1 /* SuperH Ethernet device driver 2 * 3 * Copyright (C) 2014 Renesas Electronics Corporation 4 * Copyright (C) 2006-2012 Nobuhiro Iwamatsu 5 * Copyright (C) 2008-2014 Renesas Solutions Corp. 6 * Copyright (C) 2013-2016 Cogent Embedded, Inc. 7 * Copyright (C) 2014 Codethink Limited 8 * 9 * This program is free software; you can redistribute it and/or modify it 10 * under the terms and conditions of the GNU General Public License, 11 * version 2, as published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope it will be useful, but WITHOUT 14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 16 * more details. 17 * 18 * The full GNU General Public License is included in this distribution in 19 * the file called "COPYING". 20 */ 21 22 #include <linux/module.h> 23 #include <linux/kernel.h> 24 #include <linux/spinlock.h> 25 #include <linux/interrupt.h> 26 #include <linux/dma-mapping.h> 27 #include <linux/etherdevice.h> 28 #include <linux/delay.h> 29 #include <linux/platform_device.h> 30 #include <linux/mdio-bitbang.h> 31 #include <linux/netdevice.h> 32 #include <linux/of.h> 33 #include <linux/of_device.h> 34 #include <linux/of_irq.h> 35 #include <linux/of_net.h> 36 #include <linux/phy.h> 37 #include <linux/cache.h> 38 #include <linux/io.h> 39 #include <linux/pm_runtime.h> 40 #include <linux/slab.h> 41 #include <linux/ethtool.h> 42 #include <linux/if_vlan.h> 43 #include <linux/clk.h> 44 #include <linux/sh_eth.h> 45 #include <linux/of_mdio.h> 46 47 #include "sh_eth.h" 48 49 #define SH_ETH_DEF_MSG_ENABLE \ 50 (NETIF_MSG_LINK | \ 51 NETIF_MSG_TIMER | \ 52 NETIF_MSG_RX_ERR| \ 53 NETIF_MSG_TX_ERR) 54 55 #define SH_ETH_OFFSET_INVALID ((u16)~0) 56 57 #define SH_ETH_OFFSET_DEFAULTS \ 58 [0 ... SH_ETH_MAX_REGISTER_OFFSET - 1] = SH_ETH_OFFSET_INVALID 59 60 static const u16 sh_eth_offset_gigabit[SH_ETH_MAX_REGISTER_OFFSET] = { 61 SH_ETH_OFFSET_DEFAULTS, 62 63 [EDSR] = 0x0000, 64 [EDMR] = 0x0400, 65 [EDTRR] = 0x0408, 66 [EDRRR] = 0x0410, 67 [EESR] = 0x0428, 68 [EESIPR] = 0x0430, 69 [TDLAR] = 0x0010, 70 [TDFAR] = 0x0014, 71 [TDFXR] = 0x0018, 72 [TDFFR] = 0x001c, 73 [RDLAR] = 0x0030, 74 [RDFAR] = 0x0034, 75 [RDFXR] = 0x0038, 76 [RDFFR] = 0x003c, 77 [TRSCER] = 0x0438, 78 [RMFCR] = 0x0440, 79 [TFTR] = 0x0448, 80 [FDR] = 0x0450, 81 [RMCR] = 0x0458, 82 [RPADIR] = 0x0460, 83 [FCFTR] = 0x0468, 84 [CSMR] = 0x04E4, 85 86 [ECMR] = 0x0500, 87 [ECSR] = 0x0510, 88 [ECSIPR] = 0x0518, 89 [PIR] = 0x0520, 90 [PSR] = 0x0528, 91 [PIPR] = 0x052c, 92 [RFLR] = 0x0508, 93 [APR] = 0x0554, 94 [MPR] = 0x0558, 95 [PFTCR] = 0x055c, 96 [PFRCR] = 0x0560, 97 [TPAUSER] = 0x0564, 98 [GECMR] = 0x05b0, 99 [BCULR] = 0x05b4, 100 [MAHR] = 0x05c0, 101 [MALR] = 0x05c8, 102 [TROCR] = 0x0700, 103 [CDCR] = 0x0708, 104 [LCCR] = 0x0710, 105 [CEFCR] = 0x0740, 106 [FRECR] = 0x0748, 107 [TSFRCR] = 0x0750, 108 [TLFRCR] = 0x0758, 109 [RFCR] = 0x0760, 110 [CERCR] = 0x0768, 111 [CEECR] = 0x0770, 112 [MAFCR] = 0x0778, 113 [RMII_MII] = 0x0790, 114 115 [ARSTR] = 0x0000, 116 [TSU_CTRST] = 0x0004, 117 [TSU_FWEN0] = 0x0010, 118 [TSU_FWEN1] = 0x0014, 119 [TSU_FCM] = 0x0018, 120 [TSU_BSYSL0] = 0x0020, 121 [TSU_BSYSL1] = 0x0024, 122 [TSU_PRISL0] = 0x0028, 123 [TSU_PRISL1] = 0x002c, 124 [TSU_FWSL0] = 0x0030, 125 [TSU_FWSL1] = 0x0034, 126 [TSU_FWSLC] = 0x0038, 127 [TSU_QTAG0] = 0x0040, 128 [TSU_QTAG1] = 0x0044, 129 [TSU_FWSR] = 0x0050, 130 [TSU_FWINMK] = 0x0054, 131 [TSU_ADQT0] = 0x0048, 132 [TSU_ADQT1] = 0x004c, 133 [TSU_VTAG0] = 0x0058, 134 [TSU_VTAG1] = 0x005c, 135 [TSU_ADSBSY] = 0x0060, 136 [TSU_TEN] = 0x0064, 137 [TSU_POST1] = 0x0070, 138 [TSU_POST2] = 0x0074, 139 [TSU_POST3] = 0x0078, 140 [TSU_POST4] = 0x007c, 141 [TSU_ADRH0] = 0x0100, 142 143 [TXNLCR0] = 0x0080, 144 [TXALCR0] = 0x0084, 145 [RXNLCR0] = 0x0088, 146 [RXALCR0] = 0x008c, 147 [FWNLCR0] = 0x0090, 148 [FWALCR0] = 0x0094, 149 [TXNLCR1] = 0x00a0, 150 [TXALCR1] = 0x00a0, 151 [RXNLCR1] = 0x00a8, 152 [RXALCR1] = 0x00ac, 153 [FWNLCR1] = 0x00b0, 154 [FWALCR1] = 0x00b4, 155 }; 156 157 static const u16 sh_eth_offset_fast_rz[SH_ETH_MAX_REGISTER_OFFSET] = { 158 SH_ETH_OFFSET_DEFAULTS, 159 160 [EDSR] = 0x0000, 161 [EDMR] = 0x0400, 162 [EDTRR] = 0x0408, 163 [EDRRR] = 0x0410, 164 [EESR] = 0x0428, 165 [EESIPR] = 0x0430, 166 [TDLAR] = 0x0010, 167 [TDFAR] = 0x0014, 168 [TDFXR] = 0x0018, 169 [TDFFR] = 0x001c, 170 [RDLAR] = 0x0030, 171 [RDFAR] = 0x0034, 172 [RDFXR] = 0x0038, 173 [RDFFR] = 0x003c, 174 [TRSCER] = 0x0438, 175 [RMFCR] = 0x0440, 176 [TFTR] = 0x0448, 177 [FDR] = 0x0450, 178 [RMCR] = 0x0458, 179 [RPADIR] = 0x0460, 180 [FCFTR] = 0x0468, 181 [CSMR] = 0x04E4, 182 183 [ECMR] = 0x0500, 184 [RFLR] = 0x0508, 185 [ECSR] = 0x0510, 186 [ECSIPR] = 0x0518, 187 [PIR] = 0x0520, 188 [APR] = 0x0554, 189 [MPR] = 0x0558, 190 [PFTCR] = 0x055c, 191 [PFRCR] = 0x0560, 192 [TPAUSER] = 0x0564, 193 [MAHR] = 0x05c0, 194 [MALR] = 0x05c8, 195 [CEFCR] = 0x0740, 196 [FRECR] = 0x0748, 197 [TSFRCR] = 0x0750, 198 [TLFRCR] = 0x0758, 199 [RFCR] = 0x0760, 200 [MAFCR] = 0x0778, 201 202 [ARSTR] = 0x0000, 203 [TSU_CTRST] = 0x0004, 204 [TSU_VTAG0] = 0x0058, 205 [TSU_ADSBSY] = 0x0060, 206 [TSU_TEN] = 0x0064, 207 [TSU_ADRH0] = 0x0100, 208 209 [TXNLCR0] = 0x0080, 210 [TXALCR0] = 0x0084, 211 [RXNLCR0] = 0x0088, 212 [RXALCR0] = 0x008C, 213 }; 214 215 static const u16 sh_eth_offset_fast_rcar[SH_ETH_MAX_REGISTER_OFFSET] = { 216 SH_ETH_OFFSET_DEFAULTS, 217 218 [ECMR] = 0x0300, 219 [RFLR] = 0x0308, 220 [ECSR] = 0x0310, 221 [ECSIPR] = 0x0318, 222 [PIR] = 0x0320, 223 [PSR] = 0x0328, 224 [RDMLR] = 0x0340, 225 [IPGR] = 0x0350, 226 [APR] = 0x0354, 227 [MPR] = 0x0358, 228 [RFCF] = 0x0360, 229 [TPAUSER] = 0x0364, 230 [TPAUSECR] = 0x0368, 231 [MAHR] = 0x03c0, 232 [MALR] = 0x03c8, 233 [TROCR] = 0x03d0, 234 [CDCR] = 0x03d4, 235 [LCCR] = 0x03d8, 236 [CNDCR] = 0x03dc, 237 [CEFCR] = 0x03e4, 238 [FRECR] = 0x03e8, 239 [TSFRCR] = 0x03ec, 240 [TLFRCR] = 0x03f0, 241 [RFCR] = 0x03f4, 242 [MAFCR] = 0x03f8, 243 244 [EDMR] = 0x0200, 245 [EDTRR] = 0x0208, 246 [EDRRR] = 0x0210, 247 [TDLAR] = 0x0218, 248 [RDLAR] = 0x0220, 249 [EESR] = 0x0228, 250 [EESIPR] = 0x0230, 251 [TRSCER] = 0x0238, 252 [RMFCR] = 0x0240, 253 [TFTR] = 0x0248, 254 [FDR] = 0x0250, 255 [RMCR] = 0x0258, 256 [TFUCR] = 0x0264, 257 [RFOCR] = 0x0268, 258 [RMIIMODE] = 0x026c, 259 [FCFTR] = 0x0270, 260 [TRIMD] = 0x027c, 261 }; 262 263 static const u16 sh_eth_offset_fast_sh4[SH_ETH_MAX_REGISTER_OFFSET] = { 264 SH_ETH_OFFSET_DEFAULTS, 265 266 [ECMR] = 0x0100, 267 [RFLR] = 0x0108, 268 [ECSR] = 0x0110, 269 [ECSIPR] = 0x0118, 270 [PIR] = 0x0120, 271 [PSR] = 0x0128, 272 [RDMLR] = 0x0140, 273 [IPGR] = 0x0150, 274 [APR] = 0x0154, 275 [MPR] = 0x0158, 276 [TPAUSER] = 0x0164, 277 [RFCF] = 0x0160, 278 [TPAUSECR] = 0x0168, 279 [BCFRR] = 0x016c, 280 [MAHR] = 0x01c0, 281 [MALR] = 0x01c8, 282 [TROCR] = 0x01d0, 283 [CDCR] = 0x01d4, 284 [LCCR] = 0x01d8, 285 [CNDCR] = 0x01dc, 286 [CEFCR] = 0x01e4, 287 [FRECR] = 0x01e8, 288 [TSFRCR] = 0x01ec, 289 [TLFRCR] = 0x01f0, 290 [RFCR] = 0x01f4, 291 [MAFCR] = 0x01f8, 292 [RTRATE] = 0x01fc, 293 294 [EDMR] = 0x0000, 295 [EDTRR] = 0x0008, 296 [EDRRR] = 0x0010, 297 [TDLAR] = 0x0018, 298 [RDLAR] = 0x0020, 299 [EESR] = 0x0028, 300 [EESIPR] = 0x0030, 301 [TRSCER] = 0x0038, 302 [RMFCR] = 0x0040, 303 [TFTR] = 0x0048, 304 [FDR] = 0x0050, 305 [RMCR] = 0x0058, 306 [TFUCR] = 0x0064, 307 [RFOCR] = 0x0068, 308 [FCFTR] = 0x0070, 309 [RPADIR] = 0x0078, 310 [TRIMD] = 0x007c, 311 [RBWAR] = 0x00c8, 312 [RDFAR] = 0x00cc, 313 [TBRAR] = 0x00d4, 314 [TDFAR] = 0x00d8, 315 }; 316 317 static const u16 sh_eth_offset_fast_sh3_sh2[SH_ETH_MAX_REGISTER_OFFSET] = { 318 SH_ETH_OFFSET_DEFAULTS, 319 320 [EDMR] = 0x0000, 321 [EDTRR] = 0x0004, 322 [EDRRR] = 0x0008, 323 [TDLAR] = 0x000c, 324 [RDLAR] = 0x0010, 325 [EESR] = 0x0014, 326 [EESIPR] = 0x0018, 327 [TRSCER] = 0x001c, 328 [RMFCR] = 0x0020, 329 [TFTR] = 0x0024, 330 [FDR] = 0x0028, 331 [RMCR] = 0x002c, 332 [EDOCR] = 0x0030, 333 [FCFTR] = 0x0034, 334 [RPADIR] = 0x0038, 335 [TRIMD] = 0x003c, 336 [RBWAR] = 0x0040, 337 [RDFAR] = 0x0044, 338 [TBRAR] = 0x004c, 339 [TDFAR] = 0x0050, 340 341 [ECMR] = 0x0160, 342 [ECSR] = 0x0164, 343 [ECSIPR] = 0x0168, 344 [PIR] = 0x016c, 345 [MAHR] = 0x0170, 346 [MALR] = 0x0174, 347 [RFLR] = 0x0178, 348 [PSR] = 0x017c, 349 [TROCR] = 0x0180, 350 [CDCR] = 0x0184, 351 [LCCR] = 0x0188, 352 [CNDCR] = 0x018c, 353 [CEFCR] = 0x0194, 354 [FRECR] = 0x0198, 355 [TSFRCR] = 0x019c, 356 [TLFRCR] = 0x01a0, 357 [RFCR] = 0x01a4, 358 [MAFCR] = 0x01a8, 359 [IPGR] = 0x01b4, 360 [APR] = 0x01b8, 361 [MPR] = 0x01bc, 362 [TPAUSER] = 0x01c4, 363 [BCFR] = 0x01cc, 364 365 [ARSTR] = 0x0000, 366 [TSU_CTRST] = 0x0004, 367 [TSU_FWEN0] = 0x0010, 368 [TSU_FWEN1] = 0x0014, 369 [TSU_FCM] = 0x0018, 370 [TSU_BSYSL0] = 0x0020, 371 [TSU_BSYSL1] = 0x0024, 372 [TSU_PRISL0] = 0x0028, 373 [TSU_PRISL1] = 0x002c, 374 [TSU_FWSL0] = 0x0030, 375 [TSU_FWSL1] = 0x0034, 376 [TSU_FWSLC] = 0x0038, 377 [TSU_QTAGM0] = 0x0040, 378 [TSU_QTAGM1] = 0x0044, 379 [TSU_ADQT0] = 0x0048, 380 [TSU_ADQT1] = 0x004c, 381 [TSU_FWSR] = 0x0050, 382 [TSU_FWINMK] = 0x0054, 383 [TSU_ADSBSY] = 0x0060, 384 [TSU_TEN] = 0x0064, 385 [TSU_POST1] = 0x0070, 386 [TSU_POST2] = 0x0074, 387 [TSU_POST3] = 0x0078, 388 [TSU_POST4] = 0x007c, 389 390 [TXNLCR0] = 0x0080, 391 [TXALCR0] = 0x0084, 392 [RXNLCR0] = 0x0088, 393 [RXALCR0] = 0x008c, 394 [FWNLCR0] = 0x0090, 395 [FWALCR0] = 0x0094, 396 [TXNLCR1] = 0x00a0, 397 [TXALCR1] = 0x00a0, 398 [RXNLCR1] = 0x00a8, 399 [RXALCR1] = 0x00ac, 400 [FWNLCR1] = 0x00b0, 401 [FWALCR1] = 0x00b4, 402 403 [TSU_ADRH0] = 0x0100, 404 }; 405 406 static void sh_eth_rcv_snd_disable(struct net_device *ndev); 407 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev); 408 409 static void sh_eth_write(struct net_device *ndev, u32 data, int enum_index) 410 { 411 struct sh_eth_private *mdp = netdev_priv(ndev); 412 u16 offset = mdp->reg_offset[enum_index]; 413 414 if (WARN_ON(offset == SH_ETH_OFFSET_INVALID)) 415 return; 416 417 iowrite32(data, mdp->addr + offset); 418 } 419 420 static u32 sh_eth_read(struct net_device *ndev, int enum_index) 421 { 422 struct sh_eth_private *mdp = netdev_priv(ndev); 423 u16 offset = mdp->reg_offset[enum_index]; 424 425 if (WARN_ON(offset == SH_ETH_OFFSET_INVALID)) 426 return ~0U; 427 428 return ioread32(mdp->addr + offset); 429 } 430 431 static void sh_eth_modify(struct net_device *ndev, int enum_index, u32 clear, 432 u32 set) 433 { 434 sh_eth_write(ndev, (sh_eth_read(ndev, enum_index) & ~clear) | set, 435 enum_index); 436 } 437 438 static bool sh_eth_is_gether(struct sh_eth_private *mdp) 439 { 440 return mdp->reg_offset == sh_eth_offset_gigabit; 441 } 442 443 static bool sh_eth_is_rz_fast_ether(struct sh_eth_private *mdp) 444 { 445 return mdp->reg_offset == sh_eth_offset_fast_rz; 446 } 447 448 static void sh_eth_select_mii(struct net_device *ndev) 449 { 450 struct sh_eth_private *mdp = netdev_priv(ndev); 451 u32 value; 452 453 switch (mdp->phy_interface) { 454 case PHY_INTERFACE_MODE_GMII: 455 value = 0x2; 456 break; 457 case PHY_INTERFACE_MODE_MII: 458 value = 0x1; 459 break; 460 case PHY_INTERFACE_MODE_RMII: 461 value = 0x0; 462 break; 463 default: 464 netdev_warn(ndev, 465 "PHY interface mode was not setup. Set to MII.