xref: /linux/drivers/net/ethernet/renesas/sh_eth.c (revision 2359ccddc1c3f4752f43cc19b3db189710b15791)
1 /*  SuperH Ethernet device driver
2  *
3  *  Copyright (C) 2014 Renesas Electronics Corporation
4  *  Copyright (C) 2006-2012 Nobuhiro Iwamatsu
5  *  Copyright (C) 2008-2014 Renesas Solutions Corp.
6  *  Copyright (C) 2013-2017 Cogent Embedded, Inc.
7  *  Copyright (C) 2014 Codethink Limited
8  *
9  *  This program is free software; you can redistribute it and/or modify it
10  *  under the terms and conditions of the GNU General Public License,
11  *  version 2, as published by the Free Software Foundation.
12  *
13  *  This program is distributed in the hope it will be useful, but WITHOUT
14  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
16  *  more details.
17  *
18  *  The full GNU General Public License is included in this distribution in
19  *  the file called "COPYING".
20  */
21 
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/spinlock.h>
25 #include <linux/interrupt.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/etherdevice.h>
28 #include <linux/delay.h>
29 #include <linux/platform_device.h>
30 #include <linux/mdio-bitbang.h>
31 #include <linux/netdevice.h>
32 #include <linux/of.h>
33 #include <linux/of_device.h>
34 #include <linux/of_irq.h>
35 #include <linux/of_net.h>
36 #include <linux/phy.h>
37 #include <linux/cache.h>
38 #include <linux/io.h>
39 #include <linux/pm_runtime.h>
40 #include <linux/slab.h>
41 #include <linux/ethtool.h>
42 #include <linux/if_vlan.h>
43 #include <linux/sh_eth.h>
44 #include <linux/of_mdio.h>
45 
46 #include "sh_eth.h"
47 
48 #define SH_ETH_DEF_MSG_ENABLE \
49 		(NETIF_MSG_LINK	| \
50 		NETIF_MSG_TIMER	| \
51 		NETIF_MSG_RX_ERR| \
52 		NETIF_MSG_TX_ERR)
53 
54 #define SH_ETH_OFFSET_INVALID	((u16)~0)
55 
56 #define SH_ETH_OFFSET_DEFAULTS			\
57 	[0 ... SH_ETH_MAX_REGISTER_OFFSET - 1] = SH_ETH_OFFSET_INVALID
58 
59 static const u16 sh_eth_offset_gigabit[SH_ETH_MAX_REGISTER_OFFSET] = {
60 	SH_ETH_OFFSET_DEFAULTS,
61 
62 	[EDSR]		= 0x0000,
63 	[EDMR]		= 0x0400,
64 	[EDTRR]		= 0x0408,
65 	[EDRRR]		= 0x0410,
66 	[EESR]		= 0x0428,
67 	[EESIPR]	= 0x0430,
68 	[TDLAR]		= 0x0010,
69 	[TDFAR]		= 0x0014,
70 	[TDFXR]		= 0x0018,
71 	[TDFFR]		= 0x001c,
72 	[RDLAR]		= 0x0030,
73 	[RDFAR]		= 0x0034,
74 	[RDFXR]		= 0x0038,
75 	[RDFFR]		= 0x003c,
76 	[TRSCER]	= 0x0438,
77 	[RMFCR]		= 0x0440,
78 	[TFTR]		= 0x0448,
79 	[FDR]		= 0x0450,
80 	[RMCR]		= 0x0458,
81 	[RPADIR]	= 0x0460,
82 	[FCFTR]		= 0x0468,
83 	[CSMR]		= 0x04E4,
84 
85 	[ECMR]		= 0x0500,
86 	[ECSR]		= 0x0510,
87 	[ECSIPR]	= 0x0518,
88 	[PIR]		= 0x0520,
89 	[PSR]		= 0x0528,
90 	[PIPR]		= 0x052c,
91 	[RFLR]		= 0x0508,
92 	[APR]		= 0x0554,
93 	[MPR]		= 0x0558,
94 	[PFTCR]		= 0x055c,
95 	[PFRCR]		= 0x0560,
96 	[TPAUSER]	= 0x0564,
97 	[GECMR]		= 0x05b0,
98 	[BCULR]		= 0x05b4,
99 	[MAHR]		= 0x05c0,
100 	[MALR]		= 0x05c8,
101 	[TROCR]		= 0x0700,
102 	[CDCR]		= 0x0708,
103 	[LCCR]		= 0x0710,
104 	[CEFCR]		= 0x0740,
105 	[FRECR]		= 0x0748,
106 	[TSFRCR]	= 0x0750,
107 	[TLFRCR]	= 0x0758,
108 	[RFCR]		= 0x0760,
109 	[CERCR]		= 0x0768,
110 	[CEECR]		= 0x0770,
111 	[MAFCR]		= 0x0778,
112 	[RMII_MII]	= 0x0790,
113 
114 	[ARSTR]		= 0x0000,
115 	[TSU_CTRST]	= 0x0004,
116 	[TSU_FWEN0]	= 0x0010,
117 	[TSU_FWEN1]	= 0x0014,
118 	[TSU_FCM]	= 0x0018,
119 	[TSU_BSYSL0]	= 0x0020,
120 	[TSU_BSYSL1]	= 0x0024,
121 	[TSU_PRISL0]	= 0x0028,
122 	[TSU_PRISL1]	= 0x002c,
123 	[TSU_FWSL0]	= 0x0030,
124 	[TSU_FWSL1]	= 0x0034,
125 	[TSU_FWSLC]	= 0x0038,
126 	[TSU_QTAGM0]	= 0x0040,
127 	[TSU_QTAGM1]	= 0x0044,
128 	[TSU_FWSR]	= 0x0050,
129 	[TSU_FWINMK]	= 0x0054,
130 	[TSU_ADQT0]	= 0x0048,
131 	[TSU_ADQT1]	= 0x004c,
132 	[TSU_VTAG0]	= 0x0058,
133 	[TSU_VTAG1]	= 0x005c,
134 	[TSU_ADSBSY]	= 0x0060,
135 	[TSU_TEN]	= 0x0064,
136 	[TSU_POST1]	= 0x0070,
137 	[TSU_POST2]	= 0x0074,
138 	[TSU_POST3]	= 0x0078,
139 	[TSU_POST4]	= 0x007c,
140 	[TSU_ADRH0]	= 0x0100,
141 
142 	[TXNLCR0]	= 0x0080,
143 	[TXALCR0]	= 0x0084,
144 	[RXNLCR0]	= 0x0088,
145 	[RXALCR0]	= 0x008c,
146 	[FWNLCR0]	= 0x0090,
147 	[FWALCR0]	= 0x0094,
148 	[TXNLCR1]	= 0x00a0,
149 	[TXALCR1]	= 0x00a4,
150 	[RXNLCR1]	= 0x00a8,
151 	[RXALCR1]	= 0x00ac,
152 	[FWNLCR1]	= 0x00b0,
153 	[FWALCR1]	= 0x00b4,
154 };
155 
156 static const u16 sh_eth_offset_fast_rz[SH_ETH_MAX_REGISTER_OFFSET] = {
157 	SH_ETH_OFFSET_DEFAULTS,
158 
159 	[EDSR]		= 0x0000,
160 	[EDMR]		= 0x0400,
161 	[EDTRR]		= 0x0408,
162 	[EDRRR]		= 0x0410,
163 	[EESR]		= 0x0428,
164 	[EESIPR]	= 0x0430,
165 	[TDLAR]		= 0x0010,
166 	[TDFAR]		= 0x0014,
167 	[TDFXR]		= 0x0018,
168 	[TDFFR]		= 0x001c,
169 	[RDLAR]		= 0x0030,
170 	[RDFAR]		= 0x0034,
171 	[RDFXR]		= 0x0038,
172 	[RDFFR]		= 0x003c,
173 	[TRSCER]	= 0x0438,
174 	[RMFCR]		= 0x0440,
175 	[TFTR]		= 0x0448,
176 	[FDR]		= 0x0450,
177 	[RMCR]		= 0x0458,
178 	[RPADIR]	= 0x0460,
179 	[FCFTR]		= 0x0468,
180 	[CSMR]		= 0x04E4,
181 
182 	[ECMR]		= 0x0500,
183 	[RFLR]		= 0x0508,
184 	[ECSR]		= 0x0510,
185 	[ECSIPR]	= 0x0518,
186 	[PIR]		= 0x0520,
187 	[APR]		= 0x0554,
188 	[MPR]		= 0x0558,
189 	[PFTCR]		= 0x055c,
190 	[PFRCR]		= 0x0560,
191 	[TPAUSER]	= 0x0564,
192 	[MAHR]		= 0x05c0,
193 	[MALR]		= 0x05c8,
194 	[CEFCR]		= 0x0740,
195 	[FRECR]		= 0x0748,
196 	[TSFRCR]	= 0x0750,
197 	[TLFRCR]	= 0x0758,
198 	[RFCR]		= 0x0760,
199 	[MAFCR]		= 0x0778,
200 
201 	[ARSTR]		= 0x0000,
202 	[TSU_CTRST]	= 0x0004,
203 	[TSU_FWSLC]	= 0x0038,
204 	[TSU_VTAG0]	= 0x0058,
205 	[TSU_ADSBSY]	= 0x0060,
206 	[TSU_TEN]	= 0x0064,
207 	[TSU_POST1]	= 0x0070,
208 	[TSU_POST2]	= 0x0074,
209 	[TSU_POST3]	= 0x0078,
210 	[TSU_POST4]	= 0x007c,
211 	[TSU_ADRH0]	= 0x0100,
212 
213 	[TXNLCR0]	= 0x0080,
214 	[TXALCR0]	= 0x0084,
215 	[RXNLCR0]	= 0x0088,
216 	[RXALCR0]	= 0x008C,
217 };
218 
219 static const u16 sh_eth_offset_fast_rcar[SH_ETH_MAX_REGISTER_OFFSET] = {
220 	SH_ETH_OFFSET_DEFAULTS,
221 
222 	[ECMR]		= 0x0300,
223 	[RFLR]		= 0x0308,
224 	[ECSR]		= 0x0310,
225 	[ECSIPR]	= 0x0318,
226 	[PIR]		= 0x0320,
227 	[PSR]		= 0x0328,
228 	[RDMLR]		= 0x0340,
229 	[IPGR]		= 0x0350,
230 	[APR]		= 0x0354,
231 	[MPR]		= 0x0358,
232 	[RFCF]		= 0x0360,
233 	[TPAUSER]	= 0x0364,
234 	[TPAUSECR]	= 0x0368,
235 	[MAHR]		= 0x03c0,
236 	[MALR]		= 0x03c8,
237 	[TROCR]		= 0x03d0,
238 	[CDCR]		= 0x03d4,
239 	[LCCR]		= 0x03d8,
240 	[CNDCR]		= 0x03dc,
241 	[CEFCR]		= 0x03e4,
242 	[FRECR]		= 0x03e8,
243 	[TSFRCR]	= 0x03ec,
244 	[TLFRCR]	= 0x03f0,
245 	[RFCR]		= 0x03f4,
246 	[MAFCR]		= 0x03f8,
247 
248 	[EDMR]		= 0x0200,
249 	[EDTRR]		= 0x0208,
250 	[EDRRR]		= 0x0210,
251 	[TDLAR]		= 0x0218,
252 	[RDLAR]		= 0x0220,
253 	[EESR]		= 0x0228,
254 	[EESIPR]	= 0x0230,
255 	[TRSCER]	= 0x0238,
256 	[RMFCR]		= 0x0240,
257 	[TFTR]		= 0x0248,
258 	[FDR]		= 0x0250,
259 	[RMCR]		= 0x0258,
260 	[TFUCR]		= 0x0264,
261 	[RFOCR]		= 0x0268,
262 	[RMIIMODE]      = 0x026c,
263 	[FCFTR]		= 0x0270,
264 	[TRIMD]		= 0x027c,
265 };
266 
267 static const u16 sh_eth_offset_fast_sh4[SH_ETH_MAX_REGISTER_OFFSET] = {
268 	SH_ETH_OFFSET_DEFAULTS,
269 
270 	[ECMR]		= 0x0100,
271 	[RFLR]		= 0x0108,
272 	[ECSR]		= 0x0110,
273 	[ECSIPR]	= 0x0118,
274 	[PIR]		= 0x0120,
275 	[PSR]		= 0x0128,
276 	[RDMLR]		= 0x0140,
277 	[IPGR]		= 0x0150,
278 	[APR]		= 0x0154,
279 	[MPR]		= 0x0158,
280 	[TPAUSER]	= 0x0164,
281 	[RFCF]		= 0x0160,
282 	[TPAUSECR]	= 0x0168,
283 	[BCFRR]		= 0x016c,
284 	[MAHR]		= 0x01c0,
285 	[MALR]		= 0x01c8,
286 	[TROCR]		= 0x01d0,
287 	[CDCR]		= 0x01d4,
288 	[LCCR]		= 0x01d8,
289 	[CNDCR]		= 0x01dc,
290 	[CEFCR]		= 0x01e4,
291 	[FRECR]		= 0x01e8,
292 	[TSFRCR]	= 0x01ec,
293 	[TLFRCR]	= 0x01f0,
294 	[RFCR]		= 0x01f4,
295 	[MAFCR]		= 0x01f8,
296 	[RTRATE]	= 0x01fc,
297 
298 	[EDMR]		= 0x0000,
299 	[EDTRR]		= 0x0008,
300 	[EDRRR]		= 0x0010,
301 	[TDLAR]		= 0x0018,
302 	[RDLAR]		= 0x0020,
303 	[EESR]		= 0x0028,
304 	[EESIPR]	= 0x0030,
305 	[TRSCER]	= 0x0038,
306 	[RMFCR]		= 0x0040,
307 	[TFTR]		= 0x0048,
308 	[FDR]		= 0x0050,
309 	[RMCR]		= 0x0058,
310 	[TFUCR]		= 0x0064,
311 	[RFOCR]		= 0x0068,
312 	[FCFTR]		= 0x0070,
313 	[RPADIR]	= 0x0078,
314 	[TRIMD]		= 0x007c,
315 	[RBWAR]		= 0x00c8,
316 	[RDFAR]		= 0x00cc,
317 	[TBRAR]		= 0x00d4,
318 	[TDFAR]		= 0x00d8,
319 };
320 
321 static const u16 sh_eth_offset_fast_sh3_sh2[SH_ETH_MAX_REGISTER_OFFSET] = {
322 	SH_ETH_OFFSET_DEFAULTS,
323 
324 	[EDMR]		= 0x0000,
325 	[EDTRR]		= 0x0004,
326 	[EDRRR]		= 0x0008,
327 	[TDLAR]		= 0x000c,
328 	[RDLAR]		= 0x0010,
329 	[EESR]		= 0x0014,
330 	[EESIPR]	= 0x0018,
331 	[TRSCER]	= 0x001c,
332 	[RMFCR]		= 0x0020,
333 	[TFTR]		= 0x0024,
334 	[FDR]		= 0x0028,
335 	[RMCR]		= 0x002c,
336 	[EDOCR]		= 0x0030,
337 	[FCFTR]		= 0x0034,
338 	[RPADIR]	= 0x0038,
339 	[TRIMD]		= 0x003c,
340 	[RBWAR]		= 0x0040,
341 	[RDFAR]		= 0x0044,
342 	[TBRAR]		= 0x004c,
343 	[TDFAR]		= 0x0050,
344 
345 	[ECMR]		= 0x0160,
346 	[ECSR]		= 0x0164,
347 	[ECSIPR]	= 0x0168,
348 	[PIR]		= 0x016c,
349 	[MAHR]		= 0x0170,
350 	[MALR]		= 0x0174,
351 	[RFLR]		= 0x0178,
352 	[PSR]		= 0x017c,
353 	[TROCR]		= 0x0180,
354 	[CDCR]		= 0x0184,
355 	[LCCR]		= 0x0188,
356 	[CNDCR]		= 0x018c,
357 	[CEFCR]		= 0x0194,
358 	[FRECR]		= 0x0198,
359 	[TSFRCR]	= 0x019c,
360 	[TLFRCR]	= 0x01a0,
361 	[RFCR]		= 0x01a4,
362 	[MAFCR]		= 0x01a8,
363 	[IPGR]		= 0x01b4,
364 	[APR]		= 0x01b8,
365 	[MPR]		= 0x01bc,
366 	[TPAUSER]	= 0x01c4,
367 	[BCFR]		= 0x01cc,
368 
369 	[ARSTR]		= 0x0000,
370 	[TSU_CTRST]	= 0x0004,
371 	[TSU_FWEN0]	= 0x0010,
372 	[TSU_FWEN1]	= 0x0014,
373 	[TSU_FCM]	= 0x0018,
374 	[TSU_BSYSL0]	= 0x0020,
375 	[TSU_BSYSL1]	= 0x0024,
376 	[TSU_PRISL0]	= 0x0028,
377 	[TSU_PRISL1]	= 0x002c,
378 	[TSU_FWSL0]	= 0x0030,
379 	[TSU_FWSL1]	= 0x0034,
380 	[TSU_FWSLC]	= 0x0038,
381 	[TSU_QTAGM0]	= 0x0040,
382 	[TSU_QTAGM1]	= 0x0044,
383 	[TSU_ADQT0]	= 0x0048,
384 	[TSU_ADQT1]	= 0x004c,
385 	[TSU_FWSR]	= 0x0050,
386 	[TSU_FWINMK]	= 0x0054,
387 	[TSU_ADSBSY]	= 0x0060,
388 	[TSU_TEN]	= 0x0064,
389 	[TSU_POST1]	= 0x0070,
390 	[TSU_POST2]	= 0x0074,
391 	[TSU_POST3]	= 0x0078,
392 	[TSU_POST4]	= 0x007c,
393 
394 	[TXNLCR0]	= 0x0080,
395 	[TXALCR0]	= 0x0084,
396 	[RXNLCR0]	= 0x0088,
397 	[RXALCR0]	= 0x008c,
398 	[FWNLCR0]	= 0x0090,
399 	[FWALCR0]	= 0x0094,
400 	[TXNLCR1]	= 0x00a0,
401 	[TXALCR1]	= 0x00a4,
402 	[RXNLCR1]	= 0x00a8,
403 	[RXALCR1]	= 0x00ac,
404 	[FWNLCR1]	= 0x00b0,
405 	[FWALCR1]	= 0x00b4,
406 
407 	[TSU_ADRH0]	= 0x0100,
408 };
409 
410 static void sh_eth_rcv_snd_disable(struct net_device *ndev);
411 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev);
412 
413 static void sh_eth_write(struct net_device *ndev, u32 data, int enum_index)
414 {
415 	struct sh_eth_private *mdp = netdev_priv(ndev);
416 	u16 offset = mdp->reg_offset[enum_index];
417 
418 	if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
419 		return;
420 
421 	iowrite32(data, mdp->addr + offset);
422 }
423 
424 static u32 sh_eth_read(struct net_device *ndev, int enum_index)
425 {
426 	struct sh_eth_private *mdp = netdev_priv(ndev);
427 	u16 offset = mdp->reg_offset[enum_index];
428 
429 	if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
430 		return ~0U;
431 
432 	return ioread32(mdp->addr + offset);
433 }
434 
435 static void sh_eth_modify(struct net_device *ndev, int enum_index, u32 clear,
436 			  u32 set)
437 {
438 	sh_eth_write(ndev, (sh_eth_read(ndev, enum_index) & ~clear) | set,
439 		     enum_index);
440 }
441 
442 static void sh_eth_tsu_write(struct sh_eth_private *mdp, u32 data,
443 			     int enum_index)
444 {
445 	iowrite32(data, mdp->tsu_addr + mdp->reg_offset[enum_index]);
446 }
447 
448 static u32 sh_eth_tsu_read(struct sh_eth_private *mdp, int enum_index)
449 {
450 	return ioread32(mdp->tsu_addr + mdp->reg_offset[enum_index]);
451 }
452 
453 static void sh_eth_select_mii(struct net_device *ndev)
454 {
455 	struct sh_eth_private *mdp = netdev_priv(ndev);
456 	u32 value;
457 
458 	switch (mdp->phy_interface) {
459 	case PHY_INTERFACE_MODE_GMII:
460 		value = 0x2;
461 		break;
462 	case PHY_INTERFACE_MODE_MII:
463 		value = 0x1;
464 		break;
465 	case PHY_INTERFACE_MODE_RMII:
466 		value = 0x0;
467 		break;
468 	default:
469 		netdev_warn(ndev,
470 			    "PHY interface mode was not setup. Set to MII.\n");
471 		value = 0x1;
472 		break;
473 	}
474 
475 	sh_eth_write(ndev, value, RMII_MII);
476 }
477 
478 static void sh_eth_set_duplex(struct net_device *ndev)
479 {
480 	struct sh_eth_private *mdp = netdev_priv(ndev);
481 
482 	sh_eth_modify(ndev, ECMR, ECMR_DM, mdp->duplex ? ECMR_DM : 0);
483 }
484 
485 static void sh_eth_chip_reset(struct net_device *ndev)
486 {
487 	struct sh_eth_private *mdp = netdev_priv(ndev);
488 
489 	/* reset device */
490 	sh_eth_tsu_write(mdp, ARSTR_ARST, ARSTR);
491 	mdelay(1);
492 }
493 
494 static int sh_eth_soft_reset(struct net_device *ndev)
495 {
496 	sh_eth_modify(ndev, EDMR, EDMR_SRST_ETHER, EDMR_SRST_ETHER);
497 	mdelay(3);
498 	sh_eth_modify(ndev, EDMR, EDMR_SRST_ETHER, 0);
499 
500 	return 0;
501 }
502 
503 static int sh_eth_check_soft_reset(struct net_device *ndev)
504 {
