1 /* 8139cp.c: A Linux PCI Ethernet driver for the RealTek 8139C+ chips. */ 2 /* 3 Copyright 2001-2004 Jeff Garzik <jgarzik@pobox.com> 4 5 Copyright (C) 2001, 2002 David S. Miller (davem@redhat.com) [tg3.c] 6 Copyright (C) 2000, 2001 David S. Miller (davem@redhat.com) [sungem.c] 7 Copyright 2001 Manfred Spraul [natsemi.c] 8 Copyright 1999-2001 by Donald Becker. [natsemi.c] 9 Written 1997-2001 by Donald Becker. [8139too.c] 10 Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. [acenic.c] 11 12 This software may be used and distributed according to the terms of 13 the GNU General Public License (GPL), incorporated herein by reference. 14 Drivers based on or derived from this code fall under the GPL and must 15 retain the authorship, copyright and license notice. This file is not 16 a complete program and may only be used when the entire operating 17 system is licensed under the GPL. 18 19 See the file COPYING in this distribution for more information. 20 21 Contributors: 22 23 Wake-on-LAN support - Felipe Damasio <felipewd@terra.com.br> 24 PCI suspend/resume - Felipe Damasio <felipewd@terra.com.br> 25 LinkChg interrupt - Felipe Damasio <felipewd@terra.com.br> 26 27 TODO: 28 * Test Tx checksumming thoroughly 29 30 Low priority TODO: 31 * Complete reset on PciErr 32 * Consider Rx interrupt mitigation using TimerIntr 33 * Investigate using skb->priority with h/w VLAN priority 34 * Investigate using High Priority Tx Queue with skb->priority 35 * Adjust Rx FIFO threshold and Max Rx DMA burst on Rx FIFO error 36 * Adjust Tx FIFO threshold and Max Tx DMA burst on Tx FIFO error 37 * Implement Tx software interrupt mitigation via 38 Tx descriptor bit 39 * The real minimum of CP_MIN_MTU is 4 bytes. However, 40 for this to be supported, one must(?) turn on packet padding. 41 * Support external MII transceivers (patch available) 42 43 NOTES: 44 * TX checksumming is considered experimental. It is off by 45 default, use ethtool to turn it on. 46 47 */ 48 49 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 50 51 #define DRV_NAME "8139cp" 52 #define DRV_VERSION "1.3" 53 #define DRV_RELDATE "Mar 22, 2004" 54 55 56 #include <linux/module.h> 57 #include <linux/moduleparam.h> 58 #include <linux/kernel.h> 59 #include <linux/compiler.h> 60 #include <linux/netdevice.h> 61 #include <linux/etherdevice.h> 62 #include <linux/init.h> 63 #include <linux/interrupt.h> 64 #include <linux/pci.h> 65 #include <linux/dma-mapping.h> 66 #include <linux/delay.h> 67 #include <linux/ethtool.h> 68 #include <linux/gfp.h> 69 #include <linux/mii.h> 70 #include <linux/if_vlan.h> 71 #include <linux/crc32.h> 72 #include <linux/in.h> 73 #include <linux/ip.h> 74 #include <linux/tcp.h> 75 #include <linux/udp.h> 76 #include <linux/cache.h> 77 #include <asm/io.h> 78 #include <asm/irq.h> 79 #include <linux/uaccess.h> 80 81 /* These identify the driver base version and may not be removed. */ 82 static char version[] = 83 DRV_NAME ": 10/100 PCI Ethernet driver v" DRV_VERSION " (" DRV_RELDATE ")\n"; 84 85 MODULE_AUTHOR("Jeff Garzik <jgarzik@pobox.com>"); 86 MODULE_DESCRIPTION("RealTek RTL-8139C+ series 10/100 PCI Ethernet driver"); 87 MODULE_VERSION(DRV_VERSION); 88 MODULE_LICENSE("GPL"); 89 90 static int debug = -1; 91 module_param(debug, int, 0); 92 MODULE_PARM_DESC (debug, "8139cp: bitmapped message enable number"); 93 94 /* Maximum number of multicast addresses to filter (vs. Rx-all-multicast). 95 The RTL chips use a 64 element hash table based on the Ethernet CRC. */ 96 static int multicast_filter_limit = 32; 97 module_param(multicast_filter_limit, int, 0); 98 MODULE_PARM_DESC (multicast_filter_limit, "8139cp: maximum number of filtered multicast addresses"); 99 100 #define CP_DEF_MSG_ENABLE (NETIF_MSG_DRV | \ 101 NETIF_MSG_PROBE | \ 102 NETIF_MSG_LINK) 103 #define CP_NUM_STATS 14 /* struct cp_dma_stats, plus one */ 104 #define CP_STATS_SIZE 64 /* size in bytes of DMA stats block */ 105 #define CP_REGS_SIZE (0xff + 1) 106 #define CP_REGS_VER 1 /* version 1 */ 107 #define CP_RX_RING_SIZE 64 108 #define CP_TX_RING_SIZE 64 109 #define CP_RING_BYTES \ 110 ((sizeof(struct cp_desc) * CP_RX_RING_SIZE) + \ 111 (sizeof(struct cp_desc) * CP_TX_RING_SIZE) + \ 112 CP_STATS_SIZE) 113 #define NEXT_TX(N) (((N) + 1) & (CP_TX_RING_SIZE - 1)) 114 #define NEXT_RX(N) (((N) + 1) & (CP_RX_RING_SIZE - 1)) 115 #define TX_BUFFS_AVAIL(CP) \ 116 (((CP)->tx_tail <= (CP)->tx_head) ? \ 117 (CP)->tx_tail + (CP_TX_RING_SIZE - 1) - (CP)->tx_head : \ 118 (CP)->tx_tail - (CP)->tx_head - 1) 119 120 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/ 121 #define CP_INTERNAL_PHY 32 122 123 /* The following settings are log_2(bytes)-4: 0 == 16 bytes .. 6==1024, 7==end of packet. */ 124 #define RX_FIFO_THRESH 5 /* Rx buffer level before first PCI xfer. */ 125 #define RX_DMA_BURST 4 /* Maximum PCI burst, '4' is 256 */ 126 #define TX_DMA_BURST 6 /* Maximum PCI burst, '6' is 1024 */ 127 #define TX_EARLY_THRESH 256 /* Early Tx threshold, in bytes */ 128 129 /* Time in jiffies before concluding the transmitter is hung. */ 130 #define TX_TIMEOUT (6*HZ) 131 132 /* hardware minimum and maximum for a single frame's data payload */ 133 #define CP_MIN_MTU 60 /* TODO: allow lower, but pad */ 134 #define CP_MAX_MTU 4096 135 136 enum { 137 /* NIC register offsets */ 138 MAC0 = 0x00, /* Ethernet hardware address. */ 139 MAR0 = 0x08, /* Multicast filter. */ 140 StatsAddr = 0x10, /* 64-bit start addr of 64-byte DMA stats blk */ 141 TxRingAddr = 0x20, /* 64-bit start addr of Tx ring */ 142 HiTxRingAddr = 0x28, /* 64-bit start addr of high priority Tx ring */ 143 Cmd = 0x37, /* Command register */ 144 IntrMask = 0x3C, /* Interrupt mask */ 145 IntrStatus = 0x3E, /* Interrupt status */ 146 TxConfig = 0x40, /* Tx configuration */ 147 ChipVersion = 0x43, /* 8-bit chip version, inside TxConfig */ 148 RxConfig = 0x44, /* Rx configuration */ 149 RxMissed = 0x4C, /* 24 bits valid, write clears */ 150 Cfg9346 = 0x50, /* EEPROM select/control; Cfg reg [un]lock */ 151 Config1 = 0x52, /* Config1 */ 152 Config3 = 0x59, /* Config3 */ 153 Config4 = 0x5A, /* Config4 */ 154 MultiIntr = 0x5C, /* Multiple interrupt select */ 155 BasicModeCtrl = 0x62, /* MII BMCR */ 156 BasicModeStatus = 0x64, /* MII BMSR */ 157 NWayAdvert = 0x66, /* MII ADVERTISE */ 158 NWayLPAR = 0x68, /* MII LPA */ 159 NWayExpansion = 0x6A, /* MII Expansion */ 160 TxDmaOkLowDesc = 0x82, /* Low 16 bit address of a Tx descriptor. */ 161 Config5 = 0xD8, /* Config5 */ 162 TxPoll = 0xD9, /* Tell chip to check Tx descriptors for work */ 163 RxMaxSize = 0xDA, /* Max size of an Rx packet (8169 only) */ 164 CpCmd = 0xE0, /* C+ Command register (C+ mode only) */ 165 IntrMitigate = 0xE2, /* rx/tx interrupt mitigation control */ 166 RxRingAddr = 0xE4, /* 64-bit start addr of Rx ring */ 167 TxThresh = 0xEC, /* Early Tx threshold */ 168 OldRxBufAddr = 0x30, /* DMA address of Rx ring buffer (C mode) */ 169 OldTSD0 = 0x10, /* DMA address of first Tx desc (C mode) */ 170 171 /* Tx and Rx status descriptors */ 172 DescOwn = (1 << 31), /* Descriptor is owned by NIC */ 173 RingEnd = (1 << 30), /* End of descriptor ring */ 174 FirstFrag = (1 << 29), /* First segment of a packet */ 175 LastFrag = (1 << 28), /* Final segment of a packet */ 176 LargeSend = (1 << 27), /* TCP Large Send Offload (TSO) */ 177 MSSShift = 16, /* MSS value position */ 178 MSSMask = 0x7ff, /* MSS value: 11 bits */ 179 TxError = (1 << 23), /* Tx error summary */ 180 RxError = (1 << 20), /* Rx error summary */ 181 IPCS = (1 << 18), /* Calculate IP checksum */ 182 UDPCS = (1 << 17), /* Calculate UDP/IP checksum */ 183 TCPCS = (1 << 16), /* Calculate TCP/IP checksum */ 184 TxVlanTag = (1 << 17), /* Add VLAN tag */ 185 RxVlanTagged = (1 << 16), /* Rx VLAN tag available */ 186 IPFail = (1 << 15), /* IP checksum failed */ 187 UDPFail = (1 << 14), /* UDP/IP checksum failed */ 188 TCPFail = (1 << 13), /* TCP/IP checksum failed */ 189 NormalTxPoll = (1 << 6), /* One or more normal