\n"); 466 value = 0x1; 467 break; 468 } 469 470 sh_eth_write(ndev, value, RMII_MII); 471 } 472 473 static void sh_eth_set_duplex(struct net_device *ndev) 474 { 475 struct sh_eth_private *mdp = netdev_priv(ndev); 476 477 sh_eth_modify(ndev, ECMR, ECMR_DM, mdp->duplex ? ECMR_DM : 0); 478 } 479 480 static void sh_eth_chip_reset(struct net_device *ndev) 481 { 482 struct sh_eth_private *mdp = netdev_priv(ndev); 483 484 /* reset device */ 485 sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR); 486 mdelay(1); 487 } 488 489 static void sh_eth_set_rate_gether(struct net_device *ndev) 490 { 491 struct sh_eth_private *mdp = netdev_priv(ndev); 492 493 switch (mdp->speed) { 494 case 10: /* 10BASE */ 495 sh_eth_write(ndev, GECMR_10, GECMR); 496 break; 497 case 100:/* 100BASE */ 498 sh_eth_write(ndev, GECMR_100, GECMR); 499 break; 500 case 1000: /* 1000BASE */ 501 sh_eth_write(ndev, GECMR_1000, GECMR); 502 break; 503 } 504 } 505 506 #ifdef CONFIG_OF 507 /* R7S72100 */ 508 static struct sh_eth_cpu_data r7s72100_data = { 509 .chip_reset = sh_eth_chip_reset, 510 .set_duplex = sh_eth_set_duplex, 511 512 .register_type = SH_ETH_REG_FAST_RZ, 513 514 .ecsr_value = ECSR_ICD, 515 .ecsipr_value = ECSIPR_ICDIP, 516 .eesipr_value = 0xff7f009f, 517 518 .tx_check = EESR_TC1 | EESR_FTC, 519 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | 520 EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE | 521 EESR_TDE | EESR_ECI, 522 .fdr_value = 0x0000070f, 523 524 .no_psr = 1, 525 .apr = 1, 526 .mpr = 1, 527 .tpauser = 1, 528 .hw_swap = 1, 529 .rpadir = 1, 530 .rpadir_value = 2 << 16, 531 .no_trimd = 1, 532 .no_ade = 1, 533 .hw_crc = 1, 534 .tsu = 1, 535 .shift_rd0 = 1, 536 }; 537 538 static void sh_eth_chip_reset_r8a7740(struct net_device *ndev) 539 { 540 struct sh_eth_private *mdp = netdev_priv(ndev); 541 542 /* reset device */ 543 sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR); 544 mdelay(1); 545 546 sh_eth_select_mii(ndev); 547 } 548 549 /* R8A7740 */ 550 static struct sh_eth_cpu_data r8a7740_data = { 551 .chip_reset = sh_eth_chip_reset_r8a7740, 552 .set_duplex = sh_eth_set_duplex, 553 .set_rate = sh_eth_set_rate_gether, 554 555 .register_type = SH_ETH_REG_GIGABIT, 556 557 .ecsr_value = ECSR_ICD | ECSR_MPD, 558 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP, 559 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff, 560 561 .tx_check = EESR_TC1 | EESR_FTC, 562 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | 563 EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE | 564 EESR_TDE | EESR_ECI, 565 .fdr_value = 0x0000070f, 566 567 .apr = 1, 568 .mpr = 1, 569 .tpauser = 1, 570 .bculr = 1, 571 .hw_swap = 1, 572 .rpadir = 1, 573 .rpadir_value = 2 << 16, 574 .no_trimd = 1, 575 .no_ade = 1, 576 .tsu = 1, 577 .select_mii = 1, 578 .shift_rd0 = 1, 579 }; 580 581 /* There is CPU dependent code */ 582 static void sh_eth_set_rate_r8a777x(struct net_device *ndev) 583 { 584 struct sh_eth_private *mdp = netdev_priv(ndev); 585 586 switch (mdp->speed) { 587 case 10: /* 10BASE */ 588 sh_eth_modify(ndev, ECMR, ECMR_ELB, 0); 589 break; 590 case 100:/* 100BASE */ 591 sh_eth_modify(ndev, ECMR, ECMR_ELB, ECMR_ELB); 592 break; 593 } 594 } 595 596 /* R8A7778/9 */ 597 static struct sh_eth_cpu_data r8a777x_data = { 598 .set_duplex = sh_eth_set_duplex, 599 .set_rate = sh_eth_set_rate_r8a777x, 600 601 .register_type = SH_ETH_REG_FAST_RCAR, 602 603 .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD, 604 .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP, 605 .eesipr_value = 0x01ff009f, 606 607 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO, 608 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE | 609 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | 610 EESR_ECI, 611 .fdr_value = 0x00000f0f, 612 613 .apr = 1, 614 .mpr = 1, 615 .tpauser = 1, 616 .hw_swap = 1, 617 }; 618 619 /* R8A7790/1 */ 620 static struct sh_eth_cpu_data r8a779x_data = { 621 .set_duplex = sh_eth_set_duplex, 622 .set_rate = sh_eth_set_rate_r8a777x, 623 624 .register_type = SH_ETH_REG_FAST_RCAR, 625 626 .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD, 627 .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP, 628 .eesipr_value = 0x01ff009f, 629 630 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO, 631 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE | 632 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | 633 EESR_ECI, 634 .fdr_value = 0x00000f0f, 635 636 .trscer_err_mask = DESC_I_RINT8, 637 638 .apr = 1, 639 .mpr = 1, 640 .tpauser = 1, 641 .hw_swap = 1, 642 .rmiimode = 1, 643 }; 644 #endif /* CONFIG_OF */ 645 646 static void sh_eth_set_rate_sh7724(struct net_device *ndev) 647 { 648 struct sh_eth_private *mdp = netdev_priv(ndev); 649 650 switch (mdp->speed) { 651 case 10: /* 10BASE */ 652 sh_eth_modify(ndev, ECMR, ECMR_RTM, 0); 653 break; 654 case 100:/* 100BASE */ 655 sh_eth_modify(ndev, ECMR, ECMR_RTM, ECMR_RTM); 656 break; 657 } 658 } 659 660 /* SH7724 */ 661 static struct sh_eth_cpu_data sh7724_data = { 662 .set_duplex = sh_eth_set_duplex, 663 .set_rate = sh_eth_set_rate_sh7724, 664 665 .register_type = SH_ETH_REG_FAST_SH4, 666 667 .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD, 668 .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP, 669 .eesipr_value = 0x01ff009f, 670 671 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO, 672 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE | 673 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | 674 EESR_ECI, 675 676 .apr = 1, 677 .mpr = 1, 678 .tpauser = 1, 679 .hw_swap = 1, 680 .rpadir = 1, 681 .rpadir_value = 0x00020000, /* NET_IP_ALIGN assumed to be 2 */ 682 }; 683 684 static void sh_eth_set_rate_sh7757(struct net_device *ndev) 685 { 686 struct sh_eth_private *mdp = netdev_priv(ndev); 687 688 switch (mdp->speed) { 689 case 10: /* 10BASE */ 690 sh_eth_write(ndev, 0, RTRATE); 691 break; 692 case 100:/* 100BASE */ 693 sh_eth_write(ndev, 1, RTRATE); 694 break; 695 } 696 } 697 698 /* SH7757 */ 699 static struct sh_eth_cpu_data sh7757_data = { 700 .set_duplex = sh_eth_set_duplex, 701 .set_rate = sh_eth_set_rate_sh7757, 702 703 .register_type = SH_ETH_REG_FAST_SH4, 704 705 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff, 706 707 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO, 708 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE | 709 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | 710 EESR_ECI, 711 712 .irq_flags = IRQF_SHARED, 713 .apr = 1, 714 .mpr = 1, 715 .tpauser = 1, 716 .hw_swap = 1, 717 .no_ade = 1, 718 .rpadir = 1, 719 .rpadir_value = 2 << 16, 720 .rtrate = 1, 721 }; 722 723 #define SH_GIGA_ETH_BASE 0xfee00000UL 724 #define GIGA_MALR(port) (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8) 725 #define GIGA_MAHR(port) (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0) 726 static void sh_eth_chip_reset_giga(struct net_device *ndev) 727 { 728 int i; 729 u32 mahr[2], malr[2]; 730 731 /* save MAHR and MALR */ 732 for (i = 0; i < 2; i++) { 733 malr[i] = ioread32((void *)GIGA_MALR(i)); 734 mahr[i] = ioread32((void *)GIGA_MAHR(i)); 735 } 736 737 /* reset device */ 738 iowrite32(ARSTR_ARSTR, (void *)(SH_GIGA_ETH_BASE + 0x1800)); 739 mdelay(1); 740 741 /* restore MAHR and MALR */ 742 for (i = 0; i < 2; i++) { 743 iowrite32(malr[i], (void *)GIGA_MALR(i)); 744 iowrite32(mahr[i], (void *)GIGA_MAHR(i)); 745 } 746 } 747 748 static void sh_eth_set_rate_giga(struct net_device *ndev) 749 { 750 struct sh_eth_private *mdp = netdev_priv(ndev); 751 752 switch (mdp->speed) { 753 case 10: /* 10BASE */ 754 sh_eth_write(ndev, 0x00000000, GECMR); 755 break; 756 case 100:/* 100BASE */ 757 sh_eth_write(ndev, 0x00000010, GECMR); 758 break; 759 case 1000: /* 1000BASE */ 760 sh_eth_write(ndev, 0x00000020, GECMR); 761 break; 762 } 763 } 764 765 /* SH7757(GETHERC) */ 766 static struct sh_eth_cpu_data sh7757_data_giga = { 767 .chip_reset = sh_eth_chip_reset_giga, 768 .set_duplex = sh_eth_set_duplex, 769 .set_rate = sh_eth_set_rate_giga, 770 771 .register_type = SH_ETH_REG_GIGABIT, 772 773 .ecsr_value = ECSR_ICD | ECSR_MPD, 774 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP, 775 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff, 776 777 .tx_check = EESR_TC1 | EESR_FTC, 778 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | 779 EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE | 780 EESR_TDE | EESR_ECI, 781 .fdr_value = 0x0000072f, 782 783 .irq_flags = IRQF_SHARED, 784 .apr = 1, 785 .mpr = 1, 786 .tpauser = 1, 787 .bculr = 1, 788 .hw_swap = 1, 789 .rpadir = 1, 790 .rpadir_value = 2 << 16, 791 .no_trimd = 1, 792 .no_ade = 1, 793 .tsu = 1, 794 }; 795 796 /* SH7734 */ 797 static struct sh_eth_cpu_data sh7734_data = { 798 .chip_reset = sh_eth_chip_reset, 799 .set_duplex = sh_eth_set_duplex, 800 .set_rate = sh_eth_set_rate_gether, 801 802 .register_type = SH_ETH_REG_GIGABIT, 803 804 .ecsr_value = ECSR_ICD | ECSR_MPD, 805 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP, 806 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff, 807 808 .tx_check = EESR_TC1 | EESR_FTC, 809 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | 810 EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE | 811 EESR_TDE | EESR_ECI, 812 813 .apr = 1, 814 .mpr = 1, 815 .tpauser = 1, 816 .bculr = 1, 817 .hw_swap = 1, 818 .no_trimd = 1, 819 .no_ade = 1, 820 .tsu = 1, 821 .hw_crc = 1, 822 .select_mii = 1, 823 }; 824 825 /* SH7763 */ 826 static struct sh_eth_cpu_data sh7763_data = { 827 .chip_reset = sh_eth_chip_reset, 828 .set_duplex = sh_eth_set_duplex, 829 .set_rate = sh_eth_set_rate_gether, 830 831 .register_type = SH_ETH_REG_GIGABIT, 832 833 .ecsr_value = ECSR_ICD | ECSR_MPD, 834 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP, 835 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff, 836 837 .tx_check = EESR_TC1 | EESR_FTC, 838 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | 839 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | 840 EESR_ECI, 841 842 .apr = 1, 843 .mpr = 1, 844 .tpauser = 1, 845 .bculr = 1, 846 .hw_swap = 1, 847 .no_trimd = 1, 848 .no_ade = 1, 849 .tsu = 1, 850 .irq_flags = IRQF_SHARED, 851 }; 852 853 static struct sh_eth_cpu_data sh7619_data = { 854 .register_type = SH_ETH_REG_FAST_SH3_SH2, 855 856 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff, 857 858 .apr = 1, 859 .mpr = 1, 860 .tpauser = 1, 861 .hw_swap = 1, 862 }; 863 864 static struct sh_eth_cpu_data sh771x_data = { 865 .register_type = SH_ETH_REG_FAST_SH3_SH2, 866 867 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff, 868 .tsu = 1, 869 }; 870 871 static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd) 872 { 873 if (!cd->ecsr_value) 874 cd->ecsr_value = DEFAULT_ECSR_INIT; 875 876 if (!cd->ecsipr_value) 877 cd->ecsipr_value = DEFAULT_ECSIPR_INIT; 878 879 if (!cd->fcftr_value) 880 cd->fcftr_value = DEFAULT_FIFO_F_D_RFF | 881 DEFAULT_FIFO_F_D_RFD; 882 883 if (!cd->fdr_value) 884 cd->fdr_value = DEFAULT_FDR_INIT; 885 886 if (!cd->tx_check) 887 cd->tx_check = DEFAULT_TX_CHECK; 888 889 if (!cd->eesr_err_check) 890 cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK; 891 892 if (!cd->trscer_err_mask) 893 cd->trscer_err_mask = DEFAULT_TRSCER_ERR_MASK; 894 } 895 896 static int sh_eth_check_reset(struct net_device *ndev) 897 { 898 int ret = 0; 899 int cnt = 100; 900 901 while (cnt > 0) { 902 if (!