xref: /linux/drivers/net/ethernet/realtek/8139cp.c (revision a44e4f3ab16bc808590763a543a93b6fbf3abcc4)
1 /* 8139cp.c: A Linux PCI Ethernet driver for the RealTek 8139C+ chips. */
2 /*
3 	Copyright 2001-2004 Jeff Garzik <jgarzik@pobox.com>
4 
5 	Copyright (C) 2001, 2002 David S. Miller (davem@redhat.com) [tg3.c]
6 	Copyright (C) 2000, 2001 David S. Miller (davem@redhat.com) [sungem.c]
7 	Copyright 2001 Manfred Spraul				    [natsemi.c]
8 	Copyright 1999-2001 by Donald Becker.			    [natsemi.c]
9        	Written 1997-2001 by Donald Becker.			    [8139too.c]
10 	Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. [acenic.c]
11 
12 	This software may be used and distributed according to the terms of
13 	the GNU General Public License (GPL), incorporated herein by reference.
14 	Drivers based on or derived from this code fall under the GPL and must
15 	retain the authorship, copyright and license notice.  This file is not
16 	a complete program and may only be used when the entire operating
17 	system is licensed under the GPL.
18 
19 	See the file COPYING in this distribution for more information.
20 
21 	Contributors:
22 
23 		Wake-on-LAN support - Felipe Damasio <felipewd@terra.com.br>
24 		PCI suspend/resume  - Felipe Damasio <felipewd@terra.com.br>
25 		LinkChg interrupt   - Felipe Damasio <felipewd@terra.com.br>
26 
27 	TODO:
28 	* Test Tx checksumming thoroughly
29 
30 	Low priority TODO:
31 	* Complete reset on PciErr
32 	* Consider Rx interrupt mitigation using TimerIntr
33 	* Investigate using skb->priority with h/w VLAN priority
34 	* Investigate using High Priority Tx Queue with skb->priority
35 	* Adjust Rx FIFO threshold and Max Rx DMA burst on Rx FIFO error
36 	* Adjust Tx FIFO threshold and Max Tx DMA burst on Tx FIFO error
37 	* Implement Tx software interrupt mitigation via
38 	  Tx descriptor bit
39 	* The real minimum of CP_MIN_MTU is 4 bytes.  However,
40 	  for this to be supported, one must(?) turn on packet padding.
41 	* Support external MII transceivers (patch available)
42 
43 	NOTES:
44 	* TX checksumming is considered experimental.  It is off by
45 	  default, use ethtool to turn it on.
46 
47  */
48 
49 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
50 
51 #define DRV_NAME		"8139cp"
52 #define DRV_VERSION		"1.3"
53 #define DRV_RELDATE		"Mar 22, 2004"
54 
55 
56 #include <linux/module.h>
57 #include <linux/moduleparam.h>
58 #include <linux/kernel.h>
59 #include <linux/compiler.h>
60 #include <linux/netdevice.h>
61 #include <linux/etherdevice.h>
62 #include <linux/init.h>
63 #include <linux/interrupt.h>
64 #include <linux/pci.h>
65 #include <linux/dma-mapping.h>
66 #include <linux/delay.h>
67 #include <linux/ethtool.h>
68 #include <linux/gfp.h>
69 #include <linux/mii.h>
70 #include <linux/if_vlan.h>
71 #include <linux/crc32.h>
72 #include <linux/in.h>
73 #include <linux/ip.h>
74 #include <linux/tcp.h>
75 #include <linux/udp.h>
76 #include <linux/cache.h>
77 #include <asm/io.h>
78 #include <asm/irq.h>
79 #include <linux/uaccess.h>
80 
81 /* These identify the driver base version and may not be removed. */
82 static char version[] =
83 DRV_NAME ": 10/100 PCI Ethernet driver v" DRV_VERSION " (" DRV_RELDATE ")\n";
84 
85 MODULE_AUTHOR("Jeff Garzik <jgarzik@pobox.com>");
86 MODULE_DESCRIPTION("RealTek RTL-8139C+ series 10/100 PCI Ethernet driver");
87 MODULE_VERSION(DRV_VERSION);
88 MODULE_LICENSE("GPL");
89 
90 static int debug = -1;
91 module_param(debug, int, 0);
92 MODULE_PARM_DESC (debug, "8139cp: bitmapped message enable number");
93 
94 /* Maximum number of multicast addresses to filter (vs. Rx-all-multicast).
95    The RTL chips use a 64 element hash table based on the Ethernet CRC.  */
96 static int multicast_filter_limit = 32;
97 module_param(multicast_filter_limit, int, 0);
98 MODULE_PARM_DESC (multicast_filter_limit, "8139cp: maximum number of filtered multicast addresses");
99 
100 #define CP_DEF_MSG_ENABLE	(NETIF_MSG_DRV		| \
101 				 NETIF_MSG_PROBE 	| \
102 				 NETIF_MSG_LINK)
103 #define CP_NUM_STATS		14	/* struct cp_dma_stats, plus one */
104 #define CP_STATS_SIZE		64	/* size in bytes of DMA stats block */
105 #define CP_REGS_SIZE		(0xff + 1)
106 #define CP_REGS_VER		1		/* version 1 */
107 #define CP_RX_RING_SIZE		64
108 #define CP_TX_RING_SIZE		64
109 #define CP_RING_BYTES		\
110 		((sizeof(struct cp_desc) * CP_RX_RING_SIZE) +	\
111 		 (sizeof(struct cp_desc) * CP_TX_RING_SIZE) +	\
112 		 CP_STATS_SIZE)
113 #define NEXT_TX(N)		(((N) + 1) & (CP_TX_RING_SIZE - 1))
114 #define NEXT_RX(N)		(((N) + 1) & (CP_RX_RING_SIZE - 1))
115 #define TX_BUFFS_AVAIL(CP)					\
116 	(((CP)->tx_tail <= (CP)->tx_head) ?			\
117 	  (CP)->tx_tail + (CP_TX_RING_SIZE - 1) - (CP)->tx_head :	\
118 	  (CP)->tx_tail - (CP)->tx_head - 1)
119 
120 #define PKT_BUF_SZ		1536	/* Size of each temporary Rx buffer.*/
121 #define CP_INTERNAL_PHY		32
122 
123 /* The following settings are log_2(bytes)-4:  0 == 16 bytes .. 6==1024, 7==end of packet. */
124 #define RX_FIFO_THRESH		5	/* Rx buffer level before first PCI xfer.  */
125 #define RX_DMA_BURST		4	/* Maximum PCI burst, '4' is 256 */
126 #define TX_DMA_BURST		6	/* Maximum PCI burst, '6' is 1024 */
127 #define TX_EARLY_THRESH		256	/* Early Tx threshold, in bytes */
128 
129 /* Time in jiffies before concluding the transmitter is hung. */
130 #define TX_TIMEOUT		(6*HZ)
131 
132 /* hardware minimum and maximum for a single frame's data payload */
133 #define CP_MIN_MTU		60	/* TODO: allow lower, but pad */
134 #define CP_MAX_MTU		4096
135 
136 enum {
137 	/* NIC register offsets */
138 	MAC0		= 0x00,	/* Ethernet hardware address. */
139 	MAR0		= 0x08,	/* Multicast filter. */
140 	StatsAddr	= 0x10,	/* 64-bit start addr of 64-byte DMA stats blk */
141 	TxRingAddr	= 0x20, /* 64-bit start addr of Tx ring */
142 	HiTxRingAddr	= 0x28, /* 64-bit start addr of high priority Tx ring */
143 	Cmd		= 0x37, /* Command register */
144 	IntrMask	= 0x3C, /* Interrupt mask */
145 	IntrStatus	= 0x3E, /* Interrupt status */
146 	TxConfig	= 0x40, /* Tx configuration */
147 	ChipVersion	= 0x43, /* 8-bit chip version, inside TxConfig */
148 	RxConfig	= 0x44, /* Rx configuration */
149 	RxMissed	= 0x4C,	/* 24 bits valid, write clears */
150 	Cfg9346		= 0x50, /* EEPROM select/control; Cfg reg [un]lock */
151 	Config1		= 0x52, /* Config1 */
152 	Config3		= 0x59, /* Config3 */
