xref: /linux/drivers/net/ethernet/renesas/sh_eth.c (revision 02000b55850deeadffe433e4b4930a8831f477de)
1 /*  SuperH Ethernet device driver
2  *
3  *  Copyright (C) 2014 Renesas Electronics Corporation
4  *  Copyright (C) 2006-2012 Nobuhiro Iwamatsu
5  *  Copyright (C) 2008-2014 Renesas Solutions Corp.
6  *  Copyright (C) 2013-2017 Cogent Embedded, Inc.
7  *  Copyright (C) 2014 Codethink Limited
8  *
9  *  This program is free software; you can redistribute it and/or modify it
10  *  under the terms and conditions of the GNU General Public License,
11  *  version 2, as published by the Free Software Foundation.
12  *
13  *  This program is distributed in the hope it will be useful, but WITHOUT
14  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
16  *  more details.
17  *
18  *  The full GNU General Public License is included in this distribution in
19  *  the file called "COPYING".
20  */
21 
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/spinlock.h>
25 #include <linux/interrupt.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/etherdevice.h>
28 #include <linux/delay.h>
29 #include <linux/platform_device.h>
30 #include <linux/mdio-bitbang.h>
31 #include <linux/netdevice.h>
32 #include <linux/of.h>
33 #include <linux/of_device.h>
34 #include <linux/of_irq.h>
35 #include <linux/of_net.h>
36 #include <linux/phy.h>
37 #include <linux/cache.h>
38 #include <linux/io.h>
39 #include <linux/pm_runtime.h>
40 #include <linux/slab.h>
41 #include <linux/ethtool.h>
42 #include <linux/if_vlan.h>
43 #include <linux/sh_eth.h>
44 #include <linux/of_mdio.h>
45 
46 #include "sh_eth.h"
47 
48 #define SH_ETH_DEF_MSG_ENABLE \
49 		(NETIF_MSG_LINK	| \
50 		NETIF_MSG_TIMER	| \
51 		NETIF_MSG_RX_ERR| \
52 		NETIF_MSG_TX_ERR)
53 
54 #define SH_ETH_OFFSET_INVALID	((u16)~0)
55 
56 #define SH_ETH_OFFSET_DEFAULTS			\
57 	[0 ... SH_ETH_MAX_REGISTER_OFFSET - 1] = SH_ETH_OFFSET_INVALID
58 
59 static const u16 sh_eth_offset_gigabit[SH_ETH_MAX_REGISTER_OFFSET] = {
60 	SH_ETH_OFFSET_DEFAULTS,
61 
62 	[EDSR]		= 0x0000,
63 	[EDMR]		= 0x0400,
64 	[EDTRR]		= 0x0408,
65 	[EDRRR]		= 0x0410,
66 	[EESR]		= 0x0428,
67 	[EESIPR]	= 0x0430,
68 	[TDLAR]		= 0x0010,
69 	[TDFAR]		= 0x0014,
70 	[TDFXR]		= 0x0018,
71 	[TDFFR]		= 0x001c,
72 	[RDLAR]		= 0x0030,
73 	[RDFAR]		= 0x0034,
74 	[RDFXR]		= 0x0038,
75 	[RDFFR]		= 0x003c,
76 	[TRSCER]	= 0x0438,
77 	[RMFCR]		= 0x0440,
78 	[TFTR]		= 0x0448,
79 	[FDR]		= 0x0450,
80 	[RMCR]		= 0x0458,
81 	[RPADIR]	= 0x0460,
82 	[FCFTR]		= 0x0468,
83 	[CSMR]		= 0x04E4,
84 
85 	[ECMR]		= 0x0500,
86 	[ECSR]		= 0x0510,
87 	[ECSIPR]	= 0x0518,
88 	[PIR]		= 0x0520,
89 	[PSR]		= 0x0528,
90 	[PIPR]		= 0x052c,
91 	[RFLR]		= 0x0508,
92 	[APR]		= 0x0554,
93 	[MPR]		= 0x0558,
94 	[PFTCR]		= 0x055c,
95 	[PFRCR]		= 0x0560,
96 	[TPAUSER]	= 0x0564,
97 	[GECMR]		= 0x05b0,
98 	[BCULR]		= 0x05b4,
99 	[MAHR]		= 0x05c0,
100 	[MALR]		= 0x05c8,
101 	[TROCR]		= 0x0700,
102 	[CDCR]		= 0x0708,
103 	[LCCR]		= 0x0710,
104 	[CEFCR]		= 0x0740,
105 	[FRECR]		= 0x0748,
106 	[TSFRCR]	= 0x0750,
107 	[TLFRCR]	= 0x0758,
108 	[RFCR]		= 0x0760,
109 	[CERCR]		= 0x0768,
110 	[CEECR]		= 0x0770,
111 	[MAFCR]		= 0x0778,
112 	[RMII_MII]	= 0x0790,
113 
114 	[ARSTR]		= 0x0000,
115 	[TSU_CTRST]	= 0x0004,
116 	[TSU_FWEN0]	= 0x0010,
117 	[TSU_FWEN1]	= 0x0014,
118 	[TSU_FCM]	= 0x0018,
119 	[TSU_BSYSL0]	= 0x0020,
120 	[TSU_BSYSL1]	= 0x0024,
121 	[TSU_PRISL0]	= 0x0028,
122 	[TSU_PRISL1]	= 0x002c,
123 	[TSU_FWSL0]	= 0x0030,
124 	[TSU_FWSL1]	= 0x0034,
125 	[TSU_FWSLC]	= 0x0038,
126 	[TSU_QTAGM0]	= 0x0040,
127 	[TSU_QTAGM1]	= 0x0044,
128 	[TSU_FWSR]	= 0x0050,
129 	[TSU_FWINMK]	= 0x0054,
130 	[TSU_ADQT0]	= 0x0048,
131 	[TSU_ADQT1]	= 0x004c,
132 	[TSU_VTAG0]	= 0x0058,
133 	[TSU_VTAG1]	= 0x005c,
134 	[TSU_ADSBSY]	= 0x0060,
135 	[TSU_TEN]	= 0x0064,
136 	[TSU_POST1]	= 0x0070,
137 	[TSU_POST2]	= 0x0074,
138 	[TSU_POST3]	= 0x0078,
139 	[TSU_POST4]	= 0x007c,
140 	[TSU_ADRH0]	= 0x0100,
141 
142 	[TXNLCR0]	= 0x0080,
143 	[TXALCR0]	= 0x0084,
144 	[RXNLCR0]	= 0x0088,
145 	[RXALCR0]	= 0x008c,
146 	[FWNLCR0]	= 0x0090,
147 	[FWALCR0]	= 0x0094,
148 	[TXNLCR1]	= 0x00a0,
149 	[TXALCR1]	= 0x00a4,
150 	[RXNLCR1]	= 0x00a8,
151 	[RXALCR1]	= 0x00ac,
152 	[FWNLCR1]	= 0x00b0,
153 	[FWALCR1]	= 0x00b4,
154 };
155 
156 static const u16 sh_eth_offset_fast_rz[SH_ETH_MAX_REGISTER_OFFSET] = {
157 	SH_ETH_OFFSET_DEFAULTS,
158 
159 	[EDSR]		= 0x0000,
160 	[EDMR]		= 0x0400,
161 	[EDTRR]		= 0x0408,
162 	[EDRRR]		= 0x0410,
163 	[EESR]		= 0x0428,
164 	[EESIPR]	= 0x0430,
165 	[TDLAR]		= 0x0010,
166 	[TDFAR]		= 0x0014,
167 	[TDFXR]		= 0x0018,
168 	[TDFFR]		= 0x001c,
169 	[RDLAR]		= 0x0030,
170 	[RDFAR]		= 0x0034,
171 	[RDFXR]		= 0x0038,
172 	[RDFFR]		= 0x003c,
173 	[TRSCER]	= 0x0438,
174 	[RMFCR]		= 0x0440,
175 	[TFTR]		= 0x0448,
176 	[FDR]		= 0x0450,
177 	[RMCR]		= 0x0458,
178 	[RPADIR]	= 0x0460,
179 	[FCFTR]		= 0x0468,
180 	[CSMR]		= 0x04E4,
181 
182 	[ECMR]		= 0x0500,
183 	[RFLR]		= 0x0508,
184 	[ECSR]		= 0x0510,
185 	[ECSIPR]	= 0x0518,
186 	[PIR]		= 0x0520,
187 	[APR]		= 0x0554,
188 	[MPR]		= 0x0558,
189 	[PFTCR]		= 0x055c,
190 	[PFRCR]		= 0x0560,
191 	[TPAUSER]	= 0x0564,
192 	[MAHR]		= 0x05c0,
193 	[MALR]		= 0x05c8,
194 	[CEFCR]		= 0x0740,
195 	[FRECR]		= 0x0748,
196 	[TSFRCR]	= 0x0750,
197 	[TLFRCR]	= 0x0758,
198 	[RFCR]		= 0x0760,
199 	[MAFCR]		= 0x0778,
200 
201 	[ARSTR]		= 0x0000,
202 	[TSU_CTRST]	= 0x0004,
203 	[TSU_FWSLC]	= 0x0038,
204 	[TSU_VTAG0]	= 0x0058,
205 	[TSU_ADSBSY]	= 0x0060,
206 	[TSU_TEN]	= 0x0064,
207 	[TSU_POST1]	= 0x0070,
208 	[TSU_POST2]	= 0x0074,
209 	[TSU_POST3]	= 0x0078,
210 	[TSU_POST4]	= 0x007c,
211 	[TSU_ADRH0]	= 0x0100,
212 
213 	[TXNLCR0]	= 0x0080,
214 	[TXALCR0]	= 0x0084,
215 	[RXNLCR0]	= 0x0088,
216 	[RXALCR0]	= 0x008C,
217 };
218 
219 static const u16 sh_eth_offset_fast_rcar[SH_ETH_MAX_REGISTER_OFFSET] = {
220 	SH_ETH_OFFSET_DEFAULTS,
221 
222 	[ECMR]		= 0x0300,
223 	[RFLR]		= 0x0308,
224 	[ECSR]		= 0x0310,
225 	[ECSIPR]	= 0x0318,
226 	[PIR]		= 0x0320,
227 	[PSR]		= 0x0328,
228 	[RDMLR]		= 0x0340,
229 	[IPGR]		= 0x0350,
230 	[APR]		= 0x0354,
231 	[MPR]		= 0x0358,
232 	[RFCF]		= 0x0360,
233 	[TPAUSER]	= 0x0364,
234 	[TPAUSECR]	= 0x0368,
235 	[MAHR]		= 0x03c0,
236 	[MALR]		= 0x03c8,
237 	[TROCR]		= 0x03d0,
238 	[CDCR]		= 0x03d4,
239 	[LCCR]		= 0x03d8,
240 	[CNDCR]		= 0x03dc,
241 	[CEFCR]		= 0x03e4,
242 	[FRECR]		= 0x03e8,
243 	[TSFRCR]	= 0x03ec,
244 	[TLFRCR]	= 0x03f0,
245 	[RFCR]		= 0x03f4,
246 	[MAFCR]		= 0x03f8,
247 
248 	[EDMR]		= 0x0200,
249 	[EDTRR]		= 0x0208,
250 	[EDRRR]		= 0x0210,
251 	[TDLAR]		= 0x0218,
252 	[RDLAR]		= 0x0220,
253 	[EESR]		= 0x0228,
254 	[EESIPR]	= 0x0230,
255 	[TRSCER]	= 0x0238,
256 	[RMFCR]		= 0x0240,
257 	[TFTR]		= 0x0248,
258 	[FDR]		= 0x0250,
259 	[RMCR]		= 0x0258,
260 	[TFUCR]		= 0x0264,
261 	[RFOCR]		= 0x0268,
262 	[RMIIMODE]      = 0x026c,
263 	[FCFTR]		= 0x0270,
264 	[TRIMD]		= 0x027c,
265 };
266 
267 static const u16 sh_eth_offset_fast_sh4[SH_ETH_MAX_REGISTER_OFFSET] = {
268 	SH_ETH_OFFSET_DEFAULTS,
269 
270 	[ECMR]		= 0x0100,
271 	[RFLR]		= 0x0108,
272 	[ECSR]		= 0x0110,
273 	[ECSIPR]	= 0x0118,
274 	[PIR]		= 0x0120,
275 	[PSR]		= 0x0128,
276 	[RDMLR]		= 0x0140,
277 	[IPGR]		= 0x0150,
278 	[APR]		= 0x0154,
279 	[MPR]		= 0x0158,
280 	[TPAUSER]	= 0x0164,
281 	[RFCF]		= 0x0160,
282 	[TPAUSECR]	= 0x0168,
283 	[BCFRR]		= 0x016c,
284 	[MAHR]		= 0x01c0,
285 	[MALR]		= 0x01c8,
286 	[TROCR]		= 0x01d0,
287 	[CDCR]		= 0x01d4,
288 	[LCCR]		= 0x01d8,
289 	[CNDCR]		= 0x01dc,
290 	[CEFCR]		= 0x01e4,
291 	[FRECR]		= 0x01e8,
292 	[TSFRCR]	= 0x01ec,
293 	[TLFRCR]	= 0x01f0,
294 	[RFCR]		= 0x01f4,
295 	[MAFCR]		= 0x01f8,
296 	[RTRATE]	= 0x01fc,
297 
298 	[EDMR]		= 0x0000,
299 	[EDTRR]		= 0x0008,
300 	[EDRRR]		= 0x0010,
301 	[TDLAR]		= 0x0018,
302 	[RDLAR]		= 0x0020,
303 	[EESR]		= 0x0028,
304 	[EESIPR]	= 0x0030,
305 	[TRSCER]	= 0x0038,
306 	[RMFCR]		= 0x0040,
307 	[TFTR]		= 0x0048,
308 	[FDR]		= 0x0050,
309 	[RMCR]		= 0x0058,
310 	[TFUCR]		= 0x0064,
311 	[RFOCR]		= 0x0068,
312 	[FCFTR]		= 0x0070,
313 	[RPADIR]	= 0x0078,
314 	[TRIMD]		= 0x007c,
315 	[RBWAR]		= 0x00c8,
316 	[RDFAR]		= 0x00cc,
317 	[TBRAR]		= 0x00d4,
318 	[TDFAR]		= 0x00d8,
319 };
320 
321 static const u16 sh_eth_offset_fast_sh3_sh2[SH_ETH_MAX_REGISTER_OFFSET] = {
322 	SH_ETH_OFFSET_DEFAULTS,
323 
324 	[EDMR]		= 0x0000,
325 	[EDTRR]		= 0x0004,
326 	[EDRRR]		= 0x0008,
327 	[TDLAR]		= 0x000c,
328 	[RDLAR]		= 0x0010,
329 	[EESR]		= 0x0014,
330 	[EESIPR]	= 0x0018,
331 	[TRSCER]	= 0x001c,
332 	[RMFCR]		= 0x0020,
333 	[TFTR]		= 0x0024,
334 	[FDR]		= 0x0028,
335 	[RMCR]		= 0x002c,
336 	[EDOCR]		= 0x0030,
337 	[FCFTR]		= 0x0034,
338 	[RPADIR]	= 0x0038,
339 	[TRIMD]		= 0x003c,
340 	[RBWAR]		= 0x0040,
341 	[RDFAR]		= 0x0044,
342 	[TBRAR]		= 0x004c,
343 	[TDFAR]		= 0x0050,
344 
345 	[ECMR]		= 0x0160,
346 	[ECSR]		= 0x0164,
347 	[ECSIPR]	= 0x0168,
348 	[PIR]		= 0x016c,
349 	[MAHR]		= 0x0170,
350 	[MALR]		= 0x0174,
351 	[RFLR]		= 0x0178,
352 	[PSR]		= 0x017c,
353 	[TROCR]		= 0x0180,
354 	[CDCR]		= 0x0184,
355 	[LCCR]		= 0x0188,
356 	[CNDCR]		= 0x018c,
357 	[CEFCR]		= 0x0194,
358 	[FRECR]		= 0x0198,
359 	[TSFRCR]	= 0x019c,
360 	[TLFRCR]	= 0x01a0,
361 	[RFCR]		= 0x01a4,
362 	[MAFCR]		= 0x01a8,
363 	[IPGR]		= 0x01b4,
364 	[APR]		= 0x01b8,
365 	[MPR]		= 0x01bc,
366 	[TPAUSER]	= 0x01c4,
367 	[BCFR]		= 0x01cc,
368 
369 	[ARSTR]		= 0x0000,
370 	[TSU_CTRST]	= 0x0004,
371 	[TSU_FWEN0]	= 0x0010,
372 	[TSU_FWEN1]	= 0x0014,
373 	[TSU_FCM]	= 0x0018,
374 	[TSU_BSYSL0]	= 0x0020,
375 	[TSU_BSYSL1]	= 0x0024,
376 	[TSU_PRISL0]	= 0x0028,
377 	[TSU_PRISL1]	= 0x002c,
378 	[TSU_FWSL0]	= 0x0030,
379 	[TSU_FWSL1]	= 0x0034,
380 	[TSU_FWSLC]	= 0x0038,
381 	[TSU_QTAGM0]	= 0x0040,
382 	[TSU_QTAGM1]	= 0x0044,
383 	[TSU_ADQT0]	= 0x0048,
384 	[TSU_ADQT1]	= 0x004c,
385 	[TSU_FWSR]	= 0x0050,
386 	[TSU_FWINMK]	= 0x0054,
387 	[TSU_ADSBSY]	= 0x0060,
388 	[TSU_TEN]	= 0x0064,
389 	[TSU_POST1]	= 0x0070,
390 	[TSU_POST2]	= 0x0074,
391 	[TSU_POST3]	= 0x0078,
392 	[TSU_POST4]	= 0x007c,
393 
394 	[TXNLCR0]	= 0x0080,
395 	[TXALCR0]	= 0x0084,
396 	[RXNLCR0]	= 0x0088,
397 	[RXALCR0]	= 0x008c,
398 	[FWNLCR0]	= 0x0090,
399 	[FWALCR0]	= 0x0094,
400 	[TXNLCR1]	= 0x00a0,
401 	[TXALCR1]	= 0x00a4,
402 	[RXNLCR1]	= 0x00a8,
403 	[RXALCR1]	= 0x00ac,
404 	[FWNLCR1]	= 0x00b0,
405 	[FWALCR1]	= 0x00b4,
406 
407 	[TSU_ADRH0]	= 0x0100,
408 };
409 
410 static void sh_eth_rcv_snd_disable(struct net_device *ndev);
411 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev);
412 
413 static void sh_eth_write(struct net_device *ndev, u32 data, int enum_index)
414 {
415 	struct sh_eth_private *mdp = netdev_priv(ndev);
416 	u16 offset = mdp->reg_offset[enum_index];
417 
418 	if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
419 		return;
420 
421 	iowrite32(data, mdp->addr + offset);
422 }
423 
424 static u32 sh_eth_read(struct net_device *ndev, int enum_index)
425 {
426 	struct sh_eth_private *mdp = netdev_priv(ndev);
427 	u16 offset = mdp->reg_offset[enum_index];
428 
429 	if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
430 		return ~0U;
431 
432 	return ioread32(mdp->addr + offset);
433 }
434 
435 static void sh_eth_modify(struct net_device *ndev, int enum_index, u32 clear,
436 			  u32 set)
437 {
438 	sh_eth_write(ndev, (sh_eth_read(ndev, enum_index) & ~clear) | set,
439 		     enum_index);
440 }
441 
442 static void sh_eth_tsu_write(struct sh_eth_private *mdp, u32 data,
443 			     int enum_index)
444 {
445 	u16 offset = mdp->reg_offset[enum_index];
446 
447 	if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
448 		return;
449 
450 	iowrite32(data, mdp->tsu_addr + offset);
451 }
452 
453 static u32 sh_eth_tsu_read(struct sh_eth_private *mdp, int enum_index)
454 {
455 	u16 offset = mdp->reg_offset[enum_index];
456 
457 	if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
458 		return ~0U;
459 
460 	return ioread32(mdp->tsu_addr + offset);
461 }
462 
463 static void sh_eth_soft_swap(char *src, int len)
464 {
465 #ifdef __LITTLE_ENDIAN
466 	u32 *p = (u32 *)src;
467 	u32 *maxp = p + DIV_ROUND_UP(len, sizeof(u32));
468 
469 	for (; p < maxp; p++)
470 		*p = swab32(*p);
471 #endif
472 }
473 
474 static void sh_eth_select_mii(struct net_device *ndev)
475 {
476 	struct sh_eth_private *mdp = netdev_priv(ndev);
477 	u32 value;
478 
479 	switch (mdp->phy_interface) {
480 	case PHY_INTERFACE_MODE_RGMII ... PHY_INTERFACE_MODE_RGMII_TXID:
481 		value = 0x3;
482 		break;
483 	case PHY_INTERFACE_MODE_GMII:
484 		value = 0x2;
485 		break;
486 	case PHY_INTERFACE_MODE_MII:
487 		value = 0x1;
488 		break;
489 	case PHY_INTERFACE_MODE_RMII:
490 		value = 0x0;
491 		break;
492 	default:
493 		netdev_warn(ndev,
494 			    "PHY interface mode was not setup. Set to MII.\n");
495 		value = 0x1;
496 		break;
497 	}
498 
499 	sh_eth_write(ndev, value, RMII_MII);
500 }
501 
502 static void sh_eth_set_duplex(struct net_device *ndev)
503 {
504 	struct sh_eth_private *mdp = netdev_priv(ndev);
505 
506 	sh_eth_modify(ndev, ECMR, ECMR_DM, mdp->duplex ? ECMR_DM : 0);
507 }
508 
509 static void sh_eth_chip_reset(struct net_device *ndev)
510 {
511 	struct sh_eth_private *mdp = netdev_priv(ndev);
512 
513 	/* reset device */
514 	sh_eth_tsu_write(mdp, ARSTR_ARST, ARSTR);
515 	mdelay(1);
516 }
517 
518 static int sh_eth_soft_reset(struct net_device *ndev)
519 {
520 	sh_eth_modify(ndev, EDMR, EDMR_SRST_ETHER, EDMR_SRST_ETHER);
521 	mdelay(3);
522 	sh_eth_modify(ndev, EDMR, EDMR_SRST_ETHER, 0);
523 
524 	return 0;
525 }
526 
527 static int sh_eth_check_soft_reset(struct net_device *ndev)
