xref: /linux/drivers/net/ethernet/realtek/8139cp.c (revision e58e871becec2d3b04ed91c0c16fe8deac9c9dfa)
1 /* 8139cp.c: A Linux PCI Ethernet driver for the RealTek 8139C+ chips. */
2 /*
3 	Copyright 2001-2004 Jeff Garzik <jgarzik@pobox.com>
4 
5 	Copyright (C) 2001, 2002 David S. Miller (davem@redhat.com) [tg3.c]
6 	Copyright (C) 2000, 2001 David S. Miller (davem@redhat.com) [sungem.c]
7 	Copyright 2001 Manfred Spraul				    [natsemi.c]
8 	Copyright 1999-2001 by Donald Becker.			    [natsemi.c]
9        	Written 1997-2001 by Donald Becker.			    [8139too.c]
10 	Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. [acenic.c]
11 
12 	This software may be used and distributed according to the terms of
13 	the GNU General Public License (GPL), incorporated herein by reference.
14 	Drivers based on or derived from this code fall under the GPL and must
15 	retain the authorship, copyright and license notice.  This file is not
16 	a complete program and may only be used when the entire operating
17 	system is licensed under the GPL.
18 
19 	See the file COPYING in this distribution for more information.
20 
21 	Contributors:
22 
23 		Wake-on-LAN support - Felipe Damasio <felipewd@terra.com.br>
24 		PCI suspend/resume  - Felipe Damasio <felipewd@terra.com.br>
25 		LinkChg interrupt   - Felipe Damasio <felipewd@terra.com.br>
26 
27 	TODO:
28 	* Test Tx checksumming thoroughly
29 
30 	Low priority TODO:
31 	* Complete reset on PciErr
32 	* Consider Rx interrupt mitigation using TimerIntr
33 	* Investigate using skb->priority with h/w VLAN priority
34 	* Investigate using High Priority Tx Queue with skb->priority
35 	* Adjust Rx FIFO threshold and Max Rx DMA burst on Rx FIFO error
36 	* Adjust Tx FIFO threshold and Max Tx DMA burst on Tx FIFO error
37 	* Implement Tx software interrupt mitigation via
38 	  Tx descriptor bit
39 	* The real minimum of CP_MIN_MTU is 4 bytes.  However,
40 	  for this to be supported, one must(?) turn on packet padding.
41 	* Support external MII transceivers (patch available)
42 
43 	NOTES:
44 	* TX checksumming is considered experimental.  It is off by
45 	  default, use ethtool to turn it on.
46 
47  */
48 
49 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
50 
51 #define DRV_NAME		"8139cp"
52 #define DRV_VERSION		"1.3"
53 #define DRV_RELDATE		"Mar 22, 2004"
54 
55 
56 #include <linux/module.h>
57 #include <linux/moduleparam.h>
58 #include <linux/kernel.h>
59 #include <linux/compiler.h>
60 #include <linux/netdevice.h>
61 #include <linux/etherdevice.h>
62 #include <linux/init.h>
63 #include <linux/interrupt.h>
64 #include <linux/pci.h>
65 #include <linux/dma-mapping.h>
66 #include <linux/delay.h>
67 #include <linux/ethtool.h>
68 #include <linux/gfp.h>
69 #include <linux/mii.h>
70 #include <linux/if_vlan.h>
71 #include <linux/crc32.h>
72 #include <linux/in.h>
73 #include <linux/ip.h>
74 #include <linux/tcp.h>
75 #include <linux/udp.h>
76 #include <linux/cache.h>
77 #include <asm/io.h>
78 #include <asm/irq.h>
79 #include <linux/uaccess.h>
80 
81 /* These identify the driver base version and may not be removed. */
82 static char version[] =
83 DRV_NAME ": 10/100 PCI Ethernet driver v" DRV_VERSION " (" DRV_RELDATE ")\n";
84 
85 MODULE_AUTHOR("Jeff Garzik <jgarzik@pobox.com>");
86 MODULE_DESCRIPTION("RealTek RTL-8139C+ series 10/100 PCI Ethernet driver");
87 MODULE_VERSION(DRV_VERSION);
88 MODULE_LICENSE("GPL");
89 
90 static int debug = -1;
91 module_param(debug, int, 0);
92 MODULE_PARM_DESC (debug, "8139cp: bitmapped message enable number");
93 
94 /* Maximum number of multicast addresses to filter (vs. Rx-all-multicast).
95    The RTL chips use a 64 element hash table based on the Ethernet CRC.  */
96 static int multicast_filter_limit = 32;
97 module_param(multicast_filter_limit, int, 0);
98 MODULE_PARM_DESC (multicast_filter_limit, "8139cp: maximum number of filtered multicast addresses");
99 
100 #define CP_DEF_MSG_ENABLE	(NETIF_MSG_DRV		| \
101 				 NETIF_MSG_PROBE 	| \
102 				 NETIF_MSG_LINK)
103 #define CP_NUM_STATS		14	/* struct cp_dma_stats, plus one */
104 #define CP_STATS_SIZE		64	/* size in bytes of DMA stats block */
105 #define CP_REGS_SIZE		(0xff + 1)
106 #define CP_REGS_VER		1		/* version 1 */
107 #define CP_RX_RING_SIZE		64
108 #define CP_TX_RING_SIZE		64
109 #define CP_RING_BYTES		\
110 		((sizeof(struct cp_desc) * CP_RX_RING_SIZE) +	\
111 		 (sizeof(struct cp_desc) * CP_TX_RING_SIZE) +	\
112 		 CP_STATS_SIZE)
113 #define NEXT_TX(N)		(((N) + 1) & (CP_TX_RING_SIZE - 1))
114 #define NEXT_RX(N)		(((N) + 1) & (CP_RX_RING_SIZE - 1))
115 #define TX_BUFFS_AVAIL(CP)					\
116 	(((CP)->tx_tail <= (CP)->tx_head) ?			\
117 	  (CP)->tx_tail + (CP_TX_RING_SIZE - 1) - (CP)->tx_head :	\
118 	  (CP)->tx_tail - (CP)->tx_head - 1)
119 
120 #define PKT_BUF_SZ		1536	/* Size of each temporary Rx buffer.*/
121 #define CP_INTERNAL_PHY		32
122 
123 /* The following settings are log_2(bytes)-4:  0 == 16 bytes .. 6==1024, 7==end of packet. */
124 #define RX_FIFO_THRESH		5	/* Rx buffer level before first PCI xfer.  */
125 #define RX_DMA_BURST		4	/* Maximum PCI burst, '4' is 256 */
126 #define TX_DMA_BURST		6	/* Maximum PCI burst, '6' is 1024 */
127 #define TX_EARLY_THRESH		256	/* Early Tx threshold, in bytes */
128 
129 /* Time in jiffies before concluding the transmitter is hung. */
130 #define TX_TIMEOUT		(6*HZ)
131 
132 /* hardware minimum and maximum for a single frame's data payload */
133 #define CP_MIN_MTU		60	/* TODO: allow lower, but pad */
134 #define CP_MAX_MTU		4096
135 
136 enum {
137 	/* NIC register offsets */
138 	MAC0		= 0x00,	/* Ethernet hardware address. */
139 	MAR0		= 0x08,	/* Multicast filter. */
140 	StatsAddr	= 0x10,	/* 64-bit start addr of 64-byte DMA stats blk */
141 	TxRingAddr	= 0x20, /* 64-bit start addr of Tx ring */
142 	HiTxRingAddr	= 0x28, /* 64-bit start addr of high priority Tx ring */
143 	Cmd		= 0x37, /* Command register */
144 	IntrMask	= 0x3C, /* Interrupt mask */
145 	IntrStatus	= 0x3E, /* Interrupt status */
146 	TxConfig	= 0x40, /* Tx configuration */
147 	ChipVersion	= 0x43, /* 8-bit chip version, inside TxConfig */
148 	RxConfig	= 0x44, /* Rx configuration */
149 	RxMissed	= 0x4C,	/* 24 bits valid, write clears */
150 	Cfg9346		= 0x50, /* EEPROM select/control; Cfg reg [un]lock */
151 	Config1		= 0x52, /* Config1 */
152 	Config3		= 0x59, /* Config3 */
153 	Config4		= 0x5A, /* Config4 */
154 	MultiIntr	= 0x5C, /* Multiple interrupt select */
155 	BasicModeCtrl	= 0x62,	/* MII BMCR */
156 	BasicModeStatus	= 0x64, /* MII BMSR */
157 	NWayAdvert	= 0x66, /* MII ADVERTISE */
158 	NWayLPAR	= 0x68, /* MII LPA */
159 	NWayExpansion	= 0x6A, /* MII Expansion */
160 	TxDmaOkLowDesc  = 0x82, /* Low 16 bit address of a Tx descriptor. */
161 	Config5		= 0xD8,	/* Config5 */
162 	TxPoll		= 0xD9,	/* Tell chip to check Tx descriptors for work */
163 	RxMaxSize	= 0xDA, /* Max size of an Rx packet (8169 only) */
164 	CpCmd		= 0xE0, /* C+ Command register (C+ mode only) */
165 	IntrMitigate	= 0xE2,	/* rx/tx interrupt mitigation control */
166 	RxRingAddr	= 0xE4, /* 64-bit start addr of Rx ring */
167 	TxThresh	= 0xEC, /* Early Tx threshold */
168 	OldRxBufAddr	= 0x30, /* DMA address of Rx ring buffer (C mode) */
169 	OldTSD0		= 0x10, /* DMA address of first Tx desc (C mode) */
170 
171 	/* Tx and Rx status descriptors */
172 	DescOwn		= (1 << 31), /* Descriptor is owned by NIC */
173 	RingEnd		= (1 << 30), /* End of descriptor ring */
174 	FirstFrag	= (1 << 29), /* First segment of a packet */
175 	LastFrag	= (1 << 28), /* Final segment of a packet */
176 	LargeSend	= (1 << 27), /* TCP Large Send Offload (TSO) */
177 	MSSShift	= 16,	     /* MSS value position */
178 	MSSMask		= 0x7ff,     /* MSS value: 11 bits */
179 	TxError		= (1 << 23), /* Tx error summary */
180 	RxError		= (1 << 20), /* Rx error summary */
181 	IPCS		= (1 << 18), /* Calculate IP checksum */
182 	UDPCS		= (1 << 17), /* Calculate UDP/IP checksum */
183 	TCPCS		= (1 << 16), /* Calculate TCP/IP checksum */
184 	TxVlanTag	= (1 << 17), /* Add VLAN tag */
185 	RxVlanTagged	= (1 << 16), /* Rx VLAN tag available */
186 	IPFail		= (1 << 15), /* IP checksum failed */
187 	UDPFail		= (1 << 14), /* UDP/IP checksum failed */
188 	TCPFail		= (1 << 13), /* TCP/IP checksum failed */
189 	NormalTxPoll	= (1 << 6),  /* One or more normal Tx packets to send */
190 	PID1		= (1 << 17), /* 2 protocol id bits:  0==non-IP, */
191 	PID0		= (1 << 16), /* 1==UDP/IP, 2==TCP/IP, 3==IP */
192 	RxProtoTCP	= 1,
193 	RxProtoUDP	= 2,
194 	RxProtoIP	= 3,
195 	TxFIFOUnder	= (1 << 25), /* Tx FIFO underrun */
196 	TxOWC		= (1 << 22), /* Tx Out-of-window collision */
197 	TxLinkFail	= (1 << 21), /* Link failed during Tx of packet */
198 	TxMaxCol	= (1 << 20), /* Tx aborted due to excessive collisions */
199 	TxColCntShift	= 16,	     /* Shift, to get 4-bit Tx collision cnt */
200 	TxColCntMask	= 0x01 | 0x02 | 0x04 | 0x08, /* 4-bit collision count */
201 	RxErrFrame	= (1 << 27), /* Rx frame alignment error */
202 	RxMcast		= (1 << 26), /* Rx multicast packet rcv'd */
203 	RxErrCRC	= (1 << 18), /* Rx CRC error */
204 	RxErrRunt	= (1 << 19), /* Rx error, packet < 64 bytes */
205 	RxErrLong	= (1 << 21), /* Rx error, packet > 4096 bytes */
206 	RxErrFIFO	= (1 << 22), /* Rx error, FIFO overflowed, pkt bad */
207 
208 	/* StatsAddr register */
209 	DumpStats	= (1 << 3),  /* Begin stats dump */
210 
211 	/* RxConfig register */
212 	RxCfgFIFOShift	= 13,	     /* Shift, to get Rx FIFO thresh value */
213 	RxCfgDMAShift	= 8,	     /* Shift, to get Rx Max DMA value */
