xref: /linux/drivers/net/ethernet/renesas/sh_eth.c (revision 110e6f26af80dfd90b6e5c645b1aed7228aa580d)
1 /*  SuperH Ethernet device driver
2  *
3  *  Copyright (C) 2014  Renesas Electronics Corporation
4  *  Copyright (C) 2006-2012 Nobuhiro Iwamatsu
5  *  Copyright (C) 2008-2014 Renesas Solutions Corp.
6  *  Copyright (C) 2013-2016 Cogent Embedded, Inc.
7  *  Copyright (C) 2014 Codethink Limited
8  *
9  *  This program is free software; you can redistribute it and/or modify it
10  *  under the terms and conditions of the GNU General Public License,
11  *  version 2, as published by the Free Software Foundation.
12  *
13  *  This program is distributed in the hope it will be useful, but WITHOUT
14  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
16  *  more details.
17  *
18  *  The full GNU General Public License is included in this distribution in
19  *  the file called "COPYING".
20  */
21 
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/spinlock.h>
25 #include <linux/interrupt.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/etherdevice.h>
28 #include <linux/delay.h>
29 #include <linux/platform_device.h>
30 #include <linux/mdio-bitbang.h>
31 #include <linux/netdevice.h>
32 #include <linux/of.h>
33 #include <linux/of_device.h>
34 #include <linux/of_irq.h>
35 #include <linux/of_net.h>
36 #include <linux/phy.h>
37 #include <linux/cache.h>
38 #include <linux/io.h>
39 #include <linux/pm_runtime.h>
40 #include <linux/slab.h>
41 #include <linux/ethtool.h>
42 #include <linux/if_vlan.h>
43 #include <linux/clk.h>
44 #include <linux/sh_eth.h>
45 #include <linux/of_mdio.h>
46 
47 #include "sh_eth.h"
48 
49 #define SH_ETH_DEF_MSG_ENABLE \
50 		(NETIF_MSG_LINK	| \
51 		NETIF_MSG_TIMER	| \
52 		NETIF_MSG_RX_ERR| \
53 		NETIF_MSG_TX_ERR)
54 
55 #define SH_ETH_OFFSET_INVALID	((u16)~0)
56 
57 #define SH_ETH_OFFSET_DEFAULTS			\
58 	[0 ... SH_ETH_MAX_REGISTER_OFFSET - 1] = SH_ETH_OFFSET_INVALID
59 
60 static const u16 sh_eth_offset_gigabit[SH_ETH_MAX_REGISTER_OFFSET] = {
61 	SH_ETH_OFFSET_DEFAULTS,
62 
63 	[EDSR]		= 0x0000,
64 	[EDMR]		= 0x0400,
65 	[EDTRR]		= 0x0408,
66 	[EDRRR]		= 0x0410,
67 	[EESR]		= 0x0428,
68 	[EESIPR]	= 0x0430,
69 	[TDLAR]		= 0x0010,
70 	[TDFAR]		= 0x0014,
71 	[TDFXR]		= 0x0018,
72 	[TDFFR]		= 0x001c,
73 	[RDLAR]		= 0x0030,
74 	[RDFAR]		= 0x0034,
75 	[RDFXR]		= 0x0038,
76 	[RDFFR]		= 0x003c,
77 	[TRSCER]	= 0x0438,
78 	[RMFCR]		= 0x0440,
79 	[TFTR]		= 0x0448,
80 	[FDR]		= 0x0450,
81 	[RMCR]		= 0x0458,
82 	[RPADIR]	= 0x0460,
83 	[FCFTR]		= 0x0468,
84 	[CSMR]		= 0x04E4,
85 
86 	[ECMR]		= 0x0500,
87 	[ECSR]		= 0x0510,
88 	[ECSIPR]	= 0x0518,
89 	[PIR]		= 0x0520,
90 	[PSR]		= 0x0528,
91 	[PIPR]		= 0x052c,
92 	[RFLR]		= 0x0508,
93 	[APR]		= 0x0554,
94 	[MPR]		= 0x0558,
95 	[PFTCR]		= 0x055c,
96 	[PFRCR]		= 0x0560,
97 	[TPAUSER]	= 0x0564,
98 	[GECMR]		= 0x05b0,
99 	[BCULR]		= 0x05b4,
100 	[MAHR]		= 0x05c0,
101 	[MALR]		= 0x05c8,
102 	[TROCR]		= 0x0700,
103 	[CDCR]		= 0x0708,
104 	[LCCR]		= 0x0710,
105 	[CEFCR]		= 0x0740,
106 	[FRECR]		= 0x0748,
107 	[TSFRCR]	= 0x0750,
108 	[TLFRCR]	= 0x0758,
109 	[RFCR]		= 0x0760,
110 	[CERCR]		= 0x0768,
111 	[CEECR]		= 0x0770,
112 	[MAFCR]		= 0x0778,
113 	[RMII_MII]	= 0x0790,
114 
115 	[ARSTR]		= 0x0000,
116 	[TSU_CTRST]	= 0x0004,
117 	[TSU_FWEN0]	= 0x0010,
118 	[TSU_FWEN1]	= 0x0014,
119 	[TSU_FCM]	= 0x0018,
120 	[TSU_BSYSL0]	= 0x0020,
121 	[TSU_BSYSL1]	= 0x0024,
122 	[TSU_PRISL0]	= 0x0028,
123 	[TSU_PRISL1]	= 0x002c,
124 	[TSU_FWSL0]	= 0x0030,
125 	[TSU_FWSL1]	= 0x0034,
126 	[TSU_FWSLC]	= 0x0038,
127 	[TSU_QTAG0]	= 0x0040,
128 	[TSU_QTAG1]	= 0x0044,
129 	[TSU_FWSR]	= 0x0050,
130 	[TSU_FWINMK]	= 0x0054,
131 	[TSU_ADQT0]	= 0x0048,
132 	[TSU_ADQT1]	= 0x004c,
133 	[TSU_VTAG0]	= 0x0058,
134 	[TSU_VTAG1]	= 0x005c,
135 	[TSU_ADSBSY]	= 0x0060,
136 	[TSU_TEN]	= 0x0064,
137 	[TSU_POST1]	= 0x0070,
138 	[TSU_POST2]	= 0x0074,
139 	[TSU_POST3]	= 0x0078,
140 	[TSU_POST4]	= 0x007c,
141 	[TSU_ADRH0]	= 0x0100,
142 
143 	[TXNLCR0]	= 0x0080,
144 	[TXALCR0]	= 0x0084,
145 	[RXNLCR0]	= 0x0088,
146 	[RXALCR0]	= 0x008c,
147 	[FWNLCR0]	= 0x0090,
148 	[FWALCR0]	= 0x0094,
149 	[TXNLCR1]	= 0x00a0,
150 	[TXALCR1]	= 0x00a0,
151 	[RXNLCR1]	= 0x00a8,
152 	[RXALCR1]	= 0x00ac,
153 	[FWNLCR1]	= 0x00b0,
154 	[FWALCR1]	= 0x00b4,
155 };
156 
157 static const u16 sh_eth_offset_fast_rz[SH_ETH_MAX_REGISTER_OFFSET] = {
158 	SH_ETH_OFFSET_DEFAULTS,
159 
160 	[EDSR]		= 0x0000,
161 	[EDMR]		= 0x0400,
162 	[EDTRR]		= 0x0408,
163 	[EDRRR]		= 0x0410,
164 	[EESR]		= 0x0428,
165 	[EESIPR]	= 0x0430,
166 	[TDLAR]		= 0x0010,
167 	[TDFAR]		= 0x0014,
168 	[TDFXR]		= 0x0018,
169 	[TDFFR]		= 0x001c,
170 	[RDLAR]		= 0x0030,
171 	[RDFAR]		= 0x0034,
172 	[RDFXR]		= 0x0038,
173 	[RDFFR]		= 0x003c,
174 	[TRSCER]	= 0x0438,
175 	[RMFCR]		= 0x0440,
176 	[TFTR]		= 0x0448,
177 	[FDR]		= 0x0450,
178 	[RMCR]		= 0x0458,
179 	[RPADIR]	= 0x0460,
180 	[FCFTR]		= 0x0468,
181 	[CSMR]		= 0x04E4,
182 
183 	[ECMR]		= 0x0500,
184 	[RFLR]		= 0x0508,
185 	[ECSR]		= 0x0510,
186 	[ECSIPR]	= 0x0518,
187 	[PIR]		= 0x0520,
188 	[APR]		= 0x0554,
189 	[MPR]		= 0x0558,
190 	[PFTCR]		= 0x055c,
191 	[PFRCR]		= 0x0560,
192 	[TPAUSER]	= 0x0564,
193 	[MAHR]		= 0x05c0,
194 	[MALR]		= 0x05c8,
195 	[CEFCR]		= 0x0740,
196 	[FRECR]		= 0x0748,
197 	[TSFRCR]	= 0x0750,
198 	[TLFRCR]	= 0x0758,
199 	[RFCR]		= 0x0760,
200 	[MAFCR]		= 0x0778,
201 
202 	[ARSTR]		= 0x0000,
203 	[TSU_CTRST]	= 0x0004,
204 	[TSU_VTAG0]	= 0x0058,
205 	[TSU_ADSBSY]	= 0x0060,
206 	[TSU_TEN]	= 0x0064,
207 	[TSU_ADRH0]	= 0x0100,
208 
209 	[TXNLCR0]	= 0x0080,
210 	[TXALCR0]	= 0x0084,
211 	[RXNLCR0]	= 0x0088,
212 	[RXALCR0]	= 0x008C,
213 };
214 
215 static const u16 sh_eth_offset_fast_rcar[SH_ETH_MAX_REGISTER_OFFSET] = {
216 	SH_ETH_OFFSET_DEFAULTS,
217 
218 	[ECMR]		= 0x0300,
219 	[RFLR]		= 0x0308,
220 	[ECSR]		= 0x0310,
221 	[ECSIPR]	= 0x0318,
222 	[PIR]		= 0x0320,
223 	[PSR]		= 0x0328,
224 	[RDMLR]		= 0x0340,
225 	[IPGR]		= 0x0350,
226 	[APR]		= 0x0354,
227 	[MPR]		= 0x0358,
228 	[RFCF]		= 0x0360,
229 	[TPAUSER]	= 0x0364,
230 	[TPAUSECR]	= 0x0368,
231 	[MAHR]		= 0x03c0,
232 	[MALR]		= 0x03c8,
233 	[TROCR]		= 0x03d0,
234 	[CDCR]		= 0x03d4,
235 	[LCCR]		= 0x03d8,
236 	[CNDCR]		= 0x03dc,
237 	[CEFCR]		= 0x03e4,
238 	[FRECR]		= 0x03e8,
239 	[TSFRCR]	= 0x03ec,
240 	[TLFRCR]	= 0x03f0,
241 	[RFCR]		= 0x03f4,
242 	[MAFCR]		= 0x03f8,
243 
244 	[EDMR]		= 0x0200,
245 	[EDTRR]		= 0x0208,
246 	[EDRRR]		= 0x0210,
247 	[TDLAR]		= 0x0218,
248 	[RDLAR]		= 0x0220,
249 	[EESR]		= 0x0228,
250 	[EESIPR]	= 0x0230,
251 	[TRSCER]	= 0x0238,
252 	[RMFCR]		= 0x0240,
253 	[TFTR]		= 0x0248,
254 	[FDR]		= 0x0250,
255 	[RMCR]		= 0x0258,
256 	[TFUCR]		= 0x0264,
257 	[RFOCR]		= 0x0268,
258 	[RMIIMODE]      = 0x026c,
259 	[FCFTR]		= 0x0270,
260 	[TRIMD]		= 0x027c,
261 };
262 
263 static const u16 sh_eth_offset_fast_sh4[SH_ETH_MAX_REGISTER_OFFSET] = {
264 	SH_ETH_OFFSET_DEFAULTS,
265 
266 	[ECMR]		= 0x0100,
267 	[RFLR]		= 0x0108,
268 	[ECSR]		= 0x0110,
269 	[ECSIPR]	= 0x0118,
270 	[PIR]		= 0x0120,
271 	[PSR]		= 0x0128,
272 	[RDMLR]		= 0x0140,
273 	[IPGR]		= 0x0150,
274 	[APR]		= 0x0154,
275 	[MPR]		= 0x0158,
276 	[TPAUSER]	= 0x0164,
277 	[RFCF]		= 0x0160,
278 	[TPAUSECR]	= 0x0168,
279 	[BCFRR]		= 0x016c,
280 	[MAHR]		= 0x01c0,
281 	[MALR]		= 0x01c8,
282 	[TROCR]		= 0x01d0,
283 	[CDCR]		= 0x01d4,
284 	[LCCR]		= 0x01d8,
285 	[CNDCR]		= 0x01dc,
286 	[CEFCR]		= 0x01e4,
287 	[FRECR]		= 0x01e8,
288 	[TSFRCR]	= 0x01ec,
289 	[TLFRCR]	= 0x01f0,
290 	[RFCR]		= 0x01f4,
291 	[MAFCR]		= 0x01f8,
292 	[RTRATE]	= 0x01fc,
293 
294 	[EDMR]		= 0x0000,
295 	[EDTRR]		= 0x0008,
296 	[EDRRR]		= 0x0010,
297 	[TDLAR]		= 0x0018,
298 	[RDLAR]		= 0x0020,
299 	[EESR]		= 0x0028,
300 	[EESIPR]	= 0x0030,
301 	[TRSCER]	= 0x0038,
302 	[RMFCR]		= 0x0040,
303 	[TFTR]		= 0x0048,
304 	[FDR]		= 0x0050,
305 	[RMCR]		= 0x0058,
306 	[TFUCR]		= 0x0064,
307 	[RFOCR]		= 0x0068,
308 	[FCFTR]		= 0x0070,
309 	[RPADIR]	= 0x0078,
310 	[TRIMD]		= 0x007c,
311 	[RBWAR]		= 0x00c8,
312 	[RDFAR]		= 0x00cc,
313 	[TBRAR]		= 0x00d4,
314 	[TDFAR]		= 0x00d8,
315 };
316 
317 static const u16 sh_eth_offset_fast_sh3_sh2[SH_ETH_MAX_REGISTER_OFFSET] = {
318 	SH_ETH_OFFSET_DEFAULTS,
319 
320 	[EDMR]		= 0x0000,
321 	[EDTRR]		= 0x0004,
322 	[EDRRR]		= 0x0008,
323 	[TDLAR]		= 0x000c,
324 	[RDLAR]		= 0x0010,
325 	[EESR]		= 0x0014,
326 	[EESIPR]	= 0x0018,
327 	[TRSCER]	= 0x001c,
328 	[RMFCR]		= 0x0020,
329 	[TFTR]		= 0x0024,
330 	[FDR]		= 0x0028,
331 	[RMCR]		= 0x002c,
332 	[EDOCR]		= 0x0030,
333 	[FCFTR]		= 0x0034,
334 	[RPADIR]	= 0x0038,
335 	[TRIMD]		= 0x003c,
336 	[RBWAR]		= 0x0040,
337 	[RDFAR]		= 0x0044,
338 	[TBRAR]		= 0x004c,
339 	[TDFAR]		= 0x0050,
340 
341 	[ECMR]		= 0x0160,
342 	[ECSR]		= 0x0164,
343 	[ECSIPR]	= 0x0168,
344 	[PIR]		= 0x016c,
345 	[MAHR]		= 0x0170,
346 	[MALR]		= 0x0174,
347 	[RFLR]		= 0x0178,
348 	[PSR]		= 0x017c,
349 	[TROCR]		= 0x0180,
350 	[CDCR]		= 0x0184,
351 	[LCCR]		= 0x0188,
352 	[CNDCR]		= 0x018c,
353 	[CEFCR]		= 0x0194,
354 	[FRECR]		= 0x0198,
355 	[TSFRCR]	= 0x019c,
356 	[TLFRCR]	= 0x01a0,
357 	[RFCR]		= 0x01a4,
358 	[MAFCR]		= 0x01a8,
359 	[IPGR]		= 0x01b4,
360 	[APR]		= 0x01b8,
361 	[MPR]		= 0x01bc,
362 	[TPAUSER]	= 0x01c4,
363 	[BCFR]		= 0x01cc,
364 
365 	[ARSTR]		= 0x0000,
366 	[TSU_CTRST]	= 0x0004,
367 	[TSU_FWEN0]	= 0x0010,
368 	[TSU_FWEN1]	= 0x0014,
369 	[TSU_FCM]	= 0x0018,
370 	[TSU_BSYSL0]	= 0x0020,
371 	[TSU_BSYSL1]	= 0x0024,
372 	[TSU_PRISL0]	= 0x0028,
373 	[TSU_PRISL1]	= 0x002c,
374 	[TSU_FWSL0]	= 0x0030,
375 	[TSU_FWSL1]	= 0x0034,
376 	[TSU_FWSLC]	= 0x0038,
377 	[TSU_QTAGM0]	= 0x0040,
378 	[TSU_QTAGM1]	= 0x0044,
379 	[TSU_ADQT0]	= 0x0048,
380 	[TSU_ADQT1]	= 0x004c,
381 	[TSU_FWSR]	= 0x0050,
382 	[TSU_FWINMK]	= 0x0054,
383 	[TSU_ADSBSY]	= 0x0060,
384 	[TSU_TEN]	= 0x0064,
385 	[TSU_POST1]	= 0x0070,
386 	[TSU_POST2]	= 0x0074,
387 	[TSU_POST3]	= 0x0078,
388 	[TSU_POST4]	= 0x007c,
389 
390 	[TXNLCR0]	= 0x0080,
391 	[TXALCR0]	= 0x0084,
392 	[RXNLCR0]	= 0x0088,
393 	[RXALCR0]	= 0x008c,
394 	[FWNLCR0]	= 0x0090,
395 	[FWALCR0]	= 0x0094,
396 	[TXNLCR1]	= 0x00a0,
397 	[TXALCR1]	= 0x00a0,
398 	[RXNLCR1]	= 0x00a8,
399 	[RXALCR1]	= 0x00ac,
400 	[FWNLCR1]	= 0x00b0,
401 	[FWALCR1]	= 0x00b4,
402 
403 	[TSU_ADRH0]	= 0x0100,
404 };
405 
406 static void sh_eth_rcv_snd_disable(struct net_device *ndev);
407 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev);
408 
409 static void sh_eth_write(struct net_device *ndev, u32 data, int enum_index)
410 {
411 	struct sh_eth_private *mdp = netdev_priv(ndev);
412 	u16 offset = mdp->reg_offset[enum_index];
413 
414 	if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
415 		return;
416 
417 	iowrite32(data, mdp->addr + offset);
418 }
419 
420 static u32 sh_eth_read(struct net_device *ndev, int enum_index)
421 {
422 	struct sh_eth_private *mdp = netdev_priv(ndev);
423 	u16 offset = mdp->reg_offset[enum_index];
424 