528 {
529 	int cnt;
530 
531 	for (cnt = 100; cnt > 0; cnt--) {
532 		if (!(sh_eth_read(ndev, EDMR) & EDMR_SRST_GETHER))
533 			return 0;
534 		mdelay(1);
535 	}
536 
537 	netdev_err(ndev, "Device reset failed\n");
538 	return -ETIMEDOUT;
539 }
540 
541 static int sh_eth_soft_reset_gether(struct net_device *ndev)
542 {
543 	struct sh_eth_private *mdp = netdev_priv(ndev);
544 	int ret;
545 
546 	sh_eth_write(ndev, EDSR_ENALL, EDSR);
547 	sh_eth_modify(ndev, EDMR, EDMR_SRST_GETHER, EDMR_SRST_GETHER);
548 
549 	ret = sh_eth_check_soft_reset(ndev);
550 	if (ret)
551 		return ret;
552 
553 	/* Table Init */
554 	sh_eth_write(ndev, 0, TDLAR);
555 	sh_eth_write(ndev, 0, TDFAR);
556 	sh_eth_write(ndev, 0, TDFXR);
557 	sh_eth_write(ndev, 0, TDFFR);
558 	sh_eth_write(ndev, 0, RDLAR);
559 	sh_eth_write(ndev, 0, RDFAR);
560 	sh_eth_write(ndev, 0, RDFXR);
561 	sh_eth_write(ndev, 0, RDFFR);
562 
563 	/* Reset HW CRC register */
564 	if (mdp->cd->hw_checksum)
565 		sh_eth_write(ndev, 0, CSMR);
566 
567 	/* Select MII mode */
568 	if (mdp->cd->select_mii)
569 		sh_eth_select_mii(ndev);
570 
571 	return ret;
572 }
573 
574 static void sh_eth_set_rate_gether(struct net_device *ndev)
575 {
576 	struct sh_eth_private *mdp = netdev_priv(ndev);
577 
578 	switch (mdp->speed) {
579 	case 10: /* 10BASE */
580 		sh_eth_write(ndev, GECMR_10, GECMR);
581 		break;
582 	case 100:/* 100BASE */
583 		sh_eth_write(ndev, GECMR_100, GECMR);
584 		break;
585 	case 1000: /* 1000BASE */
586 		sh_eth_write(ndev, GECMR_1000, GECMR);
587 		break;
588 	}
589 }
590 
591 #ifdef CONFIG_OF
592 /* R7S72100 */
593 static struct sh_eth_cpu_data r7s72100_data = {
594 	.soft_reset	= sh_eth_soft_reset_gether,
595 
596 	.chip_reset	= sh_eth_chip_reset,
597 	.set_duplex	= sh_eth_set_duplex,
598 
599 	.register_type	= SH_ETH_REG_FAST_RZ,
600 
601 	.edtrr_trns	= EDTRR_TRNS_GETHER,
602 	.ecsr_value	= ECSR_ICD,
603 	.ecsipr_value	= ECSIPR_ICDIP,
604 	.eesipr_value	= EESIPR_TWB1IP | EESIPR_TWBIP | EESIPR_TC1IP |
605 			  EESIPR_TABTIP | EESIPR_RABTIP | EESIPR_RFCOFIP |
606 			  EESIPR_ECIIP |
607 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
608 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
609 			  EESIPR_RMAFIP | EESIPR_RRFIP |
610 			  EESIPR_RTLFIP | EESIPR_RTSFIP |
611 			  EESIPR_PREIP | EESIPR_CERFIP,
612 
613 	.tx_check	= EESR_TC1 | EESR_FTC,
614 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
615 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
616 			  EESR_TDE,
617 	.fdr_value	= 0x0000070f,
618 
619 	.no_psr		= 1,
620 	.apr		= 1,
621 	.mpr		= 1,
622 	.tpauser	= 1,
623 	.hw_swap	= 1,
624 	.rpadir		= 1,
625 	.no_trimd	= 1,
626 	.no_ade		= 1,
627 	.xdfar_rw	= 1,
628 	.hw_checksum	= 1,
629 	.tsu		= 1,
630 	.no_tx_cntrs	= 1,
631 };
632 
633 static void sh_eth_chip_reset_r8a7740(struct net_device *ndev)
634 {
635 	sh_eth_chip_reset(ndev);
636 
637 	sh_eth_select_mii(ndev);
638 }
639 
640 /* R8A7740 */
641 static struct sh_eth_cpu_data r8a7740_data = {
642 	.soft_reset	= sh_eth_soft_reset_gether,
643 
644 	.chip_reset	= sh_eth_chip_reset_r8a7740,
645 	.set_duplex	= sh_eth_set_duplex,
646 	.set_rate	= sh_eth_set_rate_gether,
647 
648 	.register_type	= SH_ETH_REG_GIGABIT,
649 
650 	.edtrr_trns	= EDTRR_TRNS_GETHER,
651 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
652 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
653 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
654 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
655 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
656 			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
657 			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
658 			  EESIPR_CEEFIP | EESIPR_CELFIP |
659 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
660 			  EESIPR_PREIP | EESIPR_CERFIP,
661 
662 	.tx_check	= EESR_TC1 | EESR_FTC,
663 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
664 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
665 			  EESR_TDE,
666 	.fdr_value	= 0x0000070f,
667 
668 	.apr		= 1,
669 	.mpr		= 1,
670 	.tpauser	= 1,
671 	.bculr		= 1,
672 	.hw_swap	= 1,
673 	.rpadir		= 1,
674 	.no_trimd	= 1,
675 	.no_ade		= 1,
676 	.xdfar_rw	= 1,
677 	.hw_checksum	= 1,
678 	.tsu		= 1,
679 	.select_mii	= 1,
680 	.magic		= 1,
681 	.cexcr		= 1,
682 };
683 
684 /* There is CPU dependent code */
685 static void sh_eth_set_rate_rcar(struct net_device *ndev)
686 {
687 	struct sh_eth_private *mdp = netdev_priv(ndev);
688 
689 	switch (mdp->speed) {
690 	case 10: /* 10BASE */
691 		sh_eth_modify(ndev, ECMR, ECMR_ELB, 0);
692 		break;
693 	case 100:/* 100BASE */
694 		sh_eth_modify(ndev, ECMR, ECMR_ELB, ECMR_ELB);
695 		break;
696 	}
697 }
698 
699 /* R-Car Gen1 */
700 static struct sh_eth_cpu_data rcar_gen1_data = {
701 	.soft_reset	= sh_eth_soft_reset,
702 
703 	.set_duplex	= sh_eth_set_duplex,
704 	.set_rate	= sh_eth_set_rate_rcar,
705 
706 	.register_type	= SH_ETH_REG_FAST_RCAR,
707 
708 	.edtrr_trns	= EDTRR_TRNS_ETHER,
709 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
710 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
711 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP |
712 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
713 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
714 			  EESIPR_RMAFIP | EESIPR_RRFIP |
715 			  EESIPR_RTLFIP | EESIPR_RTSFIP |
716 			  EESIPR_PREIP | EESIPR_CERFIP,
717 
718 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO,
719 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
720 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
721 	.fdr_value	= 0x00000f0f,
722 
723 	.apr		= 1,
724 	.mpr		= 1,
725 	.tpauser	= 1,
726 	.hw_swap	= 1,
727 	.no_xdfar	= 1,
728 };
729 
730 /* R-Car Gen2 and RZ/G1 */
731 static struct sh_eth_cpu_data rcar_gen2_data = {
732 	.soft_reset	= sh_eth_soft_reset,
733 
734 	.set_duplex	= sh_eth_set_duplex,
735 	.set_rate	= sh_eth_set_rate_rcar,
736 
737 	.register_type	= SH_ETH_REG_FAST_RCAR,
738 
739 	.edtrr_trns	= EDTRR_TRNS_ETHER,
740 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD | ECSR_MPD,
741 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP |
742 			  ECSIPR_MPDIP,
743 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP |
744 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
745 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
746 			  EESIPR_RMAFIP | EESIPR_RRFIP |
747 			  EESIPR_RTLFIP | EESIPR_RTSFIP |
748 			  EESIPR_PREIP | EESIPR_CERFIP,
749 
750 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO,
751 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
752 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
753 	.fdr_value	= 0x00000f0f,
754 
755 	.trscer_err_mask = DESC_I_RINT8,
756 
757 	.apr		= 1,
758 	.mpr		= 1,
759 	.tpauser	= 1,
760 	.hw_swap	= 1,
761 	.no_xdfar	= 1,
762 	.rmiimode	= 1,
763 	.magic		= 1,
764 };
765 
766 /* R8A77980 */
767 static struct sh_eth_cpu_data r8a77980_data = {
768 	.soft_reset	= sh_eth_soft_reset_gether,
769 
770 	.set_duplex	= sh_eth_set_duplex,
771 	.set_rate	= sh_eth_set_rate_gether,
772 
773 	.register_type  = SH_ETH_REG_GIGABIT,
774 
775 	.edtrr_trns	= EDTRR_TRNS_GETHER,
776 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD | ECSR_MPD,
777 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP |
778 			  ECSIPR_MPDIP,
779 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
780 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
781 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
782 			  EESIPR_RMAFIP | EESIPR_RRFIP |
783 			  EESIPR_RTLFIP | EESIPR_RTSFIP |
784 			  EESIPR_PREIP | EESIPR_CERFIP,
785 
786 	.tx_check       = EESR_FTC | EESR_CD | EESR_TRO,
787 	.eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
788 			  EESR_RFE | EESR_RDE | EESR_RFRMER |
789 			  EESR_TFE | EESR_TDE | EESR_ECI,
790 	.fdr_value	= 0x0000070f,
791 
792 	.apr		= 1,
793 	.mpr		= 1,
794 	.tpauser	= 1,
795 	.bculr		= 1,
796 	.hw_swap	= 1,
797 	.nbst		= 1,
798 	.rpadir		= 1,
799 	.no_trimd	= 1,
800 	.no_ade		= 1,
801 	.xdfar_rw	= 1,
802 	.hw_checksum	= 1,
803 	.select_mii	= 1,
804 	.magic		= 1,
805 	.cexcr		= 1,
806 };
807 #endif /* CONFIG_OF */
808 
809 static void sh_eth_set_rate_sh7724(struct net_device *ndev)
810 {
811 	struct sh_eth_private *mdp = netdev_priv(ndev);
812 
813 	switch (mdp->speed) {
814 	case 10: /* 10BASE */
815 		sh_eth_modify(ndev, ECMR, ECMR_RTM, 0);
816 		break;
817 	case 100:/* 100BASE */
818 		sh_eth_modify(ndev, ECMR, ECMR_RTM, ECMR_RTM);
819 		break;
820 	}
821 }
822 
823 /* SH7724 */
824 static struct sh_eth_cpu_data sh7724_data = {
825 	.soft_reset	= sh_eth_soft_reset,
826 
827 	.set_duplex	= sh_eth_set_duplex,
828 	.set_rate	= sh_eth_set_rate_sh7724,
829 
830 	.register_type	= SH_ETH_REG_FAST_SH4,
831 
832 	.edtrr_trns	= EDTRR_TRNS_ETHER,
833 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
834 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
835 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP |
836 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
837 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
838 			  EESIPR_RMAFIP | EESIPR_RRFIP |
839 			  EESIPR_RTLFIP | EESIPR_RTSFIP |
840 			  EESIPR_PREIP | EESIPR_CERFIP,
841 
842 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO,
843 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
844 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
845 
846 	.apr		= 1,
847 	.mpr		= 1,
848 	.tpauser	= 1,
849 	.hw_swap	= 1,
850 	.rpadir		= 1,
851 };
852 
853 static void sh_eth_set_rate_sh7757(struct net_device *ndev)
854 {
855 	struct sh_eth_private *mdp = netdev_priv(ndev);
856 
857 	switch (mdp->speed) {
858 	case 10: /* 10BASE */
859 		sh_eth_write(ndev, 0, RTRATE);
860 		break;
861 	case 100:/* 100BASE */
862 		sh_eth_write(ndev, 1, RTRATE);
863 		break;
864 	}
865 }
866 
867 /* SH7757 */
868 static struct sh_eth_cpu_data sh7757_data = {
869 	.soft_reset	= sh_eth_soft_reset,
870 
871 	.set_duplex	= sh_eth_set_duplex,
872 	.set_rate	= sh_eth_set_rate_sh7757,
873 
874 	.register_type	= SH_ETH_REG_FAST_SH4,
875 
876 	.edtrr_trns	= EDTRR_TRNS_ETHER,
877 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
878 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
879 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
880 			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
881 			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
882 			  EESIPR_CEEFIP | EESIPR_CELFIP |
883 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
884 			  EESIPR_PREIP | EESIPR_CERFIP,
885 
886 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO,
887 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
888 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
889 
890 	.irq_flags	= IRQF_SHARED,
891 	.apr		= 1,
892 	.mpr		= 1,
893 	.tpauser	= 1,
894 	.hw_swap	= 1,
895 	.no_ade		= 1,
896 	.rpadir		= 1,
897 	.rtrate		= 1,
898 	.dual_port	= 1,
899 };
900 
901 #define SH_GIGA_ETH_BASE	0xfee00000UL
902 #define GIGA_MALR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
903 #define GIGA_MAHR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
904 static void sh_eth_chip_reset_giga(struct net_device *ndev)
905 {
906 	u32 mahr[2], malr[2];
907 	int i;
908 
909 	/* save MAHR and MALR */
910 	for (i = 0; i < 2; i++) {
911 		malr[i] = ioread32((void *)GIGA_MALR(i));
912 		mahr[i] = ioread32((void *)GIGA_MAHR(i));
913 	}
914 
915 	sh_eth_chip_reset(ndev);
916 
917 	/* restore MAHR and MALR */
918 	for (i = 0; i < 2; i++) {
919 		iowrite32(malr[i], (void *)GIGA_MALR(i));
920 		iowrite32(mahr[i], (void *)GIGA_MAHR(i));
921 	}
922 }
923 
924 static void sh_eth_set_rate_giga(struct net_device *ndev)
925 {
926 	struct sh_eth_private *mdp = netdev_priv(ndev);
927 
928 	switch (mdp->speed) {
929 	case 10: /* 10BASE */
930 		sh_eth_write(ndev, 0x00000000, GECMR);
931 		break;
932 	case 100:/* 100BASE */
933 		sh_eth_write(ndev, 0x00000010, GECMR);
934 		break;
935 	case 1000: /* 1000BASE */
936 		sh_eth_write(ndev, 0x00000020, GECMR);
937 		break;
938 	}
939 }
940 
941 /* SH7757(GETHERC) */
942 static struct sh_eth_cpu_data sh7757_data_giga = {
943 	.soft_reset	= sh_eth_soft_reset_gether,
944 
945 	.chip_reset	= sh_eth_chip_reset_giga,
946 	.set_duplex	= sh_eth_set_duplex,
947 	.set_rate	= sh_eth_set_rate_giga,
948 
949 	.register_type	= SH_ETH_REG_GIGABIT,
950 
951 	.edtrr_trns	= EDTRR_TRNS_GETHER,
952 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
953 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
954 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
955 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
956 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
957 			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
958 			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
959 			  EESIPR_CEEFIP | EESIPR_CELFIP |
960 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
961 			  EESIPR_PREIP | EESIPR_CERFIP,
962 
963 	.tx_check	= EESR_TC1 | EESR_FTC,
964 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
965 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
966 			  EESR_TDE,
967 	.fdr_value	= 0x0000072f,
968 
969 	.irq_flags	= IRQF_SHARED,
970 	.apr		= 1,
971 	.mpr		= 1,
972 	.tpauser	= 1,
973 	.bculr		= 1,
974 	.hw_swap	= 1,
975 	.rpadir		= 1,
976 	.no_trimd	= 1,
977 	.no_ade		= 1,
978 	.xdfar_rw	= 1,
979 	.tsu		= 1,
980 	.cexcr		= 1,
981 	.dual_port	= 1,
982 };
983 
984 /* SH7734 */