Tx packets to send */ 190 PID1 = (1 << 17), /* 2 protocol id bits: 0==non-IP, */ 191 PID0 = (1 << 16), /* 1==UDP/IP, 2==TCP/IP, 3==IP */ 192 RxProtoTCP = 1, 193 RxProtoUDP = 2, 194 RxProtoIP = 3, 195 TxFIFOUnder = (1 << 25), /* Tx FIFO underrun */ 196 TxOWC = (1 << 22), /* Tx Out-of-window collision */ 197 TxLinkFail = (1 << 21), /* Link failed during Tx of packet */ 198 TxMaxCol = (1 << 20), /* Tx aborted due to excessive collisions */ 199 TxColCntShift = 16, /* Shift, to get 4-bit Tx collision cnt */ 200 TxColCntMask = 0x01 | 0x02 | 0x04 | 0x08, /* 4-bit collision count */ 201 RxErrFrame = (1 << 27), /* Rx frame alignment error */ 202 RxMcast = (1 << 26), /* Rx multicast packet rcv'd */ 203 RxErrCRC = (1 << 18), /* Rx CRC error */ 204 RxErrRunt = (1 << 19), /* Rx error, packet < 64 bytes */ 205 RxErrLong = (1 << 21), /* Rx error, packet > 4096 bytes */ 206 RxErrFIFO = (1 << 22), /* Rx error, FIFO overflowed, pkt bad */ 207 208 /* StatsAddr register */ 209 DumpStats = (1 << 3), /* Begin stats dump */ 210 211 /* RxConfig register */ 212 RxCfgFIFOShift = 13, /* Shift, to get Rx FIFO thresh value */ 213 RxCfgDMAShift = 8, /* Shift, to get Rx Max DMA value */ 214 AcceptErr = 0x20, /* Accept packets with CRC errors */ 215 AcceptRunt = 0x10, /* Accept runt (<64 bytes) packets */ 216 AcceptBroadcast = 0x08, /* Accept broadcast packets */ 217 AcceptMulticast = 0x04, /* Accept multicast packets */ 218 AcceptMyPhys = 0x02, /* Accept pkts with our MAC as dest */ 219 AcceptAllPhys = 0x01, /* Accept all pkts w/ physical dest */ 220 221 /* IntrMask / IntrStatus registers */ 222 PciErr = (1 << 15), /* System error on the PCI bus */ 223 TimerIntr = (1 << 14), /* Asserted when TCTR reaches TimerInt value */ 224 LenChg = (1 << 13), /* Cable length change */ 225 SWInt = (1 << 8), /* Software-requested interrupt */ 226 TxEmpty = (1 << 7), /* No Tx descriptors available */ 227 RxFIFOOvr = (1 << 6), /* Rx FIFO Overflow */ 228 LinkChg = (1 << 5), /* Packet underrun, or link change */ 229 RxEmpty = (1 << 4), /* No Rx descriptors available */ 230 TxErr = (1 << 3), /* Tx error */ 231 TxOK = (1 << 2), /* Tx packet sent */ 232 RxErr = (1 << 1), /* Rx error */ 233 RxOK = (1 << 0), /* Rx packet received */ 234 IntrResvd = (1 << 10), /* reserved, according to RealTek engineers, 235 but hardware likes to raise it */ 236 237 IntrAll = PciErr | TimerIntr | LenChg | SWInt | TxEmpty | 238 RxFIFOOvr | LinkChg | RxEmpty | TxErr | TxOK | 239 RxErr | RxOK | IntrResvd, 240 241 /* C mode command register */ 242 CmdReset = (1 << 4), /* Enable to reset; self-clearing */ 243 RxOn = (1 << 3), /* Rx mode enable */ 244 TxOn = (1 << 2), /* Tx mode enable */ 245 246 /* C+ mode command register */ 247 RxVlanOn = (1 << 6), /* Rx VLAN de-tagging enable */ 248 RxChkSum = (1 << 5), /* Rx checksum offload enable */ 249 PCIDAC = (1 << 4), /* PCI Dual Address Cycle (64-bit PCI) */ 250 PCIMulRW = (1 << 3), /* Enable PCI read/write multiple */ 251 CpRxOn = (1 << 1), /* Rx mode enable */ 252 CpTxOn = (1 << 0), /* Tx mode enable */ 253 254 /* Cfg9436 EEPROM control register */ 255 Cfg9346_Lock = 0x00, /* Lock ConfigX/MII register access */ 256 Cfg9346_Unlock = 0xC0, /* Unlock ConfigX/MII register access */ 257 258 /* TxConfig register */ 259 IFG = (1 << 25) | (1 << 24), /* standard IEEE interframe gap */ 260 TxDMAShift = 8, /* DMA burst value (0-7) is shift this many bits */ 261 262 /* Early Tx Threshold register */ 263 TxThreshMask = 0x3f, /* Mask bits 5-0 */ 264 TxThreshMax = 2048, /* Max early Tx threshold */ 265 266 /* Config1 register */ 267 DriverLoaded = (1 << 5), /* Software marker, driver is loaded */ 268 LWACT = (1 << 4), /* LWAKE active mode */ 269 PMEnable = (1 << 0), /* Enable various PM features of chip */ 270 271 /* Config3 register */ 272 PARMEnable = (1 << 6), /* Enable auto-loading of PHY parms */ 273 MagicPacket = (1 << 5), /* Wake up when receives a Magic Packet */ 274 LinkUp = (1 << 4), /* Wake up when the cable connection is re-established */ 275 276 /* Config4 register */ 277 LWPTN = (1 << 1), /* LWAKE Pattern */ 278 LWPME = (1 << 4), /* LANWAKE vs PMEB */ 279 280 /* Config5 register */ 281 BWF = (1 << 6), /* Accept Broadcast wakeup frame */ 282 MWF = (1 << 5), /* Accept Multicast wakeup frame */ 283 UWF = (1 << 4), /* Accept Unicast wakeup frame */ 284 LANWake = (1 << 1), /* Enable LANWake signal */ 285 PMEStatus = (1 << 0), /* PME status can be reset by PCI RST# */ 286 287 cp_norx_intr_mask = PciErr | LinkChg | TxOK | TxErr | TxEmpty, 288 cp_rx_intr_mask = RxOK | RxErr | RxEmpty | RxFIFOOvr, 289 cp_intr_mask = cp_rx_intr_mask | cp_norx_intr_mask, 290 }; 291 292 static const unsigned int cp_rx_config = 293 (RX_FIFO_THRESH << RxCfgFIFOShift) | 294 (RX_DMA_BURST << RxCfgDMAShift); 295 296 struct cp_desc { 297 __le32 opts1; 298 __le32 opts2; 299 __le64 addr; 300 }; 301 302 struct cp_dma_stats { 303 __le64 tx_ok; 304 __le64 rx_ok; 305 __le64 tx_err; 306 __le32 rx_err; 307 __le16 rx_fifo; 308 __le16 frame_align; 309 __le32 tx_ok_1col; 310 __le32 tx_ok_mcol; 311 __le64 rx_ok_phys; 312 __le64 rx_ok_bcast; 313 __le32 rx_ok_mcast; 314 __le16 tx_abort; 315 __le16 tx_underrun; 316 } __packed; 317 318 struct cp_extra_stats { 319 unsigned long rx_frags; 320 }; 321 322 struct cp_private { 323 void __iomem *regs; 324 struct net_device *dev; 325 spinlock_t lock; 326 u32 msg_enable; 327 328 struct napi_struct napi; 329 330 struct pci_dev *pdev; 331 u32 rx_config; 332 u16 cpcmd; 333 334 struct cp_extra_stats cp_stats; 335 336 unsigned rx_head ____cacheline_aligned; 337 unsigned rx_tail; 338 struct cp_desc *rx_ring; 339 struct sk_buff *rx_skb[CP_RX_RING_SIZE]; 340 341 unsigned tx_head ____cacheline_aligned; 342 unsigned tx_tail; 343 struct cp_desc *tx_ring; 344 struct sk_buff *tx_skb[CP_TX_RING_SIZE]; 345 u32 tx_opts[CP_TX_RING_SIZE]; 346 347 unsigned rx_buf_sz; 348 unsigned wol_enabled : 1; /* Is Wake-on-LAN enabled? */ 349 350 dma_addr_t ring_dma; 351 352 struct mii_if_info mii_if; 353 }; 354 355 #define cpr8(reg) readb(cp->regs + (reg)) 356 #define cpr16(reg) readw(cp->regs + (reg)) 357 #define cpr32(reg) readl(cp->regs + (reg)) 358 #define cpw8(reg,val) writeb((val), cp->regs + (reg)) 359 #define cpw16(reg,val) writew((val), cp->regs + (reg)) 360 #define cpw32(reg,val) writel((val), cp->regs + (reg)) 361 #define cpw8_f(reg,val) do { \ 362 writeb((val), cp->regs + (reg)); \ 363 readb(cp->regs + (reg)); \ 364 } while (0) 365 #define cpw16_f(reg,val) do { \ 366 writew((val), cp->regs + (reg)); \ 367 readw(cp->regs + (reg)); \ 368 } while (0) 369 #define cpw32_f(reg,val) do { \ 370 writel((val), cp->regs + (reg)); \ 371 readl(cp->regs + (reg)); \ 372 } while (0) 373 374 375 static void __cp_set_rx_mode (struct net_device *dev); 376 static void cp_tx (struct cp_private *cp); 377 static void cp_clean_rings (struct cp_private *cp); 378 #ifdef CONFIG_NET_POLL_CONTROLLER 379 static void cp_poll_controller(struct net_device *dev); 380 #endif 381 static int cp_get_eeprom_len(struct net_device *dev); 382 static int cp_get_eeprom(struct net_device *dev, 383 struct ethtool_eeprom *eeprom, u8 *data); 384 static int cp_set_eeprom(struct net_device *dev, 385 struct ethtool_eeprom *eeprom, u8 *data); 386 387 static struct { 388 const char str[ETH_GSTRING_LEN]; 389 } ethtool_stats_keys[] = { 390 { "tx_ok" }, 391 { "rx_ok" }, 392 { "tx_err" }, 393 { "rx_err" }, 394 { "rx_fifo" }, 395 { "frame_align" }, 396 { "tx_ok_1col" }, 397 { "tx_ok_mcol" }, 398 { "rx_ok_phys" }, 399 { "rx_ok_bcast" }, 400 { "rx_ok_mcast" }, 401 { "tx_abort" }, 402 { "tx_underrun" }, 403 { "rx_frags" }, 404 }; 405 406 407 static inline void cp_set_rxbufsize (struct cp_private *cp) 408 { 409 unsigned int mtu = cp->dev->mtu; 410 411 if (mtu > ETH_DATA_LEN) 412 /* MTU + ethernet header + FCS + optional VLAN tag */ 413 cp->rx_buf_sz = mtu + ETH_HLEN + 8; 414 else 415 cp->rx_buf_sz = PKT_BUF_SZ; 416 } 417 418 static inline void cp_rx_skb (struct cp_private *cp, struct sk_buff *skb, 419 struct cp_desc *desc) 420 { 421 u32 opts2 = le32_to_cpu(desc->opts2); 422 423 skb->protocol = eth_type_trans (skb, cp->dev); 424 425 cp->dev->stats.rx_packets++; 426 cp->dev->stats.rx_bytes += skb->len; 427 428 if (opts2 & RxVlanTagged) 429 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), swab16(opts2 & 0xffff)); 430 431 napi_gro_receive(&cp->napi, skb); 432 } 433 434 static void cp_rx_err_acct (struct cp_private *cp, unsigned rx_tail, 435 u32 status, u32 len) 436 { 437 netif_dbg(cp, rx_err, cp->dev, "rx err, slot %d status 0x%x len %d\n", 438 rx_tail, status, len); 439 cp->dev->stats.rx_errors++; 440 if (status & RxErrFrame) 441 cp->dev->stats.rx_frame_errors++; 442 if (status & RxErrCRC) 443 cp->dev->stats.rx_crc_errors++; 444 if ((status & RxErrRunt) || (status & RxErrLong)) 445 cp->dev->stats.rx_length_errors++; 446 if ((status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag)) 447 cp->dev->stats.rx_length_errors++; 448 if (status & RxErrFIFO) 449 cp->dev->stats.rx_fifo_errors++; 450 } 451 452 static inline unsigned int cp_rx_csum_ok (u32 status) 453 { 454 unsigned int protocol = (status >> 16) & 0x3; 455 456 if (((protocol == RxProtoTCP) && !(status & TCPFail)) || 457 ((protocol == RxProtoUDP) && !(status & UDPFail))) 458 return 1; 459 else 460 return 0; 461 } 462 463 static int cp_rx_poll(struct napi_struct *napi, int budget) 464 { 465 struct cp_private *cp = container_of(napi, struct cp_private, napi); 466 struct net_device *dev = cp->dev; 467 unsigned int rx_tail = cp->rx_tail; 468 int rx = 0; 469 470 cpw16(IntrStatus, cp_rx_intr_mask); 471 472 while (rx < budget) { 473 u32 status, len; 474 dma_addr_t mapping, new_mapping; 475 struct sk_buff *skb, *new_skb; 476 struct cp_desc *desc; 477 const unsigned buflen = cp->rx_buf_sz; 478 479 skb = cp->rx_skb[rx_tail]; 480 BUG_ON(!skb); 481 482 desc = &cp->rx_ring[rx_tail]; 483 status = le32_to_cpu(desc->opts1); 484 if (status & DescOwn) 485 break; 486 487 len = (status & 0x1fff) - 4; 488 mapping = le64_to_cpu(desc->addr); 489 490 if ((status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag)) { 491 /* we don't support incoming fragmented frames. 492 * instead, we attempt to ensure that the 493 * pre-allocated RX skbs are properly sized such 494 * that RX fragments are never encountered 495 */ 496 cp_rx_err_acct(cp, rx_tail, status, len); 497 dev->stats.rx_dropped++; 498 cp->cp_stats.rx_frags++; 499 goto rx_next; 500 } 501 502 if (status & (RxError | RxErrFIFO)) { 503 cp_rx_err_acct(cp, rx_tail, status, len); 504 goto rx_next; 505 } 506 507 netif_dbg(cp, rx_status, dev, "rx slot %d status 0x%x len %d\n", 508 rx_tail, status, len); 509 510 new_skb = napi_alloc_skb(napi, buflen); 511 if (!new_skb) { 512 dev->stats.rx_dropped++; 513 goto rx_next; 514 } 515 516 new_mapping = dma_map_single(&cp->pdev->dev, new_skb->data, buflen, 517 DMA_FROM_DEVICE); 518 if (dma_mapping_error(&cp->pdev->dev, new_mapping)) { 519 dev->stats.rx_dropped++; 520 kfree_skb(new_skb); 521 goto rx_next; 522 } 523 524 dma_unmap_single(&cp->pdev->dev, mapping, 525 buflen, DMA_FROM_DEVICE); 526 527 /* Handle checksum offloading for incoming packets. */ 528 if (cp_rx_csum_ok(status)) 529 skb->ip_summed = CHECKSUM_UNNECESSARY; 530 else 531 skb_checksum_none_assert(skb); 532 533 skb_put(skb, len); 534 535 cp->rx_skb[rx_tail] = new_skb; 536 537 cp_rx_skb(cp, skb, desc); 538 rx++; 539 mapping = new_mapping; 540 541 rx_next: 542 cp->rx_ring[rx_tail].opts2 = 0; 543 cp->rx_ring[rx_tail].addr = cpu_to_le64(mapping); 544 if (rx_tail == (CP_RX_RING_SIZE - 1)) 545 desc->opts1 = cpu_to_le32(DescOwn | RingEnd | 546 cp->rx_buf_sz); 547 else 548 desc->opts1 = cpu_to_le32(DescOwn | cp->rx_buf_sz); 549 rx_tail = NEXT_RX(rx_tail); 550 } 551 552 cp->rx_tail = rx_tail; 553 554 /* if we did not reach work limit, then we're done with 555 * this round of polling 556 */ 557 if (rx < budget && napi_complete_done(napi, rx)) { 558 unsigned long flags; 559 560 spin_lock_irqsave(&cp->lock, flags); 561 cpw16_f(IntrMask, cp_intr_mask); 562 spin_unlock_irqrestore(&cp->lock, flags); 563 } 564 565 return rx; 566 } 567 568 static irqreturn_t cp_interrupt (int irq, void *dev_instance) 569 { 570 struct net_device *dev = dev_instance; 571 struct cp_private *cp; 572 int handled = 0; 573 u16 status; 574 u16 mask; 575 576 if (unlikely(dev == NULL)) 577 return IRQ_NONE; 578 cp = netdev_priv(dev); 579 580 spin_lock(&cp->lock); 581 582 mask = cpr16(IntrMask); 583 if (!mask) 584 goto out_unlock; 585 586 status = cpr16(IntrStatus); 587 if (!status || (status == 0xFFFF)) 588 goto out_unlock; 589 590 handled = 1; 591 592 netif_dbg(cp, intr, dev, "intr, status %04x cmd %02x cpcmd %04x\n", 593 status, cpr8(Cmd), cpr16(CpCmd)); 594 595 cpw16(IntrStatus, status & ~cp_rx_intr_mask); 596 597 /* close possible race's with dev_close */ 598 if (unlikely(!netif_running(dev))) { 599 cpw16(IntrMask, 0); 600 goto out_unlock; 601 } 602 603 if (status & (RxOK | RxErr | RxEmpty | RxFIFOOvr)) 604 if (napi_schedule_prep(&cp->napi)) { 605 cpw16_f(IntrMask, cp_norx_intr_mask); 606 __napi_schedule(&cp->napi); 607 } 608 609 if (status & (TxOK | TxErr | TxEmpty | SWInt)) 610 cp_tx(cp); 611 if (status & LinkChg) 612 mii_check_media(&cp->mii_if, netif_msg_link(cp), false); 613 614 615 if (status & PciErr) { 616 u16 pci_status; 617 618 pci_read_config_word(cp->pdev, PCI_STATUS, &pci_status); 619 pci_write_config_word(cp->pdev, PCI_STATUS, pci_status); 620 netdev_err(dev, "PCI bus error, status=%04x, PCI status=%04x\n", 621 status, pci_status); 622 623 /* TODO: reset hardware */ 624 } 625 626 out_unlock: 627 spin_unlock(&cp->lock); 628 629 return IRQ_RETVAL(handled); 630 } 631 632 #ifdef CONFIG_NET_POLL_CONTROLLER 633 /* 634 * Polling receive - used by netconsole and other diagnostic tools 635 * to allow network i/o with interrupts disabled. 636 */ 637 static void cp_poll_controller(struct net_device *dev) 638 { 639 struct cp_private *cp = netdev_priv(dev); 640 const int irq = cp->pdev->irq; 641 642 disable_irq(irq); 643 cp_interrupt(irq, dev); 644 enable_irq(irq); 645 } 646 #endif 647 648 static void cp_tx (struct cp_private *cp) 649 { 650 unsigned tx_head = cp->tx_head; 651 unsigned tx_tail = cp->tx_tail; 652 unsigned bytes_compl = 0, pkts_compl = 0; 653 654 while (tx_tail != tx_head) { 655 struct cp_desc *txd = cp->tx_ring + tx_tail; 656 struct sk_buff *skb; 657 u32 status; 658 659 rmb(); 660 status = le32_to_cpu(txd->opts1); 661 if (status & DescOwn) 662 break; 663 664 skb = cp->tx_skb[tx_tail]; 665 BUG_ON(!skb); 666 667 dma_unmap_single(&cp->pdev->dev, le64_to_cpu(txd->addr), 668 cp->tx_opts[tx_tail] & 0xffff, 669 DMA_TO_DEVICE); 670 671 if (status & LastFrag) { 672 if (status & (TxError | TxFIFOUnder)) { 673 netif_dbg(cp, tx_err, cp->dev, 674 "tx err, status 0x%x\n", status); 675 cp->dev->stats.tx_errors++; 676 if (status & TxOWC) 677 cp->dev->stats.tx_window_errors++; 678 if (status & TxMaxCol) 679 cp->dev->stats.tx_aborted_errors++; 680 if (status & TxLinkFail) 681 cp->dev->stats.tx_carrier_errors++; 682 if (status & TxFIFOUnder) 683 cp->dev->stats.tx_fifo_errors++; 684 } else { 685 cp->dev->stats.collisions += 686 ((status >> TxColCntShift) & TxColCntMask); 687 cp->dev->stats.tx_packets++; 688 cp->dev->stats.tx_bytes += skb->len; 689 netif_dbg(cp, tx_done, cp->dev, 690 "tx done, slot %d\n", tx_tail); 691 } 692 bytes_compl += skb->len; 693 pkts_compl++; 694 dev_consume_skb_irq(skb); 695 } 696 697 cp->tx_skb[tx_tail] = NULL; 698 699 tx_tail = NEXT_TX(tx_tail); 700 } 701 702 cp->tx_tail = tx_tail; 703 704 netdev_completed_queue(cp->dev, pkts_compl, bytes_compl); 705 if (TX_BUFFS_AVAIL(cp) > (MAX_SKB_FRAGS + 1)) 706 netif_wake_queue(cp->dev); 707 } 708 709 static inline u32 cp_tx_vlan_tag(struct sk_buff *skb) 710 { 711 return skb_vlan_tag_present(skb) ? 