_rate_sh7724,
562 
563 	.register_type	= SH_ETH_REG_FAST_SH4,
564 
565 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
566 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
567 	.eesipr_value	= 0x01ff009f,
568 
569 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
570 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
571 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
572 			  EESR_ECI,
573 
574 	.apr		= 1,
575 	.mpr		= 1,
576 	.tpauser	= 1,
577 	.hw_swap	= 1,
578 	.rpadir		= 1,
579 	.rpadir_value	= 0x00020000, /* NET_IP_ALIGN assumed to be 2 */
580 };
581 
582 static void sh_eth_set_rate_sh7757(struct net_device *ndev)
583 {
584 	struct sh_eth_private *mdp = netdev_priv(ndev);
585 
586 	switch (mdp->speed) {
587 	case 10: /* 10BASE */
588 		sh_eth_write(ndev, 0, RTRATE);
589 		break;
590 	case 100:/* 100BASE */
591 		sh_eth_write(ndev, 1, RTRATE);
592 		break;
593 	default:
594 		break;
595 	}
596 }
597 
598 /* SH7757 */
599 static struct sh_eth_cpu_data sh7757_data = {
600 	.set_duplex	= sh_eth_set_duplex,
601 	.set_rate	= sh_eth_set_rate_sh7757,
602 
603 	.register_type	= SH_ETH_REG_FAST_SH4,
604 
605 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
606 
607 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
608 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
609 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
610 			  EESR_ECI,
611 
612 	.irq_flags	= IRQF_SHARED,
613 	.apr		= 1,
614 	.mpr		= 1,
615 	.tpauser	= 1,
616 	.hw_swap	= 1,
617 	.no_ade		= 1,
618 	.rpadir		= 1,
619 	.rpadir_value   = 2 << 16,
620 	.rtrate		= 1,
621 };
622 
623 #define SH_GIGA_ETH_BASE	0xfee00000UL
624 #define GIGA_MALR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
625 #define GIGA_MAHR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
626 static void sh_eth_chip_reset_giga(struct net_device *ndev)
627 {
628 	int i;
629 	u32 mahr[2], malr[2];
630 
631 	/* save MAHR and MALR */
632 	for (i = 0; i < 2; i++) {
633 		malr[i] = ioread32((void *)GIGA_MALR(i));
634 		mahr[i] = ioread32((void *)GIGA_MAHR(i));
635 	}
636 
637 	/* reset device */
638 	iowrite32(ARSTR_ARSTR, (void *)(SH_GIGA_ETH_BASE + 0x1800));
639 	mdelay(1);
640 
641 	/* restore MAHR and MALR */
642 	for (i = 0; i < 2; i++) {
643 		iowrite32(malr[i], (void *)GIGA_MALR(i));
644 		iowrite32(mahr[i], (void *)GIGA_MAHR(i));
645 	}
646 }
647 
648 static void sh_eth_set_rate_giga(struct net_device *ndev)
649 {
650 	struct sh_eth_private *mdp = netdev_priv(ndev);
651 
652 	switch (mdp->speed) {
653 	case 10: /* 10BASE */
654 		sh_eth_write(ndev, 0x00000000, GECMR);
655 		break;
656 	case 100:/* 100BASE */
657 		sh_eth_write(ndev, 0x00000010, GECMR);
658 		break;
659 	case 1000: /* 1000BASE */
660 		sh_eth_write(ndev, 0x00000020, GECMR);
661 		break;
662 	default:
663 		break;
664 	}
665 }
666 
667 /* SH7757(GETHERC) */
668 static struct sh_eth_cpu_data sh7757_data_giga = {
669 	.chip_reset	= sh_eth_chip_reset_giga,
670 	.set_duplex	= sh_eth_set_duplex,
671 	.set_rate	= sh_eth_set_rate_giga,
672 
673 	.register_type	= SH_ETH_REG_GIGABIT,
674 
675 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
676 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
677 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
678 
679 	.tx_check	= EESR_TC1 | EESR_FTC,
680 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
681 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
682 			  EESR_TDE | EESR_ECI,
683 	.fdr_value	= 0x0000072f,
684 
685 	.irq_flags	= IRQF_SHARED,
686 	.apr		= 1,
687 	.mpr		= 1,
688 	.tpauser	= 1,
689 	.bculr		= 1,
690 	.hw_swap	= 1,
691 	.rpadir		= 1,
692 	.rpadir_value   = 2 << 16,
693 	.no_trimd	= 1,
694 	.no_ade		= 1,
695 	.tsu		= 1,
696 };
697 
698 static void sh_eth_chip_reset(struct net_device *ndev)
699 {
700 	struct sh_eth_private *mdp = netdev_priv(ndev);
701 
702 	/* reset device */
703 	sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
704 	mdelay(1);
705 }
706 
707 static void sh_eth_set_rate_gether(struct net_device *ndev)
708 {
709 	struct sh_eth_private *mdp = netdev_priv(ndev);
710 
711 	switch (mdp->speed) {
712 	case 10: /* 10BASE */
713 		sh_eth_write(ndev, GECMR_10, GECMR);
714 		break;
715 	case 100:/* 100BASE */
716 		sh_eth_write(ndev, GECMR_100, GECMR);
717 		break;
718 	case 1000: /* 1000BASE */
719 		sh_eth_write(ndev, GECMR_1000, GECMR);
720 		break;
721 	default:
722 		break;
723 	}
724 }
725 
726 /* SH7734 */
727 static struct sh_eth_cpu_data sh7734_data = {
728 	.chip_reset	= sh_eth_chip_reset,
729 	.set_duplex	= sh_eth_set_duplex,
730 	.set_rate	= sh_eth_set_rate_gether,
731 
732 	.register_type	= SH_ETH_REG_GIGABIT,
733 
734 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
735 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
736 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
737 
738 	.tx_check	= EESR_TC1 | EESR_FTC,
739 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
740 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
741 			  EESR_TDE | EESR_ECI,
742 
743 	.apr		= 1,
744 	.mpr		= 1,
745 	.tpauser	= 1,
746 	.bculr		= 1,
747 	.hw_swap	= 1,
748 	.no_trimd	= 1,
749 	.no_ade		= 1,
750 	.tsu		= 1,
751 	.hw_crc		= 1,
752 	.select_mii	= 1,
753 };
754 
755 /* SH7763 */
756 static struct sh_eth_cpu_data sh7763_data = {
757 	.chip_reset	= sh_eth_chip_reset,
758 	.set_duplex	= sh_eth_set_duplex,
759 	.set_rate	= sh_eth_set_rate_gether,
760 
761 	.register_type	= SH_ETH_REG_GIGABIT,
762 
763 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
764 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
765 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
766 
767 	.tx_check	= EESR_TC1 | EESR_FTC,
768 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
769 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
770 			  EESR_ECI,
771 
772 	.apr		= 1,
773 	.mpr		= 1,
774 	.tpauser	= 1,
775 	.bculr		= 1,
776 	.hw_swap	= 1,
777 	.no_trimd	= 1,
778 	.no_ade		= 1,
779 	.tsu		= 1,
780 	.irq_flags	= IRQF_SHARED,
781 };
782 
783 static void sh_eth_chip_reset_r8a7740(struct net_device *ndev)
784 {
785 	struct sh_eth_private *mdp = netdev_priv(ndev);
786 
787 	/* reset device */
788 	sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
789 	mdelay(1);
790 
791 	sh_eth_select_mii(ndev);
792 }
793 
794 /* R8A7740 */
795 static struct sh_eth_cpu_data r8a7740_data = {
796 	.chip_reset	= sh_eth_chip_reset_r8a7740,
797 	.set_duplex	= sh_eth_set_duplex,
798 	.set_rate	= sh_eth_set_rate_gether,
799 
800 	.register_type	= SH_ETH_REG_GIGABIT,
801 
802 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
803 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
804 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
805 
806 	.tx_check	= EESR_TC1 | EESR_FTC,
807 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
808 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
809 			  EESR_TDE | EESR_ECI,
810 	.fdr_value	= 0x0000070f,
811 
812 	.apr		= 1,
813 	.mpr		= 1,
814 	.tpauser	= 1,
815 	.bculr		= 1,
816 	.hw_swap	= 1,
817 	.rpadir		= 1,
818 	.rpadir_value   = 2 << 16,
819 	.no_trimd	= 1,
820 	.no_ade		= 1,
821 	.tsu		= 1,
822 	.select_mii	= 1,
823 	.shift_rd0	= 1,
824 };
825 
826 /* R7S72100 */
827 static struct sh_eth_cpu_data r7s72100_data = {
828 	.chip_reset	= sh_eth_chip_reset,
829 	.set_duplex	= sh_eth_set_duplex,
830 
831 	.register_type	= SH_ETH_REG_FAST_RZ,
832 
833 	.ecsr_value	= ECSR_ICD,
834 	.ecsipr_value	= ECSIPR_ICDIP,
835 	.eesipr_value	= 0xff7f009f,
836 
837 	.tx_check	= EESR_TC1 | EESR_FTC,
838 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
839 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
840 			  EESR_TDE | EESR_ECI,
841 	.fdr_value	= 0x0000070f,
842 
843 	.no_psr		= 1,
844 	.apr		= 1,
845 	.mpr		= 1,
846 	.tpauser	= 1,
847 	.hw_swap	= 1,
848 	.rpadir		= 1,
849 	.rpadir_value   = 2 << 16,
850 	.no_trimd	= 1,
851 	.no_ade		= 1,
852 	.hw_crc		= 1,
853 	.tsu		= 1,
854 	.shift_rd0	= 1,
855 };
856 
857 static struct sh_eth_cpu_data sh7619_data = {
858 	.register_type	= SH_ETH_REG_FAST_SH3_SH2,
859 
860 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
861 
862 	.apr		= 1,
863 	.mpr		= 1,
864 	.tpauser	= 1,
865 	.hw_swap	= 1,
866 };
867 
868 static struct sh_eth_cpu_data sh771x_data = {
869 	.register_type	= SH_ETH_REG_FAST_SH3_SH2,
870 
871 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
872 	.tsu		= 1,
873 };
874 
875 static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
876 {
877 	if (!cd->ecsr_value)
878 		cd->ecsr_value = DEFAULT_ECSR_INIT;
879 
880 	if (!cd->ecsipr_value)
881 		cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
882 
883 	if (!cd->fcftr_value)
884 		cd->fcftr_value = DEFAULT_FIFO_F_D_RFF |
885 				  DEFAULT_FIFO_F_D_RFD;
886 
887 	if (!cd->fdr_value)
888 		cd->fdr_value = DEFAULT_FDR_INIT;
889 
890 	if (!cd->tx_check)
891 		cd->tx_check = DEFAULT_TX_CHECK;
892 
893 	if (!cd->eesr_err_check)
894 		cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
895 
896 	if (!cd->trscer_err_mask)
897 		cd->trscer_err_mask = DEFAULT_TRSCER_ERR_MASK;
898 }
899 
900 static int sh_eth_check_reset(struct net_device *ndev)
901 {
902 	int ret = 0;
903 	int cnt = 100;
904 
905 	while (cnt > 0) {
906 		if (!(sh_eth_read(ndev, EDMR) & 0x3))
907 			break;
908 		mdelay(1);
909 		cnt--;
910 	}
911 	if (cnt <= 0) {
912 		netdev_err(ndev, "Device reset failed\n");
913 		ret = -ETIMEDOUT;
914 	}
915 	return ret;
916 }
917 
918 static int sh_eth_reset(struct net_device *ndev)
919 {
920 	struct sh_eth_private *mdp = netdev_priv(ndev);
921 	int ret = 0;
922 
923 	if (sh_eth_is_gether(mdp) || sh_eth_is_rz_fast_ether(mdp)) {
924 		sh_eth_write(ndev, EDSR_ENALL, EDSR);
925 		sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER,
926 			     EDMR);
927 
928 		ret = sh_eth_check_reset(ndev);
929 		if (ret)
930 			return ret;
931 
932 		/* Table Init */
933 		sh_eth_write(ndev, 0x0, TDLAR);
934 		sh_eth_write(ndev, 0x0, TDFAR);
935 		sh_eth_write(ndev, 0x0, TDFXR);
936 		sh_eth_write(ndev, 0x0, TDFFR);
937 		sh_eth_write(ndev, 0x0, RDLAR);
938 		sh_eth_write(ndev, 0x0, RDFAR);
939 		sh_eth_write(ndev, 0x0, RDFXR);
940 		sh_eth_write(ndev, 0x0, RDFFR);
941 
942 		/* Reset HW CRC register */
943 		if (mdp->cd->hw_crc)
944 			sh_eth_write(ndev, 0x0, CSMR);
945 
946 		/* Select MII mode */
947 		if (mdp->cd->select_mii)
948 			sh_eth_select_mii(ndev);
949 	} else {
950 		sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_ETHER,
951 			     EDMR);
952 		mdelay(3);
953 		sh_eth_write(ndev, sh_eth_read(ndev, EDMR) & ~EDMR_SRST_ETHER,
954 			     EDMR);
955 	}
956 
957 	return ret;
958 }
959 
960 static void sh_eth_set_receive_align(struct sk_buff *skb)
961 {
962 	uintptr_t reserve = (uintptr_t)skb->data & (SH_ETH_RX_ALIGN - 1);
963 
964 	if (reserve)
965 		skb_reserve(skb, SH_ETH_RX_ALIGN - reserve);
966 }
967 
968 
969 /* CPU <-> EDMAC endian convert */
970 static inline __u32 cpu_to_edmac(struct sh_eth_private *mdp, u32 x)
971 {
972 	switch (mdp->edmac_endian) {
973 	case EDMAC_LITTLE_ENDIAN:
974 		return cpu_to_le32(x);
975 	case EDMAC_BIG_ENDIAN:
976 		return cpu_to_be32(x);
977 	}
978 	return x;
979 }
980 
981 static inline __u32 edmac_to_cpu(struct sh_eth_private *mdp, u32 x)
982 {
983 	switch (mdp->edmac_endian) {
984 	case EDMAC_LITTLE_ENDIAN:
985 		return le32_to_cpu(x);
986 	case EDMAC_BIG_ENDIAN:
987 		return be32_to_cpu(x);
988 	}
989 	return x;
990 }
991 
992 /* Program the hardware MAC address from dev->dev_addr. */
993 static void update_mac_address(struct net_device *ndev)
994 {
995 	sh_eth_write(ndev,
996 		     (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
997 		     (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
998 	sh_eth_write(ndev,
999 		     (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
1000 }
1001 
1002 /* Get MAC address from SuperH MAC address register
1003  *
1004  * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
1005  * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
1006  * When you want use this device, you must set MAC address in bootloader.