(sh_eth_read(ndev, EDMR) & 0x3)) 903 break; 904 mdelay(1); 905 cnt--; 906 } 907 if (cnt <= 0) { 908 netdev_err(ndev, "Device reset failed\n"); 909 ret = -ETIMEDOUT; 910 } 911 return ret; 912 } 913 914 static int sh_eth_reset(struct net_device *ndev) 915 { 916 struct sh_eth_private *mdp = netdev_priv(ndev); 917 int ret = 0; 918 919 if (sh_eth_is_gether(mdp) || sh_eth_is_rz_fast_ether(mdp)) { 920 sh_eth_write(ndev, EDSR_ENALL, EDSR); 921 sh_eth_modify(ndev, EDMR, EDMR_SRST_GETHER, EDMR_SRST_GETHER); 922 923 ret = sh_eth_check_reset(ndev); 924 if (ret) 925 return ret; 926 927 /* Table Init */ 928 sh_eth_write(ndev, 0x0, TDLAR); 929 sh_eth_write(ndev, 0x0, TDFAR); 930 sh_eth_write(ndev, 0x0, TDFXR); 931 sh_eth_write(ndev, 0x0, TDFFR); 932 sh_eth_write(ndev, 0x0, RDLAR); 933 sh_eth_write(ndev, 0x0, RDFAR); 934 sh_eth_write(ndev, 0x0, RDFXR); 935 sh_eth_write(ndev, 0x0, RDFFR); 936 937 /* Reset HW CRC register */ 938 if (mdp->cd->hw_crc) 939 sh_eth_write(ndev, 0x0, CSMR); 940 941 /* Select MII mode */ 942 if (mdp->cd->select_mii) 943 sh_eth_select_mii(ndev); 944 } else { 945 sh_eth_modify(ndev, EDMR, EDMR_SRST_ETHER, EDMR_SRST_ETHER); 946 mdelay(3); 947 sh_eth_modify(ndev, EDMR, EDMR_SRST_ETHER, 0); 948 } 949 950 return ret; 951 } 952 953 static void sh_eth_set_receive_align(struct sk_buff *skb) 954 { 955 uintptr_t reserve = (uintptr_t)skb->data & (SH_ETH_RX_ALIGN - 1); 956 957 if (reserve) 958 skb_reserve(skb, SH_ETH_RX_ALIGN - reserve); 959 } 960 961 /* Program the hardware MAC address from dev->dev_addr. */ 962 static void update_mac_address(struct net_device *ndev) 963 { 964 sh_eth_write(ndev, 965 (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) | 966 (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR); 967 sh_eth_write(ndev, 968 (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR); 969 } 970 971 /* Get MAC address from SuperH MAC address register 972 * 973 * SuperH's Ethernet device doesn't have 'ROM' to MAC address. 974 * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g). 975 * When you want use this device, you must set MAC address in bootloader. 976 * 977 */ 978 static void read_mac_address(struct net_device *ndev, unsigned char *mac) 979 { 980 if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) { 981 memcpy(ndev->dev_addr, mac, ETH_ALEN); 982 } else { 983 u32 mahr = sh_eth_read(ndev, MAHR); 984 u32 malr = sh_eth_read(ndev, MALR); 985 986 ndev->dev_addr[0] = (mahr >> 24) & 0xFF; 987 ndev->dev_addr[1] = (mahr >> 16) & 0xFF; 988 ndev->dev_addr[2] = (mahr >> 8) & 0xFF; 989 ndev->dev_addr[3] = (mahr >> 0) & 0xFF; 990 ndev->dev_addr[4] = (malr >> 8) & 0xFF; 991 ndev->dev_addr[5] = (malr >> 0) & 0xFF; 992 } 993 } 994 995 static u32 sh_eth_get_edtrr_trns(struct sh_eth_private *mdp) 996 { 997 if (sh_eth_is_gether(mdp) || sh_eth_is_rz_fast_ether(mdp)) 998 return EDTRR_TRNS_GETHER; 999 else 1000 return EDTRR_TRNS_ETHER; 1001 } 1002 1003 struct bb_info { 1004 void (*set_gate)(void *addr); 1005 struct mdiobb_ctrl ctrl; 1006 void *addr; 1007 }; 1008 1009 static void sh_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set) 1010 { 1011 struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl); 1012 u32 pir; 1013 1014 if (bitbang->set_gate) 1015 bitbang->set_gate(bitbang->addr); 1016 1017 pir = ioread32(bitbang->addr); 1018 if (set) 1019 pir |= mask; 1020 else 1021 pir &= ~mask; 1022 iowrite32(pir, bitbang->addr); 1023 } 1024 1025 /* Data I/O pin control */ 1026 static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit) 1027 { 1028 sh_mdio_ctrl(ctrl, PIR_MMD, bit); 1029 } 1030 1031 /* Set bit data*/ 1032 static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit) 1033 { 1034 sh_mdio_ctrl(ctrl, PIR_MDO, bit); 1035 } 1036 1037 /* Get bit data*/ 1038 static int sh_get_mdio(struct mdiobb_ctrl *ctrl) 1039 { 1040 struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl); 1041 1042 if (bitbang->set_gate) 1043 bitbang->set_gate(bitbang->addr); 1044 1045 return (ioread32(bitbang->addr) & PIR_MDI) != 0; 1046 } 1047 1048 /* MDC pin control */ 1049 static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit) 1050 { 1051 sh_mdio_ctrl(ctrl, PIR_MDC, bit); 1052 } 1053 1054 /* mdio bus control struct */ 1055 static struct mdiobb_ops bb_ops = { 1056 .owner = THIS_MODULE, 1057 .set_mdc = sh_mdc_ctrl, 1058 .set_mdio_dir = sh_mmd_ctrl, 1059 .set_mdio_data = sh_set_mdio, 1060 .get_mdio_data = sh_get_mdio, 1061 }; 1062 1063 /* free skb and descriptor buffer */ 1064 static void sh_eth_ring_free(struct net_device *ndev) 1065 { 1066 struct sh_eth_private *mdp = netdev_priv(ndev); 1067 int ringsize, i; 1068 1069 /* Free Rx skb ringbuffer */ 1070 if (mdp->rx_skbuff) { 1071 for (i = 0; i < mdp->num_rx_ring; i++) 1072 dev_kfree_skb(mdp->rx_skbuff[i]); 1073 } 1074 kfree(mdp->rx_skbuff); 1075 mdp->rx_skbuff = NULL; 1076 1077 /* Free Tx skb ringbuffer */ 1078 if (mdp->tx_skbuff) { 1079 for (i = 0; i < mdp->num_tx_ring; i++) 1080 dev_kfree_skb(mdp->tx_skbuff[i]); 1081 } 1082 kfree(mdp->tx_skbuff); 1083 mdp->tx_skbuff = NULL; 1084 1085 if (mdp->rx_ring) { 1086 ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring; 1087 dma_free_coherent(NULL, ringsize, mdp->rx_ring, 1088 mdp->rx_desc_dma); 1089 mdp->rx_ring = NULL; 1090 } 1091 1092 if (mdp->tx_ring) { 1093 ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring; 1094 dma_free_coherent(NULL, ringsize, mdp->tx_ring, 1095 mdp->tx_desc_dma); 1096 mdp->tx_ring = NULL; 1097 } 1098 } 1099 1100 /* format skb and descriptor buffer */ 1101 static void sh_eth_ring_format(struct net_device *ndev) 1102 { 1103 struct sh_eth_private *mdp = netdev_priv(ndev); 1104 int i; 1105 struct sk_buff *skb; 1106 struct sh_eth_rxdesc *rxdesc = NULL; 1107 struct sh_eth_txdesc *txdesc = NULL; 1108 int rx_ringsize = sizeof(*rxdesc) * mdp->num_rx_ring; 1109 int tx_ringsize = sizeof(*txdesc) * mdp->num_tx_ring; 1110 int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1; 1111 dma_addr_t dma_addr; 1112 u32 buf_len; 1113 1114 mdp->cur_rx = 0; 1115 mdp->cur_tx = 0; 1116 mdp->dirty_rx = 0; 1117 mdp->dirty_tx = 0; 1118 1119 memset(mdp->rx_ring, 0, rx_ringsize); 1120 1121 /* build Rx ring buffer */ 1122 for (i = 0; i < mdp->num_rx_ring; i++) { 1123 /* skb */ 1124 mdp->rx_skbuff[i] = NULL; 1125 skb = netdev_alloc_skb(ndev, skbuff_size); 1126 if (skb == NULL) 1127 break; 1128 sh_eth_set_receive_align(skb); 1129 1130 /* The size of the buffer is a multiple of 32 bytes. */ 1131 buf_len = ALIGN(mdp->rx_buf_sz, 32); 1132 dma_addr = dma_map_single(&ndev->dev, skb->data, buf_len, 1133 DMA_FROM_DEVICE); 1134 if (dma_mapping_error(&ndev->dev, dma_addr)) { 1135 kfree_skb(skb); 1136 break; 1137 } 1138 mdp->rx_skbuff[i] = skb; 1139 1140 /* RX descriptor */ 1141 rxdesc = &mdp->rx_ring[i]; 1142 rxdesc->len = cpu_to_le32(buf_len << 16); 1143 rxdesc->addr = cpu_to_le32(dma_addr); 1144 rxdesc->status = cpu_to_le32(RD_RACT | RD_RFP); 1145 1146 /* Rx descriptor address set */ 1147 if (i == 0) { 1148 sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR); 1149 if (sh_eth_is_gether(mdp) || 1150 sh_eth_is_rz_fast_ether(mdp)) 1151 sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR); 1152 } 1153 } 1154 1155 mdp->dirty_rx = (u32) (i - mdp->num_rx_ring); 1156 1157 /* Mark the last entry as wrapping the ring. */ 1158 if (rxdesc) 1159 rxdesc->status |= cpu_to_le32(RD_RDLE); 1160 1161 memset(mdp->tx_ring, 0, tx_ringsize); 1162 1163 /* build Tx ring buffer */ 1164 for (i = 0; i < mdp->num_tx_ring; i++) { 1165 mdp->tx_skbuff[i] = NULL; 1166 txdesc = &mdp->tx_ring[i]; 1167 txdesc->status = cpu_to_le32(TD_TFP); 1168 txdesc->len = cpu_to_le32(0); 1169 if (i == 0) { 1170 /* Tx descriptor address set */ 1171 sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR); 1172 if (sh_eth_is_gether(mdp) || 1173 sh_eth_is_rz_fast_ether(mdp)) 1174 sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR); 1175 } 1176 } 1177 1178 txdesc->status |= cpu_to_le32(TD_TDLE); 1179 } 1180 1181 /* Get skb and descriptor buffer */ 1182 static int sh_eth_ring_init(struct net_device *ndev) 1183 { 1184 struct sh_eth_private *mdp = netdev_priv(ndev); 1185 int rx_ringsize, tx_ringsize; 1186 1187 /* +26 gets the maximum ethernet encapsulation, +7 & ~7 because the 1188 * card needs room to do 8 byte alignment, +2 so we can reserve 1189 * the first 2 bytes, and +16 gets room for the status word from the 1190 * card. 1191 */ 1192 mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ : 1193 (((ndev->mtu + 26 + 7) & ~7) + 2 + 16)); 1194 if (mdp->cd->rpadir) 1195 mdp->rx_buf_sz += NET_IP_ALIGN; 1196 1197 /* Allocate RX and TX skb rings */ 1198 mdp->rx_skbuff = kcalloc(mdp->num_rx_ring, sizeof(*mdp->rx_skbuff), 1199 GFP_KERNEL); 1200 if (!mdp->rx_skbuff) 1201 return -ENOMEM; 1202 1203 mdp->tx_skbuff = kcalloc(mdp->num_tx_ring, sizeof(*mdp->tx_skbuff), 1204 GFP_KERNEL); 1205 if (!mdp->tx_skbuff) 1206 goto ring_free; 1207 1208 /* Allocate all Rx descriptors. */ 1209 rx_ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring; 1210 mdp->rx_ring = dma_alloc_coherent(NULL, rx_ringsize, &mdp->rx_desc_dma, 1211 GFP_KERNEL); 1212 if (!mdp->rx_ring) 1213 goto ring_free; 1214 1215 mdp->dirty_rx = 0; 1216 1217 /* Allocate all Tx descriptors. */ 1218 tx_ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring; 1219 mdp->tx_ring = dma_alloc_coherent(NULL, tx_ringsize, &mdp->tx_desc_dma, 1220 GFP_KERNEL); 1221 if (!mdp->tx_ring) 1222 goto ring_free; 1223 return 0; 1224 1225 ring_free: 1226 /* Free Rx and Tx skb ring buffer and DMA buffer */ 1227 sh_eth_ring_free(ndev); 1228 1229 return -ENOMEM; 1230 } 1231 1232 static int sh_eth_dev_init(struct net_device *ndev, bool start) 1233 { 1234 struct sh_eth_private *mdp = netdev_priv(ndev); 1235 int ret; 1236 1237 /* Soft Reset */ 1238 ret = sh_eth_reset(ndev); 1239 if (ret) 1240 return ret; 1241 1242 if (mdp->cd->rmiimode) 1243 sh_eth_write(ndev, 0x1, RMIIMODE); 1244 1245 /* Descriptor format */ 1246 sh_eth_ring_format(ndev); 1247 if (mdp->cd->rpadir) 1248 sh_eth_write(ndev, mdp->cd->rpadir_value, RPADIR); 1249 1250 /* all sh_eth int mask */ 1251 sh_eth_write(ndev, 0, EESIPR); 1252 1253 #if defined(__LITTLE_ENDIAN) 1254 if (mdp->cd->hw_swap) 1255 sh_eth_write(ndev, EDMR_EL, EDMR); 1256 else 1257 #endif 1258 sh_eth_write(ndev, 0, EDMR); 1259 1260 /* FIFO size set */ 1261 sh_eth_write(ndev, mdp->cd->fdr_value, FDR); 1262 sh_eth_write(ndev, 0, TFTR); 1263 1264 /* Frame recv control (enable multiple-packets per rx irq) */ 1265 sh_eth_write(ndev, RMCR_RNC, RMCR); 1266 1267 sh_eth_write(ndev, mdp->cd->trscer_err_mask, TRSCER); 1268 1269 if (mdp->cd->bculr) 1270 sh_eth_write(ndev, 0x800, BCULR); /* Burst sycle set */ 1271 1272 sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR); 1273 1274 if (!mdp->cd->no_trimd) 1275 sh_eth_write(ndev, 0, TRIMD); 1276 1277 /* Recv frame limit set register */ 1278 sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN, 1279 RFLR); 1280 1281 sh_eth_modify(ndev, EESR, 0, 0); 1282 if (start) { 1283 