153 	Config4		= 0x5A, /* Config4 */
154 	MultiIntr	= 0x5C, /* Multiple interrupt select */
155 	BasicModeCtrl	= 0x62,	/* MII BMCR */
156 	BasicModeStatus	= 0x64, /* MII BMSR */
157 	NWayAdvert	= 0x66, /* MII ADVERTISE */
158 	NWayLPAR	= 0x68, /* MII LPA */
159 	NWayExpansion	= 0x6A, /* MII Expansion */
160 	TxDmaOkLowDesc  = 0x82, /* Low 16 bit address of a Tx descriptor. */
161 	Config5		= 0xD8,	/* Config5 */
162 	TxPoll		= 0xD9,	/* Tell chip to check Tx descriptors for work */
163 	RxMaxSize	= 0xDA, /* Max size of an Rx packet (8169 only) */
164 	CpCmd		= 0xE0, /* C+ Command register (C+ mode only) */
165 	IntrMitigate	= 0xE2,	/* rx/tx interrupt mitigation control */
166 	RxRingAddr	= 0xE4, /* 64-bit start addr of Rx ring */
167 	TxThresh	= 0xEC, /* Early Tx threshold */
168 	OldRxBufAddr	= 0x30, /* DMA address of Rx ring buffer (C mode) */
169 	OldTSD0		= 0x10, /* DMA address of first Tx desc (C mode) */
170 
171 	/* Tx and Rx status descriptors */
172 	DescOwn		= (1 << 31), /* Descriptor is owned by NIC */
173 	RingEnd		= (1 << 30), /* End of descriptor ring */
174 	FirstFrag	= (1 << 29), /* First segment of a packet */
175 	LastFrag	= (1 << 28), /* Final segment of a packet */
176 	LargeSend	= (1 << 27), /* TCP Large Send Offload (TSO) */
177 	MSSShift	= 16,	     /* MSS value position */
178 	MSSMask		= 0x7ff,     /* MSS value: 11 bits */
179 	TxError		= (1 << 23), /* Tx error summary */
180 	RxError		= (1 << 20), /* Rx error summary */
181 	IPCS		= (1 << 18), /* Calculate IP checksum */
182 	UDPCS		= (1 << 17), /* Calculate UDP/IP checksum */
183 	TCPCS		= (1 << 16), /* Calculate TCP/IP checksum */
184 	TxVlanTag	= (1 << 17), /* Add VLAN tag */
185 	RxVlanTagged	= (1 << 16), /* Rx VLAN tag available */
186 	IPFail		= (1 << 15), /* IP checksum failed */
187 	UDPFail		= (1 << 14), /* UDP/IP checksum failed */
188 	TCPFail		= (1 << 13), /* TCP/IP checksum failed */
189 	NormalTxPoll	= (1 << 6),  /* One or more normal Tx packets to send */
190 	PID1		= (1 << 17), /* 2 protocol id bits:  0==non-IP, */
191 	PID0		= (1 << 16), /* 1==UDP/IP, 2==TCP/IP, 3==IP */
192 	RxProtoTCP	= 1,
193 	RxProtoUDP	= 2,
194 	RxProtoIP	= 3,
195 	TxFIFOUnder	= (1 << 25), /* Tx FIFO underrun */
196 	TxOWC		= (1 << 22), /* Tx Out-of-window collision */
197 	TxLinkFail	= (1 << 21), /* Link failed during Tx of packet */
198 	TxMaxCol	= (1 << 20), /* Tx aborted due to excessive collisions */
199 	TxColCntShift	= 16,	     /* Shift, to get 4-bit Tx collision cnt */
200 	TxColCntMask	= 0x01 | 0x02 | 0x04 | 0x08, /* 4-bit collision count */
201 	RxErrFrame	= (1 << 27), /* Rx frame alignment error */
202 	RxMcast		= (1 << 26), /* Rx multicast packet rcv'd */
203 	RxErrCRC	= (1 << 18), /* Rx CRC error */
204 	RxErrRunt	= (1 << 19), /* Rx error, packet < 64 bytes */
205 	RxErrLong	= (1 << 21), /* Rx error, packet > 4096 bytes */
206 	RxErrFIFO	= (1 << 22), /* Rx error, FIFO overflowed, pkt bad */
207 
208 	/* StatsAddr register */
209 	DumpStats	= (1 << 3),  /* Begin stats dump */
210 
211 	/* RxConfig register */
212 	RxCfgFIFOShift	= 13,	     /* Shift, to get Rx FIFO thresh value */
213 	RxCfgDMAShift	= 8,	     /* Shift, to get Rx Max DMA value */
214 	AcceptErr	= 0x20,	     /* Accept packets with CRC errors */
215 	AcceptRunt	= 0x10,	     /* Accept runt (<64 bytes) packets */
216 	AcceptBroadcast	= 0x08,	     /* Accept broadcast packets */
217 	AcceptMulticast	= 0x04,	     /* Accept multicast packets */
218 	AcceptMyPhys	= 0x02,	     /* Accept pkts with our MAC as dest */
219 	AcceptAllPhys	= 0x01,	     /* Accept all pkts w/ physical dest */
220 
221 	/* IntrMask / IntrStatus registers */
222 	PciErr		= (1 << 15), /* System error on the PCI bus */
223 	TimerIntr	= (1 << 14), /* Asserted when TCTR reaches TimerInt value */
224 	LenChg		= (1 << 13), /* Cable length change */
225 	SWInt		= (1 << 8),  /* Software-requested interrupt */
226 	TxEmpty		= (1 << 7),  /* No Tx descriptors available */
227 	RxFIFOOvr	= (1 << 6),  /* Rx FIFO Overflow */
228 	LinkChg		= (1 << 5),  /* Packet underrun, or link change */
229 	RxEmpty		= (1 << 4),  /* No Rx descriptors available */
230 	TxErr		= (1 << 3),  /* Tx error */
231 	TxOK		= (1 << 2),  /* Tx packet sent */
232 	RxErr		= (1 << 1),  /* Rx error */
233 	RxOK		= (1 << 0),  /* Rx packet received */
234 	IntrResvd	= (1 << 10), /* reserved, according to RealTek engineers,
235 					but hardware likes to raise it */
236 
237 	IntrAll		= PciErr | TimerIntr | LenChg | SWInt | TxEmpty |
238 			  RxFIFOOvr | LinkChg | RxEmpty | TxErr | TxOK |
239 			  RxErr | RxOK | IntrResvd,
240 
241 	/* C mode command register */
242 	CmdReset	= (1 << 4),  /* Enable to reset; self-clearing */
243 	RxOn		= (1 << 3),  /* Rx mode enable */
244 	TxOn		= (1 << 2),  /* Tx mode enable */
245 
246 	/* C+ mode command register */
247 	RxVlanOn	= (1 << 6),  /* Rx VLAN de-tagging enable */
248 	RxChkSum	= (1 << 5),  /* Rx checksum offload enable */
249 	PCIDAC		= (1 << 4),  /* PCI Dual Address Cycle (64-bit PCI) */
250 	PCIMulRW	= (1 << 3),  /* Enable PCI read/write multiple */
251 	CpRxOn		= (1 << 1),  /* Rx mode enable */
252 	CpTxOn		= (1 << 0),  /* Tx mode enable */
253 
254 	/* Cfg9436 EEPROM control register */
255 	Cfg9346_Lock	= 0x00,	     /* Lock ConfigX/MII register access */
256 	Cfg9346_Unlock	= 0xC0,	     /* Unlock ConfigX/MII register access */
257 
258 	/* TxConfig register */
259 	IFG		= (1 << 25) | (1 << 24), /* standard IEEE interframe gap */
260 	TxDMAShift	= 8,	     /* DMA burst value (0-7) is shift this many bits */
261 
262 	/* Early Tx Threshold register */
263 	TxThreshMask	= 0x3f,	     /* Mask bits 5-0 */
264 	TxThreshMax	= 2048,	     /* Max early Tx threshold */
265 
266 	/* Config1 register */
267 	DriverLoaded	= (1 << 5),  /* Software marker, driver is loaded */
268 	LWACT           = (1 << 4),  /* LWAKE active mode */
269 	PMEnable	= (1 << 0),  /* Enable various PM features of chip */
270 
271 	/* Config3 register */
272 	PARMEnable	= (1 << 6),  /* Enable auto-loading of PHY parms */
273 	MagicPacket     = (1 << 5),  /* Wake up when receives a Magic Packet */
274 	LinkUp          = (1 << 4),  /* Wake up when the cable connection is re-established */
275 
276 	/* Config4 register */
277 	LWPTN           = (1 << 1),  /* LWAKE Pattern */
278 	LWPME           = (1 << 4),  /* LANWAKE vs PMEB */
279 