1007  *
1008  */
1009 static void read_mac_address(struct net_device *ndev, unsigned char *mac)
1010 {
1011 	if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
1012 		memcpy(ndev->dev_addr, mac, ETH_ALEN);
1013 	} else {
1014 		ndev->dev_addr[0] = (sh_eth_read(ndev, MAHR) >> 24);
1015 		ndev->dev_addr[1] = (sh_eth_read(ndev, MAHR) >> 16) & 0xFF;
1016 		ndev->dev_addr[2] = (sh_eth_read(ndev, MAHR) >> 8) & 0xFF;
1017 		ndev->dev_addr[3] = (sh_eth_read(ndev, MAHR) & 0xFF);
1018 		ndev->dev_addr[4] = (sh_eth_read(ndev, MALR) >> 8) & 0xFF;
1019 		ndev->dev_addr[5] = (sh_eth_read(ndev, MALR) & 0xFF);
1020 	}
1021 }
1022 
1023 static u32 sh_eth_get_edtrr_trns(struct sh_eth_private *mdp)
1024 {
1025 	if (sh_eth_is_gether(mdp) || sh_eth_is_rz_fast_ether(mdp))
1026 		return EDTRR_TRNS_GETHER;
1027 	else
1028 		return EDTRR_TRNS_ETHER;
1029 }
1030 
1031 struct bb_info {
1032 	void (*set_gate)(void *addr);
1033 	struct mdiobb_ctrl ctrl;
1034 	void *addr;
1035 	u32 mmd_msk;/* MMD */
1036 	u32 mdo_msk;
1037 	u32 mdi_msk;
1038 	u32 mdc_msk;
1039 };
1040 
1041 /* PHY bit set */
1042 static void bb_set(void *addr, u32 msk)
1043 {
1044 	iowrite32(ioread32(addr) | msk, addr);
1045 }
1046 
1047 /* PHY bit clear */
1048 static void bb_clr(void *addr, u32 msk)
1049 {
1050 	iowrite32((ioread32(addr) & ~msk), addr);
1051 }
1052 
1053 /* PHY bit read */
1054 static int bb_read(void *addr, u32 msk)
1055 {
1056 	return (ioread32(addr) & msk) != 0;
1057 }
1058 
1059 /* Data I/O pin control */
1060 static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1061 {
1062 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1063 
1064 	if (bitbang->set_gate)
1065 		bitbang->set_gate(bitbang->addr);
1066 
1067 	if (bit)
1068 		bb_set(bitbang->addr, bitbang->mmd_msk);
1069 	else
1070 		bb_clr(bitbang->addr, bitbang->mmd_msk);
1071 }
1072 
1073 /* Set bit data*/
1074 static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
1075 {
1076 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1077 
1078 	if (bitbang->set_gate)
1079 		bitbang->set_gate(bitbang->addr);
1080 
1081 	if (bit)
1082 		bb_set(bitbang->addr, bitbang->mdo_msk);
1083 	else
1084 		bb_clr(bitbang->addr, bitbang->mdo_msk);
1085 }
1086 
1087 /* Get bit data*/
1088 static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
1089 {
1090 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1091 
1092 	if (bitbang->set_gate)
1093 		bitbang->set_gate(bitbang->addr);
1094 
1095 	return bb_read(bitbang->addr, bitbang->mdi_msk);
1096 }
1097 
1098 /* MDC pin control */
1099 static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1100 {
1101 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1102 
1103 	if (bitbang->set_gate)
1104 		bitbang->set_gate(bitbang->addr);
1105 
1106 	if (bit)
1107 		bb_set(bitbang->addr, bitbang->mdc_msk);
1108 	else
1109 		bb_clr(bitbang->addr, bitbang->mdc_msk);
1110 }
1111 
1112 /* mdio bus control struct */
1113 static struct mdiobb_ops bb_ops = {
1114 	.owner = THIS_MODULE,
1115 	.set_mdc = sh_mdc_ctrl,
1116 	.set_mdio_dir = sh_mmd_ctrl,
1117 	.set_mdio_data = sh_set_mdio,
1118 	.get_mdio_data = sh_get_mdio,
1119 };
1120 
1121 /* free skb and descriptor buffer */
1122 static void sh_eth_ring_free(struct net_device *ndev)
1123 {
1124 	struct sh_eth_private *mdp = netdev_priv(ndev);
1125 	int ringsize, i;
1126 
1127 	/* Free Rx skb ringbuffer */
1128 	if (mdp->rx_skbuff) {
1129 		for (i = 0; i < mdp->num_rx_ring; i++)
1130 			dev_kfree_skb(mdp->rx_skbuff[i]);
1131 	}
1132 	kfree(mdp->rx_skbuff);
1133 	mdp->rx_skbuff = NULL;
1134 
1135 	/* Free Tx skb ringbuffer */
1136 	if (mdp->tx_skbuff) {
1137 		for (i = 0; i < mdp->num_tx_ring; i++)
1138 			dev_kfree_skb(mdp->tx_skbuff[i]);
1139 	}
1140 	kfree(mdp->tx_skbuff);
1141 	mdp->tx_skbuff = NULL;
1142 
1143 	if (mdp->rx_ring) {
1144 		ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1145 		dma_free_coherent(NULL, ringsize, mdp->rx_ring,
1146 				  mdp->rx_desc_dma);
1147 		mdp->rx_ring = NULL;
1148 	}
1149 
1150 	if (mdp->tx_ring) {
1151 		ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1152 		dma_free_coherent(NULL, ringsize, mdp->tx_ring,
1153 				  mdp->tx_desc_dma);
1154 		mdp->tx_ring = NULL;
1155 	}
1156 }
1157 
1158 /* format skb and descriptor buffer */
1159 static void sh_eth_ring_format(struct net_device *ndev)
1160 {
1161 	struct sh_eth_private *mdp = netdev_priv(ndev);
1162 	int i;
1163 	struct sk_buff *skb;
1164 	struct sh_eth_rxdesc *rxdesc = NULL;
1165 	struct sh_eth_txdesc *txdesc = NULL;
1166 	int rx_ringsize = sizeof(*rxdesc) * mdp->num_rx_ring;
1167 	int tx_ringsize = sizeof(*txdesc) * mdp->num_tx_ring;
1168 	int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1;
1169 	dma_addr_t dma_addr;
1170 	u32 buf_len;
1171 
1172 	mdp->cur_rx = 0;
1173 	mdp->cur_tx = 0;
1174 	mdp->dirty_rx = 0;
1175 	mdp->dirty_tx = 0;
1176 
1177 	memset(mdp->rx_ring, 0, rx_ringsize);
1178 
1179 	/* build Rx ring buffer */
1180 	for (i = 0; i < mdp->num_rx_ring; i++) {
1181 		/* skb */
1182 		mdp->rx_skbuff[i] = NULL;
1183 		skb = netdev_alloc_skb(ndev, skbuff_size);
1184 		if (skb == NULL)
1185 			break;
1186 		sh_eth_set_receive_align(skb);
1187 
1188 		/* RX descriptor */
1189 		rxdesc = &mdp->rx_ring[i];
1190 		/* The size of the buffer is a multiple of 32 bytes. */
1191 		buf_len = ALIGN(mdp->rx_buf_sz, 32);
1192 		rxdesc->len = cpu_to_edmac(mdp, buf_len << 16);
1193 		dma_addr = dma_map_single(&ndev->dev, skb->data, buf_len,
1194 					  DMA_FROM_DEVICE);
1195 		if (dma_mapping_error(&ndev->dev, dma_addr)) {
1196 			kfree_skb(skb);
1197 			break;
1198 		}
1199 		mdp->rx_skbuff[i] = skb;
1200 		rxdesc->addr = cpu_to_edmac(mdp, dma_addr);
1201 		rxdesc->status = cpu_to_edmac(mdp, RD_RACT | RD_RFP);
1202 
1203 		/* Rx descriptor address set */
1204 		if (i == 0) {
1205 			sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
1206 			if (sh_eth_is_gether(mdp) ||
1207 			    sh_eth_is_rz_fast_ether(mdp))
1208 				sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
1209 		}
1210 	}
1211 
1212 	mdp->dirty_rx = (u32) (i - mdp->num_rx_ring);
1213 
1214 	/* Mark the last entry as wrapping the ring. */
1215 	rxdesc->status |= cpu_to_edmac(mdp, RD_RDLE);
1216 
1217 	memset(mdp->tx_ring, 0, tx_ringsize);
1218 
1219 	/* build Tx ring buffer */
1220 	for (i = 0; i < mdp->num_tx_ring; i++) {
1221 		mdp->tx_skbuff[i] = NULL;
1222 		txdesc = &mdp->tx_ring[i];
1223 		txdesc->status = cpu_to_edmac(mdp, TD_TFP);
1224 		txdesc->len = cpu_to_edmac(mdp, 0);
1225 		if (i == 0) {
1226 			/* Tx descriptor address set */
1227 			sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
1228 			if (sh_eth_is_gether(mdp) ||
1229 			    sh_eth_is_rz_fast_ether(mdp))
1230 				sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
1231 		}
1232 	}
1233 
1234 	txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
1235 }
1236 
1237 /* Get skb and descriptor buffer */
1238 static int sh_eth_ring_init(struct net_device *ndev)
1239 {
1240 	struct sh_eth_private *mdp = netdev_priv(ndev);
1241 	int rx_ringsize, tx_ringsize;
1242 
1243 	/* +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
1244 	 * card needs room to do 8 byte alignment, +2 so we can reserve
1245 	 * the first 2 bytes, and +16 gets room for the status word from the
1246 	 * card.