mdp->irq_enabled = true; 1284 sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR); 1285 } 1286 1287 /* PAUSE Prohibition */ 1288 sh_eth_write(ndev, ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) | 1289 ECMR_TE | ECMR_RE, ECMR); 1290 1291 if (mdp->cd->set_rate) 1292 mdp->cd->set_rate(ndev); 1293 1294 /* E-MAC Status Register clear */ 1295 sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR); 1296 1297 /* E-MAC Interrupt Enable register */ 1298 if (start) 1299 sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR); 1300 1301 /* Set MAC address */ 1302 update_mac_address(ndev); 1303 1304 /* mask reset */ 1305 if (mdp->cd->apr) 1306 sh_eth_write(ndev, APR_AP, APR); 1307 if (mdp->cd->mpr) 1308 sh_eth_write(ndev, MPR_MP, MPR); 1309 if (mdp->cd->tpauser) 1310 sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER); 1311 1312 if (start) { 1313 /* Setting the Rx mode will start the Rx process. */ 1314 sh_eth_write(ndev, EDRRR_R, EDRRR); 1315 } 1316 1317 return ret; 1318 } 1319 1320 static void sh_eth_dev_exit(struct net_device *ndev) 1321 { 1322 struct sh_eth_private *mdp = netdev_priv(ndev); 1323 int i; 1324 1325 /* Deactivate all TX descriptors, so DMA should stop at next 1326 * packet boundary if it's currently running 1327 */ 1328 for (i = 0; i < mdp->num_tx_ring; i++) 1329 mdp->tx_ring[i].status &= ~cpu_to_le32(TD_TACT); 1330 1331 /* Disable TX FIFO egress to MAC */ 1332 sh_eth_rcv_snd_disable(ndev); 1333 1334 /* Stop RX DMA at next packet boundary */ 1335 sh_eth_write(ndev, 0, EDRRR); 1336 1337 /* Aside from TX DMA, we can't tell when the hardware is 1338 * really stopped, so we need to reset to make sure. 1339 * Before doing that, wait for long enough to *probably* 1340 * finish transmitting the last packet and poll stats. 1341 */ 1342 msleep(2); /* max frame time at 10 Mbps < 1250 us */ 1343 sh_eth_get_stats(ndev); 1344 sh_eth_reset(ndev); 1345 1346 /* Set MAC address again */ 1347 update_mac_address(ndev); 1348 } 1349 1350 /* free Tx skb function */ 1351 static int sh_eth_txfree(struct net_device *ndev) 1352 { 1353 struct sh_eth_private *mdp = netdev_priv(ndev); 1354 struct sh_eth_txdesc *txdesc; 1355 int free_num = 0; 1356 int entry; 1357 1358 for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) { 1359 entry = mdp->dirty_tx % mdp->num_tx_ring; 1360 txdesc = &mdp->tx_ring[entry]; 1361 if (txdesc->status & cpu_to_le32(TD_TACT)) 1362 break; 1363 /* TACT bit must be checked before all the following reads */ 1364 dma_rmb(); 1365 netif_info(mdp, tx_done, ndev, 1366 "tx entry %d status 0x%08x\n", 1367 entry, le32_to_cpu(txdesc->status)); 1368 /* Free the original skb. */ 1369 if (mdp->tx_skbuff[entry]) { 1370 dma_unmap_single(&ndev->dev, le32_to_cpu(txdesc->addr), 1371 le32_to_cpu(txdesc->len) >> 16, 1372 DMA_TO_DEVICE); 1373 dev_kfree_skb_irq(mdp->tx_skbuff[entry]); 1374 mdp->tx_skbuff[entry] = NULL; 1375 free_num++; 1376 } 1377 txdesc->status = cpu_to_le32(TD_TFP); 1378 if (entry >= mdp->num_tx_ring - 1) 1379 txdesc->status |= cpu_to_le32(TD_TDLE); 1380 1381 ndev->stats.tx_packets++; 1382 ndev->stats.tx_bytes += le32_to_cpu(txdesc->len) >> 16; 1383 } 1384 return free_num; 1385 } 1386 1387 /* Packet receive function */ 1388 static int sh_eth_rx(struct net_device *ndev, u32 intr_status, int *quota) 1389 { 1390 struct sh_eth_private *mdp = netdev_priv(ndev); 1391 struct sh_eth_rxdesc *rxdesc; 1392 1393 int entry = mdp->cur_rx % mdp->num_rx_ring; 1394 int boguscnt = (mdp->dirty_rx + mdp->num_rx_ring) - mdp->cur_rx; 1395 int limit; 1396 struct sk_buff *skb; 1397 u32 desc_status; 1398 int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1; 1399 dma_addr_t dma_addr; 1400 u16 pkt_len; 1401 u32 buf_len; 1402 1403 boguscnt = min(boguscnt, *quota); 1404 limit = boguscnt; 1405 rxdesc = &mdp->rx_ring[entry]; 1406 while (!(rxdesc->status & cpu_to_le32(RD_RACT))) { 1407 /* RACT bit must be checked before all the following reads */ 1408 dma_rmb(); 1409 desc_status = le32_to_cpu(rxdesc->status); 1410 pkt_len = le32_to_cpu(rxdesc->len) & RD_RFL; 1411 1412 if (--boguscnt < 0) 1413 break; 1414 1415 netif_info(mdp, rx_status, ndev, 1416 "rx entry %d status 0x%08x len %d\n", 1417 entry, desc_status, pkt_len); 1418 1419 if (!(desc_status & RDFEND)) 1420 ndev->stats.rx_length_errors++; 1421 1422 /* In case of almost all GETHER/ETHERs, the Receive Frame State 1423 * (RFS) bits in the Receive Descriptor 0 are from bit 9 to 1424 * bit 0. However, in case of the R8A7740 and R7S72100 1425 * the RFS bits are from bit 25 to bit 16. So, the 1426 * driver needs right shifting by 16. 1427 */ 1428 if (mdp->cd->shift_rd0) 1429 desc_status >>= 16; 1430 1431 skb = mdp->rx_skbuff[entry]; 1432 if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 | 1433 RD_RFS5 | RD_RFS6 | RD_RFS10)) { 1434 ndev->stats.rx_errors++; 1435 if (desc_status & RD_RFS1) 1436 ndev->stats.rx_crc_errors++; 1437 if (desc_status & RD_RFS2) 1438 ndev->stats.rx_frame_errors++; 1439 if (desc_status & RD_RFS3) 1440 ndev->stats.rx_length_errors++; 1441 if (desc_status & RD_RFS4) 1442 ndev->stats.rx_length_errors++; 1443 if (desc_status & RD_RFS6) 1444 ndev->stats.rx_missed_errors++; 1445 if (desc_status & RD_RFS10) 1446 ndev->stats.rx_over_errors++; 1447 } else if (skb) { 1448 dma_addr = le32_to_cpu(rxdesc->addr); 1449 if (!mdp->cd->hw_swap) 1450 sh_eth_soft_swap( 1451 phys_to_virt(ALIGN(dma_addr, 4)), 1452 pkt_len + 2); 1453 mdp->rx_skbuff[entry] = NULL; 1454 if (mdp->cd->rpadir) 1455 skb_reserve(skb, NET_IP_ALIGN); 1456 dma_unmap_single(&ndev->dev, dma_addr, 1457 ALIGN(mdp->rx_buf_sz, 32), 1458 DMA_FROM_DEVICE); 1459 skb_put(skb, pkt_len); 1460 skb->protocol = eth_type_trans(skb, ndev); 1461 netif_receive_skb(skb); 1462 ndev->stats.rx_packets++; 1463 ndev->stats.rx_bytes += pkt_len; 1464 if (desc_status & RD_RFS8) 1465 ndev->stats.multicast++; 1466 } 1467 entry = (++mdp->cur_rx) % mdp->num_rx_ring; 1468 rxdesc = &mdp->rx_ring[entry]; 1469 } 1470 1471 /* Refill the Rx ring buffers. */ 1472 for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) { 1473 entry = mdp->dirty_rx % mdp->num_rx_ring; 1474 rxdesc = &mdp->rx_ring[entry]; 1475 /* The size of the buffer is 32 byte boundary. */ 1476 buf_len = ALIGN(mdp->rx_buf_sz, 32); 1477 rxdesc->len = cpu_to_le32(buf_len << 16); 1478 1479 if (mdp->rx_skbuff[entry] == NULL) { 1480 skb = netdev_alloc_skb(ndev, skbuff_size); 1481 if (skb == NULL) 1482 break; /* Better luck next round. */ 1483 sh_eth_set_receive_align(skb); 1484 dma_addr = dma_map_single(&ndev->dev, skb->data, 1485 buf_len, DMA_FROM_DEVICE); 1486 if (dma_mapping_error(&ndev->dev, dma_addr)) { 1487 kfree_skb(skb); 1488 break; 1489 } 1490 mdp->rx_skbuff[entry] = skb; 1491 1492 skb_checksum_none_assert(skb); 1493 rxdesc->addr = cpu_to_le32(dma_addr); 1494 } 1495 dma_wmb(); /* RACT bit must be set after all the above writes */ 1496 if (entry >= mdp->num_rx_ring - 1) 1497 rxdesc->status |= 1498 cpu_to_le32(RD_RACT | RD_RFP | RD_RDLE); 1499 else 1500 rxdesc->status |= cpu_to_le32(RD_RACT | RD_RFP); 1501 } 1502 1503 /* Restart Rx engine if stopped. */ 1504 /* If we don't need to check status, don't. -KDU */ 1505 if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R)) { 1506 /* fix the values for the next receiving if RDE is set */ 1507 if (intr_status & EESR_RDE && 1508 mdp->reg_offset[RDFAR] != SH_ETH_OFFSET_INVALID) { 1509 u32 count = (sh_eth_read(ndev, RDFAR) - 1510 sh_eth_read(ndev, RDLAR)) >> 4; 1511 1512 mdp->cur_rx = count; 1513 mdp->dirty_rx = count; 1514 } 1515 sh_eth_write(ndev, EDRRR_R, EDRRR); 1516 } 1517 1518 *quota -= limit - boguscnt - 1; 1519 1520 return *quota <= 0; 1521 } 1522 1523 static void sh_eth_rcv_snd_disable(struct net_device *ndev) 1524 { 1525 /* disable tx and rx */ 1526 sh_eth_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0); 1527 } 1528 1529 static void sh_eth_rcv_snd_enable(struct net_device *ndev) 1530 { 1531 /* enable tx and rx */ 1532 sh_eth_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE); 1533 } 1534 1535 /* error control function */ 1536 static void sh_eth_error(struct net_device *ndev, u32 intr_status) 1537 { 1538 struct sh_eth_private *mdp = netdev_priv(ndev); 1539 u32 felic_stat; 1540 u32 link_stat; 1541 u32 mask; 1542 1543 if (intr_status & EESR_ECI) { 1544 felic_stat = sh_eth_read(ndev, ECSR); 1545 sh_eth_write(ndev, felic_stat, ECSR); /* clear int */ 1546 if (felic_stat & ECSR_ICD) 1547 ndev->stats.tx_carrier_errors++; 1548 if (felic_stat & ECSR_LCHNG) { 1549 /* Link Changed */ 1550 if (mdp->cd->no_psr || mdp->no_ether_link) { 1551 goto ignore_link; 1552 } else { 1553 link_stat = (sh_eth_read(ndev, PSR)); 1554 if (mdp->ether_link_active_low) 1555 link_stat = ~link_stat; 1556 } 1557 if (!(link_stat & PHY_ST_LINK)) { 1558 sh_eth_rcv_snd_disable(ndev); 1559 } else { 1560 /* Link Up */ 1561 sh_eth_modify(ndev, EESIPR, DMAC_M_ECI, 0); 1562 /* clear int */ 1563 sh_eth_modify(ndev, ECSR, 0, 0); 1564 sh_eth_modify(ndev, EESIPR, DMAC_M_ECI, 1565 DMAC_M_ECI); 1566 /* enable tx and rx */ 1567 sh_eth_rcv_snd_enable(ndev); 1568 } 1569 } 1570 } 1571 1572 ignore_link: 1573 if (intr_status & EESR_TWB) { 1574 /* Unused write back interrupt */ 1575 if (intr_status & EESR_TABT) { /* Transmit Abort int */ 1576 ndev->stats.tx_aborted_errors++; 1577 netif_err(mdp, tx_err, ndev, "Transmit Abort\n"); 1578 } 1579 } 1580 1581 if (intr_status & EESR_RABT) { 1582 /* Receive Abort int */ 1583 if (intr_status & EESR_RFRMER) { 1584 /* Receive Frame Overflow int */ 1585 ndev->stats.rx_frame_errors++; 1586 } 1587 } 1588 1589 if (intr_status & EESR_TDE) { 1590 /* Transmit Descriptor Empty int */ 1591 ndev->stats.tx_fifo_errors++; 1592 netif_err(mdp, tx_err, ndev, "Transmit Descriptor Empty\n"); 1593 } 1594 1595 if (intr_status & EESR_TFE) { 1596 /* FIFO under flow */ 1597 ndev->stats.tx_fifo_errors++; 1598 netif_err(mdp, tx_err, ndev, "Transmit FIFO Under flow\n"); 1599 } 1600 1601 if (intr_status & EESR_RDE) { 1602 /* Receive Descriptor Empty int */ 1603 ndev->stats.rx_over_errors++; 1604 } 1605 1606 if (intr_status & EESR_RFE) { 1607 /* Receive FIFO Overflow int */ 1608 ndev->stats.rx_fifo_errors++; 1609 } 1610 1611 if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) { 1612 /* Address Error */ 1613 ndev->stats.tx_fifo_errors++; 1614 netif_err(mdp, tx_err, ndev, "Address Error\n"); 1615 } 1616 1617 mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE; 1618 if (mdp->cd->no_ade) 1619 mask &= ~EESR_ADE; 1620 if (intr_status & mask) { 1621 /* Tx error */ 1622 u32 edtrr = sh_eth_read(ndev, EDTRR); 1623 1624 /* dmesg */ 1625 netdev_err(ndev, "TX error. status=%8.8x cur_tx=%8.8x dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n", 1626 intr_status, mdp->cur_tx, mdp->dirty_tx, 1627 (u32)ndev->state, edtrr); 1628 /* dirty buffer free */ 1629 sh_eth_txfree(ndev); 1630 1631 /* SH7712 BUG */ 1632 if (edtrr ^ sh_eth_get_edtrr_trns(mdp)) { 1633 /* tx dma start */ 1634 sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR); 1635 } 1636 /* wakeup */ 1637 netif_wake_queue(ndev); 1638 } 1639 } 1640 1641 static irqreturn_t sh_eth_interrupt(int irq, void *netdev) 1642 { 1643 struct net_device *ndev = netdev; 1644 struct sh_eth_private *mdp = netdev_priv(ndev); 1645 struct sh_eth_cpu_data *cd = mdp->cd; 1646 irqreturn_t ret = IRQ_NONE; 1647 u32 intr_status, intr_enable; 1648 1649 spin_lock(&mdp->lock); 1650 1651 /* Get interrupt status */ 1652 intr_status = sh_eth_read(ndev, EESR); 1653 /* Mask it with the interrupt mask, forcing ECI interrupt to be always 1654 * enabled since it's the one that comes thru regardless of the mask, 1655 * and we need to fully handle it in sh_eth_error() in order to quench 1656 * it as it doesn't get cleared by just writing 1 to the ECI bit... 1657 */ 1658 intr_enable = sh_eth_read(ndev, EESIPR); 1659 intr_status &= intr_enable | DMAC_M_ECI; 1660 if (intr_status & (EESR_RX_CHECK | cd->tx_check | cd->eesr_err_check)) 1661 ret = IRQ_HANDLED; 1662 else 1663 goto out; 1664 1665 if (!likely(mdp->irq_enabled)) { 1666 sh_eth_write(ndev, 0, EESIPR); 1667 goto out; 1668 } 1669 1670 if (intr_status & EESR_RX_CHECK) { 1671 if (napi_schedule_prep(&mdp->napi)) { 1672 /* Mask Rx interrupts */ 1673 sh_eth_write(ndev, intr_enable & ~EESR_RX_CHECK, 1674 EESIPR); 1675 __napi_schedule(&mdp->napi); 1676 } else { 1677 netdev_warn(ndev, 1678 "ignoring interrupt, status 0x%08x, mask 0x%08x.