280 	/* Config5 register */
281 	BWF             = (1 << 6),  /* Accept Broadcast wakeup frame */
282 	MWF             = (1 << 5),  /* Accept Multicast wakeup frame */
283 	UWF             = (1 << 4),  /* Accept Unicast wakeup frame */
284 	LANWake         = (1 << 1),  /* Enable LANWake signal */
285 	PMEStatus	= (1 << 0),  /* PME status can be reset by PCI RST# */
286 
287 	cp_norx_intr_mask = PciErr | LinkChg | TxOK | TxErr | TxEmpty,
288 	cp_rx_intr_mask = RxOK | RxErr | RxEmpty | RxFIFOOvr,
289 	cp_intr_mask = cp_rx_intr_mask | cp_norx_intr_mask,
290 };
291 
292 static const unsigned int cp_rx_config =
293 	  (RX_FIFO_THRESH << RxCfgFIFOShift) |
294 	  (RX_DMA_BURST << RxCfgDMAShift);
295 
296 struct cp_desc {
297 	__le32		opts1;
298 	__le32		opts2;
299 	__le64		addr;
300 };
301 
302 struct cp_dma_stats {
303 	__le64			tx_ok;
304 	__le64			rx_ok;
305 	__le64			tx_err;
306 	__le32			rx_err;
307 	__le16			rx_fifo;
308 	__le16			frame_align;
309 	__le32			tx_ok_1col;
310 	__le32			tx_ok_mcol;
311 	__le64			rx_ok_phys;
312 	__le64			rx_ok_bcast;
313 	__le32			rx_ok_mcast;
314 	__le16			tx_abort;
315 	__le16			tx_underrun;
316 } __packed;
317 
318 struct cp_extra_stats {
319 	unsigned long		rx_frags;
320 };
321 
322 struct cp_private {
323 	void			__iomem *regs;
324 	struct net_device	*dev;
325 	spinlock_t		lock;
326 	u32			msg_enable;
327 
328 	struct napi_struct	napi;
329 
330 	struct pci_dev		*pdev;
331 	u32			rx_config;
332 	u16			cpcmd;
333 
334 	struct cp_extra_stats	cp_stats;
335 
336 	unsigned		rx_head		____cacheline_aligned;
337 	unsigned		rx_tail;
338 	struct cp_desc		*rx_ring;
339 	struct sk_buff		*rx_skb[CP_RX_RING_SIZE];
340 
341 	unsigned		tx_head		____cacheline_aligned;
342 	unsigned		tx_tail;
343 	struct cp_desc		*tx_ring;
344 	struct sk_buff		*tx_skb[CP_TX_RING_SIZE];
345 	u32			tx_opts[CP_TX_RING_SIZE];
346 
347 	unsigned		rx_buf_sz;
348 	unsigned		wol_enabled : 1; /* Is Wake-on-LAN enabled? */
349 
350 	dma_addr_t		ring_dma;
351 
352 	struct mii_if_info	mii_if;
353 };
354 
355 #define cpr8(reg)	readb(cp->regs + (reg))
356 #define cpr16(reg)	readw(cp->regs + (reg))
357 #define cpr32(reg)	readl(cp->regs + (reg))
358 #define cpw8(reg,val)	writeb((val), cp->regs + (reg))
359 #define cpw16(reg,val)	writew((val), cp->regs + (reg))
360 #define cpw32(reg,val)	writel((val), cp->regs + (reg))
361 #define cpw8_f(reg,val) do {			\
362 	writeb((val), cp->regs + (reg));	\
363 	readb(cp->regs + (reg));		\
364 	} while (0)
365 #define cpw16_f(reg,val) do {			\
366 	writew((val), cp->regs + (reg));	\
367 	readw(cp->regs + (reg));		\
368 	} while (0)
369 #define cpw32_f(reg,val) do {			\
370 	writel((val), cp->regs + (reg));	\
371 	readl(cp->regs + (reg));		\
372 	} while (0)
373 
374 
375 static void __cp_set_rx_mode (struct net_device *dev);
376 static void cp_tx (struct cp_private *cp);
377 static void cp_clean_rings (struct cp_private *cp);
378 #ifdef CONFIG_NET_POLL_CONTROLLER
379 static void cp_poll_controller(struct net_device *dev);
380 #endif
381 static int cp_get_eeprom_len(struct net_device *dev);
382 static int cp_get_eeprom(struct net_device *dev,
383 			 struct ethtool_eeprom *eeprom, u8 *data);
384 static int cp_set_eeprom(struct net_device *dev,
385 			 struct ethtool_eeprom *eeprom, u8 *data);
386 
387 static struct {
388 	const char str[ETH_GSTRING_LEN];
389 } ethtool_stats_keys[] = {
390 	{ "tx_ok" },
391 	{ "rx_ok" },
392 	{ "tx_err" },
393 	{ "rx_err" },
394 	{ "rx_fifo" },
395 	{ "frame_align" },
396 	{ "tx_ok_1col" },
397 	{ "tx_ok_mcol" },
398 	{ "rx_ok_phys" },
399 	{ "rx_ok_bcast" },
400 	{ "rx_ok_mcast" },
401 	{ "tx_abort" },
402 	{ "tx_underrun" },
403 	{ "rx_frags" },
404 };
405 
406 
407 static inline void cp_set_rxbufsize (struct cp_private *cp)
408 {
409 	unsigned int mtu = cp->dev->mtu;
410 
411 	if (mtu > ETH_DATA_LEN)
412 		/* MTU + ethernet header + FCS + optional VLAN tag */
413 		cp->rx_buf_sz = mtu + ETH_HLEN + 8;
414 	else
415 		cp->rx_buf_sz = PKT_BUF_SZ;
416 }
417 
418 static inline void cp_rx_skb (struct cp_private *cp, struct sk_buff *skb,
419 			      struct cp_desc *desc)
420 {
421 	u32 opts2 = le32_to_cpu(desc->opts2);
422 
423 	skb->protocol = eth_type_trans (skb, cp->dev);
424 
425 	cp->dev->stats.rx_packets++;
426 	cp->dev->stats.rx_bytes += skb->len;
427 
428 	if (opts2 & RxVlanTagged)
429 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), swab16(opts2 & 0xffff));
430 
431 	napi_gro_receive(&cp->napi, skb);
432 }
433 
434 static void cp_rx_err_acct (struct cp_private *cp, unsigned rx_tail,
435 			    u32 status, u32 len)
436 {
437 	netif_dbg(cp, rx_err, cp->dev, "rx err, slot %d status 0x%x len %d\n",
438 		  rx_tail, status, len);
439 	cp->dev->stats.rx_errors++;
440 	if (status & RxErrFrame)
441 		cp->dev->stats.rx_frame_errors++;
442 	if (status & RxErrCRC)
443 		cp->dev->stats.rx_crc_errors++;
444 	if ((status & RxErrRunt) || (status & RxErrLong))
445 		cp->dev->stats.rx_length_errors++;
446 	if ((status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag))
447 		cp->dev->stats.rx_length_errors++;
448 	if (status & RxErrFIFO)
449 		cp->dev->stats.rx_fifo_errors++;
450 }
451 
452 static inline unsigned int cp_rx_csum_ok (u32 status)
453 {
454 	unsigned int protocol = (status >> 16) & 0x3;
455 
456 	if (((protocol == RxProtoTCP) && !(status & TCPFail)) ||
457 	    ((protocol == RxProtoUDP) && !(status & UDPFail)))
458 		return 1;
459 	else
460 		return 0;
461 }
462 
463 static int cp_rx_poll(struct napi_struct *napi, int budget)
464 {
465 	struct cp_private *cp = container_of(napi, struct cp_private, napi);
466 	struct net_device *dev = cp->dev;
467 	unsigned int rx_tail = cp->rx_tail;
468 	int rx = 0;
469 
470 	cpw16(IntrStatus, cp_rx_intr_mask);
471 
472 	while (rx < budget) {
473 		u32 status, len;
474 		dma_addr_t mapping, new_mapping;
475 		struct sk_buff *skb, *new_skb;
476 		struct cp_desc *desc;
477 		const unsigned buflen = cp->rx_buf_sz;
478 
479 		skb = cp->rx_skb[rx_tail];
480 		BUG_ON(!skb);
481 
482 		desc = &cp->rx_ring[rx_tail];
483 		status = le32_to_cpu(desc->opts1);
484 		if (status & DescOwn)
485 			break;
486 
487 		len = (status & 0x1fff) - 4;
488 		mapping = le64_to_cpu(desc->addr);
489 
490 		if ((status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag)) {
491 			/* we don't support incoming fragmented frames.