505 	int cnt;
506 
507 	for (cnt = 100; cnt > 0; cnt--) {
508 		if (!(sh_eth_read(ndev, EDMR) & EDMR_SRST_GETHER))
509 			return 0;
510 		mdelay(1);
511 	}
512 
513 	netdev_err(ndev, "Device reset failed\n");
514 	return -ETIMEDOUT;
515 }
516 
517 static int sh_eth_soft_reset_gether(struct net_device *ndev)
518 {
519 	struct sh_eth_private *mdp = netdev_priv(ndev);
520 	int ret;
521 
522 	sh_eth_write(ndev, EDSR_ENALL, EDSR);
523 	sh_eth_modify(ndev, EDMR, EDMR_SRST_GETHER, EDMR_SRST_GETHER);
524 
525 	ret = sh_eth_check_soft_reset(ndev);
526 	if (ret)
527 		return ret;
528 
529 	/* Table Init */
530 	sh_eth_write(ndev, 0, TDLAR);
531 	sh_eth_write(ndev, 0, TDFAR);
532 	sh_eth_write(ndev, 0, TDFXR);
533 	sh_eth_write(ndev, 0, TDFFR);
534 	sh_eth_write(ndev, 0, RDLAR);
535 	sh_eth_write(ndev, 0, RDFAR);
536 	sh_eth_write(ndev, 0, RDFXR);
537 	sh_eth_write(ndev, 0, RDFFR);
538 
539 	/* Reset HW CRC register */
540 	if (mdp->cd->hw_checksum)
541 		sh_eth_write(ndev, 0, CSMR);
542 
543 	/* Select MII mode */
544 	if (mdp->cd->select_mii)
545 		sh_eth_select_mii(ndev);
546 
547 	return ret;
548 }
549 
550 static void sh_eth_set_rate_gether(struct net_device *ndev)
551 {
552 	struct sh_eth_private *mdp = netdev_priv(ndev);
553 
554 	switch (mdp->speed) {
555 	case 10: /* 10BASE */
556 		sh_eth_write(ndev, GECMR_10, GECMR);
557 		break;
558 	case 100:/* 100BASE */
559 		sh_eth_write(ndev, GECMR_100, GECMR);
560 		break;
561 	case 1000: /* 1000BASE */
562 		sh_eth_write(ndev, GECMR_1000, GECMR);
563 		break;
564 	}
565 }
566 
567 #ifdef CONFIG_OF
568 /* R7S72100 */
569 static struct sh_eth_cpu_data r7s72100_data = {
570 	.soft_reset	= sh_eth_soft_reset_gether,
571 
572 	.chip_reset	= sh_eth_chip_reset,
573 	.set_duplex	= sh_eth_set_duplex,
574 
575 	.register_type	= SH_ETH_REG_FAST_RZ,
576 
577 	.edtrr_trns	= EDTRR_TRNS_GETHER,
578 	.ecsr_value	= ECSR_ICD,
579 	.ecsipr_value	= ECSIPR_ICDIP,
580 	.eesipr_value	= EESIPR_TWB1IP | EESIPR_TWBIP | EESIPR_TC1IP |
581 			  EESIPR_TABTIP | EESIPR_RABTIP | EESIPR_RFCOFIP |
582 			  EESIPR_ECIIP |
583 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
584 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
585 			  EESIPR_RMAFIP | EESIPR_RRFIP |
586 			  EESIPR_RTLFIP | EESIPR_RTSFIP |
587 			  EESIPR_PREIP | EESIPR_CERFIP,
588 
589 	.tx_check	= EESR_TC1 | EESR_FTC,
590 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
591 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
592 			  EESR_TDE,
593 	.fdr_value	= 0x0000070f,
594 
595 	.no_psr		= 1,
596 	.apr		= 1,
597 	.mpr		= 1,
598 	.tpauser	= 1,
599 	.hw_swap	= 1,
600 	.rpadir		= 1,
601 	.rpadir_value   = 2 << 16,
602 	.no_trimd	= 1,
603 	.no_ade		= 1,
604 	.xdfar_rw	= 1,
605 	.hw_checksum	= 1,
606 	.tsu		= 1,
607 	.no_tx_cntrs	= 1,
608 };
609 
610 static void sh_eth_chip_reset_r8a7740(struct net_device *ndev)
611 {
612 	sh_eth_chip_reset(ndev);
613 
614 	sh_eth_select_mii(ndev);
615 }
616 
617 /* R8A7740 */
618 static struct sh_eth_cpu_data r8a7740_data = {
619 	.soft_reset	= sh_eth_soft_reset_gether,
620 
621 	.chip_reset	= sh_eth_chip_reset_r8a7740,
622 	.set_duplex	= sh_eth_set_duplex,
623 	.set_rate	= sh_eth_set_rate_gether,
624 
625 	.register_type	= SH_ETH_REG_GIGABIT,
626 
627 	.edtrr_trns	= EDTRR_TRNS_GETHER,
628 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
629 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
630 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
631 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
632 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
633 			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
634 			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
635 			  EESIPR_CEEFIP | EESIPR_CELFIP |
636 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
637 			  EESIPR_PREIP | EESIPR_CERFIP,
638 
639 	.tx_check	= EESR_TC1 | EESR_FTC,
640 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
641 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
642 			  EESR_TDE,
643 	.fdr_value	= 0x0000070f,
644 
645 	.apr		= 1,
646 	.mpr		= 1,
647 	.tpauser	= 1,
648 	.bculr		= 1,
649 	.hw_swap	= 1,
650 	.rpadir		= 1,
651 	.rpadir_value   = 2 << 16,
652 	.no_trimd	= 1,
653 	.no_ade		= 1,
654 	.xdfar_rw	= 1,
655 	.hw_checksum	= 1,
656 	.tsu		= 1,
657 	.select_mii	= 1,
658 	.magic		= 1,
659 	.cexcr		= 1,
660 };
661 
662 /* There is CPU dependent code */
663 static void sh_eth_set_rate_rcar(struct net_device *ndev)
664 {
665 	struct sh_eth_private *mdp = netdev_priv(ndev);
666 
667 	switch (mdp->speed) {
668 	case 10: /* 10BASE */
669 		sh_eth_modify(ndev, ECMR, ECMR_ELB, 0);
670 		break;
671 	case 100:/* 100BASE */
672 		sh_eth_modify(ndev, ECMR, ECMR_ELB, ECMR_ELB);
673 		break;
674 	}
675 }
676 
677 /* R-Car Gen1 */
678 static struct sh_eth_cpu_data rcar_gen1_data = {
679 	.soft_reset	= sh_eth_soft_reset,
680 
681 	.set_duplex	= sh_eth_set_duplex,
682 	.set_rate	= sh_eth_set_rate_rcar,
683 
684 	.register_type	= SH_ETH_REG_FAST_RCAR,
685 
686 	.edtrr_trns	= EDTRR_TRNS_ETHER,
687 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
688 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
689 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP |
690 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
691 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
692 			  EESIPR_RMAFIP | EESIPR_RRFIP |
693 			  EESIPR_RTLFIP | EESIPR_RTSFIP |
694 			  EESIPR_PREIP | EESIPR_CERFIP,
695 
696 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
697 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
698 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
699 	.fdr_value	= 0x00000f0f,
700 
701 	.apr		= 1,
702 	.mpr		= 1,
703 	.tpauser	= 1,
704 	.hw_swap	= 1,
705 	.no_xdfar	= 1,
706 };
707 
708 /* R-Car Gen2 and RZ/G1 */
709 static struct sh_eth_cpu_data rcar_gen2_data = {
710 	.soft_reset	= sh_eth_soft_reset,
711 
712 	.set_duplex	= sh_eth_set_duplex,
713 	.set_rate	= sh_eth_set_rate_rcar,
714 
715 	.register_type	= SH_ETH_REG_FAST_RCAR,
716 
717 	.edtrr_trns	= EDTRR_TRNS_ETHER,
718 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD | ECSR_MPD,
719 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP |
720 			  ECSIPR_MPDIP,
721 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP |
722 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
723 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
724 			  EESIPR_RMAFIP | EESIPR_RRFIP |
725 			  EESIPR_RTLFIP | EESIPR_RTSFIP |
726 			  EESIPR_PREIP | EESIPR_CERFIP,
727 
728 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
729 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
730 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
731 	.fdr_value	= 0x00000f0f,
732 
733 	.trscer_err_mask = DESC_I_RINT8,
734 
735 	.apr		= 1,
736 	.mpr		= 1,
737 	.tpauser	= 1,
738 	.hw_swap	= 1,
739 	.no_xdfar	= 1,
740 	.rmiimode	= 1,
741 	.magic		= 1,
742 };
743 #endif /* CONFIG_OF */
744 
745 static void sh_eth_set_rate_sh7724(struct net_device *ndev)
746 {
747 	struct sh_eth_private *mdp = netdev_priv(ndev);
748 
749 	switch (mdp->speed) {
750 	case 10: /* 10BASE */
751 		sh_eth_modify(ndev, ECMR, ECMR_RTM, 0);
752 		break;
753 	case 100:/* 100BASE */
754 		sh_eth_modify(ndev, ECMR, ECMR_RTM, ECMR_RTM);
755 		break;
756 	}
757 }
758 
759 /* SH7724 */
760 static struct sh_eth_cpu_data sh7724_data = {
761 	.soft_reset	= sh_eth_soft_reset,
762 
763 	.set_duplex	= sh_eth_set_duplex,
764 	.set_rate	= sh_eth_set_rate_sh7724,
765 
766 	.register_type	= SH_ETH_REG_FAST_SH4,
767 
768 	.edtrr_trns	= EDTRR_TRNS_ETHER,
769 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
770 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
771 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP |
772 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
773 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
774 			  EESIPR_RMAFIP | EESIPR_RRFIP |
775 			  EESIPR_RTLFIP | EESIPR_RTSFIP |
776 			  EESIPR_PREIP | EESIPR_CERFIP,
777 
778 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
779 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
780 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
781 
782 	.apr		= 1,
783 	.mpr		= 1,
784 	.tpauser	= 1,
785 	.hw_swap	= 1,
786 	.rpadir		= 1,
787 	.rpadir_value	= 0x00020000, /* NET_IP_ALIGN assumed to be 2 */
788 };
789 
790 static void sh_eth_set_rate_sh7757(struct net_device *ndev)
791 {
792 	struct sh_eth_private *mdp = netdev_priv(ndev);
793 
794 	switch (mdp->speed) {
795 	case 10: /* 10BASE */
796 		sh_eth_write(ndev, 0, RTRATE);
797 		break;
798 	case 100:/* 100BASE */
799 		sh_eth_write(ndev, 1, RTRATE);
800 		break;
801 	}
802 }
803 
804 /* SH7757 */
805 static struct sh_eth_cpu_data sh7757_data = {
806 	.soft_reset	= sh_eth_soft_reset,
807 
808 	.set_duplex	= sh_eth_set_duplex,
809 	.set_rate	= sh_eth_set_rate_sh7757,
810 
811 	.register_type	= SH_ETH_REG_FAST_SH4,
812 
813 	.edtrr_trns	= EDTRR_TRNS_ETHER,
814 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
815 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
816 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
817 			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
818 			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
819 			  EESIPR_CEEFIP | EESIPR_CELFIP |
820 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
821 			  EESIPR_PREIP | EESIPR_CERFIP,
822 
823 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
824 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
825 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
826 
827 	.irq_flags	= IRQF_SHARED,
828 	.apr		= 1,
829 	.mpr		= 1,
830 	.tpauser	= 1,
831 	.hw_swap	= 1,
832 	.no_ade		= 1,
833 	.rpadir		= 1,
834 	.rpadir_value   = 2 << 16,
835 	.rtrate		= 1,
836 	.dual_port	= 1,
837 };
838 
839 #define SH_GIGA_ETH_BASE	0xfee00000UL
840 #define GIGA_MALR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
841 #define GIGA_MAHR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
842 static void sh_eth_chip_reset_giga(struct net_device *ndev)
843 {
844 	u32 mahr[2], malr[2];
845 	int i;
846 
847 	/* save MAHR and MALR */
848 	for (i = 0; i < 2; i++) {
849 		malr[i] = ioread32((void *)GIGA_MALR(i));
850 		mahr[i] = ioread32((void *)GIGA_MAHR(i));
851 	}
852 
853 	sh_eth_chip_reset(ndev);
854 
855 	/* restore MAHR and MALR */
856 	for (i = 0; i < 2; i++) {
857 		iowrite32(malr[i], (void *)GIGA_MALR(i));
858 		iowrite32(mahr[i], (void *)GIGA_MAHR(i));
859 	}
860 }
861 
862 static void sh_eth_set_rate_giga(struct net_device *ndev)
863 {
864 	struct sh_eth_private *mdp = netdev_priv(ndev);
865 
866 	switch (mdp->speed) {
867 	case 10: /* 10BASE */
868 		sh_eth_write(ndev, 0x00000000, GECMR);
869 		break;
870 	case 100:/* 100BASE */
871 		sh_eth_write(ndev, 0x00000010, GECMR);
872 		break;
873 	case 1000: /* 1000BASE */
874 		sh_eth_write(ndev, 0x00000020, GECMR);
875 		break;
876 	}
877 }
878 
879 /* SH7757(GETHERC) */
880 static struct sh_eth_cpu_data sh7757_data_giga = {
881 	.soft_reset	= sh_eth_soft_reset_gether,
882 
883 	.chip_reset	= sh_eth_chip_reset_giga,
884 	.set_duplex	= sh_eth_set_duplex,
885 	.set_rate	= sh_eth_set_rate_giga,
886 
887 	.register_type	= SH_ETH_REG_GIGABIT,
888 
889 	.edtrr_trns	= EDTRR_TRNS_GETHER,
890 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
891 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
892 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
893 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
894 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
895 			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
896 			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
897 			  EESIPR_CEEFIP | EESIPR_CELFIP |
898 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
899 			  EESIPR_PREIP | EESIPR_CERFIP,
900 
901 	.tx_check	= EESR_TC1 | EESR_FTC,
902 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
903 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
904 			  EESR_TDE,
905 	.fdr_value	= 0x0000072f,
906 
907 	.irq_flags	= IRQF_SHARED,
908 	.apr		= 1,
909 	.mpr		= 1,
910 	.tpauser	= 1,
911 	.bculr		= 1,
912 	.hw_swap	= 1,
913 	.rpadir		= 1,
914 	.rpadir_value   = 2 << 16,
915 	.no_trimd	= 1,
916 	.no_ade		= 1,
917 	.xdfar_rw	= 1,
918 	.tsu		= 1,
919 	.cexcr		= 1,
920 	.dual_port	= 1,
921 };
922 
923 /* SH7734 */
924 static struct sh_eth_cpu_data sh7734_data = {
925 	.soft_reset	= sh_eth_soft_reset_gether,
926 
927 	.chip_reset	= sh_eth_chip_reset,
928 	.set_duplex	= sh_eth_set_duplex,
929 	.set_rate	= sh_eth_set_rate_gether,
930 
931 	.register_type	= SH_ETH_REG_GIGABIT,
932 
933 	.edtrr_trns	= EDTRR_TRNS_GETHER,
934 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
935 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
936 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