1247 	 */
1248 	mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
1249 			  (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
1250 	if (mdp->cd->rpadir)
1251 		mdp->rx_buf_sz += NET_IP_ALIGN;
1252 
1253 	/* Allocate RX and TX skb rings */
1254 	mdp->rx_skbuff = kcalloc(mdp->num_rx_ring, sizeof(*mdp->rx_skbuff),
1255 				 GFP_KERNEL);
1256 	if (!mdp->rx_skbuff)
1257 		return -ENOMEM;
1258 
1259 	mdp->tx_skbuff = kcalloc(mdp->num_tx_ring, sizeof(*mdp->tx_skbuff),
1260 				 GFP_KERNEL);
1261 	if (!mdp->tx_skbuff)
1262 		goto ring_free;
1263 
1264 	/* Allocate all Rx descriptors. */
1265 	rx_ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1266 	mdp->rx_ring = dma_alloc_coherent(NULL, rx_ringsize, &mdp->rx_desc_dma,
1267 					  GFP_KERNEL);
1268 	if (!mdp->rx_ring)
1269 		goto ring_free;
1270 
1271 	mdp->dirty_rx = 0;
1272 
1273 	/* Allocate all Tx descriptors. */
1274 	tx_ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1275 	mdp->tx_ring = dma_alloc_coherent(NULL, tx_ringsize, &mdp->tx_desc_dma,
1276 					  GFP_KERNEL);
1277 	if (!mdp->tx_ring)
1278 		goto ring_free;
1279 	return 0;
1280 
1281 ring_free:
1282 	/* Free Rx and Tx skb ring buffer and DMA buffer */
1283 	sh_eth_ring_free(ndev);
1284 
1285 	return -ENOMEM;
1286 }
1287 
1288 static int sh_eth_dev_init(struct net_device *ndev, bool start)
1289 {
1290 	int ret = 0;
1291 	struct sh_eth_private *mdp = netdev_priv(ndev);
1292 	u32 val;
1293 
1294 	/* Soft Reset */
1295 	ret = sh_eth_reset(ndev);
1296 	if (ret)
1297 		return ret;
1298 
1299 	if (mdp->cd->rmiimode)
1300 		sh_eth_write(ndev, 0x1, RMIIMODE);
1301 
1302 	/* Descriptor format */
1303 	sh_eth_ring_format(ndev);
1304 	if (mdp->cd->rpadir)
1305 		sh_eth_write(ndev, mdp->cd->rpadir_value, RPADIR);
1306 
1307 	/* all sh_eth int mask */
1308 	sh_eth_write(ndev, 0, EESIPR);
1309 
1310 #if defined(__LITTLE_ENDIAN)
1311 	if (mdp->cd->hw_swap)
1312 		sh_eth_write(ndev, EDMR_EL, EDMR);
1313 	else
1314 #endif
1315 		sh_eth_write(ndev, 0, EDMR);
1316 
1317 	/* FIFO size set */
1318 	sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
1319 	sh_eth_write(ndev, 0, TFTR);
1320 
1321 	/* Frame recv control (enable multiple-packets per rx irq) */
1322 	sh_eth_write(ndev, RMCR_RNC, RMCR);
1323 
1324 	sh_eth_write(ndev, mdp->cd->trscer_err_mask, TRSCER);
1325 
1326 	if (mdp->cd->bculr)
1327 		sh_eth_write(ndev, 0x800, BCULR);	/* Burst sycle set */
1328 
1329 	sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
1330 
1331 	if (!mdp->cd->no_trimd)
1332 		sh_eth_write(ndev, 0, TRIMD);
1333 
1334 	/* Recv frame limit set register */
1335 	sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
1336 		     RFLR);
1337 
1338 	sh_eth_write(ndev, sh_eth_read(ndev, EESR), EESR);
1339 	if (start) {
1340 		mdp->irq_enabled = true;
1341 		sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1342 	}
1343 
1344 	/* PAUSE Prohibition */
1345 	val = (sh_eth_read(ndev, ECMR) & ECMR_DM) |
1346 		ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) | ECMR_TE | ECMR_RE;
1347 
1348 	sh_eth_write(ndev, val, ECMR);
1349 
1350 	if (mdp->cd->set_rate)
1351 		mdp->cd->set_rate(ndev);
1352 
1353 	/* E-MAC Status Register clear */
1354 	sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
1355 
1356 	/* E-MAC Interrupt Enable register */
1357 	if (start)
1358 		sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
1359 
1360 	/* Set MAC address */
1361 	update_mac_address(ndev);
1362 
1363 	/* mask reset */
1364 	if (mdp->cd->apr)
1365 		sh_eth_write(ndev, APR_AP, APR);
1366 	if (mdp->cd->mpr)
1367 		sh_eth_write(ndev, MPR_MP, MPR);
1368 	if (mdp->cd->tpauser)
1369 		sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
1370 
1371 	if (start) {
1372 		/* Setting the Rx mode will start the Rx process. */
1373 		sh_eth_write(ndev, EDRRR_R, EDRRR);
1374 
1375 		netif_start_queue(ndev);
1376 	}
1377 
1378 	return ret;
1379 }
1380 
1381 static void sh_eth_dev_exit(struct net_device *ndev)
1382 {
1383 	struct sh_eth_private *mdp = netdev_priv(ndev);
1384 	int i;
1385 
1386 	/* Deactivate all TX descriptors, so DMA should stop at next
1387 	 * packet boundary if it's currently running
1388 	 */
1389 	for (i = 0; i < mdp->num_tx_ring; i++)
1390 		mdp->tx_ring[i].status &= ~cpu_to_edmac(mdp, TD_TACT);
1391 
1392 	/* Disable TX FIFO egress to MAC */
1393 	sh_eth_rcv_snd_disable(ndev);
1394 
1395 	/* Stop RX DMA at next packet boundary */
1396 	sh_eth_write(ndev, 0, EDRRR);
1397 
1398 	/* Aside from TX DMA, we can't tell when the hardware is
1399 	 * really stopped, so we need to reset to make sure.
1400 	 * Before doing that, wait for long enough to *probably*
1401 	 * finish transmitting the last packet and poll stats.
1402 	 */
1403 	msleep(2); /* max frame time at 10 Mbps < 1250 us */
1404 	sh_eth_get_stats(ndev);
1405 	sh_eth_reset(ndev);
1406 
1407 	/* Set MAC address again */
1408 	update_mac_address(ndev);
1409 }
1410 
1411 /* free Tx skb function */
1412 static int sh_eth_txfree(struct net_device *ndev)
1413 {
1414 	struct sh_eth_private *mdp = netdev_priv(ndev);
1415 	struct sh_eth_txdesc *txdesc;
1416 	int free_num = 0;
1417 	int entry = 0;
1418 
1419 	for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
1420 		entry = mdp->dirty_tx % mdp->num_tx_ring;
1421 		txdesc = &mdp->tx_ring[entry];
1422 		if (txdesc->status & cpu_to_edmac(mdp, TD_TACT))
1423 			break;
1424 		/* TACT bit must be checked before all the following reads */
1425 		dma_rmb();
1426 		netif_info(mdp, tx_done, ndev,
1427 			   "tx entry %d status 0x%08x\n",
1428 			   entry, edmac_to_cpu(mdp, txdesc->status));
1429 		/* Free the original skb. */
1430 		if (mdp->tx_skbuff[entry]) {
1431 			dma_unmap_single(&ndev->dev,
1432 					 edmac_to_cpu(mdp, txdesc->addr),
1433 					 edmac_to_cpu(mdp, txdesc->len) >> 16,
1434 					 DMA_TO_DEVICE);
1435 			dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
1436 			mdp->tx_skbuff[entry] = NULL;
1437 			free_num++;
1438 		}
1439 		txdesc->status = cpu_to_edmac(mdp, TD_TFP);
1440 		if (entry >= mdp->num_tx_ring - 1)
1441 			txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
1442 
1443 		ndev->stats.tx_packets++;
1444 		ndev->stats.tx_bytes += edmac_to_cpu(mdp, txdesc->len) >> 16;
1445 	}
1446 	return free_num;
1447 }
1448 
1449 /* Packet receive function */
1450 static int sh_eth_rx(struct net_device *ndev, u32 intr_status, int *quota)
1451 {
1452 	struct sh_eth_private *mdp = netdev_priv(ndev);
1453 	struct sh_eth_rxdesc *rxdesc;
1454 
1455 	int entry = mdp->cur_rx % mdp->num_rx_ring;
1456 	int boguscnt = (mdp->dirty_rx + mdp->num_rx_ring) - mdp->cur_rx;
1457 	int limit;
1458 	struct sk_buff *skb;
1459 	u16 pkt_len = 0;
1460 	u32 desc_status;
1461 	int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1;
1462 	dma_addr_t dma_addr;
1463 	u32 buf_len;
1464 
1465 	boguscnt = min(boguscnt, *quota);
1466 	limit = boguscnt;
1467 	rxdesc = &mdp->rx_ring[entry];
1468 	while (!(rxdesc->status & cpu_to_edmac(mdp, RD_RACT))) {
1469 		/* RACT bit must be checked before all the following reads */
1470 		dma_rmb();
1471 		desc_status = edmac_to_cpu(mdp, rxdesc->status);
1472 		pkt_len = edmac_to_cpu(mdp, rxdesc->len) & RD_RFL;
1473 
1474 		if (--boguscnt < 0)
1475 			break;
1476 
1477 		netif_info(mdp, rx_status, ndev,
1478 			   "rx entry %d status 0x%08x len %d\n",
1479 			   entry, desc_status, pkt_len);
1480 
1481 		if (!(desc_status & RDFEND))
1482 			ndev->stats.rx_length_errors++;
1483 
1484 		/* In case of almost all GETHER/ETHERs, the Receive Frame State
1485 		 * (RFS) bits in the Receive Descriptor 0 are from bit 9 to
1486 		 * bit 0. However, in case of the R8A7740 and R7S72100
1487 		 * the RFS bits are from bit 25 to bit 16. So, the
1488 		 * driver needs right shifting by 16.
1489 		 */
1490 		if (mdp->cd->shift_rd0)
1491 			desc_status >>= 16;
1492 
1493 		skb = mdp->rx_skbuff[entry];
1494 		if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
1495 				   RD_RFS5 | RD_RFS6 | RD_RFS10)) {
1496 			ndev->stats.rx_errors++;
1497 			if (desc_status & RD_RFS1)
1498 				ndev->stats.rx_crc_errors++;
1499 			if (desc_status & RD_RFS2)
1500 				ndev->stats.rx_frame_errors++;
1501 			if (desc_status & RD_RFS3)
1502 				ndev->stats.rx_length_errors++;
1503 			if (desc_status & RD_RFS4)
1504 				ndev->stats.rx_length_errors++;
1505 			if (desc_status & RD_RFS6)
1506 				ndev->stats.rx_missed_errors++;
1507 			if (desc_status & RD_RFS10)
1508 				ndev->stats.rx_over_errors++;
1509 		} else	if (skb) {
1510 			dma_addr = edmac_to_cpu(mdp, rxdesc->addr);
1511 			if (!mdp->cd->hw_swap)
1512 				sh_eth_soft_swap(
1513 					phys_to_virt(ALIGN(dma_addr, 4)),
1514 					pkt_len + 2);
1515 			mdp->rx_skbuff[entry] = NULL;
1516 			if (mdp->cd->rpadir)
1517 				skb_reserve(skb, NET_IP_ALIGN);
1518 			dma_unmap_single(&ndev->dev, dma_addr,
1519 					 ALIGN(mdp->rx_buf_sz, 32),
1520 					 DMA_FROM_DEVICE);
1521 			skb_put(skb, pkt_len);
1522 			skb->protocol = eth_type_trans(skb, ndev);
1523 			netif_receive_skb(skb);
1524 			ndev->stats.rx_packets++;
1525 			ndev->stats.rx_bytes += pkt_len;
1526 			if (desc_status & RD_RFS8)
1527 				ndev->stats.multicast++;
1528 		}
1529 		entry = (++mdp->cur_rx) % mdp->num_rx_ring;
1530 		rxdesc = &mdp->rx_ring[entry];
1531 	}
1532 
1533 	/* Refill the Rx ring buffers. */
1534 	for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
1535 		entry = mdp->dirty_rx % mdp->num_rx_ring;
1536 		rxdesc = &mdp->rx_ring[entry];
1537 		/* The size of the buffer is 32 byte boundary. */
1538 		buf_len = ALIGN(mdp->rx_buf_sz, 32);
1539 		rxdesc->len = cpu_to_edmac(mdp, buf_len << 16);
1540 
1541 		if (mdp->rx_skbuff[entry] == NULL) {
1542 			skb = netdev_alloc_skb(ndev, skbuff_size);
1543 			if (skb == NULL)
1544 				break;	/* Better luck next round. */
1545 			sh_eth_set_receive_align(skb);
1546 			dma_addr = dma_map_single(&ndev->dev, skb->data,
1547 						  buf_len, DMA_FROM_DEVICE);
1548 			if (dma_mapping_error(&ndev->dev, dma_addr)) {
1549 				kfree_skb(skb);
1550 				break;
1551 			}
1552 			mdp->rx_skbuff[entry] = skb;
1553 
1554 			skb_checksum_none_assert(skb);
1555 			rxdesc->addr = cpu_to_edmac(mdp, dma_addr);
1556 		}
1557 		dma_wmb(); /* RACT bit must be set after all the above writes */
1558 		if (entry >= mdp->num_rx_ring - 1)
1559 			rxdesc->status |=
1560 				cpu_to_edmac(mdp, RD_RACT | RD_RFP | RD_RDLE);
1561 		else
1562 			rxdesc->status |=
1563 				cpu_to_edmac(mdp, RD_RACT | RD_RFP);
1564 	}
1565 
1566 	/* Restart Rx engine if stopped. */
1567 	/* If we don't need to check status, don't. -KDU */
1568 	if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R)) {
1569 		/* fix the values for the next receiving if RDE is set */
1570 		if (intr_status & EESR_RDE &&
1571 		    mdp->reg_offset[RDFAR] != SH_ETH_OFFSET_INVALID) {
1572 			u32 count = (sh_eth_read(ndev, RDFAR) -
1573 				     sh_eth_read(ndev, RDLAR)) >> 4;
1574 
1575 			mdp->cur_rx = count;
1576 			mdp->dirty_rx = count;
1577 		}
1578 		sh_eth_write(ndev, EDRRR_R, EDRRR);
1579 	}
1580 
1581 	*quota -= limit - boguscnt - 1;
1582 
1583 	return *quota <= 0;
1584 }
1585 
1586 static void sh_eth_rcv_snd_disable(struct net_device *ndev)
1587 {
1588 	/* disable tx and rx */
1589 	sh_eth_write(ndev, sh_eth_read(ndev, ECMR) &
1590 		~(ECMR_RE | ECMR_TE), ECMR);
1591 }
1592 
1593 static void sh_eth_rcv_snd_enable(struct net_device *ndev)
1594 {
1595 	/* enable tx and rx */
1596 	sh_eth_write(ndev, sh_eth_read(ndev, ECMR) |
1597 		(ECMR_RE | ECMR_TE), ECMR);
1598 }
1599 
1600 /* error control function */
1601 static void sh_eth_error(struct net_device *ndev, u32 intr_status)
1602 {
1603 	struct sh_eth_private *mdp = netdev_priv(ndev);
1604 	u32 felic_stat;
1605 	u32 link_stat;
1606 	u32 mask;
1607 
1608 	if (intr_status & EESR_ECI) {
1609 		felic_stat = sh_eth_read(ndev, ECSR);
1610 		sh_eth_write(ndev, felic_stat, ECSR);	/* clear int */
1611 		if (felic_stat & ECSR_ICD)
1612 			ndev->stats.tx_carrier_errors++;
1613 		if (felic_stat & ECSR_LCHNG) {
1614 			/* Link Changed */
1615 			if (mdp->cd->no_psr || mdp->no_ether_link) {
1616 				goto ignore_link;
1617 			} else {
1618 				link_stat = (sh_eth_read(ndev, PSR));
1619 				if (mdp->ether_link_active_low)
1620 					link_stat = ~link_stat;
1621 			}
1622 			if (!(link_stat & PHY_ST_LINK)) {
1623 				sh_eth_rcv_snd_disable(ndev);
1624 			} else {
1625 				/* Link Up */
1626 				sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) &
1627 						   ~DMAC_M_ECI, EESIPR);
1628 				/* clear int */
1629 				sh_eth_write(ndev, sh_eth_read(ndev, ECSR),
1630 					     ECSR);
1631 				sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) |
1632 						   DMAC_M_ECI, EESIPR);
1633 				/* enable tx and rx */
1634 				sh_eth_rcv_snd_enable(ndev);
1635 			}
1636 		}
1637 	}
1638 
1639 ignore_link:
1640 	if (intr_status & EESR_TWB) {
1641 		/* Unused write back interrupt */
1642 		if (intr_status & EESR_TABT) {	/* Transmit Abort int */
1643 			ndev->stats.tx_aborted_errors++;
1644 			netif_err(mdp, tx_err, ndev, "Transmit Abort\n");
1645 		}
1646 	}
1647 
1648 	if (intr_status & EESR_RABT) {
1649 		/* Receive Abort int */
1650 		if (intr_status & EESR_RFRMER) {
1651 			/* Receive Frame Overflow int */
1652 			ndev->stats.rx_frame_errors++;
1653 		}
1654 	}
1655 
1656 	if (intr_status & EESR_TDE) {
1657 		/* Transmit Descriptor Empty int */
1658 		ndev->stats.tx_fifo_errors++;
1659 		netif_err(mdp, tx_err, ndev, "Transmit Descriptor Empty\n");
1660 	}
1661 
1662 	if (intr_status & EESR_TFE) {
1663 		/* FIFO under flow */
1664 		ndev->stats.tx_fifo_errors++;
1665 		netif_err(mdp, tx_err, ndev, "Transmit FIFO Under flow\n");
1666 	}
1667 
1668 	if (intr_status & EESR_RDE) {
1669 		/* Receive Descriptor Empty int */
1670 		ndev->stats.rx_over_errors++;
1671 	}
1672 
1673 	if (intr_status & EESR_RFE) {
1674 		/* Receive FIFO Overflow int */
1675 		ndev->stats.rx_fifo_errors++;
1676 	}
1677 
1678 	if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
1679 		/* Address Error */
1680 		ndev->stats.tx_fifo_errors++;
1681 		netif_err(mdp, tx_err, ndev, "Address Error\n");
1682 	}
1683 
1684 	mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
1685 	if (mdp->cd->no_ade)
1686 		mask &= ~EESR_ADE;
1687 	if (intr_status & mask) {
1688 		/* Tx error */
1689 		u32 edtrr = sh_eth_read(ndev, EDTRR);
1690 
1691 		/* dmesg */
1692 		netdev_err(ndev, "TX error. status=%8.8x cur_tx=%8.8x dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
1693 			   intr_status, mdp->cur_tx, mdp->dirty_tx,
1694 			   (u32)ndev->state, edtrr);
1695 		/* dirty buffer free */
1696 		sh_eth_txfree(ndev);
1697 
1698 		/* SH7712 BUG */
1699 		if (edtrr ^ sh_eth_get_edtrr_trns(mdp)) {
1700 			/* tx dma start */
1701 			sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
1702 		}
1703 		/* wakeup */
1704 		netif_wake_queue(ndev);
1705 	}
1706 }
1707 
1708 static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
1709 {
1710 	struct net_device *ndev = netdev;
1711 	struct sh_eth_private *mdp = netdev_priv(ndev);
1712 	struct sh_eth_cpu_data *cd = mdp->cd;
1713 	irqreturn_t ret = IRQ_NONE;
1714 	u32 intr_status, intr_enable;
1715 
1716 	spin_lock(&mdp->lock);
1717 
1718 	/* Get interrupt status */
1719 	intr_status = sh_eth_read(ndev, EESR);
1720 	/* Mask it with the interrupt mask, forcing ECI interrupt to be always
1721 	 * enabled since it's the one that  comes thru regardless of the mask,
1722 	 * and we need to fully handle it in sh_eth_error() in order to quench
1723 	 * it as it doesn't get cleared by just writing 1 to the ECI bit...