492 			 * instead, we attempt to ensure that the
493 			 * pre-allocated RX skbs are properly sized such
494 			 * that RX fragments are never encountered
495 			 */
496 			cp_rx_err_acct(cp, rx_tail, status, len);
497 			dev->stats.rx_dropped++;
498 			cp->cp_stats.rx_frags++;
499 			goto rx_next;
500 		}
501 
502 		if (status & (RxError | RxErrFIFO)) {
503 			cp_rx_err_acct(cp, rx_tail, status, len);
504 			goto rx_next;
505 		}
506 
507 		netif_dbg(cp, rx_status, dev, "rx slot %d status 0x%x len %d\n",
508 			  rx_tail, status, len);
509 
510 		new_skb = napi_alloc_skb(napi, buflen);
511 		if (!new_skb) {
512 			dev->stats.rx_dropped++;
513 			goto rx_next;
514 		}
515 
516 		new_mapping = dma_map_single(&cp->pdev->dev, new_skb->data, buflen,
517 					 PCI_DMA_FROMDEVICE);
518 		if (dma_mapping_error(&cp->pdev->dev, new_mapping)) {
519 			dev->stats.rx_dropped++;
520 			kfree_skb(new_skb);
521 			goto rx_next;
522 		}
523 
524 		dma_unmap_single(&cp->pdev->dev, mapping,
525 				 buflen, PCI_DMA_FROMDEVICE);
526 
527 		/* Handle checksum offloading for incoming packets. */
528 		if (cp_rx_csum_ok(status))
529 			skb->ip_summed = CHECKSUM_UNNECESSARY;
530 		else
531 			skb_checksum_none_assert(skb);
532 
533 		skb_put(skb, len);
534 
535 		cp->rx_skb[rx_tail] = new_skb;
536 
537 		cp_rx_skb(cp, skb, desc);
538 		rx++;
539 		mapping = new_mapping;
540 
541 rx_next:
542 		cp->rx_ring[rx_tail].opts2 = 0;
543 		cp->rx_ring[rx_tail].addr = cpu_to_le64(mapping);
544 		if (rx_tail == (CP_RX_RING_SIZE - 1))
545 			desc->opts1 = cpu_to_le32(DescOwn | RingEnd |
546 						  cp->rx_buf_sz);
547 		else
548 			desc->opts1 = cpu_to_le32(DescOwn | cp->rx_buf_sz);
549 		rx_tail = NEXT_RX(rx_tail);
550 	}
551 
552 	cp->rx_tail = rx_tail;
553 
554 	/* if we did not reach work limit, then we're done with
555 	 * this round of polling
556 	 */
557 	if (rx < budget && napi_complete_done(napi, rx)) {
558 		unsigned long flags;
559 
560 		spin_lock_irqsave(&cp->lock, flags);
561 		cpw16_f(IntrMask, cp_intr_mask);
562 		spin_unlock_irqrestore(&cp->lock, flags);
563 	}
564 
565 	return rx;
566 }
567 
568 static irqreturn_t cp_interrupt (int irq, void *dev_instance)
569 {
570 	struct net_device *dev = dev_instance;
571 	struct cp_private *cp;
572 	int handled = 0;
573 	u16 status;
574 	u16 mask;
575 
576 	if (unlikely(dev == NULL))
577 		return IRQ_NONE;
578 	cp = netdev_priv(dev);
579 
580 	spin_lock(&cp->lock);
581 
582 	mask = cpr16(IntrMask);
583 	if (!mask)
584 		goto out_unlock;
585 
586 	status = cpr16(IntrStatus);
587 	if (!status || (status == 0xFFFF))
588 		goto out_unlock;
589 
590 	handled = 1;
591 
592 	netif_dbg(cp, intr, dev, "intr, status %04x cmd %02x cpcmd %04x\n",
593 		  status, cpr8(Cmd), cpr16(CpCmd));
594 
595 	cpw16(IntrStatus, status & ~cp_rx_intr_mask);
596 
597 	/* close possible race's with dev_close */
598 	if (unlikely(!netif_running(dev))) {
599 		cpw16(IntrMask, 0);
600 		goto out_unlock;
601 	}
602 
603 	if (status & (RxOK | RxErr | RxEmpty | RxFIFOOvr))
604 		if (napi_schedule_prep(&cp->napi)) {
605 			cpw16_f(IntrMask, cp_norx_intr_mask);
606 			__napi_schedule(&cp->napi);
607 		}
608 
609 	if (status & (TxOK | TxErr | TxEmpty | SWInt))
610 		cp_tx(cp);
611 	if (status & LinkChg)
612 		mii_check_media(&cp->mii_if, netif_msg_link(cp), false);
613 
614 
615 	if (status & PciErr) {
616 		u16 pci_status;
617 
618 		pci_read_config_word(cp->pdev, PCI_STATUS, &pci_status);
619 		pci_write_config_word(cp->pdev, PCI_STATUS, pci_status);
620 		netdev_err(dev, "PCI bus error, status=%04x, PCI status=%04x\n",
621 			   status, pci_status);
622 
623 		/* TODO: reset hardware */
624 	}
625 
626 out_unlock:
627 	spin_unlock(&cp->lock);
628 
629 	return IRQ_RETVAL(handled);
630 }
631 
632 #ifdef CONFIG_NET_POLL_CONTROLLER
633 /*
634  * Polling receive - used by netconsole and other diagnostic tools
635  * to allow network i/o with interrupts disabled.
636  */
637 static void cp_poll_controller(struct net_device *dev)
638 {
639 	struct cp_private *cp = netdev_priv(dev);
640 	const int irq = cp->pdev->irq;
641 
642 	disable_irq(irq);
643 	cp_interrupt(irq, dev);
644 	enable_irq(irq);
645 }
646 #endif
647 
648 static void cp_tx (struct cp_private *cp)
649 {
650 	unsigned tx_head = cp->tx_head;
651 	unsigned tx_tail = cp->tx_tail;
652 	unsigned bytes_compl = 0, pkts_compl = 0;
653 
654 	while (tx_tail != tx_head) {
655 		struct cp_desc *txd = cp->tx_ring + tx_tail;
656 		struct sk_buff *skb;
657 		u32 status;
658 
659 		rmb();
660 		status = le32_to_cpu(txd->opts1);
661 		if (status & DescOwn)
662 			break;
663 
664 		skb = cp->tx_skb[tx_tail];
665 		BUG_ON(!skb);
666 
667 		dma_unmap_single(&cp->pdev->dev, le64_to_cpu(txd->addr),
668 				 cp->tx_opts[tx_tail] & 0xffff,
669 				 PCI_DMA_TODEVICE);
670 
671 		if (status & LastFrag) {
672 			if (status & (TxError | TxFIFOUnder)) {
673 				netif_dbg(cp, tx_err, cp->dev,
674 					  "tx err, status 0x%x\n", status);
675 				cp->dev->stats.tx_errors++;
676 				if (status & TxOWC)
677 					cp->dev->stats.tx_window_errors++;
678 				if (status & TxMaxCol)
679 					cp->dev->stats.tx_aborted_errors++;
680 				if (status & TxLinkFail)
681 					cp->dev->stats.tx_carrier_errors++;
682 				if (status & TxFIFOUnder)
683 					cp->dev->stats.tx_fifo_errors++;
684 			} else {
685 				cp->dev->stats.collisions +=
686 					((status >> TxColCntShift) & TxColCntMask);
687 				cp->dev->stats.tx_packets++;
688 				cp->dev->stats.tx_bytes += skb->len;
689 				netif_dbg(cp, tx_done, cp->dev,
690 					  "tx done, slot %d\n", tx_tail);
691 			}
692 			bytes_compl += skb->len;
693 			pkts_compl++;
694 			dev_consume_skb_irq(skb);
695 		}
696 
697 		cp->tx_skb[tx_tail] = NULL;
698 
699 		tx_tail = NEXT_TX(tx_tail);
700 	}
701 
702 	cp->tx_tail = tx_tail;
703 
704 	netdev_completed_queue(cp->dev, pkts_compl, bytes_compl);
705 	if (TX_BUFFS_AVAIL(cp) > (MAX_SKB_FRAGS + 1))
706 		netif_wake_queue(cp->dev);
707 }
708 
709 static inline u32 cp_tx_vlan_tag(struct sk_buff *skb)
710 {
711 	return skb_vlan_tag_present(skb) ?