937 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
938 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
939 			  EESIPR_DLCIP | EESIPR_CDIP | EESIPR_TROIP |
940 			  EESIPR_RMAFIP | EESIPR_CEEFIP | EESIPR_CELFIP |
941 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
942 			  EESIPR_PREIP | EESIPR_CERFIP,
943 
944 	.tx_check	= EESR_TC1 | EESR_FTC,
945 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
946 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
947 			  EESR_TDE,
948 
949 	.apr		= 1,
950 	.mpr		= 1,
951 	.tpauser	= 1,
952 	.bculr		= 1,
953 	.hw_swap	= 1,
954 	.no_trimd	= 1,
955 	.no_ade		= 1,
956 	.xdfar_rw	= 1,
957 	.tsu		= 1,
958 	.hw_checksum	= 1,
959 	.select_mii	= 1,
960 	.magic		= 1,
961 	.cexcr		= 1,
962 };
963 
964 /* SH7763 */
965 static struct sh_eth_cpu_data sh7763_data = {
966 	.soft_reset	= sh_eth_soft_reset_gether,
967 
968 	.chip_reset	= sh_eth_chip_reset,
969 	.set_duplex	= sh_eth_set_duplex,
970 	.set_rate	= sh_eth_set_rate_gether,
971 
972 	.register_type	= SH_ETH_REG_GIGABIT,
973 
974 	.edtrr_trns	= EDTRR_TRNS_GETHER,
975 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
976 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
977 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
978 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
979 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
980 			  EESIPR_DLCIP | EESIPR_CDIP | EESIPR_TROIP |
981 			  EESIPR_RMAFIP | EESIPR_CEEFIP | EESIPR_CELFIP |
982 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
983 			  EESIPR_PREIP | EESIPR_CERFIP,
984 
985 	.tx_check	= EESR_TC1 | EESR_FTC,
986 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
987 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
988 
989 	.apr		= 1,
990 	.mpr		= 1,
991 	.tpauser	= 1,
992 	.bculr		= 1,
993 	.hw_swap	= 1,
994 	.no_trimd	= 1,
995 	.no_ade		= 1,
996 	.xdfar_rw	= 1,
997 	.tsu		= 1,
998 	.irq_flags	= IRQF_SHARED,
999 	.magic		= 1,
1000 	.cexcr		= 1,
1001 	.dual_port	= 1,
1002 };
1003 
1004 static struct sh_eth_cpu_data sh7619_data = {
1005 	.soft_reset	= sh_eth_soft_reset,
1006 
1007 	.register_type	= SH_ETH_REG_FAST_SH3_SH2,
1008 
1009 	.edtrr_trns	= EDTRR_TRNS_ETHER,
1010 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
1011 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
1012 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
1013 			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
1014 			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
1015 			  EESIPR_CEEFIP | EESIPR_CELFIP |
1016 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
1017 			  EESIPR_PREIP | EESIPR_CERFIP,
1018 
1019 	.apr		= 1,
1020 	.mpr		= 1,
1021 	.tpauser	= 1,
1022 	.hw_swap	= 1,
1023 };
1024 
1025 static struct sh_eth_cpu_data sh771x_data = {
1026 	.soft_reset	= sh_eth_soft_reset,
1027 
1028 	.register_type	= SH_ETH_REG_FAST_SH3_SH2,
1029 
1030 	.edtrr_trns	= EDTRR_TRNS_ETHER,
1031 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
1032 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
1033 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
1034 			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
1035 			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
1036 			  EESIPR_CEEFIP | EESIPR_CELFIP |
1037 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
1038 			  EESIPR_PREIP | EESIPR_CERFIP,
1039 	.tsu		= 1,
1040 	.dual_port	= 1,
1041 };
1042 
1043 static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
1044 {
1045 	if (!cd->ecsr_value)
1046 		cd->ecsr_value = DEFAULT_ECSR_INIT;
1047 
1048 	if (!cd->ecsipr_value)
1049 		cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
1050 
1051 	if (!cd->fcftr_value)
1052 		cd->fcftr_value = DEFAULT_FIFO_F_D_RFF |
1053 				  DEFAULT_FIFO_F_D_RFD;
1054 
1055 	if (!cd->fdr_value)
1056 		cd->fdr_value = DEFAULT_FDR_INIT;
1057 
1058 	if (!cd->tx_check)
1059 		cd->tx_check = DEFAULT_TX_CHECK;
1060 
1061 	if (!cd->eesr_err_check)
1062 		cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
1063 
1064 	if (!cd->trscer_err_mask)
1065 		cd->trscer_err_mask = DEFAULT_TRSCER_ERR_MASK;
1066 }
1067 
1068 static void sh_eth_set_receive_align(struct sk_buff *skb)
1069 {
1070 	uintptr_t reserve = (uintptr_t)skb->data & (SH_ETH_RX_ALIGN - 1);
1071 
1072 	if (reserve)
1073 		skb_reserve(skb, SH_ETH_RX_ALIGN - reserve);
1074 }
1075 
1076 /* Program the hardware MAC address from dev->dev_addr. */
1077 static void update_mac_address(struct net_device *ndev)
1078 {
1079 	sh_eth_write(ndev,
1080 		     (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
1081 		     (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
1082 	sh_eth_write(ndev,
1083 		     (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
1084 }
1085 
1086 /* Get MAC address from SuperH MAC address register
1087  *
1088  * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
1089  * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
1090  * When you want use this device, you must set MAC address in bootloader.
1091  *
1092  */
1093 static void read_mac_address(struct net_device *ndev, unsigned char *mac)
1094 {
1095 	if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
1096 		memcpy(ndev->dev_addr, mac, ETH_ALEN);
1097 	} else {
1098 		u32 mahr = sh_eth_read(ndev, MAHR);
1099 		u32 malr = sh_eth_read(ndev, MALR);
1100 
1101 		ndev->dev_addr[0] = (mahr >> 24) & 0xFF;
1102 		ndev->dev_addr[1] = (mahr >> 16) & 0xFF;
1103 		ndev->dev_addr[2] = (mahr >>  8) & 0xFF;
1104 		ndev->dev_addr[3] = (mahr >>  0) & 0xFF;
1105 		ndev->dev_addr[4] = (malr >>  8) & 0xFF;
1106 		ndev->dev_addr[5] = (malr >>  0) & 0xFF;
1107 	}
1108 }
1109 
1110 struct bb_info {
1111 	void (*set_gate)(void *addr);
1112 	struct mdiobb_ctrl ctrl;
1113 	void *addr;
1114 };
1115 
1116 static void sh_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
1117 {
1118 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1119 	u32 pir;
1120 
1121 	if (bitbang->set_gate)
1122 		bitbang->set_gate(bitbang->addr);
1123 
1124 	pir = ioread32(bitbang->addr);
1125 	if (set)
1126 		pir |=  mask;
1127 	else
1128 		pir &= ~mask;
1129 	iowrite32(pir, bitbang->addr);
1130 }
1131 
1132 /* Data I/O pin control */
1133 static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1134 {
1135 	sh_mdio_ctrl(ctrl, PIR_MMD, bit);
1136 }
1137 
1138 /* Set bit data*/
1139 static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
1140 {
1141 	sh_mdio_ctrl(ctrl, PIR_MDO, bit);
1142 }
1143 
1144 /* Get bit data*/
1145 static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
1146 {
1147 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1148 
1149 	if (bitbang->set_gate)
1150 		bitbang->set_gate(bitbang->addr);
1151 
1152 	return (ioread32(bitbang->addr) & PIR_MDI) != 0;
1153 }
1154 
1155 /* MDC pin control */
1156 static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1157 {
1158 	sh_mdio_ctrl(ctrl, PIR_MDC, bit);
1159 }
1160 
1161 /* mdio bus control struct */
1162 static struct mdiobb_ops bb_ops = {
1163 	.owner = THIS_MODULE,
1164 	.set_mdc = sh_mdc_ctrl,
1165 	.set_mdio_dir = sh_mmd_ctrl,
1166 	.set_mdio_data = sh_set_mdio,
1167 	.get_mdio_data = sh_get_mdio,
1168 };
1169 
1170 /* free Tx skb function */
1171 static int sh_eth_tx_free(struct net_device *ndev, bool sent_only)
1172 {
1173 	struct sh_eth_private *mdp = netdev_priv(ndev);
1174 	struct sh_eth_txdesc *txdesc;
1175 	int free_num = 0;
1176 	int entry;
1177 	bool sent;
1178 
1179 	for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
1180 		entry = mdp->dirty_tx % mdp->num_tx_ring;
1181 		txdesc = &mdp->tx_ring[entry];
1182 		sent = !(txdesc->status & cpu_to_le32(TD_TACT));
1183 		if (sent_only && !sent)
1184 			break;
1185 		/* TACT bit must be checked before all the following reads */
1186 		dma_rmb();
1187 		netif_info(mdp, tx_done, ndev,
1188 			   "tx entry %d status 0x%08x\n",
1189 			   entry, le32_to_cpu(txdesc->status));
1190 		/* Free the original skb. */
1191 		if (mdp->tx_skbuff[entry]) {
1192 			dma_unmap_single(&mdp->pdev->dev,
1193 					 le32_to_cpu(txdesc->addr),
1194 					 le32_to_cpu(txdesc->len) >> 16,
1195 					 DMA_TO_DEVICE);
1196 			dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
1197 			mdp->tx_skbuff[entry] = NULL;
1198 			free_num++;
1199 		}
1200 		txdesc->status = cpu_to_le32(TD_TFP);
1201 		if (entry >= mdp->num_tx_ring - 1)
1202 			txdesc->status |= cpu_to_le32(TD_TDLE);
1203 
1204 		if (sent) {
1205 			ndev->stats.tx_packets++;
1206 			ndev->stats.tx_bytes += le32_to_cpu(txdesc->len) >> 16;
1207 		}
1208 	}
1209 	return free_num;
1210 }
1211 
1212 /* free skb and descriptor buffer */
1213 static void sh_eth_ring_free(struct net_device *ndev)
1214 {
1215 	struct sh_eth_private *mdp = netdev_priv(ndev);
1216 	int ringsize, i;
1217 
1218 	if (mdp->rx_ring) {
1219 		for (i = 0; i < mdp->num_rx_ring; i++) {
1220 			if (mdp->rx_skbuff[i]) {
1221 				struct sh_eth_rxdesc *rxdesc = &mdp->rx_ring[i];
1222 
1223 				dma_unmap_single(&mdp->pdev->dev,
1224 						 le32_to_cpu(rxdesc->addr),
1225 						 ALIGN(mdp->rx_buf_sz, 32),
1226 						 DMA_FROM_DEVICE);
1227 			}
1228 		}
1229 		ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1230 		dma_free_coherent(&mdp->pdev->dev, ringsize, mdp->rx_ring,
1231 				  mdp->rx_desc_dma);
1232 		mdp->rx_ring = NULL;
1233 	}
1234 
1235 	/* Free Rx skb ringbuffer */
1236 	if (mdp->rx_skbuff) {
1237 		for (i = 0; i < mdp->num_rx_ring; i++)
1238 			dev_kfree_skb(mdp->rx_skbuff[i]);
1239 	}
1240 	kfree(mdp->rx_skbuff);
1241 	mdp->rx_skbuff = NULL;
1242 
1243 	if (mdp->tx_ring) {
1244 		sh_eth_tx_free(ndev, false);
1245 
1246 		ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1247 		dma_free_coherent(&mdp->pdev->dev, ringsize, mdp->tx_ring,
1248 				  mdp->tx_desc_dma);
1249 		mdp->tx_ring = NULL;
1250 	}
1251 
1252 	/* Free Tx skb ringbuffer */
1253 	kfree(mdp->tx_skbuff);
1254 	mdp->tx_skbuff = NULL;
1255 }
1256 
1257 /* format skb and descriptor buffer */
1258 static void sh_eth_ring_format(struct net_device *ndev)
1259 {
1260 	struct sh_eth_private *mdp = netdev_priv(ndev);
1261 	int i;
1262 	struct sk_buff *skb;
1263 	struct sh_eth_rxdesc *rxdesc = NULL;
1264 	struct sh_eth_txdesc *txdesc = NULL;
1265 	int rx_ringsize = sizeof(*rxdesc) * mdp->num_rx_ring;
1266 	int tx_ringsize = sizeof(*txdesc) * mdp->num_tx_ring;
1267 	int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1;
1268 	dma_addr_t dma_addr;
1269 	u32 buf_len;
1270 
1271 	mdp->cur_rx = 0;
1272 	mdp->cur_tx = 0;
1273 	mdp->dirty_rx = 0;
1274 	mdp->dirty_tx = 0;
1275 
1276 	memset(mdp->rx_ring, 0, rx_ringsize);
1277 
1278 	/* build Rx ring buffer */
1279 	for (i = 0; i < mdp->num_rx_ring; i++) {
1280 		/* skb */
1281 		mdp->rx_skbuff[i] = NULL;
1282 		skb = netdev_alloc_skb(ndev, skbuff_size);
1283 		if (skb == NULL)
1284 			break;
1285 		sh_eth_set_receive_align(skb);
1286 
1287 		/* The size of the buffer is a multiple of 32 bytes. */
1288 		buf_len = ALIGN(mdp->rx_buf_sz, 32);
1289 		dma_addr = dma_map_single(&mdp->pdev->dev, skb->data, buf_len,
1290 					  DMA_FROM_DEVICE);
1291 		if (dma_mapping_error(&mdp->pdev->dev, dma_addr)) {
1292 			kfree_skb(skb);
1293 			break;
1294 		}
1295 		mdp->rx_skbuff[i] = skb;
1296 
1297 		/* RX descriptor */
1298 		rxdesc = &mdp->rx_ring[i];
1299 		rxdesc->len = cpu_to_le32(buf_len << 16);
1300 		rxdesc->addr = cpu_to_le32(dma_addr);
1301 		rxdesc->status = cpu_to_le32(RD_RACT | RD_RFP);
1302 
1303 		/* Rx descriptor address set */
1304 		if (i == 0) {
1305 			sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
1306 			if (mdp->cd->xdfar_rw)
1307 				sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
1308 		}
1309 	}
1310 
1311 	mdp->dirty_rx = (u32) (i - mdp->num_rx_ring);
1312 
1313 	/* Mark the last entry as wrapping the ring. */
1314 	if (rxdesc)
1315 		rxdesc->status |= cpu_to_le32(RD_RDLE);
1316 
1317 	memset(mdp->tx_ring, 0, tx_ringsize);
1318 
1319 	/* build Tx ring buffer */
1320 	for (i = 0; i < mdp->num_tx_ring; i++) {
1321 		mdp->tx_skbuff[i] = NULL;
1322 		txdesc = &mdp->tx_ring[i];
1323 		txdesc->status = cpu_to_le32(TD_TFP);
1324 		txdesc->len = cpu_to_le32(0);
1325 		if (i == 0) {
1326 			/* Tx descriptor address set */
1327 			sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
1328 			if (mdp->cd->xdfar_rw)
1329 				sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
1330 		}
1331 	}
1332 
1333 	txdesc->status |= cpu_to_le32(TD_TDLE);
1334 }
1335 
1336 /* Get skb and descriptor buffer */
1337 static int sh_eth_ring_init(struct net_device *ndev)
1338 {
1339 	struct sh_eth_private *mdp = netdev_priv(ndev);
1340 	int rx_ringsize, tx_ringsize;
1341 
1342 	/* +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
1343 	 * card needs room to do 8 byte alignment, +2 so we can reserve
1344 	 * the first 2 bytes, and +16 gets room for the status word from the
1345 	 * card.