425 	if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
426 		return ~0U;
427 
428 	return ioread32(mdp->addr + offset);
429 }
430 
431 static void sh_eth_modify(struct net_device *ndev, int enum_index, u32 clear,
432 			  u32 set)
433 {
434 	sh_eth_write(ndev, (sh_eth_read(ndev, enum_index) & ~clear) | set,
435 		     enum_index);
436 }
437 
438 static bool sh_eth_is_gether(struct sh_eth_private *mdp)
439 {
440 	return mdp->reg_offset == sh_eth_offset_gigabit;
441 }
442 
443 static bool sh_eth_is_rz_fast_ether(struct sh_eth_private *mdp)
444 {
445 	return mdp->reg_offset == sh_eth_offset_fast_rz;
446 }
447 
448 static void sh_eth_select_mii(struct net_device *ndev)
449 {
450 	struct sh_eth_private *mdp = netdev_priv(ndev);
451 	u32 value;
452 
453 	switch (mdp->phy_interface) {
454 	case PHY_INTERFACE_MODE_GMII:
455 		value = 0x2;
456 		break;
457 	case PHY_INTERFACE_MODE_MII:
458 		value = 0x1;
459 		break;
460 	case PHY_INTERFACE_MODE_RMII:
461 		value = 0x0;
462 		break;
463 	default:
464 		netdev_warn(ndev,
465 			    "PHY interface mode was not setup. Set to MII.\n");
466 		value = 0x1;
467 		break;
468 	}
469 
470 	sh_eth_write(ndev, value, RMII_MII);
471 }
472 
473 static void sh_eth_set_duplex(struct net_device *ndev)
474 {
475 	struct sh_eth_private *mdp = netdev_priv(ndev);
476 
477 	sh_eth_modify(ndev, ECMR, ECMR_DM, mdp->duplex ? ECMR_DM : 0);
478 }
479 
480 static void sh_eth_chip_reset(struct net_device *ndev)
481 {
482 	struct sh_eth_private *mdp = netdev_priv(ndev);
483 
484 	/* reset device */
485 	sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
486 	mdelay(1);
487 }
488 
489 static void sh_eth_set_rate_gether(struct net_device *ndev)
490 {
491 	struct sh_eth_private *mdp = netdev_priv(ndev);
492 
493 	switch (mdp->speed) {
494 	case 10: /* 10BASE */
495 		sh_eth_write(ndev, GECMR_10, GECMR);
496 		break;
497 	case 100:/* 100BASE */
498 		sh_eth_write(ndev, GECMR_100, GECMR);
499 		break;
500 	case 1000: /* 1000BASE */
501 		sh_eth_write(ndev, GECMR_1000, GECMR);
502 		break;
503 	}
504 }
505 
506 #ifdef CONFIG_OF
507 /* R7S72100 */
508 static struct sh_eth_cpu_data r7s72100_data = {
509 	.chip_reset	= sh_eth_chip_reset,
510 	.set_duplex	= sh_eth_set_duplex,
511 
512 	.register_type	= SH_ETH_REG_FAST_RZ,
513 
514 	.ecsr_value	= ECSR_ICD,
515 	.ecsipr_value	= ECSIPR_ICDIP,
516 	.eesipr_value	= 0xff7f009f,
517 
518 	.tx_check	= EESR_TC1 | EESR_FTC,
519 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
520 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
521 			  EESR_TDE | EESR_ECI,
522 	.fdr_value	= 0x0000070f,
523 
524 	.no_psr		= 1,
525 	.apr		= 1,
526 	.mpr		= 1,
527 	.tpauser	= 1,
528 	.hw_swap	= 1,
529 	.rpadir		= 1,
530 	.rpadir_value   = 2 << 16,
531 	.no_trimd	= 1,
532 	.no_ade		= 1,
533 	.hw_crc		= 1,
534 	.tsu		= 1,
535 	.shift_rd0	= 1,
536 };
537 
538 static void sh_eth_chip_reset_r8a7740(struct net_device *ndev)
539 {
540 	struct sh_eth_private *mdp = netdev_priv(ndev);
541 
542 	/* reset device */
543 	sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
544 	mdelay(1);
545 
546 	sh_eth_select_mii(ndev);
547 }
548 
549 /* R8A7740 */
550 static struct sh_eth_cpu_data r8a7740_data = {
551 	.chip_reset	= sh_eth_chip_reset_r8a7740,
552 	.set_duplex	= sh_eth_set_duplex,
553 	.set_rate	= sh_eth_set_rate_gether,
554 
555 	.register_type	= SH_ETH_REG_GIGABIT,
556 
557 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
558 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
559 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
560 
561 	.tx_check	= EESR_TC1 | EESR_FTC,
562 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
563 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
564 			  EESR_TDE | EESR_ECI,
565 	.fdr_value	= 0x0000070f,
566 
567 	.apr		= 1,
568 	.mpr		= 1,
569 	.tpauser	= 1,
570 	.bculr		= 1,
571 	.hw_swap	= 1,
572 	.rpadir		= 1,
573 	.rpadir_value   = 2 << 16,
574 	.no_trimd	= 1,
575 	.no_ade		= 1,
576 	.tsu		= 1,
577 	.select_mii	= 1,
578 	.shift_rd0	= 1,
579 };
580 
581 /* There is CPU dependent code */
582 static void sh_eth_set_rate_r8a777x(struct net_device *ndev)
583 {
584 	struct sh_eth_private *mdp = netdev_priv(ndev);
585 
586 	switch (mdp->speed) {
587 	case 10: /* 10BASE */
588 		sh_eth_modify(ndev, ECMR, ECMR_ELB, 0);
589 		break;
590 	case 100:/* 100BASE */
591 		sh_eth_modify(ndev, ECMR, ECMR_ELB, ECMR_ELB);
592 		break;
593 	}
594 }
595 
596 /* R8A7778/9 */
597 static struct sh_eth_cpu_data r8a777x_data = {
598 	.set_duplex	= sh_eth_set_duplex,
599 	.set_rate	= sh_eth_set_rate_r8a777x,
600 
601 	.register_type	= SH_ETH_REG_FAST_RCAR,
602 
603 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
604 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
605 	.eesipr_value	= 0x01ff009f,
606 
607 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
608 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
609 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
610 			  EESR_ECI,
611 	.fdr_value	= 0x00000f0f,
612 
613 	.apr		= 1,
614 	.mpr		= 1,
615 	.tpauser	= 1,
616 	.hw_swap	= 1,
617 };
618 
619 /* R8A7790/1 */
620 static struct sh_eth_cpu_data r8a779x_data = {
621 	.set_duplex	= sh_eth_set_duplex,
622 	.set_rate	= sh_eth_set_rate_r8a777x,
623 
624 	.register_type	= SH_ETH_REG_FAST_RCAR,
625 
626 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
627 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
628 	.eesipr_value	= 0x01ff009f,
629 
630 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
631 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
632 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
633 			  EESR_ECI,
634 	.fdr_value	= 0x00000f0f,
635 
636 	.trscer_err_mask = DESC_I_RINT8,
637 
638 	.apr		= 1,
639 	.mpr		= 1,
640 	.tpauser	= 1,
641 	.hw_swap	= 1,
642 	.rmiimode	= 1,
643 };
644 #endif /* CONFIG_OF */
645 
646 static void sh_eth_set_rate_sh7724(struct net_device *ndev)
647 {
648 	struct sh_eth_private *mdp = netdev_priv(ndev);
649 
650 	switch (mdp->speed) {
651 	case 10: /* 10BASE */
652 		sh_eth_modify(ndev, ECMR, ECMR_RTM, 0);
653 		break;
654 	case 100:/* 100BASE */
655 		sh_eth_modify(ndev, ECMR, ECMR_RTM, ECMR_RTM);
656 		break;
657 	}
658 }
659 
660 /* SH7724 */
661 static struct sh_eth_cpu_data sh7724_data = {
662 	.set_duplex	= sh_eth_set_duplex,
663 	.set_rate	= sh_eth_set_rate_sh7724,
664 
665 	.register_type	= SH_ETH_REG_FAST_SH4,
666 
667 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
668 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
669 	.eesipr_value	= 0x01ff009f,
670 
671 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
672 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
673 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
674 			  EESR_ECI,
675 
676 	.apr		= 1,
677 	.mpr		= 1,
678 	.tpauser	= 1,
679 	.hw_swap	= 1,
680 	.rpadir		= 1,
681 	.rpadir_value	= 0x00020000, /* NET_IP_ALIGN assumed to be 2 */
682 };
683 
684 static void sh_eth_set_rate_sh7757(struct net_device *ndev)
685 {
686 	struct sh_eth_private *mdp = netdev_priv(ndev);
687 
688 	switch (mdp->speed) {
689 	case 10: /* 10BASE */
690 		sh_eth_write(ndev, 0, RTRATE);
691 		break;
692 	case 100:/* 100BASE */
693 		sh_eth_write(ndev, 1, RTRATE);
694 		break;
695 	}
696 }
697 
698 /* SH7757 */
699 static struct sh_eth_cpu_data sh7757_data = {
700 	.set_duplex	= sh_eth_set_duplex,
701 	.set_rate	= sh_eth_set_rate_sh7757,
702 
703 	.register_type	= SH_ETH_REG_FAST_SH4,
704 
705 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
706 
707 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
708 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
709 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
710 			  EESR_ECI,
711 
712 	.irq_flags	= IRQF_SHARED,
713 	.apr		= 1,
714 	.mpr		= 1,
715 	.tpauser	= 1,
716 	.hw_swap	= 1,
717 	.no_ade		= 1,
718 	.rpadir		= 1,
719 	.rpadir_value   = 2 << 16,
720 	.rtrate		= 1,
721 };
722 
723 #define SH_GIGA_ETH_BASE	0xfee00000UL
724 #define GIGA_MALR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
725 #define GIGA_MAHR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
726 static void sh_eth_chip_reset_giga(struct net_device *ndev)
727 {
728 	int i;
729 	u32 mahr[2], malr[2];
730 
731 	/* save MAHR and MALR */
732 	for (i = 0; i < 2; i++) {
733 		malr[i] = ioread32((void *)GIGA_MALR(i));
734 		mahr[i] = ioread32((void *)GIGA_MAHR(i));
735 	}
736 
737 	/* reset device */
738 	iowrite32(ARSTR_ARSTR, (void *)(SH_GIGA_ETH_BASE + 0x1800));
739 	mdelay(1);
740 
741 	/* restore MAHR and MALR */
742 	for (i = 0; i < 2; i++) {
743 		iowrite32(malr[i], (void *)GIGA_MALR(i));
744 		iowrite32(mahr[i], (void *)GIGA_MAHR(i));
745 	}
746 }
747 
748 static void sh_eth_set_rate_giga(struct net_device *ndev)
749 {
750 	struct sh_eth_private *mdp = netdev_priv(ndev);
751 
752 	switch (mdp->speed) {
753 	case 10: /* 10BASE */
754 		sh_eth_write(ndev, 0x00000000, GECMR);
755 		break;
756 	case 100:/* 100BASE */
757 		sh_eth_write(ndev, 0x00000010, GECMR);
758 		break;
759 	case 1000: /* 1000BASE */
760 		sh_eth_write(ndev, 0x00000020, GECMR);
761 		break;
762 	}
763 }
764 
765 /* SH7757(GETHERC) */
766 static struct sh_eth_cpu_data sh7757_data_giga = {
767 	.chip_reset	= sh_eth_chip_reset_giga,
768 	.set_duplex	= sh_eth_set_duplex,
769 	.set_rate	= sh_eth_set_rate_giga,
770 
771 	.register_type	= SH_ETH_REG_GIGABIT,
772 
773 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
774 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
775 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
776 
777 	.tx_check	= EESR_TC1 | EESR_FTC,
778 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
779 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
780 			  EESR_TDE | EESR_ECI,
781 	.fdr_value	= 0x0000072f,
782 
783 	.irq_flags	= IRQF_SHARED,
784 	.apr		= 1,
785 	.mpr		= 1,
786 	.tpauser	= 1,
787 	.bculr		= 1,
788 	.hw_swap	= 1,
789 	.rpadir		= 1,
790 	.rpadir_value   = 2 << 16,
791 	.no_trimd	= 1,
792 	.no_ade		= 1,
793 	.tsu		= 1,
794 };
795 
796 /* SH7734 */
797 static struct sh_eth_cpu_data sh7734_data = {
798 	.chip_reset	= sh_eth_chip_reset,
799 	.set_duplex	= sh_eth_set_duplex,
800 	.set_rate	= sh_eth_set_rate_gether,
801 
802 	.register_type	= SH_ETH_REG_GIGABIT,
803 
804 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
805 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
806 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
807 
808 	.tx_check	= EESR_TC1 | EESR_FTC,
809 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
810 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
811 			  EESR_TDE | EESR_ECI,
812 
813 	.apr		= 1,
814 	.mpr		= 1,
815 	.tpauser	= 1,
816 	.bculr		= 1,
817 	.hw_swap	= 1,
818 	.no_trimd	= 1,
819 	.no_ade		= 1,
820 	.tsu		= 1,
821 	.hw_crc		= 1,