712 TxVlanTag | swab16(skb_vlan_tag_get(skb)) : 0x00; 713 } 714 715 static void unwind_tx_frag_mapping(struct cp_private *cp, struct sk_buff *skb, 716 int first, int entry_last) 717 { 718 int frag, index; 719 struct cp_desc *txd; 720 skb_frag_t *this_frag; 721 for (frag = 0; frag+first < entry_last; frag++) { 722 index = first+frag; 723 cp->tx_skb[index] = NULL; 724 txd = &cp->tx_ring[index]; 725 this_frag = &skb_shinfo(skb)->frags[frag]; 726 dma_unmap_single(&cp->pdev->dev, le64_to_cpu(txd->addr), 727 skb_frag_size(this_frag), DMA_TO_DEVICE); 728 } 729 } 730 731 static netdev_tx_t cp_start_xmit (struct sk_buff *skb, 732 struct net_device *dev) 733 { 734 struct cp_private *cp = netdev_priv(dev); 735 unsigned entry; 736 u32 eor, opts1; 737 unsigned long intr_flags; 738 __le32 opts2; 739 int mss = 0; 740 741 spin_lock_irqsave(&cp->lock, intr_flags); 742 743 /* This is a hard error, log it. */ 744 if (TX_BUFFS_AVAIL(cp) <= (skb_shinfo(skb)->nr_frags + 1)) { 745 netif_stop_queue(dev); 746 spin_unlock_irqrestore(&cp->lock, intr_flags); 747 netdev_err(dev, "BUG! Tx Ring full when queue awake!\n"); 748 return NETDEV_TX_BUSY; 749 } 750 751 entry = cp->tx_head; 752 eor = (entry == (CP_TX_RING_SIZE - 1)) ? RingEnd : 0; 753 mss = skb_shinfo(skb)->gso_size; 754 755 if (mss > MSSMask) { 756 netdev_WARN_ONCE(dev, "Net bug: GSO size %d too large for 8139CP\n", 757 mss); 758 goto out_dma_error; 759 } 760 761 opts2 = cpu_to_le32(cp_tx_vlan_tag(skb)); 762 opts1 = DescOwn; 763 if (mss) 764 opts1 |= LargeSend | (mss << MSSShift); 765 else if (skb->ip_summed == CHECKSUM_PARTIAL) { 766 const struct iphdr *ip = ip_hdr(skb); 767 if (ip->protocol == IPPROTO_TCP) 768 opts1 |= IPCS | TCPCS; 769 else if (ip->protocol == IPPROTO_UDP) 770 opts1 |= IPCS | UDPCS; 771 else { 772 WARN_ONCE(1, 773 "Net bug: asked to checksum invalid Legacy IP packet\n"); 774 goto out_dma_error; 775 } 776 } 777 778 if (skb_shinfo(skb)->nr_frags == 0) { 779 struct cp_desc *txd = &cp->tx_ring[entry]; 780 u32 len; 781 dma_addr_t mapping; 782 783 len = skb->len; 784 mapping = dma_map_single(&cp->pdev->dev, skb->data, len, DMA_TO_DEVICE); 785 if (dma_mapping_error(&cp->pdev->dev, mapping)) 786 goto out_dma_error; 787 788 txd->opts2 = opts2; 789 txd->addr = cpu_to_le64(mapping); 790 wmb(); 791 792 opts1 |= eor | len | FirstFrag | LastFrag; 793 794 txd->opts1 = cpu_to_le32(opts1); 795 wmb(); 796 797 cp->tx_skb[entry] = skb; 798 cp->tx_opts[entry] = opts1; 799 netif_dbg(cp, tx_queued, cp->dev, "tx queued, slot %d, skblen %d\n", 800 entry, skb->len); 801 } else { 802 struct cp_desc *txd; 803 u32 first_len, first_eor, ctrl; 804 dma_addr_t first_mapping; 805 int frag, first_entry = entry; 806 807 /* We must give this initial chunk to the device last. 808 * Otherwise we could race with the device. 809 */ 810 first_eor = eor; 811 first_len = skb_headlen(skb); 812 first_mapping = dma_map_single(&cp->pdev->dev, skb->data, 813 first_len, DMA_TO_DEVICE); 814 if (dma_mapping_error(&cp->pdev->dev, first_mapping)) 815 goto out_dma_error; 816 817 cp->tx_skb[entry] = skb; 818 819 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) { 820 const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag]; 821 u32 len; 822 dma_addr_t mapping; 823 824 entry = NEXT_TX(entry); 825 826 len = skb_frag_size(this_frag); 827 mapping = dma_map_single(&cp->pdev->dev, 828 skb_frag_address(this_frag), 829 len, DMA_TO_DEVICE); 830 if (dma_mapping_error(&cp->pdev->dev, mapping)) { 831 unwind_tx_frag_mapping(cp, skb, first_entry, entry); 832 goto out_dma_error; 833 } 834 835 eor = (entry == (CP_TX_RING_SIZE - 1)) ? RingEnd : 0; 836 837 ctrl = opts1 | eor | len; 838 839 if (frag == skb_shinfo(skb)->nr_frags - 1) 840 ctrl |= LastFrag; 841 842 txd = &cp->tx_ring[entry]; 843 txd->opts2 = opts2; 844 txd->addr = cpu_to_le64(mapping); 845 wmb(); 846 847 txd->opts1 = cpu_to_le32(ctrl); 848 wmb(); 849 850 cp->tx_opts[entry] = ctrl; 851 cp->tx_skb[entry] = skb; 852 } 853 854 txd = &cp->tx_ring[first_entry]; 855 txd->opts2 = opts2; 856 txd->addr = cpu_to_le64(first_mapping); 857 wmb(); 858 859 ctrl = opts1 | first_eor | first_len | FirstFrag; 860 txd->opts1 = cpu_to_le32(ctrl); 861 wmb(); 862 863 cp->tx_opts[first_entry] = ctrl; 864 netif_dbg(cp, tx_queued, cp->dev, "tx queued, slots %d-%d, skblen %d\n", 865 first_entry, entry, skb->len); 866 } 867 cp->tx_head = NEXT_TX(entry); 868 869 netdev_sent_queue(dev, skb->len); 870 if (TX_BUFFS_AVAIL(cp) <= (MAX_SKB_FRAGS + 1)) 871 netif_stop_queue(dev); 872 873 out_unlock: 874 spin_unlock_irqrestore(&cp->lock, intr_flags); 875 876 cpw8(TxPoll, NormalTxPoll); 877 878 return NETDEV_TX_OK; 879 out_dma_error: 880 dev_kfree_skb_any(skb); 881 cp->dev->stats.tx_dropped++; 882 goto out_unlock; 883 } 884 885 /* Set or clear the multicast filter for this adaptor. 886 This routine is not state sensitive and need not be SMP locked. */ 887 888 static void __cp_set_rx_mode (struct net_device *dev) 889 { 890 struct cp_private *cp = netdev_priv(dev); 891 u32 mc_filter[2]; /* Multicast hash filter */ 892 int rx_mode; 893 894 /* Note: do not reorder, GCC is clever about common statements. */ 895 if (dev->flags & IFF_PROMISC) { 896 /* Unconditionally log net taps. */ 897 rx_mode = 898 AcceptBroadcast | AcceptMulticast | AcceptMyPhys | 899 AcceptAllPhys; 900 mc_filter[1] = mc_filter[0] = 0xffffffff; 901 } else if ((netdev_mc_count(dev) > multicast_filter_limit) || 902 (dev->flags & IFF_ALLMULTI)) { 903 /* Too many to filter perfectly -- accept all multicasts. */ 904 rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys; 905 mc_filter[1] = mc_filter[0] = 0xffffffff; 906 } else { 907 struct netdev_hw_addr *ha; 908 rx_mode = AcceptBroadcast | AcceptMyPhys; 909 mc_filter[1] = mc_filter[0] = 0; 910 netdev_for_each_mc_addr(ha, dev) { 911 int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26; 912 913 mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31); 914 rx_mode |= AcceptMulticast; 915 } 916 } 917 918 /* We can safely update without stopping the chip. */ 919 cp->rx_config = cp_rx_config | rx_mode; 920 cpw32_f(RxConfig, cp->rx_config); 921 922 cpw32_f (MAR0 + 0, mc_filter[0]); 923 cpw32_f (MAR0 + 4, mc_filter[1]); 924 } 925 926 static void cp_set_rx_mode (struct net_device *dev) 927 { 928 unsigned long flags; 929 struct cp_private *cp = netdev_priv(dev); 930 931 spin_lock_irqsave (&cp->lock, flags); 932 __cp_set_rx_mode(dev); 933 spin_unlock_irqrestore (&cp->lock, flags); 934 } 935 936 static void __cp_get_stats(struct cp_private *cp) 937 { 938 /* only lower 24 bits valid; write any value to clear */ 939 cp->dev->stats.rx_missed_errors += (cpr32 (RxMissed) & 0xffffff); 940 cpw32 (RxMissed, 0); 941 } 942 943 static struct net_device_stats *cp_get_stats(struct net_device *dev) 944 { 945 struct cp_private *cp = netdev_priv(dev); 946 unsigned long flags; 947 948 /* The chip only need report frame silently dropped. */ 949 spin_lock_irqsave(&cp->lock, flags); 950 if (netif_running(dev) && netif_device_present(dev)) 951 __cp_get_stats(cp); 952 spin_unlock_irqrestore(&cp->lock, flags); 953 954 return &dev->stats; 955 } 956 957 static void cp_stop_hw (struct cp_private *cp) 958 { 959 cpw16(IntrStatus, ~(cpr16(IntrStatus))); 960 cpw16_f(IntrMask, 0); 961 cpw8(Cmd, 0); 962 cpw16_f(CpCmd, 0); 963 cpw16_f(IntrStatus, ~(cpr16(IntrStatus))); 964 965 cp->rx_tail = 0; 966 cp->tx_head = cp->tx_tail = 0; 967 968 netdev_reset_queue(cp->dev); 969 } 970 971 static void cp_reset_hw (struct cp_private *cp) 972 { 973 unsigned work = 1000; 974 975 cpw8(Cmd, CmdReset); 976 977 while (work--) { 978 if (!(cpr8(Cmd) & CmdReset)) 979 return; 980 981 schedule_timeout_uninterruptible(10); 982 } 983 984 netdev_err(cp->dev, "hardware reset timeout\n"); 985 } 986 987 static inline void cp_start_hw (struct cp_private *cp) 988 { 989 dma_addr_t ring_dma; 990 991 cpw16(CpCmd, cp->cpcmd); 992 993 /* 994 * These (at least TxRingAddr) need to be configured after the 995 * corresponding bits in CpCmd are enabled. Datasheet v1.6 §6.33 996 * (C+ Command Register) recommends that these and more be configured 997 * *after* the [RT]xEnable bits in CpCmd are set. And on some hardware 998 * it's been observed that the TxRingAddr is actually reset to garbage 999 * when C+ mode Tx is enabled in CpCmd. 