1346 	 */
1347 	mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
1348 			  (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
1349 	if (mdp->cd->rpadir)
1350 		mdp->rx_buf_sz += NET_IP_ALIGN;
1351 
1352 	/* Allocate RX and TX skb rings */
1353 	mdp->rx_skbuff = kcalloc(mdp->num_rx_ring, sizeof(*mdp->rx_skbuff),
1354 				 GFP_KERNEL);
1355 	if (!mdp->rx_skbuff)
1356 		return -ENOMEM;
1357 
1358 	mdp->tx_skbuff = kcalloc(mdp->num_tx_ring, sizeof(*mdp->tx_skbuff),
1359 				 GFP_KERNEL);
1360 	if (!mdp->tx_skbuff)
1361 		goto ring_free;
1362 
1363 	/* Allocate all Rx descriptors. */
1364 	rx_ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1365 	mdp->rx_ring = dma_alloc_coherent(&mdp->pdev->dev, rx_ringsize,
1366 					  &mdp->rx_desc_dma, GFP_KERNEL);
1367 	if (!mdp->rx_ring)
1368 		goto ring_free;
1369 
1370 	mdp->dirty_rx = 0;
1371 
1372 	/* Allocate all Tx descriptors. */
1373 	tx_ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1374 	mdp->tx_ring = dma_alloc_coherent(&mdp->pdev->dev, tx_ringsize,
1375 					  &mdp->tx_desc_dma, GFP_KERNEL);
1376 	if (!mdp->tx_ring)
1377 		goto ring_free;
1378 	return 0;
1379 
1380 ring_free:
1381 	/* Free Rx and Tx skb ring buffer and DMA buffer */
1382 	sh_eth_ring_free(ndev);
1383 
1384 	return -ENOMEM;
1385 }
1386 
1387 static int sh_eth_dev_init(struct net_device *ndev)
1388 {
1389 	struct sh_eth_private *mdp = netdev_priv(ndev);
1390 	int ret;
1391 
1392 	/* Soft Reset */
1393 	ret = mdp->cd->soft_reset(ndev);
1394 	if (ret)
1395 		return ret;
1396 
1397 	if (mdp->cd->rmiimode)
1398 		sh_eth_write(ndev, 0x1, RMIIMODE);
1399 
1400 	/* Descriptor format */
1401 	sh_eth_ring_format(ndev);
1402 	if (mdp->cd->rpadir)
1403 		sh_eth_write(ndev, mdp->cd->rpadir_value, RPADIR);
1404 
1405 	/* all sh_eth int mask */
1406 	sh_eth_write(ndev, 0, EESIPR);
1407 
1408 #if defined(__LITTLE_ENDIAN)
1409 	if (mdp->cd->hw_swap)
1410 		sh_eth_write(ndev, EDMR_EL, EDMR);
1411 	else
1412 #endif
1413 		sh_eth_write(ndev, 0, EDMR);
1414 
1415 	/* FIFO size set */
1416 	sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
1417 	sh_eth_write(ndev, 0, TFTR);
1418 
1419 	/* Frame recv control (enable multiple-packets per rx irq) */
1420 	sh_eth_write(ndev, RMCR_RNC, RMCR);
1421 
1422 	sh_eth_write(ndev, mdp->cd->trscer_err_mask, TRSCER);
1423 
1424 	if (mdp->cd->bculr)
1425 		sh_eth_write(ndev, 0x800, BCULR);	/* Burst sycle set */
1426 
1427 	sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
1428 
1429 	if (!mdp->cd->no_trimd)
1430 		sh_eth_write(ndev, 0, TRIMD);
1431 
1432 	/* Recv frame limit set register */
1433 	sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
1434 		     RFLR);
1435 
1436 	sh_eth_modify(ndev, EESR, 0, 0);
1437 	mdp->irq_enabled = true;
1438 	sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1439 
1440 	/* PAUSE Prohibition */
1441 	sh_eth_write(ndev, ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) |
1442 		     ECMR_TE | ECMR_RE, ECMR);
1443 
1444 	if (mdp->cd->set_rate)
1445 		mdp->cd->set_rate(ndev);
1446 
1447 	/* E-MAC Status Register clear */
1448 	sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
1449 
1450 	/* E-MAC Interrupt Enable register */
1451 	sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
1452 
1453 	/* Set MAC address */
1454 	update_mac_address(ndev);
1455 
1456 	/* mask reset */
1457 	if (mdp->cd->apr)
1458 		sh_eth_write(ndev, APR_AP, APR);
1459 	if (mdp->cd->mpr)
1460 		sh_eth_write(ndev, MPR_MP, MPR);
1461 	if (mdp->cd->tpauser)
1462 		sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
1463 
1464 	/* Setting the Rx mode will start the Rx process. */
1465 	sh_eth_write(ndev, EDRRR_R, EDRRR);
1466 
1467 	return ret;
1468 }
1469 
1470 static void sh_eth_dev_exit(struct net_device *ndev)
1471 {
1472 	struct sh_eth_private *mdp = netdev_priv(ndev);
1473 	int i;
1474 
1475 	/* Deactivate all TX descriptors, so DMA should stop at next
1476 	 * packet boundary if it's currently running
1477 	 */
1478 	for (i = 0; i < mdp->num_tx_ring; i++)
1479 		mdp->tx_ring[i].status &= ~cpu_to_le32(TD_TACT);
1480 
1481 	/* Disable TX FIFO egress to MAC */
1482 	sh_eth_rcv_snd_disable(ndev);
1483 
1484 	/* Stop RX DMA at next packet boundary */
1485 	sh_eth_write(ndev, 0, EDRRR);
1486 
1487 	/* Aside from TX DMA, we can't tell when the hardware is
1488 	 * really stopped, so we need to reset to make sure.
1489 	 * Before doing that, wait for long enough to *probably*
1490 	 * finish transmitting the last packet and poll stats.
1491 	 */
1492 	msleep(2); /* max frame time at 10 Mbps < 1250 us */
1493 	sh_eth_get_stats(ndev);
1494 	mdp->cd->soft_reset(ndev);
1495 
1496 	/* Set MAC address again */
1497 	update_mac_address(ndev);
1498 }
1499 
1500 /* Packet receive function */
1501 static int sh_eth_rx(struct net_device *ndev, u32 intr_status, int *quota)
1502 {
1503 	struct sh_eth_private *mdp = netdev_priv(ndev);
1504 	struct sh_eth_rxdesc *rxdesc;
1505 
1506 	int entry = mdp->cur_rx % mdp->num_rx_ring;
1507 	int boguscnt = (mdp->dirty_rx + mdp->num_rx_ring) - mdp->cur_rx;
1508 	int limit;
1509 	struct sk_buff *skb;
1510 	u32 desc_status;
1511 	int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1;
1512 	dma_addr_t dma_addr;
1513 	u16 pkt_len;
1514 	u32 buf_len;
1515 
1516 	boguscnt = min(boguscnt, *quota);
1517 	limit = boguscnt;
1518 	rxdesc = &mdp->rx_ring[entry];
1519 	while (!(rxdesc->status & cpu_to_le32(RD_RACT))) {
1520 		/* RACT bit must be checked before all the following reads */
1521 		dma_rmb();
1522 		desc_status = le32_to_cpu(rxdesc->status);
1523 		pkt_len = le32_to_cpu(rxdesc->len) & RD_RFL;
1524 
1525 		if (--boguscnt < 0)
1526 			break;
1527 
1528 		netif_info(mdp, rx_status, ndev,
1529 			   "rx entry %d status 0x%08x len %d\n",
1530 			   entry, desc_status, pkt_len);
1531 
1532 		if (!(desc_status & RDFEND))
1533 			ndev->stats.rx_length_errors++;
1534 
1535 		/* In case of almost all GETHER/ETHERs, the Receive Frame State
1536 		 * (RFS) bits in the Receive Descriptor 0 are from bit 9 to
1537 		 * bit 0. However, in case of the R8A7740 and R7S72100
1538 		 * the RFS bits are from bit 25 to bit 16. So, the
1539 		 * driver needs right shifting by 16.
1540 		 */
1541 		if (mdp->cd->hw_checksum)
1542 			desc_status >>= 16;
1543 
1544 		skb = mdp->rx_skbuff[entry];
1545 		if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
1546 				   RD_RFS5 | RD_RFS6 | RD_RFS10)) {
1547 			ndev->stats.rx_errors++;
1548 			if (desc_status & RD_RFS1)
1549 				ndev->stats.rx_crc_errors++;
1550 			if (desc_status & RD_RFS2)
1551 				ndev->stats.rx_frame_errors++;
1552 			if (desc_status & RD_RFS3)
1553 				ndev->stats.rx_length_errors++;
1554 			if (desc_status & RD_RFS4)
1555 				ndev->stats.rx_length_errors++;
1556 			if (desc_status & RD_RFS6)
1557 				ndev->stats.rx_missed_errors++;
1558 			if (desc_status & RD_RFS10)
1559 				ndev->stats.rx_over_errors++;
1560 		} else	if (skb) {
1561 			dma_addr = le32_to_cpu(rxdesc->addr);
1562 			if (!mdp->cd->hw_swap)
1563 				sh_eth_soft_swap(
1564 					phys_to_virt(ALIGN(dma_addr, 4)),
1565 					pkt_len + 2);
1566 			mdp->rx_skbuff[entry] = NULL;
1567 			if (mdp->cd->rpadir)
1568 				skb_reserve(skb, NET_IP_ALIGN);
1569 			dma_unmap_single(&mdp->pdev->dev, dma_addr,
1570 					 ALIGN(mdp->rx_buf_sz, 32),
1571 					 DMA_FROM_DEVICE);
1572 			skb_put(skb, pkt_len);
1573 			skb->protocol = eth_type_trans(skb, ndev);
1574 			netif_receive_skb(skb);
1575 			ndev->stats.rx_packets++;
1576 			ndev->stats.rx_bytes += pkt_len;
1577 			if (desc_status & RD_RFS8)
1578 				ndev->stats.multicast++;
1579 		}
1580 		entry = (++mdp->cur_rx) % mdp->num_rx_ring;
1581 		rxdesc = &mdp->rx_ring[entry];
1582 	}
1583 
1584 	/* Refill the Rx ring buffers. */
1585 	for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
1586 		entry = mdp->dirty_rx % mdp->num_rx_ring;
1587 		rxdesc = &mdp->rx_ring[entry];
1588 		/* The size of the buffer is 32 byte boundary. */
1589 		buf_len = ALIGN(mdp->rx_buf_sz, 32);
1590 		rxdesc->len = cpu_to_le32(buf_len << 16);
1591 
1592 		if (mdp->rx_skbuff[entry] == NULL) {
1593 			skb = netdev_alloc_skb(ndev, skbuff_size);
1594 			if (skb == NULL)
1595 				break;	/* Better luck next round. */
1596 			sh_eth_set_receive_align(skb);
1597 			dma_addr = dma_map_single(&mdp->pdev->dev, skb->data,
1598 						  buf_len, DMA_FROM_DEVICE);
1599 			if (dma_mapping_error(&mdp->pdev->dev, dma_addr)) {
1600 				kfree_skb(skb);
1601 				break;
1602 			}
1603 			mdp->rx_skbuff[entry] = skb;
1604 
1605 			skb_checksum_none_assert(skb);
1606 			rxdesc->addr = cpu_to_le32(dma_addr);
1607 		}
1608 		dma_wmb(); /* RACT bit must be set after all the above writes */
1609 		if (entry >= mdp->num_rx_ring - 1)
1610 			rxdesc->status |=
1611 				cpu_to_le32(RD_RACT | RD_RFP | RD_RDLE);
1612 		else
1613 			rxdesc->status |= cpu_to_le32(RD_RACT | RD_RFP);
1614 	}
1615 
1616 	/* Restart Rx engine if stopped. */
1617 	/* If we don't need to check status, don't. -KDU */
1618 	if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R)) {
1619 		/* fix the values for the next receiving if RDE is set */
1620 		if (intr_status & EESR_RDE && !mdp->cd->no_xdfar) {
1621 			u32 count = (sh_eth_read(ndev, RDFAR) -
1622 				     sh_eth_read(ndev, RDLAR)) >> 4;
1623 
1624 			mdp->cur_rx = count;
1625 			mdp->dirty_rx = count;
1626 		}
1627 		sh_eth_write(ndev, EDRRR_R, EDRRR);
1628 	}
1629 
1630 	*quota -= limit - boguscnt - 1;
1631 
1632 	return *quota <= 0;
1633 }
1634 
1635 static void sh_eth_rcv_snd_disable(struct net_device *ndev)
1636 {
1637 	/* disable tx and rx */
1638 	sh_eth_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0);
1639 }
1640 
1641 static void sh_eth_rcv_snd_enable(struct net_device *ndev)
1642 {
1643 	/* enable tx and rx */
1644 	sh_eth_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE);
1645 }
1646 
1647 /* E-MAC interrupt handler */
1648 static void sh_eth_emac_interrupt(struct net_device *ndev)
1649 {
1650 	struct sh_eth_private *mdp = netdev_priv(ndev);
1651 	u32 felic_stat;
1652 	u32 link_stat;
1653 
1654 	felic_stat = sh_eth_read(ndev, ECSR) & sh_eth_read(ndev, ECSIPR);
1655 	sh_eth_write(ndev, felic_stat, ECSR);	/* clear int */
1656 	if (felic_stat & ECSR_ICD)
1657 		ndev->stats.tx_carrier_errors++;
1658 	if (felic_stat & ECSR_MPD)
1659 		pm_wakeup_event(&mdp->pdev->dev, 0);
1660 	if (felic_stat & ECSR_LCHNG) {
1661 		/* Link Changed */
1662 		if (mdp->cd->no_psr || mdp->no_ether_link)
1663 			return;
1664 		link_stat = sh_eth_read(ndev, PSR);
1665 		if (mdp->ether_link_active_low)
1666 			link_stat = ~link_stat;
1667 		if (!(link_stat & PHY_ST_LINK)) {
1668 			sh_eth_rcv_snd_disable(ndev);
1669 		} else {
1670 			/* Link Up */
1671 			sh_eth_modify(ndev, EESIPR, EESIPR_ECIIP, 0);
1672 			/* clear int */
1673 			sh_eth_modify(ndev, ECSR, 0, 0);
1674 			sh_eth_modify(ndev, EESIPR, EESIPR_ECIIP, EESIPR_ECIIP);
1675 			/* enable tx and rx */
1676 			sh_eth_rcv_snd_enable(ndev);
1677 		}
1678 	}
1679 }
1680 
1681 /* error control function */
1682 static void sh_eth_error(struct net_device *ndev, u32 intr_status)
1683 {
1684 	struct sh_eth_private *mdp = netdev_priv(ndev);
1685 	u32 mask;
1686 
1687 	if (intr_status & EESR_TWB) {
1688 		/* Unused write back interrupt */
1689 		if (intr_status & EESR_TABT) {	/* Transmit Abort int */
1690 			ndev->stats.tx_aborted_errors++;
1691 			netif_err(mdp, tx_err, ndev, "Transmit Abort\n");
1692 		}
1693 	}
1694 
1695 	if (intr_status & EESR_RABT) {
1696 		/* Receive Abort int */
1697 		if (intr_status & EESR_RFRMER) {
1698 			/* Receive Frame Overflow int */
1699 			ndev->stats.rx_frame_errors++;
1700 		}
1701 	}
1702 
1703 	if (intr_status & EESR_TDE) {
1704 		/* Transmit Descriptor Empty int */
1705 		ndev->stats.tx_fifo_errors++;
1706 		netif_err(mdp, tx_err, ndev, "Transmit Descriptor Empty\n");
1707 	}
1708 
1709 	if (intr_status & EESR_TFE) {
1710 		/* FIFO under flow */
1711 		ndev->stats.tx_fifo_errors++;
1712 		netif_err(mdp, tx_err, ndev, "Transmit FIFO Under flow\n");
1713 	}
1714 
1715 	if (intr_status & EESR_RDE) {
1716 		/* Receive Descriptor Empty int */
1717 		ndev->stats.rx_over_errors++;
1718 	}
1719 
1720 	if (intr_status & EESR_RFE) {
1721 		/* Receive FIFO Overflow int */
1722 		ndev->stats.rx_fifo_errors++;
1723 	}
1724 
1725 	if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
1726 		/* Address Error */
1727 		ndev->stats.tx_fifo_errors++;
1728 		netif_err(mdp, tx_err, ndev, "Address Error\n");
1729 	}
1730 
1731 	mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
1732 	if (mdp->cd->no_ade)
1733 		mask &= ~EESR_ADE;
1734 	if (intr_status & mask) {
1735 		/* Tx error */
1736 		u32 edtrr = sh_eth_read(ndev, EDTRR);
1737 
1738 		/* dmesg */
1739 		netdev_err(ndev, "TX error. status=%8.8x cur_tx=%8.8x dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
1740 			   intr_status, mdp->cur_tx, mdp->dirty_tx,
1741 			   (u32)ndev->state, edtrr);
1742 		/* dirty buffer free */
1743 		sh_eth_tx_free(ndev, true);
1744 
1745 		/* SH7712 BUG */
1746 		if (edtrr ^ mdp->cd->edtrr_trns) {
1747 			/* tx dma start */
1748 			sh_eth_write(ndev, mdp->cd->edtrr_trns, EDTRR);
1749 		}
1750 		/* wakeup */
1751 		netif_wake_queue(ndev);
1752 	}
1753 }
1754 
1755 static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
1756 {
1757 	struct net_device *ndev = netdev;
1758 	struct sh_eth_private *mdp = netdev_priv(ndev);
1759 	struct sh_eth_cpu_data *cd = mdp->cd;
1760 	irqreturn_t ret = IRQ_NONE;
1761 	u32 intr_status, intr_enable;
1762 
1763 	spin_lock(&mdp->lock);
1764 
1765 	/* Get interrupt status */
1766 	intr_status = sh_eth_read(ndev, EESR);
1767 	/* Mask it with the interrupt mask, forcing ECI interrupt  to be always
1768 	 * enabled since it's the one that  comes  thru regardless of the mask,
1769 	 * and  we need to fully handle it  in sh_eth_emac_interrupt() in order
1770 	 * to quench it as it doesn't get cleared by just writing 1 to the  ECI
1771 	 * bit...