712 		TxVlanTag | swab16(skb_vlan_tag_get(skb)) : 0x00;
713 }
714 
715 static void unwind_tx_frag_mapping(struct cp_private *cp, struct sk_buff *skb,
716 				   int first, int entry_last)
717 {
718 	int frag, index;
719 	struct cp_desc *txd;
720 	skb_frag_t *this_frag;
721 	for (frag = 0; frag+first < entry_last; frag++) {
722 		index = first+frag;
723 		cp->tx_skb[index] = NULL;
724 		txd = &cp->tx_ring[index];
725 		this_frag = &skb_shinfo(skb)->frags[frag];
726 		dma_unmap_single(&cp->pdev->dev, le64_to_cpu(txd->addr),
727 				 skb_frag_size(this_frag), PCI_DMA_TODEVICE);
728 	}
729 }
730 
731 static netdev_tx_t cp_start_xmit (struct sk_buff *skb,
732 					struct net_device *dev)
733 {
734 	struct cp_private *cp = netdev_priv(dev);
735 	unsigned entry;
736 	u32 eor, opts1;
737 	unsigned long intr_flags;
738 	__le32 opts2;
739 	int mss = 0;
740 
741 	spin_lock_irqsave(&cp->lock, intr_flags);
742 
743 	/* This is a hard error, log it. */
744 	if (TX_BUFFS_AVAIL(cp) <= (skb_shinfo(skb)->nr_frags + 1)) {
745 		netif_stop_queue(dev);
746 		spin_unlock_irqrestore(&cp->lock, intr_flags);
747 		netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
748 		return NETDEV_TX_BUSY;
749 	}
750 
751 	entry = cp->tx_head;
752 	eor = (entry == (CP_TX_RING_SIZE - 1)) ? RingEnd : 0;
753 	mss = skb_shinfo(skb)->gso_size;
754 
755 	if (mss > MSSMask) {
756 		netdev_WARN_ONCE(dev, "Net bug: GSO size %d too large for 8139CP\n",
757 				 mss);
758 		goto out_dma_error;
759 	}
760 
761 	opts2 = cpu_to_le32(cp_tx_vlan_tag(skb));
762 	opts1 = DescOwn;
763 	if (mss)
764 		opts1 |= LargeSend | (mss << MSSShift);
765 	else if (skb->ip_summed == CHECKSUM_PARTIAL) {
766 		const struct iphdr *ip = ip_hdr(skb);
767 		if (ip->protocol == IPPROTO_TCP)
768 			opts1 |= IPCS | TCPCS;
769 		else if (ip->protocol == IPPROTO_UDP)
770 			opts1 |= IPCS | UDPCS;
771 		else {
772 			WARN_ONCE(1,
773 				  "Net bug: asked to checksum invalid Legacy IP packet\n");
774 			goto out_dma_error;
775 		}
776 	}
777 
778 	if (skb_shinfo(skb)->nr_frags == 0) {
779 		struct cp_desc *txd = &cp->tx_ring[entry];
780 		u32 len;
781 		dma_addr_t mapping;
782 
783 		len = skb->len;
784 		mapping = dma_map_single(&cp->pdev->dev, skb->data, len, PCI_DMA_TODEVICE);
785 		if (dma_mapping_error(&cp->pdev->dev, mapping))
786 			goto out_dma_error;
787 
788 		txd->opts2 = opts2;
789 		txd->addr = cpu_to_le64(mapping);
790 		wmb();
791 
792 		opts1 |= eor | len | FirstFrag | LastFrag;
793 
794 		txd->opts1 = cpu_to_le32(opts1);
795 		wmb();
796 
797 		cp->tx_skb[entry] = skb;
798 		cp->tx_opts[entry] = opts1;
799 		netif_dbg(cp, tx_queued, cp->dev, "tx queued, slot %d, skblen %d\n",
800 			  entry, skb->len);
801 	} else {
802 		struct cp_desc *txd;
803 		u32 first_len, first_eor, ctrl;
804 		dma_addr_t first_mapping;
805 		int frag, first_entry = entry;
806 
807 		/* We must give this initial chunk to the device last.
808 		 * Otherwise we could race with the device.
809 		 */
810 		first_eor = eor;
811 		first_len = skb_headlen(skb);
812 		first_mapping = dma_map_single(&cp->pdev->dev, skb->data,
813 					       first_len, PCI_DMA_TODEVICE);
814 		if (dma_mapping_error(&cp->pdev->dev, first_mapping))
815 			goto out_dma_error;
816 
817 		cp->tx_skb[entry] = skb;
818 
819 		for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
820 			const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
821 			u32 len;
822 			dma_addr_t mapping;
823 
824 			entry = NEXT_TX(entry);
825 
826 			len = skb_frag_size(this_frag);
827 			mapping = dma_map_single(&cp->pdev->dev,
828 						 skb_frag_address(this_frag),
829 						 len, PCI_DMA_TODEVICE);
830 			if (dma_mapping_error(&cp->pdev->dev, mapping)) {
831 				unwind_tx_frag_mapping(cp, skb, first_entry, entry);
832 				goto out_dma_error;
833 			}
834 
835 			eor = (entry == (CP_TX_RING_SIZE - 1)) ? RingEnd : 0;
836 
837 			ctrl = opts1 | eor | len;
838 
839 			if (frag == skb_shinfo(skb)->nr_frags - 1)
840 				ctrl |= LastFrag;
841 
842 			txd = &cp->tx_ring[entry];
843 			txd->opts2 = opts2;
844 			txd->addr = cpu_to_le64(mapping);
845 			wmb();
846 
847 			txd->opts1 = cpu_to_le32(ctrl);
848 			wmb();
849 
850 			cp->tx_opts[entry] = ctrl;
851 			cp->tx_skb[entry] = skb;
852 		}
853 
854 		txd = &cp->tx_ring[first_entry];
855 		txd->opts2 = opts2;
856 		txd->addr = cpu_to_le64(first_mapping);
857 		wmb();
858 
859 		ctrl = opts1 | first_eor | first_len | FirstFrag;
860 		txd->opts1 = cpu_to_le32(ctrl);
861 		wmb();
862 
863 		cp->tx_opts[first_entry] = ctrl;
864 		netif_dbg(cp, tx_queued, cp->dev, "tx queued, slots %d-%d, skblen %d\n",
865 			  first_entry, entry, skb->len);
866 	}
867 	cp->tx_head = NEXT_TX(entry);
868 
869 	netdev_sent_queue(dev, skb->len);
870 	if (TX_BUFFS_AVAIL(cp) <= (MAX_SKB_FRAGS + 1))
871 		netif_stop_queue(dev);
872 
873 out_unlock:
874 	spin_unlock_irqrestore(&cp->lock, intr_flags);
875 
876 	cpw8(TxPoll, NormalTxPoll);
877 
878 	return NETDEV_TX_OK;
879 out_dma_error:
880 	dev_kfree_skb_any(skb);
881 	cp->dev->stats.tx_dropped++;
882 	goto out_unlock;
883 }
884 
885 /* Set or clear the multicast filter for this adaptor.