214 	AcceptErr	= 0x20,	     /* Accept packets with CRC errors */
215 	AcceptRunt	= 0x10,	     /* Accept runt (<64 bytes) packets */
216 	AcceptBroadcast	= 0x08,	     /* Accept broadcast packets */
217 	AcceptMulticast	= 0x04,	     /* Accept multicast packets */
218 	AcceptMyPhys	= 0x02,	     /* Accept pkts with our MAC as dest */
219 	AcceptAllPhys	= 0x01,	     /* Accept all pkts w/ physical dest */
220 
221 	/* IntrMask / IntrStatus registers */
222 	PciErr		= (1 << 15), /* System error on the PCI bus */
223 	TimerIntr	= (1 << 14), /* Asserted when TCTR reaches TimerInt value */
224 	LenChg		= (1 << 13), /* Cable length change */
225 	SWInt		= (1 << 8),  /* Software-requested interrupt */
226 	TxEmpty		= (1 << 7),  /* No Tx descriptors available */
227 	RxFIFOOvr	= (1 << 6),  /* Rx FIFO Overflow */
228 	LinkChg		= (1 << 5),  /* Packet underrun, or link change */
229 	RxEmpty		= (1 << 4),  /* No Rx descriptors available */
230 	TxErr		= (1 << 3),  /* Tx error */
231 	TxOK		= (1 << 2),  /* Tx packet sent */
232 	RxErr		= (1 << 1),  /* Rx error */
233 	RxOK		= (1 << 0),  /* Rx packet received */
234 	IntrResvd	= (1 << 10), /* reserved, according to RealTek engineers,
235 					but hardware likes to raise it */
236 
237 	IntrAll		= PciErr | TimerIntr | LenChg | SWInt | TxEmpty |
238 			  RxFIFOOvr | LinkChg | RxEmpty | TxErr | TxOK |
239 			  RxErr | RxOK | IntrResvd,
240 
241 	/* C mode command register */
242 	CmdReset	= (1 << 4),  /* Enable to reset; self-clearing */
243 	RxOn		= (1 << 3),  /* Rx mode enable */
244 	TxOn		= (1 << 2),  /* Tx mode enable */
245 
246 	/* C+ mode command register */
247 	RxVlanOn	= (1 << 6),  /* Rx VLAN de-tagging enable */
248 	RxChkSum	= (1 << 5),  /* Rx checksum offload enable */
249 	PCIDAC		= (1 << 4),  /* PCI Dual Address Cycle (64-bit PCI) */
250 	PCIMulRW	= (1 << 3),  /* Enable PCI read/write multiple */
251 	CpRxOn		= (1 << 1),  /* Rx mode enable */
252 	CpTxOn		= (1 << 0),  /* Tx mode enable */
253 
254 	/* Cfg9436 EEPROM control register */
255 	Cfg9346_Lock	= 0x00,	     /* Lock ConfigX/MII register access */
256 	Cfg9346_Unlock	= 0xC0,	     /* Unlock ConfigX/MII register access */
257 
258 	/* TxConfig register */
259 	IFG		= (1 << 25) | (1 << 24), /* standard IEEE interframe gap */
260 	TxDMAShift	= 8,	     /* DMA burst value (0-7) is shift this many bits */
261 
262 	/* Early Tx Threshold register */
263 	TxThreshMask	= 0x3f,	     /* Mask bits 5-0 */
264 	TxThreshMax	= 2048,	     /* Max early Tx threshold */
265 
266 	/* Config1 register */
267 	DriverLoaded	= (1 << 5),  /* Software marker, driver is loaded */
268 	LWACT           = (1 << 4),  /* LWAKE active mode */
269 	PMEnable	= (1 << 0),  /* Enable various PM features of chip */
270 
271 	/* Config3 register */
272 	PARMEnable	= (1 << 6),  /* Enable auto-loading of PHY parms */
273 	MagicPacket     = (1 << 5),  /* Wake up when receives a Magic Packet */
274 	LinkUp          = (1 << 4),  /* Wake up when the cable connection is re-established */
275 
276 	/* Config4 register */
277 	LWPTN           = (1 << 1),  /* LWAKE Pattern */
278 	LWPME           = (1 << 4),  /* LANWAKE vs PMEB */
279 
280 	/* Config5 register */
281 	BWF             = (1 << 6),  /* Accept Broadcast wakeup frame */
282 	MWF             = (1 << 5),  /* Accept Multicast wakeup frame */
283 	UWF             = (1 << 4),  /* Accept Unicast wakeup frame */
284 	LANWake         = (1 << 1),  /* Enable LANWake signal */
285 	PMEStatus	= (1 << 0),  /* PME status can be reset by PCI RST# */
286 
287 	cp_norx_intr_mask = PciErr | LinkChg | TxOK | TxErr | TxEmpty,
288 	cp_rx_intr_mask = RxOK | RxErr | RxEmpty | RxFIFOOvr,
289 	cp_intr_mask = cp_rx_intr_mask | cp_norx_intr_mask,
290 };
291 
292 static const unsigned int cp_rx_config =
293 	  (RX_FIFO_THRESH << RxCfgFIFOShift) |
294 	  (RX_DMA_BURST << RxCfgDMAShift);
295 
296 struct cp_desc {
297 	__le32		opts1;
298 	__le32		opts2;
299 	__le64		addr;
300 };
301 
302 struct cp_dma_stats {
303 	__le64			tx_ok;
304 	__le64			rx_ok;
305 	__le64			tx_err;
306 	__le32			rx_err;
307 	__le16			rx_fifo;
308 	__le16			frame_align;
309 	__le32			tx_ok_1col;
310 	__le32			tx_ok_mcol;
311 	__le64			rx_ok_phys;
312 	__le64			rx_ok_bcast;
313 	__le32			rx_ok_mcast;
314 	__le16			tx_abort;
315 	__le16			tx_underrun;
316 } __packed;
317 
318 struct cp_extra_stats {
319 	unsigned long		rx_frags;
320 };
321 
322 struct cp_private {
323 	void			__iomem *regs;
324 	struct net_device	*dev;
325 	spinlock_t		lock;
326 	u32			msg_enable;
327 
328 	struct napi_struct	napi;
329 
330 	struct pci_dev		*pdev;
331 	u32			rx_config;
332 	u16			cpcmd;
333 
334 	struct cp_extra_stats	cp_stats;
335 
336 	unsigned		rx_head		____cacheline_aligned;
337 	unsigned		rx_tail;
338 	struct cp_desc		*rx_ring;
339 	struct sk_buff		*rx_skb[CP_RX_RING_SIZE];
340 
341 	unsigned		tx_head		____cacheline_aligned;
342 	unsigned		tx_tail;
343 	struct cp_desc		*tx_ring;
344 	struct sk_buff		*tx_skb[CP_TX_RING_SIZE];
345 	u32			tx_opts[CP_TX_RING_SIZE];
346 
347 	unsigned		rx_buf_sz;
348 	unsigned		wol_enabled : 1; /* Is Wake-on-LAN enabled? */
349 
350 	dma_addr_t		ring_dma;
351 
352 	struct mii_if_info	mii_if;
353 };
354 
355 #define cpr8(reg)	readb(cp->regs + (reg))
356 #define cpr16(reg)	readw(cp->regs + (reg))
357 #define cpr32(reg)	readl(cp->regs + (reg))
358 #define cpw8(reg,val)	writeb((val), cp->regs + (reg))
359 #define cpw16(reg,val)	writew((val), cp->regs + (reg))
360 #define cpw32(reg,val)	writel((val), cp->regs + (reg))
361 #define cpw8_f(reg,val) do {			\
362 	writeb((val), cp->regs + (reg));	\
363 	readb(cp->regs + (reg));		\
364 	} while (0)
365 #define cpw16_f(reg,val) do {			\
366 	writew((val), cp->regs + (reg));	\
367 	readw(cp->regs + (reg));		\
368 	} while (0)
369 #define cpw32_f(reg,val) do {			\
370 	writel((val), cp->regs + (reg));	\
371 	readl(cp->regs + (reg));		\
372 	} while (0)
373 
374 
375 static void __cp_set_rx_mode (struct net_device *dev);
376 static void cp_tx (struct cp_private *cp);
377 static void cp_clean_rings (struct cp_private *cp);
378 #ifdef CONFIG_NET_POLL_CONTROLLER
379 static void cp_poll_controller(struct net_device *dev);
380 #endif
381 static int cp_get_eeprom_len(struct net_device *dev);
382 static int cp_get_eeprom(struct net_device *dev,
383 			 struct ethtool_eeprom *eeprom, u8 *data);
384 static int cp_set_eeprom(struct net_device *dev,
385 			 struct ethtool_eeprom *eeprom, u8 *data);
386 
387 static struct {
388 	const char str[ETH_GSTRING_LEN];
389 } ethtool_stats_keys[] = {
390 	{ "tx_ok" },
391 	{ "rx_ok" },
392 	{ "tx_err" },
393 	{ "rx_err" },
394 	{ "rx_fifo" },
395 	{ "frame_align" },
396 	{ "tx_ok_1col" },
397 	{ "tx_ok_mcol" },
398 	{ "rx_ok_phys" },
399 	{ "rx_ok_bcast" },
400 	{ "rx_ok_mcast" },
401 	{ "tx_abort" },
402 	{ "tx_underrun" },
403 	{ "rx_frags" },
404 };
405 
406 
407 static inline void cp_set_rxbufsize (struct cp_private *cp)
408 {
409 	unsigned int mtu = cp->dev->mtu;
410 
411 	if (mtu > ETH_DATA_LEN)
412 		/* MTU + ethernet header + FCS + optional VLAN tag */
413 		cp->rx_buf_sz = mtu + ETH_HLEN + 8;
414 	else
415 		cp->rx_buf_sz = PKT_BUF_SZ;
416 }
417 
418 static inline void cp_rx_skb (struct cp_private *cp, struct sk_buff *skb,
419 			      struct cp_desc *desc)
420 {
421 	u32 opts2 = le32_to_cpu(desc->opts2);
422 
423 	skb->protocol = eth_type_trans (skb, cp->dev);
424 
425 	cp->dev->stats.rx_packets++;
426 	cp->dev->stats.rx_bytes += skb->len;
427 
428 	if (opts2 & RxVlanTagged)
429 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), swab16(opts2 & 0xffff));
430 
431 	napi_gro_receive(&cp->napi, skb);
432 }
433 
434 static void cp_rx_err_acct (struct cp_private *cp, unsigned rx_tail,
435 			    u32 status, u32 len)
436 {
437 	netif_dbg(cp, rx_err, cp->dev, "rx err, slot %d status 0x%x len %d\n",
438 		  rx_tail, status, len);
439 	cp->dev->stats.rx_errors++;
440 	if (status & RxErrFrame)
441 		cp->dev->stats.rx_frame_errors++;
442 	if (status & RxErrCRC)
443 		cp->dev->stats.rx_crc_errors++;
444 	if ((status & RxErrRunt) || (status & RxErrLong))
445 		cp->dev->stats.rx_length_errors++;
446 	if ((status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag))
447 		cp->dev->stats.rx_length_errors++;
448 	if (status & RxErrFIFO)
449 		cp->dev->stats.rx_fifo_errors++;
450 }
451 
452 static inline unsigned int cp_rx_csum_ok (u32 status)
453 {
454 	unsigned int protocol = (status >> 16) & 0x3;
455 
456 	if (((protocol == RxProtoTCP) && !(status & TCPFail)) ||
457 	    ((protocol == RxProtoUDP) && !(status & UDPFail)))
458 		return 1;
459 	else
460 		return 0;
461 }
462 
463 static int cp_rx_poll(struct napi_struct *napi, int budget)
464 {
465 	struct cp_private *cp = container_of(napi, struct cp_private, napi);
466 	struct net_device *dev = cp->dev;
467 	unsigned int rx_tail = cp->rx_tail;
468 	int rx = 0;
469 
470 	cpw16(IntrStatus, cp_rx_intr_mask);
471 
472 	while (rx < budget) {
473 		u32 status, len;
474 		dma_addr_t mapping, new_mapping;
475 		struct sk_buff *skb, *new_skb;
476 		struct cp_desc *desc;
477 		const unsigned buflen = cp->rx_buf_sz;
478 
479 		skb = cp->rx_skb[rx_tail];
480 		BUG_ON(!skb);
481 
482 		desc = &cp->rx_ring[rx_tail];
483 		status = le32_to_cpu(desc->opts1);
484 		if (status & DescOwn)
485 			break;
486 
487 		len = (status & 0x1fff) - 4;
488 		mapping = le64_to_cpu(desc->addr);
489 
490 		if ((status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag)) {
491 			/* we don't support incoming fragmented frames.