822 	.select_mii	= 1,
823 };
824 
825 /* SH7763 */
826 static struct sh_eth_cpu_data sh7763_data = {
827 	.chip_reset	= sh_eth_chip_reset,
828 	.set_duplex	= sh_eth_set_duplex,
829 	.set_rate	= sh_eth_set_rate_gether,
830 
831 	.register_type	= SH_ETH_REG_GIGABIT,
832 
833 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
834 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
835 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
836 
837 	.tx_check	= EESR_TC1 | EESR_FTC,
838 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
839 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
840 			  EESR_ECI,
841 
842 	.apr		= 1,
843 	.mpr		= 1,
844 	.tpauser	= 1,
845 	.bculr		= 1,
846 	.hw_swap	= 1,
847 	.no_trimd	= 1,
848 	.no_ade		= 1,
849 	.tsu		= 1,
850 	.irq_flags	= IRQF_SHARED,
851 };
852 
853 static struct sh_eth_cpu_data sh7619_data = {
854 	.register_type	= SH_ETH_REG_FAST_SH3_SH2,
855 
856 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
857 
858 	.apr		= 1,
859 	.mpr		= 1,
860 	.tpauser	= 1,
861 	.hw_swap	= 1,
862 };
863 
864 static struct sh_eth_cpu_data sh771x_data = {
865 	.register_type	= SH_ETH_REG_FAST_SH3_SH2,
866 
867 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
868 	.tsu		= 1,
869 };
870 
871 static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
872 {
873 	if (!cd->ecsr_value)
874 		cd->ecsr_value = DEFAULT_ECSR_INIT;
875 
876 	if (!cd->ecsipr_value)
877 		cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
878 
879 	if (!cd->fcftr_value)
880 		cd->fcftr_value = DEFAULT_FIFO_F_D_RFF |
881 				  DEFAULT_FIFO_F_D_RFD;
882 
883 	if (!cd->fdr_value)
884 		cd->fdr_value = DEFAULT_FDR_INIT;
885 
886 	if (!cd->tx_check)
887 		cd->tx_check = DEFAULT_TX_CHECK;
888 
889 	if (!cd->eesr_err_check)
890 		cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
891 
892 	if (!cd->trscer_err_mask)
893 		cd->trscer_err_mask = DEFAULT_TRSCER_ERR_MASK;
894 }
895 
896 static int sh_eth_check_reset(struct net_device *ndev)
897 {
898 	int ret = 0;
899 	int cnt = 100;
900 
901 	while (cnt > 0) {
902 		if (!(sh_eth_read(ndev, EDMR) & 0x3))
903 			break;
904 		mdelay(1);
905 		cnt--;
906 	}
907 	if (cnt <= 0) {
908 		netdev_err(ndev, "Device reset failed\n");
909 		ret = -ETIMEDOUT;
910 	}
911 	return ret;
912 }
913 
914 static int sh_eth_reset(struct net_device *ndev)
915 {
916 	struct sh_eth_private *mdp = netdev_priv(ndev);
917 	int ret = 0;
918 
919 	if (sh_eth_is_gether(mdp) || sh_eth_is_rz_fast_ether(mdp)) {
920 		sh_eth_write(ndev, EDSR_ENALL, EDSR);
921 		sh_eth_modify(ndev, EDMR, EDMR_SRST_GETHER, EDMR_SRST_GETHER);
922 
923 		ret = sh_eth_check_reset(ndev);
924 		if (ret)
925 			return ret;
926 
927 		/* Table Init */
928 		sh_eth_write(ndev, 0x0, TDLAR);
929 		sh_eth_write(ndev, 0x0, TDFAR);
930 		sh_eth_write(ndev, 0x0, TDFXR);
931 		sh_eth_write(ndev, 0x0, TDFFR);
932 		sh_eth_write(ndev, 0x0, RDLAR);
933 		sh_eth_write(ndev, 0x0, RDFAR);
934 		sh_eth_write(ndev, 0x0, RDFXR);
935 		sh_eth_write(ndev, 0x0, RDFFR);
936 
937 		/* Reset HW CRC register */
938 		if (mdp->cd->hw_crc)
939 			sh_eth_write(ndev, 0x0, CSMR);
940 
941 		/* Select MII mode */
942 		if (mdp->cd->select_mii)
943 			sh_eth_select_mii(ndev);
944 	} else {
945 		sh_eth_modify(ndev, EDMR, EDMR_SRST_ETHER, EDMR_SRST_ETHER);
946 		mdelay(3);
947 		sh_eth_modify(ndev, EDMR, EDMR_SRST_ETHER, 0);
948 	}
949 
950 	return ret;
951 }
952 
953 static void sh_eth_set_receive_align(struct sk_buff *skb)
954 {
955 	uintptr_t reserve = (uintptr_t)skb->data & (SH_ETH_RX_ALIGN - 1);
956 
957 	if (reserve)
958 		skb_reserve(skb, SH_ETH_RX_ALIGN - reserve);
959 }
960 
961 /* Program the hardware MAC address from dev->dev_addr. */
962 static void update_mac_address(struct net_device *ndev)
963 {
964 	sh_eth_write(ndev,
965 		     (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
966 		     (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
967 	sh_eth_write(ndev,
968 		     (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
969 }
970 
971 /* Get MAC address from SuperH MAC address register
972  *
973  * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
974  * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
975  * When you want use this device, you must set MAC address in bootloader.
976  *
977  */
978 static void read_mac_address(struct net_device *ndev, unsigned char *mac)
979 {
980 	if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
981 		memcpy(ndev->dev_addr, mac, ETH_ALEN);
982 	} else {
983 		u32 mahr = sh_eth_read(ndev, MAHR);
984 		u32 malr = sh_eth_read(ndev, MALR);
985 
986 		ndev->dev_addr[0] = (mahr >> 24) & 0xFF;
987 		ndev->dev_addr[1] = (mahr >> 16) & 0xFF;
988 		ndev->dev_addr[2] = (mahr >>  8) & 0xFF;
989 		ndev->dev_addr[3] = (mahr >>  0) & 0xFF;
990 		ndev->dev_addr[4] = (malr >>  8) & 0xFF;
991 		ndev->dev_addr[5] = (malr >>  0) & 0xFF;
992 	}
993 }
994 
995 static u32 sh_eth_get_edtrr_trns(struct sh_eth_private *mdp)
996 {
997 	if (sh_eth_is_gether(mdp) || sh_eth_is_rz_fast_ether(mdp))
998 		return EDTRR_TRNS_GETHER;
999 	else
1000 		return EDTRR_TRNS_ETHER;
1001 }
1002 
1003 struct bb_info {
1004 	void (*set_gate)(void *addr);
1005 	struct mdiobb_ctrl ctrl;
1006 	void *addr;
1007 };
1008 
1009 static void sh_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
1010 {
1011 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1012 	u32 pir;
1013 
1014 	if (bitbang->set_gate)
1015 		bitbang->set_gate(bitbang->addr);
1016 
1017 	pir = ioread32(bitbang->addr);
1018 	if (set)
1019 		pir |=  mask;
1020 	else
1021 		pir &= ~mask;
1022 	iowrite32(pir, bitbang->addr);
1023 }
1024 
1025 /* Data I/O pin control */
1026 static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1027 {
1028 	sh_mdio_ctrl(ctrl, PIR_MMD, bit);
1029 }
1030 
1031 /* Set bit data*/
1032 static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
1033 {
1034 	sh_mdio_ctrl(ctrl, PIR_MDO, bit);
1035 }
1036 
1037 /* Get bit data*/
1038 static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
1039 {
1040 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1041 
1042 	if (bitbang->set_gate)
1043 		bitbang->set_gate(bitbang->addr);
1044 
1045 	return (ioread32(bitbang->addr) & PIR_MDI) != 0;
1046 }
1047 
1048 /* MDC pin control */
1049 static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1050 {
1051 	sh_mdio_ctrl(ctrl, PIR_MDC, bit);
1052 }
1053 
1054 /* mdio bus control struct */
1055 static struct mdiobb_ops bb_ops = {
1056 	.owner = THIS_MODULE,
1057 	.set_mdc = sh_mdc_ctrl,
1058 	.set_mdio_dir = sh_mmd_ctrl,
1059 	.set_mdio_data = sh_set_mdio,
1060 	.get_mdio_data = sh_get_mdio,
1061 };
1062 
1063 /* free skb and descriptor buffer */
1064 static void sh_eth_ring_free(struct net_device *ndev)
1065 {
1066 	struct sh_eth_private *mdp = netdev_priv(ndev);
1067 	int ringsize, i;
1068 
1069 	/* Free Rx skb ringbuffer */
1070 	if (mdp->rx_skbuff) {
1071 		for (i = 0; i < mdp->num_rx_ring; i++)
1072 			dev_kfree_skb(mdp->rx_skbuff[i]);
1073 	}
1074 	kfree(mdp->rx_skbuff);
1075 	mdp->rx_skbuff = NULL;
1076 
1077 	/* Free Tx skb ringbuffer */
1078 	if (mdp->tx_skbuff) {
1079 		for (i = 0; i < mdp->num_tx_ring; i++)
1080 			dev_kfree_skb(mdp->tx_skbuff[i]);
1081 	}
1082 	kfree(mdp->tx_skbuff);
1083 	mdp->tx_skbuff = NULL;
1084 
1085 	if (mdp->rx_ring) {
1086 		ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1087 		dma_free_coherent(NULL, ringsize, mdp->rx_ring,
1088 				  mdp->rx_desc_dma);
1089 		mdp->rx_ring = NULL;
1090 	}
1091 
1092 	if (mdp->tx_ring) {
1093 		ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1094 		dma_free_coherent(NULL, ringsize, mdp->tx_ring,
1095 				  mdp->tx_desc_dma);
1096 		mdp->tx_ring = NULL;
1097 	}
1098 }
1099 
1100 /* format skb and descriptor buffer */
1101 static void sh_eth_ring_format(struct net_device *ndev)
1102 {
1103 	struct sh_eth_private *mdp = netdev_priv(ndev);
1104 	int i;
1105 	struct sk_buff *skb;
1106 	struct sh_eth_rxdesc *rxdesc = NULL;
1107 	struct sh_eth_txdesc *txdesc = NULL;
1108 	int rx_ringsize = sizeof(*rxdesc) * mdp->num_rx_ring;
1109 	int tx_ringsize = sizeof(*txdesc) * mdp->num_tx_ring;
1110 	int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1;
1111 	dma_addr_t dma_addr;
1112 	u32 buf_len;
1113 
1114 	mdp->cur_rx = 0;
1115 	mdp->cur_tx = 0;
1116 	mdp->dirty_rx = 0;
1117 	mdp->dirty_tx = 0;
1118 
1119 	memset(mdp->rx_ring, 0, rx_ringsize);
1120 
1121 	/* build Rx ring buffer */
1122 	for (i = 0; i < mdp->num_rx_ring; i++) {
1123 		/* skb */
1124 		mdp->rx_skbuff[i] = NULL;
1125 		skb = netdev_alloc_skb(ndev, skbuff_size);
1126 		if (skb == NULL)
1127 			break;
1128 		sh_eth_set_receive_align(skb);
1129 
1130 		/* The size of the buffer is a multiple of 32 bytes. */
1131 		buf_len = ALIGN(mdp->rx_buf_sz, 32);
1132 		dma_addr = dma_map_single(&ndev->dev, skb->data, buf_len,
1133 					  DMA_FROM_DEVICE);
1134 		if (dma_mapping_error(&ndev->dev, dma_addr)) {
1135 			kfree_skb(skb);
1136 			break;
1137 		}
1138 		mdp->rx_skbuff[i] = skb;
1139 
1140 		/* RX descriptor */
1141 		rxdesc = &mdp->rx_ring[i];
1142 		rxdesc->len = cpu_to_le32(buf_len << 16);
1143 		rxdesc->addr = cpu_to_le32(dma_addr);
1144 		rxdesc->status = cpu_to_le32(RD_RACT | RD_RFP);
1145 
1146 		/* Rx descriptor address set */
1147 		if (i == 0) {
1148 			sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
1149 			if (sh_eth_is_gether(mdp) ||
1150 			    sh_eth_is_rz_fast_ether(mdp))
1151 				sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
1152 		}
1153 	}
1154 
1155 	mdp->dirty_rx = (u32) (i - mdp->num_rx_ring);
1156 
1157 	/* Mark the last entry as wrapping the ring. */
1158 	if (rxdesc)
1159 		rxdesc->status |= cpu_to_le32(RD_RDLE);
1160 
1161 	memset(mdp->tx_ring, 0, tx_ringsize);
1162 
1163 	/* build Tx ring buffer */
1164 	for (i = 0; i < mdp->num_tx_ring; i++) {
1165 		mdp->tx_skbuff[i] = NULL;
1166 		txdesc = &mdp->tx_ring[i];
1167 		txdesc->status = cpu_to_le32(TD_TFP);
1168 		txdesc->len = cpu_to_le32(0);
1169 		if (i == 0) {
1170 			/* Tx descriptor address set */
1171 			sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
1172 			if (sh_eth_is_gether(mdp) ||
1173 			    sh_eth_is_rz_fast_ether(mdp))
1174 				sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
1175 		}
1176 	}
1177 
1178 	txdesc->status |= cpu_to_le32(TD_TDLE);
1179 }
1180 
1181 /* Get skb and descriptor buffer */
1182 static int sh_eth_ring_init(struct net_device *ndev)
1183 {
1184 	struct sh_eth_private *mdp = netdev_priv(ndev);
1185 	int rx_ringsize, tx_ringsize;
1186 
1187 	/* +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
1188 	 * card needs room to do 8 byte alignment, +2 so we can reserve
1189 	 * the first 2 bytes, and +16 gets room for the status word from the
1190 	 * card.