886    This routine is not state sensitive and need not be SMP locked. */
887 
888 static void __cp_set_rx_mode (struct net_device *dev)
889 {
890 	struct cp_private *cp = netdev_priv(dev);
891 	u32 mc_filter[2];	/* Multicast hash filter */
892 	int rx_mode;
893 
894 	/* Note: do not reorder, GCC is clever about common statements. */
895 	if (dev->flags & IFF_PROMISC) {
896 		/* Unconditionally log net taps. */
897 		rx_mode =
898 		    AcceptBroadcast | AcceptMulticast | AcceptMyPhys |
899 		    AcceptAllPhys;
900 		mc_filter[1] = mc_filter[0] = 0xffffffff;
901 	} else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
902 		   (dev->flags & IFF_ALLMULTI)) {
903 		/* Too many to filter perfectly -- accept all multicasts. */
904 		rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys;
905 		mc_filter[1] = mc_filter[0] = 0xffffffff;
906 	} else {
907 		struct netdev_hw_addr *ha;
908 		rx_mode = AcceptBroadcast | AcceptMyPhys;
909 		mc_filter[1] = mc_filter[0] = 0;
910 		netdev_for_each_mc_addr(ha, dev) {
911 			int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26;
912 
913 			mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
914 			rx_mode |= AcceptMulticast;
915 		}
916 	}
917 
918 	/* We can safely update without stopping the chip. */
919 	cp->rx_config = cp_rx_config | rx_mode;
920 	cpw32_f(RxConfig, cp->rx_config);
921 
922 	cpw32_f (MAR0 + 0, mc_filter[0]);
923 	cpw32_f (MAR0 + 4, mc_filter[1]);
924 }
925 
926 static void cp_set_rx_mode (struct net_device *dev)
927 {
928 	unsigned long flags;
929 	struct cp_private *cp = netdev_priv(dev);
930 
931 	spin_lock_irqsave (&cp->lock, flags);
932 	__cp_set_rx_mode(dev);
933 	spin_unlock_irqrestore (&cp->lock, flags);
934 }
935 
936 static void __cp_get_stats(struct cp_private *cp)
937 {
938 	/* only lower 24 bits valid; write any value to clear */
939 	cp->dev->stats.rx_missed_errors += (cpr32 (RxMissed) & 0xffffff);
940 	cpw32 (RxMissed, 0);
941 }
942 
943 static struct net_device_stats *cp_get_stats(struct net_device *dev)
944 {
945 	struct cp_private *cp = netdev_priv(dev);
946 	unsigned long flags;
947 
948 	/* The chip only need report frame silently dropped. */
949 	spin_lock_irqsave(&cp->lock, flags);
950  	if (netif_running(dev) && netif_device_present(dev))
951  		__cp_get_stats(cp);
952 	spin_unlock_irqrestore(&cp->lock, flags);
953 
954 	return &dev->stats;
955 }
956 
957 static void cp_stop_hw (struct cp_private *cp)
958 {
959 	cpw16(IntrStatus, ~(cpr16(IntrStatus)));
960 	cpw16_f(IntrMask, 0);
961 	cpw8(Cmd, 0);
962 	cpw16_f(CpCmd, 0);
963 	cpw16_f(IntrStatus, ~(cpr16(IntrStatus)));
964 
965 	cp->rx_tail = 0;
966 	cp->tx_head = cp->tx_tail = 0;
967 
968 	netdev_reset_queue(cp->dev);
969 }
970 
971 static void cp_reset_hw (struct cp_private *cp)
972 {
973 	unsigned work = 1000;
974 
975 	cpw8(Cmd, CmdReset);
976 
977 	while (work--) {
978 		if (!(cpr8(Cmd) & CmdReset))
979 			return;
980 
981 		schedule_timeout_uninterruptible(10);
982 	}
983 
984 	netdev_err(cp->dev, "hardware reset timeout\n");
985 }
986 
987 static inline void cp_start_hw (struct cp_private *cp)
988 {
989 	dma_addr_t ring_dma;
990 
991 	cpw16(CpCmd, cp->cpcmd);
992 
993 	/*
994 	 * These (at least TxRingAddr) need to be configured after the
995 	 * corresponding bits in CpCmd are enabled. Datasheet v1.6 §6.33
996 	 * (C+ Command Register) recommends that these and more be configured
997 	 * *after* the [RT]xEnable bits in CpCmd are set. And on some hardware
998 	 * it's been observed that the TxRingAddr is actually reset to garbage
999 	 * when C+ mode Tx is enabled in CpCmd.
1000 	 */
1001 	cpw32_f(HiTxRingAddr, 0);
1002 	cpw32_f(HiTxRingAddr + 4, 0);
1003 
1004 	ring_dma = cp->ring_dma;
1005 	cpw32_f(RxRingAddr, ring_dma & 0xffffffff);
1006 	cpw32_f(RxRingAddr + 4, (ring_dma >> 16) >> 16);
1007 
1008 	ring_dma += sizeof(struct cp_desc) * CP_RX_RING_SIZE;
1009 	cpw32_f(TxRingAddr, ring_dma & 0xffffffff);
1010 	cpw32_f(TxRingAddr + 4, (ring_dma >> 16) >> 16);
1011 
1012 	/*
1013 	 * Strictly speaking, the datasheet says this should be enabled
1014 	 * *before* setting the descriptor addresses. But what, then, would
1015 	 * prevent it from doing DMA to random unconfigured addresses?
1016 	 * This variant appears to work fine.
1017 	 */
1018 	cpw8(Cmd, RxOn | TxOn);
1019 
1020 	netdev_reset_queue(cp->dev);
1021 }
1022 
1023 static void cp_enable_irq(struct cp_private *cp)
1024 {
1025 	cpw16_f(IntrMask, cp_intr_mask);
1026 }
1027 
1028 static void cp_init_hw (struct cp_private *cp)
1029 {
1030 	struct net_device *dev = cp->dev;
1031 
1032 	cp_reset_hw(cp);
1033 
1034 	cpw8_f (Cfg9346, Cfg9346_Unlock);
1035 
1036 	/* Restore our idea of the MAC address. */
1037 	cpw32_f (MAC0 + 0, le32_to_cpu (*(__le32 *) (dev->dev_addr + 0)));
1038 	cpw32_f (MAC0 + 4, le32_to_cpu (*(__le32 *) (dev->dev_addr + 4)));
1039 
1040 	cp_start_hw(cp);
1041 	cpw8(TxThresh, 0x06); /* XXX convert magic num to a constant */
1042 
1043 	__cp_set_rx_mode(dev);
1044 	cpw32_f (TxConfig, IFG | (TX_DMA_BURST << TxDMAShift));
1045 
1046 	cpw8(Config1, cpr8(Config1) | DriverLoaded | PMEnable);
1047 	/* Disable Wake-on-LAN. Can be turned on with ETHTOOL_SWOL */
1048 	cpw8(Config3, PARMEnable);
1049 	cp->wol_enabled = 0;
1050 
1051 	cpw8(Config5, cpr8(Config5) & PMEStatus);
1052 
1053 	cpw16(MultiIntr, 0);
1054 
1055 	cpw8_f(Cfg9346, Cfg9346_Lock);
1056 }
1057 
1058 static int cp_refill_rx(struct cp_private *cp)
1059 {
1060 	struct net_device *dev = cp->dev;
1061 	unsigned i;
1062 
1063 	for (i = 0; i < CP_RX_RING_SIZE; i++) {
1064 		struct sk_buff *skb;
1065 		dma_addr_t mapping;
1066 
1067 		skb = netdev_alloc_skb_ip_align(dev, cp->rx_buf_sz);
1068 		if (!skb)
1069 			goto err_out;
1070 
1071 		mapping = dma_map_single(&cp->pdev->dev, skb->data,
1072 					 cp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1073 		if (dma_mapping_error(&cp->pdev->dev, mapping)) {
1074 			kfree_skb(skb);
1075 			goto err_out;
1076 		}
1077 		cp->rx_skb[i] = skb;
1078 
1079 		cp->rx_ring[i].opts2 = 0;
1080 		cp->rx_ring[i].addr = cpu_to_le64(mapping);
1081 		if (i == (CP_RX_RING_SIZE - 1))
1082 			cp->rx_ring[i].opts1 =