492 			 * instead, we attempt to ensure that the
493 			 * pre-allocated RX skbs are properly sized such
494 			 * that RX fragments are never encountered
495 			 */
496 			cp_rx_err_acct(cp, rx_tail, status, len);
497 			dev->stats.rx_dropped++;
498 			cp->cp_stats.rx_frags++;
499 			goto rx_next;
500 		}
501 
502 		if (status & (RxError | RxErrFIFO)) {
503 			cp_rx_err_acct(cp, rx_tail, status, len);
504 			goto rx_next;
505 		}
506 
507 		netif_dbg(cp, rx_status, dev, "rx slot %d status 0x%x len %d\n",
508 			  rx_tail, status, len);
509 
510 		new_skb = napi_alloc_skb(napi, buflen);
511 		if (!new_skb) {
512 			dev->stats.rx_dropped++;
513 			goto rx_next;
514 		}
515 
516 		new_mapping = dma_map_single(&cp->pdev->dev, new_skb->data, buflen,
517 					 PCI_DMA_FROMDEVICE);
518 		if (dma_mapping_error(&cp->pdev->dev, new_mapping)) {
519 			dev->stats.rx_dropped++;
520 			kfree_skb(new_skb);
521 			goto rx_next;
522 		}
523 
524 		dma_unmap_single(&cp->pdev->dev, mapping,
525 				 buflen, PCI_DMA_FROMDEVICE);
526 
527 		/* Handle checksum offloading for incoming packets. */
528 		if (cp_rx_csum_ok(status))
529 			skb->ip_summed = CHECKSUM_UNNECESSARY;
530 		else
531 			skb_checksum_none_assert(skb);
532 
533 		skb_put(skb, len);
534 
535 		cp->rx_skb[rx_tail] = new_skb;
536 
537 		cp_rx_skb(cp, skb, desc);
538 		rx++;
539 		mapping = new_mapping;
540 
541 rx_next:
542 		cp->rx_ring[rx_tail].opts2 = 0;
543 		cp->rx_ring[rx_tail].addr = cpu_to_le64(mapping);
544 		if (rx_tail == (CP_RX_RING_SIZE - 1))
545 			desc->opts1 = cpu_to_le32(DescOwn | RingEnd |
546 						  cp->rx_buf_sz);
547 		else
548 			desc->opts1 = cpu_to_le32(DescOwn | cp->rx_buf_sz);
549 		rx_tail = NEXT_RX(rx_tail);
550 	}
551 
552 	cp->rx_tail = rx_tail;
553 
554 	/* if we did not reach work limit, then we're done with
555 	 * this round of polling
556 	 */
557 	if (rx < budget && napi_complete_done(napi, rx)) {
558 		unsigned long flags;
559 
560 		spin_lock_irqsave(&cp->lock, flags);
561 		cpw16_f(IntrMask, cp_intr_mask);
562 		spin_unlock_irqrestore(&cp->lock, flags);
563 	}
564 
565 	return rx;
566 }
567 
568 static irqreturn_t cp_interrupt (int irq, void *dev_instance)
569 {
570 	struct net_device *dev = dev_instance;
571 	struct cp_private *cp;
572 	int handled = 0;
573 	u16 status;
574 
575 	if (unlikely(dev == NULL))
576 		return IRQ_NONE;
577 	cp = netdev_priv(dev);
578 
579 	spin_lock(&cp->lock);
580 
581 	status = cpr16(IntrStatus);
582 	if (!status || (status == 0xFFFF))
583 		goto out_unlock;
584 
585 	handled = 1;
586 
587 	netif_dbg(cp, intr, dev, "intr, status %04x cmd %02x cpcmd %04x\n",
588 		  status, cpr8(Cmd), cpr16(CpCmd));
589 
590 	cpw16(IntrStatus, status & ~cp_rx_intr_mask);
591 
592 	/* close possible race's with dev_close */
593 	if (unlikely(!netif_running(dev))) {
594 		cpw16(IntrMask, 0);
595 		goto out_unlock;
596 	}
597 
598 	if (status & (RxOK | RxErr | RxEmpty | RxFIFOOvr))
599 		if (napi_schedule_prep(&cp->napi)) {
600 			cpw16_f(IntrMask, cp_norx_intr_mask);
601 			__napi_schedule(&cp->napi);
602 		}
603 
604 	if (status & (TxOK | TxErr | TxEmpty | SWInt))
605 		cp_tx(cp);
606 	if (status & LinkChg)
607 		mii_check_media(&cp->mii_if, netif_msg_link(cp), false);
608 
609 
610 	if (status & PciErr) {
611 		u16 pci_status;
612 
613 		pci_read_config_word(cp->pdev, PCI_STATUS, &pci_status);
614 		pci_write_config_word(cp->pdev, PCI_STATUS, pci_status);
615 		netdev_err(dev, "PCI bus error, status=%04x, PCI status=%04x\n",
616 			   status, pci_status);
617 
618 		/* TODO: reset hardware */
619 	}
620 
621 out_unlock:
622 	spin_unlock(&cp->lock);
623 
624 	return IRQ_RETVAL(handled);
625 }
626 
627 #ifdef CONFIG_NET_POLL_CONTROLLER
628 /*
629  * Polling receive - used by netconsole and other diagnostic tools
630  * to allow network i/o with interrupts disabled.
631  */
632 static void cp_poll_controller(struct net_device *dev)
633 {
634 	struct cp_private *cp = netdev_priv(dev);
635 	const int irq = cp->pdev->irq;
636 
637 	disable_irq(irq);
638 	cp_interrupt(irq, dev);
639 	enable_irq(irq);
640 }
641 #endif
642 
643 static void cp_tx (struct cp_private *cp)
644 {
645 	unsigned tx_head = cp->tx_head;
646 	unsigned tx_tail = cp->tx_tail;
647 	unsigned bytes_compl = 0, pkts_compl = 0;
648 
649 	while (tx_tail != tx_head) {
650 		struct cp_desc *txd = cp->tx_ring + tx_tail;
651 		struct sk_buff *skb;
652 		u32 status;
653 
654 		rmb();
655 		status = le32_to_cpu(txd->opts1);
656 		if (status & DescOwn)
657 			break;
658 
659 		skb = cp->tx_skb[tx_tail];
660 		BUG_ON(!skb);
661 
662 		dma_unmap_single(&cp->pdev->dev, le64_to_cpu(txd->addr),
663 				 cp->tx_opts[tx_tail] & 0xffff,
664 				 PCI_DMA_TODEVICE);
665 
666 		if (status & LastFrag) {
667 			if (status & (TxError | TxFIFOUnder)) {
668 				netif_dbg(cp, tx_err, cp->dev,
669 					  "tx err, status 0x%x\n", status);
670 				cp->dev->stats.tx_errors++;
671 				if (status & TxOWC)
672 					cp->dev->stats.tx_window_errors++;
673 				if (status & TxMaxCol)
674 					cp->dev->stats.tx_aborted_errors++;
675 				if (status & TxLinkFail)
676 					cp->dev->stats.tx_carrier_errors++;
677 				if (status & TxFIFOUnder)
678 					cp->dev->stats.tx_fifo_errors++;
679 			} else {
680 				cp->dev->stats.collisions +=
681 					((status >> TxColCntShift) & TxColCntMask);
682 				cp->dev->stats.tx_packets++;
683 				cp->dev->stats.tx_bytes += skb->len;
684 				netif_dbg(cp, tx_done, cp->dev,
685 					  "tx done, slot %d\n", tx_tail);
686 			}
687 			bytes_compl += skb->len;
688 			pkts_compl++;
689 			dev_kfree_skb_irq(skb);
690 		}
691 
692 		cp->tx_skb[tx_tail] = NULL;
693 
694 		tx_tail = NEXT_TX(tx_tail);
695 	}
696 
697 	cp->tx_tail = tx_tail;
698 
699 	netdev_completed_queue(cp->dev, pkts_compl, bytes_compl);
700 	if (TX_BUFFS_AVAIL(cp) > (MAX_SKB_FRAGS + 1))
701 		netif_wake_queue(cp->dev);
702 }
703 
704 static inline u32 cp_tx_vlan_tag(struct sk_buff *skb)
705 {
706 	return skb_vlan_tag_present(skb) ?