1191 	 */
1192 	mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
1193 			  (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
1194 	if (mdp->cd->rpadir)
1195 		mdp->rx_buf_sz += NET_IP_ALIGN;
1196 
1197 	/* Allocate RX and TX skb rings */
1198 	mdp->rx_skbuff = kcalloc(mdp->num_rx_ring, sizeof(*mdp->rx_skbuff),
1199 				 GFP_KERNEL);
1200 	if (!mdp->rx_skbuff)
1201 		return -ENOMEM;
1202 
1203 	mdp->tx_skbuff = kcalloc(mdp->num_tx_ring, sizeof(*mdp->tx_skbuff),
1204 				 GFP_KERNEL);
1205 	if (!mdp->tx_skbuff)
1206 		goto ring_free;
1207 
1208 	/* Allocate all Rx descriptors. */
1209 	rx_ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1210 	mdp->rx_ring = dma_alloc_coherent(NULL, rx_ringsize, &mdp->rx_desc_dma,
1211 					  GFP_KERNEL);
1212 	if (!mdp->rx_ring)
1213 		goto ring_free;
1214 
1215 	mdp->dirty_rx = 0;
1216 
1217 	/* Allocate all Tx descriptors. */
1218 	tx_ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1219 	mdp->tx_ring = dma_alloc_coherent(NULL, tx_ringsize, &mdp->tx_desc_dma,
1220 					  GFP_KERNEL);
1221 	if (!mdp->tx_ring)
1222 		goto ring_free;
1223 	return 0;
1224 
1225 ring_free:
1226 	/* Free Rx and Tx skb ring buffer and DMA buffer */
1227 	sh_eth_ring_free(ndev);
1228 
1229 	return -ENOMEM;
1230 }
1231 
1232 static int sh_eth_dev_init(struct net_device *ndev, bool start)
1233 {
1234 	struct sh_eth_private *mdp = netdev_priv(ndev);
1235 	int ret;
1236 
1237 	/* Soft Reset */
1238 	ret = sh_eth_reset(ndev);
1239 	if (ret)
1240 		return ret;
1241 
1242 	if (mdp->cd->rmiimode)
1243 		sh_eth_write(ndev, 0x1, RMIIMODE);
1244 
1245 	/* Descriptor format */
1246 	sh_eth_ring_format(ndev);
1247 	if (mdp->cd->rpadir)
1248 		sh_eth_write(ndev, mdp->cd->rpadir_value, RPADIR);
1249 
1250 	/* all sh_eth int mask */
1251 	sh_eth_write(ndev, 0, EESIPR);
1252 
1253 #if defined(__LITTLE_ENDIAN)
1254 	if (mdp->cd->hw_swap)
1255 		sh_eth_write(ndev, EDMR_EL, EDMR);
1256 	else
1257 #endif
1258 		sh_eth_write(ndev, 0, EDMR);
1259 
1260 	/* FIFO size set */
1261 	sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
1262 	sh_eth_write(ndev, 0, TFTR);
1263 
1264 	/* Frame recv control (enable multiple-packets per rx irq) */
1265 	sh_eth_write(ndev, RMCR_RNC, RMCR);
1266 
1267 	sh_eth_write(ndev, mdp->cd->trscer_err_mask, TRSCER);
1268 
1269 	if (mdp->cd->bculr)
1270 		sh_eth_write(ndev, 0x800, BCULR);	/* Burst sycle set */
1271 
1272 	sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
1273 
1274 	if (!mdp->cd->no_trimd)
1275 		sh_eth_write(ndev, 0, TRIMD);
1276 
1277 	/* Recv frame limit set register */
1278 	sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
1279 		     RFLR);
1280 
1281 	sh_eth_modify(ndev, EESR, 0, 0);
1282 	if (start) {
1283 		mdp->irq_enabled = true;
1284 		sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1285 	}
1286 
1287 	/* PAUSE Prohibition */
1288 	sh_eth_write(ndev, ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) |
1289 		     ECMR_TE | ECMR_RE, ECMR);
1290 
1291 	if (mdp->cd->set_rate)
1292 		mdp->cd->set_rate(ndev);
1293 
1294 	/* E-MAC Status Register clear */
1295 	sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
1296 
1297 	/* E-MAC Interrupt Enable register */
1298 	if (start)
1299 		sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
1300 
1301 	/* Set MAC address */
1302 	update_mac_address(ndev);
1303 
1304 	/* mask reset */
1305 	if (mdp->cd->apr)
1306 		sh_eth_write(ndev, APR_AP, APR);
1307 	if (mdp->cd->mpr)
1308 		sh_eth_write(ndev, MPR_MP, MPR);
1309 	if (mdp->cd->tpauser)
1310 		sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
1311 
1312 	if (start) {
1313 		/* Setting the Rx mode will start the Rx process. */
1314 		sh_eth_write(ndev, EDRRR_R, EDRRR);
1315 	}
1316 
1317 	return ret;
1318 }
1319 
1320 static void sh_eth_dev_exit(struct net_device *ndev)
1321 {
1322 	struct sh_eth_private *mdp = netdev_priv(ndev);
1323 	int i;
1324 
1325 	/* Deactivate all TX descriptors, so DMA should stop at next
1326 	 * packet boundary if it's currently running
1327 	 */
1328 	for (i = 0; i < mdp->num_tx_ring; i++)
1329 		mdp->tx_ring[i].status &= ~cpu_to_le32(TD_TACT);
1330 
1331 	/* Disable TX FIFO egress to MAC */
1332 	sh_eth_rcv_snd_disable(ndev);
1333 
1334 	/* Stop RX DMA at next packet boundary */
1335 	sh_eth_write(ndev, 0, EDRRR);
1336 
1337 	/* Aside from TX DMA, we can't tell when the hardware is
1338 	 * really stopped, so we need to reset to make sure.
1339 	 * Before doing that, wait for long enough to *probably*
1340 	 * finish transmitting the last packet and poll stats.
1341 	 */
1342 	msleep(2); /* max frame time at 10 Mbps < 1250 us */
1343 	sh_eth_get_stats(ndev);
1344 	sh_eth_reset(ndev);
1345 
1346 	/* Set MAC address again */
1347 	update_mac_address(ndev);
1348 }
1349 
1350 /* free Tx skb function */
1351 static int sh_eth_txfree(struct net_device *ndev)
1352 {
1353 	struct sh_eth_private *mdp = netdev_priv(ndev);
1354 	struct sh_eth_txdesc *txdesc;
1355 	int free_num = 0;
1356 	int entry;
1357 
1358 	for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
1359 		entry = mdp->dirty_tx % mdp->num_tx_ring;
1360 		txdesc = &mdp->tx_ring[entry];
1361 		if (txdesc->status & cpu_to_le32(TD_TACT))
1362 			break;
1363 		/* TACT bit must be checked before all the following reads */
1364 		dma_rmb();
1365 		netif_info(mdp, tx_done, ndev,
1366 			   "tx entry %d status 0x%08x\n",
1367 			   entry, le32_to_cpu(txdesc->status));
1368 		/* Free the original skb. */
1369 		if (mdp->tx_skbuff[entry]) {
1370 			dma_unmap_single(&ndev->dev, le32_to_cpu(txdesc->addr),
1371 					 le32_to_cpu(txdesc->len) >> 16,
1372 					 DMA_TO_DEVICE);
1373 			dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
1374 			mdp->tx_skbuff[entry] = NULL;
1375 			free_num++;
1376 		}
1377 		txdesc->status = cpu_to_le32(TD_TFP);
1378 		if (entry >= mdp->num_tx_ring - 1)
1379 			txdesc->status |= cpu_to_le32(TD_TDLE);
1380 
1381 		ndev->stats.tx_packets++;
1382 		ndev->stats.tx_bytes += le32_to_cpu(txdesc->len) >> 16;
1383 	}
1384 	return free_num;
1385 }
1386 
1387 /* Packet receive function */
1388 static int sh_eth_rx(struct net_device *ndev, u32 intr_status, int *quota)
1389 {
1390 	struct sh_eth_private *mdp = netdev_priv(ndev);
1391 	struct sh_eth_rxdesc *rxdesc;
1392 
1393 	int entry = mdp->cur_rx % mdp->num_rx_ring;
1394 	int boguscnt = (mdp->dirty_rx + mdp->num_rx_ring) - mdp->cur_rx;
1395 	int limit;
1396 	struct sk_buff *skb;
1397 	u32 desc_status;
1398 	int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1;
1399 	dma_addr_t dma_addr;
1400 	u16 pkt_len;
1401 	u32 buf_len;
1402 
1403 	boguscnt = min(boguscnt, *quota);
1404 	limit = boguscnt;
1405 	rxdesc = &mdp->rx_ring[entry];
1406 	while (!(rxdesc->status & cpu_to_le32(RD_RACT))) {
1407 		/* RACT bit must be checked before all the following reads */
1408 		dma_rmb();
1409 		desc_status = le32_to_cpu(rxdesc->status);
1410 		pkt_len = le32_to_cpu(rxdesc->len) & RD_RFL;
1411 
1412 		if (--boguscnt < 0)
1413 			break;
1414 
1415 		netif_info(mdp, rx_status, ndev,
1416 			   "rx entry %d status 0x%08x len %d\n",
1417 			   entry, desc_status, pkt_len);
1418 
1419 		if (!(desc_status & RDFEND))
1420 			ndev->stats.rx_length_errors++;
1421 
1422 		/* In case of almost all GETHER/ETHERs, the Receive Frame State
1423 		 * (RFS) bits in the Receive Descriptor 0 are from bit 9 to
1424 		 * bit 0. However, in case of the R8A7740 and R7S72100
1425 		 * the RFS bits are from bit 25 to bit 16. So, the
1426 		 * driver needs right shifting by 16.
1427 		 */
1428 		if (mdp->cd->shift_rd0)
1429 			desc_status >>= 16;
1430 
1431 		skb = mdp->rx_skbuff[entry];
1432 		if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
1433 				   RD_RFS5 | RD_RFS6 | RD_RFS10)) {
1434 			ndev->stats.rx_errors++;
1435 			if (desc_status & RD_RFS1)
1436 				ndev->stats.rx_crc_errors++;
1437 			if (desc_status & RD_RFS2)
1438 				ndev->stats.rx_frame_errors++;
1439 			if (desc_status & RD_RFS3)
1440 				ndev->stats.rx_length_errors++;
1441 			if (desc_status & RD_RFS4)
1442 				ndev->stats.rx_length_errors++;
1443 			if (desc_status & RD_RFS6)
1444 				ndev->stats.rx_missed_errors++;
1445 			if (desc_status & RD_RFS10)
1446 				ndev->stats.rx_over_errors++;
1447 		} else	if (skb) {
1448 			dma_addr = le32_to_cpu(rxdesc->addr);
1449 			if (!mdp->cd->hw_swap)
1450 				sh_eth_soft_swap(
1451 					phys_to_virt(ALIGN(dma_addr, 4)),
1452 					pkt_len + 2);
1453 			mdp->rx_skbuff[entry] = NULL;
1454 			if (mdp->cd->rpadir)
1455 				skb_reserve(skb, NET_IP_ALIGN);
1456 			dma_unmap_single(&ndev->dev, dma_addr,
1457 					 ALIGN(mdp->rx_buf_sz, 32),
1458 					 DMA_FROM_DEVICE);
1459 			skb_put(skb, pkt_len);
1460 			skb->protocol = eth_type_trans(skb, ndev);
1461 			netif_receive_skb(skb);
1462 			ndev->stats.rx_packets++;
1463 			ndev->stats.rx_bytes += pkt_len;
1464 			if (desc_status & RD_RFS8)
1465 				ndev->stats.multicast++;
1466 		}
1467 		entry = (++mdp->cur_rx) % mdp->num_rx_ring;
1468 		rxdesc = &mdp->rx_ring[entry];
1469 	}
1470 
1471 	/* Refill the Rx ring buffers. */
1472 	for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
1473 		entry = mdp->dirty_rx % mdp->num_rx_ring;
1474 		rxdesc = &mdp->rx_ring[entry];
1475 		/* The size of the buffer is 32 byte boundary. */
1476 		buf_len = ALIGN(mdp->rx_buf_sz, 32);
1477 		rxdesc->len = cpu_to_le32(buf_len << 16);
1478 
1479 		if (mdp->rx_skbuff[entry] == NULL) {
1480 			skb = netdev_alloc_skb(ndev, skbuff_size);
1481 			if (skb == NULL)
1482 				break;	/* Better luck next round. */
1483 			sh_eth_set_receive_align(skb);
1484 			dma_addr = dma_map_single(&ndev->dev, skb->data,
1485 						  buf_len, DMA_FROM_DEVICE);
1486 			if (dma_mapping_error(&ndev->dev, dma_addr)) {
1487 				kfree_skb(skb);
1488 				break;
1489 			}
1490 			mdp->rx_skbuff[entry] = skb;
1491 
1492 			skb_checksum_none_assert(skb);
1493 			rxdesc->addr = cpu_to_le32(dma_addr);
1494 		}
1495 		dma_wmb(); /* RACT bit must be set after all the above writes */
1496 		if (entry >= mdp->num_rx_ring - 1)
1497 			rxdesc->status |=
1498 				cpu_to_le32(RD_RACT | RD_RFP | RD_RDLE);
1499 		else
1500 			rxdesc->status |= cpu_to_le32(RD_RACT | RD_RFP);
1501 	}
1502 
1503 	/* Restart Rx engine if stopped. */
1504 	/* If we don't need to check status, don't. -KDU */
1505 	if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R)) {
1506 		/* fix the values for the next receiving if RDE is set */
1507 		if (intr_status & EESR_RDE &&
1508 		    mdp->reg_offset[RDFAR] != SH_ETH_OFFSET_INVALID) {
1509 			u32 count = (sh_eth_read(ndev, RDFAR) -
1510 				     sh_eth_read(ndev, RDLAR)) >> 4;
1511 
1512 			mdp->cur_rx = count;
1513 			mdp->dirty_rx = count;
1514 		}
1515 		sh_eth_write(ndev, EDRRR_R, EDRRR);
1516 	}
1517 
1518 	*quota -= limit - boguscnt - 1;
1519 
1520 	return *quota <= 0;
1521 }
1522 
1523 static void sh_eth_rcv_snd_disable(struct net_device *ndev)
1524 {
1525 	/* disable tx and rx */
1526 	sh_eth_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0);
1527 }
1528 
1529 static void sh_eth_rcv_snd_enable(struct net_device *ndev)
1530 {
1531 	/* enable tx and rx */
1532 	sh_eth_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE);
1533 }
1534 
1535 /* error control function */
1536 static void sh_eth_error(struct net_device *ndev, u32 intr_status)
1537 {
1538 	struct sh_eth_private *mdp = netdev_priv(ndev);
1539 	u32 felic_stat;
1540 	u32 link_stat;
1541 	u32 mask;
1542 
1543 	if (intr_status & EESR_ECI) {
1544 		felic_stat = sh_eth_read(ndev, ECSR);
1545 		sh_eth_write(ndev, felic_stat, ECSR);	/* clear int */
1546 		if (felic_stat & ECSR_ICD)
1547 			ndev->stats.tx_carrier_errors++;
1548 		if (felic_stat & ECSR_LCHNG) {
1549 			/* Link Changed */
1550 			if (mdp->cd->no_psr || mdp->no_ether_link) {
1551 				goto ignore_link;
1552 			} else {
1553 				link_stat = (sh_eth_read(ndev, PSR));
1554 				if (mdp->ether_link_active_low)
1555 					link_stat = ~link_stat;
1556 			}
1557 			if (!(link_stat & PHY_ST_LINK)) {
1558 				sh_eth_rcv_snd_disable(ndev);
1559 			} else {
1560 				/* Link Up */
1561 				sh_eth_modify(ndev, EESIPR, DMAC_M_ECI, 0);
1562 				/* clear int */
1563 				sh_eth_modify(ndev, ECSR, 0, 0);
1564 				sh_eth_modify(ndev, EESIPR, DMAC_M_ECI,
1565 					      DMAC_M_ECI);
1566 				/* enable tx and rx */
1567 				sh_eth_rcv_snd_enable(ndev);
1568 			}
1569 		}
1570 	}
1571 
1572 ignore_link:
1573 	if (intr_status & EESR_TWB) {
1574 		/* Unused write back interrupt */
1575 		if (intr_status & EESR_TABT) {	/* Transmit Abort int */
1576 			ndev->stats.tx_aborted_errors++;
1577 			netif_err(mdp, tx_err, ndev, "Transmit Abort\n");
1578 		}
1579 	}
1580 
1581 	if (intr_status & EESR_RABT) {
1582 		/* Receive Abort int */
1583 		if (intr_status & EESR_RFRMER) {
1584 			/* Receive Frame Overflow int */
1585 			ndev->stats.rx_frame_errors++;
1586 		}
1587 	}
1588 
1589 	if (intr_status & EESR_TDE) {
1590 		/* Transmit Descriptor Empty int */
1591 		ndev->stats.tx_fifo_errors++;
1592 		netif_err(mdp, tx_err, ndev, "Transmit Descriptor Empty\n");
1593 	}
1594 
1595 	if (intr_status & EESR_TFE) {
1596 		/* FIFO under flow */
1597 		ndev->stats.tx_fifo_errors++;
1598 		netif_err(mdp, tx_err, ndev, "Transmit FIFO Under flow\n");
1599 	}
1600 
1601 	if (intr_status & EESR_RDE) {
1602 		/* Receive Descriptor Empty int */
1603 		ndev->stats.rx_over_errors++;
1604 	}
1605 
1606 	if (intr_status & EESR_RFE) {
1607 		/* Receive FIFO Overflow int */
1608 		ndev->stats.rx_fifo_errors++;
1609 	}
1610 
1611 	if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
1612 		/* Address Error */
1613 		ndev->stats.tx_fifo_errors++;
1614 		netif_err(mdp, tx_err, ndev, "Address Error\n");
1615 	}
1616 
1617 	mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
1618 	if (mdp->cd->no_ade)
1619 		mask &= ~EESR_ADE;
1620 	if (intr_status & mask) {
1621 		/* Tx error */
1622 		u32 edtrr = sh_eth_read(ndev, EDTRR);
1623 
1624 		/* dmesg */
1625 		netdev_err(ndev, "TX error. status=%8.8x cur_tx=%8.8x dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
1626 			   intr_status, mdp->cur_tx, mdp->dirty_tx,
1627 			   (u32)ndev->state, edtrr);
1628 		/* dirty buffer free */
1629 		sh_eth_txfree(ndev);
1630 
1631 		/* SH7712 BUG */
1632 		if (edtrr ^ sh_eth_get_edtrr_trns(mdp)) {
1633 			/* tx dma start */
1634 			sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
1635 		}
1636 		/* wakeup */
1637 		netif_wake_queue(ndev);
1638 	}
1639 }
1640 
1641 static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
1642 {
1643 	struct net_device *ndev = netdev;
1644 	struct sh_eth_private *mdp = netdev_priv(ndev);
1645 	struct sh_eth_cpu_data *cd = mdp->cd;
1646 	irqreturn_t ret = IRQ_NONE;
1647 	u32 intr_status, intr_enable;
1648 
1649 	spin_lock(&mdp->lock);
1650 
1651 	/* Get interrupt status */
1652 	intr_status = sh_eth_read(ndev, EESR);
1653 	/* Mask it with the interrupt mask, forcing ECI interrupt to be always
1654 	 * enabled since it's the one that  comes thru regardless of the mask,
1655 	 * and we need to fully handle it in sh_eth_error() in order to quench
1656 	 * it as it doesn't get cleared by just writing 1 to the ECI bit...