1000 */ 1001 cpw32_f(HiTxRingAddr, 0); 1002 cpw32_f(HiTxRingAddr + 4, 0); 1003 1004 ring_dma = cp->ring_dma; 1005 cpw32_f(RxRingAddr, ring_dma & 0xffffffff); 1006 cpw32_f(RxRingAddr + 4, (ring_dma >> 16) >> 16); 1007 1008 ring_dma += sizeof(struct cp_desc) * CP_RX_RING_SIZE; 1009 cpw32_f(TxRingAddr, ring_dma & 0xffffffff); 1010 cpw32_f(TxRingAddr + 4, (ring_dma >> 16) >> 16); 1011 1012 /* 1013 * Strictly speaking, the datasheet says this should be enabled 1014 * *before* setting the descriptor addresses. But what, then, would 1015 * prevent it from doing DMA to random unconfigured addresses? 1016 * This variant appears to work fine. 1017 */ 1018 cpw8(Cmd, RxOn | TxOn); 1019 1020 netdev_reset_queue(cp->dev); 1021 } 1022 1023 static void cp_enable_irq(struct cp_private *cp) 1024 { 1025 cpw16_f(IntrMask, cp_intr_mask); 1026 } 1027 1028 static void cp_init_hw (struct cp_private *cp) 1029 { 1030 struct net_device *dev = cp->dev; 1031 1032 cp_reset_hw(cp); 1033 1034 cpw8_f (Cfg9346, Cfg9346_Unlock); 1035 1036 /* Restore our idea of the MAC address. */ 1037 cpw32_f (MAC0 + 0, le32_to_cpu (*(__le32 *) (dev->dev_addr + 0))); 1038 cpw32_f (MAC0 + 4, le32_to_cpu (*(__le32 *) (dev->dev_addr + 4))); 1039 1040 cp_start_hw(cp); 1041 cpw8(TxThresh, 0x06); /* XXX convert magic num to a constant */ 1042 1043 __cp_set_rx_mode(dev); 1044 cpw32_f (TxConfig, IFG | (TX_DMA_BURST << TxDMAShift)); 1045 1046 cpw8(Config1, cpr8(Config1) | DriverLoaded | PMEnable); 1047 /* Disable Wake-on-LAN. Can be turned on with ETHTOOL_SWOL */ 1048 cpw8(Config3, PARMEnable); 1049 cp->wol_enabled = 0; 1050 1051 cpw8(Config5, cpr8(Config5) & PMEStatus); 1052 1053 cpw16(MultiIntr, 0); 1054 1055 cpw8_f(Cfg9346, Cfg9346_Lock); 1056 } 1057 1058 static int cp_refill_rx(struct cp_private *cp) 1059 { 1060 struct net_device *dev = cp->dev; 1061 unsigned i; 1062 1063 for (i = 0; i < CP_RX_RING_SIZE; i++) { 1064 struct sk_buff *skb; 1065 dma_addr_t mapping; 1066 1067 skb = netdev_alloc_skb_ip_align(dev, cp->rx_buf_sz); 1068 if (!skb) 1069 goto err_out; 1070 1071 mapping = dma_map_single(&cp->pdev->dev, skb->data, 1072 cp->rx_buf_sz, DMA_FROM_DEVICE); 1073 if (dma_mapping_error(&cp->pdev->dev, mapping)) { 1074 kfree_skb(skb); 1075 goto err_out; 1076 } 1077 cp->rx_skb[i] = skb; 1078 1079 cp->rx_ring[i].opts2 = 0; 1080 cp->rx_ring[i].addr = cpu_to_le64(mapping); 1081 if (i == (CP_RX_RING_SIZE - 1)) 1082 cp->rx_ring[i].opts1 = 1083 cpu_to_le32(DescOwn | RingEnd | cp->rx_buf_sz); 1084 else 1085 cp->rx_ring[i].opts1 = 1086 cpu_to_le32(DescOwn | cp->rx_buf_sz); 1087 } 1088 1089 return 0; 1090 1091 err_out: 1092 cp_clean_rings(cp); 1093 return -ENOMEM; 1094 } 1095 1096 static void cp_init_rings_index (struct cp_private *cp) 1097 { 1098 cp->rx_tail = 0; 1099 cp->tx_head = cp->tx_tail = 0; 1100 } 1101 1102 static int cp_init_rings (struct cp_private *cp) 1103 { 1104 memset(cp->tx_ring, 0, sizeof(struct cp_desc) * CP_TX_RING_SIZE); 1105 cp->tx_ring[CP_TX_RING_SIZE - 1].opts1 = cpu_to_le32(RingEnd); 1106 memset(cp->tx_opts, 0, sizeof(cp->tx_opts)); 1107 1108 cp_init_rings_index(cp); 1109 1110 return cp_refill_rx (cp); 1111 } 1112 1113 static int cp_alloc_rings (struct cp_private *cp) 1114 { 1115 struct device *d = &cp->pdev->dev; 1116 void *mem; 1117 int rc; 1118 1119 mem = dma_alloc_coherent(d, CP_RING_BYTES, &cp->ring_dma, GFP_KERNEL); 1120 if (!mem) 1121 return -ENOMEM; 1122 1123 cp->rx_ring = mem; 1124 cp->tx_ring = &cp->rx_ring[CP_RX_RING_SIZE]; 1125 1126 rc = cp_init_rings(cp); 1127 if (rc < 0) 1128 dma_free_coherent(d, CP_RING_BYTES, cp->rx_ring, cp->ring_dma); 1129 1130 return rc; 1131 } 1132 1133 static void cp_clean_rings (struct cp_private *cp) 1134 { 1135 struct cp_desc *desc; 1136 unsigned i; 1137 1138 for (i = 0; i < CP_RX_RING_SIZE; i++) { 1139 if (cp->rx_skb[i]) { 1140 desc = cp->rx_ring + i; 1141 dma_unmap_single(&cp->pdev->dev,le64_to_cpu(desc->addr), 1142 cp->rx_buf_sz, DMA_FROM_DEVICE); 1143 dev_kfree_skb_any(cp->rx_skb[i]); 1144 } 1145 } 1146 1147 for (i = 0; i < CP_TX_RING_SIZE; i++) { 1148 if (cp->tx_skb[i]) { 1149 struct sk_buff *skb = cp->tx_skb[i]; 1150 1151 desc = cp->tx_ring + i; 1152 dma_unmap_single(&cp->pdev->dev,le64_to_cpu(desc->addr), 1153 le32_to_cpu(desc->opts1) & 0xffff, 1154 DMA_TO_DEVICE); 1155 if (le32_to_cpu(desc->opts1) & LastFrag) 1156 dev_kfree_skb_any(skb); 1157 cp->dev->stats.tx_dropped++; 1158 } 1159 } 1160 netdev_reset_queue(cp->dev); 1161 1162 memset(cp->rx_ring, 0, sizeof(struct cp_desc) * CP_RX_RING_SIZE); 1163 memset(cp->tx_ring, 0, sizeof(struct cp_desc) * CP_TX_RING_SIZE); 1164 memset(cp->tx_opts, 0, sizeof(cp->tx_opts)); 1165 1166 memset(cp->rx_skb, 0, sizeof(struct sk_buff *) * CP_RX_RING_SIZE); 1167 memset(cp->tx_skb, 0, sizeof(struct sk_buff *) * CP_TX_RING_SIZE); 1168 } 1169 1170 static void cp_free_rings (struct cp_private *cp) 1171 { 1172 cp_clean_rings(cp); 1173 dma_free_coherent(&cp->pdev->dev, CP_RING_BYTES, cp->rx_ring, 1174 cp->ring_dma); 1175 cp->rx_ring = NULL; 1176 cp->tx_ring = NULL; 1177 } 1178 1179 static int cp_open (struct net_device *dev) 1180 { 1181 struct cp_private *cp = netdev_priv(dev); 1182 const int irq = cp->pdev->irq; 1183 int rc; 1184 1185 netif_dbg(cp, ifup, dev, "enabling interface\n"); 1186 1187 rc = cp_alloc_rings(cp); 1188 if (rc) 1189 return rc; 1190 1191 napi_enable(&cp->napi); 1192 1193 cp_init_hw(cp); 1194 1195 rc = request_irq(irq, cp_interrupt, IRQF_SHARED, dev->name, dev); 1196 if (rc) 1197 goto err_out_hw; 1198 1199 cp_enable_irq(cp); 1200 1201 netif_carrier_off(dev); 1202 mii_check_media(&cp->mii_if, netif_msg_link(cp), true); 1203 netif_start_queue(dev); 1204 1205 return 0; 1206 1207 err_out_hw: 1208 napi_disable(&cp->napi); 1209 cp_stop_hw(cp); 1210 cp_free_rings(cp); 1211 return rc; 1212 } 1213 1214 static int cp_close (struct net_device *dev) 1215 { 1216 struct cp_private *cp = netdev_priv(dev); 1217 unsigned long flags; 1218 1219 napi_disable(&cp->napi); 1220 1221 netif_dbg(cp, ifdown, dev, "disabling interface\n"); 1222 1223 spin_lock_irqsave(&cp->lock, flags); 1224 1225 netif_stop_queue(dev); 1226 netif_carrier_off(dev); 1227 1228 cp_stop_hw(cp); 1229 1230 spin_unlock_irqrestore(&cp->lock, flags); 1231 1232 free_irq(cp->pdev->irq, dev); 1233 1234 cp_free_rings(cp); 1235 return 0; 1236 } 1237 1238 static void cp_tx_timeout(struct net_device *dev, unsigned int txqueue) 1239 { 1240 struct cp_private *cp = netdev_priv(dev); 1241 unsigned long flags; 1242 int i; 1243 1244 netdev_warn(dev, "Transmit timeout, status %2x %4x %4x %4x\n", 1245 cpr8(Cmd), cpr16(CpCmd), 1246 cpr16(IntrStatus), cpr16(IntrMask)); 1247 1248 spin_lock_irqsave(&cp->lock, flags); 1249 1250 netif_dbg(cp, tx_err, cp->dev, "TX ring head %d tail %d desc %x\n", 1251 cp->tx_head, cp->tx_tail, cpr16(TxDmaOkLowDesc)); 1252 for (i = 0; i < CP_TX_RING_SIZE; i++) { 1253 netif_dbg(cp, tx_err, cp->dev, 1254 "TX slot %d @%p: %08x (%08x) %08x %llx %p\n", 1255 i, &cp->tx_ring[i], le32_to_cpu(cp->tx_ring[i].opts1), 1256 cp->tx_opts[i], le32_to_cpu(cp->tx_ring[i].opts2), 1257 le64_to_cpu(cp->tx_ring[i].addr), 1258 cp->tx_skb[i]); 1259 } 1260 1261 cp_stop_hw(cp); 1262 cp_clean_rings(cp); 1263 cp_init_rings(cp); 1264 cp_start_hw(cp); 1265 __cp_set_rx_mode(dev); 1266 cpw16_f(IntrMask, cp_norx_intr_mask); 1267 1268 netif_wake_queue(dev); 1269 napi_schedule_irqoff(&cp->napi); 1270 1271 spin_unlock_irqrestore(&cp->lock, flags); 1272 } 1273 1274 static int cp_change_mtu(struct net_device *dev, int new_mtu) 1275 { 1276 struct cp_private *cp = netdev_priv(dev); 1277 1278 /* if network interface not up, no need for complexity */ 1279 if (!netif_running(dev)) { 1280 WRITE_ONCE(dev->mtu, new_mtu); 1281 cp_set_rxbufsize(cp); /* set new rx buf size */ 1282 return 0; 1283 } 1284 1285 /* network IS up, close it, reset MTU, and come up again. */ 1286 cp_close(dev); 1287 WRITE_ONCE(dev->mtu, new_mtu); 1288 cp_set_rxbufsize(cp); 1289 return cp_open(dev); 1290 } 1291 1292 static const char mii_2_8139_map[8] = { 1293 BasicModeCtrl, 1294 BasicModeStatus, 1295 0, 1296 0, 1297 NWayAdvert, 1298 NWayLPAR, 1299 NWayExpansion, 1300 0 1301 }; 1302 1303 static int mdio_read(struct net_device *dev, int phy_id, int location) 1304 { 1305 struct cp_private *cp = netdev_priv(dev); 1306 1307 return location < 8 && mii_2_8139_map[location] ? 