\n", 1679 intr_status, intr_enable); 1680 } 1681 } 1682 1683 /* Tx Check */ 1684 if (intr_status & cd->tx_check) { 1685 /* Clear Tx interrupts */ 1686 sh_eth_write(ndev, intr_status & cd->tx_check, EESR); 1687 1688 sh_eth_txfree(ndev); 1689 netif_wake_queue(ndev); 1690 } 1691 1692 if (intr_status & cd->eesr_err_check) { 1693 /* Clear error interrupts */ 1694 sh_eth_write(ndev, intr_status & cd->eesr_err_check, EESR); 1695 1696 sh_eth_error(ndev, intr_status); 1697 } 1698 1699 out: 1700 spin_unlock(&mdp->lock); 1701 1702 return ret; 1703 } 1704 1705 static int sh_eth_poll(struct napi_struct *napi, int budget) 1706 { 1707 struct sh_eth_private *mdp = container_of(napi, struct sh_eth_private, 1708 napi); 1709 struct net_device *ndev = napi->dev; 1710 int quota = budget; 1711 u32 intr_status; 1712 1713 for (;;) { 1714 intr_status = sh_eth_read(ndev, EESR); 1715 if (!(intr_status & EESR_RX_CHECK)) 1716 break; 1717 /* Clear Rx interrupts */ 1718 sh_eth_write(ndev, intr_status & EESR_RX_CHECK, EESR); 1719 1720 if (sh_eth_rx(ndev, intr_status, "a)) 1721 goto out; 1722 } 1723 1724 napi_complete(napi); 1725 1726 /* Reenable Rx interrupts */ 1727 if (mdp->irq_enabled) 1728 sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR); 1729 out: 1730 return budget - quota; 1731 } 1732 1733 /* PHY state control function */ 1734 static void sh_eth_adjust_link(struct net_device *ndev) 1735 { 1736 struct sh_eth_private *mdp = netdev_priv(ndev); 1737 struct phy_device *phydev = mdp->phydev; 1738 int new_state = 0; 1739 1740 if (phydev->link) { 1741 if (phydev->duplex != mdp->duplex) { 1742 new_state = 1; 1743 mdp->duplex = phydev->duplex; 1744 if (mdp->cd->set_duplex) 1745 mdp->cd->set_duplex(ndev); 1746 } 1747 1748 if (phydev->speed != mdp->speed) { 1749 new_state = 1; 1750 mdp->speed = phydev->speed; 1751 if (mdp->cd->set_rate) 1752 mdp->cd->set_rate(ndev); 1753 } 1754 if (!mdp->link) { 1755 sh_eth_modify(ndev, ECMR, ECMR_TXF, 0); 1756 new_state = 1; 1757 mdp->link = phydev->link; 1758 if (mdp->cd->no_psr || mdp->no_ether_link) 1759 sh_eth_rcv_snd_enable(ndev); 1760 } 1761 } else if (mdp->link) { 1762 new_state = 1; 1763 mdp->link = 0; 1764 mdp->speed = 0; 1765 mdp->duplex = -1; 1766 if (mdp->cd->no_psr || mdp->no_ether_link) 1767 sh_eth_rcv_snd_disable(ndev); 1768 } 1769 1770 if (new_state && netif_msg_link(mdp)) 1771 phy_print_status(phydev); 1772 } 1773 1774 /* PHY init function */ 1775 static int sh_eth_phy_init(struct net_device *ndev) 1776 { 1777 struct device_node *np = ndev->dev.parent->of_node; 1778 struct sh_eth_private *mdp = netdev_priv(ndev); 1779 struct phy_device *phydev; 1780 1781 mdp->link = 0; 1782 mdp->speed = 0; 1783 mdp->duplex = -1; 1784 1785 /* Try connect to PHY */ 1786 if (np) { 1787 struct device_node *pn; 1788 1789 pn = of_parse_phandle(np, "phy-handle", 0); 1790 phydev = of_phy_connect(ndev, pn, 1791 sh_eth_adjust_link, 0, 1792 mdp->phy_interface); 1793 1794 if (!phydev) 1795 phydev = ERR_PTR(-ENOENT); 1796 } else { 1797 char phy_id[MII_BUS_ID_SIZE + 3]; 1798 1799 snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT, 1800 mdp->mii_bus->id, mdp->phy_id); 1801 1802 phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link, 1803 mdp->phy_interface); 1804 } 1805 1806 if (IS_ERR(phydev)) { 1807 netdev_err(ndev, "failed to connect PHY\n"); 1808 return PTR_ERR(phydev); 1809 } 1810 1811 phy_attached_info(phydev); 1812 1813 mdp->phydev = phydev; 1814 1815 return 0; 1816 } 1817 1818 /* PHY control start function */ 1819 static int sh_eth_phy_start(struct net_device *ndev) 1820 { 1821 struct sh_eth_private *mdp = netdev_priv(ndev); 1822 int ret; 1823 1824 ret = sh_eth_phy_init(ndev); 1825 if (ret) 1826 return ret; 1827 1828 phy_start(mdp->phydev); 1829 1830 return 0; 1831 } 1832 1833 static int sh_eth_get_settings(struct net_device *ndev, 1834 struct ethtool_cmd *ecmd) 1835 { 1836 struct sh_eth_private *mdp = netdev_priv(ndev); 1837 unsigned long flags; 1838 int ret; 1839 1840 if (!mdp->phydev) 1841 return -ENODEV; 1842 1843 spin_lock_irqsave(&mdp->lock, flags); 1844 ret = phy_ethtool_gset(mdp->phydev, ecmd); 1845 spin_unlock_irqrestore(&mdp->lock, flags); 1846 1847 return ret; 1848 } 1849 1850 static int sh_eth_set_settings(struct net_device *ndev, 1851 struct ethtool_cmd *ecmd) 1852 { 1853 struct sh_eth_private *mdp = netdev_priv(ndev); 1854 unsigned long flags; 1855 int ret; 1856 1857 if (!mdp->phydev) 1858 return -ENODEV; 1859 1860 spin_lock_irqsave(&mdp->lock, flags); 1861 1862 /* disable tx and rx */ 1863 sh_eth_rcv_snd_disable(ndev); 1864 1865 ret = phy_ethtool_sset(mdp->phydev, ecmd); 1866 if (ret) 1867 goto error_exit; 1868 1869 if (ecmd->duplex == DUPLEX_FULL) 1870 mdp->duplex = 1; 1871 else 1872 mdp->duplex = 0; 1873 1874 if (mdp->cd->set_duplex) 1875 mdp->cd->set_duplex(ndev); 1876 1877 error_exit: 1878 mdelay(1); 1879 1880 /* enable tx and rx */ 1881 sh_eth_rcv_snd_enable(ndev); 1882 1883 spin_unlock_irqrestore(&mdp->lock, flags); 1884 1885 return ret; 1886 } 1887 1888 /* If it is ever necessary to increase SH_ETH_REG_DUMP_MAX_REGS, the 1889 * version must be bumped as well. Just adding registers up to that 1890 * limit is fine, as long as the existing register indices don't 1891 * change. 1892 */ 1893 #define SH_ETH_REG_DUMP_VERSION 1 1894 #define SH_ETH_REG_DUMP_MAX_REGS 256 1895 1896 static size_t __sh_eth_get_regs(struct net_device *ndev, u32 *buf) 1897 { 1898 struct sh_eth_private *mdp = netdev_priv(ndev); 1899 struct sh_eth_cpu_data *cd = mdp->cd; 1900 u32 *valid_map; 1901 size_t len; 1902 1903 BUILD_BUG_ON(SH_ETH_MAX_REGISTER_OFFSET > SH_ETH_REG_DUMP_MAX_REGS); 1904 1905 /* Dump starts with a bitmap that tells ethtool which 1906 * registers are defined for this chip. 1907 */ 1908 len = DIV_ROUND_UP(SH_ETH_REG_DUMP_MAX_REGS, 32); 1909 if (buf) { 1910 valid_map = buf; 1911 buf += len; 1912 } else { 1913 valid_map = NULL; 1914 } 1915 1916 /* Add a register to the dump, if it has a defined offset. 1917 * This automatically skips most undefined registers, but for 1918 * some it is also necessary to check a capability flag in 1919 * struct sh_eth_cpu_data. 1920 */ 1921 #define mark_reg_valid(reg) valid_map[reg / 32] |= 1U << (reg % 32) 1922 #define add_reg_from(reg, read_expr) do { \ 1923 if (mdp->reg_offset[reg] != SH_ETH_OFFSET_INVALID) { \ 1924 if (buf) { \ 1925 mark_reg_valid(reg); \ 1926 *buf++ = read_expr; \ 1927 } \ 1928 ++len; \ 1929 } \ 1930 } while (0) 1931 #define add_reg(reg) add_reg_from(reg, sh_eth_read(ndev, reg)) 1932 #define add_tsu_reg(reg) add_reg_from(reg, sh_eth_tsu_read(mdp, reg)) 1933 1934 add_reg(EDSR); 1935 add_reg(EDMR); 1936 add_reg(EDTRR); 1937 add_reg(EDRRR); 1938 add_reg(EESR); 1939 add_reg(EESIPR); 1940 add_reg(TDLAR); 1941 add_reg(TDFAR); 1942 add_reg(TDFXR); 1943 add_reg(TDFFR); 1944 add_reg(RDLAR); 1945 add_reg(RDFAR); 1946 add_reg(RDFXR); 1947 add_reg(RDFFR); 1948 add_reg(TRSCER); 1949 add_reg(RMFCR); 1950 add_reg(TFTR); 1951 add_reg(FDR); 1952 add_reg(RMCR); 1953 add_reg(TFUCR); 1954 add_reg(RFOCR); 1955 if (cd->rmiimode) 1956 add_reg(RMIIMODE); 1957 add_reg(FCFTR); 1958 if (cd->rpadir) 1959 add_reg(RPADIR); 1960 if (!cd->no_trimd) 1961 add_reg(TRIMD); 1962 add_reg(ECMR); 1963 add_reg(ECSR); 1964 add_reg(ECSIPR); 1965 add_reg(PIR); 1966 if (!cd->no_psr) 1967 add_reg(PSR); 1968 add_reg(RDMLR); 1969 add_reg(RFLR); 1970 add_reg(IPGR); 1971 if (cd->apr) 1972 add_reg(APR); 1973 if (cd->mpr) 1974 add_reg(MPR); 1975 add_reg(RFCR); 1976 add_reg(RFCF); 1977 if (cd->tpauser) 1978 add_reg(TPAUSER); 1979 add_reg(TPAUSECR); 1980 add_reg(GECMR); 1981 if (cd->bculr) 1982 add_reg(BCULR); 1983 add_reg(MAHR); 1984 add_reg(MALR); 1985 add_reg(TROCR); 1986 add_reg(CDCR); 1987 add_reg(LCCR); 1988 add_reg(CNDCR); 1989 add_reg(CEFCR); 1990 add_reg(FRECR); 1991 add_reg(TSFRCR); 1992 add_reg(TLFRCR); 1993 add_reg(CERCR); 1994 add_reg(CEECR); 1995 add_reg(MAFCR); 1996 if (cd->rtrate) 1997 add_reg(RTRATE); 1998 if (cd->hw_crc) 1999 add_reg(CSMR); 2000 if (cd->select_mii) 2001 add_reg(RMII_MII); 2002 add_reg(ARSTR); 2003 if (cd->tsu) { 2004 add_tsu_reg(TSU_CTRST); 2005 add_tsu_reg(TSU_FWEN0); 2006 add_tsu_reg(TSU_FWEN1); 2007 add_tsu_reg(TSU_FCM); 2008 add_tsu_reg(TSU_BSYSL0); 2009 add_tsu_reg(TSU_BSYSL1); 2010 add_tsu_reg(TSU_PRISL0); 2011 add_tsu_reg(TSU_PRISL1); 2012 add_tsu_reg(TSU_FWSL0); 2013 add_tsu_reg(TSU_FWSL1); 2014 add_tsu_reg(TSU_FWSLC); 2015 add_tsu_reg(TSU_QTAG0); 2016 add_tsu_reg(TSU_QTAG1); 2017 add_tsu_reg(TSU_QTAGM0); 2018 add_tsu_reg(TSU_QTAGM1); 2019 add_tsu_reg(TSU_FWSR); 2020 add_tsu_reg(TSU_FWINMK); 2021 add_tsu_reg(TSU_ADQT0); 2022 add_tsu_reg(TSU_ADQT1); 2023 add_tsu_reg(TSU_VTAG0); 2024 add_tsu_reg(TSU_VTAG1); 2025 add_tsu_reg(TSU_ADSBSY); 2026 add_tsu_reg(TSU_TEN); 2027 add_tsu_reg(TSU_POST1); 2028 add_tsu_reg(TSU_POST2); 2029 add_tsu_reg(TSU_POST3); 2030 add_tsu_reg(TSU_POST4); 2031 if (mdp->reg_offset[TSU_ADRH0] != SH_ETH_OFFSET_INVALID) { 2032 /* This is the start of a table, not just a single 2033 * register. 