1657 	 */
1658 	intr_enable = sh_eth_read(ndev, EESIPR);
1659 	intr_status &= intr_enable | DMAC_M_ECI;
1660 	if (intr_status & (EESR_RX_CHECK | cd->tx_check | cd->eesr_err_check))
1661 		ret = IRQ_HANDLED;
1662 	else
1663 		goto out;
1664 
1665 	if (!likely(mdp->irq_enabled)) {
1666 		sh_eth_write(ndev, 0, EESIPR);
1667 		goto out;
1668 	}
1669 
1670 	if (intr_status & EESR_RX_CHECK) {
1671 		if (napi_schedule_prep(&mdp->napi)) {
1672 			/* Mask Rx interrupts */
1673 			sh_eth_write(ndev, intr_enable & ~EESR_RX_CHECK,
1674 				     EESIPR);
1675 			__napi_schedule(&mdp->napi);
1676 		} else {
1677 			netdev_warn(ndev,
1678 				    "ignoring interrupt, status 0x%08x, mask 0x%08x.\n",
1679 				    intr_status, intr_enable);
1680 		}
1681 	}
1682 
1683 	/* Tx Check */
1684 	if (intr_status & cd->tx_check) {
1685 		/* Clear Tx interrupts */
1686 		sh_eth_write(ndev, intr_status & cd->tx_check, EESR);
1687 
1688 		sh_eth_txfree(ndev);
1689 		netif_wake_queue(ndev);
1690 	}
1691 
1692 	if (intr_status & cd->eesr_err_check) {
1693 		/* Clear error interrupts */
1694 		sh_eth_write(ndev, intr_status & cd->eesr_err_check, EESR);
1695 
1696 		sh_eth_error(ndev, intr_status);
1697 	}
1698 
1699 out:
1700 	spin_unlock(&mdp->lock);
1701 
1702 	return ret;
1703 }
1704 
1705 static int sh_eth_poll(struct napi_struct *napi, int budget)
1706 {
1707 	struct sh_eth_private *mdp = container_of(napi, struct sh_eth_private,
1708 						  napi);
1709 	struct net_device *ndev = napi->dev;
1710 	int quota = budget;
1711 	u32 intr_status;
1712 
1713 	for (;;) {
1714 		intr_status = sh_eth_read(ndev, EESR);
1715 		if (!(intr_status & EESR_RX_CHECK))
1716 			break;
1717 		/* Clear Rx interrupts */
1718 		sh_eth_write(ndev, intr_status & EESR_RX_CHECK, EESR);
1719 
1720 		if (sh_eth_rx(ndev, intr_status, &quota))
1721 			goto out;
1722 	}
1723 
1724 	napi_complete(napi);
1725 
1726 	/* Reenable Rx interrupts */
1727 	if (mdp->irq_enabled)
1728 		sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1729 out:
1730 	return budget - quota;
1731 }
1732 
1733 /* PHY state control function */
1734 static void sh_eth_adjust_link(struct net_device *ndev)
1735 {
1736 	struct sh_eth_private *mdp = netdev_priv(ndev);
1737 	struct phy_device *phydev = mdp->phydev;
1738 	int new_state = 0;
1739 
1740 	if (phydev->link) {
1741 		if (phydev->duplex != mdp->duplex) {
1742 			new_state = 1;
1743 			mdp->duplex = phydev->duplex;
1744 			if (mdp->cd->set_duplex)
1745 				mdp->cd->set_duplex(ndev);
1746 		}
1747 
1748 		if (phydev->speed != mdp->speed) {
1749 			new_state = 1;
1750 			mdp->speed = phydev->speed;
1751 			if (mdp->cd->set_rate)
1752 				mdp->cd->set_rate(ndev);
1753 		}
1754 		if (!mdp->link) {
1755 			sh_eth_modify(ndev, ECMR, ECMR_TXF, 0);
1756 			new_state = 1;
1757 			mdp->link = phydev->link;
1758 			if (mdp->cd->no_psr || mdp->no_ether_link)
1759 				sh_eth_rcv_snd_enable(ndev);
1760 		}
1761 	} else if (mdp->link) {
1762 		new_state = 1;
1763 		mdp->link = 0;
1764 		mdp->speed = 0;
1765 		mdp->duplex = -1;
1766 		if (mdp->cd->no_psr || mdp->no_ether_link)
1767 			sh_eth_rcv_snd_disable(ndev);
1768 	}
1769 
1770 	if (new_state && netif_msg_link(mdp))
1771 		phy_print_status(phydev);
1772 }
1773 
1774 /* PHY init function */
1775 static int sh_eth_phy_init(struct net_device *ndev)
1776 {
1777 	struct device_node *np = ndev->dev.parent->of_node;
1778 	struct sh_eth_private *mdp = netdev_priv(ndev);
1779 	struct phy_device *phydev;
1780 
1781 	mdp->link = 0;
1782 	mdp->speed = 0;
1783 	mdp->duplex = -1;
1784 
1785 	/* Try connect to PHY */
1786 	if (np) {
1787 		struct device_node *pn;
1788 
1789 		pn = of_parse_phandle(np, "phy-handle", 0);
1790 		phydev = of_phy_connect(ndev, pn,
1791 					sh_eth_adjust_link, 0,
1792 					mdp->phy_interface);
1793 
1794 		if (!phydev)
1795 			phydev = ERR_PTR(-ENOENT);
1796 	} else {
1797 		char phy_id[MII_BUS_ID_SIZE + 3];
1798 
1799 		snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
1800 			 mdp->mii_bus->id, mdp->phy_id);
1801 
1802 		phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
1803 				     mdp->phy_interface);
1804 	}
1805 
1806 	if (IS_ERR(phydev)) {
1807 		netdev_err(ndev, "failed to connect PHY\n");
1808 		return PTR_ERR(phydev);
1809 	}
1810 
1811 	phy_attached_info(phydev);
1812 
1813 	mdp->phydev = phydev;
1814 
1815 	return 0;
1816 }
1817 
1818 /* PHY control start function */
1819 static int sh_eth_phy_start(struct net_device *ndev)
1820 {
1821 	struct sh_eth_private *mdp = netdev_priv(ndev);
1822 	int ret;
1823 
1824 	ret = sh_eth_phy_init(ndev);
1825 	if (ret)
1826 		return ret;
1827 
1828 	phy_start(mdp->phydev);
1829 
1830 	return 0;
1831 }
1832 
1833 static int sh_eth_get_settings(struct net_device *ndev,
1834 			       struct ethtool_cmd *ecmd)
1835 {
1836 	struct sh_eth_private *mdp = netdev_priv(ndev);
1837 	unsigned long flags;
1838 	int ret;
1839 
1840 	if (!mdp->phydev)
1841 		return -ENODEV;
1842 
1843 	spin_lock_irqsave(&mdp->lock, flags);
1844 	ret = phy_ethtool_gset(mdp->phydev, ecmd);
1845 	spin_unlock_irqrestore(&mdp->lock, flags);
1846 
1847 	return ret;
1848 }
1849 
1850 static int sh_eth_set_settings(struct net_device *ndev,
1851 			       struct ethtool_cmd *ecmd)
1852 {
1853 	struct sh_eth_private *mdp = netdev_priv(ndev);
1854 	unsigned long flags;
1855 	int ret;
1856 
1857 	if (!mdp->phydev)
1858 		return -ENODEV;
1859 
1860 	spin_lock_irqsave(&mdp->lock, flags);
1861 
1862 	/* disable tx and rx */
1863 	sh_eth_rcv_snd_disable(ndev);
1864 
1865 	ret = phy_ethtool_sset(mdp->phydev, ecmd);
1866 	if (ret)
1867 		goto error_exit;
1868 
1869 	if (ecmd->duplex == DUPLEX_FULL)
1870 		mdp->duplex = 1;
1871 	else
1872 		mdp->duplex = 0;
1873 
1874 	if (mdp->cd->set_duplex)
1875 		mdp->cd->set_duplex(ndev);
1876 
1877 error_exit:
1878 	mdelay(1);
1879 
1880 	/* enable tx and rx */
1881 	sh_eth_rcv_snd_enable(ndev);
1882 
1883 	spin_unlock_irqrestore(&mdp->lock, flags);
1884 
1885 	return ret;
1886 }
1887 
1888 /* If it is ever necessary to increase SH_ETH_REG_DUMP_MAX_REGS, the
1889  * version must be bumped as well.  Just adding registers up to that
1890  * limit is fine, as long as the existing register indices don't
1891  * change.
1892  */
1893 #define SH_ETH_REG_DUMP_VERSION		1
1894 #define SH_ETH_REG_DUMP_MAX_REGS	256
1895 
1896 static size_t __sh_eth_get_regs(struct net_device *ndev, u32 *buf)
1897 {
1898 	struct sh_eth_private *mdp = netdev_priv(ndev);
1899 	struct sh_eth_cpu_data *cd = mdp->cd;
1900 	u32 *valid_map;
1901 	size_t len;
1902 
1903 	BUILD_BUG_ON(SH_ETH_MAX_REGISTER_OFFSET > SH_ETH_REG_DUMP_MAX_REGS);
1904 
1905 	/* Dump starts with a bitmap that tells ethtool which
1906 	 * registers are defined for this chip.
1907 	 */
1908 	len = DIV_ROUND_UP(SH_ETH_REG_DUMP_MAX_REGS, 32);
1909 	if (buf) {
1910 		valid_map = buf;
1911 		buf += len;
1912 	} else {
1913 		valid_map = NULL;
1914 	}
1915 
1916 	/* Add a register to the dump, if it has a defined offset.
1917 	 * This automatically skips most undefined registers, but for
1918 	 * some it is also necessary to check a capability flag in
1919 	 * struct sh_eth_cpu_data.
1920 	 */
1921 #define mark_reg_valid(reg) valid_map[reg / 32] |= 1U << (reg % 32)
1922 #define add_reg_from(reg, read_expr) do {				\
1923 		if (mdp->reg_offset[reg] != SH_ETH_OFFSET_INVALID) {	\
1924 			if (buf) {					\
1925 				mark_reg_valid(reg);			\
1926 				*buf++ = read_expr;			\
1927 			}						\
1928 			++len;						\
1929 		}							\
1930 	} while (0)
1931 #define add_reg(reg) add_reg_from(reg, sh_eth_read(ndev, reg))
1932 #define add_tsu_reg(reg) add_reg_from(reg, sh_eth_tsu_read(mdp, reg))
1933 
1934 	add_reg(EDSR);
1935 	add_reg(EDMR);
1936 	add_reg(EDTRR);
1937 	add_reg(EDRRR);
1938 	add_reg(EESR);
1939 	add_reg(EESIPR);
1940 	add_reg(TDLAR);
1941 	add_reg(TDFAR);
1942 	add_reg(TDFXR);
1943 	add_reg(TDFFR);
1944 	add_reg(RDLAR);
1945 	add_reg(RDFAR);
1946 	add_reg(RDFXR);
1947 	add_reg(RDFFR);
1948 	add_reg(TRSCER);
1949 	add_reg(RMFCR);
1950 	add_reg(TFTR);
1951 	add_reg(FDR);
1952 	add_reg(RMCR);
1953 	add_reg(TFUCR);
1954 	add_reg(RFOCR);
1955 	if (cd->rmiimode)
1956 		add_reg(RMIIMODE);
1957 	add_reg(FCFTR);
1958 	if (cd->rpadir)
1959 		add_reg(RPADIR);
1960 	if (!cd->no_trimd)
1961 		add_reg(TRIMD);
1962 	add_reg(ECMR);
1963 	add_reg(ECSR);
1964 	add_reg(ECSIPR);
1965 	add_reg(PIR);
1966 	if (!cd->no_psr)
1967 		add_reg(PSR);
1968 	add_reg(RDMLR);
1969 	add_reg(RFLR);
1970 	add_reg(IPGR);
1971 	if (cd->apr)
1972 		add_reg(APR);
1973 	if (cd->mpr)
1974 		add_reg(MPR);
1975 	add_reg(RFCR);
1976 	add_reg(RFCF);
1977 	if (cd->tpauser)
1978 		add_reg(TPAUSER);
1979 	add_reg(TPAUSECR);
1980 	add_reg(GECMR);
1981 	if (cd->bculr)
1982 		add_reg(BCULR);
1983 	add_reg(MAHR);
1984 	add_reg(MALR);
1985 	add_reg(TROCR);
1986 	add_reg(CDCR);
1987 	add_reg(LCCR);
1988 	add_reg(CNDCR);
1989 	add_reg(CEFCR);
1990 	add_reg(FRECR);
1991 	add_reg(TSFRCR);
1992 	add_reg(TLFRCR);
1993 	add_reg(CERCR);
1994 	add_reg(CEECR);
1995 	add_reg(MAFCR);
1996 	if (cd->rtrate)
1997 		add_reg(RTRATE);
1998 	if (cd->hw_crc)
1999 		add_reg(CSMR);
2000 	if (cd->select_mii)
2001 		add_reg(RMII_MII);
2002 	add_reg(ARSTR);
2003 	if (cd->tsu) {
2004 		add_tsu_reg(TSU_CTRST);
2005 		add_tsu_reg(TSU_FWEN0);
2006 		add_tsu_reg(TSU_FWEN1);
2007 		add_tsu_reg(TSU_FCM);
2008 		add_tsu_reg(TSU_BSYSL0);
2009 		add_tsu_reg(TSU_BSYSL1);
2010 		add_tsu_reg(TSU_PRISL0);
2011 		add_tsu_reg(TSU_PRISL1);
2012 		add_tsu_reg(TSU_FWSL0);
2013 		add_tsu_reg(TSU_FWSL1);
2014 		add_tsu_reg(TSU_FWSLC);
2015 		add_tsu_reg(TSU_QTAG0);
2016 		add_tsu_reg(TSU_QTAG1);
2017 		add_tsu_reg(TSU_QTAGM0);
2018 		add_tsu_reg(TSU_QTAGM1);
2019 		add_tsu_reg(TSU_FWSR);
2020 		add_tsu_reg(TSU_FWINMK);
2021 		add_tsu_reg(TSU_ADQT0);
2022 		add_tsu_reg(TSU_ADQT1);
2023 		add_tsu_reg(TSU_VTAG0);
2024 		add_tsu_reg(TSU_VTAG1);
2025 		add_tsu_reg(TSU_ADSBSY);
2026 		add_tsu_reg(TSU_TEN);
2027 		add_tsu_reg(TSU_POST1);
2028 		add_tsu_reg(TSU_POST2);
2029 		add_tsu_reg(TSU_POST3);
2030 		add_tsu_reg(TSU_POST4);
2031 		if (mdp->reg_offset[TSU_ADRH0] != SH_ETH_OFFSET_INVALID) {
2032 			/* This is the start of a table, not just a single
2033 			 * register.