1083 				cpu_to_le32(DescOwn | RingEnd | cp->rx_buf_sz);
1084 		else
1085 			cp->rx_ring[i].opts1 =
1086 				cpu_to_le32(DescOwn | cp->rx_buf_sz);
1087 	}
1088 
1089 	return 0;
1090 
1091 err_out:
1092 	cp_clean_rings(cp);
1093 	return -ENOMEM;
1094 }
1095 
1096 static void cp_init_rings_index (struct cp_private *cp)
1097 {
1098 	cp->rx_tail = 0;
1099 	cp->tx_head = cp->tx_tail = 0;
1100 }
1101 
1102 static int cp_init_rings (struct cp_private *cp)
1103 {
1104 	memset(cp->tx_ring, 0, sizeof(struct cp_desc) * CP_TX_RING_SIZE);
1105 	cp->tx_ring[CP_TX_RING_SIZE - 1].opts1 = cpu_to_le32(RingEnd);
1106 	memset(cp->tx_opts, 0, sizeof(cp->tx_opts));
1107 
1108 	cp_init_rings_index(cp);
1109 
1110 	return cp_refill_rx (cp);
1111 }
1112 
1113 static int cp_alloc_rings (struct cp_private *cp)
1114 {
1115 	struct device *d = &cp->pdev->dev;
1116 	void *mem;
1117 	int rc;
1118 
1119 	mem = dma_alloc_coherent(d, CP_RING_BYTES, &cp->ring_dma, GFP_KERNEL);
1120 	if (!mem)
1121 		return -ENOMEM;
1122 
1123 	cp->rx_ring = mem;
1124 	cp->tx_ring = &cp->rx_ring[CP_RX_RING_SIZE];
1125 
1126 	rc = cp_init_rings(cp);
1127 	if (rc < 0)
1128 		dma_free_coherent(d, CP_RING_BYTES, cp->rx_ring, cp->ring_dma);
1129 
1130 	return rc;
1131 }
1132 
1133 static void cp_clean_rings (struct cp_private *cp)
1134 {
1135 	struct cp_desc *desc;
1136 	unsigned i;
1137 
1138 	for (i = 0; i < CP_RX_RING_SIZE; i++) {
1139 		if (cp->rx_skb[i]) {
1140 			desc = cp->rx_ring + i;
1141 			dma_unmap_single(&cp->pdev->dev,le64_to_cpu(desc->addr),
1142 					 cp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1143 			dev_kfree_skb_any(cp->rx_skb[i]);
1144 		}
1145 	}
1146 
1147 	for (i = 0; i < CP_TX_RING_SIZE; i++) {
1148 		if (cp->tx_skb[i]) {
1149 			struct sk_buff *skb = cp->tx_skb[i];
1150 
1151 			desc = cp->tx_ring + i;
1152 			dma_unmap_single(&cp->pdev->dev,le64_to_cpu(desc->addr),
1153 					 le32_to_cpu(desc->opts1) & 0xffff,
1154 					 PCI_DMA_TODEVICE);
1155 			if (le32_to_cpu(desc->opts1) & LastFrag)
1156 				dev_kfree_skb_any(skb);
1157 			cp->dev->stats.tx_dropped++;
1158 		}
1159 	}
1160 	netdev_reset_queue(cp->dev);
1161 
1162 	memset(cp->rx_ring, 0, sizeof(struct cp_desc) * CP_RX_RING_SIZE);
1163 	memset(cp->tx_ring, 0, sizeof(struct cp_desc) * CP_TX_RING_SIZE);
1164 	memset(cp->tx_opts, 0, sizeof(cp->tx_opts));
1165 
1166 	memset(cp->rx_skb, 0, sizeof(struct sk_buff *) * CP_RX_RING_SIZE);
1167 	memset(cp->tx_skb, 0, sizeof(struct sk_buff *) * CP_TX_RING_SIZE);
1168 }
1169 
1170 static void cp_free_rings (struct cp_private *cp)
1171 {
1172 	cp_clean_rings(cp);
1173 	dma_free_coherent(&cp->pdev->dev, CP_RING_BYTES, cp->rx_ring,
1174 			  cp->ring_dma);
1175 	cp->rx_ring = NULL;
1176 	cp->tx_ring = NULL;
1177 }
1178 
1179 static int cp_open (struct net_device *dev)
1180 {
1181 	struct cp_private *cp = netdev_priv(dev);
1182 	const int irq = cp->pdev->irq;
1183 	int rc;
1184 
1185 	netif_dbg(cp, ifup, dev, "enabling interface\n");
1186 
1187 	rc = cp_alloc_rings(cp);
1188 	if (rc)
1189 		return rc;
1190 
1191 	napi_enable(&cp->napi);
1192 
1193 	cp_init_hw(cp);
1194 
1195 	rc = request_irq(irq, cp_interrupt, IRQF_SHARED, dev->name, dev);
1196 	if (rc)
1197 		goto err_out_hw;
1198 
1199 	cp_enable_irq(cp);
1200 
1201 	netif_carrier_off(dev);
1202 	mii_check_media(&cp->mii_if, netif_msg_link(cp), true);
1203 	netif_start_queue(dev);
1204 
1205 	return 0;
1206 
1207 err_out_hw:
1208 	napi_disable(&cp->napi);
1209 	cp_stop_hw(cp);
1210 	cp_free_rings(cp);
1211 	return rc;
1212 }
1213 
1214 static int cp_close (struct net_device *dev)
1215 {
1216 	struct cp_private *cp = netdev_priv(dev);
1217 	unsigned long flags;
1218 
1219 	napi_disable(&cp->napi);
1220 
1221 	netif_dbg(cp, ifdown, dev, "disabling interface\n");
1222 
1223 	spin_lock_irqsave(&cp->lock, flags);
1224 
1225 	netif_stop_queue(dev);
1226 	netif_carrier_off(dev);
1227 
1228 	cp_stop_hw(cp);
1229 
1230 	spin_unlock_irqrestore(&cp->lock, flags);
1231 
1232 	free_irq(cp->pdev->irq, dev);
1233 
1234 	cp_free_rings(cp);
1235 	return 0;
1236 }
1237 
1238 static void cp_tx_timeout(struct net_device *dev)
1239 {
1240 	struct cp_private *cp = netdev_priv(dev);
1241 	unsigned long flags;
1242 	int rc, i;
1243 
1244 	netdev_warn(dev, "Transmit timeout, status %2x %4x %4x %4x\n",
1245 		    cpr8(Cmd), cpr16(CpCmd),
1246 		    cpr16(IntrStatus), cpr16(IntrMask));
1247 
1248 	spin_lock_irqsave(&cp->lock, flags);
1249 
1250 	netif_dbg(cp, tx_err, cp->dev, "TX ring head %d tail %d desc %x\n",
1251 		  cp->tx_head, cp->tx_tail, cpr16(TxDmaOkLowDesc));
1252 	for (i = 0; i < CP_TX_RING_SIZE; i++) {
1253 		netif_dbg(cp, tx_err, cp->dev,
1254 			  "TX slot %d @%p: %08x (%08x) %08x %llx %p\n",
1255 			  i, &cp->tx_ring[i], le32_to_cpu(cp->tx_ring[i].opts1),
1256 			  cp->tx_opts[i], le32_to_cpu(cp->tx_ring[i].opts2),
1257 			  le64_to_cpu(cp->tx_ring[i].addr),
1258 			  cp->tx_skb[i]);
1259 	}
1260 
1261 	cp_stop_hw(cp);
1262 	cp_clean_rings(cp);
1263 	rc = cp_init_rings(cp);
1264 	cp_start_hw(cp);
1265 	__cp_set_rx_mode(dev);
1266 	cpw16_f(IntrMask, cp_norx_intr_mask);
1267 
1268 	netif_wake_queue(dev);
1269 	napi_schedule_irqoff(&cp->napi);
1270 
1271 	spin_unlock_irqrestore(&cp->lock, flags);
1272 }
1273 
1274 static int cp_change_mtu(struct net_device *dev, int new_mtu)
1275 {
1276 	struct cp_private *cp = netdev_priv(dev);
1277 
1278 	/* if network interface not up, no need for complexity */
1279 	if (!netif_running(dev)) {
1280 		dev->mtu = new_mtu;
1281 		cp_set_rxbufsize(cp);	/* set new rx buf size */
1282 		return 0;
1283 	}
1284 
1285 	/* network IS up, close it, reset MTU, and come up again. */
1286 	cp_close(dev);
1287 	dev->mtu = new_mtu;
1288 	cp_set_rxbufsize(cp);
1289 	return cp_open(dev);
1290 }
1291 
1292 static const char mii_2_8139_map[8] = {
1293 	BasicModeCtrl,
1294 	BasicModeStatus,
1295 	0,
1296 	0,
1297 	NWayAdvert,
1298 	NWayLPAR,
1299 	NWayExpansion,
1300 	0
1301 };
1302 
1303 static int mdio_read(struct net_device *dev, int phy_id, int location)
1304 {
1305 	struct cp_private *cp = netdev_priv(dev);
1306 
1307 	return location < 8 && mii_2_8139_map[location] ?