2034 */ 2035 if (buf) { 2036 unsigned int i; 2037 2038 mark_reg_valid(TSU_ADRH0); 2039 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES * 2; i++) 2040 *buf++ = ioread32( 2041 mdp->tsu_addr + 2042 mdp->reg_offset[TSU_ADRH0] + 2043 i * 4); 2044 } 2045 len += SH_ETH_TSU_CAM_ENTRIES * 2; 2046 } 2047 } 2048 2049 #undef mark_reg_valid 2050 #undef add_reg_from 2051 #undef add_reg 2052 #undef add_tsu_reg 2053 2054 return len * 4; 2055 } 2056 2057 static int sh_eth_get_regs_len(struct net_device *ndev) 2058 { 2059 return __sh_eth_get_regs(ndev, NULL); 2060 } 2061 2062 static void sh_eth_get_regs(struct net_device *ndev, struct ethtool_regs *regs, 2063 void *buf) 2064 { 2065 struct sh_eth_private *mdp = netdev_priv(ndev); 2066 2067 regs->version = SH_ETH_REG_DUMP_VERSION; 2068 2069 pm_runtime_get_sync(&mdp->pdev->dev); 2070 __sh_eth_get_regs(ndev, buf); 2071 pm_runtime_put_sync(&mdp->pdev->dev); 2072 } 2073 2074 static int sh_eth_nway_reset(struct net_device *ndev) 2075 { 2076 struct sh_eth_private *mdp = netdev_priv(ndev); 2077 unsigned long flags; 2078 int ret; 2079 2080 if (!mdp->phydev) 2081 return -ENODEV; 2082 2083 spin_lock_irqsave(&mdp->lock, flags); 2084 ret = phy_start_aneg(mdp->phydev); 2085 spin_unlock_irqrestore(&mdp->lock, flags); 2086 2087 return ret; 2088 } 2089 2090 static u32 sh_eth_get_msglevel(struct net_device *ndev) 2091 { 2092 struct sh_eth_private *mdp = netdev_priv(ndev); 2093 return mdp->msg_enable; 2094 } 2095 2096 static void sh_eth_set_msglevel(struct net_device *ndev, u32 value) 2097 { 2098 struct sh_eth_private *mdp = netdev_priv(ndev); 2099 mdp->msg_enable = value; 2100 } 2101 2102 static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = { 2103 "rx_current", "tx_current", 2104 "rx_dirty", "tx_dirty", 2105 }; 2106 #define SH_ETH_STATS_LEN ARRAY_SIZE(sh_eth_gstrings_stats) 2107 2108 static int sh_eth_get_sset_count(struct net_device *netdev, int sset) 2109 { 2110 switch (sset) { 2111 case ETH_SS_STATS: 2112 return SH_ETH_STATS_LEN; 2113 default: 2114 return -EOPNOTSUPP; 2115 } 2116 } 2117 2118 static void sh_eth_get_ethtool_stats(struct net_device *ndev, 2119 struct ethtool_stats *stats, u64 *data) 2120 { 2121 struct sh_eth_private *mdp = netdev_priv(ndev); 2122 int i = 0; 2123 2124 /* device-specific stats */ 2125 data[i++] = mdp->cur_rx; 2126 data[i++] = mdp->cur_tx; 2127 data[i++] = mdp->dirty_rx; 2128 data[i++] = mdp->dirty_tx; 2129 } 2130 2131 static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data) 2132 { 2133 switch (stringset) { 2134 case ETH_SS_STATS: 2135 memcpy(data, *sh_eth_gstrings_stats, 2136 sizeof(sh_eth_gstrings_stats)); 2137 break; 2138 } 2139 } 2140 2141 static void sh_eth_get_ringparam(struct net_device *ndev, 2142 struct ethtool_ringparam *ring) 2143 { 2144 struct sh_eth_private *mdp = netdev_priv(ndev); 2145 2146 ring->rx_max_pending = RX_RING_MAX; 2147 ring->tx_max_pending = TX_RING_MAX; 2148 ring->rx_pending = mdp->num_rx_ring; 2149 ring->tx_pending = mdp->num_tx_ring; 2150 } 2151 2152 static int sh_eth_set_ringparam(struct net_device *ndev, 2153 struct ethtool_ringparam *ring) 2154 { 2155 struct sh_eth_private *mdp = netdev_priv(ndev); 2156 int ret; 2157 2158 if (ring->tx_pending > TX_RING_MAX || 2159 ring->rx_pending > RX_RING_MAX || 2160 ring->tx_pending < TX_RING_MIN || 2161 ring->rx_pending < RX_RING_MIN) 2162 return -EINVAL; 2163 if (ring->rx_mini_pending || ring->rx_jumbo_pending) 2164 return -EINVAL; 2165 2166 if (netif_running(ndev)) { 2167 netif_device_detach(ndev); 2168 netif_tx_disable(ndev); 2169 2170 /* Serialise with the interrupt handler and NAPI, then 2171 * disable interrupts. We have to clear the 2172 * irq_enabled flag first to ensure that interrupts 2173 * won't be re-enabled. 2174 */ 2175 mdp->irq_enabled = false; 2176 synchronize_irq(ndev->irq); 2177 napi_synchronize(&mdp->napi); 2178 sh_eth_write(ndev, 0x0000, EESIPR); 2179 2180 sh_eth_dev_exit(ndev); 2181 2182 /* Free all the skbuffs in the Rx queue and the DMA buffers. */ 2183 sh_eth_ring_free(ndev); 2184 } 2185 2186 /* Set new parameters */ 2187 mdp->num_rx_ring = ring->rx_pending; 2188 mdp->num_tx_ring = ring->tx_pending; 2189 2190 if (netif_running(ndev)) { 2191 ret = sh_eth_ring_init(ndev); 2192 if (ret < 0) { 2193 netdev_err(ndev, "%s: sh_eth_ring_init failed.\n", 2194 __func__); 2195 return ret; 2196 } 2197 ret = sh_eth_dev_init(ndev, false); 2198 if (ret < 0) { 2199 netdev_err(ndev, "%s: sh_eth_dev_init failed.\n", 2200 __func__); 2201 return ret; 2202 } 2203 2204 mdp->irq_enabled = true; 2205 sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR); 2206 /* Setting the Rx mode will start the Rx process. */ 2207 sh_eth_write(ndev, EDRRR_R, EDRRR); 2208 netif_device_attach(ndev); 2209 } 2210 2211 return 0; 2212 } 2213 2214 static const struct ethtool_ops sh_eth_ethtool_ops = { 2215 .get_settings = sh_eth_get_settings, 2216 .set_settings = sh_eth_set_settings, 2217 .get_regs_len = sh_eth_get_regs_len, 2218 .get_regs = sh_eth_get_regs, 2219 .nway_reset = sh_eth_nway_reset, 2220 .get_msglevel = sh_eth_get_msglevel, 2221 .set_msglevel = sh_eth_set_msglevel, 2222 .get_link = ethtool_op_get_link, 2223 .get_strings = sh_eth_get_strings, 2224 .get_ethtool_stats = sh_eth_get_ethtool_stats, 2225 .get_sset_count = sh_eth_get_sset_count, 2226 .get_ringparam = sh_eth_get_ringparam, 2227 .set_ringparam = sh_eth_set_ringparam, 2228 }; 2229 2230 /* network device open function */ 2231 static int sh_eth_open(struct net_device *ndev) 2232 { 2233 struct sh_eth_private *mdp = netdev_priv(ndev); 2234 int ret; 2235 2236 pm_runtime_get_sync(&mdp->pdev->dev); 2237 2238 napi_enable(&mdp->napi); 2239 2240 ret = request_irq(ndev->irq, sh_eth_interrupt, 2241 mdp->cd->irq_flags, ndev->name, ndev); 2242 if (ret) { 2243 netdev_err(ndev, "Can not assign IRQ number\n"); 2244 goto out_napi_off; 2245 } 2246 2247 /* Descriptor set */ 2248 ret = sh_eth_ring_init(ndev); 2249 if (ret) 2250 goto out_free_irq; 2251 2252 /* device init */ 2253 ret = sh_eth_dev_init(ndev, true); 2254 if (ret) 2255 goto out_free_irq; 2256 2257 /* PHY control start*/ 2258 ret = sh_eth_phy_start(ndev); 2259 if (ret) 2260 goto out_free_irq; 2261 2262 netif_start_queue(ndev); 2263 2264 mdp->is_opened = 1; 2265 2266 return ret; 2267 2268 out_free_irq: 2269 free_irq(ndev->irq, ndev); 2270 out_napi_off: 2271 napi_disable(&mdp->napi); 2272 pm_runtime_put_sync(&mdp->pdev->dev); 2273 return ret; 2274 } 2275 2276 /* Timeout function */ 2277 static void sh_eth_tx_timeout(struct net_device *ndev) 2278 { 2279 struct sh_eth_private *mdp = netdev_priv(ndev); 2280 struct sh_eth_rxdesc *rxdesc; 2281 int i; 2282 2283 netif_stop_queue(ndev); 2284 2285 netif_err(mdp, timer, ndev, 2286 "transmit timed out, status %8.8x, resetting...\n", 2287 sh_eth_read(ndev, EESR)); 2288 2289 /* tx_errors count up */ 2290 ndev->stats.tx_errors++; 2291 2292 /* Free all the skbuffs in the Rx queue. */ 2293 for (i = 0; i < mdp->num_rx_ring; i++) { 2294 rxdesc = &mdp->rx_ring[i]; 2295 rxdesc->status = cpu_to_le32(0); 2296 rxdesc->addr = cpu_to_le32(0xBADF00D0); 2297 dev_kfree_skb(mdp->rx_skbuff[i]); 2298 mdp->rx_skbuff[i] = NULL; 2299 } 2300 for (i = 0; i < mdp->num_tx_ring; i++) { 2301 dev_kfree_skb(mdp->tx_skbuff[i]); 2302 mdp->tx_skbuff[i] = NULL; 2303 } 2304 2305 /* device init */ 2306 sh_eth_dev_init(ndev, true); 2307 2308 netif_start_queue(ndev); 2309 } 2310 2311 /* Packet transmit function */ 2312 static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev) 2313 { 2314 struct sh_eth_private *mdp = netdev_priv(ndev); 2315 struct sh_eth_txdesc *txdesc; 2316 dma_addr_t dma_addr; 2317 u32 entry; 2318 unsigned long flags; 2319 2320 spin_lock_irqsave(&mdp->lock, flags); 2321 if ((mdp->cur_tx - mdp->dirty_tx) >= (mdp->num_tx_ring - 4)) { 2322 if (!sh_eth_txfree(ndev)) { 2323 netif_warn(mdp, tx_queued, ndev, "TxFD exhausted.\n"); 2324 netif_stop_queue(ndev); 2325 spin_unlock_irqrestore(&mdp->lock, flags); 2326 return NETDEV_TX_BUSY; 2327 } 2328 } 2329 spin_unlock_irqrestore(&mdp->lock, flags); 2330 2331 if (skb_put_padto(skb, ETH_ZLEN)) 2332 return NETDEV_TX_OK; 2333 2334 entry = mdp->cur_tx % mdp->num_tx_ring; 2335 mdp->tx_skbuff[entry] = skb; 2336 txdesc = &mdp->tx_ring[entry]; 2337 /* soft swap. */ 2338 if (!mdp->cd->hw_swap) 2339 sh_eth_soft_swap(PTR_ALIGN(skb->data, 4), skb->len + 2); 2340 dma_addr = dma_map_single(&ndev->dev, skb->data, skb->len, 2341 DMA_TO_DEVICE); 2342 if (dma_mapping_error(&ndev->dev, dma_addr)) { 2343 kfree_skb(skb); 2344 return NETDEV_TX_OK; 2345 } 2346 txdesc->addr = cpu_to_le32(dma_addr); 2347 txdesc->len = cpu_to_le32(skb->len << 16); 2348 2349 dma_wmb(); /* TACT bit must be set after all the above writes */ 2350 if (entry >= mdp->num_tx_ring - 1) 2351 txdesc->status |= cpu_to_le32(TD_TACT | TD_TDLE); 2352 else 2353 txdesc->status |= cpu_to_le32(TD_TACT); 2354 2355 mdp->cur_tx++; 2356 2357 if (!(sh_eth_read(ndev, EDTRR) & sh_eth_get_edtrr_trns(mdp))) 2358 sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR); 2359 2360 return NETDEV_TX_OK; 2361 } 2362 2363 /* The statistics registers have write-clear behaviour, which means we 2364 * will lose any increment between the read and write. We mitigate 2365 * this by only clearing when we read a non-zero value, so we will 2366 * never falsely report a total of zero. 2367 */ 2368 static void 2369 sh_eth_update_stat(struct net_device *ndev, unsigned long *stat, int reg) 2370 { 2371 u32 delta = sh_eth_read(ndev, reg); 2372 2373 if (delta) { 2374 *stat += delta; 2375 sh_eth_write(ndev, 0, reg); 2376 } 2377 } 2378 2379 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev) 2380 { 2381 struct sh_eth_private *mdp = netdev_priv(ndev); 2382 2383 if (sh_eth_is_rz_fast_ether(mdp)) 2384 return &ndev->stats; 2385 2386 if (!mdp->is_opened) 2387 return &ndev->stats; 2388 2389 sh_eth_update_stat(ndev, &ndev->stats.tx_dropped, TROCR); 2390 sh_eth_update_stat(ndev, &ndev->stats.collisions, CDCR); 2391 sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors, LCCR); 2392 2393 if (sh_eth_is_gether(mdp)) { 2394 sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors, 2395 CERCR); 2396 sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors, 2397 CEECR); 2398 } else { 2399 sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors, 2400 CNDCR); 2401 } 2402 2403 return &ndev->stats; 2404 } 2405 2406 /* device close function */ 2407 static int sh_eth_close(struct net_device *ndev) 2408 { 2409 struct sh_eth_private *mdp = netdev_priv(ndev); 2410 2411 netif_stop_queue(ndev); 2412 2413 /* Serialise with the interrupt handler and NAPI, then disable 2414 * interrupts. We have to clear the irq_enabled flag first to 2415 * ensure that interrupts won't be re-enabled. 