985 static struct sh_eth_cpu_data sh7734_data = {
986 	.soft_reset	= sh_eth_soft_reset_gether,
987 
988 	.chip_reset	= sh_eth_chip_reset,
989 	.set_duplex	= sh_eth_set_duplex,
990 	.set_rate	= sh_eth_set_rate_gether,
991 
992 	.register_type	= SH_ETH_REG_GIGABIT,
993 
994 	.edtrr_trns	= EDTRR_TRNS_GETHER,
995 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
996 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
997 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
998 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
999 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
1000 			  EESIPR_DLCIP | EESIPR_CDIP | EESIPR_TROIP |
1001 			  EESIPR_RMAFIP | EESIPR_CEEFIP | EESIPR_CELFIP |
1002 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
1003 			  EESIPR_PREIP | EESIPR_CERFIP,
1004 
1005 	.tx_check	= EESR_TC1 | EESR_FTC,
1006 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
1007 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
1008 			  EESR_TDE,
1009 
1010 	.apr		= 1,
1011 	.mpr		= 1,
1012 	.tpauser	= 1,
1013 	.bculr		= 1,
1014 	.hw_swap	= 1,
1015 	.no_trimd	= 1,
1016 	.no_ade		= 1,
1017 	.xdfar_rw	= 1,
1018 	.tsu		= 1,
1019 	.hw_checksum	= 1,
1020 	.select_mii	= 1,
1021 	.magic		= 1,
1022 	.cexcr		= 1,
1023 };
1024 
1025 /* SH7763 */
1026 static struct sh_eth_cpu_data sh7763_data = {
1027 	.soft_reset	= sh_eth_soft_reset_gether,
1028 
1029 	.chip_reset	= sh_eth_chip_reset,
1030 	.set_duplex	= sh_eth_set_duplex,
1031 	.set_rate	= sh_eth_set_rate_gether,
1032 
1033 	.register_type	= SH_ETH_REG_GIGABIT,
1034 
1035 	.edtrr_trns	= EDTRR_TRNS_GETHER,
1036 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
1037 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
1038 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
1039 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
1040 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
1041 			  EESIPR_DLCIP | EESIPR_CDIP | EESIPR_TROIP |
1042 			  EESIPR_RMAFIP | EESIPR_CEEFIP | EESIPR_CELFIP |
1043 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
1044 			  EESIPR_PREIP | EESIPR_CERFIP,
1045 
1046 	.tx_check	= EESR_TC1 | EESR_FTC,
1047 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
1048 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
1049 
1050 	.apr		= 1,
1051 	.mpr		= 1,
1052 	.tpauser	= 1,
1053 	.bculr		= 1,
1054 	.hw_swap	= 1,
1055 	.no_trimd	= 1,
1056 	.no_ade		= 1,
1057 	.xdfar_rw	= 1,
1058 	.tsu		= 1,
1059 	.irq_flags	= IRQF_SHARED,
1060 	.magic		= 1,
1061 	.cexcr		= 1,
1062 	.dual_port	= 1,
1063 };
1064 
1065 static struct sh_eth_cpu_data sh7619_data = {
1066 	.soft_reset	= sh_eth_soft_reset,
1067 
1068 	.register_type	= SH_ETH_REG_FAST_SH3_SH2,
1069 
1070 	.edtrr_trns	= EDTRR_TRNS_ETHER,
1071 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
1072 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
1073 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
1074 			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
1075 			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
1076 			  EESIPR_CEEFIP | EESIPR_CELFIP |
1077 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
1078 			  EESIPR_PREIP | EESIPR_CERFIP,
1079 
1080 	.apr		= 1,
1081 	.mpr		= 1,
1082 	.tpauser	= 1,
1083 	.hw_swap	= 1,
1084 };
1085 
1086 static struct sh_eth_cpu_data sh771x_data = {
1087 	.soft_reset	= sh_eth_soft_reset,
1088 
1089 	.register_type	= SH_ETH_REG_FAST_SH3_SH2,
1090 
1091 	.edtrr_trns	= EDTRR_TRNS_ETHER,
1092 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
1093 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
1094 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
1095 			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
1096 			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
1097 			  EESIPR_CEEFIP | EESIPR_CELFIP |
1098 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
1099 			  EESIPR_PREIP | EESIPR_CERFIP,
1100 	.tsu		= 1,
1101 	.dual_port	= 1,
1102 };
1103 
1104 static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
1105 {
1106 	if (!cd->ecsr_value)
1107 		cd->ecsr_value = DEFAULT_ECSR_INIT;
1108 
1109 	if (!cd->ecsipr_value)
1110 		cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
1111 
1112 	if (!cd->fcftr_value)
1113 		cd->fcftr_value = DEFAULT_FIFO_F_D_RFF |
1114 				  DEFAULT_FIFO_F_D_RFD;
1115 
1116 	if (!cd->fdr_value)
1117 		cd->fdr_value = DEFAULT_FDR_INIT;
1118 
1119 	if (!cd->tx_check)
1120 		cd->tx_check = DEFAULT_TX_CHECK;
1121 
1122 	if (!cd->eesr_err_check)
1123 		cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
1124 
1125 	if (!cd->trscer_err_mask)
1126 		cd->trscer_err_mask = DEFAULT_TRSCER_ERR_MASK;
1127 }
1128 
1129 static void sh_eth_set_receive_align(struct sk_buff *skb)
1130 {
1131 	uintptr_t reserve = (uintptr_t)skb->data & (SH_ETH_RX_ALIGN - 1);
1132 
1133 	if (reserve)
1134 		skb_reserve(skb, SH_ETH_RX_ALIGN - reserve);
1135 }
1136 
1137 /* Program the hardware MAC address from dev->dev_addr. */
1138 static void update_mac_address(struct net_device *ndev)
1139 {
1140 	sh_eth_write(ndev,
1141 		     (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
1142 		     (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
1143 	sh_eth_write(ndev,
1144 		     (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
1145 }
1146 
1147 /* Get MAC address from SuperH MAC address register
1148  *
1149  * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
1150  * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
1151  * When you want use this device, you must set MAC address in bootloader.
1152  *
1153  */
1154 static void read_mac_address(struct net_device *ndev, unsigned char *mac)
1155 {
1156 	if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
1157 		memcpy(ndev->dev_addr, mac, ETH_ALEN);
1158 	} else {
1159 		u32 mahr = sh_eth_read(ndev, MAHR);
1160 		u32 malr = sh_eth_read(ndev, MALR);
1161 
1162 		ndev->dev_addr[0] = (mahr >> 24) & 0xFF;
1163 		ndev->dev_addr[1] = (mahr >> 16) & 0xFF;
1164 		ndev->dev_addr[2] = (mahr >>  8) & 0xFF;
1165 		ndev->dev_addr[3] = (mahr >>  0) & 0xFF;
1166 		ndev->dev_addr[4] = (malr >>  8) & 0xFF;
1167 		ndev->dev_addr[5] = (malr >>  0) & 0xFF;
1168 	}
1169 }
1170 
1171 struct bb_info {
1172 	void (*set_gate)(void *addr);
1173 	struct mdiobb_ctrl ctrl;
1174 	void *addr;
1175 };
1176 
1177 static void sh_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
1178 {
1179 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1180 	u32 pir;
1181 
1182 	if (bitbang->set_gate)
1183 		bitbang->set_gate(bitbang->addr);
1184 
1185 	pir = ioread32(bitbang->addr);
1186 	if (set)
1187 		pir |=  mask;
1188 	else
1189 		pir &= ~mask;
1190 	iowrite32(pir, bitbang->addr);
1191 }
1192 
1193 /* Data I/O pin control */
1194 static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1195 {
1196 	sh_mdio_ctrl(ctrl, PIR_MMD, bit);
1197 }
1198 
1199 /* Set bit data*/
1200 static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
1201 {
1202 	sh_mdio_ctrl(ctrl, PIR_MDO, bit);
1203 }
1204 
1205 /* Get bit data*/
1206 static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
1207 {
1208 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1209 
1210 	if (bitbang->set_gate)
1211 		bitbang->set_gate(bitbang->addr);
1212 
1213 	return (ioread32(bitbang->addr) & PIR_MDI) != 0;
1214 }
1215 
1216 /* MDC pin control */
1217 static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1218 {
1219 	sh_mdio_ctrl(ctrl, PIR_MDC, bit);
1220 }
1221 
1222 /* mdio bus control struct */
1223 static struct mdiobb_ops bb_ops = {
1224 	.owner = THIS_MODULE,
1225 	.set_mdc = sh_mdc_ctrl,
1226 	.set_mdio_dir = sh_mmd_ctrl,
1227 	.set_mdio_data = sh_set_mdio,
1228 	.get_mdio_data = sh_get_mdio,
1229 };
1230 
1231 /* free Tx skb function */
1232 static int sh_eth_tx_free(struct net_device *ndev, bool sent_only)
1233 {
1234 	struct sh_eth_private *mdp = netdev_priv(ndev);
1235 	struct sh_eth_txdesc *txdesc;
1236 	int free_num = 0;
1237 	int entry;
1238 	bool sent;
1239 
1240 	for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
1241 		entry = mdp->dirty_tx % mdp->num_tx_ring;
1242 		txdesc = &mdp->tx_ring[entry];
1243 		sent = !(txdesc->status & cpu_to_le32(TD_TACT));
1244 		if (sent_only && !sent)
1245 			break;
1246 		/* TACT bit must be checked before all the following reads */
1247 		dma_rmb();
1248 		netif_info(mdp, tx_done, ndev,
1249 			   "tx entry %d status 0x%08x\n",
1250 			   entry, le32_to_cpu(txdesc->status));
1251 		/* Free the original skb. */
1252 		if (mdp->tx_skbuff[entry]) {
1253 			dma_unmap_single(&mdp->pdev->dev,
1254 					 le32_to_cpu(txdesc->addr),
1255 					 le32_to_cpu(txdesc->len) >> 16,
1256 					 DMA_TO_DEVICE);
1257 			dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
1258 			mdp->tx_skbuff[entry] = NULL;
1259 			free_num++;
1260 		}
1261 		txdesc->status = cpu_to_le32(TD_TFP);
1262 		if (entry >= mdp->num_tx_ring - 1)
1263 			txdesc->status |= cpu_to_le32(TD_TDLE);
1264 
1265 		if (sent) {
1266 			ndev->stats.tx_packets++;
1267 			ndev->stats.tx_bytes += le32_to_cpu(txdesc->len) >> 16;
1268 		}
1269 	}
1270 	return free_num;
1271 }
1272 
1273 /* free skb and descriptor buffer */
1274 static void sh_eth_ring_free(struct net_device *ndev)
1275 {
1276 	struct sh_eth_private *mdp = netdev_priv(ndev);
1277 	int ringsize, i;
1278 
1279 	if (mdp->rx_ring) {
1280 		for (i = 0; i < mdp->num_rx_ring; i++) {
1281 			if (mdp->rx_skbuff[i]) {
1282 				struct sh_eth_rxdesc *rxdesc = &mdp->rx_ring[i];
1283 
1284 				dma_unmap_single(&mdp->pdev->dev,
1285 						 le32_to_cpu(rxdesc->addr),
1286 						 ALIGN(mdp->rx_buf_sz, 32),
1287 						 DMA_FROM_DEVICE);
1288 			}
1289 		}
1290 		ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1291 		dma_free_coherent(&mdp->pdev->dev, ringsize, mdp->rx_ring,
1292 				  mdp->rx_desc_dma);
1293 		mdp->rx_ring = NULL;
1294 	}
1295 
1296 	/* Free Rx skb ringbuffer */
1297 	if (mdp->rx_skbuff) {
1298 		for (i = 0; i < mdp->num_rx_ring; i++)
1299 			dev_kfree_skb(mdp->rx_skbuff[i]);
1300 	}
1301 	kfree(mdp->rx_skbuff);
1302 	mdp->rx_skbuff = NULL;
1303 
1304 	if (mdp->tx_ring) {
1305 		sh_eth_tx_free(ndev, false);
1306 
1307 		ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1308 		dma_free_coherent(&mdp->pdev->dev, ringsize, mdp->tx_ring,
1309 				  mdp->tx_desc_dma);
1310 		mdp->tx_ring = NULL;
1311 	}
1312 
1313 	/* Free Tx skb ringbuffer */
1314 	kfree(mdp->tx_skbuff);
1315 	mdp->tx_skbuff = NULL;
1316 }
1317 
1318 /* format skb and descriptor buffer */
1319 static void sh_eth_ring_format(struct net_device *ndev)
1320 {
1321 	struct sh_eth_private *mdp = netdev_priv(ndev);
1322 	int i;
1323 	struct sk_buff *skb;
1324 	struct sh_eth_rxdesc *rxdesc = NULL;
1325 	struct sh_eth_txdesc *txdesc = NULL;
1326 	int rx_ringsize = sizeof(*rxdesc) * mdp->num_rx_ring;
1327 	int tx_ringsize = sizeof(*txdesc) * mdp->num_tx_ring;
1328 	int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1;
1329 	dma_addr_t dma_addr;
1330 	u32 buf_len;
1331 
1332 	mdp->cur_rx = 0;
1333 	mdp->cur_tx = 0;
1334 	mdp->dirty_rx = 0;
1335 	mdp->dirty_tx = 0;
1336 
1337 	memset(mdp->rx_ring, 0, rx_ringsize);
1338 
1339 	/* build Rx ring buffer */
1340 	for (i = 0; i < mdp->num_rx_ring; i++) {
1341 		/* skb */
1342 		mdp->rx_skbuff[i] = NULL;
1343 		skb = netdev_alloc_skb(ndev, skbuff_size);
1344 		if (skb == NULL)
1345 			break;
1346 		sh_eth_set_receive_align(skb);
1347 
1348 		/* The size of the buffer is a multiple of 32 bytes. */
1349 		buf_len = ALIGN(mdp->rx_buf_sz, 32);
1350 		dma_addr = dma_map_single(&mdp->pdev->dev, skb->data, buf_len,
1351 					  DMA_FROM_DEVICE);
1352 		if (dma_mapping_error(&mdp->pdev->dev, dma_addr)) {
1353 			kfree_skb(skb);
1354 			break;
1355 		}
1356 		mdp->rx_skbuff[i] = skb;
1357 
1358 		/* RX descriptor */
1359 		rxdesc = &mdp->rx_ring[i];
1360 		rxdesc->len = cpu_to_le32(buf_len << 16);
1361 		rxdesc->addr = cpu_to_le32(dma_addr);
1362 		rxdesc->status = cpu_to_le32(RD_RACT | RD_RFP);
1363 
1364 		/* Rx descriptor address set */
1365 		if (i == 0) {
1366 			sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
1367 			if (mdp->cd->xdfar_rw)
1368 				sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
1369 		}
1370 	}
1371 
1372 	mdp->dirty_rx = (u32) (i - mdp->num_rx_ring);
1373 
1374 	/* Mark the last entry as wrapping the ring. */
1375 	if (rxdesc)
1376 		rxdesc->status |= cpu_to_le32(RD_RDLE);
1377 
1378 	memset(mdp->tx_ring, 0, tx_ringsize);
1379 
1380 	/* build Tx ring buffer */
1381 	for (i = 0; i < mdp->num_tx_ring; i++) {
1382 		mdp->tx_skbuff[i] = NULL;
1383 		txdesc = &mdp->tx_ring[i];
1384 		txdesc->status = cpu_to_le32(TD_TFP);
1385 		txdesc->len = cpu_to_le32(0);
1386 		if (i == 0) {
1387 			/* Tx descriptor address set */
1388 			sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
1389 			if (mdp->cd->xdfar_rw)
1390 				sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
1391 		}
1392 	}
1393 
1394 	txdesc->status |= cpu_to_le32(TD_TDLE);
1395 }
1396 
1397 /* Get skb and descriptor buffer */
1398 static int sh_eth_ring_init(struct net_device *ndev)
1399 {
1400 	struct sh_eth_private *mdp = netdev_priv(ndev);
1401 	int rx_ringsize, tx_ringsize;
1402 
1403 	/* +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
1404 	 * card needs room to do 8 byte alignment, +2 so we can reserve
1405 	 * the first 2 bytes, and +16 gets room for the status word from the
1406 	 * card.