1724 	 */
1725 	intr_enable = sh_eth_read(ndev, EESIPR);
1726 	intr_status &= intr_enable | DMAC_M_ECI;
1727 	if (intr_status & (EESR_RX_CHECK | cd->tx_check | cd->eesr_err_check))
1728 		ret = IRQ_HANDLED;
1729 	else
1730 		goto out;
1731 
1732 	if (!likely(mdp->irq_enabled)) {
1733 		sh_eth_write(ndev, 0, EESIPR);
1734 		goto out;
1735 	}
1736 
1737 	if (intr_status & EESR_RX_CHECK) {
1738 		if (napi_schedule_prep(&mdp->napi)) {
1739 			/* Mask Rx interrupts */
1740 			sh_eth_write(ndev, intr_enable & ~EESR_RX_CHECK,
1741 				     EESIPR);
1742 			__napi_schedule(&mdp->napi);
1743 		} else {
1744 			netdev_warn(ndev,
1745 				    "ignoring interrupt, status 0x%08x, mask 0x%08x.\n",
1746 				    intr_status, intr_enable);
1747 		}
1748 	}
1749 
1750 	/* Tx Check */
1751 	if (intr_status & cd->tx_check) {
1752 		/* Clear Tx interrupts */
1753 		sh_eth_write(ndev, intr_status & cd->tx_check, EESR);
1754 
1755 		sh_eth_txfree(ndev);
1756 		netif_wake_queue(ndev);
1757 	}
1758 
1759 	if (intr_status & cd->eesr_err_check) {
1760 		/* Clear error interrupts */
1761 		sh_eth_write(ndev, intr_status & cd->eesr_err_check, EESR);
1762 
1763 		sh_eth_error(ndev, intr_status);
1764 	}
1765 
1766 out:
1767 	spin_unlock(&mdp->lock);
1768 
1769 	return ret;
1770 }
1771 
1772 static int sh_eth_poll(struct napi_struct *napi, int budget)
1773 {
1774 	struct sh_eth_private *mdp = container_of(napi, struct sh_eth_private,
1775 						  napi);
1776 	struct net_device *ndev = napi->dev;
1777 	int quota = budget;
1778 	u32 intr_status;
1779 
1780 	for (;;) {
1781 		intr_status = sh_eth_read(ndev, EESR);
1782 		if (!(intr_status & EESR_RX_CHECK))
1783 			break;
1784 		/* Clear Rx interrupts */
1785 		sh_eth_write(ndev, intr_status & EESR_RX_CHECK, EESR);
1786 
1787 		if (sh_eth_rx(ndev, intr_status, &quota))
1788 			goto out;
1789 	}
1790 
1791 	napi_complete(napi);
1792 
1793 	/* Reenable Rx interrupts */
1794 	if (mdp->irq_enabled)
1795 		sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1796 out:
1797 	return budget - quota;
1798 }
1799 
1800 /* PHY state control function */
1801 static void sh_eth_adjust_link(struct net_device *ndev)
1802 {
1803 	struct sh_eth_private *mdp = netdev_priv(ndev);
1804 	struct phy_device *phydev = mdp->phydev;
1805 	int new_state = 0;
1806 
1807 	if (phydev->link) {
1808 		if (phydev->duplex != mdp->duplex) {
1809 			new_state = 1;
1810 			mdp->duplex = phydev->duplex;
1811 			if (mdp->cd->set_duplex)
1812 				mdp->cd->set_duplex(ndev);
1813 		}
1814 
1815 		if (phydev->speed != mdp->speed) {
1816 			new_state = 1;
1817 			mdp->speed = phydev->speed;
1818 			if (mdp->cd->set_rate)
1819 				mdp->cd->set_rate(ndev);
1820 		}
1821 		if (!mdp->link) {
1822 			sh_eth_write(ndev,
1823 				     sh_eth_read(ndev, ECMR) & ~ECMR_TXF,
1824 				     ECMR);
1825 			new_state = 1;
1826 			mdp->link = phydev->link;
1827 			if (mdp->cd->no_psr || mdp->no_ether_link)
1828 				sh_eth_rcv_snd_enable(ndev);
1829 		}
1830 	} else if (mdp->link) {
1831 		new_state = 1;
1832 		mdp->link = 0;
1833 		mdp->speed = 0;
1834 		mdp->duplex = -1;
1835 		if (mdp->cd->no_psr || mdp->no_ether_link)
1836 			sh_eth_rcv_snd_disable(ndev);
1837 	}
1838 
1839 	if (new_state && netif_msg_link(mdp))
1840 		phy_print_status(phydev);
1841 }
1842 
1843 /* PHY init function */
1844 static int sh_eth_phy_init(struct net_device *ndev)
1845 {
1846 	struct device_node *np = ndev->dev.parent->of_node;
1847 	struct sh_eth_private *mdp = netdev_priv(ndev);
1848 	struct phy_device *phydev = NULL;
1849 
1850 	mdp->link = 0;
1851 	mdp->speed = 0;
1852 	mdp->duplex = -1;
1853 
1854 	/* Try connect to PHY */
1855 	if (np) {
1856 		struct device_node *pn;
1857 
1858 		pn = of_parse_phandle(np, "phy-handle", 0);
1859 		phydev = of_phy_connect(ndev, pn,
1860 					sh_eth_adjust_link, 0,
1861 					mdp->phy_interface);
1862 
1863 		if (!phydev)
1864 			phydev = ERR_PTR(-ENOENT);
1865 	} else {
1866 		char phy_id[MII_BUS_ID_SIZE + 3];
1867 
1868 		snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
1869 			 mdp->mii_bus->id, mdp->phy_id);
1870 
1871 		phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
1872 				     mdp->phy_interface);
1873 	}
1874 
1875 	if (IS_ERR(phydev)) {
1876 		netdev_err(ndev, "failed to connect PHY\n");
1877 		return PTR_ERR(phydev);
1878 	}
1879 
1880 	netdev_info(ndev, "attached PHY %d (IRQ %d) to driver %s\n",
1881 		    phydev->addr, phydev->irq, phydev->drv->name);
1882 
1883 	mdp->phydev = phydev;
1884 
1885 	return 0;
1886 }
1887 
1888 /* PHY control start function */
1889 static int sh_eth_phy_start(struct net_device *ndev)
1890 {
1891 	struct sh_eth_private *mdp = netdev_priv(ndev);
1892 	int ret;
1893 
1894 	ret = sh_eth_phy_init(ndev);
1895 	if (ret)
1896 		return ret;
1897 
1898 	phy_start(mdp->phydev);
1899 
1900 	return 0;
1901 }
1902 
1903 static int sh_eth_get_settings(struct net_device *ndev,
1904 			       struct ethtool_cmd *ecmd)
1905 {
1906 	struct sh_eth_private *mdp = netdev_priv(ndev);
1907 	unsigned long flags;
1908 	int ret;
1909 
1910 	if (!mdp->phydev)
1911 		return -ENODEV;
1912 
1913 	spin_lock_irqsave(&mdp->lock, flags);
1914 	ret = phy_ethtool_gset(mdp->phydev, ecmd);
1915 	spin_unlock_irqrestore(&mdp->lock, flags);
1916 
1917 	return ret;
1918 }
1919 
1920 static int sh_eth_set_settings(struct net_device *ndev,
1921 			       struct ethtool_cmd *ecmd)
1922 {
1923 	struct sh_eth_private *mdp = netdev_priv(ndev);
1924 	unsigned long flags;
1925 	int ret;
1926 
1927 	if (!mdp->phydev)
1928 		return -ENODEV;
1929 
1930 	spin_lock_irqsave(&mdp->lock, flags);
1931 
1932 	/* disable tx and rx */
1933 	sh_eth_rcv_snd_disable(ndev);
1934 
1935 	ret = phy_ethtool_sset(mdp->phydev, ecmd);
1936 	if (ret)
1937 		goto error_exit;
1938 
1939 	if (ecmd->duplex == DUPLEX_FULL)
1940 		mdp->duplex = 1;
1941 	else
1942 		mdp->duplex = 0;
1943 
1944 	if (mdp->cd->set_duplex)
1945 		mdp->cd->set_duplex(ndev);
1946 
1947 error_exit:
1948 	mdelay(1);
1949 
1950 	/* enable tx and rx */
1951 	sh_eth_rcv_snd_enable(ndev);
1952 
1953 	spin_unlock_irqrestore(&mdp->lock, flags);
1954 
1955 	return ret;
1956 }
1957 
1958 /* If it is ever necessary to increase SH_ETH_REG_DUMP_MAX_REGS, the
1959  * version must be bumped as well.  Just adding registers up to that
1960  * limit is fine, as long as the existing register indices don't
1961  * change.
1962  */
1963 #define SH_ETH_REG_DUMP_VERSION		1
1964 #define SH_ETH_REG_DUMP_MAX_REGS	256
1965 
1966 static size_t __sh_eth_get_regs(struct net_device *ndev, u32 *buf)
1967 {
1968 	struct sh_eth_private *mdp = netdev_priv(ndev);
1969 	struct sh_eth_cpu_data *cd = mdp->cd;
1970 	u32 *valid_map;
1971 	size_t len;
1972 
1973 	BUILD_BUG_ON(SH_ETH_MAX_REGISTER_OFFSET > SH_ETH_REG_DUMP_MAX_REGS);
1974 
1975 	/* Dump starts with a bitmap that tells ethtool which
1976 	 * registers are defined for this chip.
1977 	 */
1978 	len = DIV_ROUND_UP(SH_ETH_REG_DUMP_MAX_REGS, 32);
1979 	if (buf) {
1980 		valid_map = buf;
1981 		buf += len;
1982 	} else {
1983 		valid_map = NULL;
1984 	}
1985 
1986 	/* Add a register to the dump, if it has a defined offset.