2416 */ 2417 mdp->irq_enabled = false; 2418 synchronize_irq(ndev->irq); 2419 napi_disable(&mdp->napi); 2420 sh_eth_write(ndev, 0x0000, EESIPR); 2421 2422 sh_eth_dev_exit(ndev); 2423 2424 /* PHY Disconnect */ 2425 if (mdp->phydev) { 2426 phy_stop(mdp->phydev); 2427 phy_disconnect(mdp->phydev); 2428 mdp->phydev = NULL; 2429 } 2430 2431 free_irq(ndev->irq, ndev); 2432 2433 /* Free all the skbuffs in the Rx queue and the DMA buffer. */ 2434 sh_eth_ring_free(ndev); 2435 2436 pm_runtime_put_sync(&mdp->pdev->dev); 2437 2438 mdp->is_opened = 0; 2439 2440 return 0; 2441 } 2442 2443 /* ioctl to device function */ 2444 static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd) 2445 { 2446 struct sh_eth_private *mdp = netdev_priv(ndev); 2447 struct phy_device *phydev = mdp->phydev; 2448 2449 if (!netif_running(ndev)) 2450 return -EINVAL; 2451 2452 if (!phydev) 2453 return -ENODEV; 2454 2455 return phy_mii_ioctl(phydev, rq, cmd); 2456 } 2457 2458 /* For TSU_POSTn. Please refer to the manual about this (strange) bitfields */ 2459 static void *sh_eth_tsu_get_post_reg_offset(struct sh_eth_private *mdp, 2460 int entry) 2461 { 2462 return sh_eth_tsu_get_offset(mdp, TSU_POST1) + (entry / 8 * 4); 2463 } 2464 2465 static u32 sh_eth_tsu_get_post_mask(int entry) 2466 { 2467 return 0x0f << (28 - ((entry % 8) * 4)); 2468 } 2469 2470 static u32 sh_eth_tsu_get_post_bit(struct sh_eth_private *mdp, int entry) 2471 { 2472 return (0x08 >> (mdp->port << 1)) << (28 - ((entry % 8) * 4)); 2473 } 2474 2475 static void sh_eth_tsu_enable_cam_entry_post(struct net_device *ndev, 2476 int entry) 2477 { 2478 struct sh_eth_private *mdp = netdev_priv(ndev); 2479 u32 tmp; 2480 void *reg_offset; 2481 2482 reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry); 2483 tmp = ioread32(reg_offset); 2484 iowrite32(tmp | sh_eth_tsu_get_post_bit(mdp, entry), reg_offset); 2485 } 2486 2487 static bool sh_eth_tsu_disable_cam_entry_post(struct net_device *ndev, 2488 int entry) 2489 { 2490 struct sh_eth_private *mdp = netdev_priv(ndev); 2491 u32 post_mask, ref_mask, tmp; 2492 void *reg_offset; 2493 2494 reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry); 2495 post_mask = sh_eth_tsu_get_post_mask(entry); 2496 ref_mask = sh_eth_tsu_get_post_bit(mdp, entry) & ~post_mask; 2497 2498 tmp = ioread32(reg_offset); 2499 iowrite32(tmp & ~post_mask, reg_offset); 2500 2501 /* If other port enables, the function returns "true" */ 2502 return tmp & ref_mask; 2503 } 2504 2505 static int sh_eth_tsu_busy(struct net_device *ndev) 2506 { 2507 int timeout = SH_ETH_TSU_TIMEOUT_MS * 100; 2508 struct sh_eth_private *mdp = netdev_priv(ndev); 2509 2510 while ((sh_eth_tsu_read(mdp, TSU_ADSBSY) & TSU_ADSBSY_0)) { 2511 udelay(10); 2512 timeout--; 2513 if (timeout <= 0) { 2514 netdev_err(ndev, "%s: timeout\n", __func__); 2515 return -ETIMEDOUT; 2516 } 2517 } 2518 2519 return 0; 2520 } 2521 2522 static int sh_eth_tsu_write_entry(struct net_device *ndev, void *reg, 2523 const u8 *addr) 2524 { 2525 u32 val; 2526 2527 val = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3]; 2528 iowrite32(val, reg); 2529 if (sh_eth_tsu_busy(ndev) < 0) 2530 return -EBUSY; 2531 2532 val = addr[4] << 8 | addr[5]; 2533 iowrite32(val, reg + 4); 2534 if (sh_eth_tsu_busy(ndev) < 0) 2535 return -EBUSY; 2536 2537 return 0; 2538 } 2539 2540 static void sh_eth_tsu_read_entry(void *reg, u8 *addr) 2541 { 2542 u32 val; 2543 2544 val = ioread32(reg); 2545 addr[0] = (val >> 24) & 0xff; 2546 addr[1] = (val >> 16) & 0xff; 2547 addr[2] = (val >> 8) & 0xff; 2548 addr[3] = val & 0xff; 2549 val = ioread32(reg + 4); 2550 addr[4] = (val >> 8) & 0xff; 2551 addr[5] = val & 0xff; 2552 } 2553 2554 2555 static int sh_eth_tsu_find_entry(struct net_device *ndev, const u8 *addr) 2556 { 2557 struct sh_eth_private *mdp = netdev_priv(ndev); 2558 void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0); 2559 int i; 2560 u8 c_addr[ETH_ALEN]; 2561 2562 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) { 2563 sh_eth_tsu_read_entry(reg_offset, c_addr); 2564 if (ether_addr_equal(addr, c_addr)) 2565 return i; 2566 } 2567 2568 return -ENOENT; 2569 } 2570 2571 static int sh_eth_tsu_find_empty(struct net_device *ndev) 2572 { 2573 u8 blank[ETH_ALEN]; 2574 int entry; 2575 2576 memset(blank, 0, sizeof(blank)); 2577 entry = sh_eth_tsu_find_entry(ndev, blank); 2578 return (entry < 0) ? -ENOMEM : entry; 2579 } 2580 2581 static int sh_eth_tsu_disable_cam_entry_table(struct net_device *ndev, 2582 int entry) 2583 { 2584 struct sh_eth_private *mdp = netdev_priv(ndev); 2585 void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0); 2586 int ret; 2587 u8 blank[ETH_ALEN]; 2588 2589 sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) & 2590 ~(1 << (31 - entry)), TSU_TEN); 2591 2592 memset(blank, 0, sizeof(blank)); 2593 ret = sh_eth_tsu_write_entry(ndev, reg_offset + entry * 8, blank); 2594 if (ret < 0) 2595 return ret; 2596 return 0; 2597 } 2598 2599 static int sh_eth_tsu_add_entry(struct net_device *ndev, const u8 *addr) 2600 { 2601 struct sh_eth_private *mdp = netdev_priv(ndev); 2602 void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0); 2603 int i, ret; 2604 2605 if (!mdp->cd->tsu) 2606 return 0; 2607 2608 i = sh_eth_tsu_find_entry(ndev, addr); 2609 if (i < 0) { 2610 /* No entry found, create one */ 2611 i = sh_eth_tsu_find_empty(ndev); 2612 if (i < 0) 2613 return -ENOMEM; 2614 ret = sh_eth_tsu_write_entry(ndev, reg_offset + i * 8, addr); 2615 if (ret < 0) 2616 return ret; 2617 2618 /* Enable the entry */ 2619 sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) | 2620 (1 << (31 - i)), TSU_TEN); 2621 } 2622 2623 /* Entry found or created, enable POST */ 2624 sh_eth_tsu_enable_cam_entry_post(ndev, i); 2625 2626 return 0; 2627 } 2628 2629 static int sh_eth_tsu_del_entry(struct net_device *ndev, const u8 *addr) 2630 { 2631 struct sh_eth_private *mdp = netdev_priv(ndev); 2632 int i, ret; 2633 2634 if (!mdp->cd->tsu) 2635 return 0; 2636 2637 i = sh_eth_tsu_find_entry(ndev, addr); 2638 if (i) { 2639 /* Entry found */ 2640 if (sh_eth_tsu_disable_cam_entry_post(ndev, i)) 2641 goto done; 2642 2643 /* Disable the entry if both ports was disabled */ 2644 ret = sh_eth_tsu_disable_cam_entry_table(ndev, i); 2645 if (ret < 0) 2646 return ret; 2647 } 2648 done: 2649 return 0; 2650 } 2651 2652 static int sh_eth_tsu_purge_all(struct net_device *ndev) 2653 { 2654 struct sh_eth_private *mdp = netdev_priv(ndev); 2655 int i, ret; 2656 2657 if (!mdp->cd->tsu) 2658 return 0; 2659 2660 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++) { 2661 if (sh_eth_tsu_disable_cam_entry_post(ndev, i)) 2662 continue; 2663 2664 /* Disable the entry if both ports was disabled */ 2665 ret = sh_eth_tsu_disable_cam_entry_table(ndev, i); 2666 if (ret < 0) 2667 return ret; 2668 } 2669 2670 return 0; 2671 } 2672 2673 static void sh_eth_tsu_purge_mcast(struct net_device *ndev) 2674 { 2675 struct sh_eth_private *mdp = netdev_priv(ndev); 2676 u8 addr[ETH_ALEN]; 2677 void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0); 2678 int i; 2679 2680 if (!mdp->cd->tsu) 2681 return; 2682 2683 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) { 2684 sh_eth_tsu_read_entry(reg_offset, addr); 2685 if (is_multicast_ether_addr(addr)) 2686 sh_eth_tsu_del_entry(ndev, addr); 2687 } 2688 } 2689 2690 /* Update promiscuous flag and multicast filter */ 2691 static void sh_eth_set_rx_mode(struct net_device *ndev) 2692 { 2693 struct sh_eth_private *mdp = netdev_priv(ndev); 2694 u32 ecmr_bits; 2695 int mcast_all = 0; 2696 unsigned long flags; 2697 2698 spin_lock_irqsave(&mdp->lock, flags); 2699 /* Initial condition is MCT = 1, PRM = 0. 2700 * Depending on ndev->flags, set PRM or clear MCT 2701 */ 2702 ecmr_bits = sh_eth_read(ndev, ECMR) & ~ECMR_PRM; 2703 if (mdp->cd->tsu) 2704 ecmr_bits |= ECMR_MCT; 2705 2706 if (!(ndev->flags & IFF_MULTICAST)) { 2707 sh_eth_tsu_purge_mcast(ndev); 2708 mcast_all = 1; 2709 } 2710 if (ndev->flags & IFF_ALLMULTI) { 2711 sh_eth_tsu_purge_mcast(ndev); 2712 ecmr_bits &= ~ECMR_MCT; 2713 mcast_all = 1; 2714 } 2715 2716 if (ndev->flags & IFF_PROMISC) { 2717 sh_eth_tsu_purge_all(ndev); 2718 ecmr_bits = (ecmr_bits & ~ECMR_MCT) | ECMR_PRM; 2719 } else if (mdp->cd->tsu) { 2720 struct netdev_hw_addr *ha; 2721 netdev_for_each_mc_addr(ha, ndev) { 2722 if (mcast_all && is_multicast_ether_addr(ha->addr)) 2723 continue; 2724 2725 if (sh_eth_tsu_add_entry(ndev, ha->addr) < 0) { 2726 if (!mcast_all) { 2727 sh_eth_tsu_purge_mcast(ndev); 2728 ecmr_bits &= ~ECMR_MCT; 2729 mcast_all = 1; 2730 } 2731 } 2732 } 2733 } 2734 2735 /* update the ethernet mode */ 2736 sh_eth_write(ndev, ecmr_bits, ECMR); 2737 2738 spin_unlock_irqrestore(&mdp->lock, flags); 2739 } 2740 2741 static int sh_eth_get_vtag_index(struct sh_eth_private *mdp) 2742 { 2743 if (!mdp->port) 2744 return TSU_VTAG0; 2745 else 2746 return TSU_VTAG1; 2747 } 2748 2749 static int sh_eth_vlan_rx_add_vid(struct net_device *ndev, 2750 __be16 proto, u16 vid) 2751 { 2752 struct sh_eth_private *mdp = netdev_priv(ndev); 2753 int vtag_reg_index = sh_eth_get_vtag_index(mdp); 2754 2755 if (unlikely(!mdp->cd->tsu)) 2756 return -EPERM; 2757 2758 /* No filtering if vid = 0 */ 2759 if (!vid) 2760 return 0; 2761 2762 mdp->vlan_num_ids++; 2763 2764 /* The controller has one VLAN tag HW filter. So, if the filter is 2765 * already enabled, the driver disables it and the filte 2766 */ 2767 if (mdp->vlan_num_ids > 1) { 2768 /* disable VLAN filter */ 2769 sh_eth_tsu_write(mdp, 0, vtag_reg_index); 2770 return 0; 2771 } 2772 2773 sh_eth_tsu_write(mdp, TSU_VTAG_ENABLE | (vid & TSU_VTAG_VID_MASK), 2774 vtag_reg_index); 2775 2776 return 0; 2777 } 2778 2779 static int sh_eth_vlan_rx_kill_vid(struct net_device *ndev, 2780 __be16 proto, u16 vid) 2781 { 2782 struct sh_eth_private *mdp = netdev_priv(ndev); 2783 int vtag_reg_index = sh_eth_get_vtag_index(mdp); 2784 2785 if (unlikely(!mdp->cd->tsu)) 2786 return -EPERM; 2787 2788 /* No filtering if vid = 0 */ 2789 if (!vid) 2790 return 0; 2791 2792 mdp->vlan_num_ids--; 2793 sh_eth_tsu_write(mdp, 0, vtag_reg_index); 2794 2795 return 0; 2796 } 2797 2798 /* SuperH's TSU register init function */ 2799 static void sh_eth_tsu_init(struct sh_eth_private *mdp) 2800 { 2801 if (sh_eth_is_rz_fast_ether(mdp)) { 2802 sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */ 2803 return; 2804 } 2805 2806 sh_eth_tsu_write(mdp, 0, TSU_FWEN0); /* Disable forward(0->1) */ 2807 sh_eth_tsu_write(mdp, 0, TSU_FWEN1); /* Disable forward(1->0) */ 2808 sh_eth_tsu_write(mdp, 0, TSU_FCM); /* forward fifo 3k-3k */ 2809 sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0); 2810 sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1); 2811 sh_eth_tsu_write(mdp, 0, TSU_PRISL0); 2812 sh_eth_tsu_write(mdp, 0, TSU_PRISL1); 2813 sh_eth_tsu_write(mdp, 0, TSU_FWSL0); 2814 sh_eth_tsu_write(mdp, 0, TSU_FWSL1); 2815 sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC); 2816 if (sh_eth_is_gether(mdp)) { 2817 sh_eth_tsu_write(mdp, 0, TSU_QTAG0); /* Disable QTAG(0->1) */ 2818 sh_eth_tsu_write(mdp, 0, TSU_QTAG1); /* Disable QTAG(1->0) */ 2819 } else { 2820 sh_eth_tsu_write(mdp, 0, TSU_QTAGM0); /* Disable QTAG(0->1) */ 2821 sh_eth_tsu_write(mdp, 0, TSU_QTAGM1); /* Disable QTAG(1->0) */ 2822 } 2823 sh_eth_tsu_write(mdp, 0, TSU_FWSR); /* all interrupt status clear */ 2824 sh_eth_tsu_write(mdp, 0, TSU_FWINMK); /* Disable all interrupt */ 2825 sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */ 2826 sh_eth_tsu_write(mdp, 0, TSU_POST1); /* Disable CAM entry [ 0- 7] */ 2827 sh_eth_tsu_write(mdp, 0, TSU_POST2); /* Disable CAM entry [ 8-15] */ 2828 sh_eth_tsu_write(mdp, 0, TSU_POST3); /* Disable CAM entry [16-23] */ 2829 sh_eth_tsu_write(mdp, 0, TSU_POST4); /* Disable CAM entry [24-31] */ 2830 } 2831 2832 /* MDIO bus release function */ 2833 static int sh_mdio_release(struct sh_eth_private *mdp) 2834 { 2835 /* unregister mdio bus */ 2836 mdiobus_unregister(mdp->mii_bus); 2837 2838 /* free bitbang info */ 2839 free_mdio_bitbang(mdp->mii_bus); 2840 2841 return 0; 2842 } 2843 2844 /* MDIO bus init function */ 2845 static int sh_mdio_init(struct sh_eth_private *mdp, 2846 struct sh_eth_plat_data *pd) 2847 { 2848 int ret; 2849 struct bb_info *bitbang; 2850 struct platform_device *pdev = mdp->pdev; 2851 struct device *dev = &mdp->pdev->dev; 2852 2853 /* create bit control struct for PHY */ 2854 bitbang = devm_kzalloc(dev, sizeof(struct bb_info), GFP_KERNEL); 2855 if (!bitbang) 2856 return -ENOMEM; 2857 2858 /* bitbang init */ 2859 