2034 			 */
2035 			if (buf) {
2036 				unsigned int i;
2037 
2038 				mark_reg_valid(TSU_ADRH0);
2039 				for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES * 2; i++)
2040 					*buf++ = ioread32(
2041 						mdp->tsu_addr +
2042 						mdp->reg_offset[TSU_ADRH0] +
2043 						i * 4);
2044 			}
2045 			len += SH_ETH_TSU_CAM_ENTRIES * 2;
2046 		}
2047 	}
2048 
2049 #undef mark_reg_valid
2050 #undef add_reg_from
2051 #undef add_reg
2052 #undef add_tsu_reg
2053 
2054 	return len * 4;
2055 }
2056 
2057 static int sh_eth_get_regs_len(struct net_device *ndev)
2058 {
2059 	return __sh_eth_get_regs(ndev, NULL);
2060 }
2061 
2062 static void sh_eth_get_regs(struct net_device *ndev, struct ethtool_regs *regs,
2063 			    void *buf)
2064 {
2065 	struct sh_eth_private *mdp = netdev_priv(ndev);
2066 
2067 	regs->version = SH_ETH_REG_DUMP_VERSION;
2068 
2069 	pm_runtime_get_sync(&mdp->pdev->dev);
2070 	__sh_eth_get_regs(ndev, buf);
2071 	pm_runtime_put_sync(&mdp->pdev->dev);
2072 }
2073 
2074 static int sh_eth_nway_reset(struct net_device *ndev)
2075 {
2076 	struct sh_eth_private *mdp = netdev_priv(ndev);
2077 	unsigned long flags;
2078 	int ret;
2079 
2080 	if (!mdp->phydev)
2081 		return -ENODEV;
2082 
2083 	spin_lock_irqsave(&mdp->lock, flags);
2084 	ret = phy_start_aneg(mdp->phydev);
2085 	spin_unlock_irqrestore(&mdp->lock, flags);
2086 
2087 	return ret;
2088 }
2089 
2090 static u32 sh_eth_get_msglevel(struct net_device *ndev)
2091 {
2092 	struct sh_eth_private *mdp = netdev_priv(ndev);
2093 	return mdp->msg_enable;
2094 }
2095 
2096 static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
2097 {
2098 	struct sh_eth_private *mdp = netdev_priv(ndev);
2099 	mdp->msg_enable = value;
2100 }
2101 
2102 static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
2103 	"rx_current", "tx_current",
2104 	"rx_dirty", "tx_dirty",
2105 };
2106 #define SH_ETH_STATS_LEN  ARRAY_SIZE(sh_eth_gstrings_stats)
2107 
2108 static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
2109 {
2110 	switch (sset) {
2111 	case ETH_SS_STATS:
2112 		return SH_ETH_STATS_LEN;
2113 	default:
2114 		return -EOPNOTSUPP;
2115 	}
2116 }
2117 
2118 static void sh_eth_get_ethtool_stats(struct net_device *ndev,
2119 				     struct ethtool_stats *stats, u64 *data)
2120 {
2121 	struct sh_eth_private *mdp = netdev_priv(ndev);
2122 	int i = 0;
2123 
2124 	/* device-specific stats */
2125 	data[i++] = mdp->cur_rx;
2126 	data[i++] = mdp->cur_tx;
2127 	data[i++] = mdp->dirty_rx;
2128 	data[i++] = mdp->dirty_tx;
2129 }
2130 
2131 static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
2132 {
2133 	switch (stringset) {
2134 	case ETH_SS_STATS:
2135 		memcpy(data, *sh_eth_gstrings_stats,
2136 		       sizeof(sh_eth_gstrings_stats));
2137 		break;
2138 	}
2139 }
2140 
2141 static void sh_eth_get_ringparam(struct net_device *ndev,
2142 				 struct ethtool_ringparam *ring)
2143 {
2144 	struct sh_eth_private *mdp = netdev_priv(ndev);
2145 
2146 	ring->rx_max_pending = RX_RING_MAX;
2147 	ring->tx_max_pending = TX_RING_MAX;
2148 	ring->rx_pending = mdp->num_rx_ring;
2149 	ring->tx_pending = mdp->num_tx_ring;
2150 }
2151 
2152 static int sh_eth_set_ringparam(struct net_device *ndev,
2153 				struct ethtool_ringparam *ring)
2154 {
2155 	struct sh_eth_private *mdp = netdev_priv(ndev);
2156 	int ret;
2157 
2158 	if (ring->tx_pending > TX_RING_MAX ||
2159 	    ring->rx_pending > RX_RING_MAX ||
2160 	    ring->tx_pending < TX_RING_MIN ||
2161 	    ring->rx_pending < RX_RING_MIN)
2162 		return -EINVAL;
2163 	if (ring->rx_mini_pending || ring->rx_jumbo_pending)
2164 		return -EINVAL;
2165 
2166 	if (netif_running(ndev)) {
2167 		netif_device_detach(ndev);
2168 		netif_tx_disable(ndev);
2169 
2170 		/* Serialise with the interrupt handler and NAPI, then
2171 		 * disable interrupts.  We have to clear the
2172 		 * irq_enabled flag first to ensure that interrupts
2173 		 * won't be re-enabled.
2174 		 */
2175 		mdp->irq_enabled = false;
2176 		synchronize_irq(ndev->irq);
2177 		napi_synchronize(&mdp->napi);
2178 		sh_eth_write(ndev, 0x0000, EESIPR);
2179 
2180 		sh_eth_dev_exit(ndev);
2181 
2182 		/* Free all the skbuffs in the Rx queue and the DMA buffers. */
2183 		sh_eth_ring_free(ndev);
2184 	}
2185 
2186 	/* Set new parameters */
2187 	mdp->num_rx_ring = ring->rx_pending;
2188 	mdp->num_tx_ring = ring->tx_pending;
2189 
2190 	if (netif_running(ndev)) {
2191 		ret = sh_eth_ring_init(ndev);
2192 		if (ret < 0) {
2193 			netdev_err(ndev, "%s: sh_eth_ring_init failed.\n",
2194 				   __func__);
2195 			return ret;
2196 		}
2197 		ret = sh_eth_dev_init(ndev, false);
2198 		if (ret < 0) {
2199 			netdev_err(ndev, "%s: sh_eth_dev_init failed.\n",
2200 				   __func__);
2201 			return ret;
2202 		}
2203 
2204 		mdp->irq_enabled = true;
2205 		sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
2206 		/* Setting the Rx mode will start the Rx process. */
2207 		sh_eth_write(ndev, EDRRR_R, EDRRR);
2208 		netif_device_attach(ndev);
2209 	}
2210 
2211 	return 0;
2212 }
2213 
2214 static const struct ethtool_ops sh_eth_ethtool_ops = {
2215 	.get_settings	= sh_eth_get_settings,
2216 	.set_settings	= sh_eth_set_settings,
2217 	.get_regs_len	= sh_eth_get_regs_len,
2218 	.get_regs	= sh_eth_get_regs,
2219 	.nway_reset	= sh_eth_nway_reset,
2220 	.get_msglevel	= sh_eth_get_msglevel,
2221 	.set_msglevel	= sh_eth_set_msglevel,
2222 	.get_link	= ethtool_op_get_link,
2223 	.get_strings	= sh_eth_get_strings,
2224 	.get_ethtool_stats  = sh_eth_get_ethtool_stats,
2225 	.get_sset_count     = sh_eth_get_sset_count,
2226 	.get_ringparam	= sh_eth_get_ringparam,
2227 	.set_ringparam	= sh_eth_set_ringparam,
2228 };
2229 
2230 /* network device open function */
2231 static int sh_eth_open(struct net_device *ndev)
2232 {
2233 	struct sh_eth_private *mdp = netdev_priv(ndev);
2234 	int ret;
2235 
2236 	pm_runtime_get_sync(&mdp->pdev->dev);
2237 
2238 	napi_enable(&mdp->napi);
2239 
2240 	ret = request_irq(ndev->irq, sh_eth_interrupt,
2241 			  mdp->cd->irq_flags, ndev->name, ndev);
2242 	if (ret) {
2243 		netdev_err(ndev, "Can not assign IRQ number\n");
2244 		goto out_napi_off;
2245 	}
2246 
2247 	/* Descriptor set */
2248 	ret = sh_eth_ring_init(ndev);
2249 	if (ret)
2250 		goto out_free_irq;
2251 
2252 	/* device init */
2253 	ret = sh_eth_dev_init(ndev, true);
2254 	if (ret)
2255 		goto out_free_irq;
2256 
2257 	/* PHY control start*/
2258 	ret = sh_eth_phy_start(ndev);
2259 	if (ret)
2260 		goto out_free_irq;
2261 
2262 	netif_start_queue(ndev);
2263 
2264 	mdp->is_opened = 1;
2265 
2266 	return ret;
2267 
2268 out_free_irq:
2269 	free_irq(ndev->irq, ndev);
2270 out_napi_off:
2271 	napi_disable(&mdp->napi);
2272 	pm_runtime_put_sync(&mdp->pdev->dev);
2273 	return ret;
2274 }
2275 
2276 /* Timeout function */
2277 static void sh_eth_tx_timeout(struct net_device *ndev)
2278 {
2279 	struct sh_eth_private *mdp = netdev_priv(ndev);
2280 	struct sh_eth_rxdesc *rxdesc;
2281 	int i;
2282 
2283 	netif_stop_queue(ndev);
2284 
2285 	netif_err(mdp, timer, ndev,
2286 		  "transmit timed out, status %8.8x, resetting...\n",
2287 		  sh_eth_read(ndev, EESR));
2288 
2289 	/* tx_errors count up */
2290 	ndev->stats.tx_errors++;
2291 
2292 	/* Free all the skbuffs in the Rx queue. */
2293 	for (i = 0; i < mdp->num_rx_ring; i++) {
2294 		rxdesc = &mdp->rx_ring[i];
2295 		rxdesc->status = cpu_to_le32(0);
2296 		rxdesc->addr = cpu_to_le32(0xBADF00D0);
2297 		dev_kfree_skb(mdp->rx_skbuff[i]);
2298 		mdp->rx_skbuff[i] = NULL;
2299 	}
2300 	for (i = 0; i < mdp->num_tx_ring; i++) {
2301 		dev_kfree_skb(mdp->tx_skbuff[i]);
2302 		mdp->tx_skbuff[i] = NULL;
2303 	}
2304 
2305 	/* device init */
2306 	sh_eth_dev_init(ndev, true);
2307 
2308 	netif_start_queue(ndev);
2309 }
2310 
2311 /* Packet transmit function */
2312 static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
2313 {
2314 	struct sh_eth_private *mdp = netdev_priv(ndev);
2315 	struct sh_eth_txdesc *txdesc;
2316 	dma_addr_t dma_addr;
2317 	u32 entry;
2318 	unsigned long flags;
2319 
2320 	spin_lock_irqsave(&mdp->lock, flags);
2321 	if ((mdp->cur_tx - mdp->dirty_tx) >= (mdp->num_tx_ring - 4)) {
2322 		if (!sh_eth_txfree(ndev)) {
2323 			netif_warn(mdp, tx_queued, ndev, "TxFD exhausted.\n");
2324 			netif_stop_queue(ndev);
2325 			spin_unlock_irqrestore(&mdp->lock, flags);
2326 			return NETDEV_TX_BUSY;
2327 		}
2328 	}
2329 	spin_unlock_irqrestore(&mdp->lock, flags);
2330 
2331 	if (skb_put_padto(skb, ETH_ZLEN))
2332 		return NETDEV_TX_OK;
2333 
2334 	entry = mdp->cur_tx % mdp->num_tx_ring;
2335 	mdp->tx_skbuff[entry] = skb;
2336 	txdesc = &mdp->tx_ring[entry];
2337 	/* soft swap. */
2338 	if (!mdp->cd->hw_swap)
2339 		sh_eth_soft_swap(PTR_ALIGN(skb->data, 4), skb->len + 2);
2340 	dma_addr = dma_map_single(&ndev->dev, skb->data, skb->len,
2341 				  DMA_TO_DEVICE);
2342 	if (dma_mapping_error(&ndev->dev, dma_addr)) {
2343 		kfree_skb(skb);
2344 		return NETDEV_TX_OK;
2345 	}
2346 	txdesc->addr = cpu_to_le32(dma_addr);
2347 	txdesc->len  = cpu_to_le32(skb->len << 16);
2348 
2349 	dma_wmb(); /* TACT bit must be set after all the above writes */
2350 	if (entry >= mdp->num_tx_ring - 1)
2351 		txdesc->status |= cpu_to_le32(TD_TACT | TD_TDLE);
2352 	else
2353 		txdesc->status |= cpu_to_le32(TD_TACT);
2354 
2355 	mdp->cur_tx++;
2356 
2357 	if (!(sh_eth_read(ndev, EDTRR) & sh_eth_get_edtrr_trns(mdp)))
2358 		sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
2359 
2360 	return NETDEV_TX_OK;
2361 }
2362 
2363 /* The statistics registers have write-clear behaviour, which means we
2364  * will lose any increment between the read and write.  We mitigate
2365  * this by only clearing when we read a non-zero value, so we will
2366  * never falsely report a total of zero.
2367  */
2368 static void
2369 sh_eth_update_stat(struct net_device *ndev, unsigned long *stat, int reg)
2370 {
2371 	u32 delta = sh_eth_read(ndev, reg);
2372 
2373 	if (delta) {
2374 		*stat += delta;
2375 		sh_eth_write(ndev, 0, reg);
2376 	}
2377 }
2378 
2379 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
2380 {
2381 	struct sh_eth_private *mdp = netdev_priv(ndev);
2382 
2383 	if (sh_eth_is_rz_fast_ether(mdp))
2384 		return &ndev->stats;
2385 
2386 	if (!mdp->is_opened)
2387 		return &ndev->stats;
2388 
2389 	sh_eth_update_stat(ndev, &ndev->stats.tx_dropped, TROCR);
2390 	sh_eth_update_stat(ndev, &ndev->stats.collisions, CDCR);
2391 	sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors, LCCR);
2392 
2393 	if (sh_eth_is_gether(mdp)) {
2394 		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2395 				   CERCR);
2396 		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2397 				   CEECR);
2398 	} else {
2399 		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2400 				   CNDCR);
2401 	}
2402 
2403 	return &ndev->stats;
2404 }
2405 
2406 /* device close function */
2407 static int sh_eth_close(struct net_device *ndev)
2408 {
2409 	struct sh_eth_private *mdp = netdev_priv(ndev);
2410 
2411 	netif_stop_queue(ndev);
2412 
2413 	/* Serialise with the interrupt handler and NAPI, then disable
2414 	 * interrupts.  We have to clear the irq_enabled flag first to
2415 	 * ensure that interrupts won't be re-enabled.