1987 	 * This automatically skips most undefined registers, but for
1988 	 * some it is also necessary to check a capability flag in
1989 	 * struct sh_eth_cpu_data.
1990 	 */
1991 #define mark_reg_valid(reg) valid_map[reg / 32] |= 1U << (reg % 32)
1992 #define add_reg_from(reg, read_expr) do {				\
1993 		if (mdp->reg_offset[reg] != SH_ETH_OFFSET_INVALID) {	\
1994 			if (buf) {					\
1995 				mark_reg_valid(reg);			\
1996 				*buf++ = read_expr;			\
1997 			}						\
1998 			++len;						\
1999 		}							\
2000 	} while (0)
2001 #define add_reg(reg) add_reg_from(reg, sh_eth_read(ndev, reg))
2002 #define add_tsu_reg(reg) add_reg_from(reg, sh_eth_tsu_read(mdp, reg))
2003 
2004 	add_reg(EDSR);
2005 	add_reg(EDMR);
2006 	add_reg(EDTRR);
2007 	add_reg(EDRRR);
2008 	add_reg(EESR);
2009 	add_reg(EESIPR);
2010 	add_reg(TDLAR);
2011 	add_reg(TDFAR);
2012 	add_reg(TDFXR);
2013 	add_reg(TDFFR);
2014 	add_reg(RDLAR);
2015 	add_reg(RDFAR);
2016 	add_reg(RDFXR);
2017 	add_reg(RDFFR);
2018 	add_reg(TRSCER);
2019 	add_reg(RMFCR);
2020 	add_reg(TFTR);
2021 	add_reg(FDR);
2022 	add_reg(RMCR);
2023 	add_reg(TFUCR);
2024 	add_reg(RFOCR);
2025 	if (cd->rmiimode)
2026 		add_reg(RMIIMODE);
2027 	add_reg(FCFTR);
2028 	if (cd->rpadir)
2029 		add_reg(RPADIR);
2030 	if (!cd->no_trimd)
2031 		add_reg(TRIMD);
2032 	add_reg(ECMR);
2033 	add_reg(ECSR);
2034 	add_reg(ECSIPR);
2035 	add_reg(PIR);
2036 	if (!cd->no_psr)
2037 		add_reg(PSR);
2038 	add_reg(RDMLR);
2039 	add_reg(RFLR);
2040 	add_reg(IPGR);
2041 	if (cd->apr)
2042 		add_reg(APR);
2043 	if (cd->mpr)
2044 		add_reg(MPR);
2045 	add_reg(RFCR);
2046 	add_reg(RFCF);
2047 	if (cd->tpauser)
2048 		add_reg(TPAUSER);
2049 	add_reg(TPAUSECR);
2050 	add_reg(GECMR);
2051 	if (cd->bculr)
2052 		add_reg(BCULR);
2053 	add_reg(MAHR);
2054 	add_reg(MALR);
2055 	add_reg(TROCR);
2056 	add_reg(CDCR);
2057 	add_reg(LCCR);
2058 	add_reg(CNDCR);
2059 	add_reg(CEFCR);
2060 	add_reg(FRECR);
2061 	add_reg(TSFRCR);
2062 	add_reg(TLFRCR);
2063 	add_reg(CERCR);
2064 	add_reg(CEECR);
2065 	add_reg(MAFCR);
2066 	if (cd->rtrate)
2067 		add_reg(RTRATE);
2068 	if (cd->hw_crc)
2069 		add_reg(CSMR);
2070 	if (cd->select_mii)
2071 		add_reg(RMII_MII);
2072 	add_reg(ARSTR);
2073 	if (cd->tsu) {
2074 		add_tsu_reg(TSU_CTRST);
2075 		add_tsu_reg(TSU_FWEN0);
2076 		add_tsu_reg(TSU_FWEN1);
2077 		add_tsu_reg(TSU_FCM);
2078 		add_tsu_reg(TSU_BSYSL0);
2079 		add_tsu_reg(TSU_BSYSL1);
2080 		add_tsu_reg(TSU_PRISL0);
2081 		add_tsu_reg(TSU_PRISL1);
2082 		add_tsu_reg(TSU_FWSL0);
2083 		add_tsu_reg(TSU_FWSL1);
2084 		add_tsu_reg(TSU_FWSLC);
2085 		add_tsu_reg(TSU_QTAG0);
2086 		add_tsu_reg(TSU_QTAG1);
2087 		add_tsu_reg(TSU_QTAGM0);
2088 		add_tsu_reg(TSU_QTAGM1);
2089 		add_tsu_reg(TSU_FWSR);
2090 		add_tsu_reg(TSU_FWINMK);
2091 		add_tsu_reg(TSU_ADQT0);
2092 		add_tsu_reg(TSU_ADQT1);
2093 		add_tsu_reg(TSU_VTAG0);
2094 		add_tsu_reg(TSU_VTAG1);
2095 		add_tsu_reg(TSU_ADSBSY);
2096 		add_tsu_reg(TSU_TEN);
2097 		add_tsu_reg(TSU_POST1);
2098 		add_tsu_reg(TSU_POST2);
2099 		add_tsu_reg(TSU_POST3);
2100 		add_tsu_reg(TSU_POST4);
2101 		if (mdp->reg_offset[TSU_ADRH0] != SH_ETH_OFFSET_INVALID) {
2102 			/* This is the start of a table, not just a single
2103 			 * register.
2104 			 */
2105 			if (buf) {
2106 				unsigned int i;
2107 
2108 				mark_reg_valid(TSU_ADRH0);
2109 				for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES * 2; i++)
2110 					*buf++ = ioread32(
2111 						mdp->tsu_addr +
2112 						mdp->reg_offset[TSU_ADRH0] +
2113 						i * 4);
2114 			}
2115 			len += SH_ETH_TSU_CAM_ENTRIES * 2;
2116 		}
2117 	}
2118 
2119 #undef mark_reg_valid
2120 #undef add_reg_from
2121 #undef add_reg
2122 #undef add_tsu_reg
2123 
2124 	return len * 4;
2125 }
2126 
2127 static int sh_eth_get_regs_len(struct net_device *ndev)
2128 {
2129 	return __sh_eth_get_regs(ndev, NULL);
2130 }
2131 
2132 static void sh_eth_get_regs(struct net_device *ndev, struct ethtool_regs *regs,
2133 			    void *buf)
2134 {
2135 	struct sh_eth_private *mdp = netdev_priv(ndev);
2136 
2137 	regs->version = SH_ETH_REG_DUMP_VERSION;
2138 
2139 	pm_runtime_get_sync(&mdp->pdev->dev);
2140 	__sh_eth_get_regs(ndev, buf);
2141 	pm_runtime_put_sync(&mdp->pdev->dev);
2142 }
2143 
2144 static int sh_eth_nway_reset(struct net_device *ndev)
2145 {
2146 	struct sh_eth_private *mdp = netdev_priv(ndev);
2147 	unsigned long flags;
2148 	int ret;
2149 
2150 	if (!mdp->phydev)
2151 		return -ENODEV;
2152 
2153 	spin_lock_irqsave(&mdp->lock, flags);
2154 	ret = phy_start_aneg(mdp->phydev);
2155 	spin_unlock_irqrestore(&mdp->lock, flags);
2156 
2157 	return ret;
2158 }
2159 
2160 static u32 sh_eth_get_msglevel(struct net_device *ndev)
2161 {
2162 	struct sh_eth_private *mdp = netdev_priv(ndev);
2163 	return mdp->msg_enable;
2164 }
2165 
2166 static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
2167 {
2168 	struct sh_eth_private *mdp = netdev_priv(ndev);
2169 	mdp->msg_enable = value;
2170 }
2171 
2172 static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
2173 	"rx_current", "tx_current",
2174 	"rx_dirty", "tx_dirty",
2175 };
2176 #define SH_ETH_STATS_LEN  ARRAY_SIZE(sh_eth_gstrings_stats)
2177 
2178 static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
2179 {
2180 	switch (sset) {
2181 	case ETH_SS_STATS:
2182 		return SH_ETH_STATS_LEN;
2183 	default:
2184 		return -EOPNOTSUPP;
2185 	}
2186 }
2187 
2188 static void sh_eth_get_ethtool_stats(struct net_device *ndev,
2189 				     struct ethtool_stats *stats, u64 *data)
2190 {
2191 	struct sh_eth_private *mdp = netdev_priv(ndev);
2192 	int i = 0;
2193 
2194 	/* device-specific stats */
2195 	data[i++] = mdp->cur_rx;
2196 	data[i++] = mdp->cur_tx;
2197 	data[i++] = mdp->dirty_rx;
2198 	data[i++] = mdp->dirty_tx;
2199 }
2200 
2201 static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
2202 {
2203 	switch (stringset) {
2204 	case ETH_SS_STATS:
2205 		memcpy(data, *sh_eth_gstrings_stats,
2206 		       sizeof(sh_eth_gstrings_stats));
2207 		break;
2208 	}
2209 }
2210 
2211 static void sh_eth_get_ringparam(struct net_device *ndev,
2212 				 struct ethtool_ringparam *ring)
2213 {
2214 	struct sh_eth_private *mdp = netdev_priv(ndev);
2215 
2216 	ring->rx_max_pending = RX_RING_MAX;
2217 	ring->tx_max_pending = TX_RING_MAX;
2218 	ring->rx_pending = mdp->num_rx_ring;
2219 	ring->tx_pending = mdp->num_tx_ring;
2220 }
2221 
2222 static int sh_eth_set_ringparam(struct net_device *ndev,
2223 				struct ethtool_ringparam *ring)
2224 {
2225 	struct sh_eth_private *mdp = netdev_priv(ndev);
2226 	int ret;
2227 
2228 	if (ring->tx_pending > TX_RING_MAX ||
2229 	    ring->rx_pending > RX_RING_MAX ||
2230 	    ring->tx_pending < TX_RING_MIN ||
2231 	    ring->rx_pending < RX_RING_MIN)
2232 		return -EINVAL;
2233 	if (ring->rx_mini_pending || ring->rx_jumbo_pending)
2234 		return -EINVAL;
2235 
2236 	if (netif_running(ndev)) {
2237 		netif_device_detach(ndev);
2238 		netif_tx_disable(ndev);
2239 
2240 		/* Serialise with the interrupt handler and NAPI, then
2241 		 * disable interrupts.  We have to clear the
2242 		 * irq_enabled flag first to ensure that interrupts
2243 		 * won't be re-enabled.