1407 	 */
1408 	mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
1409 			  (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
1410 	if (mdp->cd->rpadir)
1411 		mdp->rx_buf_sz += NET_IP_ALIGN;
1412 
1413 	/* Allocate RX and TX skb rings */
1414 	mdp->rx_skbuff = kcalloc(mdp->num_rx_ring, sizeof(*mdp->rx_skbuff),
1415 				 GFP_KERNEL);
1416 	if (!mdp->rx_skbuff)
1417 		return -ENOMEM;
1418 
1419 	mdp->tx_skbuff = kcalloc(mdp->num_tx_ring, sizeof(*mdp->tx_skbuff),
1420 				 GFP_KERNEL);
1421 	if (!mdp->tx_skbuff)
1422 		goto ring_free;
1423 
1424 	/* Allocate all Rx descriptors. */
1425 	rx_ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1426 	mdp->rx_ring = dma_alloc_coherent(&mdp->pdev->dev, rx_ringsize,
1427 					  &mdp->rx_desc_dma, GFP_KERNEL);
1428 	if (!mdp->rx_ring)
1429 		goto ring_free;
1430 
1431 	mdp->dirty_rx = 0;
1432 
1433 	/* Allocate all Tx descriptors. */
1434 	tx_ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1435 	mdp->tx_ring = dma_alloc_coherent(&mdp->pdev->dev, tx_ringsize,
1436 					  &mdp->tx_desc_dma, GFP_KERNEL);
1437 	if (!mdp->tx_ring)
1438 		goto ring_free;
1439 	return 0;
1440 
1441 ring_free:
1442 	/* Free Rx and Tx skb ring buffer and DMA buffer */
1443 	sh_eth_ring_free(ndev);
1444 
1445 	return -ENOMEM;
1446 }
1447 
1448 static int sh_eth_dev_init(struct net_device *ndev)
1449 {
1450 	struct sh_eth_private *mdp = netdev_priv(ndev);
1451 	int ret;
1452 
1453 	/* Soft Reset */
1454 	ret = mdp->cd->soft_reset(ndev);
1455 	if (ret)
1456 		return ret;
1457 
1458 	if (mdp->cd->rmiimode)
1459 		sh_eth_write(ndev, 0x1, RMIIMODE);
1460 
1461 	/* Descriptor format */
1462 	sh_eth_ring_format(ndev);
1463 	if (mdp->cd->rpadir)
1464 		sh_eth_write(ndev, NET_IP_ALIGN << 16, RPADIR);
1465 
1466 	/* all sh_eth int mask */
1467 	sh_eth_write(ndev, 0, EESIPR);
1468 
1469 #if defined(__LITTLE_ENDIAN)
1470 	if (mdp->cd->hw_swap)
1471 		sh_eth_write(ndev, EDMR_EL, EDMR);
1472 	else
1473 #endif
1474 		sh_eth_write(ndev, 0, EDMR);
1475 
1476 	/* FIFO size set */
1477 	sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
1478 	sh_eth_write(ndev, 0, TFTR);
1479 
1480 	/* Frame recv control (enable multiple-packets per rx irq) */
1481 	sh_eth_write(ndev, RMCR_RNC, RMCR);
1482 
1483 	sh_eth_write(ndev, mdp->cd->trscer_err_mask, TRSCER);
1484 
1485 	/* DMA transfer burst mode */
1486 	if (mdp->cd->nbst)
1487 		sh_eth_modify(ndev, EDMR, EDMR_NBST, EDMR_NBST);
1488 
1489 	/* Burst cycle count upper-limit */
1490 	if (mdp->cd->bculr)
1491 		sh_eth_write(ndev, 0x800, BCULR);
1492 
1493 	sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
1494 
1495 	if (!mdp->cd->no_trimd)
1496 		sh_eth_write(ndev, 0, TRIMD);
1497 
1498 	/* Recv frame limit set register */
1499 	sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
1500 		     RFLR);
1501 
1502 	sh_eth_modify(ndev, EESR, 0, 0);
1503 	mdp->irq_enabled = true;
1504 	sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1505 
1506 	/* PAUSE Prohibition */
1507 	sh_eth_write(ndev, ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) |
1508 		     ECMR_TE | ECMR_RE, ECMR);
1509 
1510 	if (mdp->cd->set_rate)
1511 		mdp->cd->set_rate(ndev);
1512 
1513 	/* E-MAC Status Register clear */
1514 	sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
1515 
1516 	/* E-MAC Interrupt Enable register */
1517 	sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
1518 
1519 	/* Set MAC address */
1520 	update_mac_address(ndev);
1521 
1522 	/* mask reset */
1523 	if (mdp->cd->apr)
1524 		sh_eth_write(ndev, 1, APR);
1525 	if (mdp->cd->mpr)
1526 		sh_eth_write(ndev, 1, MPR);
1527 	if (mdp->cd->tpauser)
1528 		sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
1529 
1530 	/* Setting the Rx mode will start the Rx process. */
1531 	sh_eth_write(ndev, EDRRR_R, EDRRR);
1532 
1533 	return ret;
1534 }
1535 
1536 static void sh_eth_dev_exit(struct net_device *ndev)
1537 {
1538 	struct sh_eth_private *mdp = netdev_priv(ndev);
1539 	int i;
1540 
1541 	/* Deactivate all TX descriptors, so DMA should stop at next
1542 	 * packet boundary if it's currently running
1543 	 */
1544 	for (i = 0; i < mdp->num_tx_ring; i++)
1545 		mdp->tx_ring[i].status &= ~cpu_to_le32(TD_TACT);
1546 
1547 	/* Disable TX FIFO egress to MAC */
1548 	sh_eth_rcv_snd_disable(ndev);
1549 
1550 	/* Stop RX DMA at next packet boundary */
1551 	sh_eth_write(ndev, 0, EDRRR);
1552 
1553 	/* Aside from TX DMA, we can't tell when the hardware is
1554 	 * really stopped, so we need to reset to make sure.
1555 	 * Before doing that, wait for long enough to *probably*
1556 	 * finish transmitting the last packet and poll stats.
1557 	 */
1558 	msleep(2); /* max frame time at 10 Mbps < 1250 us */
1559 	sh_eth_get_stats(ndev);
1560 	mdp->cd->soft_reset(ndev);
1561 
1562 	/* Set MAC address again */
1563 	update_mac_address(ndev);
1564 }
1565 
1566 /* Packet receive function */
1567 static int sh_eth_rx(struct net_device *ndev, u32 intr_status, int *quota)
1568 {
1569 	struct sh_eth_private *mdp = netdev_priv(ndev);
1570 	struct sh_eth_rxdesc *rxdesc;
1571 
1572 	int entry = mdp->cur_rx % mdp->num_rx_ring;
1573 	int boguscnt = (mdp->dirty_rx + mdp->num_rx_ring) - mdp->cur_rx;
1574 	int limit;
1575 	struct sk_buff *skb;
1576 	u32 desc_status;
1577 	int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1;
1578 	dma_addr_t dma_addr;
1579 	u16 pkt_len;
1580 	u32 buf_len;
1581 
1582 	boguscnt = min(boguscnt, *quota);
1583 	limit = boguscnt;
1584 	rxdesc = &mdp->rx_ring[entry];
1585 	while (!(rxdesc->status & cpu_to_le32(RD_RACT))) {
1586 		/* RACT bit must be checked before all the following reads */
1587 		dma_rmb();
1588 		desc_status = le32_to_cpu(rxdesc->status);
1589 		pkt_len = le32_to_cpu(rxdesc->len) & RD_RFL;
1590 
1591 		if (--boguscnt < 0)
1592 			break;
1593 
1594 		netif_info(mdp, rx_status, ndev,
1595 			   "rx entry %d status 0x%08x len %d\n",
1596 			   entry, desc_status, pkt_len);
1597 
1598 		if (!(desc_status & RDFEND))
1599 			ndev->stats.rx_length_errors++;
1600 
1601 		/* In case of almost all GETHER/ETHERs, the Receive Frame State
1602 		 * (RFS) bits in the Receive Descriptor 0 are from bit 9 to
1603 		 * bit 0. However, in case of the R8A7740 and R7S72100
1604 		 * the RFS bits are from bit 25 to bit 16. So, the
1605 		 * driver needs right shifting by 16.
1606 		 */
1607 		if (mdp->cd->hw_checksum)
1608 			desc_status >>= 16;
1609 
1610 		skb = mdp->rx_skbuff[entry];
1611 		if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
1612 				   RD_RFS5 | RD_RFS6 | RD_RFS10)) {
1613 			ndev->stats.rx_errors++;
1614 			if (desc_status & RD_RFS1)
1615 				ndev->stats.rx_crc_errors++;
1616 			if (desc_status & RD_RFS2)
1617 				ndev->stats.rx_frame_errors++;
1618 			if (desc_status & RD_RFS3)
1619 				ndev->stats.rx_length_errors++;
1620 			if (desc_status & RD_RFS4)
1621 				ndev->stats.rx_length_errors++;
1622 			if (desc_status & RD_RFS6)
1623 				ndev->stats.rx_missed_errors++;
1624 			if (desc_status & RD_RFS10)
1625 				ndev->stats.rx_over_errors++;
1626 		} else	if (skb) {
1627 			dma_addr = le32_to_cpu(rxdesc->addr);
1628 			if (!mdp->cd->hw_swap)
1629 				sh_eth_soft_swap(
1630 					phys_to_virt(ALIGN(dma_addr, 4)),
1631 					pkt_len + 2);
1632 			mdp->rx_skbuff[entry] = NULL;
1633 			if (mdp->cd->rpadir)
1634 				skb_reserve(skb, NET_IP_ALIGN);
1635 			dma_unmap_single(&mdp->pdev->dev, dma_addr,
1636 					 ALIGN(mdp->rx_buf_sz, 32),
1637 					 DMA_FROM_DEVICE);
1638 			skb_put(skb, pkt_len);
1639 			skb->protocol = eth_type_trans(skb, ndev);
1640 			netif_receive_skb(skb);
1641 			ndev->stats.rx_packets++;
1642 			ndev->stats.rx_bytes += pkt_len;
1643 			if (desc_status & RD_RFS8)
1644 				ndev->stats.multicast++;
1645 		}
1646 		entry = (++mdp->cur_rx) % mdp->num_rx_ring;
1647 		rxdesc = &mdp->rx_ring[entry];
1648 	}
1649 
1650 	/* Refill the Rx ring buffers. */
1651 	for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
1652 		entry = mdp->dirty_rx % mdp->num_rx_ring;
1653 		rxdesc = &mdp->rx_ring[entry];
1654 		/* The size of the buffer is 32 byte boundary. */
1655 		buf_len = ALIGN(mdp->rx_buf_sz, 32);
1656 		rxdesc->len = cpu_to_le32(buf_len << 16);
1657 
1658 		if (mdp->rx_skbuff[entry] == NULL) {
1659 			skb = netdev_alloc_skb(ndev, skbuff_size);
1660 			if (skb == NULL)
1661 				break;	/* Better luck next round. */
1662 			sh_eth_set_receive_align(skb);
1663 			dma_addr = dma_map_single(&mdp->pdev->dev, skb->data,
1664 						  buf_len, DMA_FROM_DEVICE);
1665 			if (dma_mapping_error(&mdp->pdev->dev, dma_addr)) {
1666 				kfree_skb(skb);
1667 				break;
1668 			}
1669 			mdp->rx_skbuff[entry] = skb;
1670 
1671 			skb_checksum_none_assert(skb);
1672 			rxdesc->addr = cpu_to_le32(dma_addr);
1673 		}
1674 		dma_wmb(); /* RACT bit must be set after all the above writes */
1675 		if (entry >= mdp->num_rx_ring - 1)
1676 			rxdesc->status |=
1677 				cpu_to_le32(RD_RACT | RD_RFP | RD_RDLE);
1678 		else
1679 			rxdesc->status |= cpu_to_le32(RD_RACT | RD_RFP);
1680 	}
1681 
1682 	/* Restart Rx engine if stopped. */
1683 	/* If we don't need to check status, don't. -KDU */
1684 	if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R)) {
1685 		/* fix the values for the next receiving if RDE is set */
1686 		if (intr_status & EESR_RDE && !mdp->cd->no_xdfar) {
1687 			u32 count = (sh_eth_read(ndev, RDFAR) -
1688 				     sh_eth_read(ndev, RDLAR)) >> 4;
1689 
1690 			mdp->cur_rx = count;
1691 			mdp->dirty_rx = count;
1692 		}
1693 		sh_eth_write(ndev, EDRRR_R, EDRRR);
1694 	}
1695 
1696 	*quota -= limit - boguscnt - 1;
1697 
1698 	return *quota <= 0;
1699 }
1700 
1701 static void sh_eth_rcv_snd_disable(struct net_device *ndev)
1702 {
1703 	/* disable tx and rx */
1704 	sh_eth_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0);
1705 }
1706 
1707 static void sh_eth_rcv_snd_enable(struct net_device *ndev)
1708 {
1709 	/* enable tx and rx */
1710 	sh_eth_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE);
1711 }
1712 
1713 /* E-MAC interrupt handler */
1714 static void sh_eth_emac_interrupt(struct net_device *ndev)
1715 {
1716 	struct sh_eth_private *mdp = netdev_priv(ndev);
1717 	u32 felic_stat;
1718 	u32 link_stat;
1719 
1720 	felic_stat = sh_eth_read(ndev, ECSR) & sh_eth_read(ndev, ECSIPR);
1721 	sh_eth_write(ndev, felic_stat, ECSR);	/* clear int */
1722 	if (felic_stat & ECSR_ICD)
1723 		ndev->stats.tx_carrier_errors++;
1724 	if (felic_stat & ECSR_MPD)
1725 		pm_wakeup_event(&mdp->pdev->dev, 0);
1726 	if (felic_stat & ECSR_LCHNG) {
1727 		/* Link Changed */
1728 		if (mdp->cd->no_psr || mdp->no_ether_link)
1729 			return;
1730 		link_stat = sh_eth_read(ndev, PSR);
1731 		if (mdp->ether_link_active_low)
1732 			link_stat = ~link_stat;
1733 		if (!(link_stat & PHY_ST_LINK)) {
1734 			sh_eth_rcv_snd_disable(ndev);
1735 		} else {
1736 			/* Link Up */
1737 			sh_eth_modify(ndev, EESIPR, EESIPR_ECIIP, 0);
1738 			/* clear int */
1739 			sh_eth_modify(ndev, ECSR, 0, 0);
1740 			sh_eth_modify(ndev, EESIPR, EESIPR_ECIIP, EESIPR_ECIIP);
1741 			/* enable tx and rx */
1742 			sh_eth_rcv_snd_enable(ndev);
1743 		}
1744 	}
1745 }
1746 
1747 /* error control function */
1748 static void sh_eth_error(struct net_device *ndev, u32 intr_status)
1749 {
1750 	struct sh_eth_private *mdp = netdev_priv(ndev);
1751 	u32 mask;
1752 
1753 	if (intr_status & EESR_TWB) {
1754 		/* Unused write back interrupt */
1755 		if (intr_status & EESR_TABT) {	/* Transmit Abort int */
1756 			ndev->stats.tx_aborted_errors++;
1757 			netif_err(mdp, tx_err, ndev, "Transmit Abort\n");
1758 		}
1759 	}
1760 
1761 	if (intr_status & EESR_RABT) {
1762 		/* Receive Abort int */
1763 		if (intr_status & EESR_RFRMER) {
1764 			/* Receive Frame Overflow int */
1765 			ndev->stats.rx_frame_errors++;
1766 		}
1767 	}
1768 
1769 	if (intr_status & EESR_TDE) {
1770 		/* Transmit Descriptor Empty int */
1771 		ndev->stats.tx_fifo_errors++;
1772 		netif_err(mdp, tx_err, ndev, "Transmit Descriptor Empty\n");
1773 	}
1774 
1775 	if (intr_status & EESR_TFE) {
1776 		/* FIFO under flow */
1777 		ndev->stats.tx_fifo_errors++;
1778 		netif_err(mdp, tx_err, ndev, "Transmit FIFO Under flow\n");
1779 	}
1780 
1781 	if (intr_status & EESR_RDE) {
1782 		/* Receive Descriptor Empty int */
1783 		ndev->stats.rx_over_errors++;
1784 	}
1785 
1786 	if (intr_status & EESR_RFE) {
1787 		/* Receive FIFO Overflow int */
1788 		ndev->stats.rx_fifo_errors++;
1789 	}
1790 
1791 	if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
1792 		/* Address Error */
1793 		ndev->stats.tx_fifo_errors++;
1794 		netif_err(mdp, tx_err, ndev, "Address Error\n");
1795 	}
1796 
1797 	mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
1798 	if (mdp->cd->no_ade)
1799 		mask &= ~EESR_ADE;
1800 	if (intr_status & mask) {
1801 		/* Tx error */
1802 		u32 edtrr = sh_eth_read(ndev, EDTRR);
1803 
1804 		/* dmesg */
1805 		netdev_err(ndev, "TX error. status=%8.8x cur_tx=%8.8x dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
1806 			   intr_status, mdp->cur_tx, mdp->dirty_tx,
1807 			   (u32)ndev->state, edtrr);
1808 		/* dirty buffer free */
1809 		sh_eth_tx_free(ndev, true);
1810 
1811 		/* SH7712 BUG */
1812 		if (edtrr ^ mdp->cd->edtrr_trns) {
1813 			/* tx dma start */
1814 			sh_eth_write(ndev, mdp->cd->edtrr_trns, EDTRR);
1815 		}
1816 		/* wakeup */
1817 		netif_wake_queue(ndev);
1818 	}
1819 }
1820 
1821 static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
1822 {
1823 	struct net_device *ndev = netdev;
1824 	struct sh_eth_private *mdp = netdev_priv(ndev);
1825 	struct sh_eth_cpu_data *cd = mdp->cd;
1826 	irqreturn_t ret = IRQ_NONE;
1827 	u32 intr_status, intr_enable;
1828 
1829 	spin_lock(&mdp->lock);
1830 
1831 	/* Get interrupt status */
1832 	intr_status = sh_eth_read(ndev, EESR);
1833 	/* Mask it with the interrupt mask, forcing ECI interrupt  to be always
1834 	 * enabled since it's the one that  comes  thru regardless of the mask,
1835 	 * and  we need to fully handle it  in sh_eth_emac_interrupt() in order
1836 	 * to quench it as it doesn't get cleared by just writing 1 to the  ECI
1837 	 * bit...