707 		TxVlanTag | swab16(skb_vlan_tag_get(skb)) : 0x00;
708 }
709 
710 static void unwind_tx_frag_mapping(struct cp_private *cp, struct sk_buff *skb,
711 				   int first, int entry_last)
712 {
713 	int frag, index;
714 	struct cp_desc *txd;
715 	skb_frag_t *this_frag;
716 	for (frag = 0; frag+first < entry_last; frag++) {
717 		index = first+frag;
718 		cp->tx_skb[index] = NULL;
719 		txd = &cp->tx_ring[index];
720 		this_frag = &skb_shinfo(skb)->frags[frag];
721 		dma_unmap_single(&cp->pdev->dev, le64_to_cpu(txd->addr),
722 				 skb_frag_size(this_frag), PCI_DMA_TODEVICE);
723 	}
724 }
725 
726 static netdev_tx_t cp_start_xmit (struct sk_buff *skb,
727 					struct net_device *dev)
728 {
729 	struct cp_private *cp = netdev_priv(dev);
730 	unsigned entry;
731 	u32 eor, opts1;
732 	unsigned long intr_flags;
733 	__le32 opts2;
734 	int mss = 0;
735 
736 	spin_lock_irqsave(&cp->lock, intr_flags);
737 
738 	/* This is a hard error, log it. */
739 	if (TX_BUFFS_AVAIL(cp) <= (skb_shinfo(skb)->nr_frags + 1)) {
740 		netif_stop_queue(dev);
741 		spin_unlock_irqrestore(&cp->lock, intr_flags);
742 		netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
743 		return NETDEV_TX_BUSY;
744 	}
745 
746 	entry = cp->tx_head;
747 	eor = (entry == (CP_TX_RING_SIZE - 1)) ? RingEnd : 0;
748 	mss = skb_shinfo(skb)->gso_size;
749 
750 	if (mss > MSSMask) {
751 		WARN_ONCE(1, "Net bug: GSO size %d too large for 8139CP\n",
752 			  mss);
753 		goto out_dma_error;
754 	}
755 
756 	opts2 = cpu_to_le32(cp_tx_vlan_tag(skb));
757 	opts1 = DescOwn;
758 	if (mss)
759 		opts1 |= LargeSend | (mss << MSSShift);
760 	else if (skb->ip_summed == CHECKSUM_PARTIAL) {
761 		const struct iphdr *ip = ip_hdr(skb);
762 		if (ip->protocol == IPPROTO_TCP)
763 			opts1 |= IPCS | TCPCS;
764 		else if (ip->protocol == IPPROTO_UDP)
765 			opts1 |= IPCS | UDPCS;
766 		else {
767 			WARN_ONCE(1,
768 				  "Net bug: asked to checksum invalid Legacy IP packet\n");
769 			goto out_dma_error;
770 		}
771 	}
772 
773 	if (skb_shinfo(skb)->nr_frags == 0) {
774 		struct cp_desc *txd = &cp->tx_ring[entry];
775 		u32 len;
776 		dma_addr_t mapping;
777 
778 		len = skb->len;
779 		mapping = dma_map_single(&cp->pdev->dev, skb->data, len, PCI_DMA_TODEVICE);
780 		if (dma_mapping_error(&cp->pdev->dev, mapping))
781 			goto out_dma_error;
782 
783 		txd->opts2 = opts2;
784 		txd->addr = cpu_to_le64(mapping);
785 		wmb();
786 
787 		opts1 |= eor | len | FirstFrag | LastFrag;
788 
789 		txd->opts1 = cpu_to_le32(opts1);
790 		wmb();
791 
792 		cp->tx_skb[entry] = skb;
793 		cp->tx_opts[entry] = opts1;
794 		netif_dbg(cp, tx_queued, cp->dev, "tx queued, slot %d, skblen %d\n",
795 			  entry, skb->len);
796 	} else {
797 		struct cp_desc *txd;
798 		u32 first_len, first_eor, ctrl;
799 		dma_addr_t first_mapping;
800 		int frag, first_entry = entry;
801 
802 		/* We must give this initial chunk to the device last.
803 		 * Otherwise we could race with the device.
804 		 */
805 		first_eor = eor;
806 		first_len = skb_headlen(skb);
807 		first_mapping = dma_map_single(&cp->pdev->dev, skb->data,
808 					       first_len, PCI_DMA_TODEVICE);
809 		if (dma_mapping_error(&cp->pdev->dev, first_mapping))
810 			goto out_dma_error;
811 
812 		cp->tx_skb[entry] = skb;
813 
814 		for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
815 			const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
816 			u32 len;
817 			dma_addr_t mapping;
818 
819 			entry = NEXT_TX(entry);
820 
821 			len = skb_frag_size(this_frag);
822 			mapping = dma_map_single(&cp->pdev->dev,
823 						 skb_frag_address(this_frag),
824 						 len, PCI_DMA_TODEVICE);
825 			if (dma_mapping_error(&cp->pdev->dev, mapping)) {
826 				unwind_tx_frag_mapping(cp, skb, first_entry, entry);
827 				goto out_dma_error;
828 			}
829 
830 			eor = (entry == (CP_TX_RING_SIZE - 1)) ? RingEnd : 0;
831 
832 			ctrl = opts1 | eor | len;
833 
834 			if (frag == skb_shinfo(skb)->nr_frags - 1)
835 				ctrl |= LastFrag;
836 
837 			txd = &cp->tx_ring[entry];
838 			txd->opts2 = opts2;
839 			txd->addr = cpu_to_le64(mapping);
840 			wmb();
841 
842 			txd->opts1 = cpu_to_le32(ctrl);
843 			wmb();
844 
845 			cp->tx_opts[entry] = ctrl;
846 			cp->tx_skb[entry] = skb;
847 		}
848 
849 		txd = &cp->tx_ring[first_entry];
850 		txd->opts2 = opts2;
851 		txd->addr = cpu_to_le64(first_mapping);
852 		wmb();
853 
854 		ctrl = opts1 | first_eor | first_len | FirstFrag;
855 		txd->opts1 = cpu_to_le32(ctrl);
856 		wmb();
857 
858 		cp->tx_opts[first_entry] = ctrl;
859 		netif_dbg(cp, tx_queued, cp->dev, "tx queued, slots %d-%d, skblen %d\n",
860 			  first_entry, entry, skb->len);
861 	}
862 	cp->tx_head = NEXT_TX(entry);
863 
864 	netdev_sent_queue(dev, skb->len);
865 	if (TX_BUFFS_AVAIL(cp) <= (MAX_SKB_FRAGS + 1))
866 		netif_stop_queue(dev);
867 
868 out_unlock:
869 	spin_unlock_irqrestore(&cp->lock, intr_flags);
870 
871 	cpw8(TxPoll, NormalTxPoll);
872 
873 	return NETDEV_TX_OK;
874 out_dma_error:
875 	dev_kfree_skb_any(skb);
876 	cp->dev->stats.tx_dropped++;
877 	goto out_unlock;
878 }
879 
880 /* Set or clear the multicast filter for this adaptor.
881    This routine is not state sensitive and need not be SMP locked. */
882 
883 static void __cp_set_rx_mode (struct net_device *dev)
884 {
885 	struct cp_private *cp = netdev_priv(dev);
886 	u32 mc_filter[2];	/* Multicast hash filter */
887 	int rx_mode;
888 
889 	/* Note: do not reorder, GCC is clever about common statements. */
890 	if (dev->flags & IFF_PROMISC) {
891 		/* Unconditionally log net taps. */
892 		rx_mode =
893 		    AcceptBroadcast | AcceptMulticast | AcceptMyPhys |
894 		    AcceptAllPhys;
895 		mc_filter[1] = mc_filter[0] = 0xffffffff;
896 	} else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
897 		   (dev->flags & IFF_ALLMULTI)) {
898 		/* Too many to filter perfectly -- accept all multicasts. */
899 		rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys;
900 		mc_filter[1] = mc_filter[0] = 0xffffffff;
901 	} else {
902 		struct netdev_hw_addr *ha;
903 		rx_mode = AcceptBroadcast | AcceptMyPhys;
904 		mc_filter[1] = mc_filter[0] = 0;
905 		netdev_for_each_mc_addr(ha, dev) {
906 			int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26;
907 
908 			mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
909 			rx_mode |= AcceptMulticast;
910 		}
911 	}
912 
913 	/* We can safely update without stopping the chip. */
914 	cp->rx_config = cp_rx_config | rx_mode;
915 	cpw32_f(RxConfig, cp->rx_config);
916 
917 	cpw32_f (MAR0 + 0, mc_filter[0]);
918 	cpw32_f (MAR0 + 4, mc_filter[1]);
919 }
920 
921 static void cp_set_rx_mode (struct net_device *dev)
922 {
923 	unsigned long flags;
924 	struct cp_private *cp = netdev_priv(dev);
925 
926 	spin_lock_irqsave (&cp->lock, flags);
927 	__cp_set_rx_mode(dev);
928 	spin_unlock_irqrestore (&cp->lock, flags);
929 }
930 
931 static void __cp_get_stats(struct cp_private *cp)
932 {
933 	/* only lower 24 bits valid; write any value to clear */
934 	cp->dev->stats.rx_missed_errors += (cpr32 (RxMissed) & 0xffffff);
935 	cpw32 (RxMissed, 0);
936 }
937 
938 static struct net_device_stats *cp_get_stats(struct net_device *dev)
939 {
940 	struct cp_private *cp = netdev_priv(dev);
941 	unsigned long flags;
942 
943 	/* The chip only need report frame silently dropped. */
944 	spin_lock_irqsave(&cp->lock, flags);
945  	if (netif_running(dev) && netif_device_present(dev))
946  		__cp_get_stats(cp);
947 	spin_unlock_irqrestore(&cp->lock, flags);
948 
949 	return &dev->stats;
950 }
951 
952 static void cp_stop_hw (struct cp_private *cp)
953 {
954 	cpw16(IntrStatus, ~(cpr16(IntrStatus)));
955 	cpw16_f(IntrMask, 0);
956 	cpw8(Cmd, 0);
957 	cpw16_f(CpCmd, 0);
958 	cpw16_f(IntrStatus, ~(cpr16(IntrStatus)));
959 
960 	cp->rx_tail = 0;
961 	cp->tx_head = cp->tx_tail = 0;
962 
963 	netdev_reset_queue(cp->dev);
964 }
965 
966 static void cp_reset_hw (struct cp_private *cp)
967 {
968 	unsigned work = 1000;
969 
970 	cpw8(Cmd, CmdReset);
971 
972 	while (work--) {
973 		if (!(cpr8(Cmd) & CmdReset))
974 			return;
975 
976 		schedule_timeout_uninterruptible(10);
977 	}
978 
979 	netdev_err(cp->dev, "hardware reset timeout\n");
980 }
981 
982 static inline void cp_start_hw (struct cp_private *cp)
983 {
984 	dma_addr_t ring_dma;
985 
986 	cpw16(CpCmd, cp->cpcmd);
987 
988 	/*
989 	 * These (at least TxRingAddr) need to be configured after the
990 	 * corresponding bits in CpCmd are enabled. Datasheet v1.6 §6.33
991 	 * (C+ Command Register) recommends that these and more be configured
992 	 * *after* the [RT]xEnable bits in CpCmd are set. And on some hardware
993 	 * it's been observed that the TxRingAddr is actually reset to garbage
994 	 * when C+ mode Tx is enabled in CpCmd.
995 	 */
996 	cpw32_f(HiTxRingAddr, 0);
997 	cpw32_f(HiTxRingAddr + 4, 0);
998 
999 	ring_dma = cp->ring_dma;
1000 	cpw32_f(RxRingAddr, ring_dma & 0xffffffff);
1001 	cpw32_f(RxRingAddr + 4, (ring_dma >> 16) >> 16);
1002 
1003 	ring_dma += sizeof(struct cp_desc) * CP_RX_RING_SIZE;
1004 	cpw32_f(TxRingAddr, ring_dma & 0xffffffff);
1005 	cpw32_f(TxRingAddr + 4, (ring_dma >> 16) >> 16);
1006 
1007 	/*
1008 	 * Strictly speaking, the datasheet says this should be enabled
1009 	 * *before* setting the descriptor addresses. But what, then, would
1010 	 * prevent it from doing DMA to random unconfigured addresses?
1011 	 * This variant appears to work fine.