1772 	 */
1773 	intr_enable = sh_eth_read(ndev, EESIPR);
1774 	intr_status &= intr_enable | EESIPR_ECIIP;
1775 	if (intr_status & (EESR_RX_CHECK | cd->tx_check | EESR_ECI |
1776 			   cd->eesr_err_check))
1777 		ret = IRQ_HANDLED;
1778 	else
1779 		goto out;
1780 
1781 	if (unlikely(!mdp->irq_enabled)) {
1782 		sh_eth_write(ndev, 0, EESIPR);
1783 		goto out;
1784 	}
1785 
1786 	if (intr_status & EESR_RX_CHECK) {
1787 		if (napi_schedule_prep(&mdp->napi)) {
1788 			/* Mask Rx interrupts */
1789 			sh_eth_write(ndev, intr_enable & ~EESR_RX_CHECK,
1790 				     EESIPR);
1791 			__napi_schedule(&mdp->napi);
1792 		} else {
1793 			netdev_warn(ndev,
1794 				    "ignoring interrupt, status 0x%08x, mask 0x%08x.\n",
1795 				    intr_status, intr_enable);
1796 		}
1797 	}
1798 
1799 	/* Tx Check */
1800 	if (intr_status & cd->tx_check) {
1801 		/* Clear Tx interrupts */
1802 		sh_eth_write(ndev, intr_status & cd->tx_check, EESR);
1803 
1804 		sh_eth_tx_free(ndev, true);
1805 		netif_wake_queue(ndev);
1806 	}
1807 
1808 	/* E-MAC interrupt */
1809 	if (intr_status & EESR_ECI)
1810 		sh_eth_emac_interrupt(ndev);
1811 
1812 	if (intr_status & cd->eesr_err_check) {
1813 		/* Clear error interrupts */
1814 		sh_eth_write(ndev, intr_status & cd->eesr_err_check, EESR);
1815 
1816 		sh_eth_error(ndev, intr_status);
1817 	}
1818 
1819 out:
1820 	spin_unlock(&mdp->lock);
1821 
1822 	return ret;
1823 }
1824 
1825 static int sh_eth_poll(struct napi_struct *napi, int budget)
1826 {
1827 	struct sh_eth_private *mdp = container_of(napi, struct sh_eth_private,
1828 						  napi);
1829 	struct net_device *ndev = napi->dev;
1830 	int quota = budget;
1831 	u32 intr_status;
1832 
1833 	for (;;) {
1834 		intr_status = sh_eth_read(ndev, EESR);
1835 		if (!(intr_status & EESR_RX_CHECK))
1836 			break;
1837 		/* Clear Rx interrupts */
1838 		sh_eth_write(ndev, intr_status & EESR_RX_CHECK, EESR);
1839 
1840 		if (sh_eth_rx(ndev, intr_status, &quota))
1841 			goto out;
1842 	}
1843 
1844 	napi_complete(napi);
1845 
1846 	/* Reenable Rx interrupts */
1847 	if (mdp->irq_enabled)
1848 		sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1849 out:
1850 	return budget - quota;
1851 }
1852 
1853 /* PHY state control function */
1854 static void sh_eth_adjust_link(struct net_device *ndev)
1855 {
1856 	struct sh_eth_private *mdp = netdev_priv(ndev);
1857 	struct phy_device *phydev = ndev->phydev;
1858 	int new_state = 0;
1859 
1860 	if (phydev->link) {
1861 		if (phydev->duplex != mdp->duplex) {
1862 			new_state = 1;
1863 			mdp->duplex = phydev->duplex;
1864 			if (mdp->cd->set_duplex)
1865 				mdp->cd->set_duplex(ndev);
1866 		}
1867 
1868 		if (phydev->speed != mdp->speed) {
1869 			new_state = 1;
1870 			mdp->speed = phydev->speed;
1871 			if (mdp->cd->set_rate)
1872 				mdp->cd->set_rate(ndev);
1873 		}
1874 		if (!mdp->link) {
1875 			sh_eth_modify(ndev, ECMR, ECMR_TXF, 0);
1876 			new_state = 1;
1877 			mdp->link = phydev->link;
1878 			if (mdp->cd->no_psr || mdp->no_ether_link)
1879 				sh_eth_rcv_snd_enable(ndev);
1880 		}
1881 	} else if (mdp->link) {
1882 		new_state = 1;
1883 		mdp->link = 0;
1884 		mdp->speed = 0;
1885 		mdp->duplex = -1;
1886 		if (mdp->cd->no_psr || mdp->no_ether_link)
1887 			sh_eth_rcv_snd_disable(ndev);
1888 	}
1889 
1890 	if (new_state && netif_msg_link(mdp))
1891 		phy_print_status(phydev);
1892 }
1893 
1894 /* PHY init function */
1895 static int sh_eth_phy_init(struct net_device *ndev)
1896 {
1897 	struct device_node *np = ndev->dev.parent->of_node;
1898 	struct sh_eth_private *mdp = netdev_priv(ndev);
1899 	struct phy_device *phydev;
1900 
1901 	mdp->link = 0;
1902 	mdp->speed = 0;
1903 	mdp->duplex = -1;
1904 
1905 	/* Try connect to PHY */
1906 	if (np) {
1907 		struct device_node *pn;
1908 
1909 		pn = of_parse_phandle(np, "phy-handle", 0);
1910 		phydev = of_phy_connect(ndev, pn,
1911 					sh_eth_adjust_link, 0,
1912 					mdp->phy_interface);
1913 
1914 		of_node_put(pn);
1915 		if (!phydev)
1916 			phydev = ERR_PTR(-ENOENT);
1917 	} else {
1918 		char phy_id[MII_BUS_ID_SIZE + 3];
1919 
1920 		snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
1921 			 mdp->mii_bus->id, mdp->phy_id);
1922 
1923 		phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
1924 				     mdp->phy_interface);
1925 	}
1926 
1927 	if (IS_ERR(phydev)) {
1928 		netdev_err(ndev, "failed to connect PHY\n");
1929 		return PTR_ERR(phydev);
1930 	}
1931 
1932 	/* mask with MAC supported features */
1933 	if (mdp->cd->register_type != SH_ETH_REG_GIGABIT) {
1934 		int err = phy_set_max_speed(phydev, SPEED_100);
1935 		if (err) {
1936 			netdev_err(ndev, "failed to limit PHY to 100 Mbit/s\n");
1937 			phy_disconnect(phydev);
1938 			return err;
1939 		}
1940 	}
1941 
1942 	phy_attached_info(phydev);
1943 
1944 	return 0;
1945 }
1946 
1947 /* PHY control start function */
1948 static int sh_eth_phy_start(struct net_device *ndev)
1949 {
1950 	int ret;
1951 
1952 	ret = sh_eth_phy_init(ndev);
1953 	if (ret)
1954 		return ret;
1955 
1956 	phy_start(ndev->phydev);
1957 
1958 	return 0;
1959 }
1960 
1961 static int sh_eth_get_link_ksettings(struct net_device *ndev,
1962 				     struct ethtool_link_ksettings *cmd)
1963 {
1964 	struct sh_eth_private *mdp = netdev_priv(ndev);
1965 	unsigned long flags;
1966 
1967 	if (!ndev->phydev)
1968 		return -ENODEV;
1969 
1970 	spin_lock_irqsave(&mdp->lock, flags);
1971 	phy_ethtool_ksettings_get(ndev->phydev, cmd);
1972 	spin_unlock_irqrestore(&mdp->lock, flags);
1973 
1974 	return 0;
1975 }
1976 
1977 static int sh_eth_set_link_ksettings(struct net_device *ndev,
1978 				     const struct ethtool_link_ksettings *cmd)
1979 {
1980 	struct sh_eth_private *mdp = netdev_priv(ndev);
1981 	unsigned long flags;
1982 	int ret;
1983 
1984 	if (!ndev->phydev)
1985 		return -ENODEV;
1986 
1987 	spin_lock_irqsave(&mdp->lock, flags);
1988 
1989 	/* disable tx and rx */
1990 	sh_eth_rcv_snd_disable(ndev);
1991 
1992 	ret = phy_ethtool_ksettings_set(ndev->phydev, cmd);
1993 	if (ret)
1994 		goto error_exit;
1995 
1996 	if (cmd->base.duplex == DUPLEX_FULL)
1997 		mdp->duplex = 1;
1998 	else
1999 		mdp->duplex = 0;
2000 
2001 	if (mdp->cd->set_duplex)
2002 		mdp->cd->set_duplex(ndev);
2003 
2004 error_exit:
2005 	mdelay(1);
2006 
2007 	/* enable tx and rx */
2008 	sh_eth_rcv_snd_enable(ndev);
2009 
2010 	spin_unlock_irqrestore(&mdp->lock, flags);
2011 
2012 	return ret;
2013 }
2014 
2015 /* If it is ever necessary to increase SH_ETH_REG_DUMP_MAX_REGS, the
2016  * version must be bumped as well.  Just adding registers up to that
2017  * limit is fine, as long as the existing register indices don't
2018  * change.
2019  */
2020 #define SH_ETH_REG_DUMP_VERSION		1
2021 #define SH_ETH_REG_DUMP_MAX_REGS	256
2022 
2023 static size_t __sh_eth_get_regs(struct net_device *ndev, u32 *buf)
2024 {
2025 	struct sh_eth_private *mdp = netdev_priv(ndev);
2026 	struct sh_eth_cpu_data *cd = mdp->cd;
2027 	u32 *valid_map;
2028 	size_t len;
2029 
2030 	BUILD_BUG_ON(SH_ETH_MAX_REGISTER_OFFSET > SH_ETH_REG_DUMP_MAX_REGS);
2031 
2032 	/* Dump starts with a bitmap that tells ethtool which
2033 	 * registers are defined for this chip.
2034 	 */
2035 	len = DIV_ROUND_UP(SH_ETH_REG_DUMP_MAX_REGS, 32);
2036 	if (buf) {
2037 		valid_map = buf;
2038 		buf += len;
2039 	} else {
2040 		valid_map = NULL;
2041 	}
2042 
2043 	/* Add a register to the dump, if it has a defined offset.
2044 	 * This automatically skips most undefined registers, but for
2045 	 * some it is also necessary to check a capability flag in
2046 	 * struct sh_eth_cpu_data.