1838 	 */
1839 	intr_enable = sh_eth_read(ndev, EESIPR);
1840 	intr_status &= intr_enable | EESIPR_ECIIP;
1841 	if (intr_status & (EESR_RX_CHECK | cd->tx_check | EESR_ECI |
1842 			   cd->eesr_err_check))
1843 		ret = IRQ_HANDLED;
1844 	else
1845 		goto out;
1846 
1847 	if (unlikely(!mdp->irq_enabled)) {
1848 		sh_eth_write(ndev, 0, EESIPR);
1849 		goto out;
1850 	}
1851 
1852 	if (intr_status & EESR_RX_CHECK) {
1853 		if (napi_schedule_prep(&mdp->napi)) {
1854 			/* Mask Rx interrupts */
1855 			sh_eth_write(ndev, intr_enable & ~EESR_RX_CHECK,
1856 				     EESIPR);
1857 			__napi_schedule(&mdp->napi);
1858 		} else {
1859 			netdev_warn(ndev,
1860 				    "ignoring interrupt, status 0x%08x, mask 0x%08x.\n",
1861 				    intr_status, intr_enable);
1862 		}
1863 	}
1864 
1865 	/* Tx Check */
1866 	if (intr_status & cd->tx_check) {
1867 		/* Clear Tx interrupts */
1868 		sh_eth_write(ndev, intr_status & cd->tx_check, EESR);
1869 
1870 		sh_eth_tx_free(ndev, true);
1871 		netif_wake_queue(ndev);
1872 	}
1873 
1874 	/* E-MAC interrupt */
1875 	if (intr_status & EESR_ECI)
1876 		sh_eth_emac_interrupt(ndev);
1877 
1878 	if (intr_status & cd->eesr_err_check) {
1879 		/* Clear error interrupts */
1880 		sh_eth_write(ndev, intr_status & cd->eesr_err_check, EESR);
1881 
1882 		sh_eth_error(ndev, intr_status);
1883 	}
1884 
1885 out:
1886 	spin_unlock(&mdp->lock);
1887 
1888 	return ret;
1889 }
1890 
1891 static int sh_eth_poll(struct napi_struct *napi, int budget)
1892 {
1893 	struct sh_eth_private *mdp = container_of(napi, struct sh_eth_private,
1894 						  napi);
1895 	struct net_device *ndev = napi->dev;
1896 	int quota = budget;
1897 	u32 intr_status;
1898 
1899 	for (;;) {
1900 		intr_status = sh_eth_read(ndev, EESR);
1901 		if (!(intr_status & EESR_RX_CHECK))
1902 			break;
1903 		/* Clear Rx interrupts */
1904 		sh_eth_write(ndev, intr_status & EESR_RX_CHECK, EESR);
1905 
1906 		if (sh_eth_rx(ndev, intr_status, &quota))
1907 			goto out;
1908 	}
1909 
1910 	napi_complete(napi);
1911 
1912 	/* Reenable Rx interrupts */
1913 	if (mdp->irq_enabled)
1914 		sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1915 out:
1916 	return budget - quota;
1917 }
1918 
1919 /* PHY state control function */
1920 static void sh_eth_adjust_link(struct net_device *ndev)
1921 {
1922 	struct sh_eth_private *mdp = netdev_priv(ndev);
1923 	struct phy_device *phydev = ndev->phydev;
1924 	int new_state = 0;
1925 
1926 	if (phydev->link) {
1927 		if (phydev->duplex != mdp->duplex) {
1928 			new_state = 1;
1929 			mdp->duplex = phydev->duplex;
1930 			if (mdp->cd->set_duplex)
1931 				mdp->cd->set_duplex(ndev);
1932 		}
1933 
1934 		if (phydev->speed != mdp->speed) {
1935 			new_state = 1;
1936 			mdp->speed = phydev->speed;
1937 			if (mdp->cd->set_rate)
1938 				mdp->cd->set_rate(ndev);
1939 		}
1940 		if (!mdp->link) {
1941 			sh_eth_modify(ndev, ECMR, ECMR_TXF, 0);
1942 			new_state = 1;
1943 			mdp->link = phydev->link;
1944 			if (mdp->cd->no_psr || mdp->no_ether_link)
1945 				sh_eth_rcv_snd_enable(ndev);
1946 		}
1947 	} else if (mdp->link) {
1948 		new_state = 1;
1949 		mdp->link = 0;
1950 		mdp->speed = 0;
1951 		mdp->duplex = -1;
1952 		if (mdp->cd->no_psr || mdp->no_ether_link)
1953 			sh_eth_rcv_snd_disable(ndev);
1954 	}
1955 
1956 	if (new_state && netif_msg_link(mdp))
1957 		phy_print_status(phydev);
1958 }
1959 
1960 /* PHY init function */
1961 static int sh_eth_phy_init(struct net_device *ndev)
1962 {
1963 	struct device_node *np = ndev->dev.parent->of_node;
1964 	struct sh_eth_private *mdp = netdev_priv(ndev);
1965 	struct phy_device *phydev;
1966 
1967 	mdp->link = 0;
1968 	mdp->speed = 0;
1969 	mdp->duplex = -1;
1970 
1971 	/* Try connect to PHY */
1972 	if (np) {
1973 		struct device_node *pn;
1974 
1975 		pn = of_parse_phandle(np, "phy-handle", 0);
1976 		phydev = of_phy_connect(ndev, pn,
1977 					sh_eth_adjust_link, 0,
1978 					mdp->phy_interface);
1979 
1980 		of_node_put(pn);
1981 		if (!phydev)
1982 			phydev = ERR_PTR(-ENOENT);
1983 	} else {
1984 		char phy_id[MII_BUS_ID_SIZE + 3];
1985 
1986 		snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
1987 			 mdp->mii_bus->id, mdp->phy_id);
1988 
1989 		phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
1990 				     mdp->phy_interface);
1991 	}
1992 
1993 	if (IS_ERR(phydev)) {
1994 		netdev_err(ndev, "failed to connect PHY\n");
1995 		return PTR_ERR(phydev);
1996 	}
1997 
1998 	/* mask with MAC supported features */
1999 	if (mdp->cd->register_type != SH_ETH_REG_GIGABIT) {
2000 		int err = phy_set_max_speed(phydev, SPEED_100);
2001 		if (err) {
2002 			netdev_err(ndev, "failed to limit PHY to 100 Mbit/s\n");
2003 			phy_disconnect(phydev);
2004 			return err;
2005 		}
2006 	}
2007 
2008 	phy_attached_info(phydev);
2009 
2010 	return 0;
2011 }
2012 
2013 /* PHY control start function */
2014 static int sh_eth_phy_start(struct net_device *ndev)
2015 {
2016 	int ret;
2017 
2018 	ret = sh_eth_phy_init(ndev);
2019 	if (ret)
2020 		return ret;
2021 
2022 	phy_start(ndev->phydev);
2023 
2024 	return 0;
2025 }
2026 
2027 static int sh_eth_get_link_ksettings(struct net_device *ndev,
2028 				     struct ethtool_link_ksettings *cmd)
2029 {
2030 	struct sh_eth_private *mdp = netdev_priv(ndev);
2031 	unsigned long flags;
2032 
2033 	if (!ndev->phydev)
2034 		return -ENODEV;
2035 
2036 	spin_lock_irqsave(&mdp->lock, flags);
2037 	phy_ethtool_ksettings_get(ndev->phydev, cmd);
2038 	spin_unlock_irqrestore(&mdp->lock, flags);
2039 
2040 	return 0;
2041 }
2042 
2043 static int sh_eth_set_link_ksettings(struct net_device *ndev,
2044 				     const struct ethtool_link_ksettings *cmd)
2045 {
2046 	struct sh_eth_private *mdp = netdev_priv(ndev);
2047 	unsigned long flags;
2048 	int ret;
2049 
2050 	if (!ndev->phydev)
2051 		return -ENODEV;
2052 
2053 	spin_lock_irqsave(&mdp->lock, flags);
2054 
2055 	/* disable tx and rx */
2056 	sh_eth_rcv_snd_disable(ndev);
2057 
2058 	ret = phy_ethtool_ksettings_set(ndev->phydev, cmd);
2059 	if (ret)
2060 		goto error_exit;
2061 
2062 	if (cmd->base.duplex == DUPLEX_FULL)
2063 		mdp->duplex = 1;
2064 	else
2065 		mdp->duplex = 0;
2066 
2067 	if (mdp->cd->set_duplex)
2068 		mdp->cd->set_duplex(ndev);
2069 
2070 error_exit:
2071 	mdelay(1);
2072 
2073 	/* enable tx and rx */
2074 	sh_eth_rcv_snd_enable(ndev);
2075 
2076 	spin_unlock_irqrestore(&mdp->lock, flags);
2077 
2078 	return ret;
2079 }
2080 
2081 /* If it is ever necessary to increase SH_ETH_REG_DUMP_MAX_REGS, the
2082  * version must be bumped as well.  Just adding registers up to that
2083  * limit is fine, as long as the existing register indices don't
2084  * change.
2085  */
2086 #define SH_ETH_REG_DUMP_VERSION		1
2087 #define SH_ETH_REG_DUMP_MAX_REGS	256
2088 
2089 static size_t __sh_eth_get_regs(struct net_device *ndev, u32 *buf)
2090 {
2091 	struct sh_eth_private *mdp = netdev_priv(ndev);
2092 	struct sh_eth_cpu_data *cd = mdp->cd;
2093 	u32 *valid_map;
2094 	size_t len;
2095 
2096 	BUILD_BUG_ON(SH_ETH_MAX_REGISTER_OFFSET > SH_ETH_REG_DUMP_MAX_REGS);
2097 
2098 	/* Dump starts with a bitmap that tells ethtool which
2099 	 * registers are defined for this chip.
2100 	 */
2101 	len = DIV_ROUND_UP(SH_ETH_REG_DUMP_MAX_REGS, 32);
2102 	if (buf) {
2103 		valid_map = buf;
2104 		buf += len;
2105 	} else {
2106 		valid_map = NULL;
2107 	}
2108 
2109 	/* Add a register to the dump, if it has a defined offset.
2110 	 * This automatically skips most undefined registers, but for
2111 	 * some it is also necessary to check a capability flag in
2112 	 * struct sh_eth_cpu_data.