2416 	 */
2417 	mdp->irq_enabled = false;
2418 	synchronize_irq(ndev->irq);
2419 	napi_disable(&mdp->napi);
2420 	sh_eth_write(ndev, 0x0000, EESIPR);
2421 
2422 	sh_eth_dev_exit(ndev);
2423 
2424 	/* PHY Disconnect */
2425 	if (mdp->phydev) {
2426 		phy_stop(mdp->phydev);
2427 		phy_disconnect(mdp->phydev);
2428 		mdp->phydev = NULL;
2429 	}
2430 
2431 	free_irq(ndev->irq, ndev);
2432 
2433 	/* Free all the skbuffs in the Rx queue and the DMA buffer. */
2434 	sh_eth_ring_free(ndev);
2435 
2436 	pm_runtime_put_sync(&mdp->pdev->dev);
2437 
2438 	mdp->is_opened = 0;
2439 
2440 	return 0;
2441 }
2442 
2443 /* ioctl to device function */
2444 static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2445 {
2446 	struct sh_eth_private *mdp = netdev_priv(ndev);
2447 	struct phy_device *phydev = mdp->phydev;
2448 
2449 	if (!netif_running(ndev))
2450 		return -EINVAL;
2451 
2452 	if (!phydev)
2453 		return -ENODEV;
2454 
2455 	return phy_mii_ioctl(phydev, rq, cmd);
2456 }
2457 
2458 /* For TSU_POSTn. Please refer to the manual about this (strange) bitfields */
2459 static void *sh_eth_tsu_get_post_reg_offset(struct sh_eth_private *mdp,
2460 					    int entry)
2461 {
2462 	return sh_eth_tsu_get_offset(mdp, TSU_POST1) + (entry / 8 * 4);
2463 }
2464 
2465 static u32 sh_eth_tsu_get_post_mask(int entry)
2466 {
2467 	return 0x0f << (28 - ((entry % 8) * 4));
2468 }
2469 
2470 static u32 sh_eth_tsu_get_post_bit(struct sh_eth_private *mdp, int entry)
2471 {
2472 	return (0x08 >> (mdp->port << 1)) << (28 - ((entry % 8) * 4));
2473 }
2474 
2475 static void sh_eth_tsu_enable_cam_entry_post(struct net_device *ndev,
2476 					     int entry)
2477 {
2478 	struct sh_eth_private *mdp = netdev_priv(ndev);
2479 	u32 tmp;
2480 	void *reg_offset;
2481 
2482 	reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2483 	tmp = ioread32(reg_offset);
2484 	iowrite32(tmp | sh_eth_tsu_get_post_bit(mdp, entry), reg_offset);
2485 }
2486 
2487 static bool sh_eth_tsu_disable_cam_entry_post(struct net_device *ndev,
2488 					      int entry)
2489 {
2490 	struct sh_eth_private *mdp = netdev_priv(ndev);
2491 	u32 post_mask, ref_mask, tmp;
2492 	void *reg_offset;
2493 
2494 	reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2495 	post_mask = sh_eth_tsu_get_post_mask(entry);
2496 	ref_mask = sh_eth_tsu_get_post_bit(mdp, entry) & ~post_mask;
2497 
2498 	tmp = ioread32(reg_offset);
2499 	iowrite32(tmp & ~post_mask, reg_offset);
2500 
2501 	/* If other port enables, the function returns "true" */
2502 	return tmp & ref_mask;
2503 }
2504 
2505 static int sh_eth_tsu_busy(struct net_device *ndev)
2506 {
2507 	int timeout = SH_ETH_TSU_TIMEOUT_MS * 100;
2508 	struct sh_eth_private *mdp = netdev_priv(ndev);
2509 
2510 	while ((sh_eth_tsu_read(mdp, TSU_ADSBSY) & TSU_ADSBSY_0)) {
2511 		udelay(10);
2512 		timeout--;
2513 		if (timeout <= 0) {
2514 			netdev_err(ndev, "%s: timeout\n", __func__);
2515 			return -ETIMEDOUT;
2516 		}
2517 	}
2518 
2519 	return 0;
2520 }
2521 
2522 static int sh_eth_tsu_write_entry(struct net_device *ndev, void *reg,
2523 				  const u8 *addr)
2524 {
2525 	u32 val;
2526 
2527 	val = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3];
2528 	iowrite32(val, reg);
2529 	if (sh_eth_tsu_busy(ndev) < 0)
2530 		return -EBUSY;
2531 
2532 	val = addr[4] << 8 | addr[5];
2533 	iowrite32(val, reg + 4);
2534 	if (sh_eth_tsu_busy(ndev) < 0)
2535 		return -EBUSY;
2536 
2537 	return 0;
2538 }
2539 
2540 static void sh_eth_tsu_read_entry(void *reg, u8 *addr)
2541 {
2542 	u32 val;
2543 
2544 	val = ioread32(reg);
2545 	addr[0] = (val >> 24) & 0xff;
2546 	addr[1] = (val >> 16) & 0xff;
2547 	addr[2] = (val >> 8) & 0xff;
2548 	addr[3] = val & 0xff;
2549 	val = ioread32(reg + 4);
2550 	addr[4] = (val >> 8) & 0xff;
2551 	addr[5] = val & 0xff;
2552 }
2553 
2554 
2555 static int sh_eth_tsu_find_entry(struct net_device *ndev, const u8 *addr)
2556 {
2557 	struct sh_eth_private *mdp = netdev_priv(ndev);
2558 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2559 	int i;
2560 	u8 c_addr[ETH_ALEN];
2561 
2562 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2563 		sh_eth_tsu_read_entry(reg_offset, c_addr);
2564 		if (ether_addr_equal(addr, c_addr))
2565 			return i;
2566 	}
2567 
2568 	return -ENOENT;
2569 }
2570 
2571 static int sh_eth_tsu_find_empty(struct net_device *ndev)
2572 {
2573 	u8 blank[ETH_ALEN];
2574 	int entry;
2575 
2576 	memset(blank, 0, sizeof(blank));
2577 	entry = sh_eth_tsu_find_entry(ndev, blank);
2578 	return (entry < 0) ? -ENOMEM : entry;
2579 }
2580 
2581 static int sh_eth_tsu_disable_cam_entry_table(struct net_device *ndev,
2582 					      int entry)
2583 {
2584 	struct sh_eth_private *mdp = netdev_priv(ndev);
2585 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2586 	int ret;
2587 	u8 blank[ETH_ALEN];
2588 
2589 	sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) &
2590 			 ~(1 << (31 - entry)), TSU_TEN);
2591 
2592 	memset(blank, 0, sizeof(blank));
2593 	ret = sh_eth_tsu_write_entry(ndev, reg_offset + entry * 8, blank);
2594 	if (ret < 0)
2595 		return ret;
2596 	return 0;
2597 }
2598 
2599 static int sh_eth_tsu_add_entry(struct net_device *ndev, const u8 *addr)
2600 {
2601 	struct sh_eth_private *mdp = netdev_priv(ndev);
2602 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2603 	int i, ret;
2604 
2605 	if (!mdp->cd->tsu)
2606 		return 0;
2607 
2608 	i = sh_eth_tsu_find_entry(ndev, addr);
2609 	if (i < 0) {
2610 		/* No entry found, create one */
2611 		i = sh_eth_tsu_find_empty(ndev);
2612 		if (i < 0)
2613 			return -ENOMEM;
2614 		ret = sh_eth_tsu_write_entry(ndev, reg_offset + i * 8, addr);
2615 		if (ret < 0)
2616 			return ret;
2617 
2618 		/* Enable the entry */
2619 		sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) |
2620 				 (1 << (31 - i)), TSU_TEN);
2621 	}
2622 
2623 	/* Entry found or created, enable POST */
2624 	sh_eth_tsu_enable_cam_entry_post(ndev, i);
2625 
2626 	return 0;
2627 }
2628 
2629 static int sh_eth_tsu_del_entry(struct net_device *ndev, const u8 *addr)
2630 {
2631 	struct sh_eth_private *mdp = netdev_priv(ndev);
2632 	int i, ret;
2633 
2634 	if (!mdp->cd->tsu)
2635 		return 0;
2636 
2637 	i = sh_eth_tsu_find_entry(ndev, addr);
2638 	if (i) {
2639 		/* Entry found */
2640 		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2641 			goto done;
2642 
2643 		/* Disable the entry if both ports was disabled */
2644 		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2645 		if (ret < 0)
2646 			return ret;
2647 	}
2648 done:
2649 	return 0;
2650 }
2651 
2652 static int sh_eth_tsu_purge_all(struct net_device *ndev)
2653 {
2654 	struct sh_eth_private *mdp = netdev_priv(ndev);
2655 	int i, ret;
2656 
2657 	if (!mdp->cd->tsu)
2658 		return 0;
2659 
2660 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++) {
2661 		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2662 			continue;
2663 
2664 		/* Disable the entry if both ports was disabled */
2665 		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2666 		if (ret < 0)
2667 			return ret;
2668 	}
2669 
2670 	return 0;
2671 }
2672 
2673 static void sh_eth_tsu_purge_mcast(struct net_device *ndev)
2674 {
2675 	struct sh_eth_private *mdp = netdev_priv(ndev);
2676 	u8 addr[ETH_ALEN];
2677 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2678 	int i;
2679 
2680 	if (!mdp->cd->tsu)
2681 		return;
2682 
2683 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2684 		sh_eth_tsu_read_entry(reg_offset, addr);
2685 		if (is_multicast_ether_addr(addr))
2686 			sh_eth_tsu_del_entry(ndev, addr);
2687 	}
2688 }
2689 
2690 /* Update promiscuous flag and multicast filter */
2691 static void sh_eth_set_rx_mode(struct net_device *ndev)
2692 {
2693 	struct sh_eth_private *mdp = netdev_priv(ndev);
2694 	u32 ecmr_bits;
2695 	int mcast_all = 0;
2696 	unsigned long flags;
2697 
2698 	spin_lock_irqsave(&mdp->lock, flags);
2699 	/* Initial condition is MCT = 1, PRM = 0.
2700 	 * Depending on ndev->flags, set PRM or clear MCT
2701 	 */
2702 	ecmr_bits = sh_eth_read(ndev, ECMR) & ~ECMR_PRM;
2703 	if (mdp->cd->tsu)
2704 		ecmr_bits |= ECMR_MCT;
2705 
2706 	if (!(ndev->flags & IFF_MULTICAST)) {
2707 		sh_eth_tsu_purge_mcast(ndev);
2708 		mcast_all = 1;
2709 	}
2710 	if (ndev->flags & IFF_ALLMULTI) {
2711 		sh_eth_tsu_purge_mcast(ndev);
2712 		ecmr_bits &= ~ECMR_MCT;
2713 		mcast_all = 1;
2714 	}
2715 
2716 	if (ndev->flags & IFF_PROMISC) {
2717 		sh_eth_tsu_purge_all(ndev);
2718 		ecmr_bits = (ecmr_bits & ~ECMR_MCT) | ECMR_PRM;
2719 	} else if (mdp->cd->tsu) {
2720 		struct netdev_hw_addr *ha;
2721 		netdev_for_each_mc_addr(ha, ndev) {
2722 			if (mcast_all && is_multicast_ether_addr(ha->addr))
2723 				continue;
2724 
2725 			if (sh_eth_tsu_add_entry(ndev, ha->addr) < 0) {
2726 				if (!mcast_all) {
2727 					sh_eth_tsu_purge_mcast(ndev);
2728 					ecmr_bits &= ~ECMR_MCT;
2729 					mcast_all = 1;
2730 				}
2731 			}
2732 		}
2733 	}
2734 
2735 	/* update the ethernet mode */
2736 	sh_eth_write(ndev, ecmr_bits, ECMR);
2737 
2738 	spin_unlock_irqrestore(&mdp->lock, flags);
2739 }
2740 
2741 static int sh_eth_get_vtag_index(struct sh_eth_private *mdp)
2742 {
2743 	if (!mdp->port)
2744 		return TSU_VTAG0;
2745 	else
2746 		return TSU_VTAG1;
2747 }
2748 
2749 static int sh_eth_vlan_rx_add_vid(struct net_device *ndev,
2750 				  __be16 proto, u16 vid)
2751 {
2752 	struct sh_eth_private *mdp = netdev_priv(ndev);
2753 	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2754 
2755 	if (unlikely(!mdp->cd->tsu))
2756 		return -EPERM;
2757 
2758 	/* No filtering if vid = 0 */
2759 	if (!vid)
2760 		return 0;
2761 
2762 	mdp->vlan_num_ids++;
2763 
2764 	/* The controller has one VLAN tag HW filter. So, if the filter is
2765 	 * already enabled, the driver disables it and the filte
2766 	 */
2767 	if (mdp->vlan_num_ids > 1) {
2768 		/* disable VLAN filter */
2769 		sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2770 		return 0;
2771 	}
2772 
2773 	sh_eth_tsu_write(mdp, TSU_VTAG_ENABLE | (vid & TSU_VTAG_VID_MASK),
2774 			 vtag_reg_index);
2775 
2776 	return 0;
2777 }
2778 
2779 static int sh_eth_vlan_rx_kill_vid(struct net_device *ndev,
2780 				   __be16 proto, u16 vid)
2781 {
2782 	struct sh_eth_private *mdp = netdev_priv(ndev);
2783 	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2784 
2785 	if (unlikely(!mdp->cd->tsu))
2786 		return -EPERM;
2787 
2788 	/* No filtering if vid = 0 */
2789 	if (!vid)
2790 		return 0;
2791 
2792 	mdp->vlan_num_ids--;
2793 	sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2794 
2795 	return 0;
2796 }
2797 
2798 /* SuperH's TSU register init function */
2799 static void sh_eth_tsu_init(struct sh_eth_private *mdp)
2800 {
2801 	if (sh_eth_is_rz_fast_ether(mdp)) {
2802 		sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
2803 		return;
2804 	}
2805 
2806 	sh_eth_tsu_write(mdp, 0, TSU_FWEN0);	/* Disable forward(0->1) */
2807 	sh_eth_tsu_write(mdp, 0, TSU_FWEN1);	/* Disable forward(1->0) */
2808 	sh_eth_tsu_write(mdp, 0, TSU_FCM);	/* forward fifo 3k-3k */
2809 	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
2810 	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
2811 	sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
2812 	sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
2813 	sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
2814 	sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
2815 	sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
2816 	if (sh_eth_is_gether(mdp)) {
2817 		sh_eth_tsu_write(mdp, 0, TSU_QTAG0);	/* Disable QTAG(0->1) */
2818 		sh_eth_tsu_write(mdp, 0, TSU_QTAG1);	/* Disable QTAG(1->0) */
2819 	} else {
2820 		sh_eth_tsu_write(mdp, 0, TSU_QTAGM0);	/* Disable QTAG(0->1) */
2821 		sh_eth_tsu_write(mdp, 0, TSU_QTAGM1);	/* Disable QTAG(1->0) */
2822 	}
2823 	sh_eth_tsu_write(mdp, 0, TSU_FWSR);	/* all interrupt status clear */
2824 	sh_eth_tsu_write(mdp, 0, TSU_FWINMK);	/* Disable all interrupt */
2825 	sh_eth_tsu_write(mdp, 0, TSU_TEN);	/* Disable all CAM entry */
2826 	sh_eth_tsu_write(mdp, 0, TSU_POST1);	/* Disable CAM entry [ 0- 7] */
2827 	sh_eth_tsu_write(mdp, 0, TSU_POST2);	/* Disable CAM entry [ 8-15] */
2828 	sh_eth_tsu_write(mdp, 0, TSU_POST3);	/* Disable CAM entry [16-23] */
2829 	sh_eth_tsu_write(mdp, 0, TSU_POST4);	/* Disable CAM entry [24-31] */
2830 }
2831 