2244 		 */
2245 		mdp->irq_enabled = false;
2246 		synchronize_irq(ndev->irq);
2247 		napi_synchronize(&mdp->napi);
2248 		sh_eth_write(ndev, 0x0000, EESIPR);
2249 
2250 		sh_eth_dev_exit(ndev);
2251 
2252 		/* Free all the skbuffs in the Rx queue and the DMA buffers. */
2253 		sh_eth_ring_free(ndev);
2254 	}
2255 
2256 	/* Set new parameters */
2257 	mdp->num_rx_ring = ring->rx_pending;
2258 	mdp->num_tx_ring = ring->tx_pending;
2259 
2260 	if (netif_running(ndev)) {
2261 		ret = sh_eth_ring_init(ndev);
2262 		if (ret < 0) {
2263 			netdev_err(ndev, "%s: sh_eth_ring_init failed.\n",
2264 				   __func__);
2265 			return ret;
2266 		}
2267 		ret = sh_eth_dev_init(ndev, false);
2268 		if (ret < 0) {
2269 			netdev_err(ndev, "%s: sh_eth_dev_init failed.\n",
2270 				   __func__);
2271 			return ret;
2272 		}
2273 
2274 		mdp->irq_enabled = true;
2275 		sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
2276 		/* Setting the Rx mode will start the Rx process. */
2277 		sh_eth_write(ndev, EDRRR_R, EDRRR);
2278 		netif_device_attach(ndev);
2279 	}
2280 
2281 	return 0;
2282 }
2283 
2284 static const struct ethtool_ops sh_eth_ethtool_ops = {
2285 	.get_settings	= sh_eth_get_settings,
2286 	.set_settings	= sh_eth_set_settings,
2287 	.get_regs_len	= sh_eth_get_regs_len,
2288 	.get_regs	= sh_eth_get_regs,
2289 	.nway_reset	= sh_eth_nway_reset,
2290 	.get_msglevel	= sh_eth_get_msglevel,
2291 	.set_msglevel	= sh_eth_set_msglevel,
2292 	.get_link	= ethtool_op_get_link,
2293 	.get_strings	= sh_eth_get_strings,
2294 	.get_ethtool_stats  = sh_eth_get_ethtool_stats,
2295 	.get_sset_count     = sh_eth_get_sset_count,
2296 	.get_ringparam	= sh_eth_get_ringparam,
2297 	.set_ringparam	= sh_eth_set_ringparam,
2298 };
2299 
2300 /* network device open function */
2301 static int sh_eth_open(struct net_device *ndev)
2302 {
2303 	int ret = 0;
2304 	struct sh_eth_private *mdp = netdev_priv(ndev);
2305 
2306 	pm_runtime_get_sync(&mdp->pdev->dev);
2307 
2308 	napi_enable(&mdp->napi);
2309 
2310 	ret = request_irq(ndev->irq, sh_eth_interrupt,
2311 			  mdp->cd->irq_flags, ndev->name, ndev);
2312 	if (ret) {
2313 		netdev_err(ndev, "Can not assign IRQ number\n");
2314 		goto out_napi_off;
2315 	}
2316 
2317 	/* Descriptor set */
2318 	ret = sh_eth_ring_init(ndev);
2319 	if (ret)
2320 		goto out_free_irq;
2321 
2322 	/* device init */
2323 	ret = sh_eth_dev_init(ndev, true);
2324 	if (ret)
2325 		goto out_free_irq;
2326 
2327 	/* PHY control start*/
2328 	ret = sh_eth_phy_start(ndev);
2329 	if (ret)
2330 		goto out_free_irq;
2331 
2332 	mdp->is_opened = 1;
2333 
2334 	return ret;
2335 
2336 out_free_irq:
2337 	free_irq(ndev->irq, ndev);
2338 out_napi_off:
2339 	napi_disable(&mdp->napi);
2340 	pm_runtime_put_sync(&mdp->pdev->dev);
2341 	return ret;
2342 }
2343 
2344 /* Timeout function */
2345 static void sh_eth_tx_timeout(struct net_device *ndev)
2346 {
2347 	struct sh_eth_private *mdp = netdev_priv(ndev);
2348 	struct sh_eth_rxdesc *rxdesc;
2349 	int i;
2350 
2351 	netif_stop_queue(ndev);
2352 
2353 	netif_err(mdp, timer, ndev,
2354 		  "transmit timed out, status %8.8x, resetting...\n",
2355 		  sh_eth_read(ndev, EESR));
2356 
2357 	/* tx_errors count up */
2358 	ndev->stats.tx_errors++;
2359 
2360 	/* Free all the skbuffs in the Rx queue. */
2361 	for (i = 0; i < mdp->num_rx_ring; i++) {
2362 		rxdesc = &mdp->rx_ring[i];
2363 		rxdesc->status = cpu_to_edmac(mdp, 0);
2364 		rxdesc->addr = cpu_to_edmac(mdp, 0xBADF00D0);
2365 		dev_kfree_skb(mdp->rx_skbuff[i]);
2366 		mdp->rx_skbuff[i] = NULL;
2367 	}
2368 	for (i = 0; i < mdp->num_tx_ring; i++) {
2369 		dev_kfree_skb(mdp->tx_skbuff[i]);
2370 		mdp->tx_skbuff[i] = NULL;
2371 	}
2372 
2373 	/* device init */
2374 	sh_eth_dev_init(ndev, true);
2375 }
2376 
2377 /* Packet transmit function */
2378 static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
2379 {
2380 	struct sh_eth_private *mdp = netdev_priv(ndev);
2381 	struct sh_eth_txdesc *txdesc;
2382 	dma_addr_t dma_addr;
2383 	u32 entry;
2384 	unsigned long flags;
2385 
2386 	spin_lock_irqsave(&mdp->lock, flags);
2387 	if ((mdp->cur_tx - mdp->dirty_tx) >= (mdp->num_tx_ring - 4)) {
2388 		if (!sh_eth_txfree(ndev)) {
2389 			netif_warn(mdp, tx_queued, ndev, "TxFD exhausted.\n");
2390 			netif_stop_queue(ndev);
2391 			spin_unlock_irqrestore(&mdp->lock, flags);
2392 			return NETDEV_TX_BUSY;
2393 		}
2394 	}
2395 	spin_unlock_irqrestore(&mdp->lock, flags);
2396 
2397 	if (skb_put_padto(skb, ETH_ZLEN))
2398 		return NETDEV_TX_OK;
2399 
2400 	entry = mdp->cur_tx % mdp->num_tx_ring;
2401 	mdp->tx_skbuff[entry] = skb;
2402 	txdesc = &mdp->tx_ring[entry];
2403 	/* soft swap. */
2404 	if (!mdp->cd->hw_swap)
2405 		sh_eth_soft_swap(PTR_ALIGN(skb->data, 4), skb->len + 2);
2406 	dma_addr = dma_map_single(&ndev->dev, skb->data, skb->len,
2407 				  DMA_TO_DEVICE);
2408 	if (dma_mapping_error(&ndev->dev, dma_addr)) {
2409 		kfree_skb(skb);
2410 		return NETDEV_TX_OK;
2411 	}
2412 	txdesc->addr = cpu_to_edmac(mdp, dma_addr);
2413 	txdesc->len  = cpu_to_edmac(mdp, skb->len << 16);
2414 
2415 	dma_wmb(); /* TACT bit must be set after all the above writes */
2416 	if (entry >= mdp->num_tx_ring - 1)
2417 		txdesc->status |= cpu_to_edmac(mdp, TD_TACT | TD_TDLE);
2418 	else
2419 		txdesc->status |= cpu_to_edmac(mdp, TD_TACT);
2420 
2421 	mdp->cur_tx++;
2422 
2423 	if (!(sh_eth_read(ndev, EDTRR) & sh_eth_get_edtrr_trns(mdp)))
2424 		sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
2425 
2426 	return NETDEV_TX_OK;
2427 }
2428 
2429 /* The statistics registers have write-clear behaviour, which means we
2430  * will lose any increment between the read and write.  We mitigate
2431  * this by only clearing when we read a non-zero value, so we will
2432  * never falsely report a total of zero.
2433  */
2434 static void
2435 sh_eth_update_stat(struct net_device *ndev, unsigned long *stat, int reg)
2436 {
2437 	u32 delta = sh_eth_read(ndev, reg);
2438 
2439 	if (delta) {
2440 		*stat += delta;
2441 		sh_eth_write(ndev, 0, reg);
2442 	}
2443 }
2444 
2445 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
2446 {
2447 	struct sh_eth_private *mdp = netdev_priv(ndev);
2448 
2449 	if (sh_eth_is_rz_fast_ether(mdp))
2450 		return &ndev->stats;
2451 
2452 	if (!mdp->is_opened)
2453 		return &ndev->stats;
2454 
2455 	sh_eth_update_stat(ndev, &ndev->stats.tx_dropped, TROCR);
2456 	sh_eth_update_stat(ndev, &ndev->stats.collisions, CDCR);
2457 	sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors, LCCR);
2458 
2459 	if (sh_eth_is_gether(mdp)) {
2460 		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2461 				   CERCR);
2462 		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2463 				   CEECR);
2464 	} else {
2465 		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2466 				   CNDCR);
2467 	}
2468 
2469 	return &ndev->stats;
2470 }
2471 
2472 /* device close function */
2473 static int sh_eth_close(struct net_device *ndev)
2474 {
2475 	struct sh_eth_private *mdp = netdev_priv(ndev);
2476 
2477 	netif_stop_queue(ndev);
2478 
2479 	/* Serialise with the interrupt handler and NAPI, then disable
2480 	 * interrupts.  We have to clear the irq_enabled flag first to
2481 	 * ensure that interrupts won't be re-enabled.
2482 	 */
2483 	mdp->irq_enabled = false;
2484 	synchronize_irq(ndev->irq);
2485 	napi_disable(&mdp->napi);
2486 	sh_eth_write(ndev, 0x0000, EESIPR);
2487 
2488 	sh_eth_dev_exit(ndev);
2489 
2490 	/* PHY Disconnect */
2491 	if (mdp->phydev) {
2492 		phy_stop(mdp->phydev);
2493 		phy_disconnect(mdp->phydev);
2494 		mdp->phydev = NULL;
2495 	}
2496 
2497 	free_irq(ndev->irq, ndev);
2498 
2499 	/* Free all the skbuffs in the Rx queue and the DMA buffer. */
2500 	sh_eth_ring_free(ndev);
2501 
2502 	pm_runtime_put_sync(&mdp->pdev->dev);
2503 
2504 	mdp->is_opened = 0;
2505 
2506 	return 0;
2507 }
2508 
2509 /* ioctl to device function */
2510 static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2511 {
2512 	struct sh_eth_private *mdp = netdev_priv(ndev);
2513 	struct phy_device *phydev = mdp->phydev;
2514 
2515 	if (!netif_running(ndev))
2516 		return -EINVAL;
2517 
2518 	if (!phydev)
2519 		return -ENODEV;
2520 
2521 	return phy_mii_ioctl(phydev, rq, cmd);
2522 }
2523 
2524 /* For TSU_POSTn. Please refer to the manual about this (strange) bitfields */
2525 static void *sh_eth_tsu_get_post_reg_offset(struct sh_eth_private *mdp,
2526 					    int entry)
2527 {
2528 	return sh_eth_tsu_get_offset(mdp, TSU_POST1) + (entry / 8 * 4);
2529 }
2530 
2531 static u32 sh_eth_tsu_get_post_mask(int entry)
2532 {
2533 	return 0x0f << (28 - ((entry % 8) * 4));
2534 }
2535 
2536 static u32 sh_eth_tsu_get_post_bit(struct sh_eth_private *mdp, int entry)
2537 {
2538 	return (0x08 >> (mdp->port << 1)) << (28 - ((entry % 8) * 4));
2539 }
2540 
2541 static void sh_eth_tsu_enable_cam_entry_post(struct net_device *ndev,
2542 					     int entry)
2543 {
2544 	struct sh_eth_private *mdp = netdev_priv(ndev);
2545 	u32 tmp;
2546 	void *reg_offset;
2547 
2548 	reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2549 	tmp = ioread32(reg_offset);
2550 	iowrite32(tmp | sh_eth_tsu_get_post_bit(mdp, entry), reg_offset);
2551 }
2552 
2553 static bool sh_eth_tsu_disable_cam_entry_post(struct net_device *ndev,
2554 					      int entry)
2555 {
2556 	struct sh_eth_private *mdp = netdev_priv(ndev);
2557 	u32 post_mask, ref_mask, tmp;
2558 	void *reg_offset;
2559 
2560 	reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2561 	post_mask = sh_eth_tsu_get_post_mask(entry);
2562 	ref_mask = sh_eth_tsu_get_post_bit(mdp, entry) & ~post_mask;
2563 
2564 	tmp = ioread32(reg_offset);
2565 	iowrite32(tmp & ~post_mask, reg_offset);
2566 
2567 	/* If other port enables, the function returns "true" */
2568 	return tmp & ref_mask;
2569 }
2570 
2571 static int sh_eth_tsu_busy(struct net_device *ndev)
2572 {
2573 	int timeout = SH_ETH_TSU_TIMEOUT_MS * 100;
2574 	struct sh_eth_private *mdp = netdev_priv(ndev);
2575 
2576 	while ((sh_eth_tsu_read(mdp, TSU_ADSBSY) & TSU_ADSBSY_0)) {
2577 		udelay(10);
2578 		timeout--;
2579 		if (timeout <= 0) {
2580 			netdev_err(ndev, "%s: timeout\n", __func__);
2581 			return -ETIMEDOUT;
2582 		}
2583 	}
2584 
2585 	return 0;
2586 }
2587 
2588 static int sh_eth_tsu_write_entry(struct net_device *ndev, void *reg,
2589 				  const u8 *addr)
2590 {
2591 	u32 val;
2592 
2593 	val = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3];
2594 	iowrite32(val, reg);
2595 	if (sh_eth_tsu_busy(ndev) < 0)
2596 		return -EBUSY;
2597 
2598 	val = addr[4] << 8 | addr[5];
2599 	iowrite32(val, reg + 4);
2600 	if (sh_eth_tsu_busy(ndev) < 0)
2601 		return -EBUSY;
2602 
2603 	return 0;
2604 }
2605 
2606 static void sh_eth_tsu_read_entry(void *reg, u8 *addr)
2607 {
2608 	u32 val;
2609 
2610 	val = ioread32(reg);
2611 	addr[0] = (val >> 24) & 0xff;
2612 	addr[1] = (val >> 16) & 0xff;
2613 	addr[2] = (val >> 8) & 0xff;
2614 	addr[3] = val & 0xff;
2615 	val = ioread32(reg + 4);
2616 	addr[4] = (val >> 8) & 0xff;
2617 	addr[5] = val & 0xff;
2618 }
2619 
2620 
2621 static int sh_eth_tsu_find_entry(struct net_device *ndev, const u8 *addr)
2622 {
2623 	struct sh_eth_private *mdp = netdev_priv(ndev);
2624 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2625 	int i;
2626 	u8 c_addr[ETH_ALEN];
2627 
2628 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2629 		sh_eth_tsu_read_entry(reg_offset, c_addr);
2630 		if (ether_addr_equal(addr, c_addr))
2631 			return i;
2632 	}
2633 
2634 	return -ENOENT;
2635 }
2636 
2637 static int sh_eth_tsu_find_empty(struct net_device *ndev)
2638 {
2639 	u8 blank[ETH_ALEN];
2640 	int entry;
2641 
2642 	memset(blank, 0, sizeof(blank));
2643 	entry = sh_eth_tsu_find_entry(ndev, blank);
2644 	return (entry < 0) ? -ENOMEM : entry;
2645 }
2646 
2647 static int sh_eth_tsu_disable_cam_entry_table(struct net_device *ndev,
2648 					      int entry)
2649 {
2650 	struct sh_eth_private *mdp = netdev_priv(ndev);
2651 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2652 	int ret;
2653 	u8 blank[ETH_ALEN];
2654 
2655 	sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) &
2656 			 ~(1 << (31 - entry)), TSU_TEN);
2657 
2658 	memset(blank, 0, sizeof(blank));
2659 	ret = sh_eth_tsu_write_entry(ndev, reg_offset + entry * 8, blank);
2660 	if (ret < 0)
2661 		return ret;
2662 	return 0;
2663 }
2664 
2665 static int sh_eth_tsu_add_entry(struct net_device *ndev, const u8 *addr)
2666 {
2667 	struct sh_eth_private *mdp = netdev_priv(ndev);
2668 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2669 	int i, ret;
2670 
2671 	if (!mdp->cd->tsu)
2672 		return 0;
2673 
2674 	i = sh_eth_tsu_find_entry(ndev, addr);
2675 	if (i < 0) {
2676 		/* No entry found, create one */
2677 		i = sh_eth_tsu_find_empty(ndev);
2678 		if (i < 0)
2679 			return -ENOMEM;
2680 		ret = sh_eth_tsu_write_entry(ndev, reg_offset + i * 8, addr);
2681 		if (ret < 0)
2682 			return ret;
2683 
2684 		/* Enable the entry */
2685 		sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) |
2686 				 (1 << (31 - i)), TSU_TEN);
2687 	}
2688 
2689 	/* Entry found or created, enable POST */
2690 	sh_eth_tsu_enable_cam_entry_post(ndev, i);
2691 
2692 	return 0;
2693 }
2694 
2695 static int sh_eth_tsu_del_entry(struct net_device *ndev, const u8 *addr)
2696 {
2697 	struct sh_eth_private *mdp = netdev_priv(ndev);
2698 	int i, ret;
2699 
2700 	if (!mdp->cd->tsu)
2701 		return 0;
2702 
2703 	i = sh_eth_tsu_find_entry(ndev, addr);
2704 	if (i) {
2705 		/* Entry found */
2706 		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2707 			goto done;
2708 
2709 		/* Disable the entry if both ports was disabled */
2710 		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2711 		if (ret < 0)
2712 			return ret;
2713 	}
2714 done:
2715 	return 0;
2716 }
2717 
2718 static int sh_eth_tsu_purge_all(struct net_device *ndev)
2719 {
2720 	struct sh_eth_private *mdp = netdev_priv(ndev);
2721 	int i, ret;
2722 
2723 	if (!mdp->cd->tsu)
2724 		return 0;
2725 
2726 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++) {
2727 		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2728 			continue;
2729 
2730 		/* Disable the entry if both ports was disabled */
2731 		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2732 		if (ret < 0)
2733 			return ret;
2734 	}
2735 
2736 	return 0;
2737 }
2738 
2739 static void sh_eth_tsu_purge_mcast(struct net_device *ndev)
2740 {
2741 	struct sh_eth_private *mdp = netdev_priv(ndev);
2742 	u8 addr[ETH_ALEN];
2743 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2744 	int i;
2745 
2746 	if (!mdp->cd->tsu)
2747 		return;
2748 
2749 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2750 		sh_eth_tsu_read_entry(reg_offset, addr);
2751 		if (is_multicast_ether_addr(addr))
2752 			sh_eth_tsu_del_entry(ndev, addr);
2753 	}
2754 }
2755 
2756 /* Update promiscuous flag and multicast filter */
2757 static void sh_eth_set_rx_mode(struct net_device *ndev)
2758 {
2759 	struct sh_eth_private *mdp = netdev_priv(ndev);
2760 	u32 ecmr_bits;
2761 	int mcast_all = 0;
2762 	unsigned long flags;
2763 
2764 	spin_lock_irqsave(&mdp->lock, flags);
2765 	/* Initial condition is MCT = 1, PRM = 0.