1012 	 */
1013 	cpw8(Cmd, RxOn | TxOn);
1014 
1015 	netdev_reset_queue(cp->dev);
1016 }
1017 
1018 static void cp_enable_irq(struct cp_private *cp)
1019 {
1020 	cpw16_f(IntrMask, cp_intr_mask);
1021 }
1022 
1023 static void cp_init_hw (struct cp_private *cp)
1024 {
1025 	struct net_device *dev = cp->dev;
1026 
1027 	cp_reset_hw(cp);
1028 
1029 	cpw8_f (Cfg9346, Cfg9346_Unlock);
1030 
1031 	/* Restore our idea of the MAC address. */
1032 	cpw32_f (MAC0 + 0, le32_to_cpu (*(__le32 *) (dev->dev_addr + 0)));
1033 	cpw32_f (MAC0 + 4, le32_to_cpu (*(__le32 *) (dev->dev_addr + 4)));
1034 
1035 	cp_start_hw(cp);
1036 	cpw8(TxThresh, 0x06); /* XXX convert magic num to a constant */
1037 
1038 	__cp_set_rx_mode(dev);
1039 	cpw32_f (TxConfig, IFG | (TX_DMA_BURST << TxDMAShift));
1040 
1041 	cpw8(Config1, cpr8(Config1) | DriverLoaded | PMEnable);
1042 	/* Disable Wake-on-LAN. Can be turned on with ETHTOOL_SWOL */
1043 	cpw8(Config3, PARMEnable);
1044 	cp->wol_enabled = 0;
1045 
1046 	cpw8(Config5, cpr8(Config5) & PMEStatus);
1047 
1048 	cpw16(MultiIntr, 0);
1049 
1050 	cpw8_f(Cfg9346, Cfg9346_Lock);
1051 }
1052 
1053 static int cp_refill_rx(struct cp_private *cp)
1054 {
1055 	struct net_device *dev = cp->dev;
1056 	unsigned i;
1057 
1058 	for (i = 0; i < CP_RX_RING_SIZE; i++) {
1059 		struct sk_buff *skb;
1060 		dma_addr_t mapping;
1061 
1062 		skb = netdev_alloc_skb_ip_align(dev, cp->rx_buf_sz);
1063 		if (!skb)
1064 			goto err_out;
1065 
1066 		mapping = dma_map_single(&cp->pdev->dev, skb->data,
1067 					 cp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1068 		if (dma_mapping_error(&cp->pdev->dev, mapping)) {
1069 			kfree_skb(skb);
1070 			goto err_out;
1071 		}
1072 		cp->rx_skb[i] = skb;
1073 
1074 		cp->rx_ring[i].opts2 = 0;
1075 		cp->rx_ring[i].addr = cpu_to_le64(mapping);
1076 		if (i == (CP_RX_RING_SIZE - 1))
1077 			cp->rx_ring[i].opts1 =
1078 				cpu_to_le32(DescOwn | RingEnd | cp->rx_buf_sz);
1079 		else
1080 			cp->rx_ring[i].opts1 =
1081 				cpu_to_le32(DescOwn | cp->rx_buf_sz);
1082 	}
1083 
1084 	return 0;
1085 
1086 err_out:
1087 	cp_clean_rings(cp);
1088 	return -ENOMEM;
1089 }
1090 
1091 static void cp_init_rings_index (struct cp_private *cp)
1092 {
1093 	cp->rx_tail = 0;
1094 	cp->tx_head = cp->tx_tail = 0;
1095 }
1096 
1097 static int cp_init_rings (struct cp_private *cp)
1098 {
1099 	memset(cp->tx_ring, 0, sizeof(struct cp_desc) * CP_TX_RING_SIZE);
1100 	cp->tx_ring[CP_TX_RING_SIZE - 1].opts1 = cpu_to_le32(RingEnd);
1101 	memset(cp->tx_opts, 0, sizeof(cp->tx_opts));
1102 
1103 	cp_init_rings_index(cp);
1104 
1105 	return cp_refill_rx (cp);
1106 }
1107 
1108 static int cp_alloc_rings (struct cp_private *cp)
1109 {
1110 	struct device *d = &cp->pdev->dev;
1111 	void *mem;
1112 	int rc;
1113 
1114 	mem = dma_alloc_coherent(d, CP_RING_BYTES, &cp->ring_dma, GFP_KERNEL);
1115 	if (!mem)
1116 		return -ENOMEM;
1117 
1118 	cp->rx_ring = mem;
1119 	cp->tx_ring = &cp->rx_ring[CP_RX_RING_SIZE];
1120 
1121 	rc = cp_init_rings(cp);
1122 	if (rc < 0)
1123 		dma_free_coherent(d, CP_RING_BYTES, cp->rx_ring, cp->ring_dma);
1124 
1125 	return rc;
1126 }
1127 
1128 static void cp_clean_rings (struct cp_private *cp)
1129 {
1130 	struct cp_desc *desc;
1131 	unsigned i;
1132 
1133 	for (i = 0; i < CP_RX_RING_SIZE; i++) {
1134 		if (cp->rx_skb[i]) {
1135 			desc = cp->rx_ring + i;
1136 			dma_unmap_single(&cp->pdev->dev,le64_to_cpu(desc->addr),
1137 					 cp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1138 			dev_kfree_skb_any(cp->rx_skb[i]);
1139 		}
1140 	}
1141 
1142 	for (i = 0; i < CP_TX_RING_SIZE; i++) {
1143 		if (cp->tx_skb[i]) {
1144 			struct sk_buff *skb = cp->tx_skb[i];
1145 
1146 			desc = cp->tx_ring + i;
1147 			dma_unmap_single(&cp->pdev->dev,le64_to_cpu(desc->addr),
1148 					 le32_to_cpu(desc->opts1) & 0xffff,
1149 					 PCI_DMA_TODEVICE);
1150 			if (le32_to_cpu(desc->opts1) & LastFrag)
1151 				dev_kfree_skb_any(skb);
1152 			cp->dev->stats.tx_dropped++;
1153 		}
1154 	}
1155 	netdev_reset_queue(cp->dev);
1156 
1157 	memset(cp->rx_ring, 0, sizeof(struct cp_desc) * CP_RX_RING_SIZE);
1158 	memset(cp->tx_ring, 0, sizeof(struct cp_desc) * CP_TX_RING_SIZE);
1159 	memset(cp->tx_opts, 0, sizeof(cp->tx_opts));
1160 
1161 	memset(cp->rx_skb, 0, sizeof(struct sk_buff *) * CP_RX_RING_SIZE);
1162 	memset(cp->tx_skb, 0, sizeof(struct sk_buff *) * CP_TX_RING_SIZE);
1163 }
1164 
1165 static void cp_free_rings (struct cp_private *cp)
1166 {
1167 	cp_clean_rings(cp);
1168 	dma_free_coherent(&cp->pdev->dev, CP_RING_BYTES, cp->rx_ring,
1169 			  cp->ring_dma);
1170 	cp->rx_ring = NULL;
1171 	cp->tx_ring = NULL;
1172 }
1173 
1174 static int cp_open (struct net_device *dev)
1175 {
1176 	struct cp_private *cp = netdev_priv(dev);
1177 	const int irq = cp->pdev->irq;
1178 	int rc;
1179 
1180 	netif_dbg(cp, ifup, dev, "enabling interface\n");
1181 
1182 	rc = cp_alloc_rings(cp);
1183 	if (rc)
1184 		return rc;
1185 
1186 	napi_enable(&cp->napi);
1187 
1188 	cp_init_hw(cp);
1189 
1190 	rc = request_irq(irq, cp_interrupt, IRQF_SHARED, dev->name, dev);
1191 	if (rc)
1192 		goto err_out_hw;
1193 
1194 	cp_enable_irq(cp);
1195 
1196 	netif_carrier_off(dev);
1197 	mii_check_media(&cp->mii_if, netif_msg_link(cp), true);
1198 	netif_start_queue(dev);
1199 
1200 	return 0;
1201 
1202 err_out_hw:
1203 	napi_disable(&cp->napi);
1204 	cp_stop_hw(cp);
1205 	cp_free_rings(cp);
1206 	return rc;
1207 }
1208 
1209 static int cp_close (struct net_device *dev)
1210 {
1211 	struct cp_private *cp = netdev_priv(dev);
1212 	unsigned long flags;
1213 
1214 	napi_disable(&cp->napi);
1215 
1216 	netif_dbg(cp, ifdown, dev, "disabling interface\n");
1217 
1218 	spin_lock_irqsave(&cp->lock, flags);
1219 
1220 	netif_stop_queue(dev);
1221 	netif_carrier_off(dev);
1222 
1223 	cp_stop_hw(cp);
1224 
1225 	spin_unlock_irqrestore(&cp->lock, flags);
1226 
1227 	free_irq(cp->pdev->irq, dev);
1228 
1229 	cp_free_rings(cp);
1230 	return 0;
1231 }
1232 
1233 static void cp_tx_timeout(struct net_device *dev)
1234 {
1235 	struct cp_private *cp = netdev_priv(dev);
1236 	unsigned long flags;
1237 	int rc, i;
1238 
1239 	netdev_warn(dev, "Transmit timeout, status %2x %4x %4x %4x\n",
1240 		    cpr8(Cmd), cpr16(CpCmd),
1241 		    cpr16(IntrStatus), cpr16(IntrMask));
1242 
1243 	spin_lock_irqsave(&cp->lock, flags);
1244 
1245 	netif_dbg(cp, tx_err, cp->dev, "TX ring head %d tail %d desc %x\n",
1246 		  cp->tx_head, cp->tx_tail, cpr16(TxDmaOkLowDesc));
1247 	for (i = 0; i < CP_TX_RING_SIZE; i++) {
1248 		netif_dbg(cp, tx_err, cp->dev,
1249 			  "TX slot %d @%p: %08x (%08x) %08x %llx %p\n",
1250 			  i, &cp->tx_ring[i], le32_to_cpu(cp->tx_ring[i].opts1),
1251 			  cp->tx_opts[i], le32_to_cpu(cp->tx_ring[i].opts2),
1252 			  le64_to_cpu(cp->tx_ring[i].addr),
1253 			  cp->tx_skb[i]);
1254 	}
1255 
1256 	cp_stop_hw(cp);
1257 	cp_clean_rings(cp);
1258 	rc = cp_init_rings(cp);
1259 	cp_start_hw(cp);
1260 	__cp_set_rx_mode(dev);
1261 	cpw16_f(IntrMask, cp_norx_intr_mask);
1262 
1263 	netif_wake_queue(dev);
1264 	napi_schedule_irqoff(&cp->napi);
1265 
1266 	spin_unlock_irqrestore(&cp->lock, flags);
1267 }
1268 
1269 static int cp_change_mtu(struct net_device *dev, int new_mtu)
1270 {
1271 	struct cp_private *cp = netdev_priv(dev);
1272 
1273 	/* if network interface not up, no need for complexity */
1274 	if (!netif_running(dev)) {
1275 		dev->mtu = new_mtu;
1276 		cp_set_rxbufsize(cp);	/* set new rx buf size */
1277 		return 0;
1278 	}
1279 
1280 	/* network IS up, close it, reset MTU, and come up again. */
1281 	cp_close(dev);
1282 	dev->mtu = new_mtu;
1283 	cp_set_rxbufsize(cp);
1284 	return cp_open(dev);
1285 }
1286 
1287 static const char mii_2_8139_map[8] = {
1288 	BasicModeCtrl,
1289 	BasicModeStatus,
1290 	0,
1291 	0,
1292 	NWayAdvert,
1293 	NWayLPAR,
1294 	NWayExpansion,
1295 	0
1296 };
1297 
1298 static int mdio_read(struct net_device *dev, int phy_id, int location)
1299 {
1300 	struct cp_private *cp = netdev_priv(dev);
1301 
1302 	return location < 8 && mii_2_8139_map[location] ?