2113 	 */
2114 #define mark_reg_valid(reg) valid_map[reg / 32] |= 1U << (reg % 32)
2115 #define add_reg_from(reg, read_expr) do {				\
2116 		if (mdp->reg_offset[reg] != SH_ETH_OFFSET_INVALID) {	\
2117 			if (buf) {					\
2118 				mark_reg_valid(reg);			\
2119 				*buf++ = read_expr;			\
2120 			}						\
2121 			++len;						\
2122 		}							\
2123 	} while (0)
2124 #define add_reg(reg) add_reg_from(reg, sh_eth_read(ndev, reg))
2125 #define add_tsu_reg(reg) add_reg_from(reg, sh_eth_tsu_read(mdp, reg))
2126 
2127 	add_reg(EDSR);
2128 	add_reg(EDMR);
2129 	add_reg(EDTRR);
2130 	add_reg(EDRRR);
2131 	add_reg(EESR);
2132 	add_reg(EESIPR);
2133 	add_reg(TDLAR);
2134 	add_reg(TDFAR);
2135 	add_reg(TDFXR);
2136 	add_reg(TDFFR);
2137 	add_reg(RDLAR);
2138 	add_reg(RDFAR);
2139 	add_reg(RDFXR);
2140 	add_reg(RDFFR);
2141 	add_reg(TRSCER);
2142 	add_reg(RMFCR);
2143 	add_reg(TFTR);
2144 	add_reg(FDR);
2145 	add_reg(RMCR);
2146 	add_reg(TFUCR);
2147 	add_reg(RFOCR);
2148 	if (cd->rmiimode)
2149 		add_reg(RMIIMODE);
2150 	add_reg(FCFTR);
2151 	if (cd->rpadir)
2152 		add_reg(RPADIR);
2153 	if (!cd->no_trimd)
2154 		add_reg(TRIMD);
2155 	add_reg(ECMR);
2156 	add_reg(ECSR);
2157 	add_reg(ECSIPR);
2158 	add_reg(PIR);
2159 	if (!cd->no_psr)
2160 		add_reg(PSR);
2161 	add_reg(RDMLR);
2162 	add_reg(RFLR);
2163 	add_reg(IPGR);
2164 	if (cd->apr)
2165 		add_reg(APR);
2166 	if (cd->mpr)
2167 		add_reg(MPR);
2168 	add_reg(RFCR);
2169 	add_reg(RFCF);
2170 	if (cd->tpauser)
2171 		add_reg(TPAUSER);
2172 	add_reg(TPAUSECR);
2173 	add_reg(GECMR);
2174 	if (cd->bculr)
2175 		add_reg(BCULR);
2176 	add_reg(MAHR);
2177 	add_reg(MALR);
2178 	add_reg(TROCR);
2179 	add_reg(CDCR);
2180 	add_reg(LCCR);
2181 	add_reg(CNDCR);
2182 	add_reg(CEFCR);
2183 	add_reg(FRECR);
2184 	add_reg(TSFRCR);
2185 	add_reg(TLFRCR);
2186 	add_reg(CERCR);
2187 	add_reg(CEECR);
2188 	add_reg(MAFCR);
2189 	if (cd->rtrate)
2190 		add_reg(RTRATE);
2191 	if (cd->hw_checksum)
2192 		add_reg(CSMR);
2193 	if (cd->select_mii)
2194 		add_reg(RMII_MII);
2195 	if (cd->tsu) {
2196 		add_tsu_reg(ARSTR);
2197 		add_tsu_reg(TSU_CTRST);
2198 		add_tsu_reg(TSU_FWEN0);
2199 		add_tsu_reg(TSU_FWEN1);
2200 		add_tsu_reg(TSU_FCM);
2201 		add_tsu_reg(TSU_BSYSL0);
2202 		add_tsu_reg(TSU_BSYSL1);
2203 		add_tsu_reg(TSU_PRISL0);
2204 		add_tsu_reg(TSU_PRISL1);
2205 		add_tsu_reg(TSU_FWSL0);
2206 		add_tsu_reg(TSU_FWSL1);
2207 		add_tsu_reg(TSU_FWSLC);
2208 		add_tsu_reg(TSU_QTAGM0);
2209 		add_tsu_reg(TSU_QTAGM1);
2210 		add_tsu_reg(TSU_FWSR);
2211 		add_tsu_reg(TSU_FWINMK);
2212 		add_tsu_reg(TSU_ADQT0);
2213 		add_tsu_reg(TSU_ADQT1);
2214 		add_tsu_reg(TSU_VTAG0);
2215 		add_tsu_reg(TSU_VTAG1);
2216 		add_tsu_reg(TSU_ADSBSY);
2217 		add_tsu_reg(TSU_TEN);
2218 		add_tsu_reg(TSU_POST1);
2219 		add_tsu_reg(TSU_POST2);
2220 		add_tsu_reg(TSU_POST3);
2221 		add_tsu_reg(TSU_POST4);
2222 		/* This is the start of a table, not just a single register. */
2223 		if (buf) {
2224 			unsigned int i;
2225 
2226 			mark_reg_valid(TSU_ADRH0);
2227 			for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES * 2; i++)
2228 				*buf++ = ioread32(mdp->tsu_addr +
2229 						  mdp->reg_offset[TSU_ADRH0] +
2230 						  i * 4);
2231 		}
2232 		len += SH_ETH_TSU_CAM_ENTRIES * 2;
2233 	}
2234 
2235 #undef mark_reg_valid
2236 #undef add_reg_from
2237 #undef add_reg
2238 #undef add_tsu_reg
2239 
2240 	return len * 4;
2241 }
2242 
2243 static int sh_eth_get_regs_len(struct net_device *ndev)
2244 {
2245 	return __sh_eth_get_regs(ndev, NULL);
2246 }
2247 
2248 static void sh_eth_get_regs(struct net_device *ndev, struct ethtool_regs *regs,
2249 			    void *buf)
2250 {
2251 	struct sh_eth_private *mdp = netdev_priv(ndev);
2252 
2253 	regs->version = SH_ETH_REG_DUMP_VERSION;
2254 
2255 	pm_runtime_get_sync(&mdp->pdev->dev);
2256 	__sh_eth_get_regs(ndev, buf);
2257 	pm_runtime_put_sync(&mdp->pdev->dev);
2258 }
2259 
2260 static int sh_eth_nway_reset(struct net_device *ndev)
2261 {
2262 	struct sh_eth_private *mdp = netdev_priv(ndev);
2263 	unsigned long flags;
2264 	int ret;
2265 
2266 	if (!ndev->phydev)
2267 		return -ENODEV;
2268 
2269 	spin_lock_irqsave(&mdp->lock, flags);
2270 	ret = phy_start_aneg(ndev->phydev);
2271 	spin_unlock_irqrestore(&mdp->lock, flags);
2272 
2273 	return ret;
2274 }
2275 
2276 static u32 sh_eth_get_msglevel(struct net_device *ndev)
2277 {
2278 	struct sh_eth_private *mdp = netdev_priv(ndev);
2279 	return mdp->msg_enable;
2280 }
2281 
2282 static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
2283 {
2284 	struct sh_eth_private *mdp = netdev_priv(ndev);
2285 	mdp->msg_enable = value;
2286 }
2287 
2288 static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
2289 	"rx_current", "tx_current",
2290 	"rx_dirty", "tx_dirty",
2291 };
2292 #define SH_ETH_STATS_LEN  ARRAY_SIZE(sh_eth_gstrings_stats)
2293 
2294 static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
2295 {
2296 	switch (sset) {
2297 	case ETH_SS_STATS:
2298 		return SH_ETH_STATS_LEN;
2299 	default:
2300 		return -EOPNOTSUPP;
2301 	}
2302 }
2303 
2304 static void sh_eth_get_ethtool_stats(struct net_device *ndev,
2305 				     struct ethtool_stats *stats, u64 *data)
2306 {
2307 	struct sh_eth_private *mdp = netdev_priv(ndev);
2308 	int i = 0;
2309 
2310 	/* device-specific stats */
2311 	data[i++] = mdp->cur_rx;
2312 	data[i++] = mdp->cur_tx;
2313 	data[i++] = mdp->dirty_rx;
2314 	data[i++] = mdp->dirty_tx;
2315 }
2316 
2317 static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
2318 {
2319 	switch (stringset) {
2320 	case ETH_SS_STATS:
2321 		memcpy(data, *sh_eth_gstrings_stats,
2322 		       sizeof(sh_eth_gstrings_stats));
2323 		break;
2324 	}
2325 }
2326 
2327 static void sh_eth_get_ringparam(struct net_device *ndev,
2328 				 struct ethtool_ringparam *ring)
2329 {
2330 	struct sh_eth_private *mdp = netdev_priv(ndev);
2331 
2332 	ring->rx_max_pending = RX_RING_MAX;
2333 	ring->tx_max_pending = TX_RING_MAX;
2334 	ring->rx_pending = mdp->num_rx_ring;
2335 	ring->tx_pending = mdp->num_tx_ring;
2336 }
2337 
2338 static int sh_eth_set_ringparam(struct net_device *ndev,
2339 				struct ethtool_ringparam *ring)
2340 {
2341 	struct sh_eth_private *mdp = netdev_priv(ndev);
2342 	int ret;
2343 
2344 	if (ring->tx_pending > TX_RING_MAX ||
2345 	    ring->rx_pending > RX_RING_MAX ||
2346 	    ring->tx_pending < TX_RING_MIN ||
2347 	    ring->rx_pending < RX_RING_MIN)
2348 		return -EINVAL;
2349 	if (ring->rx_mini_pending || ring->rx_jumbo_pending)
2350 		return -EINVAL;
2351 
2352 	if (netif_running(ndev)) {
2353 		netif_device_detach(ndev);
2354 		netif_tx_disable(ndev);
2355 
2356 		/* Serialise with the interrupt handler and NAPI, then
2357 		 * disable interrupts.  We have to clear the
2358 		 * irq_enabled flag first to ensure that interrupts
2359 		 * won't be re-enabled.
2360 		 */
2361 		mdp->irq_enabled = false;
2362 		synchronize_irq(ndev->irq);
2363 		napi_synchronize(&mdp->napi);
2364 		sh_eth_write(ndev, 0x0000, EESIPR);
2365 
2366 		sh_eth_dev_exit(ndev);
2367 
2368 		/* Free all the skbuffs in the Rx queue and the DMA buffers. */
2369 		sh_eth_ring_free(ndev);
2370 	}
2371 
2372 	/* Set new parameters */
2373 	mdp->num_rx_ring = ring->rx_pending;
2374 	mdp->num_tx_ring = ring->tx_pending;
2375 
2376 	if (netif_running(ndev)) {
2377 		ret = sh_eth_ring_init(ndev);
2378 		if (ret < 0) {
2379 			netdev_err(ndev, "%s: sh_eth_ring_init failed.\n",
2380 				   __func__);
2381 			return ret;
2382 		}
2383 		ret = sh_eth_dev_init(ndev);
2384 		if (ret < 0) {
2385 			netdev_err(ndev, "%s: sh_eth_dev_init failed.\n",
2386 				   __func__);
2387 			return ret;
2388 		}
2389 
2390 		netif_device_attach(ndev);
2391 	}
2392 
2393 	return 0;
2394 }
2395 
2396 static void sh_eth_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2397 {
2398 	struct sh_eth_private *mdp = netdev_priv(ndev);
2399 
2400 	wol->supported = 0;
2401 	wol->wolopts = 0;
2402 
2403 	if (mdp->cd->magic) {
2404 		wol->supported = WAKE_MAGIC;
2405 		wol->wolopts = mdp->wol_enabled ? WAKE_MAGIC : 0;
2406 	}
2407 }
2408 
2409 static int sh_eth_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2410 {
2411 	struct sh_eth_private *mdp = netdev_priv(ndev);
2412 
2413 	if (!mdp->cd->magic || wol->wolopts & ~WAKE_MAGIC)
2414 		return -EOPNOTSUPP;
2415 
2416 	mdp->wol_enabled = !!(wol->wolopts & WAKE_MAGIC);
2417 
2418 	device_set_wakeup_enable(&mdp->pdev->dev, mdp->wol_enabled);
2419 
2420 	return 0;
2421 }
2422 
2423 static const struct ethtool_ops sh_eth_ethtool_ops = {
2424 	.get_regs_len	= sh_eth_get_regs_len,
2425 	.get_regs	= sh_eth_get_regs,
2426 	.nway_reset	= sh_eth_nway_reset,
2427 	.get_msglevel	= sh_eth_get_msglevel,
2428 	.set_msglevel	= sh_eth_set_msglevel,
2429 	.get_link	= ethtool_op_get_link,
2430 	.get_strings	= sh_eth_get_strings,
2431 	.get_ethtool_stats  = sh_eth_get_ethtool_stats,
2432 	.get_sset_count     = sh_eth_get_sset_count,
2433 	.get_ringparam	= sh_eth_get_ringparam,
2434 	.set_ringparam	= sh_eth_set_ringparam,
2435 	.get_link_ksettings = sh_eth_get_link_ksettings,
2436 	.set_link_ksettings = sh_eth_set_link_ksettings,
2437 	.get_wol	= sh_eth_get_wol,
2438 	.set_wol	= sh_eth_set_wol,
2439 };
2440 
2441 /* network device open function */
2442 static int sh_eth_open(struct net_device *ndev)
2443 {
2444 	struct sh_eth_private *mdp = netdev_priv(ndev);
2445 	int ret;
2446 
2447 	pm_runtime_get_sync(&mdp->pdev->dev);
2448 
2449 	napi_enable(&mdp->napi);
2450 
2451 	ret = request_irq(ndev->irq, sh_eth_interrupt,
2452 			  mdp->cd->irq_flags, ndev->name, ndev);
2453 	if (ret) {
2454 		netdev_err(ndev, "Can not assign IRQ number\n");
2455 		goto out_napi_off;
2456 	}
2457 
2458 	/* Descriptor set */
2459 	ret = sh_eth_ring_init(ndev);
2460 	if (ret)
2461 		goto out_free_irq;
2462 
2463 	/* device init */
2464 	ret = sh_eth_dev_init(ndev);
2465 	if (ret)
2466 		goto out_free_irq;
2467 
2468 	/* PHY control start*/
2469 	ret = sh_eth_phy_start(ndev);
2470 	if (ret)
2471 		goto out_free_irq;
2472 
2473 	netif_start_queue(ndev);
2474 
2475 	mdp->is_opened = 1;
2476 
2477 	return ret;
2478 
2479 out_free_irq:
2480 	free_irq(ndev->irq, ndev);
2481 out_napi_off:
2482 	napi_disable(&mdp->napi);
2483 	pm_runtime_put_sync(&mdp->pdev->dev);
2484 	return ret;
2485 }
2486 
2487 /* Timeout function */
2488 static void sh_eth_tx_timeout(struct net_device *ndev)
2489 {
2490 	struct sh_eth_private *mdp = netdev_priv(ndev);
2491 	struct sh_eth_rxdesc *rxdesc;
2492 	int i;
2493 
2494 	netif_stop_queue(ndev);
2495 
2496 	netif_err(mdp, timer, ndev,
2497 		  "transmit timed out, status %8.8x, resetting...\n",
2498 		  sh_eth_read(ndev, EESR));
2499 
2500 	/* tx_errors count up */
2501 	ndev->stats.tx_errors++;
2502 
2503 	/* Free all the skbuffs in the Rx queue. */
2504 	for (i = 0; i < mdp->num_rx_ring; i++) {
2505 		rxdesc = &mdp->rx_ring[i];
2506 		rxdesc->status = cpu_to_le32(0);
2507 		rxdesc->addr = cpu_to_le32(0xBADF00D0);
2508 		dev_kfree_skb(mdp->rx_skbuff[i]);
2509 		mdp->rx_skbuff[i] = NULL;
2510 	}
2511 	for (i = 0; i < mdp->num_tx_ring; i++) {
2512 		dev_kfree_skb(mdp->tx_skbuff[i]);
2513 		mdp->tx_skbuff[i] = NULL;
2514 	}
2515 
2516 	/* device init */
2517 	sh_eth_dev_init(ndev);
2518 
2519 	netif_start_queue(ndev);
2520 }
2521 
2522 /* Packet transmit function */
2523 static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
2524 {
2525 	struct sh_eth_private *mdp = netdev_priv(ndev);
2526 	struct sh_eth_txdesc *txdesc;
2527 	dma_addr_t dma_addr;
2528 	u32 entry;
2529 	unsigned long flags;
2530 
2531 	spin_lock_irqsave(&mdp->lock, flags);
2532 	if ((mdp->cur_tx - mdp->dirty_tx) >= (mdp->num_tx_ring - 4)) {
2533 		if (!sh_eth_tx_free(ndev, true)) {
2534 			netif_warn(mdp, tx_queued, ndev, "TxFD exhausted.\n");
2535 			netif_stop_queue(ndev);
2536 			spin_unlock_irqrestore(&mdp->lock, flags);
2537 			return NETDEV_TX_BUSY;
2538 		}
2539 	}
2540 	spin_unlock_irqrestore(&mdp->lock, flags);
2541 
2542 	if (skb_put_padto(skb, ETH_ZLEN))
2543 		return NETDEV_TX_OK;
2544 
2545 	entry = mdp->cur_tx % mdp->num_tx_ring;
2546 	mdp->tx_skbuff[entry] = skb;
2547 	txdesc = &mdp->tx_ring[entry];
2548 	/* soft swap. */
2549 	if (!mdp->cd->hw_swap)
2550 		sh_eth_soft_swap(PTR_ALIGN(skb->data, 4), skb->len + 2);
2551 	dma_addr = dma_map_single(&mdp->pdev->dev, skb->data, skb->len,
2552 				  DMA_TO_DEVICE);
2553 	if (dma_mapping_error(&mdp->pdev->dev, dma_addr)) {
2554 		kfree_skb(skb);
2555 		return NETDEV_TX_OK;
2556 	}
2557 	txdesc->addr = cpu_to_le32(dma_addr);
2558 	txdesc->len  = cpu_to_le32(skb->len << 16);
2559 
2560 	dma_wmb(); /* TACT bit must be set after all the above writes */
2561 	if (entry >= mdp->num_tx_ring - 1)
2562 		txdesc->status |= cpu_to_le32(TD_TACT | TD_TDLE);
2563 	else
2564 		txdesc->status |= cpu_to_le32(TD_TACT);
2565 
2566 	mdp->cur_tx++;
2567 
2568 	if (!(sh_eth_read(ndev, EDTRR) & mdp->cd->edtrr_trns))
2569 		sh_eth_write(ndev, mdp->cd->edtrr_trns, EDTRR);
2570 
2571 	return NETDEV_TX_OK;
2572 }
2573 
2574 /* The statistics registers have write-clear behaviour, which means we
2575  * will lose any increment between the read and write.  We mitigate
2576  * this by only clearing when we read a non-zero value, so we will
2577  * never falsely report a total of zero.
2578  */
2579 static void
2580 sh_eth_update_stat(struct net_device *ndev, unsigned long *stat, int reg)
2581 {
2582 	u32 delta = sh_eth_read(ndev, reg);
2583 
2584 	if (delta) {
2585 		*stat += delta;
2586 		sh_eth_write(ndev, 0, reg);
2587 	}
2588 }
2589 
2590 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
2591 {
2592 	struct sh_eth_private *mdp = netdev_priv(ndev);
2593 
2594 	if (mdp->cd->no_tx_cntrs)
2595 		return &ndev->stats;
2596 
2597 	if (!mdp->is_opened)
2598 		return &ndev->stats;
2599 
2600 	sh_eth_update_stat(ndev, &ndev->stats.tx_dropped, TROCR);
2601 	sh_eth_update_stat(ndev, &ndev->stats.collisions, CDCR);
2602 	sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors, LCCR);
2603 
2604 	if (mdp->cd->cexcr) {
2605 		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2606 				   CERCR);
2607 		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2608 				   CEECR);
2609 	} else {
2610 		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2611 				   CNDCR);
2612 	}
2613 
2614 	return &ndev->stats;
2615 }
2616 
2617 /* device close function */
2618 static int sh_eth_close(struct net_device *ndev)
2619 {
2620 	struct sh_eth_private *mdp = netdev_priv(ndev);
2621 
2622 	netif_stop_queue(ndev);
2623 
2624 	/* Serialise with the interrupt handler and NAPI, then disable
2625 	 * interrupts.  We have to clear the irq_enabled flag first to
2626 	 * ensure that interrupts won't be re-enabled.