1308 readw(cp->regs + mii_2_8139_map[location]) : 0; 1309 } 1310 1311 1312 static void mdio_write(struct net_device *dev, int phy_id, int location, 1313 int value) 1314 { 1315 struct cp_private *cp = netdev_priv(dev); 1316 1317 if (location == 0) { 1318 cpw8(Cfg9346, Cfg9346_Unlock); 1319 cpw16(BasicModeCtrl, value); 1320 cpw8(Cfg9346, Cfg9346_Lock); 1321 } else if (location < 8 && mii_2_8139_map[location]) 1322 cpw16(mii_2_8139_map[location], value); 1323 } 1324 1325 /* Set the ethtool Wake-on-LAN settings */ 1326 static int netdev_set_wol (struct cp_private *cp, 1327 const struct ethtool_wolinfo *wol) 1328 { 1329 u8 options; 1330 1331 options = cpr8 (Config3) & ~(LinkUp | MagicPacket); 1332 /* If WOL is being disabled, no need for complexity */ 1333 if (wol->wolopts) { 1334 if (wol->wolopts & WAKE_PHY) options |= LinkUp; 1335 if (wol->wolopts & WAKE_MAGIC) options |= MagicPacket; 1336 } 1337 1338 cpw8 (Cfg9346, Cfg9346_Unlock); 1339 cpw8 (Config3, options); 1340 cpw8 (Cfg9346, Cfg9346_Lock); 1341 1342 options = 0; /* Paranoia setting */ 1343 options = cpr8 (Config5) & ~(UWF | MWF | BWF); 1344 /* If WOL is being disabled, no need for complexity */ 1345 if (wol->wolopts) { 1346 if (wol->wolopts & WAKE_UCAST) options |= UWF; 1347 if (wol->wolopts & WAKE_BCAST) options |= BWF; 1348 if (wol->wolopts & WAKE_MCAST) options |= MWF; 1349 } 1350 1351 cpw8 (Config5, options); 1352 1353 cp->wol_enabled = (wol->wolopts) ? 1 : 0; 1354 1355 return 0; 1356 } 1357 1358 /* Get the ethtool Wake-on-LAN settings */ 1359 static void netdev_get_wol (struct cp_private *cp, 1360 struct ethtool_wolinfo *wol) 1361 { 1362 u8 options; 1363 1364 wol->wolopts = 0; /* Start from scratch */ 1365 wol->supported = WAKE_PHY | WAKE_BCAST | WAKE_MAGIC | 1366 WAKE_MCAST | WAKE_UCAST; 1367 /* We don't need to go on if WOL is disabled */ 1368 if (!cp->wol_enabled) return; 1369 1370 options = cpr8 (Config3); 1371 if (options & LinkUp) wol->wolopts |= WAKE_PHY; 1372 if (options & MagicPacket) wol->wolopts |= WAKE_MAGIC; 1373 1374 options = 0; /* Paranoia setting */ 1375 options = cpr8 (Config5); 1376 if (options & UWF) wol->wolopts |= WAKE_UCAST; 1377 if (options & BWF) wol->wolopts |= WAKE_BCAST; 1378 if (options & MWF) wol->wolopts |= WAKE_MCAST; 1379 } 1380 1381 static void cp_get_drvinfo (struct net_device *dev, struct ethtool_drvinfo *info) 1382 { 1383 struct cp_private *cp = netdev_priv(dev); 1384 1385 strscpy(info->driver, DRV_NAME, sizeof(info->driver)); 1386 strscpy(info->version, DRV_VERSION, sizeof(info->version)); 1387 strscpy(info->bus_info, pci_name(cp->pdev), sizeof(info->bus_info)); 1388 } 1389 1390 static void cp_get_ringparam(struct net_device *dev, 1391 struct ethtool_ringparam *ring, 1392 struct kernel_ethtool_ringparam *kernel_ring, 1393 struct netlink_ext_ack *extack) 1394 { 1395 ring->rx_max_pending = CP_RX_RING_SIZE; 1396 ring->tx_max_pending = CP_TX_RING_SIZE; 1397 ring->rx_pending = CP_RX_RING_SIZE; 1398 ring->tx_pending = CP_TX_RING_SIZE; 1399 } 1400 1401 static int cp_get_regs_len(struct net_device *dev) 1402 { 1403 return CP_REGS_SIZE; 1404 } 1405 1406 static int cp_get_sset_count (struct net_device *dev, int sset) 1407 { 1408 switch (sset) { 1409 case ETH_SS_STATS: 1410 return CP_NUM_STATS; 1411 default: 1412 return -EOPNOTSUPP; 1413 } 1414 } 1415 1416 static int cp_get_link_ksettings(struct net_device *dev, 1417 struct ethtool_link_ksettings *cmd) 1418 { 1419 struct cp_private *cp = netdev_priv(dev); 1420 unsigned long flags; 1421 1422 spin_lock_irqsave(&cp->lock, flags); 1423 mii_ethtool_get_link_ksettings(&cp->mii_if, cmd); 1424 spin_unlock_irqrestore(&cp->lock, flags); 1425 1426 return 0; 1427 } 1428 1429 static int cp_set_link_ksettings(struct net_device *dev, 1430 const struct ethtool_link_ksettings *cmd) 1431 { 1432 struct cp_private *cp = netdev_priv(dev); 1433 int rc; 1434 unsigned long flags; 1435 1436 spin_lock_irqsave(&cp->lock, flags); 1437 rc = mii_ethtool_set_link_ksettings(&cp->mii_if, cmd); 1438 spin_unlock_irqrestore(&cp->lock, flags); 1439 1440 return rc; 1441 } 1442 1443 static int cp_nway_reset(struct net_device *dev) 1444 { 1445 struct cp_private *cp = netdev_priv(dev); 1446 return mii_nway_restart(&cp->mii_if); 1447 } 1448 1449 static u32 cp_get_msglevel(struct net_device *dev) 1450 { 1451 struct cp_private *cp = netdev_priv(dev); 1452 return cp->msg_enable; 1453 } 1454 1455 static void cp_set_msglevel(struct net_device *dev, u32 value) 1456 { 1457 struct cp_private *cp = netdev_priv(dev); 1458 cp->msg_enable = value; 1459 } 1460 1461 static int cp_set_features(struct net_device *dev, netdev_features_t features) 1462 { 1463 struct cp_private *cp = netdev_priv(dev); 1464 unsigned long flags; 1465 1466 if (!((dev->features ^ features) & NETIF_F_RXCSUM)) 1467 return 0; 1468 1469 spin_lock_irqsave(&cp->lock, flags); 1470 1471 if (features & NETIF_F_RXCSUM) 1472 cp->cpcmd |= RxChkSum; 1473 else 1474 cp->cpcmd &= ~RxChkSum; 1475 1476 if (features & NETIF_F_HW_VLAN_CTAG_RX) 1477 cp->cpcmd |= RxVlanOn; 1478 else 1479 cp->cpcmd &= ~RxVlanOn; 1480 1481 cpw16_f(CpCmd, cp->cpcmd); 1482 spin_unlock_irqrestore(&cp->lock, flags); 1483 1484 return 0; 1485 } 1486 1487 static void cp_get_regs(struct net_device *dev, struct ethtool_regs *regs, 1488 void *p) 1489 { 1490 struct cp_private *cp = netdev_priv(dev); 1491 unsigned long flags; 1492 1493 if (regs->len < CP_REGS_SIZE) 1494 return /* -EINVAL */; 1495 1496 regs->version = CP_REGS_VER; 1497 1498 spin_lock_irqsave(&cp->lock, flags); 1499 memcpy_fromio(p, cp->regs, CP_REGS_SIZE); 1500 spin_unlock_irqrestore(&cp->lock, flags); 1501 } 1502 1503 static void cp_get_wol (struct net_device *dev, struct ethtool_wolinfo *wol) 1504 { 1505 struct cp_private *cp = netdev_priv(dev); 1506 unsigned long flags; 1507 1508 spin_lock_irqsave (&cp->lock, flags); 1509 netdev_get_wol (cp, wol); 1510 spin_unlock_irqrestore (&cp->lock, flags); 1511 } 1512 1513 static int cp_set_wol (struct net_device *dev, struct ethtool_wolinfo *wol) 1514 { 1515 struct cp_private *cp = netdev_priv(dev); 1516 unsigned long flags; 1517 int rc; 1518 1519 spin_lock_irqsave (&cp->lock, flags); 1520 rc = netdev_set_wol (cp, wol); 1521 spin_unlock_irqrestore (&cp->lock, flags); 1522 1523 return rc; 1524 } 1525 1526 static void cp_get_strings (struct net_device *dev, u32 stringset, u8 *buf) 1527 { 1528 switch (stringset) { 1529 case ETH_SS_STATS: 1530 memcpy(buf, ðtool_stats_keys, sizeof(ethtool_stats_keys)); 1531 break; 1532 default: 1533 BUG(); 1534 break; 1535 } 1536 } 1537 1538 static void cp_get_ethtool_stats (struct net_device *dev, 1539 struct ethtool_stats *estats, u64 *tmp_stats) 1540 { 1541 struct cp_private *cp = netdev_priv(dev); 1542 struct cp_dma_stats *nic_stats; 1543 dma_addr_t dma; 1544 int i; 1545 1546 nic_stats = dma_alloc_coherent(&cp->pdev->dev, sizeof(*nic_stats), 1547 &dma, GFP_KERNEL); 1548 if (!nic_stats) 1549 return; 1550 1551 /* begin NIC statistics dump */ 1552 cpw32(StatsAddr + 4, (u64)dma >> 32); 1553 cpw32(StatsAddr, ((u64)dma & DMA_BIT_MASK(32)) | DumpStats); 1554 cpr32(StatsAddr); 1555 1556 for (i = 0; i < 1000; i++) { 1557 if ((cpr32(StatsAddr) & DumpStats) == 0) 1558 break; 1559 udelay(10); 1560 } 1561 cpw32(StatsAddr, 0); 1562 cpw32(StatsAddr + 4, 0); 1563 cpr32(StatsAddr); 1564 1565 i = 0; 1566 tmp_stats[i++] = le64_to_cpu(nic_stats->tx_ok); 1567 tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok); 1568 tmp_stats[i++] = le64_to_cpu(nic_stats->tx_err); 