1303 	       readw(cp->regs + mii_2_8139_map[location]) : 0;
1304 }
1305 
1306 
1307 static void mdio_write(struct net_device *dev, int phy_id, int location,
1308 		       int value)
1309 {
1310 	struct cp_private *cp = netdev_priv(dev);
1311 
1312 	if (location == 0) {
1313 		cpw8(Cfg9346, Cfg9346_Unlock);
1314 		cpw16(BasicModeCtrl, value);
1315 		cpw8(Cfg9346, Cfg9346_Lock);
1316 	} else if (location < 8 && mii_2_8139_map[location])
1317 		cpw16(mii_2_8139_map[location], value);
1318 }
1319 
1320 /* Set the ethtool Wake-on-LAN settings */
1321 static int netdev_set_wol (struct cp_private *cp,
1322 			   const struct ethtool_wolinfo *wol)
1323 {
1324 	u8 options;
1325 
1326 	options = cpr8 (Config3) & ~(LinkUp | MagicPacket);
1327 	/* If WOL is being disabled, no need for complexity */
1328 	if (wol->wolopts) {
1329 		if (wol->wolopts & WAKE_PHY)	options |= LinkUp;
1330 		if (wol->wolopts & WAKE_MAGIC)	options |= MagicPacket;
1331 	}
1332 
1333 	cpw8 (Cfg9346, Cfg9346_Unlock);
1334 	cpw8 (Config3, options);
1335 	cpw8 (Cfg9346, Cfg9346_Lock);
1336 
1337 	options = 0; /* Paranoia setting */
1338 	options = cpr8 (Config5) & ~(UWF | MWF | BWF);
1339 	/* If WOL is being disabled, no need for complexity */
1340 	if (wol->wolopts) {
1341 		if (wol->wolopts & WAKE_UCAST)  options |= UWF;
1342 		if (wol->wolopts & WAKE_BCAST)	options |= BWF;
1343 		if (wol->wolopts & WAKE_MCAST)	options |= MWF;
1344 	}
1345 
1346 	cpw8 (Config5, options);
1347 
1348 	cp->wol_enabled = (wol->wolopts) ? 1 : 0;
1349 
1350 	return 0;
1351 }
1352 
1353 /* Get the ethtool Wake-on-LAN settings */
1354 static void netdev_get_wol (struct cp_private *cp,
1355 	             struct ethtool_wolinfo *wol)
1356 {
1357 	u8 options;
1358 
1359 	wol->wolopts   = 0; /* Start from scratch */
1360 	wol->supported = WAKE_PHY   | WAKE_BCAST | WAKE_MAGIC |
1361 		         WAKE_MCAST | WAKE_UCAST;
1362 	/* We don't need to go on if WOL is disabled */
1363 	if (!cp->wol_enabled) return;
1364 
1365 	options        = cpr8 (Config3);
1366 	if (options & LinkUp)        wol->wolopts |= WAKE_PHY;
1367 	if (options & MagicPacket)   wol->wolopts |= WAKE_MAGIC;
1368 
1369 	options        = 0; /* Paranoia setting */
1370 	options        = cpr8 (Config5);
1371 	if (options & UWF)           wol->wolopts |= WAKE_UCAST;
1372 	if (options & BWF)           wol->wolopts |= WAKE_BCAST;
1373 	if (options & MWF)           wol->wolopts |= WAKE_MCAST;
1374 }
1375 
1376 static void cp_get_drvinfo (struct net_device *dev, struct ethtool_drvinfo *info)
1377 {
1378 	struct cp_private *cp = netdev_priv(dev);
1379 
1380 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1381 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1382 	strlcpy(info->bus_info, pci_name(cp->pdev), sizeof(info->bus_info));
1383 }
1384 
1385 static void cp_get_ringparam(struct net_device *dev,
1386 				struct ethtool_ringparam *ring)
1387 {
1388 	ring->rx_max_pending = CP_RX_RING_SIZE;
1389 	ring->tx_max_pending = CP_TX_RING_SIZE;
1390 	ring->rx_pending = CP_RX_RING_SIZE;
1391 	ring->tx_pending = CP_TX_RING_SIZE;
1392 }
1393 
1394 static int cp_get_regs_len(struct net_device *dev)
1395 {
1396 	return CP_REGS_SIZE;
1397 }
1398 
1399 static int cp_get_sset_count (struct net_device *dev, int sset)
1400 {
1401 	switch (sset) {
1402 	case ETH_SS_STATS:
1403 		return CP_NUM_STATS;
1404 	default:
1405 		return -EOPNOTSUPP;
1406 	}
1407 }
1408 
1409 static int cp_get_link_ksettings(struct net_device *dev,
1410 				 struct ethtool_link_ksettings *cmd)
1411 {
1412 	struct cp_private *cp = netdev_priv(dev);
1413 	int rc;
1414 	unsigned long flags;
1415 
1416 	spin_lock_irqsave(&cp->lock, flags);
1417 	rc = mii_ethtool_get_link_ksettings(&cp->mii_if, cmd);
1418 	spin_unlock_irqrestore(&cp->lock, flags);
1419 
1420 	return rc;
1421 }
1422 
1423 static int cp_set_link_ksettings(struct net_device *dev,
1424 				 const struct ethtool_link_ksettings *cmd)
1425 {
1426 	struct cp_private *cp = netdev_priv(dev);
1427 	int rc;
1428 	unsigned long flags;
1429 
1430 	spin_lock_irqsave(&cp->lock, flags);
1431 	rc = mii_ethtool_set_link_ksettings(&cp->mii_if, cmd);
1432 	spin_unlock_irqrestore(&cp->lock, flags);
1433 
1434 	return rc;
1435 }
1436 
1437 static int cp_nway_reset(struct net_device *dev)
1438 {
1439 	struct cp_private *cp = netdev_priv(dev);
1440 	return mii_nway_restart(&cp->mii_if);
1441 }
1442 
1443 static u32 cp_get_msglevel(struct net_device *dev)
1444 {
1445 	struct cp_private *cp = netdev_priv(dev);
1446 	return cp->msg_enable;
1447 }
1448 
1449 static void cp_set_msglevel(struct net_device *dev, u32 value)
1450 {
1451 	struct cp_private *cp = netdev_priv(dev);
1452 	cp->msg_enable = value;
1453 }
1454 
1455 static int cp_set_features(struct net_device *dev, netdev_features_t features)
1456 {
1457 	struct cp_private *cp = netdev_priv(dev);
1458 	unsigned long flags;
1459 
1460 	if (!((dev->features ^ features) & NETIF_F_RXCSUM))
1461 		return 0;
1462 
1463 	spin_lock_irqsave(&cp->lock, flags);
1464 
1465 	if (features & NETIF_F_RXCSUM)
1466 		cp->cpcmd |= RxChkSum;
1467 	else
1468 		cp->cpcmd &= ~RxChkSum;
1469 
1470 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
1471 		cp->cpcmd |= RxVlanOn;
1472 	else
1473 		cp->cpcmd &= ~RxVlanOn;
1474 
1475 	cpw16_f(CpCmd, cp->cpcmd);
1476 	spin_unlock_irqrestore(&cp->lock, flags);
1477 
1478 	return 0;
1479 }
1480 
1481 static void cp_get_regs(struct net_device *dev, struct ethtool_regs *regs,
1482 		        void *p)
1483 {
1484 	struct cp_private *cp = netdev_priv(dev);
1485 	unsigned long flags;
1486 
1487 	if (regs->len < CP_REGS_SIZE)
1488 		return /* -EINVAL */;
1489 
1490 	regs->version = CP_REGS_VER;
1491 
1492 	spin_lock_irqsave(&cp->lock, flags);
1493 	memcpy_fromio(p, cp->regs, CP_REGS_SIZE);
1494 	spin_unlock_irqrestore(&cp->lock, flags);
1495 }
1496 
1497 static void cp_get_wol (struct net_device *dev, struct ethtool_wolinfo *wol)
1498 {
1499 	struct cp_private *cp = netdev_priv(dev);
1500 	unsigned long flags;
1501 
1502 	spin_lock_irqsave (&cp->lock, flags);
1503 	netdev_get_wol (cp, wol);
1504 	spin_unlock_irqrestore (&cp->lock, flags);
1505 }
1506 
1507 static int cp_set_wol (struct net_device *dev, struct ethtool_wolinfo *wol)
1508 {
1509 	struct cp_private *cp = netdev_priv(dev);
1510 	unsigned long flags;
1511 	int rc;
1512 
1513 	spin_lock_irqsave (&cp->lock, flags);
1514 	rc = netdev_set_wol (cp, wol);
1515 	spin_unlock_irqrestore (&cp->lock, flags);
1516 
1517 	return rc;
1518 }
1519 
1520 static void cp_get_strings (struct net_device *dev, u32 stringset, u8 *buf)
1521 {
1522 	switch (stringset) {
1523 	case ETH_SS_STATS:
1524 		memcpy(buf, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
1525 		break;
1526 	default:
1527 		BUG();
1528 		break;
1529 	}
1530 }
1531 
1532 static void cp_get_ethtool_stats (struct net_device *dev,
1533 				  struct ethtool_stats *estats, u64 *tmp_stats)
1534 {
1535 	struct cp_private *cp = netdev_priv(dev);
1536 	struct cp_dma_stats *nic_stats;
1537 	dma_addr_t dma;
1538 	int i;
1539 
1540 	nic_stats = dma_alloc_coherent(&cp->pdev->dev, sizeof(*nic_stats),
1541 				       &dma, GFP_KERNEL);
1542 	if (!nic_stats)
1543 		return;
1544 
1545 	/* begin NIC statistics dump */
1546 	cpw32(StatsAddr + 4, (u64)dma >> 32);
1547 	cpw32(StatsAddr, ((u64)dma & DMA_BIT_MASK(32)) | DumpStats);
1548 	cpr32(StatsAddr);
1549 
1550 	for (i = 0; i < 1000; i++) {
1551 		if ((cpr32(StatsAddr) & DumpStats) == 0)
1552 			break;
1553 		udelay(10);
1554 	}
1555 	cpw32(StatsAddr, 0);
1556 	cpw32(StatsAddr + 4, 0);
1557 	cpr32(StatsAddr);
1558 
1559 	i = 0;
1560 	tmp_stats[i++] = le64_to_cpu(nic_stats->tx_ok);
1561 	tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok);
1562 	tmp_stats[i++] = le64_to_cpu(nic_stats->tx_err);
1563 	tmp_stats[i++] = le32_to_cpu(nic_stats->rx_err);
1564 	tmp_stats[i++] = le16_to_cpu(nic_stats->rx_fifo);
1565 	tmp_stats[i++] = le16_to_cpu(nic_stats->frame_align);
1566 	tmp_stats[i++] = le32_to_cpu(nic_stats->tx_ok_1col);
1567 	tmp_stats[i++] = le32_to_cpu(nic_stats->tx_ok_mcol);
1568 	tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok_phys);
1569 	tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok_bcast);
1570 	tmp_stats[i++] = le32_to_cpu(nic_stats->rx_ok_mcast);
1571 	tmp_stats[i++] = le16_to_cpu(nic_stats->tx_abort);