2627 	 */
2628 	mdp->irq_enabled = false;
2629 	synchronize_irq(ndev->irq);
2630 	napi_disable(&mdp->napi);
2631 	sh_eth_write(ndev, 0x0000, EESIPR);
2632 
2633 	sh_eth_dev_exit(ndev);
2634 
2635 	/* PHY Disconnect */
2636 	if (ndev->phydev) {
2637 		phy_stop(ndev->phydev);
2638 		phy_disconnect(ndev->phydev);
2639 	}
2640 
2641 	free_irq(ndev->irq, ndev);
2642 
2643 	/* Free all the skbuffs in the Rx queue and the DMA buffer. */
2644 	sh_eth_ring_free(ndev);
2645 
2646 	pm_runtime_put_sync(&mdp->pdev->dev);
2647 
2648 	mdp->is_opened = 0;
2649 
2650 	return 0;
2651 }
2652 
2653 /* ioctl to device function */
2654 static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2655 {
2656 	struct phy_device *phydev = ndev->phydev;
2657 
2658 	if (!netif_running(ndev))
2659 		return -EINVAL;
2660 
2661 	if (!phydev)
2662 		return -ENODEV;
2663 
2664 	return phy_mii_ioctl(phydev, rq, cmd);
2665 }
2666 
2667 static int sh_eth_change_mtu(struct net_device *ndev, int new_mtu)
2668 {
2669 	if (netif_running(ndev))
2670 		return -EBUSY;
2671 
2672 	ndev->mtu = new_mtu;
2673 	netdev_update_features(ndev);
2674 
2675 	return 0;
2676 }
2677 
2678 /* For TSU_POSTn. Please refer to the manual about this (strange) bitfields */
2679 static u32 sh_eth_tsu_get_post_mask(int entry)
2680 {
2681 	return 0x0f << (28 - ((entry % 8) * 4));
2682 }
2683 
2684 static u32 sh_eth_tsu_get_post_bit(struct sh_eth_private *mdp, int entry)
2685 {
2686 	return (0x08 >> (mdp->port << 1)) << (28 - ((entry % 8) * 4));
2687 }
2688 
2689 static void sh_eth_tsu_enable_cam_entry_post(struct net_device *ndev,
2690 					     int entry)
2691 {
2692 	struct sh_eth_private *mdp = netdev_priv(ndev);
2693 	int reg = TSU_POST1 + entry / 8;
2694 	u32 tmp;
2695 
2696 	tmp = sh_eth_tsu_read(mdp, reg);
2697 	sh_eth_tsu_write(mdp, tmp | sh_eth_tsu_get_post_bit(mdp, entry), reg);
2698 }
2699 
2700 static bool sh_eth_tsu_disable_cam_entry_post(struct net_device *ndev,
2701 					      int entry)
2702 {
2703 	struct sh_eth_private *mdp = netdev_priv(ndev);
2704 	int reg = TSU_POST1 + entry / 8;
2705 	u32 post_mask, ref_mask, tmp;
2706 
2707 	post_mask = sh_eth_tsu_get_post_mask(entry);
2708 	ref_mask = sh_eth_tsu_get_post_bit(mdp, entry) & ~post_mask;
2709 
2710 	tmp = sh_eth_tsu_read(mdp, reg);
2711 	sh_eth_tsu_write(mdp, tmp & ~post_mask, reg);
2712 
2713 	/* If other port enables, the function returns "true" */
2714 	return tmp & ref_mask;
2715 }
2716 
2717 static int sh_eth_tsu_busy(struct net_device *ndev)
2718 {
2719 	int timeout = SH_ETH_TSU_TIMEOUT_MS * 100;
2720 	struct sh_eth_private *mdp = netdev_priv(ndev);
2721 
2722 	while ((sh_eth_tsu_read(mdp, TSU_ADSBSY) & TSU_ADSBSY_0)) {
2723 		udelay(10);
2724 		timeout--;
2725 		if (timeout <= 0) {
2726 			netdev_err(ndev, "%s: timeout\n", __func__);
2727 			return -ETIMEDOUT;
2728 		}
2729 	}
2730 
2731 	return 0;
2732 }
2733 
2734 static int sh_eth_tsu_write_entry(struct net_device *ndev, void *reg,
2735 				  const u8 *addr)
2736 {
2737 	u32 val;
2738 
2739 	val = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3];
2740 	iowrite32(val, reg);
2741 	if (sh_eth_tsu_busy(ndev) < 0)
2742 		return -EBUSY;
2743 
2744 	val = addr[4] << 8 | addr[5];
2745 	iowrite32(val, reg + 4);
2746 	if (sh_eth_tsu_busy(ndev) < 0)
2747 		return -EBUSY;
2748 
2749 	return 0;
2750 }
2751 
2752 static void sh_eth_tsu_read_entry(void *reg, u8 *addr)
2753 {
2754 	u32 val;
2755 
2756 	val = ioread32(reg);
2757 	addr[0] = (val >> 24) & 0xff;
2758 	addr[1] = (val >> 16) & 0xff;
2759 	addr[2] = (val >> 8) & 0xff;
2760 	addr[3] = val & 0xff;
2761 	val = ioread32(reg + 4);
2762 	addr[4] = (val >> 8) & 0xff;
2763 	addr[5] = val & 0xff;
2764 }
2765 
2766 
2767 static int sh_eth_tsu_find_entry(struct net_device *ndev, const u8 *addr)
2768 {
2769 	struct sh_eth_private *mdp = netdev_priv(ndev);
2770 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2771 	int i;
2772 	u8 c_addr[ETH_ALEN];
2773 
2774 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2775 		sh_eth_tsu_read_entry(reg_offset, c_addr);
2776 		if (ether_addr_equal(addr, c_addr))
2777 			return i;
2778 	}
2779 
2780 	return -ENOENT;
2781 }
2782 
2783 static int sh_eth_tsu_find_empty(struct net_device *ndev)
2784 {
2785 	u8 blank[ETH_ALEN];
2786 	int entry;
2787 
2788 	memset(blank, 0, sizeof(blank));
2789 	entry = sh_eth_tsu_find_entry(ndev, blank);
2790 	return (entry < 0) ? -ENOMEM : entry;
2791 }
2792 
2793 static int sh_eth_tsu_disable_cam_entry_table(struct net_device *ndev,
2794 					      int entry)
2795 {
2796 	struct sh_eth_private *mdp = netdev_priv(ndev);
2797 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2798 	int ret;
2799 	u8 blank[ETH_ALEN];
2800 
2801 	sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) &
2802 			 ~(1 << (31 - entry)), TSU_TEN);
2803 
2804 	memset(blank, 0, sizeof(blank));
2805 	ret = sh_eth_tsu_write_entry(ndev, reg_offset + entry * 8, blank);
2806 	if (ret < 0)
2807 		return ret;
2808 	return 0;
2809 }
2810 
2811 static int sh_eth_tsu_add_entry(struct net_device *ndev, const u8 *addr)
2812 {
2813 	struct sh_eth_private *mdp = netdev_priv(ndev);
2814 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2815 	int i, ret;
2816 
2817 	if (!mdp->cd->tsu)
2818 		return 0;
2819 
2820 	i = sh_eth_tsu_find_entry(ndev, addr);
2821 	if (i < 0) {
2822 		/* No entry found, create one */
2823 		i = sh_eth_tsu_find_empty(ndev);
2824 		if (i < 0)
2825 			return -ENOMEM;
2826 		ret = sh_eth_tsu_write_entry(ndev, reg_offset + i * 8, addr);
2827 		if (ret < 0)
2828 			return ret;
2829 
2830 		/* Enable the entry */
2831 		sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) |
2832 				 (1 << (31 - i)), TSU_TEN);
2833 	}
2834 
2835 	/* Entry found or created, enable POST */
2836 	sh_eth_tsu_enable_cam_entry_post(ndev, i);
2837 
2838 	return 0;
2839 }
2840 
2841 static int sh_eth_tsu_del_entry(struct net_device *ndev, const u8 *addr)
2842 {
2843 	struct sh_eth_private *mdp = netdev_priv(ndev);
2844 	int i, ret;
2845 
2846 	if (!mdp->cd->tsu)
2847 		return 0;
2848 
2849 	i = sh_eth_tsu_find_entry(ndev, addr);
2850 	if (i) {
2851 		/* Entry found */
2852 		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2853 			goto done;
2854 
2855 		/* Disable the entry if both ports was disabled */
2856 		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2857 		if (ret < 0)
2858 			return ret;
2859 	}
2860 done:
2861 	return 0;
2862 }
2863 
2864 static int sh_eth_tsu_purge_all(struct net_device *ndev)
2865 {
2866 	struct sh_eth_private *mdp = netdev_priv(ndev);
2867 	int i, ret;
2868 
2869 	if (!mdp->cd->tsu)
2870 		return 0;
2871 
2872 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++) {
2873 		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2874 			continue;
2875 
2876 		/* Disable the entry if both ports was disabled */
2877 		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2878 		if (ret < 0)
2879 			return ret;
2880 	}
2881 
2882 	return 0;
2883 }
2884 
2885 static void sh_eth_tsu_purge_mcast(struct net_device *ndev)
2886 {
2887 	struct sh_eth_private *mdp = netdev_priv(ndev);
2888 	u8 addr[ETH_ALEN];
2889 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2890 	int i;
2891 
2892 	if (!mdp->cd->tsu)
2893 		return;
2894 
2895 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2896 		sh_eth_tsu_read_entry(reg_offset, addr);
2897 		if (is_multicast_ether_addr(addr))
2898 			sh_eth_tsu_del_entry(ndev, addr);
2899 	}
2900 }
2901 
2902 /* Update promiscuous flag and multicast filter */
2903 static void sh_eth_set_rx_mode(struct net_device *ndev)
2904 {
2905 	struct sh_eth_private *mdp = netdev_priv(ndev);
2906 	u32 ecmr_bits;
2907 	int mcast_all = 0;
2908 	unsigned long flags;
2909 
2910 	spin_lock_irqsave(&mdp->lock, flags);
2911 	/* Initial condition is MCT = 1, PRM = 0.
2912 	 * Depending on ndev->flags, set PRM or clear MCT
2913 	 */
2914 	ecmr_bits = sh_eth_read(ndev, ECMR) & ~ECMR_PRM;
2915 	if (mdp->cd->tsu)
2916 		ecmr_bits |= ECMR_MCT;
2917 
2918 	if (!(ndev->flags & IFF_MULTICAST)) {
2919 		sh_eth_tsu_purge_mcast(ndev);
2920 		mcast_all = 1;
2921 	}
2922 	if (ndev->flags & IFF_ALLMULTI) {
2923 		sh_eth_tsu_purge_mcast(ndev);
2924 		ecmr_bits &= ~ECMR_MCT;
2925 		mcast_all = 1;
2926 	}
2927 
2928 	if (ndev->flags & IFF_PROMISC) {
2929 		sh_eth_tsu_purge_all(ndev);
2930 		ecmr_bits = (ecmr_bits & ~ECMR_MCT) | ECMR_PRM;
2931 	} else if (mdp->cd->tsu) {
2932 		struct netdev_hw_addr *ha;
2933 		netdev_for_each_mc_addr(ha, ndev) {
2934 			if (mcast_all && is_multicast_ether_addr(ha->addr))
2935 				continue;
2936 
2937 			if (sh_eth_tsu_add_entry(ndev, ha->addr) < 0) {
2938 				if (!mcast_all) {
2939 					sh_eth_tsu_purge_mcast(ndev);
2940 					ecmr_bits &= ~ECMR_MCT;
2941 					mcast_all = 1;
2942 				}
2943 			}
2944 		}
2945 	}
2946 
2947 	/* update the ethernet mode */
2948 	sh_eth_write(ndev, ecmr_bits, ECMR);
2949 
2950 	spin_unlock_irqrestore(&mdp->lock, flags);
2951 }
2952 
2953 static int sh_eth_get_vtag_index(struct sh_eth_private *mdp)
2954 {
2955 	if (!mdp->port)
2956 		return TSU_VTAG0;
2957 	else
2958 		return TSU_VTAG1;
2959 }
2960 
2961 static int sh_eth_vlan_rx_add_vid(struct net_device *ndev,
2962 				  __be16 proto, u16 vid)
2963 {
2964 	struct sh_eth_private *mdp = netdev_priv(ndev);
2965 	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2966 
2967 	if (unlikely(!mdp->cd->tsu))
2968 		return -EPERM;
2969 
2970 	/* No filtering if vid = 0 */
2971 	if (!vid)
2972 		return 0;
2973 
2974 	mdp->vlan_num_ids++;
2975 
2976 	/* The controller has one VLAN tag HW filter. So, if the filter is
2977 	 * already enabled, the driver disables it and the filte
2978 	 */
2979 	if (mdp->vlan_num_ids > 1) {
2980 		/* disable VLAN filter */
2981 		sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2982 		return 0;
2983 	}
2984 
2985 	sh_eth_tsu_write(mdp, TSU_VTAG_ENABLE | (vid & TSU_VTAG_VID_MASK),
2986 			 vtag_reg_index);
2987 
2988 	return 0;
2989 }
2990 
2991 static int sh_eth_vlan_rx_kill_vid(struct net_device *ndev,
2992 				   __be16 proto, u16 vid)
2993 {
2994 	struct sh_eth_private *mdp = netdev_priv(ndev);
2995 	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2996 
2997 	if (unlikely(!mdp->cd->tsu))
2998 		return -EPERM;
2999 
3000 	/* No filtering if vid = 0 */
3001 	if (!vid)
3002 		return 0;
3003 
3004 	mdp->vlan_num_ids--;
3005 	sh_eth_tsu_write(mdp, 0, vtag_reg_index);
3006 
3007 	return 0;
3008 }
3009 
3010 /* SuperH's TSU register init function */
3011 static void sh_eth_tsu_init(struct sh_eth_private *mdp)
3012 {
3013 	if (!mdp->cd->dual_port) {
3014 		sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
3015 		sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL,
3016 				 TSU_FWSLC);	/* Enable POST registers */
3017 		return;
3018 	}
3019 
3020 	sh_eth_tsu_write(mdp, 0, TSU_FWEN0);	/* Disable forward(0->1) */
3021 	sh_eth_tsu_write(mdp, 0, TSU_FWEN1);	/* Disable forward(1->0) */
3022 	sh_eth_tsu_write(mdp, 0, TSU_FCM);	/* forward fifo 3k-3k */
3023 	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
3024 	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
3025 	sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
3026 	sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
3027 	sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
3028 	sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
3029 	sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
3030 	sh_eth_tsu_write(mdp, 0, TSU_QTAGM0);	/* Disable QTAG(0->1) */
3031 	sh_eth_tsu_write(mdp, 0, TSU_QTAGM1);	/* Disable QTAG(1->0) */
3032 	sh_eth_tsu_write(mdp, 0, TSU_FWSR);	/* all interrupt status clear */
3033 	sh_eth_tsu_write(mdp, 0, TSU_FWINMK);	/* Disable all interrupt */
3034 	sh_eth_tsu_write(mdp, 0, TSU_TEN);	/* Disable all CAM entry */
3035 	sh_eth_tsu_write(mdp, 0, TSU_POST1);	/* Disable CAM entry [ 0- 7] */
3036 	sh_eth_tsu_write(mdp, 0, TSU_POST2);	/* Disable CAM entry [ 8-15] */
3037 	sh_eth_tsu_write(mdp, 0, TSU_POST3);	/* Disable CAM entry [16-23] */
3038 	sh_eth_tsu_write(mdp, 0, TSU_POST4);	/* Disable CAM entry [24-31] */
3039 }
3040 
3041 /* MDIO bus release function */
3042 static int sh_mdio_release(struct sh_eth_private *mdp)
3043 {
3044 	/* unregister mdio bus */
3045 	mdiobus_unregister(mdp->mii_bus);
3046 
3047 	/* free bitbang info */
3048 	free_mdio_bitbang(mdp->mii_bus);
3049 
3050 	return 0;
3051 }
3052 
3053 /* MDIO bus init function */
3054 static int sh_mdio_init(struct sh_eth_private *mdp,
3055 			struct sh_eth_plat_data *pd)
3056 {
3057 	int ret;
3058 	struct bb_info *bitbang;
3059 	struct platform_device *pdev = mdp->pdev;
3060 	struct device *dev = &mdp->pdev->dev;
3061 
3062 	/* create bit control struct for PHY */
3063 	bitbang = devm_kzalloc(dev, sizeof(struct bb_info), GFP_KERNEL);
3064 	if (!bitbang)
3065 		return -ENOMEM;
3066 
3067 	/* bitbang init */
3068 	bitbang->addr = mdp->addr + mdp->reg_offset[PIR];
3069 	bitbang->set_gate = pd->set_mdio_gate;
3070 	bitbang->ctrl.ops = &bb_ops;
3071 
3072 	/* MII controller setting */
3073 	mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
3074 	if (!mdp->mii_bus)
3075 		return -ENOMEM;
3076 
3077 	/* Hook up MII support for ethtool */
3078 	mdp->mii_bus->name = "sh_mii";
3079 	mdp->mii_bus->parent = dev;
3080 	snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
3081 		 pdev->name, pdev->id);
3082 
3083 	/* register MDIO bus */
3084 	if (pd->phy_irq > 0)
3085 		mdp->mii_bus->irq[pd->phy] = pd->phy_irq;
3086 
3087 	ret = of_mdiobus_register(mdp->mii_bus, dev->of_node);
3088 	if (ret)
3089 		goto out_free_bus;
3090 
3091 	return 0;