2832 /* MDIO bus release function */
2833 static int sh_mdio_release(struct sh_eth_private *mdp)
2834 {
2835 	/* unregister mdio bus */
2836 	mdiobus_unregister(mdp->mii_bus);
2837 
2838 	/* free bitbang info */
2839 	free_mdio_bitbang(mdp->mii_bus);
2840 
2841 	return 0;
2842 }
2843 
2844 /* MDIO bus init function */
2845 static int sh_mdio_init(struct sh_eth_private *mdp,
2846 			struct sh_eth_plat_data *pd)
2847 {
2848 	int ret;
2849 	struct bb_info *bitbang;
2850 	struct platform_device *pdev = mdp->pdev;
2851 	struct device *dev = &mdp->pdev->dev;
2852 
2853 	/* create bit control struct for PHY */
2854 	bitbang = devm_kzalloc(dev, sizeof(struct bb_info), GFP_KERNEL);
2855 	if (!bitbang)
2856 		return -ENOMEM;
2857 
2858 	/* bitbang init */
2859 	bitbang->addr = mdp->addr + mdp->reg_offset[PIR];
2860 	bitbang->set_gate = pd->set_mdio_gate;
2861 	bitbang->ctrl.ops = &bb_ops;
2862 
2863 	/* MII controller setting */
2864 	mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
2865 	if (!mdp->mii_bus)
2866 		return -ENOMEM;
2867 
2868 	/* Hook up MII support for ethtool */
2869 	mdp->mii_bus->name = "sh_mii";
2870 	mdp->mii_bus->parent = dev;
2871 	snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2872 		 pdev->name, pdev->id);
2873 
2874 	/* register MDIO bus */
2875 	if (dev->of_node) {
2876 		ret = of_mdiobus_register(mdp->mii_bus, dev->of_node);
2877 	} else {
2878 		if (pd->phy_irq > 0)
2879 			mdp->mii_bus->irq[pd->phy] = pd->phy_irq;
2880 
2881 		ret = mdiobus_register(mdp->mii_bus);
2882 	}
2883 
2884 	if (ret)
2885 		goto out_free_bus;
2886 
2887 	return 0;
2888 
2889 out_free_bus:
2890 	free_mdio_bitbang(mdp->mii_bus);
2891 	return ret;
2892 }
2893 
2894 static const u16 *sh_eth_get_register_offset(int register_type)
2895 {
2896 	const u16 *reg_offset = NULL;
2897 
2898 	switch (register_type) {
2899 	case SH_ETH_REG_GIGABIT:
2900 		reg_offset = sh_eth_offset_gigabit;
2901 		break;
2902 	case SH_ETH_REG_FAST_RZ:
2903 		reg_offset = sh_eth_offset_fast_rz;
2904 		break;
2905 	case SH_ETH_REG_FAST_RCAR:
2906 		reg_offset = sh_eth_offset_fast_rcar;
2907 		break;
2908 	case SH_ETH_REG_FAST_SH4:
2909 		reg_offset = sh_eth_offset_fast_sh4;
2910 		break;
2911 	case SH_ETH_REG_FAST_SH3_SH2:
2912 		reg_offset = sh_eth_offset_fast_sh3_sh2;
2913 		break;
2914 	}
2915 
2916 	return reg_offset;
2917 }
2918 
2919 static const struct net_device_ops sh_eth_netdev_ops = {
2920 	.ndo_open		= sh_eth_open,
2921 	.ndo_stop		= sh_eth_close,
2922 	.ndo_start_xmit		= sh_eth_start_xmit,
2923 	.ndo_get_stats		= sh_eth_get_stats,
2924 	.ndo_set_rx_mode	= sh_eth_set_rx_mode,
2925 	.ndo_tx_timeout		= sh_eth_tx_timeout,
2926 	.ndo_do_ioctl		= sh_eth_do_ioctl,
2927 	.ndo_validate_addr	= eth_validate_addr,
2928 	.ndo_set_mac_address	= eth_mac_addr,
2929 	.ndo_change_mtu		= eth_change_mtu,
2930 };
2931 
2932 static const struct net_device_ops sh_eth_netdev_ops_tsu = {
2933 	.ndo_open		= sh_eth_open,
2934 	.ndo_stop		= sh_eth_close,
2935 	.ndo_start_xmit		= sh_eth_start_xmit,
2936 	.ndo_get_stats		= sh_eth_get_stats,
2937 	.ndo_set_rx_mode	= sh_eth_set_rx_mode,
2938 	.ndo_vlan_rx_add_vid	= sh_eth_vlan_rx_add_vid,
2939 	.ndo_vlan_rx_kill_vid	= sh_eth_vlan_rx_kill_vid,
2940 	.ndo_tx_timeout		= sh_eth_tx_timeout,
2941 	.ndo_do_ioctl		= sh_eth_do_ioctl,
2942 	.ndo_validate_addr	= eth_validate_addr,
2943 	.ndo_set_mac_address	= eth_mac_addr,
2944 	.ndo_change_mtu		= eth_change_mtu,
2945 };
2946 
2947 #ifdef CONFIG_OF
2948 static struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
2949 {
2950 	struct device_node *np = dev->of_node;
2951 	struct sh_eth_plat_data *pdata;
2952 	const char *mac_addr;
2953 
2954 	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
2955 	if (!pdata)
2956 		return NULL;
2957 
2958 	pdata->phy_interface = of_get_phy_mode(np);
2959 
2960 	mac_addr = of_get_mac_address(np);
2961 	if (mac_addr)
2962 		memcpy(pdata->mac_addr, mac_addr, ETH_ALEN);
2963 
2964 	pdata->no_ether_link =
2965 		of_property_read_bool(np, "renesas,no-ether-link");
2966 	pdata->ether_link_active_low =
2967 		of_property_read_bool(np, "renesas,ether-link-active-low");
2968 
2969 	return pdata;
2970 }
2971 
2972 static const struct of_device_id sh_eth_match_table[] = {
2973 	{ .compatible = "renesas,gether-r8a7740", .data = &r8a7740_data },
2974 	{ .compatible = "renesas,ether-r8a7778", .data = &r8a777x_data },
2975 	{ .compatible = "renesas,ether-r8a7779", .data = &r8a777x_data },
2976 	{ .compatible = "renesas,ether-r8a7790", .data = &r8a779x_data },
2977 	{ .compatible = "renesas,ether-r8a7791", .data = &r8a779x_data },
2978 	{ .compatible = "renesas,ether-r8a7793", .data = &r8a779x_data },
2979 	{ .compatible = "renesas,ether-r8a7794", .data = &r8a779x_data },
2980 	{ .compatible = "renesas,ether-r7s72100", .data = &r7s72100_data },
2981 	{ }
2982 };
2983 MODULE_DEVICE_TABLE(of, sh_eth_match_table);
2984 #else
2985 static inline struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
2986 {
2987 	return NULL;
2988 }
2989 #endif
2990 
2991 static int sh_eth_drv_probe(struct platform_device *pdev)
2992 {
2993 	struct resource *res;
2994 	struct sh_eth_plat_data *pd = dev_get_platdata(&pdev->dev);
2995 	const struct platform_device_id *id = platform_get_device_id(pdev);
2996 	struct sh_eth_private *mdp;
2997 	struct net_device *ndev;
2998 	int ret, devno;
2999 
3000 	/* get base addr */
3001 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3002 
3003 	ndev = alloc_etherdev(sizeof(struct sh_eth_private));
3004 	if (!ndev)
3005 		return -ENOMEM;
3006 
3007 	pm_runtime_enable(&pdev->dev);
3008 	pm_runtime_get_sync(&pdev->dev);
3009 
3010 	devno = pdev->id;
3011 	if (devno < 0)
3012 		devno = 0;
3013 
3014 	ndev->dma = -1;
3015 	ret = platform_get_irq(pdev, 0);
3016 	if (ret < 0)
3017 		goto out_release;
3018 	ndev->irq = ret;
3019 
3020 	SET_NETDEV_DEV(ndev, &pdev->dev);
3021 
3022 	mdp = netdev_priv(ndev);
3023 	mdp->num_tx_ring = TX_RING_SIZE;
3024 	mdp->num_rx_ring = RX_RING_SIZE;
3025 	mdp->addr = devm_ioremap_resource(&pdev->dev, res);
3026 	if (IS_ERR(mdp->addr)) {
3027 		ret = PTR_ERR(mdp->addr);
3028 		goto out_release;
3029 	}
3030 
3031 	ndev->base_addr = res->start;
3032 
3033 	spin_lock_init(&mdp->lock);
3034 	mdp->pdev = pdev;
3035 
3036 	if (pdev->dev.of_node)
3037 		pd = sh_eth_parse_dt(&pdev->dev);
3038 	if (!pd) {
3039 		dev_err(&pdev->dev, "no platform data\n");
3040 		ret = -EINVAL;
3041 		goto out_release;
3042 	}
3043 
3044 	/* get PHY ID */
3045 	mdp->phy_id = pd->phy;
3046 	mdp->phy_interface = pd->phy_interface;
3047 	mdp->no_ether_link = pd->no_ether_link;
3048 	mdp->ether_link_active_low = pd->ether_link_active_low;
3049 
3050 	/* set cpu data */
3051 	if (id)
3052 		mdp->cd = (struct sh_eth_cpu_data *)id->driver_data;
3053 	else
3054 		mdp->cd = (struct sh_eth_cpu_data *)of_device_get_match_data(&pdev->dev);
3055 
3056 	mdp->reg_offset = sh_eth_get_register_offset(mdp->cd->register_type);
3057 	if (!mdp->reg_offset) {
3058 		dev_err(&pdev->dev, "Unknown register type (%d)\n",
3059 			mdp->cd->register_type);
3060 		ret = -EINVAL;
3061 		goto out_release;
3062 	}
3063 	sh_eth_set_default_cpu_data(mdp->cd);
3064 
3065 	/* set function */
3066 	if (mdp->cd->tsu)
3067 		ndev->netdev_ops = &sh_eth_netdev_ops_tsu;
3068 	else
3069 		ndev->netdev_ops = &sh_eth_netdev_ops;
3070 	ndev->ethtool_ops = &sh_eth_ethtool_ops;
3071 	ndev->watchdog_timeo = TX_TIMEOUT;
3072 
3073 	/* debug message level */
3074 	mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
3075 
3076 	/* read and set MAC address */
3077 	read_mac_address(ndev, pd->mac_addr);
3078 	if (!is_valid_ether_addr(ndev->dev_addr)) {
3079 		dev_warn(&pdev->dev,
3080 			 "no valid MAC address supplied, using a random one.\n");
3081 		eth_hw_addr_random(ndev);
3082 	}
3083 
3084 	/* ioremap the TSU registers */
3085 	if (mdp->cd->tsu) {
3086 		struct resource *rtsu;
3087 		rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
3088 		mdp->tsu_addr = devm_ioremap_resource(&pdev->dev, rtsu);
3089 		if (IS_ERR(mdp->tsu_addr)) {
3090 			ret = PTR_ERR(mdp->tsu_addr);
3091 			goto out_release;
3092 		}
3093 		mdp->port = devno % 2;
3094 		ndev->features = NETIF_F_HW_VLAN_CTAG_FILTER;
3095 	}
3096 
3097 	/* initialize first or needed device */
3098 	if (!devno || pd->needs_init) {
3099 		if (mdp->cd->chip_reset)
3100 			mdp->cd->chip_reset(ndev);
3101 
3102 		if (mdp->cd->tsu) {
3103 			/* TSU init (Init only)*/
3104 			sh_eth_tsu_init(mdp);
3105 		}
3106 	}
3107 
3108 	if (mdp->cd->rmiimode)
3109 		sh_eth_write(ndev, 0x1, RMIIMODE);
3110 
3111 	/* MDIO bus init */
3112 	ret = sh_mdio_init(mdp, pd);
3113 	if (ret) {
3114 		dev_err(&ndev->dev, "failed to initialise MDIO\n");
3115 		goto out_release;
3116 	}
3117 
3118 	netif_napi_add(ndev, &mdp->napi, sh_eth_poll, 64);
3119 
3120 	/* network device register */
3121 	ret = register_netdev(ndev);
3122 	if (ret)
3123 		goto out_napi_del;
3124 
3125 	/* print device information */
3126 	netdev_info(ndev, "Base address at 0x%x, %pM, IRQ %d.\n",
3127 		    (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
3128 
3129 	pm_runtime_put(&pdev->dev);
3130 	platform_set_drvdata(pdev, ndev);
3131 
3132 	return ret;
3133 
3134 out_napi_del:
3135 	netif_napi_del(&mdp->napi);
3136 	sh_mdio_release(mdp);
3137 
3138 out_release:
3139 	/* net_dev free */
3140 	if (ndev)
3141 		free_netdev(ndev);
3142 
3143 	pm_runtime_put(&pdev->dev);
3144 	pm_runtime_disable(&pdev->dev);
3145 	return ret;
3146 }
3147 
3148 static int sh_eth_drv_remove(struct platform_device *pdev)
3149 {
3150 	struct net_device *ndev = platform_get_drvdata(pdev);
3151 	struct sh_eth_private *mdp = netdev_priv(ndev);
3152 
3153 	unregister_netdev(ndev);
3154 	netif_napi_del(&mdp->napi);
3155 	sh_mdio_release(mdp);
3156 	pm_runtime_disable(&pdev->dev);
3157 	free_netdev(ndev);
3158 
3159 	return 0;
3160 }
3161 
3162 #ifdef CONFIG_PM
3163 #ifdef CONFIG_PM_SLEEP
3164 static int sh_eth_suspend(struct device *dev)
3165 {
3166 	struct net_device *ndev = dev_get_drvdata(dev);
3167 	int ret = 0;
3168 
3169 	if (netif_running(ndev)) {
3170 		netif_device_detach(ndev);
3171 		ret = sh_eth_close(ndev);
3172 	}
3173 
3174 	return ret;
3175 }
3176 
3177 static int sh_eth_resume(struct device *dev)
3178 {
3179 	struct net_device *ndev = dev_get_drvdata(dev);
3180 	int ret = 0;
3181 
3182 	if (netif_running(ndev)) {
3183 		ret = sh_eth_open(ndev);
3184 		if (ret < 0)
3185 			return ret;
3186 		netif_device_attach(ndev);
3187 	}
3188 
3189 	return ret;
3190 }
3191 #endif
3192 
3193 static int sh_eth_runtime_nop(struct device *dev)
3194 {
3195 	/* Runtime PM callback shared between ->runtime_suspend()
3196 	 * and ->runtime_resume(). Simply returns success.
3197 	 *
3198 	 * This driver re-initializes all registers after
3199 	 * pm_runtime_get_sync() anyway so there is no need
3200 	 * to save and restore registers here.
3201 	 */
3202 	return 0;
3203 }
3204 
3205 static const struct dev_pm_ops sh_eth_dev_pm_ops = {
3206 	SET_SYSTEM_SLEEP_PM_OPS(sh_eth_suspend, sh_eth_resume)
3207 	SET_RUNTIME_PM_OPS(sh_eth_runtime_nop, sh_eth_runtime_nop, NULL)
3208 };
3209 #define SH_ETH_PM_OPS (&sh_eth_dev_pm_ops)
3210 #else
3211 #define SH_ETH_PM_OPS NULL
3212 #endif
3213 
3214 static struct platform_device_id sh_eth_id_table[] = {
3215 	{ "sh7619-ether", (kernel_ulong_t)&sh7619_data },
3216 	{ "sh771x-ether", (kernel_ulong_t)&sh771x_data },
3217 	{ "sh7724-ether", (kernel_ulong_t)&sh7724_data },
3218 	{ "sh7734-gether", (kernel_ulong_t)&sh7734_data },
3219 	{ "sh7757-ether", (kernel_ulong_t)&sh7757_data },
3220 	{ "sh7757-gether", (kernel_ulong_t)&sh7757_data_giga },
3221 	{ "sh7763-gether", (kernel_ulong_t)&sh7763_data },
3222 	{ }
3223 };
3224 MODULE_DEVICE_TABLE(platform, sh_eth_id_table);
3225 
3226 static struct platform_driver sh_eth_driver = {
3227 	.probe = sh_eth_drv_probe,
3228 	.remove = sh_eth_drv_remove,
3229 	.id_table = sh_eth_id_table,
3230 	.driver = {
3231 		   .name = CARDNAME,
3232 		   .pm = SH_ETH_PM_OPS,
3233 		   .of_match_table = of_match_ptr(sh_eth_match_table),
3234 	},
3235 };
3236 
3237 module_platform_driver(sh_eth_driver);
3238 
3239 MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
3240 MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
3241 MODULE_LICENSE("GPL v2");
3242