1569 tmp_stats[i++] = le32_to_cpu(nic_stats->rx_err); 1570 tmp_stats[i++] = le16_to_cpu(nic_stats->rx_fifo); 1571 tmp_stats[i++] = le16_to_cpu(nic_stats->frame_align); 1572 tmp_stats[i++] = le32_to_cpu(nic_stats->tx_ok_1col); 1573 tmp_stats[i++] = le32_to_cpu(nic_stats->tx_ok_mcol); 1574 tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok_phys); 1575 tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok_bcast); 1576 tmp_stats[i++] = le32_to_cpu(nic_stats->rx_ok_mcast); 1577 tmp_stats[i++] = le16_to_cpu(nic_stats->tx_abort); 1578 tmp_stats[i++] = le16_to_cpu(nic_stats->tx_underrun); 1579 tmp_stats[i++] = cp->cp_stats.rx_frags; 1580 BUG_ON(i != CP_NUM_STATS); 1581 1582 dma_free_coherent(&cp->pdev->dev, sizeof(*nic_stats), nic_stats, dma); 1583 } 1584 1585 static const struct ethtool_ops cp_ethtool_ops = { 1586 .get_drvinfo = cp_get_drvinfo, 1587 .get_regs_len = cp_get_regs_len, 1588 .get_sset_count = cp_get_sset_count, 1589 .nway_reset = cp_nway_reset, 1590 .get_link = ethtool_op_get_link, 1591 .get_msglevel = cp_get_msglevel, 1592 .set_msglevel = cp_set_msglevel, 1593 .get_regs = cp_get_regs, 1594 .get_wol = cp_get_wol, 1595 .set_wol = cp_set_wol, 1596 .get_strings = cp_get_strings, 1597 .get_ethtool_stats = cp_get_ethtool_stats, 1598 .get_eeprom_len = cp_get_eeprom_len, 1599 .get_eeprom = cp_get_eeprom, 1600 .set_eeprom = cp_set_eeprom, 1601 .get_ringparam = cp_get_ringparam, 1602 .get_link_ksettings = cp_get_link_ksettings, 1603 .set_link_ksettings = cp_set_link_ksettings, 1604 }; 1605 1606 static int cp_ioctl (struct net_device *dev, struct ifreq *rq, int cmd) 1607 { 1608 struct cp_private *cp = netdev_priv(dev); 1609 int rc; 1610 unsigned long flags; 1611 1612 if (!netif_running(dev)) 1613 return -EINVAL; 1614 1615 spin_lock_irqsave(&cp->lock, flags); 1616 rc = generic_mii_ioctl(&cp->mii_if, if_mii(rq), cmd, NULL); 1617 spin_unlock_irqrestore(&cp->lock, flags); 1618 return rc; 1619 } 1620 1621 static int cp_set_mac_address(struct net_device *dev, void *p) 1622 { 1623 struct cp_private *cp = netdev_priv(dev); 1624 struct sockaddr *addr = p; 1625 1626 if (!is_valid_ether_addr(addr->sa_data)) 1627 return -EADDRNOTAVAIL; 1628 1629 eth_hw_addr_set(dev, addr->sa_data); 1630 1631 spin_lock_irq(&cp->lock); 1632 1633 cpw8_f(Cfg9346, Cfg9346_Unlock); 1634 cpw32_f(MAC0 + 0, le32_to_cpu (*(__le32 *) (dev->dev_addr + 0))); 1635 cpw32_f(MAC0 + 4, le32_to_cpu (*(__le32 *) (dev->dev_addr + 4))); 1636 cpw8_f(Cfg9346, Cfg9346_Lock); 1637 1638 spin_unlock_irq(&cp->lock); 1639 1640 return 0; 1641 } 1642 1643 /* Serial EEPROM section. */ 1644 1645 /* EEPROM_Ctrl bits. */ 1646 #define EE_SHIFT_CLK 0x04 /* EEPROM shift clock. */ 1647 #define EE_CS 0x08 /* EEPROM chip select. */ 1648 #define EE_DATA_WRITE 0x02 /* EEPROM chip data in. */ 1649 #define EE_WRITE_0 0x00 1650 #define EE_WRITE_1 0x02 1651 #define EE_DATA_READ 0x01 /* EEPROM chip data out. */ 1652 #define EE_ENB (0x80 | EE_CS) 1653 1654 /* Delay between EEPROM clock transitions. 1655 No extra delay is needed with 33Mhz PCI, but 66Mhz may change this. 1656 */ 1657 1658 #define eeprom_delay() readb(ee_addr) 1659 1660 /* The EEPROM commands include the alway-set leading bit. */ 1661 #define EE_EXTEND_CMD (4) 1662 #define EE_WRITE_CMD (5) 1663 #define EE_READ_CMD (6) 1664 #define EE_ERASE_CMD (7) 1665 1666 #define EE_EWDS_ADDR (0) 1667 #define EE_WRAL_ADDR (1) 1668 #define EE_ERAL_ADDR (2) 1669 #define EE_EWEN_ADDR (3) 1670 1671 #define CP_EEPROM_MAGIC PCI_DEVICE_ID_REALTEK_8139 1672 1673 static void eeprom_cmd_start(void __iomem *ee_addr) 1674 { 1675 writeb (EE_ENB & ~EE_CS, ee_addr); 1676 writeb (EE_ENB, ee_addr); 1677 eeprom_delay (); 1678 } 1679 1680 static void eeprom_cmd(void __iomem *ee_addr, int cmd, int cmd_len) 1681 { 1682 int i; 1683 1684 /* Shift the command bits out. */ 1685 for (i = cmd_len - 1; i >= 0; i--) { 1686 int dataval = (cmd & (1 << i)) ? EE_DATA_WRITE : 0; 1687 writeb (EE_ENB | dataval, ee_addr); 1688 eeprom_delay (); 1689 writeb (EE_ENB | dataval | EE_SHIFT_CLK, ee_addr); 1690 eeprom_delay (); 1691 } 1692 writeb (EE_ENB, ee_addr); 1693 eeprom_delay (); 1694 } 1695 1696 static void eeprom_cmd_end(void __iomem *ee_addr) 1697 { 1698 writeb(0, ee_addr); 1699 eeprom_delay (); 1700 } 1701 1702 static void eeprom_extend_cmd(void __iomem *ee_addr, int extend_cmd, 1703 int addr_len) 1704 { 1705 int cmd = (EE_EXTEND_CMD << addr_len) | (extend_cmd << (addr_len - 2)); 1706 1707 eeprom_cmd_start(ee_addr); 1708 eeprom_cmd(ee_addr, cmd, 3 + addr_len); 1709 eeprom_cmd_end(ee_addr); 1710 } 1711 1712 static u16 read_eeprom (void __iomem *ioaddr, int location, int addr_len) 1713 { 1714 int i; 1715 u16 retval = 0; 1716 void __iomem *ee_addr = ioaddr + Cfg9346; 1717 int read_cmd = location | (EE_READ_CMD << addr_len); 1718 1719 eeprom_cmd_start(ee_addr); 1720 eeprom_cmd(ee_addr, read_cmd, 3 + addr_len); 1721 1722 for (i = 16; i > 0; i--) { 1723 writeb (EE_ENB | EE_SHIFT_CLK, ee_addr); 1724 eeprom_delay (); 1725 retval = 1726 (retval << 1) | ((readb (ee_addr) & EE_DATA_READ) ? 1 : 1727 0); 1728 writeb (EE_ENB, ee_addr); 1729 eeprom_delay (); 1730 } 1731 1732 eeprom_cmd_end(ee_addr); 1733 1734 return retval; 1735 } 1736 1737 static void write_eeprom(void __iomem *ioaddr, int location, u16 val, 1738 int addr_len) 1739 { 1740 int i; 1741 void __iomem *ee_addr = ioaddr + Cfg9346; 1742 int write_cmd = location | (EE_WRITE_CMD << addr_len); 1743 1744 eeprom_extend_cmd(ee_addr, EE_EWEN_ADDR, addr_len); 1745 1746 eeprom_cmd_start(ee_addr); 1747 eeprom_cmd(ee_addr, write_cmd, 3 + addr_len); 1748 eeprom_cmd(ee_addr, val, 16); 1749 eeprom_cmd_end(ee_addr); 1750 1751 eeprom_cmd_start(ee_addr); 1752 for (i = 0; i < 20000; i++) 1753 if (readb(ee_addr) & EE_DATA_READ) 1754 break; 1755 eeprom_cmd_end(ee_addr); 1756 1757 eeprom_extend_cmd(ee_addr, EE_EWDS_ADDR, addr_len); 1758 } 1759 1760 static int cp_get_eeprom_len(struct net_device *dev) 1761 { 1762 struct cp_private *cp = netdev_priv(dev); 1763 int size; 1764 1765 spin_lock_irq(&cp->lock); 1766 size = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 256 : 128; 1767 spin_unlock_irq(&cp->lock); 1768 1769 return size; 1770 } 1771 1772 static int cp_get_eeprom(struct net_device *dev, 1773 struct ethtool_eeprom *eeprom, u8 *data) 1774 { 1775 struct cp_private *cp = netdev_priv(dev); 1776 unsigned int addr_len; 1777 u16 val; 1778 u32 offset = eeprom->offset >> 1; 1779 u32 len = eeprom->len; 1780 u32 i = 0; 1781 1782 eeprom->magic = CP_EEPROM_MAGIC; 1783 1784 spin_lock_irq(&cp->lock); 1785 1786 addr_len = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 8 : 6; 1787 1788 if (eeprom->offset & 1) { 1789 val = read_eeprom(cp->regs, offset, addr_len); 1790 data[i++] = (u8)(val >> 8); 1791 offset++; 1792 } 1793 1794 while (i < len - 1) { 1795 val = read_eeprom(cp->regs, offset, addr_len); 1796 data[i++] = (u8)val; 1797 data[i++] = (u8)(val >> 8); 1798 offset++; 1799 } 1800 1801 if (i < len) { 1802 val = read_eeprom(cp->regs, offset, addr_len); 1803 data[i] = (u8)val; 1804 } 1805 1806 spin_unlock_irq(&cp->lock); 1807 return 0; 1808 } 1809 1810 static int cp_set_eeprom(struct net_device *dev, 1811 struct ethtool_eeprom *eeprom, u8 *data) 1812 { 1813 struct cp_private *cp = netdev_priv(dev); 1814 unsigned int addr_len; 1815 u16 val; 1816 u32 offset = eeprom->offset >> 1; 1817 u32 len = eeprom->len; 1818 u32 i = 0; 1819 1820 if (eeprom->magic != CP_EEPROM_MAGIC) 1821 return -EINVAL; 1822 1823 spin_lock_irq(&cp->lock); 1824 1825 addr_len = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 8 : 6; 1826 1827 if (eeprom->offset & 1) { 1828 val = read_eeprom(cp->regs, offset, addr_len) & 0xff; 1829 val |= (u16)data[i++] << 8; 1830 write_eeprom(cp->regs, offset, val, addr_len); 1831 offset++; 1832 } 1833 1834 while (i < len - 1) { 1835 val = (u16)data[i++]; 1836 val |= (u16)data[i++] << 8; 1837 write_eeprom(cp->regs, offset, val, addr_len); 1838 offset++; 1839 } 1840 1841 if (i < len) { 1842 val = read_eeprom(cp->regs, offset, addr_len) & 0xff00; 1843 val |= (u16)data[i]; 1844 write_eeprom(cp->regs, offset, val, addr_len); 1845 } 1846 1847 spin_unlock_irq(&cp->lock); 1848 return 0; 1849 } 1850 1851 /* Put the board into D3cold state and wait for WakeUp signal */ 1852 static void cp_set_d3_state (struct cp_private *cp) 1853 { 1854 pci_enable_wake(cp->pdev, PCI_D0, 1); /* Enable PME# generation */ 1855 pci_set_power_state (cp->pdev, PCI_D3hot); 1856 } 1857 1858 static netdev_features_t cp_features_check(struct sk_buff *skb, 1859 struct net_device *dev, 1860 netdev_features_t features) 1861 { 1862 if (skb_shinfo(skb)->gso_size > MSSMask) 1863 features &= ~NETIF_F_TSO; 1864 1865 return vlan_features_check(skb, features); 1866 } 1867 static const struct net_device_ops cp_netdev_ops = { 1868 .ndo_open = cp_open, 1869 .ndo_stop = cp_close, 1870 .ndo_validate_addr = eth_validate_addr, 1871 .ndo_set_mac_address = cp_set_mac_address, 1872 .ndo_set_rx_mode = cp_set_rx_mode, 1873 .ndo_get_stats = cp_get_stats, 1874 .ndo_eth_ioctl = cp_ioctl, 1875 .ndo_start_xmit = cp_start_xmit, 1876 .ndo_tx_timeout = cp_tx_timeout, 1877 .ndo_set_features = cp_set_features, 1878 .ndo_change_mtu = cp_change_mtu, 1879 .ndo_features_check = cp_features_check, 1880 1881 #ifdef CONFIG_NET_POLL_CONTROLLER 1882 .ndo_poll_controller = cp_poll_controller, 1883 #endif 1884 }; 1885 1886 static int cp_init_one (struct pci_dev *pdev, const struct pci_device_id *ent) 1887 { 1888 struct net_device *dev; 1889 struct cp_private *cp; 1890 int rc; 1891 void __iomem *regs; 1892 resource_size_t pciaddr; 1893 unsigned int addr_len, i, pci_using_dac; 1894 __le16 addr[ETH_ALEN / 2]; 1895 1896 pr_info_once("%s", version); 1897 1898 if (pdev->vendor == PCI_VENDOR_ID_REALTEK && 1899 pdev->device == PCI_DEVICE_ID_REALTEK_8139 && pdev->revision < 0x20) { 1900 dev_info(&pdev->dev, 1901 "This (id %04x:%04x rev %02x) is not an 8139C+ compatible chip, use 8139too\n", 1902 pdev->vendor, pdev->device, pdev->revision); 1903 return -ENODEV; 1904 } 1905 1906 dev = alloc_etherdev(sizeof(struct cp_private)); 1907 if (!dev) 1908 return -ENOMEM; 1909 SET_NETDEV_DEV(dev, &pdev->dev); 1910 1911 cp = netdev_priv(dev); 1912 cp->pdev = pdev; 1913 cp->dev = dev; 1914 cp->msg_enable = (debug < 0 ? CP_DEF_MSG_ENABLE : debug); 1915 spin_lock_init (&cp->lock); 1916 cp->mii_if.dev = dev; 1917 cp->mii_if.mdio_read = mdio_read; 1918 cp->mii_if.mdio_write = mdio_write; 1919 cp->mii_if.phy_id = CP_INTERNAL_PHY; 1920 cp->mii_if.phy_id_mask = 0x1f; 1921 cp->mii_if.reg_num_mask = 0x1f; 1922 cp_set_rxbufsize(cp); 1923 1924 rc = pci_enable_device(pdev); 1925 if (rc) 1926 goto err_out_free; 1927 1928 rc = pci_set_mwi(pdev); 1929 if (rc) 1930 goto err_out_disable; 1931 1932 rc = pci_request_regions(pdev, DRV_NAME); 1933 if (rc) 1934 goto err_out_mwi; 1935 1936 pciaddr = pci_resource_start(pdev, 1); 1937 if (!pciaddr) { 1938 rc = -EIO; 1939 dev_err(&pdev->dev, "no MMIO resource\n"); 1940 goto err_out_res; 1941 } 1942 if (pci_resource_len(pdev, 1) < CP_REGS_SIZE) { 1943 rc = -EIO; 1944 dev_err(&pdev->dev, "MMIO resource (%llx) too small\n", 1945 (unsigned long long)pci_resource_len(pdev, 1)); 1946 goto err_out_res; 1947 } 1948 1949 /* Configure DMA attributes. */ 1950 if ((sizeof(dma_addr_t) > 4) && 1951 !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) { 1952 pci_using_dac = 1; 1953 } else { 1954 pci_using_dac = 0; 1955 1956 rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 1957 if (rc) { 1958 dev_err(&pdev->dev, 1959 "No usable DMA configuration, aborting\n"); 1960 goto err_out_res; 1961 } 1962 } 1963 1964 cp->cpcmd = (pci_using_dac ? PCIDAC : 0) | 1965 PCIMulRW | RxChkSum | CpRxOn | CpTxOn; 1966 1967 dev->features |= NETIF_F_RXCSUM; 1968 dev->hw_features |= NETIF_F_RXCSUM; 1969 1970 regs = ioremap(pciaddr, CP_REGS_SIZE); 1971 if (!regs) { 1972 rc = -EIO; 1973 dev_err(&pdev->dev, "Cannot map PCI MMIO (%Lx@%Lx)\n", 1974 (unsigned long long)pci_resource_len(pdev, 1), 1975 (unsigned long long)pciaddr); 1976 goto err_out_res; 1977 } 1978 cp->regs = regs; 1979 1980 cp_stop_hw(cp); 1981 1982 /* read MAC address from EEPROM */ 1983 addr_len = read_eeprom (regs, 0, 8) == 0x8129 ? 8 : 6; 1984 for (i = 0; i < 3; i++) 1985 addr[i] = cpu_to_le16(read_eeprom (regs, i + 7, addr_len)); 1986 eth_hw_addr_set(dev, (u8 *)addr); 1987 1988 dev->netdev_ops = &cp_netdev_ops; 1989 netif_napi_add_weight(dev, &cp->napi, cp_rx_poll, 16); 1990 dev->ethtool_ops = &cp_ethtool_ops; 1991 dev->watchdog_timeo = TX_TIMEOUT; 1992 1993 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO | 1994 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX; 1995 1996 if (pci_using_dac) 1997 dev->features |= NETIF_F_HIGHDMA; 1998 1999 dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO | 2000 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX; 2001 dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO | 2002 NETIF_F_HIGHDMA; 2003 2004 /* MTU range: 60 - 4096 */ 2005 dev->min_mtu = CP_MIN_MTU; 2006 dev->max_mtu = CP_MAX_MTU; 2007 2008 rc = register_netdev(dev); 2009 if (rc) 2010 goto err_out_iomap; 2011 2012 netdev_info(dev, "RTL-8139C+ at 0x%p, %pM, IRQ %d\n", 2013 regs, dev->dev_addr, pdev->irq); 2014 2015 pci_set_drvdata(pdev, dev); 2016 2017 /* enable busmastering and memory-write-invalidate */ 2018 pci_set_master(pdev); 2019 2020 if (cp->wol_enabled) 2021 cp_set_d3_state (cp); 2022 2023 return 0; 2024 2025 err_out_iomap: 2026 iounmap(regs); 2027 err_out_res: 2028 pci_release_regions(pdev); 2029 err_out_mwi: 2030 pci_clear_mwi(pdev); 2031 err_out_disable: 2032 pci_disable_device(pdev); 2033 err_out_free: 2034 free_netdev(dev); 2035 return rc; 2036 } 2037 2038 static void cp_remove_one (struct pci_dev *pdev) 2039 { 2040 struct net_device *dev = pci_get_drvdata(pdev); 2041 struct cp_private *cp = netdev_priv(dev); 2042 2043 unregister_netdev(dev); 2044 iounmap(cp->regs); 2045 if (cp->wol_enabled) 2046 pci_set_power_state (pdev, PCI_D0); 2047 pci_release_regions(pdev); 2048 pci_clear_mwi(pdev); 2049 pci_disable_device(pdev); 2050 free_netdev(dev); 2051 } 2052 2053 static int __maybe_unused cp_suspend(struct device *device) 2054 { 2055 struct net_device *dev = dev_get_drvdata(device); 2056 struct cp_private *cp = netdev_priv(dev); 2057 unsigned long flags; 2058 2059 if (!netif_running(dev)) 2060 return 0; 2061 2062 netif_device_detach (dev); 2063 netif_stop_queue (dev); 2064 2065 spin_lock_irqsave (&cp->lock, flags); 2066 2067 /* Disable Rx and Tx */ 2068 cpw16 (IntrMask, 0); 2069 cpw8 (Cmd, cpr8 (Cmd) & (~RxOn | ~TxOn)); 2070 2071 spin_unlock_irqrestore (&cp->lock, flags); 2072 2073 device_set_wakeup_enable(device, cp->wol_enabled); 2074 2075 return 0; 2076 } 2077 2078 static int __maybe_unused cp_resume(struct device *device) 2079 { 2080 struct net_device *dev = dev_get_drvdata(device); 2081 struct cp_private *cp = netdev_priv(dev); 2082 unsigned long flags; 2083 2084 if (!netif_running(dev)) 2085 return 0; 2086 2087 netif_device_attach (dev); 2088 2089 /* FIXME: sh*t may happen if the Rx ring buffer is depleted */ 2090 cp_init_rings_index (cp); 2091 cp_init_hw (cp); 2092 cp_enable_irq(cp); 2093 netif_start_queue (dev); 2094 2095 spin_lock_irqsave (&cp->lock, flags); 2096 2097 mii_check_media(&cp->mii_if, netif_msg_link(cp), false); 2098 2099 spin_unlock_irqrestore (&cp->lock, flags); 2100 2101 return 0; 2102 } 2103 2104 static const struct pci_device_id cp_pci_tbl[] = { 2105 { PCI_DEVICE(PCI_VENDOR_ID_REALTEK, PCI_DEVICE_ID_REALTEK_8139), }, 2106 { PCI_DEVICE(PCI_VENDOR_ID_TTTECH, PCI_DEVICE_ID_TTTECH_MC322), }, 2107 { }, 2108 }; 2109 MODULE_DEVICE_TABLE(pci, cp_pci_tbl); 2110 2111 static SIMPLE_DEV_PM_OPS(cp_pm_ops, cp_suspend, cp_resume); 2112 2113 static struct pci_driver cp_driver = { 2114 .name = DRV_NAME, 2115 .id_table = cp_pci_tbl, 2116 .probe = cp_init_one, 2117 .remove = cp_remove_one, 2118 .driver.pm = &cp_pm_ops, 2119 }; 2120 2121 module_pci_driver(cp_driver); 2122