3092 
3093 out_free_bus:
3094 	free_mdio_bitbang(mdp->mii_bus);
3095 	return ret;
3096 }
3097 
3098 static const u16 *sh_eth_get_register_offset(int register_type)
3099 {
3100 	const u16 *reg_offset = NULL;
3101 
3102 	switch (register_type) {
3103 	case SH_ETH_REG_GIGABIT:
3104 		reg_offset = sh_eth_offset_gigabit;
3105 		break;
3106 	case SH_ETH_REG_FAST_RZ:
3107 		reg_offset = sh_eth_offset_fast_rz;
3108 		break;
3109 	case SH_ETH_REG_FAST_RCAR:
3110 		reg_offset = sh_eth_offset_fast_rcar;
3111 		break;
3112 	case SH_ETH_REG_FAST_SH4:
3113 		reg_offset = sh_eth_offset_fast_sh4;
3114 		break;
3115 	case SH_ETH_REG_FAST_SH3_SH2:
3116 		reg_offset = sh_eth_offset_fast_sh3_sh2;
3117 		break;
3118 	}
3119 
3120 	return reg_offset;
3121 }
3122 
3123 static const struct net_device_ops sh_eth_netdev_ops = {
3124 	.ndo_open		= sh_eth_open,
3125 	.ndo_stop		= sh_eth_close,
3126 	.ndo_start_xmit		= sh_eth_start_xmit,
3127 	.ndo_get_stats		= sh_eth_get_stats,
3128 	.ndo_set_rx_mode	= sh_eth_set_rx_mode,
3129 	.ndo_tx_timeout		= sh_eth_tx_timeout,
3130 	.ndo_do_ioctl		= sh_eth_do_ioctl,
3131 	.ndo_change_mtu		= sh_eth_change_mtu,
3132 	.ndo_validate_addr	= eth_validate_addr,
3133 	.ndo_set_mac_address	= eth_mac_addr,
3134 };
3135 
3136 static const struct net_device_ops sh_eth_netdev_ops_tsu = {
3137 	.ndo_open		= sh_eth_open,
3138 	.ndo_stop		= sh_eth_close,
3139 	.ndo_start_xmit		= sh_eth_start_xmit,
3140 	.ndo_get_stats		= sh_eth_get_stats,
3141 	.ndo_set_rx_mode	= sh_eth_set_rx_mode,
3142 	.ndo_vlan_rx_add_vid	= sh_eth_vlan_rx_add_vid,
3143 	.ndo_vlan_rx_kill_vid	= sh_eth_vlan_rx_kill_vid,
3144 	.ndo_tx_timeout		= sh_eth_tx_timeout,
3145 	.ndo_do_ioctl		= sh_eth_do_ioctl,
3146 	.ndo_change_mtu		= sh_eth_change_mtu,
3147 	.ndo_validate_addr	= eth_validate_addr,
3148 	.ndo_set_mac_address	= eth_mac_addr,
3149 };
3150 
3151 #ifdef CONFIG_OF
3152 static struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
3153 {
3154 	struct device_node *np = dev->of_node;
3155 	struct sh_eth_plat_data *pdata;
3156 	const char *mac_addr;
3157 
3158 	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
3159 	if (!pdata)
3160 		return NULL;
3161 
3162 	pdata->phy_interface = of_get_phy_mode(np);
3163 
3164 	mac_addr = of_get_mac_address(np);
3165 	if (mac_addr)
3166 		memcpy(pdata->mac_addr, mac_addr, ETH_ALEN);
3167 
3168 	pdata->no_ether_link =
3169 		of_property_read_bool(np, "renesas,no-ether-link");
3170 	pdata->ether_link_active_low =
3171 		of_property_read_bool(np, "renesas,ether-link-active-low");
3172 
3173 	return pdata;
3174 }
3175 
3176 static const struct of_device_id sh_eth_match_table[] = {
3177 	{ .compatible = "renesas,gether-r8a7740", .data = &r8a7740_data },
3178 	{ .compatible = "renesas,ether-r8a7743", .data = &rcar_gen2_data },
3179 	{ .compatible = "renesas,ether-r8a7745", .data = &rcar_gen2_data },
3180 	{ .compatible = "renesas,ether-r8a7778", .data = &rcar_gen1_data },
3181 	{ .compatible = "renesas,ether-r8a7779", .data = &rcar_gen1_data },
3182 	{ .compatible = "renesas,ether-r8a7790", .data = &rcar_gen2_data },
3183 	{ .compatible = "renesas,ether-r8a7791", .data = &rcar_gen2_data },
3184 	{ .compatible = "renesas,ether-r8a7793", .data = &rcar_gen2_data },
3185 	{ .compatible = "renesas,ether-r8a7794", .data = &rcar_gen2_data },
3186 	{ .compatible = "renesas,gether-r8a77980", .data = &r8a77980_data },
3187 	{ .compatible = "renesas,ether-r7s72100", .data = &r7s72100_data },
3188 	{ .compatible = "renesas,rcar-gen1-ether", .data = &rcar_gen1_data },
3189 	{ .compatible = "renesas,rcar-gen2-ether", .data = &rcar_gen2_data },
3190 	{ }
3191 };
3192 MODULE_DEVICE_TABLE(of, sh_eth_match_table);
3193 #else
3194 static inline struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
3195 {
3196 	return NULL;
3197 }
3198 #endif
3199 
3200 static int sh_eth_drv_probe(struct platform_device *pdev)
3201 {
3202 	struct resource *res;
3203 	struct sh_eth_plat_data *pd = dev_get_platdata(&pdev->dev);
3204 	const struct platform_device_id *id = platform_get_device_id(pdev);
3205 	struct sh_eth_private *mdp;
3206 	struct net_device *ndev;
3207 	int ret;
3208 
3209 	/* get base addr */
3210 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3211 
3212 	ndev = alloc_etherdev(sizeof(struct sh_eth_private));
3213 	if (!ndev)
3214 		return -ENOMEM;
3215 
3216 	pm_runtime_enable(&pdev->dev);
3217 	pm_runtime_get_sync(&pdev->dev);
3218 
3219 	ret = platform_get_irq(pdev, 0);
3220 	if (ret < 0)
3221 		goto out_release;
3222 	ndev->irq = ret;
3223 
3224 	SET_NETDEV_DEV(ndev, &pdev->dev);
3225 
3226 	mdp = netdev_priv(ndev);
3227 	mdp->num_tx_ring = TX_RING_SIZE;
3228 	mdp->num_rx_ring = RX_RING_SIZE;
3229 	mdp->addr = devm_ioremap_resource(&pdev->dev, res);
3230 	if (IS_ERR(mdp->addr)) {
3231 		ret = PTR_ERR(mdp->addr);
3232 		goto out_release;
3233 	}
3234 
3235 	ndev->base_addr = res->start;
3236 
3237 	spin_lock_init(&mdp->lock);
3238 	mdp->pdev = pdev;
3239 
3240 	if (pdev->dev.of_node)
3241 		pd = sh_eth_parse_dt(&pdev->dev);
3242 	if (!pd) {
3243 		dev_err(&pdev->dev, "no platform data\n");
3244 		ret = -EINVAL;
3245 		goto out_release;
3246 	}
3247 
3248 	/* get PHY ID */
3249 	mdp->phy_id = pd->phy;
3250 	mdp->phy_interface = pd->phy_interface;
3251 	mdp->no_ether_link = pd->no_ether_link;
3252 	mdp->ether_link_active_low = pd->ether_link_active_low;
3253 
3254 	/* set cpu data */
3255 	if (id)
3256 		mdp->cd = (struct sh_eth_cpu_data *)id->driver_data;
3257 	else
3258 		mdp->cd = (struct sh_eth_cpu_data *)of_device_get_match_data(&pdev->dev);
3259 
3260 	mdp->reg_offset = sh_eth_get_register_offset(mdp->cd->register_type);
3261 	if (!mdp->reg_offset) {
3262 		dev_err(&pdev->dev, "Unknown register type (%d)\n",
3263 			mdp->cd->register_type);
3264 		ret = -EINVAL;
3265 		goto out_release;
3266 	}
3267 	sh_eth_set_default_cpu_data(mdp->cd);
3268 
3269 	/* User's manual states max MTU should be 2048 but due to the
3270 	 * alignment calculations in sh_eth_ring_init() the practical
3271 	 * MTU is a bit less. Maybe this can be optimized some more.
3272 	 */
3273 	ndev->max_mtu = 2000 - (ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN);
3274 	ndev->min_mtu = ETH_MIN_MTU;
3275 
3276 	/* set function */
3277 	if (mdp->cd->tsu)
3278 		ndev->netdev_ops = &sh_eth_netdev_ops_tsu;
3279 	else
3280 		ndev->netdev_ops = &sh_eth_netdev_ops;
3281 	ndev->ethtool_ops = &sh_eth_ethtool_ops;
3282 	ndev->watchdog_timeo = TX_TIMEOUT;
3283 
3284 	/* debug message level */
3285 	mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
3286 
3287 	/* read and set MAC address */
3288 	read_mac_address(ndev, pd->mac_addr);
3289 	if (!is_valid_ether_addr(ndev->dev_addr)) {
3290 		dev_warn(&pdev->dev,
3291 			 "no valid MAC address supplied, using a random one.\n");
3292 		eth_hw_addr_random(ndev);
3293 	}
3294 
3295 	if (mdp->cd->tsu) {
3296 		int port = pdev->id < 0 ? 0 : pdev->id % 2;
3297 		struct resource *rtsu;
3298 
3299 		rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
3300 		if (!rtsu) {
3301 			dev_err(&pdev->dev, "no TSU resource\n");
3302 			ret = -ENODEV;
3303 			goto out_release;
3304 		}
3305 		/* We can only request the  TSU region  for the first port
3306 		 * of the two  sharing this TSU for the probe to succeed...
3307 		 */
3308 		if (port == 0 &&
3309 		    !devm_request_mem_region(&pdev->dev, rtsu->start,
3310 					     resource_size(rtsu),
3311 					     dev_name(&pdev->dev))) {
3312 			dev_err(&pdev->dev, "can't request TSU resource.\n");
3313 			ret = -EBUSY;
3314 			goto out_release;
3315 		}
3316 		/* ioremap the TSU registers */
3317 		mdp->tsu_addr = devm_ioremap(&pdev->dev, rtsu->start,
3318 					     resource_size(rtsu));
3319 		if (!mdp->tsu_addr) {
3320 			dev_err(&pdev->dev, "TSU region ioremap() failed.\n");
3321 			ret = -ENOMEM;
3322 			goto out_release;
3323 		}
3324 		mdp->port = port;
3325 		ndev->features = NETIF_F_HW_VLAN_CTAG_FILTER;
3326 
3327 		/* Need to init only the first port of the two sharing a TSU */
3328 		if (port == 0) {
3329 			if (mdp->cd->chip_reset)
3330 				mdp->cd->chip_reset(ndev);
3331 
3332 			/* TSU init (Init only)*/
3333 			sh_eth_tsu_init(mdp);
3334 		}
3335 	}
3336 
3337 	if (mdp->cd->rmiimode)
3338 		sh_eth_write(ndev, 0x1, RMIIMODE);
3339 
3340 	/* MDIO bus init */
3341 	ret = sh_mdio_init(mdp, pd);
3342 	if (ret) {
3343 		if (ret != -EPROBE_DEFER)
3344 			dev_err(&pdev->dev, "MDIO init failed: %d\n", ret);
3345 		goto out_release;
3346 	}
3347 
3348 	netif_napi_add(ndev, &mdp->napi, sh_eth_poll, 64);
3349 
3350 	/* network device register */
3351 	ret = register_netdev(ndev);
3352 	if (ret)
3353 		goto out_napi_del;
3354 
3355 	if (mdp->cd->magic)
3356 		device_set_wakeup_capable(&pdev->dev, 1);
3357 
3358 	/* print device information */
3359 	netdev_info(ndev, "Base address at 0x%x, %pM, IRQ %d.\n",
3360 		    (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
3361 
3362 	pm_runtime_put(&pdev->dev);
3363 	platform_set_drvdata(pdev, ndev);
3364 
3365 	return ret;
3366 
3367 out_napi_del:
3368 	netif_napi_del(&mdp->napi);
3369 	sh_mdio_release(mdp);
3370 
3371 out_release:
3372 	/* net_dev free */
3373 	free_netdev(ndev);
3374 
3375 	pm_runtime_put(&pdev->dev);
3376 	pm_runtime_disable(&pdev->dev);
3377 	return ret;
3378 }
3379 
3380 static int sh_eth_drv_remove(struct platform_device *pdev)
3381 {
3382 	struct net_device *ndev = platform_get_drvdata(pdev);
3383 	struct sh_eth_private *mdp = netdev_priv(ndev);
3384 
3385 	unregister_netdev(ndev);
3386 	netif_napi_del(&mdp->napi);
3387 	sh_mdio_release(mdp);
3388 	pm_runtime_disable(&pdev->dev);
3389 	free_netdev(ndev);
3390 
3391 	return 0;
3392 }
3393 
3394 #ifdef CONFIG_PM
3395 #ifdef CONFIG_PM_SLEEP
3396 static int sh_eth_wol_setup(struct net_device *ndev)
3397 {
3398 	struct sh_eth_private *mdp = netdev_priv(ndev);
3399 
3400 	/* Only allow ECI interrupts */
3401 	synchronize_irq(ndev->irq);
3402 	napi_disable(&mdp->napi);
3403 	sh_eth_write(ndev, EESIPR_ECIIP, EESIPR);
3404 
3405 	/* Enable MagicPacket */
3406 	sh_eth_modify(ndev, ECMR, ECMR_MPDE, ECMR_MPDE);
3407 
3408 	return enable_irq_wake(ndev->irq);
3409 }
3410 
3411 static int sh_eth_wol_restore(struct net_device *ndev)
3412 {
3413 	struct sh_eth_private *mdp = netdev_priv(ndev);
3414 	int ret;
3415 
3416 	napi_enable(&mdp->napi);
3417 
3418 	/* Disable MagicPacket */
3419 	sh_eth_modify(ndev, ECMR, ECMR_MPDE, 0);
3420 
3421 	/* The device needs to be reset to restore MagicPacket logic
3422 	 * for next wakeup. If we close and open the device it will
3423 	 * both be reset and all registers restored. This is what
3424 	 * happens during suspend and resume without WoL enabled.
3425 	 */
3426 	ret = sh_eth_close(ndev);
3427 	if (ret < 0)
3428 		return ret;
3429 	ret = sh_eth_open(ndev);
3430 	if (ret < 0)
3431 		return ret;
3432 
3433 	return disable_irq_wake(ndev->irq);
3434 }
3435 
3436 static int sh_eth_suspend(struct device *dev)
3437 {
3438 	struct net_device *ndev = dev_get_drvdata(dev);
3439 	struct sh_eth_private *mdp = netdev_priv(ndev);
3440 	int ret = 0;
3441 
3442 	if (!netif_running(ndev))
3443 		return 0;
3444 
3445 	netif_device_detach(ndev);
3446 
3447 	if (mdp->wol_enabled)
3448 		ret = sh_eth_wol_setup(ndev);
3449 	else
3450 		ret = sh_eth_close(ndev);
3451 
3452 	return ret;
3453 }
3454 
3455 static int sh_eth_resume(struct device *dev)
3456 {
3457 	struct net_device *ndev = dev_get_drvdata(dev);
3458 	struct sh_eth_private *mdp = netdev_priv(ndev);
3459 	int ret = 0;
3460 
3461 	if (!netif_running(ndev))
3462 		return 0;
3463 
3464 	if (mdp->wol_enabled)
3465 		ret = sh_eth_wol_restore(ndev);
3466 	else
3467 		ret = sh_eth_open(ndev);
3468 
3469 	if (ret < 0)
3470 		return ret;
3471 
3472 	netif_device_attach(ndev);
3473 
3474 	return ret;
3475 }
3476 #endif
3477 
3478 static int sh_eth_runtime_nop(struct device *dev)
3479 {
3480 	/* Runtime PM callback shared between ->runtime_suspend()
3481 	 * and ->runtime_resume(). Simply returns success.
3482 	 *
3483 	 * This driver re-initializes all registers after
3484 	 * pm_runtime_get_sync() anyway so there is no need
3485 	 * to save and restore registers here.
3486 	 */
3487 	return 0;
3488 }
3489 
3490 static const struct dev_pm_ops sh_eth_dev_pm_ops = {
3491 	SET_SYSTEM_SLEEP_PM_OPS(sh_eth_suspend, sh_eth_resume)
3492 	SET_RUNTIME_PM_OPS(sh_eth_runtime_nop, sh_eth_runtime_nop, NULL)
3493 };
3494 #define SH_ETH_PM_OPS (&sh_eth_dev_pm_ops)
3495 #else
3496 #define SH_ETH_PM_OPS NULL
3497 #endif
3498 
3499 static const struct platform_device_id sh_eth_id_table[] = {
3500 	{ "sh7619-ether", (kernel_ulong_t)&sh7619_data },
3501 	{ "sh771x-ether", (kernel_ulong_t)&sh771x_data },
3502 	{ "sh7724-ether", (kernel_ulong_t)&sh7724_data },
3503 	{ "sh7734-gether", (kernel_ulong_t)&sh7734_data },
3504 	{ "sh7757-ether", (kernel_ulong_t)&sh7757_data },
3505 	{ "sh7757-gether", (kernel_ulong_t)&sh7757_data_giga },
3506 	{ "sh7763-gether", (kernel_ulong_t)&sh7763_data },
3507 	{ }
3508 };
3509 MODULE_DEVICE_TABLE(platform, sh_eth_id_table);
3510 
3511 static struct platform_driver sh_eth_driver = {
3512 	.probe = sh_eth_drv_probe,
3513 	.remove = sh_eth_drv_remove,
3514 	.id_table = sh_eth_id_table,
3515 	.driver = {
3516 		   .name = CARDNAME,
3517 		   .pm = SH_ETH_PM_OPS,
3518 		   .of_match_table = of_match_ptr(sh_eth_match_table),
3519 	},
3520 };
3521 
3522 module_platform_driver(sh_eth_driver);
3523 
3524 MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
3525 MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
3526 MODULE_LICENSE("GPL v2");
3527