2766 	 * Depending on ndev->flags, set PRM or clear MCT
2767 	 */
2768 	ecmr_bits = sh_eth_read(ndev, ECMR) & ~ECMR_PRM;
2769 	if (mdp->cd->tsu)
2770 		ecmr_bits |= ECMR_MCT;
2771 
2772 	if (!(ndev->flags & IFF_MULTICAST)) {
2773 		sh_eth_tsu_purge_mcast(ndev);
2774 		mcast_all = 1;
2775 	}
2776 	if (ndev->flags & IFF_ALLMULTI) {
2777 		sh_eth_tsu_purge_mcast(ndev);
2778 		ecmr_bits &= ~ECMR_MCT;
2779 		mcast_all = 1;
2780 	}
2781 
2782 	if (ndev->flags & IFF_PROMISC) {
2783 		sh_eth_tsu_purge_all(ndev);
2784 		ecmr_bits = (ecmr_bits & ~ECMR_MCT) | ECMR_PRM;
2785 	} else if (mdp->cd->tsu) {
2786 		struct netdev_hw_addr *ha;
2787 		netdev_for_each_mc_addr(ha, ndev) {
2788 			if (mcast_all && is_multicast_ether_addr(ha->addr))
2789 				continue;
2790 
2791 			if (sh_eth_tsu_add_entry(ndev, ha->addr) < 0) {
2792 				if (!mcast_all) {
2793 					sh_eth_tsu_purge_mcast(ndev);
2794 					ecmr_bits &= ~ECMR_MCT;
2795 					mcast_all = 1;
2796 				}
2797 			}
2798 		}
2799 	}
2800 
2801 	/* update the ethernet mode */
2802 	sh_eth_write(ndev, ecmr_bits, ECMR);
2803 
2804 	spin_unlock_irqrestore(&mdp->lock, flags);
2805 }
2806 
2807 static int sh_eth_get_vtag_index(struct sh_eth_private *mdp)
2808 {
2809 	if (!mdp->port)
2810 		return TSU_VTAG0;
2811 	else
2812 		return TSU_VTAG1;
2813 }
2814 
2815 static int sh_eth_vlan_rx_add_vid(struct net_device *ndev,
2816 				  __be16 proto, u16 vid)
2817 {
2818 	struct sh_eth_private *mdp = netdev_priv(ndev);
2819 	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2820 
2821 	if (unlikely(!mdp->cd->tsu))
2822 		return -EPERM;
2823 
2824 	/* No filtering if vid = 0 */
2825 	if (!vid)
2826 		return 0;
2827 
2828 	mdp->vlan_num_ids++;
2829 
2830 	/* The controller has one VLAN tag HW filter. So, if the filter is
2831 	 * already enabled, the driver disables it and the filte
2832 	 */
2833 	if (mdp->vlan_num_ids > 1) {
2834 		/* disable VLAN filter */
2835 		sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2836 		return 0;
2837 	}
2838 
2839 	sh_eth_tsu_write(mdp, TSU_VTAG_ENABLE | (vid & TSU_VTAG_VID_MASK),
2840 			 vtag_reg_index);
2841 
2842 	return 0;
2843 }
2844 
2845 static int sh_eth_vlan_rx_kill_vid(struct net_device *ndev,
2846 				   __be16 proto, u16 vid)
2847 {
2848 	struct sh_eth_private *mdp = netdev_priv(ndev);
2849 	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2850 
2851 	if (unlikely(!mdp->cd->tsu))
2852 		return -EPERM;
2853 
2854 	/* No filtering if vid = 0 */
2855 	if (!vid)
2856 		return 0;
2857 
2858 	mdp->vlan_num_ids--;
2859 	sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2860 
2861 	return 0;
2862 }
2863 
2864 /* SuperH's TSU register init function */
2865 static void sh_eth_tsu_init(struct sh_eth_private *mdp)
2866 {
2867 	if (sh_eth_is_rz_fast_ether(mdp)) {
2868 		sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
2869 		return;
2870 	}
2871 
2872 	sh_eth_tsu_write(mdp, 0, TSU_FWEN0);	/* Disable forward(0->1) */
2873 	sh_eth_tsu_write(mdp, 0, TSU_FWEN1);	/* Disable forward(1->0) */
2874 	sh_eth_tsu_write(mdp, 0, TSU_FCM);	/* forward fifo 3k-3k */
2875 	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
2876 	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
2877 	sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
2878 	sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
2879 	sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
2880 	sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
2881 	sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
2882 	if (sh_eth_is_gether(mdp)) {
2883 		sh_eth_tsu_write(mdp, 0, TSU_QTAG0);	/* Disable QTAG(0->1) */
2884 		sh_eth_tsu_write(mdp, 0, TSU_QTAG1);	/* Disable QTAG(1->0) */
2885 	} else {
2886 		sh_eth_tsu_write(mdp, 0, TSU_QTAGM0);	/* Disable QTAG(0->1) */
2887 		sh_eth_tsu_write(mdp, 0, TSU_QTAGM1);	/* Disable QTAG(1->0) */
2888 	}
2889 	sh_eth_tsu_write(mdp, 0, TSU_FWSR);	/* all interrupt status clear */
2890 	sh_eth_tsu_write(mdp, 0, TSU_FWINMK);	/* Disable all interrupt */
2891 	sh_eth_tsu_write(mdp, 0, TSU_TEN);	/* Disable all CAM entry */
2892 	sh_eth_tsu_write(mdp, 0, TSU_POST1);	/* Disable CAM entry [ 0- 7] */
2893 	sh_eth_tsu_write(mdp, 0, TSU_POST2);	/* Disable CAM entry [ 8-15] */
2894 	sh_eth_tsu_write(mdp, 0, TSU_POST3);	/* Disable CAM entry [16-23] */
2895 	sh_eth_tsu_write(mdp, 0, TSU_POST4);	/* Disable CAM entry [24-31] */
2896 }
2897 
2898 /* MDIO bus release function */
2899 static int sh_mdio_release(struct sh_eth_private *mdp)
2900 {
2901 	/* unregister mdio bus */
2902 	mdiobus_unregister(mdp->mii_bus);
2903 
2904 	/* free bitbang info */
2905 	free_mdio_bitbang(mdp->mii_bus);
2906 
2907 	return 0;
2908 }
2909 
2910 /* MDIO bus init function */
2911 static int sh_mdio_init(struct sh_eth_private *mdp,
2912 			struct sh_eth_plat_data *pd)
2913 {
2914 	int ret, i;
2915 	struct bb_info *bitbang;
2916 	struct platform_device *pdev = mdp->pdev;
2917 	struct device *dev = &mdp->pdev->dev;
2918 
2919 	/* create bit control struct for PHY */
2920 	bitbang = devm_kzalloc(dev, sizeof(struct bb_info), GFP_KERNEL);
2921 	if (!bitbang)
2922 		return -ENOMEM;
2923 
2924 	/* bitbang init */
2925 	bitbang->addr = mdp->addr + mdp->reg_offset[PIR];
2926 	bitbang->set_gate = pd->set_mdio_gate;
2927 	bitbang->mdi_msk = PIR_MDI;
2928 	bitbang->mdo_msk = PIR_MDO;
2929 	bitbang->mmd_msk = PIR_MMD;
2930 	bitbang->mdc_msk = PIR_MDC;
2931 	bitbang->ctrl.ops = &bb_ops;
2932 
2933 	/* MII controller setting */
2934 	mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
2935 	if (!mdp->mii_bus)
2936 		return -ENOMEM;
2937 
2938 	/* Hook up MII support for ethtool */
2939 	mdp->mii_bus->name = "sh_mii";
2940 	mdp->mii_bus->parent = dev;
2941 	snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2942 		 pdev->name, pdev->id);
2943 
2944 	/* PHY IRQ */
2945 	mdp->mii_bus->irq = devm_kmalloc_array(dev, PHY_MAX_ADDR, sizeof(int),
2946 					       GFP_KERNEL);
2947 	if (!mdp->mii_bus->irq) {
2948 		ret = -ENOMEM;
2949 		goto out_free_bus;
2950 	}
2951 
2952 	/* register MDIO bus */
2953 	if (dev->of_node) {
2954 		ret = of_mdiobus_register(mdp->mii_bus, dev->of_node);
2955 	} else {
2956 		for (i = 0; i < PHY_MAX_ADDR; i++)
2957 			mdp->mii_bus->irq[i] = PHY_POLL;
2958 		if (pd->phy_irq > 0)
2959 			mdp->mii_bus->irq[pd->phy] = pd->phy_irq;
2960 
2961 		ret = mdiobus_register(mdp->mii_bus);
2962 	}
2963 
2964 	if (ret)
2965 		goto out_free_bus;
2966 
2967 	return 0;
2968 
2969 out_free_bus:
2970 	free_mdio_bitbang(mdp->mii_bus);
2971 	return ret;
2972 }
2973 
2974 static const u16 *sh_eth_get_register_offset(int register_type)
2975 {
2976 	const u16 *reg_offset = NULL;
2977 
2978 	switch (register_type) {
2979 	case SH_ETH_REG_GIGABIT:
2980 		reg_offset = sh_eth_offset_gigabit;
2981 		break;
2982 	case SH_ETH_REG_FAST_RZ:
2983 		reg_offset = sh_eth_offset_fast_rz;
2984 		break;
2985 	case SH_ETH_REG_FAST_RCAR:
2986 		reg_offset = sh_eth_offset_fast_rcar;
2987 		break;
2988 	case SH_ETH_REG_FAST_SH4:
2989 		reg_offset = sh_eth_offset_fast_sh4;
2990 		break;
2991 	case SH_ETH_REG_FAST_SH3_SH2:
2992 		reg_offset = sh_eth_offset_fast_sh3_sh2;
2993 		break;
2994 	default:
2995 		break;
2996 	}
2997 
2998 	return reg_offset;
2999 }
3000 
3001 static const struct net_device_ops sh_eth_netdev_ops = {
3002 	.ndo_open		= sh_eth_open,
3003 	.ndo_stop		= sh_eth_close,
3004 	.ndo_start_xmit		= sh_eth_start_xmit,
3005 	.ndo_get_stats		= sh_eth_get_stats,
3006 	.ndo_set_rx_mode	= sh_eth_set_rx_mode,
3007 	.ndo_tx_timeout		= sh_eth_tx_timeout,
3008 	.ndo_do_ioctl		= sh_eth_do_ioctl,
3009 	.ndo_validate_addr	= eth_validate_addr,
3010 	.ndo_set_mac_address	= eth_mac_addr,
3011 	.ndo_change_mtu		= eth_change_mtu,
3012 };
3013 
3014 static const struct net_device_ops sh_eth_netdev_ops_tsu = {
3015 	.ndo_open		= sh_eth_open,
3016 	.ndo_stop		= sh_eth_close,
3017 	.ndo_start_xmit		= sh_eth_start_xmit,
3018 	.ndo_get_stats		= sh_eth_get_stats,
3019 	.ndo_set_rx_mode	= sh_eth_set_rx_mode,
3020 	.ndo_vlan_rx_add_vid	= sh_eth_vlan_rx_add_vid,
3021 	.ndo_vlan_rx_kill_vid	= sh_eth_vlan_rx_kill_vid,
3022 	.ndo_tx_timeout		= sh_eth_tx_timeout,
3023 	.ndo_do_ioctl		= sh_eth_do_ioctl,
3024 	.ndo_validate_addr	= eth_validate_addr,
3025 	.ndo_set_mac_address	= eth_mac_addr,
3026 	.ndo_change_mtu		= eth_change_mtu,
3027 };
3028 
3029 #ifdef CONFIG_OF
3030 static struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
3031 {
3032 	struct device_node *np = dev->of_node;
3033 	struct sh_eth_plat_data *pdata;
3034 	const char *mac_addr;
3035 
3036 	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
3037 	if (!pdata)
3038 		return NULL;
3039 
3040 	pdata->phy_interface = of_get_phy_mode(np);
3041 
3042 	mac_addr = of_get_mac_address(np);
3043 	if (mac_addr)
3044 		memcpy(pdata->mac_addr, mac_addr, ETH_ALEN);
3045 
3046 	pdata->no_ether_link =
3047 		of_property_read_bool(np, "renesas,no-ether-link");