1572 	tmp_stats[i++] = le16_to_cpu(nic_stats->tx_underrun);
1573 	tmp_stats[i++] = cp->cp_stats.rx_frags;
1574 	BUG_ON(i != CP_NUM_STATS);
1575 
1576 	dma_free_coherent(&cp->pdev->dev, sizeof(*nic_stats), nic_stats, dma);
1577 }
1578 
1579 static const struct ethtool_ops cp_ethtool_ops = {
1580 	.get_drvinfo		= cp_get_drvinfo,
1581 	.get_regs_len		= cp_get_regs_len,
1582 	.get_sset_count		= cp_get_sset_count,
1583 	.nway_reset		= cp_nway_reset,
1584 	.get_link		= ethtool_op_get_link,
1585 	.get_msglevel		= cp_get_msglevel,
1586 	.set_msglevel		= cp_set_msglevel,
1587 	.get_regs		= cp_get_regs,
1588 	.get_wol		= cp_get_wol,
1589 	.set_wol		= cp_set_wol,
1590 	.get_strings		= cp_get_strings,
1591 	.get_ethtool_stats	= cp_get_ethtool_stats,
1592 	.get_eeprom_len		= cp_get_eeprom_len,
1593 	.get_eeprom		= cp_get_eeprom,
1594 	.set_eeprom		= cp_set_eeprom,
1595 	.get_ringparam		= cp_get_ringparam,
1596 	.get_link_ksettings	= cp_get_link_ksettings,
1597 	.set_link_ksettings	= cp_set_link_ksettings,
1598 };
1599 
1600 static int cp_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
1601 {
1602 	struct cp_private *cp = netdev_priv(dev);
1603 	int rc;
1604 	unsigned long flags;
1605 
1606 	if (!netif_running(dev))
1607 		return -EINVAL;
1608 
1609 	spin_lock_irqsave(&cp->lock, flags);
1610 	rc = generic_mii_ioctl(&cp->mii_if, if_mii(rq), cmd, NULL);
1611 	spin_unlock_irqrestore(&cp->lock, flags);
1612 	return rc;
1613 }
1614 
1615 static int cp_set_mac_address(struct net_device *dev, void *p)
1616 {
1617 	struct cp_private *cp = netdev_priv(dev);
1618 	struct sockaddr *addr = p;
1619 
1620 	if (!is_valid_ether_addr(addr->sa_data))
1621 		return -EADDRNOTAVAIL;
1622 
1623 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1624 
1625 	spin_lock_irq(&cp->lock);
1626 
1627 	cpw8_f(Cfg9346, Cfg9346_Unlock);
1628 	cpw32_f(MAC0 + 0, le32_to_cpu (*(__le32 *) (dev->dev_addr + 0)));
1629 	cpw32_f(MAC0 + 4, le32_to_cpu (*(__le32 *) (dev->dev_addr + 4)));
1630 	cpw8_f(Cfg9346, Cfg9346_Lock);
1631 
1632 	spin_unlock_irq(&cp->lock);
1633 
1634 	return 0;
1635 }
1636 
1637 /* Serial EEPROM section. */
1638 
1639 /*  EEPROM_Ctrl bits. */
1640 #define EE_SHIFT_CLK	0x04	/* EEPROM shift clock. */
1641 #define EE_CS			0x08	/* EEPROM chip select. */
1642 #define EE_DATA_WRITE	0x02	/* EEPROM chip data in. */
1643 #define EE_WRITE_0		0x00
1644 #define EE_WRITE_1		0x02
1645 #define EE_DATA_READ	0x01	/* EEPROM chip data out. */
1646 #define EE_ENB			(0x80 | EE_CS)
1647 
1648 /* Delay between EEPROM clock transitions.
1649    No extra delay is needed with 33Mhz PCI, but 66Mhz may change this.
1650  */
1651 
1652 #define eeprom_delay()	readb(ee_addr)
1653 
1654 /* The EEPROM commands include the alway-set leading bit. */
1655 #define EE_EXTEND_CMD	(4)
1656 #define EE_WRITE_CMD	(5)
1657 #define EE_READ_CMD		(6)
1658 #define EE_ERASE_CMD	(7)
1659 
1660 #define EE_EWDS_ADDR	(0)
1661 #define EE_WRAL_ADDR	(1)
1662 #define EE_ERAL_ADDR	(2)
1663 #define EE_EWEN_ADDR	(3)
1664 
1665 #define CP_EEPROM_MAGIC PCI_DEVICE_ID_REALTEK_8139
1666 
1667 static void eeprom_cmd_start(void __iomem *ee_addr)
1668 {
1669 	writeb (EE_ENB & ~EE_CS, ee_addr);
1670 	writeb (EE_ENB, ee_addr);
1671 	eeprom_delay ();
1672 }
1673 
1674 static void eeprom_cmd(void __iomem *ee_addr, int cmd, int cmd_len)
1675 {
1676 	int i;
1677 
1678 	/* Shift the command bits out. */
1679 	for (i = cmd_len - 1; i >= 0; i--) {
1680 		int dataval = (cmd & (1 << i)) ? EE_DATA_WRITE : 0;
1681 		writeb (EE_ENB | dataval, ee_addr);
1682 		eeprom_delay ();
1683 		writeb (EE_ENB | dataval | EE_SHIFT_CLK, ee_addr);
1684 		eeprom_delay ();
1685 	}
1686 	writeb (EE_ENB, ee_addr);
1687 	eeprom_delay ();
1688 }
1689 
1690 static void eeprom_cmd_end(void __iomem *ee_addr)
1691 {
1692 	writeb(0, ee_addr);
1693 	eeprom_delay ();
1694 }
1695 
1696 static void eeprom_extend_cmd(void __iomem *ee_addr, int extend_cmd,
1697 			      int addr_len)
1698 {
1699 	int cmd = (EE_EXTEND_CMD << addr_len) | (extend_cmd << (addr_len - 2));
1700 
1701 	eeprom_cmd_start(ee_addr);
1702 	eeprom_cmd(ee_addr, cmd, 3 + addr_len);
1703 	eeprom_cmd_end(ee_addr);
1704 }
1705 
1706 static u16 read_eeprom (void __iomem *ioaddr, int location, int addr_len)
1707 {
1708 	int i;
1709 	u16 retval = 0;
1710 	void __iomem *ee_addr = ioaddr + Cfg9346;
1711 	int read_cmd = location | (EE_READ_CMD << addr_len);
1712 
1713 	eeprom_cmd_start(ee_addr);
1714 	eeprom_cmd(ee_addr, read_cmd, 3 + addr_len);
1715 
1716 	for (i = 16; i > 0; i--) {
1717 		writeb (EE_ENB | EE_SHIFT_CLK, ee_addr);
1718 		eeprom_delay ();
1719 		retval =
1720 		    (retval << 1) | ((readb (ee_addr) & EE_DATA_READ) ? 1 :
1721 				     0);
1722 		writeb (EE_ENB, ee_addr);
1723 		eeprom_delay ();
1724 	}
1725 
1726 	eeprom_cmd_end(ee_addr);
1727 
1728 	return retval;
1729 }
1730 
1731 static void write_eeprom(void __iomem *ioaddr, int location, u16 val,
1732 			 int addr_len)
1733 {
1734 	int i;
1735 	void __iomem *ee_addr = ioaddr + Cfg9346;
1736 	int write_cmd = location | (EE_WRITE_CMD << addr_len);
1737 
1738 	eeprom_extend_cmd(ee_addr, EE_EWEN_ADDR, addr_len);
1739 
1740 	eeprom_cmd_start(ee_addr);
1741 	eeprom_cmd(ee_addr, write_cmd, 3 + addr_len);
1742 	eeprom_cmd(ee_addr, val, 16);
1743 	eeprom_cmd_end(ee_addr);
1744 
1745 	eeprom_cmd_start(ee_addr);
1746 	for (i = 0; i < 20000; i++)
1747 		if (readb(ee_addr) & EE_DATA_READ)
1748 			break;
1749 	eeprom_cmd_end(ee_addr);
1750 
1751 	eeprom_extend_cmd(ee_addr, EE_EWDS_ADDR, addr_len);
1752 }
1753 
1754 static int cp_get_eeprom_len(struct net_device *dev)
1755 {
1756 	struct cp_private *cp = netdev_priv(dev);
1757 	int size;
1758 
1759 	spin_lock_irq(&cp->lock);
1760 	size = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 256 : 128;
1761 	spin_unlock_irq(&cp->lock);
1762 
1763 	return size;
1764 }
1765 
1766 static int cp_get_eeprom(struct net_device *dev,
1767 			 struct ethtool_eeprom *eeprom, u8 *data)
1768 {
1769 	struct cp_private *cp = netdev_priv(dev);
1770 	unsigned int addr_len;
1771 	u16 val;
1772 	u32 offset = eeprom->offset >> 1;
1773 	u32 len = eeprom->len;
1774 	u32 i = 0;
1775 
1776 	eeprom->magic = CP_EEPROM_MAGIC;
1777 
1778 	spin_lock_irq(&cp->lock);
1779 
1780 	addr_len = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 8 : 6;
1781 
1782 	if (eeprom->offset & 1) {
1783 		val = read_eeprom(cp->regs, offset, addr_len);
1784 		data[i++] = (u8)(val >> 8);
1785 		offset++;
1786 	}
1787 
1788 	while (i < len - 1) {
1789 		val = read_eeprom(cp->regs, offset, addr_len);
1790 		data[i++] = (u8)val;
1791 		data[i++] = (u8)(val >> 8);
1792 		offset++;
1793 	}
1794 
1795 	if (i < len) {
1796 		val = read_eeprom(cp->regs, offset, addr_len);
1797 		data[i] = (u8)val;
1798 	}
1799 
1800 	spin_unlock_irq(&cp->lock);
1801 	return 0;
1802 }
1803 
1804 static int cp_set_eeprom(struct net_device *dev,
1805 			 struct ethtool_eeprom *eeprom, u8 *data)
1806 {
1807 	struct cp_private *cp = netdev_priv(dev);
1808 	unsigned int addr_len;
1809 	u16 val;
1810 	u32 offset = eeprom->offset >> 1;
1811 	u32 len = eeprom->len;
1812 	u32 i = 0;
1813 
1814 	if (eeprom->magic != CP_EEPROM_MAGIC)
1815 		return -EINVAL;
1816 
1817 	spin_lock_irq(&cp->lock);
1818 
1819 	addr_len = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 8 : 6;
1820 
1821 	if (eeprom->offset & 1) {
1822 		val = read_eeprom(cp->regs, offset, addr_len) & 0xff;
1823 		val |= (u16)data[i++] << 8;
1824 		write_eeprom(cp->regs, offset, val, addr_len);
1825 		offset++;
1826 	}
1827 
1828 	while (i < len - 1) {
1829 		val = (u16)data[i++];
1830 		val |= (u16)data[i++] << 8;
1831 		write_eeprom(cp->regs, offset, val, addr_len);
1832 		offset++;
1833 	}
1834 
1835 	if (i < len) {
1836 		val = read_eeprom(cp->regs, offset, addr_len) & 0xff00;
1837 		val |= (u16)data[i];
1838 		write_eeprom(cp->regs, offset, val, addr_len);
1839 	}
1840 
1841 	spin_unlock_irq(&cp->lock);
1842 	return 0;
1843 }
1844 
1845 /* Put the board into D3cold state and wait for WakeUp signal */
1846 static void cp_set_d3_state (struct cp_private *cp)
1847 {
1848 	pci_enable_wake(cp->pdev, PCI_D0, 1); /* Enable PME# generation */
1849 	pci_set_power_state (cp->pdev, PCI_D3hot);
1850 }
1851 
1852 static netdev_features_t cp_features_check(struct sk_buff *skb,