2047 	 */
2048 #define mark_reg_valid(reg) valid_map[reg / 32] |= 1U << (reg % 32)
2049 #define add_reg_from(reg, read_expr) do {				\
2050 		if (mdp->reg_offset[reg] != SH_ETH_OFFSET_INVALID) {	\
2051 			if (buf) {					\
2052 				mark_reg_valid(reg);			\
2053 				*buf++ = read_expr;			\
2054 			}						\
2055 			++len;						\
2056 		}							\
2057 	} while (0)
2058 #define add_reg(reg) add_reg_from(reg, sh_eth_read(ndev, reg))
2059 #define add_tsu_reg(reg) add_reg_from(reg, sh_eth_tsu_read(mdp, reg))
2060 
2061 	add_reg(EDSR);
2062 	add_reg(EDMR);
2063 	add_reg(EDTRR);
2064 	add_reg(EDRRR);
2065 	add_reg(EESR);
2066 	add_reg(EESIPR);
2067 	add_reg(TDLAR);
2068 	add_reg(TDFAR);
2069 	add_reg(TDFXR);
2070 	add_reg(TDFFR);
2071 	add_reg(RDLAR);
2072 	add_reg(RDFAR);
2073 	add_reg(RDFXR);
2074 	add_reg(RDFFR);
2075 	add_reg(TRSCER);
2076 	add_reg(RMFCR);
2077 	add_reg(TFTR);
2078 	add_reg(FDR);
2079 	add_reg(RMCR);
2080 	add_reg(TFUCR);
2081 	add_reg(RFOCR);
2082 	if (cd->rmiimode)
2083 		add_reg(RMIIMODE);
2084 	add_reg(FCFTR);
2085 	if (cd->rpadir)
2086 		add_reg(RPADIR);
2087 	if (!cd->no_trimd)
2088 		add_reg(TRIMD);
2089 	add_reg(ECMR);
2090 	add_reg(ECSR);
2091 	add_reg(ECSIPR);
2092 	add_reg(PIR);
2093 	if (!cd->no_psr)
2094 		add_reg(PSR);
2095 	add_reg(RDMLR);
2096 	add_reg(RFLR);
2097 	add_reg(IPGR);
2098 	if (cd->apr)
2099 		add_reg(APR);
2100 	if (cd->mpr)
2101 		add_reg(MPR);
2102 	add_reg(RFCR);
2103 	add_reg(RFCF);
2104 	if (cd->tpauser)
2105 		add_reg(TPAUSER);
2106 	add_reg(TPAUSECR);
2107 	add_reg(GECMR);
2108 	if (cd->bculr)
2109 		add_reg(BCULR);
2110 	add_reg(MAHR);
2111 	add_reg(MALR);
2112 	add_reg(TROCR);
2113 	add_reg(CDCR);
2114 	add_reg(LCCR);
2115 	add_reg(CNDCR);
2116 	add_reg(CEFCR);
2117 	add_reg(FRECR);
2118 	add_reg(TSFRCR);
2119 	add_reg(TLFRCR);
2120 	add_reg(CERCR);
2121 	add_reg(CEECR);
2122 	add_reg(MAFCR);
2123 	if (cd->rtrate)
2124 		add_reg(RTRATE);
2125 	if (cd->hw_checksum)
2126 		add_reg(CSMR);
2127 	if (cd->select_mii)
2128 		add_reg(RMII_MII);
2129 	if (cd->tsu) {
2130 		add_tsu_reg(ARSTR);
2131 		add_tsu_reg(TSU_CTRST);
2132 		add_tsu_reg(TSU_FWEN0);
2133 		add_tsu_reg(TSU_FWEN1);
2134 		add_tsu_reg(TSU_FCM);
2135 		add_tsu_reg(TSU_BSYSL0);
2136 		add_tsu_reg(TSU_BSYSL1);
2137 		add_tsu_reg(TSU_PRISL0);
2138 		add_tsu_reg(TSU_PRISL1);
2139 		add_tsu_reg(TSU_FWSL0);
2140 		add_tsu_reg(TSU_FWSL1);
2141 		add_tsu_reg(TSU_FWSLC);
2142 		add_tsu_reg(TSU_QTAGM0);
2143 		add_tsu_reg(TSU_QTAGM1);
2144 		add_tsu_reg(TSU_FWSR);
2145 		add_tsu_reg(TSU_FWINMK);
2146 		add_tsu_reg(TSU_ADQT0);
2147 		add_tsu_reg(TSU_ADQT1);
2148 		add_tsu_reg(TSU_VTAG0);
2149 		add_tsu_reg(TSU_VTAG1);
2150 		add_tsu_reg(TSU_ADSBSY);
2151 		add_tsu_reg(TSU_TEN);
2152 		add_tsu_reg(TSU_POST1);
2153 		add_tsu_reg(TSU_POST2);
2154 		add_tsu_reg(TSU_POST3);
2155 		add_tsu_reg(TSU_POST4);
2156 		/* This is the start of a table, not just a single register. */
2157 		if (buf) {
2158 			unsigned int i;
2159 
2160 			mark_reg_valid(TSU_ADRH0);
2161 			for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES * 2; i++)
2162 				*buf++ = ioread32(mdp->tsu_addr +
2163 						  mdp->reg_offset[TSU_ADRH0] +
2164 						  i * 4);
2165 		}
2166 		len += SH_ETH_TSU_CAM_ENTRIES * 2;
2167 	}
2168 
2169 #undef mark_reg_valid
2170 #undef add_reg_from
2171 #undef add_reg
2172 #undef add_tsu_reg
2173 
2174 	return len * 4;
2175 }
2176 
2177 static int sh_eth_get_regs_len(struct net_device *ndev)
2178 {
2179 	return __sh_eth_get_regs(ndev, NULL);
2180 }
2181 
2182 static void sh_eth_get_regs(struct net_device *ndev, struct ethtool_regs *regs,
2183 			    void *buf)
2184 {
2185 	struct sh_eth_private *mdp = netdev_priv(ndev);
2186 
2187 	regs->version = SH_ETH_REG_DUMP_VERSION;
2188 
2189 	pm_runtime_get_sync(&mdp->pdev->dev);
2190 	__sh_eth_get_regs(ndev, buf);
2191 	pm_runtime_put_sync(&mdp->pdev->dev);
2192 }
2193 
2194 static int sh_eth_nway_reset(struct net_device *ndev)
2195 {
2196 	struct sh_eth_private *mdp = netdev_priv(ndev);
2197 	unsigned long flags;
2198 	int ret;
2199 
2200 	if (!ndev->phydev)
2201 		return -ENODEV;
2202 
2203 	spin_lock_irqsave(&mdp->lock, flags);
2204 	ret = phy_start_aneg(ndev->phydev);
2205 	spin_unlock_irqrestore(&mdp->lock, flags);
2206 
2207 	return ret;
2208 }
2209 
2210 static u32 sh_eth_get_msglevel(struct net_device *ndev)
2211 {
2212 	struct sh_eth_private *mdp = netdev_priv(ndev);
2213 	return mdp->msg_enable;
2214 }
2215 
2216 static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
2217 {
2218 	struct sh_eth_private *mdp = netdev_priv(ndev);
2219 	mdp->msg_enable = value;
2220 }
2221 
2222 static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
2223 	"rx_current", "tx_current",
2224 	"rx_dirty", "tx_dirty",
2225 };
2226 #define SH_ETH_STATS_LEN  ARRAY_SIZE(sh_eth_gstrings_stats)
2227 
2228 static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
2229 {
2230 	switch (sset) {
2231 	case ETH_SS_STATS:
2232 		return SH_ETH_STATS_LEN;
2233 	default:
2234 		return -EOPNOTSUPP;
2235 	}
2236 }
2237 
2238 static void sh_eth_get_ethtool_stats(struct net_device *ndev,
2239 				     struct ethtool_stats *stats, u64 *data)
2240 {
2241 	struct sh_eth_private *mdp = netdev_priv(ndev);
2242 	int i = 0;
2243 
2244 	/* device-specific stats */
2245 	data[i++] = mdp->cur_rx;
2246 	data[i++] = mdp->cur_tx;
2247 	data[i++] = mdp->dirty_rx;
2248 	data[i++] = mdp->dirty_tx;
2249 }
2250 
2251 static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
2252 {
2253 	switch (stringset) {
2254 	case ETH_SS_STATS:
2255 		memcpy(data, *sh_eth_gstrings_stats,
2256 		       sizeof(sh_eth_gstrings_stats));
2257 		break;
2258 	}
2259 }
2260 
2261 static void sh_eth_get_ringparam(struct net_device *ndev,
2262 				 struct ethtool_ringparam *ring)
2263 {
2264 	struct sh_eth_private *mdp = netdev_priv(ndev);
2265 
2266 	ring->rx_max_pending = RX_RING_MAX;
2267 	ring->tx_max_pending = TX_RING_MAX;
2268 	ring->rx_pending = mdp->num_rx_ring;
2269 	ring->tx_pending = mdp->num_tx_ring;
2270 }
2271 
2272 static int sh_eth_set_ringparam(struct net_device *ndev,
2273 				struct ethtool_ringparam *ring)
2274 {
2275 	struct sh_eth_private *mdp = netdev_priv(ndev);
2276 	int ret;
2277 
2278 	if (ring->tx_pending > TX_RING_MAX ||
2279 	    ring->rx_pending > RX_RING_MAX ||
2280 	    ring->tx_pending < TX_RING_MIN ||
2281 	    ring->rx_pending < RX_RING_MIN)
2282 		return -EINVAL;
2283 	if (ring->rx_mini_pending || ring->rx_jumbo_pending)
2284 		return -EINVAL;
2285 
2286 	if (netif_running(ndev)) {
2287 		netif_device_detach(ndev);
2288 		netif_tx_disable(ndev);
2289 
2290 		/* Serialise with the interrupt handler and NAPI, then
2291 		 * disable interrupts.  We have to clear the
2292 		 * irq_enabled flag first to ensure that interrupts
2293 		 * won't be re-enabled.
2294 		 */
2295 		mdp->irq_enabled = false;
2296 		synchronize_irq(ndev->irq);
2297 		napi_synchronize(&mdp->napi);
2298 		sh_eth_write(ndev, 0x0000, EESIPR);
2299 
2300 		sh_eth_dev_exit(ndev);
2301 
2302 		/* Free all the skbuffs in the Rx queue and the DMA buffers. */
2303 		sh_eth_ring_free(ndev);
2304 	}
2305 
2306 	/* Set new parameters */
2307 	mdp->num_rx_ring = ring->rx_pending;
2308 	mdp->num_tx_ring = ring->tx_pending;
2309 
2310 	if (netif_running(ndev)) {
2311 		ret = sh_eth_ring_init(ndev);
2312 		if (ret < 0) {
2313 			netdev_err(ndev, "%s: sh_eth_ring_init failed.\n",
2314 				   __func__);
2315 			return ret;
2316 		}
2317 		ret = sh_eth_dev_init(ndev);
2318 		if (ret < 0) {
2319 			netdev_err(ndev, "%s: sh_eth_dev_init failed.\n",
2320 				   __func__);
2321 			return ret;
2322 		}
2323 
2324 		netif_device_attach(ndev);
2325 	}
2326 
2327 	return 0;
2328 }
2329 
2330 static void sh_eth_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2331 {
2332 	struct sh_eth_private *mdp = netdev_priv(ndev);
2333 
2334 	wol->supported = 0;
2335 	wol->wolopts = 0;
2336 
2337 	if (mdp->cd->magic) {
2338 		wol->supported = WAKE_MAGIC;
2339 		wol->wolopts = mdp->wol_enabled ? WAKE_MAGIC : 0;
2340 	}
2341 }
2342 
2343 static int sh_eth_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2344 {
2345 	struct sh_eth_private *mdp = netdev_priv(ndev);
2346 
2347 	if (!mdp->cd->magic || wol->wolopts & ~WAKE_MAGIC)
2348 		return -EOPNOTSUPP;
2349 
2350 	mdp->wol_enabled = !!(wol->wolopts & WAKE_MAGIC);
2351 
2352 	device_set_wakeup_enable(&mdp->pdev->dev, mdp->wol_enabled);
2353 
2354 	return 0;
2355 }
2356 
2357 static const struct ethtool_ops sh_eth_ethtool_ops = {
2358 	.get_regs_len	= sh_eth_get_regs_len,
2359 	.get_regs	= sh_eth_get_regs,
2360 	.nway_reset	= sh_eth_nway_reset,
2361 	.get_msglevel	= sh_eth_get_msglevel,
2362 	.set_msglevel	= sh_eth_set_msglevel,
2363 	.get_link	= ethtool_op_get_link,
2364 	.get_strings	= sh_eth_get_strings,
2365 	.get_ethtool_stats  = sh_eth_get_ethtool_stats,
2366 	.get_sset_count     = sh_eth_get_sset_count,
2367 	.get_ringparam	= sh_eth_get_ringparam,
2368 	.set_ringparam	= sh_eth_set_ringparam,
2369 	.get_link_ksettings = sh_eth_get_link_ksettings,
2370 	.set_link_ksettings = sh_eth_set_link_ksettings,
2371 	.get_wol	= sh_eth_get_wol,
2372 	.set_wol	= sh_eth_set_wol,
2373 };
2374 
2375 /* network device open function */
2376 static int sh_eth_open(struct net_device *ndev)
2377 {
2378 	struct sh_eth_private *mdp = netdev_priv(ndev);
2379 	int ret;
2380 
2381 	pm_runtime_get_sync(&mdp->pdev->dev);
2382 
2383 	napi_enable(&mdp->napi);
2384 
2385 	ret = request_irq(ndev->irq, sh_eth_interrupt,
2386 			  mdp->cd->irq_flags, ndev->name, ndev);
2387 	if (ret) {
2388 		netdev_err(ndev, "Can not assign IRQ number\n");
2389 		goto out_napi_off;
2390 	}
2391 
2392 	/* Descriptor set */
2393 	ret = sh_eth_ring_init(ndev);
2394 	if (ret)
2395 		goto out_free_irq;
2396 
2397 	/* device init */
2398 	ret = sh_eth_dev_init(ndev);
2399 	if (ret)
2400 		goto out_free_irq;
2401 
2402 	/* PHY control start*/
2403 	ret = sh_eth_phy_start(ndev);
2404 	if (ret)
2405 		goto out_free_irq;
2406 
2407 	netif_start_queue(ndev);
2408 
2409 	mdp->is_opened = 1;
2410 
2411 	return ret;
2412 
2413 out_free_irq:
2414 	free_irq(ndev->irq, ndev);
2415 out_napi_off:
2416 	napi_disable(&mdp->napi);
2417 	pm_runtime_put_sync(&mdp->pdev->dev);
2418 	return ret;
2419 }
2420 
2421 /* Timeout function */
2422 static void sh_eth_tx_timeout(struct net_device *ndev)
2423 {
2424 	struct sh_eth_private *mdp = netdev_priv(ndev);
2425 	struct sh_eth_rxdesc *rxdesc;
2426 	int i;
2427 
2428 	netif_stop_queue(ndev);
2429 
2430 	netif_err(mdp, timer, ndev,
2431 		  "transmit timed out, status %8.8x, resetting...\n",
2432 		  sh_eth_read(ndev, EESR));
2433 
2434 	/* tx_errors count up */
2435 	ndev->stats.tx_errors++;
2436 
2437 	/* Free all the skbuffs in the Rx queue. */
2438 	for (i = 0; i < mdp->num_rx_ring; i++) {
2439 		rxdesc = &mdp->rx_ring[i];
2440 		rxdesc->status = cpu_to_le32(0);
2441 		rxdesc->addr = cpu_to_le32(0xBADF00D0);
2442 		dev_kfree_skb(mdp->rx_skbuff[i]);
2443 		mdp->rx_skbuff[i] = NULL;
2444 	}
2445 	for (i = 0; i < mdp->num_tx_ring; i++) {
2446 		dev_kfree_skb(mdp->tx_skbuff[i]);
2447 		mdp->tx_skbuff[i] = NULL;
2448 	}
2449 
2450 	/* device init */
2451 	sh_eth_dev_init(ndev);
2452 
2453 	netif_start_queue(ndev);
2454 }
2455 
2456 /* Packet transmit function */
2457 static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
2458 {
2459 	struct sh_eth_private *mdp = netdev_priv(ndev);
2460 	struct sh_eth_txdesc *txdesc;
2461 	dma_addr_t dma_addr;
2462 	u32 entry;
2463 	unsigned long flags;
2464 
2465 	spin_lock_irqsave(&mdp->lock, flags);
2466 	if ((mdp->cur_tx - mdp->dirty_tx) >= (mdp->num_tx_ring - 4)) {
2467 		if (!sh_eth_tx_free(ndev, true)) {
2468 			netif_warn(mdp, tx_queued, ndev, "TxFD exhausted.\n");
2469 			netif_stop_queue(ndev);
2470 			spin_unlock_irqrestore(&mdp->lock, flags);
2471 			return NETDEV_TX_BUSY;
2472 		}
2473 	}
2474 	spin_unlock_irqrestore(&mdp->lock, flags);
2475 
2476 	if (skb_put_padto(skb, ETH_ZLEN))
2477 		return NETDEV_TX_OK;
2478 
2479 	entry = mdp->cur_tx % mdp->num_tx_ring;
2480 	mdp->tx_skbuff[entry] = skb;
2481 	txdesc = &mdp->tx_ring[entry];
2482 	/* soft swap. */
2483 	if (!mdp->cd->hw_swap)
2484 		sh_eth_soft_swap(PTR_ALIGN(skb->data, 4), skb->len + 2);
2485 	dma_addr = dma_map_single(&mdp->pdev->dev, skb->data, skb->len,
2486 				  DMA_TO_DEVICE);
2487 	if (dma_mapping_error(&mdp->pdev->dev, dma_addr)) {
2488 		kfree_skb(skb);
2489 		return NETDEV_TX_OK;
2490 	}
2491 	txdesc->addr = cpu_to_le32(dma_addr);
2492 	txdesc->len  = cpu_to_le32(skb->len << 16);
2493 
2494 	dma_wmb(); /* TACT bit must be set after all the above writes */
2495 	if (entry >= mdp->num_tx_ring - 1)
2496 		txdesc->status |= cpu_to_le32(TD_TACT | TD_TDLE);
2497 	else
2498 		txdesc->status |= cpu_to_le32(TD_TACT);
2499 
2500 	mdp->cur_tx++;
2501 
2502 	if (!(sh_eth_read(ndev, EDTRR) & mdp->cd->edtrr_trns))
2503 		sh_eth_write(ndev, mdp->cd->edtrr_trns, EDTRR);
2504 
2505 	return NETDEV_TX_OK;
2506 }
2507 
2508 /* The statistics registers have write-clear behaviour, which means we
2509  * will lose any increment between the read and write.  We mitigate
2510  * this by only clearing when we read a non-zero value, so we will
2511  * never falsely report a total of zero.
2512  */
2513 static void
2514 sh_eth_update_stat(struct net_device *ndev, unsigned long *stat, int reg)
2515 {
2516 	u32 delta = sh_eth_read(ndev, reg);
2517 
2518 	if (delta) {
2519 		*stat += delta;
2520 		sh_eth_write(ndev, 0, reg);
2521 	}
2522 }
2523 
2524 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
2525 {
2526 	struct sh_eth_private *mdp = netdev_priv(ndev);
2527 
2528 	if (mdp->cd->no_tx_cntrs)
2529 		return &ndev->stats;
2530 
2531 	if (!mdp->is_opened)
2532 		return &ndev->stats;
2533 
2534 	sh_eth_update_stat(ndev, &ndev->stats.tx_dropped, TROCR);
2535 	sh_eth_update_stat(ndev, &ndev->stats.collisions, CDCR);
2536 	sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors, LCCR);
2537 
2538 	if (mdp->cd->cexcr) {
2539 		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2540 				   CERCR);
2541 		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2542 				   CEECR);
2543 	} else {
2544 		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2545 				   CNDCR);
2546 	}
2547 
2548 	return &ndev->stats;
2549 }
2550 
2551 /* device close function */
2552 static int sh_eth_close(struct net_device *ndev)
2553 {
2554 	struct sh_eth_private *mdp = netdev_priv(ndev);
2555 
2556 	netif_stop_queue(ndev);
2557 
2558 	/* Serialise with the interrupt handler and NAPI, then disable
2559 	 * interrupts.  We have to clear the irq_enabled flag first to
2560 	 * ensure that interrupts won't be re-enabled.