bitbang->addr = mdp->addr + mdp->reg_offset[PIR]; 2860 bitbang->set_gate = pd->set_mdio_gate; 2861 bitbang->ctrl.ops = &bb_ops; 2862 2863 /* MII controller setting */ 2864 mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl); 2865 if (!mdp->mii_bus) 2866 return -ENOMEM; 2867 2868 /* Hook up MII support for ethtool */ 2869 mdp->mii_bus->name = "sh_mii"; 2870 mdp->mii_bus->parent = dev; 2871 snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x", 2872 pdev->name, pdev->id); 2873 2874 /* register MDIO bus */ 2875 if (dev->of_node) { 2876 ret = of_mdiobus_register(mdp->mii_bus, dev->of_node); 2877 } else { 2878 if (pd->phy_irq > 0) 2879 mdp->mii_bus->irq[pd->phy] = pd->phy_irq; 2880 2881 ret = mdiobus_register(mdp->mii_bus); 2882 } 2883 2884 if (ret) 2885 goto out_free_bus; 2886 2887 return 0; 2888 2889 out_free_bus: 2890 free_mdio_bitbang(mdp->mii_bus); 2891 return ret; 2892 } 2893 2894 static const u16 *sh_eth_get_register_offset(int register_type) 2895 { 2896 const u16 *reg_offset = NULL; 2897 2898 switch (register_type) { 2899 case SH_ETH_REG_GIGABIT: 2900 reg_offset = sh_eth_offset_gigabit; 2901 break; 2902 case SH_ETH_REG_FAST_RZ: 2903 reg_offset = sh_eth_offset_fast_rz; 2904 break; 2905 case SH_ETH_REG_FAST_RCAR: 2906 reg_offset = sh_eth_offset_fast_rcar; 2907 break; 2908 case SH_ETH_REG_FAST_SH4: 2909 reg_offset = sh_eth_offset_fast_sh4; 2910 break; 2911 case SH_ETH_REG_FAST_SH3_SH2: 2912 reg_offset = sh_eth_offset_fast_sh3_sh2; 2913 break; 2914 } 2915 2916 return reg_offset; 2917 } 2918 2919 static const struct net_device_ops sh_eth_netdev_ops = { 2920 .ndo_open = sh_eth_open, 2921 .ndo_stop = sh_eth_close, 2922 .ndo_start_xmit = sh_eth_start_xmit, 2923 .ndo_get_stats = sh_eth_get_stats, 2924 .ndo_set_rx_mode = sh_eth_set_rx_mode, 2925 .ndo_tx_timeout = sh_eth_tx_timeout, 2926 .ndo_do_ioctl = sh_eth_do_ioctl, 2927 .ndo_validate_addr = eth_validate_addr, 2928 .ndo_set_mac_address = eth_mac_addr, 2929 .ndo_change_mtu = eth_change_mtu, 2930 }; 2931 2932 static const struct net_device_ops sh_eth_netdev_ops_tsu = { 2933 .ndo_open = sh_eth_open, 2934 .ndo_stop = sh_eth_close, 2935 .ndo_start_xmit = sh_eth_start_xmit, 2936 .ndo_get_stats = sh_eth_get_stats, 2937 .ndo_set_rx_mode = sh_eth_set_rx_mode, 2938 .ndo_vlan_rx_add_vid = sh_eth_vlan_rx_add_vid, 2939 .ndo_vlan_rx_kill_vid = sh_eth_vlan_rx_kill_vid, 2940 .ndo_tx_timeout = sh_eth_tx_timeout, 2941 .ndo_do_ioctl = sh_eth_do_ioctl, 2942 .ndo_validate_addr = eth_validate_addr, 2943 .ndo_set_mac_address = eth_mac_addr, 2944 .ndo_change_mtu = eth_change_mtu, 2945 }; 2946 2947 #ifdef CONFIG_OF 2948 static struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev) 2949 { 2950 struct device_node *np = dev->of_node; 2951 struct sh_eth_plat_data *pdata; 2952 const char *mac_addr; 2953 2954 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL); 2955 if (!pdata) 2956 return NULL; 2957 2958 pdata->phy_interface = of_get_phy_mode(np); 2959 2960 mac_addr = of_get_mac_address(np); 2961 if (mac_addr) 2962 memcpy(pdata->mac_addr, mac_addr, ETH_ALEN); 2963 2964 pdata->no_ether_link = 2965 of_property_read_bool(np, "renesas,no-ether-link"); 2966 pdata->ether_link_active_low = 2967 of_property_read_bool(np, "renesas,ether-link-active-low"); 2968 2969 return pdata; 2970 } 2971 2972 static const struct of_device_id sh_eth_match_table[] = { 2973 { .compatible = "renesas,gether-r8a7740", .data = &r8a7740_data }, 2974 { .compatible = "renesas,ether-r8a7778", .data = &r8a777x_data }, 2975 { .compatible = "renesas,ether-r8a7779", .data = &r8a777x_data }, 2976 { .compatible = "renesas,ether-r8a7790", .data = &r8a779x_data }, 2977 { .compatible = "renesas,ether-r8a7791", .data = &r8a779x_data }, 2978 { .compatible = "renesas,ether-r8a7793", .data = &r8a779x_data }, 2979 { .compatible = "renesas,ether-r8a7794", .data = &r8a779x_data }, 2980 { .compatible = "renesas,ether-r7s72100", .data = &r7s72100_data }, 2981 { } 2982 }; 2983 MODULE_DEVICE_TABLE(of, sh_eth_match_table); 2984 #else 2985 static inline struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev) 2986 { 2987 return NULL; 2988 } 2989 #endif 2990 2991 static int sh_eth_drv_probe(struct platform_device *pdev) 2992 { 2993 struct resource *res; 2994 struct sh_eth_plat_data *pd = dev_get_platdata(&pdev->dev); 2995 const struct platform_device_id *id = platform_get_device_id(pdev); 2996 struct sh_eth_private *mdp; 2997 struct net_device *ndev; 2998 int ret, devno; 2999 3000 /* get base addr */ 3001 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 3002 3003 ndev = alloc_etherdev(sizeof(struct sh_eth_private)); 3004 if (!ndev) 3005 return -ENOMEM; 3006 3007 pm_runtime_enable(&pdev->dev); 3008 pm_runtime_get_sync(&pdev->dev); 3009 3010 devno = pdev->id; 3011 if (devno < 0) 3012 devno = 0; 3013 3014 ndev->dma = -1; 3015 ret = platform_get_irq(pdev, 0); 3016 if (ret < 0) 3017 goto out_release; 3018 ndev->irq = ret; 3019 3020 SET_NETDEV_DEV(ndev, &pdev->dev); 3021 3022 mdp = netdev_priv(ndev); 3023 mdp->num_tx_ring = TX_RING_SIZE; 3024 mdp->num_rx_ring = RX_RING_SIZE; 3025 mdp->addr = devm_ioremap_resource(&pdev->dev, res); 3026 if (IS_ERR(mdp->addr)) { 3027 ret = PTR_ERR(mdp->addr); 3028 goto out_release; 3029 } 3030 3031 ndev->base_addr = res->start; 3032 3033 spin_lock_init(&mdp->lock); 3034 mdp->pdev = pdev; 3035 3036 if (pdev->dev.of_node) 3037 pd = sh_eth_parse_dt(&pdev->dev); 3038 if (!pd) { 3039 dev_err(&pdev->dev, "no platform data\n"); 3040 ret = -EINVAL; 3041 goto out_release; 3042 } 3043 3044 /* get PHY ID */ 3045 mdp->phy_id = pd->phy; 3046 mdp->phy_interface = pd->phy_interface; 3047 mdp->no_ether_link = pd->no_ether_link; 3048 mdp->ether_link_active_low = pd->ether_link_active_low; 3049 3050 /* set cpu data */ 3051 if (id) 3052 mdp->cd = (struct sh_eth_cpu_data *)id->driver_data; 3053 else 3054 mdp->cd = (struct sh_eth_cpu_data *)of_device_get_match_data(&pdev->dev); 3055 3056 mdp->reg_offset = sh_eth_get_register_offset(mdp->cd->register_type); 3057 if (!mdp->reg_offset) { 3058 dev_err(&pdev->dev, "Unknown register type (%d)\n", 3059 mdp->cd->register_type); 3060 ret = -EINVAL; 3061 goto out_release; 3062 } 3063 sh_eth_set_default_cpu_data(mdp->cd); 3064 3065 /* set function */ 3066 if (mdp->cd->tsu) 3067 ndev->netdev_ops = &sh_eth_netdev_ops_tsu; 3068 else 3069 ndev->netdev_ops = &sh_eth_netdev_ops; 3070 ndev->ethtool_ops = &sh_eth_ethtool_ops; 3071 ndev->watchdog_timeo = TX_TIMEOUT; 3072 3073 /* debug message level */ 3074 mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE; 3075 3076 /* read and set MAC address */ 3077 read_mac_address(ndev, pd->mac_addr); 3078 if (!is_valid_ether_addr(ndev->dev_addr)) { 3079 dev_warn(&pdev->dev, 3080 "no valid MAC address supplied, using a random one.\n"); 3081 eth_hw_addr_random(ndev); 3082 } 3083 3084 /* ioremap the TSU registers */ 3085 if (mdp->cd->tsu) { 3086 struct resource *rtsu; 3087 rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1); 3088 mdp->tsu_addr = devm_ioremap_resource(&pdev->dev, rtsu); 3089 if (IS_ERR(mdp->tsu_addr)) { 3090 ret = PTR_ERR(mdp->tsu_addr); 3091 goto out_release; 3092 } 3093 mdp->port = devno % 2; 3094 ndev->features = NETIF_F_HW_VLAN_CTAG_FILTER; 3095 } 3096 3097 /* initialize first or needed device */ 3098 if (!devno || pd->needs_init) { 3099 if (mdp->cd->chip_reset) 3100 mdp->cd->chip_reset(ndev); 3101 3102 if (mdp->cd->tsu) { 3103 /* TSU init (Init only)*/ 3104 sh_eth_tsu_init(mdp); 3105 } 3106 } 3107 3108 if (mdp->cd->rmiimode) 3109 sh_eth_write(ndev, 0x1, RMIIMODE); 3110 3111 /* MDIO bus init */ 3112 ret = sh_mdio_init(mdp, pd); 3113 if (ret) { 3114 dev_err(&ndev->dev, "failed to initialise MDIO\n"); 3115 goto out_release; 3116 } 3117 3118 netif_napi_add(ndev, &mdp->napi, sh_eth_poll, 64); 3119 3120 /* network device register */ 3121 ret = register_netdev(ndev); 3122 if (ret) 3123 goto out_napi_del; 3124 3125 /* print device information */ 3126 netdev_info(ndev, "Base address at 0x%x, %pM, IRQ %d.\n", 3127 (u32)ndev->base_addr, ndev->dev_addr, ndev->irq); 3128 3129 pm_runtime_put(&pdev->dev); 3130 platform_set_drvdata(pdev, ndev); 3131 3132 return ret; 3133 3134 out_napi_del: 3135 netif_napi_del(&mdp->napi); 3136 sh_mdio_release(mdp); 3137 3138 out_release: 3139 /* net_dev free */ 3140 if (ndev) 3141 free_netdev(ndev); 3142 3143 pm_runtime_put(&pdev->dev); 3144 pm_runtime_disable(&pdev->dev); 3145 return ret; 3146 } 3147 3148 static int sh_eth_drv_remove(struct platform_device *pdev) 3149 { 3150 struct net_device *ndev = platform_get_drvdata(pdev); 3151 struct sh_eth_private *mdp = netdev_priv(ndev); 3152 3153 unregister_netdev(ndev); 3154 netif_napi_del(&mdp->napi); 3155 sh_mdio_release(mdp); 3156 pm_runtime_disable(&pdev->dev); 3157 free_netdev(ndev); 3158 3159 return 0; 3160 } 3161 3162 #ifdef CONFIG_PM 3163 #ifdef CONFIG_PM_SLEEP 3164 static int sh_eth_suspend(struct device *dev) 3165 { 3166 struct net_device *ndev = dev_get_drvdata(dev); 3167 int ret = 0; 3168 3169 if (netif_running(ndev)) { 3170 netif_device_detach(ndev); 3171 ret = sh_eth_close(ndev); 3172 } 3173 3174 return ret; 3175 } 3176 3177 static int sh_eth_resume(struct device *dev) 3178 { 3179 struct net_device *ndev = dev_get_drvdata(dev); 3180 int ret = 0; 3181 3182 if (netif_running(ndev)) { 3183 ret = sh_eth_open(ndev); 3184 if (ret < 0) 3185 return ret; 3186 netif_device_attach(ndev); 3187 } 3188 3189 return ret; 3190 } 3191 #endif 3192 3193 static int sh_eth_runtime_nop(struct device *dev) 3194 { 3195 /* Runtime PM callback shared between ->runtime_suspend() 3196 * and ->runtime_resume(). Simply returns success. 3197 * 3198 * This driver re-initializes all registers after 3199 * pm_runtime_get_sync() anyway so there is no need 3200 * to save and restore registers here. 3201 */ 3202 return 0; 3203 } 3204 3205 static const struct dev_pm_ops sh_eth_dev_pm_ops = { 3206 SET_SYSTEM_SLEEP_PM_OPS(sh_eth_suspend, sh_eth_resume) 3207 SET_RUNTIME_PM_OPS(sh_eth_runtime_nop, sh_eth_runtime_nop, NULL) 3208 }; 3209 #define SH_ETH_PM_OPS (&sh_eth_dev_pm_ops) 3210 #else 3211 #define SH_ETH_PM_OPS NULL 3212 #endif 3213 3214 static struct platform_device_id sh_eth_id_table[] = { 3215 { "sh7619-ether", (kernel_ulong_t)&sh7619_data }, 3216 { "sh771x-ether", (kernel_ulong_t)&sh771x_data }, 3217 { "sh7724-ether", (kernel_ulong_t)&sh7724_data }, 3218 { "sh7734-gether", (kernel_ulong_t)&sh7734_data }, 3219 { "sh7757-ether", (kernel_ulong_t)&sh7757_data }, 3220 { "sh7757-gether", (kernel_ulong_t)&sh7757_data_giga }, 3221 { "sh7763-gether", (kernel_ulong_t)&sh7763_data }, 3222 { } 3223 }; 3224 MODULE_DEVICE_TABLE(platform, sh_eth_id_table); 3225 3226 static struct platform_driver sh_eth_driver = { 3227 .probe = sh_eth_drv_probe, 3228 .remove = sh_eth_drv_remove, 3229 .id_table = sh_eth_id_table, 3230 .driver = { 3231 .name = CARDNAME, 3232 .pm = SH_ETH_PM_OPS, 3233 .of_match_table = of_match_ptr(sh_eth_match_table), 3234 }, 3235 }; 3236 3237 module_platform_driver(sh_eth_driver); 3238 3239 MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda"); 3240 MODULE_DESCRIPTION("Renesas SuperH Ethernet driver"); 3241 MODULE_LICENSE("GPL v2"); 3242