3048 	pdata->ether_link_active_low =
3049 		of_property_read_bool(np, "renesas,ether-link-active-low");
3050 
3051 	return pdata;
3052 }
3053 
3054 static const struct of_device_id sh_eth_match_table[] = {
3055 	{ .compatible = "renesas,gether-r8a7740", .data = &r8a7740_data },
3056 	{ .compatible = "renesas,ether-r8a7778", .data = &r8a777x_data },
3057 	{ .compatible = "renesas,ether-r8a7779", .data = &r8a777x_data },
3058 	{ .compatible = "renesas,ether-r8a7790", .data = &r8a779x_data },
3059 	{ .compatible = "renesas,ether-r8a7791", .data = &r8a779x_data },
3060 	{ .compatible = "renesas,ether-r8a7793", .data = &r8a779x_data },
3061 	{ .compatible = "renesas,ether-r8a7794", .data = &r8a779x_data },
3062 	{ .compatible = "renesas,ether-r7s72100", .data = &r7s72100_data },
3063 	{ }
3064 };
3065 MODULE_DEVICE_TABLE(of, sh_eth_match_table);
3066 #else
3067 static inline struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
3068 {
3069 	return NULL;
3070 }
3071 #endif
3072 
3073 static int sh_eth_drv_probe(struct platform_device *pdev)
3074 {
3075 	int ret, devno = 0;
3076 	struct resource *res;
3077 	struct net_device *ndev = NULL;
3078 	struct sh_eth_private *mdp = NULL;
3079 	struct sh_eth_plat_data *pd = dev_get_platdata(&pdev->dev);
3080 	const struct platform_device_id *id = platform_get_device_id(pdev);
3081 
3082 	/* get base addr */
3083 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3084 
3085 	ndev = alloc_etherdev(sizeof(struct sh_eth_private));
3086 	if (!ndev)
3087 		return -ENOMEM;
3088 
3089 	pm_runtime_enable(&pdev->dev);
3090 	pm_runtime_get_sync(&pdev->dev);
3091 
3092 	devno = pdev->id;
3093 	if (devno < 0)
3094 		devno = 0;
3095 
3096 	ndev->dma = -1;
3097 	ret = platform_get_irq(pdev, 0);
3098 	if (ret < 0)
3099 		goto out_release;
3100 	ndev->irq = ret;
3101 
3102 	SET_NETDEV_DEV(ndev, &pdev->dev);
3103 
3104 	mdp = netdev_priv(ndev);
3105 	mdp->num_tx_ring = TX_RING_SIZE;
3106 	mdp->num_rx_ring = RX_RING_SIZE;
3107 	mdp->addr = devm_ioremap_resource(&pdev->dev, res);
3108 	if (IS_ERR(mdp->addr)) {
3109 		ret = PTR_ERR(mdp->addr);
3110 		goto out_release;
3111 	}
3112 
3113 	ndev->base_addr = res->start;
3114 
3115 	spin_lock_init(&mdp->lock);
3116 	mdp->pdev = pdev;
3117 
3118 	if (pdev->dev.of_node)
3119 		pd = sh_eth_parse_dt(&pdev->dev);
3120 	if (!pd) {
3121 		dev_err(&pdev->dev, "no platform data\n");
3122 		ret = -EINVAL;
3123 		goto out_release;
3124 	}
3125 
3126 	/* get PHY ID */
3127 	mdp->phy_id = pd->phy;
3128 	mdp->phy_interface = pd->phy_interface;
3129 	/* EDMAC endian */
3130 	mdp->edmac_endian = pd->edmac_endian;
3131 	mdp->no_ether_link = pd->no_ether_link;
3132 	mdp->ether_link_active_low = pd->ether_link_active_low;
3133 
3134 	/* set cpu data */
3135 	if (id) {
3136 		mdp->cd = (struct sh_eth_cpu_data *)id->driver_data;
3137 	} else	{
3138 		const struct of_device_id *match;
3139 
3140 		match = of_match_device(of_match_ptr(sh_eth_match_table),
3141 					&pdev->dev);
3142 		mdp->cd = (struct sh_eth_cpu_data *)match->data;
3143 	}
3144 	mdp->reg_offset = sh_eth_get_register_offset(mdp->cd->register_type);
3145 	if (!mdp->reg_offset) {
3146 		dev_err(&pdev->dev, "Unknown register type (%d)\n",
3147 			mdp->cd->register_type);
3148 		ret = -EINVAL;
3149 		goto out_release;
3150 	}
3151 	sh_eth_set_default_cpu_data(mdp->cd);
3152 
3153 	/* set function */
3154 	if (mdp->cd->tsu)
3155 		ndev->netdev_ops = &sh_eth_netdev_ops_tsu;
3156 	else
3157 		ndev->netdev_ops = &sh_eth_netdev_ops;
3158 	ndev->ethtool_ops = &sh_eth_ethtool_ops;
3159 	ndev->watchdog_timeo = TX_TIMEOUT;
3160 
3161 	/* debug message level */
3162 	mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
3163 
3164 	/* read and set MAC address */
3165 	read_mac_address(ndev, pd->mac_addr);
3166 	if (!is_valid_ether_addr(ndev->dev_addr)) {
3167 		dev_warn(&pdev->dev,
3168 			 "no valid MAC address supplied, using a random one.\n");
3169 		eth_hw_addr_random(ndev);
3170 	}
3171 
3172 	/* ioremap the TSU registers */
3173 	if (mdp->cd->tsu) {
3174 		struct resource *rtsu;
3175 		rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
3176 		mdp->tsu_addr = devm_ioremap_resource(&pdev->dev, rtsu);
3177 		if (IS_ERR(mdp->tsu_addr)) {
3178 			ret = PTR_ERR(mdp->tsu_addr);
3179 			goto out_release;
3180 		}
3181 		mdp->port = devno % 2;
3182 		ndev->features = NETIF_F_HW_VLAN_CTAG_FILTER;
3183 	}
3184 
3185 	/* initialize first or needed device */
3186 	if (!devno || pd->needs_init) {
3187 		if (mdp->cd->chip_reset)
3188 			mdp->cd->chip_reset(ndev);
3189 
3190 		if (mdp->cd->tsu) {
3191 			/* TSU init (Init only)*/
3192 			sh_eth_tsu_init(mdp);
3193 		}
3194 	}
3195 
3196 	if (mdp->cd->rmiimode)
3197 		sh_eth_write(ndev, 0x1, RMIIMODE);
3198 
3199 	/* MDIO bus init */
3200 	ret = sh_mdio_init(mdp, pd);
3201 	if (ret) {
3202 		dev_err(&ndev->dev, "failed to initialise MDIO\n");
3203 		goto out_release;
3204 	}
3205 
3206 	netif_napi_add(ndev, &mdp->napi, sh_eth_poll, 64);
3207 
3208 	/* network device register */
3209 	ret = register_netdev(ndev);
3210 	if (ret)
3211 		goto out_napi_del;
3212 
3213 	/* print device information */
3214 	netdev_info(ndev, "Base address at 0x%x, %pM, IRQ %d.\n",
3215 		    (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
3216 
3217 	pm_runtime_put(&pdev->dev);
3218 	platform_set_drvdata(pdev, ndev);
3219 
3220 	return ret;
3221 
3222 out_napi_del:
3223 	netif_napi_del(&mdp->napi);
3224 	sh_mdio_release(mdp);
3225 
3226 out_release:
3227 	/* net_dev free */
3228 	if (ndev)
3229 		free_netdev(ndev);
3230 
3231 	pm_runtime_put(&pdev->dev);
3232 	pm_runtime_disable(&pdev->dev);
3233 	return ret;
3234 }
3235 
3236 static int sh_eth_drv_remove(struct platform_device *pdev)
3237 {
3238 	struct net_device *ndev = platform_get_drvdata(pdev);
3239 	struct sh_eth_private *mdp = netdev_priv(ndev);
3240 
3241 	unregister_netdev(ndev);
3242 	netif_napi_del(&mdp->napi);
3243 	sh_mdio_release(mdp);
3244 	pm_runtime_disable(&pdev->dev);
3245 	free_netdev(ndev);
3246 
3247 	return 0;
3248 }
3249 
3250 #ifdef CONFIG_PM
3251 #ifdef CONFIG_PM_SLEEP
3252 static int sh_eth_suspend(struct device *dev)
3253 {
3254 	struct net_device *ndev = dev_get_drvdata(dev);
3255 	int ret = 0;
3256 
3257 	if (netif_running(ndev)) {
3258 		netif_device_detach(ndev);
3259 		ret = sh_eth_close(ndev);
3260 	}
3261 
3262 	return ret;
3263 }
3264 
3265 static int sh_eth_resume(struct device *dev)
3266 {
3267 	struct net_device *ndev = dev_get_drvdata(dev);
3268 	int ret = 0;
3269 
3270 	if (netif_running(ndev)) {
3271 		ret = sh_eth_open(ndev);
3272 		if (ret < 0)
3273 			return ret;
3274 		netif_device_attach(ndev);
3275 	}
3276 
3277 	return ret;
3278 }
3279 #endif
3280 
3281 static int sh_eth_runtime_nop(struct device *dev)
3282 {
3283 	/* Runtime PM callback shared between ->runtime_suspend()
3284 	 * and ->runtime_resume(). Simply returns success.
3285 	 *
3286 	 * This driver re-initializes all registers after
3287 	 * pm_runtime_get_sync() anyway so there is no need
3288 	 * to save and restore registers here.
3289 	 */
3290 	return 0;
3291 }
3292 
3293 static const struct dev_pm_ops sh_eth_dev_pm_ops = {
3294 	SET_SYSTEM_SLEEP_PM_OPS(sh_eth_suspend, sh_eth_resume)
3295 	SET_RUNTIME_PM_OPS(sh_eth_runtime_nop, sh_eth_runtime_nop, NULL)
3296 };
3297 #define SH_ETH_PM_OPS (&sh_eth_dev_pm_ops)
3298 #else
3299 #define SH_ETH_PM_OPS NULL
3300 #endif
3301 
3302 static struct platform_device_id sh_eth_id_table[] = {
3303 	{ "sh7619-ether", (kernel_ulong_t)&sh7619_data },
3304 	{ "sh771x-ether", (kernel_ulong_t)&sh771x_data },
3305 	{ "sh7724-ether", (kernel_ulong_t)&sh7724_data },
3306 	{ "sh7734-gether", (kernel_ulong_t)&sh7734_data },
3307 	{ "sh7757-ether", (kernel_ulong_t)&sh7757_data },
3308 	{ "sh7757-gether", (kernel_ulong_t)&sh7757_data_giga },
3309 	{ "sh7763-gether", (kernel_ulong_t)&sh7763_data },
3310 	{ "r7s72100-ether", (kernel_ulong_t)&r7s72100_data },
3311 	{ "r8a7740-gether", (kernel_ulong_t)&r8a7740_data },
3312 	{ "r8a777x-ether", (kernel_ulong_t)&r8a777x_data },
3313 	{ "r8a7790-ether", (kernel_ulong_t)&r8a779x_data },
3314 	{ "r8a7791-ether", (kernel_ulong_t)&r8a779x_data },
3315 	{ "r8a7793-ether", (kernel_ulong_t)&r8a779x_data },
3316 	{ "r8a7794-ether", (kernel_ulong_t)&r8a779x_data },
3317 	{ }
3318 };
3319 MODULE_DEVICE_TABLE(platform, sh_eth_id_table);
3320 
3321 static struct platform_driver sh_eth_driver = {
3322 	.probe = sh_eth_drv_probe,
3323 	.remove = sh_eth_drv_remove,
3324 	.id_table = sh_eth_id_table,
3325 	.driver = {
3326 		   .name = CARDNAME,
3327 		   .pm = SH_ETH_PM_OPS,
3328 		   .of_match_table = of_match_ptr(sh_eth_match_table),
3329 	},
3330 };
3331 
3332 module_platform_driver(sh_eth_driver);
3333 
3334 MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
3335 MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
3336 MODULE_LICENSE("GPL v2");
3337