2561 	 */
2562 	mdp->irq_enabled = false;
2563 	synchronize_irq(ndev->irq);
2564 	napi_disable(&mdp->napi);
2565 	sh_eth_write(ndev, 0x0000, EESIPR);
2566 
2567 	sh_eth_dev_exit(ndev);
2568 
2569 	/* PHY Disconnect */
2570 	if (ndev->phydev) {
2571 		phy_stop(ndev->phydev);
2572 		phy_disconnect(ndev->phydev);
2573 	}
2574 
2575 	free_irq(ndev->irq, ndev);
2576 
2577 	/* Free all the skbuffs in the Rx queue and the DMA buffer. */
2578 	sh_eth_ring_free(ndev);
2579 
2580 	pm_runtime_put_sync(&mdp->pdev->dev);
2581 
2582 	mdp->is_opened = 0;
2583 
2584 	return 0;
2585 }
2586 
2587 /* ioctl to device function */
2588 static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2589 {
2590 	struct phy_device *phydev = ndev->phydev;
2591 
2592 	if (!netif_running(ndev))
2593 		return -EINVAL;
2594 
2595 	if (!phydev)
2596 		return -ENODEV;
2597 
2598 	return phy_mii_ioctl(phydev, rq, cmd);
2599 }
2600 
2601 static int sh_eth_change_mtu(struct net_device *ndev, int new_mtu)
2602 {
2603 	if (netif_running(ndev))
2604 		return -EBUSY;
2605 
2606 	ndev->mtu = new_mtu;
2607 	netdev_update_features(ndev);
2608 
2609 	return 0;
2610 }
2611 
2612 /* For TSU_POSTn. Please refer to the manual about this (strange) bitfields */
2613 static void *sh_eth_tsu_get_post_reg_offset(struct sh_eth_private *mdp,
2614 					    int entry)
2615 {
2616 	return sh_eth_tsu_get_offset(mdp, TSU_POST1) + (entry / 8 * 4);
2617 }
2618 
2619 static u32 sh_eth_tsu_get_post_mask(int entry)
2620 {
2621 	return 0x0f << (28 - ((entry % 8) * 4));
2622 }
2623 
2624 static u32 sh_eth_tsu_get_post_bit(struct sh_eth_private *mdp, int entry)
2625 {
2626 	return (0x08 >> (mdp->port << 1)) << (28 - ((entry % 8) * 4));
2627 }
2628 
2629 static void sh_eth_tsu_enable_cam_entry_post(struct net_device *ndev,
2630 					     int entry)
2631 {
2632 	struct sh_eth_private *mdp = netdev_priv(ndev);
2633 	u32 tmp;
2634 	void *reg_offset;
2635 
2636 	reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2637 	tmp = ioread32(reg_offset);
2638 	iowrite32(tmp | sh_eth_tsu_get_post_bit(mdp, entry), reg_offset);
2639 }
2640 
2641 static bool sh_eth_tsu_disable_cam_entry_post(struct net_device *ndev,
2642 					      int entry)
2643 {
2644 	struct sh_eth_private *mdp = netdev_priv(ndev);
2645 	u32 post_mask, ref_mask, tmp;
2646 	void *reg_offset;
2647 
2648 	reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2649 	post_mask = sh_eth_tsu_get_post_mask(entry);
2650 	ref_mask = sh_eth_tsu_get_post_bit(mdp, entry) & ~post_mask;
2651 
2652 	tmp = ioread32(reg_offset);
2653 	iowrite32(tmp & ~post_mask, reg_offset);
2654 
2655 	/* If other port enables, the function returns "true" */
2656 	return tmp & ref_mask;
2657 }
2658 
2659 static int sh_eth_tsu_busy(struct net_device *ndev)
2660 {
2661 	int timeout = SH_ETH_TSU_TIMEOUT_MS * 100;
2662 	struct sh_eth_private *mdp = netdev_priv(ndev);
2663 
2664 	while ((sh_eth_tsu_read(mdp, TSU_ADSBSY) & TSU_ADSBSY_0)) {
2665 		udelay(10);
2666 		timeout--;
2667 		if (timeout <= 0) {
2668 			netdev_err(ndev, "%s: timeout\n", __func__);
2669 			return -ETIMEDOUT;
2670 		}
2671 	}
2672 
2673 	return 0;
2674 }
2675 
2676 static int sh_eth_tsu_write_entry(struct net_device *ndev, void *reg,
2677 				  const u8 *addr)
2678 {
2679 	u32 val;
2680 
2681 	val = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3];
2682 	iowrite32(val, reg);
2683 	if (sh_eth_tsu_busy(ndev) < 0)
2684 		return -EBUSY;
2685 
2686 	val = addr[4] << 8 | addr[5];
2687 	iowrite32(val, reg + 4);
2688 	if (sh_eth_tsu_busy(ndev) < 0)
2689 		return -EBUSY;
2690 
2691 	return 0;
2692 }
2693 
2694 static void sh_eth_tsu_read_entry(void *reg, u8 *addr)
2695 {
2696 	u32 val;
2697 
2698 	val = ioread32(reg);
2699 	addr[0] = (val >> 24) & 0xff;
2700 	addr[1] = (val >> 16) & 0xff;
2701 	addr[2] = (val >> 8) & 0xff;
2702 	addr[3] = val & 0xff;
2703 	val = ioread32(reg + 4);
2704 	addr[4] = (val >> 8) & 0xff;
2705 	addr[5] = val & 0xff;
2706 }
2707 
2708 
2709 static int sh_eth_tsu_find_entry(struct net_device *ndev, const u8 *addr)
2710 {
2711 	struct sh_eth_private *mdp = netdev_priv(ndev);
2712 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2713 	int i;
2714 	u8 c_addr[ETH_ALEN];
2715 
2716 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2717 		sh_eth_tsu_read_entry(reg_offset, c_addr);
2718 		if (ether_addr_equal(addr, c_addr))
2719 			return i;
2720 	}
2721 
2722 	return -ENOENT;
2723 }
2724 
2725 static int sh_eth_tsu_find_empty(struct net_device *ndev)
2726 {
2727 	u8 blank[ETH_ALEN];
2728 	int entry;
2729 
2730 	memset(blank, 0, sizeof(blank));
2731 	entry = sh_eth_tsu_find_entry(ndev, blank);
2732 	return (entry < 0) ? -ENOMEM : entry;
2733 }
2734 
2735 static int sh_eth_tsu_disable_cam_entry_table(struct net_device *ndev,
2736 					      int entry)
2737 {
2738 	struct sh_eth_private *mdp = netdev_priv(ndev);
2739 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2740 	int ret;
2741 	u8 blank[ETH_ALEN];
2742 
2743 	sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) &
2744 			 ~(1 << (31 - entry)), TSU_TEN);
2745 
2746 	memset(blank, 0, sizeof(blank));
2747 	ret = sh_eth_tsu_write_entry(ndev, reg_offset + entry * 8, blank);
2748 	if (ret < 0)
2749 		return ret;
2750 	return 0;
2751 }
2752 
2753 static int sh_eth_tsu_add_entry(struct net_device *ndev, const u8 *addr)
2754 {
2755 	struct sh_eth_private *mdp = netdev_priv(ndev);
2756 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2757 	int i, ret;
2758 
2759 	if (!mdp->cd->tsu)
2760 		return 0;
2761 
2762 	i = sh_eth_tsu_find_entry(ndev, addr);
2763 	if (i < 0) {
2764 		/* No entry found, create one */
2765 		i = sh_eth_tsu_find_empty(ndev);
2766 		if (i < 0)
2767 			return -ENOMEM;
2768 		ret = sh_eth_tsu_write_entry(ndev, reg_offset + i * 8, addr);
2769 		if (ret < 0)
2770 			return ret;
2771 
2772 		/* Enable the entry */
2773 		sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) |
2774 				 (1 << (31 - i)), TSU_TEN);
2775 	}
2776 
2777 	/* Entry found or created, enable POST */
2778 	sh_eth_tsu_enable_cam_entry_post(ndev, i);
2779 
2780 	return 0;
2781 }
2782 
2783 static int sh_eth_tsu_del_entry(struct net_device *ndev, const u8 *addr)
2784 {
2785 	struct sh_eth_private *mdp = netdev_priv(ndev);
2786 	int i, ret;
2787 
2788 	if (!mdp->cd->tsu)
2789 		return 0;
2790 
2791 	i = sh_eth_tsu_find_entry(ndev, addr);
2792 	if (i) {
2793 		/* Entry found */
2794 		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2795 			goto done;
2796 
2797 		/* Disable the entry if both ports was disabled */
2798 		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2799 		if (ret < 0)
2800 			return ret;
2801 	}
2802 done:
2803 	return 0;
2804 }
2805 
2806 static int sh_eth_tsu_purge_all(struct net_device *ndev)
2807 {
2808 	struct sh_eth_private *mdp = netdev_priv(ndev);
2809 	int i, ret;
2810 
2811 	if (!mdp->cd->tsu)
2812 		return 0;
2813 
2814 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++) {
2815 		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2816 			continue;
2817 
2818 		/* Disable the entry if both ports was disabled */
2819 		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2820 		if (ret < 0)
2821 			return ret;
2822 	}
2823 
2824 	return 0;
2825 }
2826 
2827 static void sh_eth_tsu_purge_mcast(struct net_device *ndev)
2828 {
2829 	struct sh_eth_private *mdp = netdev_priv(ndev);
2830 	u8 addr[ETH_ALEN];
2831 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2832 	int i;
2833 
2834 	if (!mdp->cd->tsu)
2835 		return;
2836 
2837 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2838 		sh_eth_tsu_read_entry(reg_offset, addr);
2839 		if (is_multicast_ether_addr(addr))
2840 			sh_eth_tsu_del_entry(ndev, addr);
2841 	}
2842 }
2843 
2844 /* Update promiscuous flag and multicast filter */
2845 static void sh_eth_set_rx_mode(struct net_device *ndev)
2846 {
2847 	struct sh_eth_private *mdp = netdev_priv(ndev);
2848 	u32 ecmr_bits;
2849 	int mcast_all = 0;
2850 	unsigned long flags;
2851 
2852 	spin_lock_irqsave(&mdp->lock, flags);
2853 	/* Initial condition is MCT = 1, PRM = 0.
2854 	 * Depending on ndev->flags, set PRM or clear MCT
2855 	 */
2856 	ecmr_bits = sh_eth_read(ndev, ECMR) & ~ECMR_PRM;
2857 	if (mdp->cd->tsu)
2858 		ecmr_bits |= ECMR_MCT;
2859 
2860 	if (!(ndev->flags & IFF_MULTICAST)) {
2861 		sh_eth_tsu_purge_mcast(ndev);
2862 		mcast_all = 1;
2863 	}
2864 	if (ndev->flags & IFF_ALLMULTI) {
2865 		sh_eth_tsu_purge_mcast(ndev);
2866 		ecmr_bits &= ~ECMR_MCT;
2867 		mcast_all = 1;
2868 	}
2869 
2870 	if (ndev->flags & IFF_PROMISC) {
2871 		sh_eth_tsu_purge_all(ndev);
2872 		ecmr_bits = (ecmr_bits & ~ECMR_MCT) | ECMR_PRM;
2873 	} else if (mdp->cd->tsu) {
2874 		struct netdev_hw_addr *ha;
2875 		netdev_for_each_mc_addr(ha, ndev) {
2876 			if (mcast_all && is_multicast_ether_addr(ha->addr))
2877 				continue;
2878 
2879 			if (sh_eth_tsu_add_entry(ndev, ha->addr) < 0) {
2880 				if (!mcast_all) {
2881 					sh_eth_tsu_purge_mcast(ndev);
2882 					ecmr_bits &= ~ECMR_MCT;
2883 					mcast_all = 1;
2884 				}
2885 			}
2886 		}
2887 	}
2888 
2889 	/* update the ethernet mode */
2890 	sh_eth_write(ndev, ecmr_bits, ECMR);
2891 
2892 	spin_unlock_irqrestore(&mdp->lock, flags);
2893 }
2894 
2895 static int sh_eth_get_vtag_index(struct sh_eth_private *mdp)
2896 {
2897 	if (!mdp->port)
2898 		return TSU_VTAG0;
2899 	else
2900 		return TSU_VTAG1;
2901 }
2902 
2903 static int sh_eth_vlan_rx_add_vid(struct net_device *ndev,
2904 				  __be16 proto, u16 vid)
2905 {
2906 	struct sh_eth_private *mdp = netdev_priv(ndev);
2907 	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2908 
2909 	if (unlikely(!mdp->cd->tsu))
2910 		return -EPERM;
2911 
2912 	/* No filtering if vid = 0 */
2913 	if (!vid)
2914 		return 0;
2915 
2916 	mdp->vlan_num_ids++;
2917 
2918 	/* The controller has one VLAN tag HW filter. So, if the filter is
2919 	 * already enabled, the driver disables it and the filte
2920 	 */
2921 	if (mdp->vlan_num_ids > 1) {
2922 		/* disable VLAN filter */
2923 		sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2924 		return 0;
2925 	}
2926 
2927 	sh_eth_tsu_write(mdp, TSU_VTAG_ENABLE | (vid & TSU_VTAG_VID_MASK),
2928 			 vtag_reg_index);
2929 
2930 	return 0;
2931 }
2932 
2933 static int sh_eth_vlan_rx_kill_vid(struct net_device *ndev,
2934 				   __be16 proto, u16 vid)
2935 {
2936 	struct sh_eth_private *mdp = netdev_priv(ndev);
2937 	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2938 
2939 	if (unlikely(!mdp->cd->tsu))
2940 		return -EPERM;
2941 
2942 	/* No filtering if vid = 0 */
2943 	if (!vid)
2944 		return 0;
2945 
2946 	mdp->vlan_num_ids--;
2947 	sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2948 
2949 	return 0;
2950 }
2951 
2952 /* SuperH's TSU register init function */
2953 static void sh_eth_tsu_init(struct sh_eth_private *mdp)
2954 {
2955 	if (!mdp->cd->dual_port) {
2956 		sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
2957 		sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL,
2958 				 TSU_FWSLC);	/* Enable POST registers */
2959 		return;
2960 	}
2961 
2962 	sh_eth_tsu_write(mdp, 0, TSU_FWEN0);	/* Disable forward(0->1) */
2963 	sh_eth_tsu_write(mdp, 0, TSU_FWEN1);	/* Disable forward(1->0) */
2964 	sh_eth_tsu_write(mdp, 0, TSU_FCM);	/* forward fifo 3k-3k */
2965 	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
2966 	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
2967 	sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
2968 	sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
2969 	sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
2970 	sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
2971 	sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
2972 	sh_eth_tsu_write(mdp, 0, TSU_QTAGM0);	/* Disable QTAG(0->1) */
2973 	sh_eth_tsu_write(mdp, 0, TSU_QTAGM1);	/* Disable QTAG(1->0) */
2974 	sh_eth_tsu_write(mdp, 0, TSU_FWSR);	/* all interrupt status clear */
2975 	sh_eth_tsu_write(mdp, 0, TSU_FWINMK);	/* Disable all interrupt */
2976 	sh_eth_tsu_write(mdp, 0, TSU_TEN);	/* Disable all CAM entry */
2977 	sh_eth_tsu_write(mdp, 0, TSU_POST1);	/* Disable CAM entry [ 0- 7] */
2978 	sh_eth_tsu_write(mdp, 0, TSU_POST2);	/* Disable CAM entry [ 8-15] */
2979 	sh_eth_tsu_write(mdp, 0, TSU_POST3);	/* Disable CAM entry [16-23] */
2980 	sh_eth_tsu_write(mdp, 0, TSU_POST4);	/* Disable CAM entry [24-31] */
2981 }
2982 
2983 /* MDIO bus release function */
2984 static int sh_mdio_release(struct sh_eth_private *mdp)
2985 {
2986 	/* unregister mdio bus */
2987 	mdiobus_unregister(mdp->mii_bus);
2988 
2989 	/* free bitbang info */
2990 	free_mdio_bitbang(mdp->mii_bus);
2991 
2992 	return 0;
2993 }
2994 
2995 /* MDIO bus init function */
2996 static int sh_mdio_init(struct sh_eth_private *mdp,
2997 			struct sh_eth_plat_data *pd)
2998 {
2999 	int ret;
3000 	struct bb_info *bitbang;
3001 	struct platform_device *pdev = mdp->pdev;
3002 	struct device *dev = &mdp->pdev->dev;
3003 
3004 	/* create bit control struct for PHY */
3005 	bitbang = devm_kzalloc(dev, sizeof(struct bb_info), GFP_KERNEL);
3006 	if (!bitbang)
3007 		return -ENOMEM;
3008 
3009 	/* bitbang init */
3010 	bitbang->addr = mdp->addr + mdp->reg_offset[PIR];
3011 	bitbang->set_gate = pd->set_mdio_gate;
3012 	bitbang->ctrl.ops = &bb_ops;
3013 
3014 	/* MII controller setting */
3015 	mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
3016 	if (!mdp->mii_bus)
3017 		return -ENOMEM;
3018 
3019 	/* Hook up MII support for ethtool */
3020 	mdp->mii_bus->name = "sh_mii";
3021 	mdp->mii_bus->parent = dev;
3022 	snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
3023 		 pdev->name, pdev->id);
3024 
3025 	/* register MDIO bus */
3026 	if (dev->of_node) {
3027 		ret = of_mdiobus_register(mdp->mii_bus, dev->of_node);