1853 					   struct net_device *dev,
1854 					   netdev_features_t features)
1855 {
1856 	if (skb_shinfo(skb)->gso_size > MSSMask)
1857 		features &= ~NETIF_F_TSO;
1858 
1859 	return vlan_features_check(skb, features);
1860 }
1861 static const struct net_device_ops cp_netdev_ops = {
1862 	.ndo_open		= cp_open,
1863 	.ndo_stop		= cp_close,
1864 	.ndo_validate_addr	= eth_validate_addr,
1865 	.ndo_set_mac_address 	= cp_set_mac_address,
1866 	.ndo_set_rx_mode	= cp_set_rx_mode,
1867 	.ndo_get_stats		= cp_get_stats,
1868 	.ndo_do_ioctl		= cp_ioctl,
1869 	.ndo_start_xmit		= cp_start_xmit,
1870 	.ndo_tx_timeout		= cp_tx_timeout,
1871 	.ndo_set_features	= cp_set_features,
1872 	.ndo_change_mtu		= cp_change_mtu,
1873 	.ndo_features_check	= cp_features_check,
1874 
1875 #ifdef CONFIG_NET_POLL_CONTROLLER
1876 	.ndo_poll_controller	= cp_poll_controller,
1877 #endif
1878 };
1879 
1880 static int cp_init_one (struct pci_dev *pdev, const struct pci_device_id *ent)
1881 {
1882 	struct net_device *dev;
1883 	struct cp_private *cp;
1884 	int rc;
1885 	void __iomem *regs;
1886 	resource_size_t pciaddr;
1887 	unsigned int addr_len, i, pci_using_dac;
1888 
1889 	pr_info_once("%s", version);
1890 
1891 	if (pdev->vendor == PCI_VENDOR_ID_REALTEK &&
1892 	    pdev->device == PCI_DEVICE_ID_REALTEK_8139 && pdev->revision < 0x20) {
1893 		dev_info(&pdev->dev,
1894 			 "This (id %04x:%04x rev %02x) is not an 8139C+ compatible chip, use 8139too\n",
1895 			 pdev->vendor, pdev->device, pdev->revision);
1896 		return -ENODEV;
1897 	}
1898 
1899 	dev = alloc_etherdev(sizeof(struct cp_private));
1900 	if (!dev)
1901 		return -ENOMEM;
1902 	SET_NETDEV_DEV(dev, &pdev->dev);
1903 
1904 	cp = netdev_priv(dev);
1905 	cp->pdev = pdev;
1906 	cp->dev = dev;
1907 	cp->msg_enable = (debug < 0 ? CP_DEF_MSG_ENABLE : debug);
1908 	spin_lock_init (&cp->lock);
1909 	cp->mii_if.dev = dev;
1910 	cp->mii_if.mdio_read = mdio_read;
1911 	cp->mii_if.mdio_write = mdio_write;
1912 	cp->mii_if.phy_id = CP_INTERNAL_PHY;
1913 	cp->mii_if.phy_id_mask = 0x1f;
1914 	cp->mii_if.reg_num_mask = 0x1f;
1915 	cp_set_rxbufsize(cp);
1916 
1917 	rc = pci_enable_device(pdev);
1918 	if (rc)
1919 		goto err_out_free;
1920 
1921 	rc = pci_set_mwi(pdev);
1922 	if (rc)
1923 		goto err_out_disable;
1924 
1925 	rc = pci_request_regions(pdev, DRV_NAME);
1926 	if (rc)
1927 		goto err_out_mwi;
1928 
1929 	pciaddr = pci_resource_start(pdev, 1);
1930 	if (!pciaddr) {
1931 		rc = -EIO;
1932 		dev_err(&pdev->dev, "no MMIO resource\n");
1933 		goto err_out_res;
1934 	}
1935 	if (pci_resource_len(pdev, 1) < CP_REGS_SIZE) {
1936 		rc = -EIO;
1937 		dev_err(&pdev->dev, "MMIO resource (%llx) too small\n",
1938 		       (unsigned long long)pci_resource_len(pdev, 1));
1939 		goto err_out_res;
1940 	}
1941 
1942 	/* Configure DMA attributes. */
1943 	if ((sizeof(dma_addr_t) > 4) &&
1944 	    !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)) &&
1945 	    !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
1946 		pci_using_dac = 1;
1947 	} else {
1948 		pci_using_dac = 0;
1949 
1950 		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1951 		if (rc) {
1952 			dev_err(&pdev->dev,
1953 				"No usable DMA configuration, aborting\n");
1954 			goto err_out_res;
1955 		}
1956 		rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
1957 		if (rc) {
1958 			dev_err(&pdev->dev,
1959 				"No usable consistent DMA configuration, aborting\n");
1960 			goto err_out_res;
1961 		}
1962 	}
1963 
1964 	cp->cpcmd = (pci_using_dac ? PCIDAC : 0) |
1965 		    PCIMulRW | RxChkSum | CpRxOn | CpTxOn;
1966 
1967 	dev->features |= NETIF_F_RXCSUM;
1968 	dev->hw_features |= NETIF_F_RXCSUM;
1969 
1970 	regs = ioremap(pciaddr, CP_REGS_SIZE);
1971 	if (!regs) {
1972 		rc = -EIO;
1973 		dev_err(&pdev->dev, "Cannot map PCI MMIO (%Lx@%Lx)\n",
1974 			(unsigned long long)pci_resource_len(pdev, 1),
1975 		       (unsigned long long)pciaddr);
1976 		goto err_out_res;
1977 	}
1978 	cp->regs = regs;
1979 
1980 	cp_stop_hw(cp);
1981 
1982 	/* read MAC address from EEPROM */
1983 	addr_len = read_eeprom (regs, 0, 8) == 0x8129 ? 8 : 6;
1984 	for (i = 0; i < 3; i++)
1985 		((__le16 *) (dev->dev_addr))[i] =
1986 		    cpu_to_le16(read_eeprom (regs, i + 7, addr_len));
1987 
1988 	dev->netdev_ops = &cp_netdev_ops;
1989 	netif_napi_add(dev, &cp->napi, cp_rx_poll, 16);
1990 	dev->ethtool_ops = &cp_ethtool_ops;
1991 	dev->watchdog_timeo = TX_TIMEOUT;
1992 
1993 	dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO |
1994 		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
1995 
1996 	if (pci_using_dac)
1997 		dev->features |= NETIF_F_HIGHDMA;
1998 
1999 	dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO |
2000 		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
2001 	dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO |
2002 		NETIF_F_HIGHDMA;
2003 
2004 	/* MTU range: 60 - 4096 */
2005 	dev->min_mtu = CP_MIN_MTU;
2006 	dev->max_mtu = CP_MAX_MTU;
2007 
2008 	rc = register_netdev(dev);
2009 	if (rc)
2010 		goto err_out_iomap;
2011 
2012 	netdev_info(dev, "RTL-8139C+ at 0x%p, %pM, IRQ %d\n",
2013 		    regs, dev->dev_addr, pdev->irq);
2014 
2015 	pci_set_drvdata(pdev, dev);
2016 
2017 	/* enable busmastering and memory-write-invalidate */
2018 	pci_set_master(pdev);
2019 
2020 	if (cp->wol_enabled)
2021 		cp_set_d3_state (cp);
2022 
2023 	return 0;
2024 
2025 err_out_iomap:
2026 	iounmap(regs);
2027 err_out_res:
2028 	pci_release_regions(pdev);
2029 err_out_mwi:
2030 	pci_clear_mwi(pdev);
2031 err_out_disable:
2032 	pci_disable_device(pdev);
2033 err_out_free:
2034 	free_netdev(dev);
2035 	return rc;
2036 }
2037 
2038 static void cp_remove_one (struct pci_dev *pdev)
2039 {
2040 	struct net_device *dev = pci_get_drvdata(pdev);
2041 	struct cp_private *cp = netdev_priv(dev);
2042 
2043 	unregister_netdev(dev);
2044 	iounmap(cp->regs);
2045 	if (cp->wol_enabled)
2046 		pci_set_power_state (pdev, PCI_D0);
2047 	pci_release_regions(pdev);
2048 	pci_clear_mwi(pdev);
2049 	pci_disable_device(pdev);
2050 	free_netdev(dev);
2051 }
2052 
2053 #ifdef CONFIG_PM
2054 static int cp_suspend (struct pci_dev *pdev, pm_message_t state)
2055 {
2056 	struct net_device *dev = pci_get_drvdata(pdev);
2057 	struct cp_private *cp = netdev_priv(dev);
2058 	unsigned long flags;
2059 
2060 	if (!netif_running(dev))
2061 		return 0;
2062 
2063 	netif_device_detach (dev);
2064 	netif_stop_queue (dev);
2065 
2066 	spin_lock_irqsave (&cp->lock, flags);
2067 
2068 	/* Disable Rx and Tx */
2069 	cpw16 (IntrMask, 0);
2070 	cpw8  (Cmd, cpr8 (Cmd) & (~RxOn | ~TxOn));
2071 
2072 	spin_unlock_irqrestore (&cp->lock, flags);
2073 
2074 	pci_save_state(pdev);
2075 	pci_enable_wake(pdev, pci_choose_state(pdev, state), cp->wol_enabled);
2076 	pci_set_power_state(pdev, pci_choose_state(pdev, state));
2077 
2078 	return 0;
2079 }
2080 
2081 static int cp_resume (struct pci_dev *pdev)
2082 {
2083 	struct net_device *dev = pci_get_drvdata (pdev);
2084 	struct cp_private *cp = netdev_priv(dev);
2085 	unsigned long flags;
2086 
2087 	if (!netif_running(dev))
2088 		return 0;
2089 
2090 	netif_device_attach (dev);
2091 
2092 	pci_set_power_state(pdev, PCI_D0);
2093 	pci_restore_state(pdev);
2094 	pci_enable_wake(pdev, PCI_D0, 0);
2095 
2096 	/* FIXME: sh*t may happen if the Rx ring buffer is depleted */
2097 	cp_init_rings_index (cp);
2098 	cp_init_hw (cp);
2099 	cp_enable_irq(cp);
2100 	netif_start_queue (dev);
2101 
2102 	spin_lock_irqsave (&cp->lock, flags);
2103 
2104 	mii_check_media(&cp->mii_if, netif_msg_link(cp), false);
2105 
2106 	spin_unlock_irqrestore (&cp->lock, flags);
2107 
2108 	return 0;
2109 }
2110 #endif /* CONFIG_PM */
2111 
2112 static const struct pci_device_id cp_pci_tbl[] = {
2113         { PCI_DEVICE(PCI_VENDOR_ID_REALTEK,     PCI_DEVICE_ID_REALTEK_8139), },
2114         { PCI_DEVICE(PCI_VENDOR_ID_TTTECH,      PCI_DEVICE_ID_TTTECH_MC322), },
2115         { },
2116 };
2117 MODULE_DEVICE_TABLE(pci, cp_pci_tbl);
2118 
2119 static struct pci_driver cp_driver = {
2120 	.name         = DRV_NAME,
2121 	.id_table     = cp_pci_tbl,
2122 	.probe        =	cp_init_one,
2123 	.remove       = cp_remove_one,
2124 #ifdef CONFIG_PM
2125 	.resume       = cp_resume,
2126 	.suspend      = cp_suspend,
2127 #endif
2128 };
2129 
2130 module_pci_driver(cp_driver);
2131