3028 	} else {
3029 		if (pd->phy_irq > 0)
3030 			mdp->mii_bus->irq[pd->phy] = pd->phy_irq;
3031 
3032 		ret = mdiobus_register(mdp->mii_bus);
3033 	}
3034 
3035 	if (ret)
3036 		goto out_free_bus;
3037 
3038 	return 0;
3039 
3040 out_free_bus:
3041 	free_mdio_bitbang(mdp->mii_bus);
3042 	return ret;
3043 }
3044 
3045 static const u16 *sh_eth_get_register_offset(int register_type)
3046 {
3047 	const u16 *reg_offset = NULL;
3048 
3049 	switch (register_type) {
3050 	case SH_ETH_REG_GIGABIT:
3051 		reg_offset = sh_eth_offset_gigabit;
3052 		break;
3053 	case SH_ETH_REG_FAST_RZ:
3054 		reg_offset = sh_eth_offset_fast_rz;
3055 		break;
3056 	case SH_ETH_REG_FAST_RCAR:
3057 		reg_offset = sh_eth_offset_fast_rcar;
3058 		break;
3059 	case SH_ETH_REG_FAST_SH4:
3060 		reg_offset = sh_eth_offset_fast_sh4;
3061 		break;
3062 	case SH_ETH_REG_FAST_SH3_SH2:
3063 		reg_offset = sh_eth_offset_fast_sh3_sh2;
3064 		break;
3065 	}
3066 
3067 	return reg_offset;
3068 }
3069 
3070 static const struct net_device_ops sh_eth_netdev_ops = {
3071 	.ndo_open		= sh_eth_open,
3072 	.ndo_stop		= sh_eth_close,
3073 	.ndo_start_xmit		= sh_eth_start_xmit,
3074 	.ndo_get_stats		= sh_eth_get_stats,
3075 	.ndo_set_rx_mode	= sh_eth_set_rx_mode,
3076 	.ndo_tx_timeout		= sh_eth_tx_timeout,
3077 	.ndo_do_ioctl		= sh_eth_do_ioctl,
3078 	.ndo_change_mtu		= sh_eth_change_mtu,
3079 	.ndo_validate_addr	= eth_validate_addr,
3080 	.ndo_set_mac_address	= eth_mac_addr,
3081 };
3082 
3083 static const struct net_device_ops sh_eth_netdev_ops_tsu = {
3084 	.ndo_open		= sh_eth_open,
3085 	.ndo_stop		= sh_eth_close,
3086 	.ndo_start_xmit		= sh_eth_start_xmit,
3087 	.ndo_get_stats		= sh_eth_get_stats,
3088 	.ndo_set_rx_mode	= sh_eth_set_rx_mode,
3089 	.ndo_vlan_rx_add_vid	= sh_eth_vlan_rx_add_vid,
3090 	.ndo_vlan_rx_kill_vid	= sh_eth_vlan_rx_kill_vid,
3091 	.ndo_tx_timeout		= sh_eth_tx_timeout,
3092 	.ndo_do_ioctl		= sh_eth_do_ioctl,
3093 	.ndo_change_mtu		= sh_eth_change_mtu,
3094 	.ndo_validate_addr	= eth_validate_addr,
3095 	.ndo_set_mac_address	= eth_mac_addr,
3096 };
3097 
3098 #ifdef CONFIG_OF
3099 static struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
3100 {
3101 	struct device_node *np = dev->of_node;
3102 	struct sh_eth_plat_data *pdata;
3103 	const char *mac_addr;
3104 
3105 	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
3106 	if (!pdata)
3107 		return NULL;
3108 
3109 	pdata->phy_interface = of_get_phy_mode(np);
3110 
3111 	mac_addr = of_get_mac_address(np);
3112 	if (mac_addr)
3113 		memcpy(pdata->mac_addr, mac_addr, ETH_ALEN);
3114 
3115 	pdata->no_ether_link =
3116 		of_property_read_bool(np, "renesas,no-ether-link");
3117 	pdata->ether_link_active_low =
3118 		of_property_read_bool(np, "renesas,ether-link-active-low");
3119 
3120 	return pdata;
3121 }
3122 
3123 static const struct of_device_id sh_eth_match_table[] = {
3124 	{ .compatible = "renesas,gether-r8a7740", .data = &r8a7740_data },
3125 	{ .compatible = "renesas,ether-r8a7743", .data = &rcar_gen2_data },
3126 	{ .compatible = "renesas,ether-r8a7745", .data = &rcar_gen2_data },
3127 	{ .compatible = "renesas,ether-r8a7778", .data = &rcar_gen1_data },
3128 	{ .compatible = "renesas,ether-r8a7779", .data = &rcar_gen1_data },
3129 	{ .compatible = "renesas,ether-r8a7790", .data = &rcar_gen2_data },
3130 	{ .compatible = "renesas,ether-r8a7791", .data = &rcar_gen2_data },
3131 	{ .compatible = "renesas,ether-r8a7793", .data = &rcar_gen2_data },
3132 	{ .compatible = "renesas,ether-r8a7794", .data = &rcar_gen2_data },
3133 	{ .compatible = "renesas,ether-r7s72100", .data = &r7s72100_data },
3134 	{ .compatible = "renesas,rcar-gen1-ether", .data = &rcar_gen1_data },
3135 	{ .compatible = "renesas,rcar-gen2-ether", .data = &rcar_gen2_data },
3136 	{ }
3137 };
3138 MODULE_DEVICE_TABLE(of, sh_eth_match_table);
3139 #else
3140 static inline struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
3141 {
3142 	return NULL;
3143 }
3144 #endif
3145 
3146 static int sh_eth_drv_probe(struct platform_device *pdev)
3147 {
3148 	struct resource *res;
3149 	struct sh_eth_plat_data *pd = dev_get_platdata(&pdev->dev);
3150 	const struct platform_device_id *id = platform_get_device_id(pdev);
3151 	struct sh_eth_private *mdp;
3152 	struct net_device *ndev;
3153 	int ret;
3154 
3155 	/* get base addr */
3156 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3157 
3158 	ndev = alloc_etherdev(sizeof(struct sh_eth_private));
3159 	if (!ndev)
3160 		return -ENOMEM;
3161 
3162 	pm_runtime_enable(&pdev->dev);
3163 	pm_runtime_get_sync(&pdev->dev);
3164 
3165 	ret = platform_get_irq(pdev, 0);
3166 	if (ret < 0)
3167 		goto out_release;
3168 	ndev->irq = ret;
3169 
3170 	SET_NETDEV_DEV(ndev, &pdev->dev);
3171 
3172 	mdp = netdev_priv(ndev);
3173 	mdp->num_tx_ring = TX_RING_SIZE;
3174 	mdp->num_rx_ring = RX_RING_SIZE;
3175 	mdp->addr = devm_ioremap_resource(&pdev->dev, res);
3176 	if (IS_ERR(mdp->addr)) {
3177 		ret = PTR_ERR(mdp->addr);
3178 		goto out_release;
3179 	}
3180 
3181 	ndev->base_addr = res->start;
3182 
3183 	spin_lock_init(&mdp->lock);
3184 	mdp->pdev = pdev;
3185 
3186 	if (pdev->dev.of_node)
3187 		pd = sh_eth_parse_dt(&pdev->dev);
3188 	if (!pd) {
3189 		dev_err(&pdev->dev, "no platform data\n");
3190 		ret = -EINVAL;
3191 		goto out_release;
3192 	}
3193 
3194 	/* get PHY ID */
3195 	mdp->phy_id = pd->phy;
3196 	mdp->phy_interface = pd->phy_interface;
3197 	mdp->no_ether_link = pd->no_ether_link;
3198 	mdp->ether_link_active_low = pd->ether_link_active_low;
3199 
3200 	/* set cpu data */
3201 	if (id)
3202 		mdp->cd = (struct sh_eth_cpu_data *)id->driver_data;
3203 	else
3204 		mdp->cd = (struct sh_eth_cpu_data *)of_device_get_match_data(&pdev->dev);
3205 
3206 	mdp->reg_offset = sh_eth_get_register_offset(mdp->cd->register_type);
3207 	if (!mdp->reg_offset) {
3208 		dev_err(&pdev->dev, "Unknown register type (%d)\n",
3209 			mdp->cd->register_type);
3210 		ret = -EINVAL;
3211 		goto out_release;
3212 	}
3213 	sh_eth_set_default_cpu_data(mdp->cd);
3214 
3215 	/* User's manual states max MTU should be 2048 but due to the
3216 	 * alignment calculations in sh_eth_ring_init() the practical
3217 	 * MTU is a bit less. Maybe this can be optimized some more.
3218 	 */
3219 	ndev->max_mtu = 2000 - (ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN);
3220 	ndev->min_mtu = ETH_MIN_MTU;
3221 
3222 	/* set function */
3223 	if (mdp->cd->tsu)
3224 		ndev->netdev_ops = &sh_eth_netdev_ops_tsu;
3225 	else
3226 		ndev->netdev_ops = &sh_eth_netdev_ops;
3227 	ndev->ethtool_ops = &sh_eth_ethtool_ops;
3228 	ndev->watchdog_timeo = TX_TIMEOUT;
3229 
3230 	/* debug message level */
3231 	mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
3232 
3233 	/* read and set MAC address */
3234 	read_mac_address(ndev, pd->mac_addr);
3235 	if (!is_valid_ether_addr(ndev->dev_addr)) {
3236 		dev_warn(&pdev->dev,
3237 			 "no valid MAC address supplied, using a random one.\n");
3238 		eth_hw_addr_random(ndev);
3239 	}
3240 
3241 	if (mdp->cd->tsu) {
3242 		int port = pdev->id < 0 ? 0 : pdev->id % 2;
3243 		struct resource *rtsu;
3244 
3245 		rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
3246 		if (!rtsu) {
3247 			dev_err(&pdev->dev, "no TSU resource\n");
3248 			ret = -ENODEV;
3249 			goto out_release;
3250 		}
3251 		/* We can only request the  TSU region  for the first port
3252 		 * of the two  sharing this TSU for the probe to succeed...
3253 		 */
3254 		if (port == 0 &&
3255 		    !devm_request_mem_region(&pdev->dev, rtsu->start,
3256 					     resource_size(rtsu),
3257 					     dev_name(&pdev->dev))) {
3258 			dev_err(&pdev->dev, "can't request TSU resource.\n");
3259 			ret = -EBUSY;
3260 			goto out_release;
3261 		}
3262 		/* ioremap the TSU registers */
3263 		mdp->tsu_addr = devm_ioremap(&pdev->dev, rtsu->start,
3264 					     resource_size(rtsu));
3265 		if (!mdp->tsu_addr) {
3266 			dev_err(&pdev->dev, "TSU region ioremap() failed.\n");
3267 			ret = -ENOMEM;
3268 			goto out_release;
3269 		}
3270 		mdp->port = port;
3271 		ndev->features = NETIF_F_HW_VLAN_CTAG_FILTER;
3272 
3273 		/* Need to init only the first port of the two sharing a TSU */
3274 		if (port == 0) {
3275 			if (mdp->cd->chip_reset)
3276 				mdp->cd->chip_reset(ndev);
3277 
3278 			/* TSU init (Init only)*/
3279 			sh_eth_tsu_init(mdp);
3280 		}
3281 	}
3282 
3283 	if (mdp->cd->rmiimode)
3284 		sh_eth_write(ndev, 0x1, RMIIMODE);
3285 
3286 	/* MDIO bus init */
3287 	ret = sh_mdio_init(mdp, pd);
3288 	if (ret) {
3289 		if (ret != -EPROBE_DEFER)
3290 			dev_err(&pdev->dev, "MDIO init failed: %d\n", ret);
3291 		goto out_release;
3292 	}
3293 
3294 	netif_napi_add(ndev, &mdp->napi, sh_eth_poll, 64);
3295 
3296 	/* network device register */
3297 	ret = register_netdev(ndev);
3298 	if (ret)
3299 		goto out_napi_del;
3300 
3301 	if (mdp->cd->magic)
3302 		device_set_wakeup_capable(&pdev->dev, 1);
3303 
3304 	/* print device information */
3305 	netdev_info(ndev, "Base address at 0x%x, %pM, IRQ %d.\n",
3306 		    (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
3307 
3308 	pm_runtime_put(&pdev->dev);
3309 	platform_set_drvdata(pdev, ndev);
3310 
3311 	return ret;
3312 
3313 out_napi_del:
3314 	netif_napi_del(&mdp->napi);
3315 	sh_mdio_release(mdp);
3316 
3317 out_release:
3318 	/* net_dev free */
3319 	free_netdev(ndev);
3320 
3321 	pm_runtime_put(&pdev->dev);
3322 	pm_runtime_disable(&pdev->dev);
3323 	return ret;
3324 }
3325 
3326 static int sh_eth_drv_remove(struct platform_device *pdev)
3327 {
3328 	struct net_device *ndev = platform_get_drvdata(pdev);
3329 	struct sh_eth_private *mdp = netdev_priv(ndev);
3330 
3331 	unregister_netdev(ndev);
3332 	netif_napi_del(&mdp->napi);
3333 	sh_mdio_release(mdp);
3334 	pm_runtime_disable(&pdev->dev);
3335 	free_netdev(ndev);
3336 
3337 	return 0;
3338 }
3339 
3340 #ifdef CONFIG_PM
3341 #ifdef CONFIG_PM_SLEEP
3342 static int sh_eth_wol_setup(struct net_device *ndev)
3343 {
3344 	struct sh_eth_private *mdp = netdev_priv(ndev);
3345 
3346 	/* Only allow ECI interrupts */
3347 	synchronize_irq(ndev->irq);
3348 	napi_disable(&mdp->napi);
3349 	sh_eth_write(ndev, EESIPR_ECIIP, EESIPR);
3350 
3351 	/* Enable MagicPacket */
3352 	sh_eth_modify(ndev, ECMR, ECMR_MPDE, ECMR_MPDE);
3353 
3354 	return enable_irq_wake(ndev->irq);
3355 }
3356 
3357 static int sh_eth_wol_restore(struct net_device *ndev)
3358 {
3359 	struct sh_eth_private *mdp = netdev_priv(ndev);
3360 	int ret;
3361 
3362 	napi_enable(&mdp->napi);
3363 
3364 	/* Disable MagicPacket */
3365 	sh_eth_modify(ndev, ECMR, ECMR_MPDE, 0);
3366 
3367 	/* The device needs to be reset to restore MagicPacket logic
3368 	 * for next wakeup. If we close and open the device it will
3369 	 * both be reset and all registers restored. This is what
3370 	 * happens during suspend and resume without WoL enabled.
3371 	 */
3372 	ret = sh_eth_close(ndev);
3373 	if (ret < 0)
3374 		return ret;
3375 	ret = sh_eth_open(ndev);
3376 	if (ret < 0)
3377 		return ret;
3378 
3379 	return disable_irq_wake(ndev->irq);
3380 }
3381 
3382 static int sh_eth_suspend(struct device *dev)
3383 {
3384 	struct net_device *ndev = dev_get_drvdata(dev);
3385 	struct sh_eth_private *mdp = netdev_priv(ndev);
3386 	int ret = 0;
3387 
3388 	if (!netif_running(ndev))
3389 		return 0;
3390 
3391 	netif_device_detach(ndev);
3392 
3393 	if (mdp->wol_enabled)
3394 		ret = sh_eth_wol_setup(ndev);
3395 	else
3396 		ret = sh_eth_close(ndev);
3397 
3398 	return ret;
3399 }
3400 
3401 static int sh_eth_resume(struct device *dev)
3402 {
3403 	struct net_device *ndev = dev_get_drvdata(dev);
3404 	struct sh_eth_private *mdp = netdev_priv(ndev);
3405 	int ret = 0;
3406 
3407 	if (!netif_running(ndev))
3408 		return 0;
3409 
3410 	if (mdp->wol_enabled)
3411 		ret = sh_eth_wol_restore(ndev);
3412 	else
3413 		ret = sh_eth_open(ndev);
3414 
3415 	if (ret < 0)
3416 		return ret;
3417 
3418 	netif_device_attach(ndev);
3419 
3420 	return ret;
3421 }
3422 #endif
3423 
3424 static int sh_eth_runtime_nop(struct device *dev)
3425 {
3426 	/* Runtime PM callback shared between ->runtime_suspend()
3427 	 * and ->runtime_resume(). Simply returns success.
3428 	 *
3429 	 * This driver re-initializes all registers after
3430 	 * pm_runtime_get_sync() anyway so there is no need
3431 	 * to save and restore registers here.
3432 	 */
3433 	return 0;
3434 }
3435 
3436 static const struct dev_pm_ops sh_eth_dev_pm_ops = {
3437 	SET_SYSTEM_SLEEP_PM_OPS(sh_eth_suspend, sh_eth_resume)
3438 	SET_RUNTIME_PM_OPS(sh_eth_runtime_nop, sh_eth_runtime_nop, NULL)
3439 };
3440 #define SH_ETH_PM_OPS (&sh_eth_dev_pm_ops)
3441 #else
3442 #define SH_ETH_PM_OPS NULL
3443 #endif
3444 
3445 static const struct platform_device_id sh_eth_id_table[] = {
3446 	{ "sh7619-ether", (kernel_ulong_t)&sh7619_data },
3447 	{ "sh771x-ether", (kernel_ulong_t)&sh771x_data },
3448 	{ "sh7724-ether", (kernel_ulong_t)&sh7724_data },
3449 	{ "sh7734-gether", (kernel_ulong_t)&sh7734_data },
3450 	{ "sh7757-ether", (kernel_ulong_t)&sh7757_data },
3451 	{ "sh7757-gether", (kernel_ulong_t)&sh7757_data_giga },
3452 	{ "sh7763-gether", (kernel_ulong_t)&sh7763_data },
3453 	{ }
3454 };
3455 MODULE_DEVICE_TABLE(platform, sh_eth_id_table);
3456 
3457 static struct platform_driver sh_eth_driver = {
3458 	.probe = sh_eth_drv_probe,
3459 	.remove = sh_eth_drv_remove,
3460 	.id_table = sh_eth_id_table,
3461 	.driver = {
3462 		   .name = CARDNAME,
3463 		   .pm = SH_ETH_PM_OPS,
3464 		   .of_match_table = of_match_ptr(sh_eth_match_table),
3465 	},
3466 };
3467 
3468 module_platform_driver(sh_eth_driver);
3469 
3470 MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
3471 MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
3472 MODULE_LICENSE("GPL v2");
3473