1308 	       readw(cp->regs + mii_2_8139_map[location]) : 0;
1309 }
1310 
1311 
1312 static void mdio_write(struct net_device *dev, int phy_id, int location,
1313 		       int value)
1314 {
1315 	struct cp_private *cp = netdev_priv(dev);
1316 
1317 	if (location == 0) {
1318 		cpw8(Cfg9346, Cfg9346_Unlock);
1319 		cpw16(BasicModeCtrl, value);
1320 		cpw8(Cfg9346, Cfg9346_Lock);
1321 	} else if (location < 8 && mii_2_8139_map[location])
1322 		cpw16(mii_2_8139_map[location], value);
1323 }
1324 
1325 /* Set the ethtool Wake-on-LAN settings */
1326 static int netdev_set_wol (struct cp_private *cp,
1327 			   const struct ethtool_wolinfo *wol)
1328 {
1329 	u8 options;
1330 
1331 	options = cpr8 (Config3) & ~(LinkUp | MagicPacket);
1332 	/* If WOL is being disabled, no need for complexity */
1333 	if (wol->wolopts) {
1334 		if (wol->wolopts & WAKE_PHY)	options |= LinkUp;
1335 		if (wol->wolopts & WAKE_MAGIC)	options |= MagicPacket;
1336 	}
1337 
1338 	cpw8 (Cfg9346, Cfg9346_Unlock);
1339 	cpw8 (Config3, options);
1340 	cpw8 (Cfg9346, Cfg9346_Lock);
1341 
1342 	options = 0; /* Paranoia setting */
1343 	options = cpr8 (Config5) & ~(UWF | MWF | BWF);
1344 	/* If WOL is being disabled, no need for complexity */
1345 	if (wol->wolopts) {
1346 		if (wol->wolopts & WAKE_UCAST)  options |= UWF;
1347 		if (wol->wolopts & WAKE_BCAST)	options |= BWF;
1348 		if (wol->wolopts & WAKE_MCAST)	options |= MWF;
1349 	}
1350 
1351 	cpw8 (Config5, options);
1352 
1353 	cp->wol_enabled = (wol->wolopts) ? 1 : 0;
1354 
1355 	return 0;
1356 }
1357 
1358 /* Get the ethtool Wake-on-LAN settings */
1359 static void netdev_get_wol (struct cp_private *cp,
1360 	             struct ethtool_wolinfo *wol)
1361 {
1362 	u8 options;
1363 
1364 	wol->wolopts   = 0; /* Start from scratch */
1365 	wol->supported = WAKE_PHY   | WAKE_BCAST | WAKE_MAGIC |
1366 		         WAKE_MCAST | WAKE_UCAST;
1367 	/* We don't need to go on if WOL is disabled */
1368 	if (!cp->wol_enabled) return;
1369 
1370 	options        = cpr8 (Config3);
1371 	if (options & LinkUp)        wol->wolopts |= WAKE_PHY;
1372 	if (options & MagicPacket)   wol->wolopts |= WAKE_MAGIC;
1373 
1374 	options        = 0; /* Paranoia setting */
1375 	options        = cpr8 (Config5);
1376 	if (options & UWF)           wol->wolopts |= WAKE_UCAST;
1377 	if (options & BWF)           wol->wolopts |= WAKE_BCAST;
1378 	if (options & MWF)           wol->wolopts |= WAKE_MCAST;
1379 }
1380 
1381 static void cp_get_drvinfo (struct net_device *dev, struct ethtool_drvinfo *info)
1382 {
1383 	struct cp_private *cp = netdev_priv(dev);
1384 
1385 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1386 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1387 	strlcpy(info->bus_info, pci_name(cp->pdev), sizeof(info->bus_info));
1388 }
1389 
1390 static void cp_get_ringparam(struct net_device *dev,
1391 				struct ethtool_ringparam *ring)
1392 {
1393 	ring->rx_max_pending = CP_RX_RING_SIZE;
1394 	ring->tx_max_pending = CP_TX_RING_SIZE;
1395 	ring->rx_pending = CP_RX_RING_SIZE;
1396 	ring->tx_pending = CP_TX_RING_SIZE;
1397 }
1398 
1399 static int cp_get_regs_len(struct net_device *dev)
1400 {
1401 	return CP_REGS_SIZE;
1402 }
1403 
1404 static int cp_get_sset_count (struct net_device *dev, int sset)
1405 {
1406 	switch (sset) {
1407 	case ETH_SS_STATS:
1408 		return CP_NUM_STATS;
1409 	default:
1410 		return -EOPNOTSUPP;
1411 	}
1412 }
1413 
1414 static int cp_get_link_ksettings(struct net_device *dev,
1415 				 struct ethtool_link_ksettings *cmd)
1416 {
1417 	struct cp_private *cp = netdev_priv(dev);
1418 	unsigned long flags;
1419 
1420 	spin_lock_irqsave(&cp->lock, flags);
1421 	mii_ethtool_get_link_ksettings(&cp->mii_if, cmd);
1422 	spin_unlock_irqrestore(&cp->lock, flags);
1423 
1424 	return 0;
1425 }
1426 
1427 static int cp_set_link_ksettings(struct net_device *dev,
1428 				 const struct ethtool_link_ksettings *cmd)
1429 {
1430 	struct cp_private *cp = netdev_priv(dev);
1431 	int rc;
1432 	unsigned long flags;
1433 
1434 	spin_lock_irqsave(&cp->lock, flags);
1435 	rc = mii_ethtool_set_link_ksettings(&cp->mii_if, cmd);
1436 	spin_unlock_irqrestore(&cp->lock, flags);
1437 
1438 	return rc;
1439 }
1440 
1441 static int cp_nway_reset(struct net_device *dev)
1442 {
1443 	struct cp_private *cp = netdev_priv(dev);
1444 	return mii_nway_restart(&cp->mii_if);
1445 }
1446 
1447 static u32 cp_get_msglevel(struct net_device *dev)
1448 {
1449 	struct cp_private *cp = netdev_priv(dev);
1450 	return cp->msg_enable;
1451 }
1452 
1453 static void cp_set_msglevel(struct net_device *dev, u32 value)
1454 {
1455 	struct cp_private *cp = netdev_priv(dev);
1456 	cp->msg_enable = value;
1457 }
1458 
1459 static int cp_set_features(struct net_device *dev, netdev_features_t features)
1460 {
1461 	struct cp_private *cp = netdev_priv(dev);
1462 	unsigned long flags;
1463 
1464 	if (!((dev->features ^ features) & NETIF_F_RXCSUM))
1465 		return 0;
1466 
1467 	spin_lock_irqsave(&cp->lock, flags);
1468 
1469 	if (features & NETIF_F_RXCSUM)
1470 		cp->cpcmd |= RxChkSum;
1471 	else
1472 		cp->cpcmd &= ~RxChkSum;
1473 
1474 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
1475 		cp->cpcmd |= RxVlanOn;
1476 	else
1477 		cp->cpcmd &= ~RxVlanOn;
1478 
1479 	cpw16_f(CpCmd, cp->cpcmd);
1480 	spin_unlock_irqrestore(&cp->lock, flags);
1481 
1482 	return 0;
1483 }
1484 
1485 static void cp_get_regs(struct net_device *dev, struct ethtool_regs *regs,
1486 		        void *p)
1487 {
1488 	struct cp_private *cp = netdev_priv(dev);
1489 	unsigned long flags;
1490 
1491 	if (regs->len < CP_REGS_SIZE)
1492 		return /* -EINVAL */;
1493 
1494 	regs->version = CP_REGS_VER;
1495 
1496 	spin_lock_irqsave(&cp->lock, flags);
1497 	memcpy_fromio(p, cp->regs, CP_REGS_SIZE);
1498 	spin_unlock_irqrestore(&cp->lock, flags);
1499 }
1500 
1501 static void cp_get_wol (struct net_device *dev, struct ethtool_wolinfo *wol)
1502 {
1503 	struct cp_private *cp = netdev_priv(dev);
1504 	unsigned long flags;
1505 
1506 	spin_lock_irqsave (&cp->lock, flags);
1507 	netdev_get_wol (cp, wol);
1508 	spin_unlock_irqrestore (&cp->lock, flags);
1509 }
1510 
1511 static int cp_set_wol (struct net_device *dev, struct ethtool_wolinfo *wol)
1512 {
1513 	struct cp_private *cp = netdev_priv(dev);
1514 	unsigned long flags;
1515 	int rc;
1516 
1517 	spin_lock_irqsave (&cp->lock, flags);
1518 	rc = netdev_set_wol (cp, wol);
1519 	spin_unlock_irqrestore (&cp->lock, flags);
1520 
1521 	return rc;
1522 }
1523 
1524 static void cp_get_strings (struct net_device *dev, u32 stringset, u8 *buf)
1525 {
1526 	switch (stringset) {
1527 	case ETH_SS_STATS:
1528 		memcpy(buf, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
1529 		break;
1530 	default:
1531 		BUG();
1532 		break;
1533 	}
1534 }
1535 
1536 static void cp_get_ethtool_stats (struct net_device *dev,
1537 				  struct ethtool_stats *estats, u64 *tmp_stats)
1538 {
1539 	struct cp_private *cp = netdev_priv(dev);
1540 	struct cp_dma_stats *nic_stats;
1541 	dma_addr_t dma;
1542 	int i;
1543 
1544 	nic_stats = dma_alloc_coherent(&cp->pdev->dev, sizeof(*nic_stats),
1545 				       &dma, GFP_KERNEL);
1546 	if (!nic_stats)
1547 		return;
1548 
1549 	/* begin NIC statistics dump */
1550 	cpw32(StatsAddr + 4, (u64)dma >> 32);
1551 	cpw32(StatsAddr, ((u64)dma & DMA_BIT_MASK(32)) | DumpStats);
1552 	cpr32(StatsAddr);
1553 
1554 	for (i = 0; i < 1000; i++) {
1555 		if ((cpr32(StatsAddr) & DumpStats) == 0)
1556 			break;
1557 		udelay(10);
1558 	}
1559 	cpw32(StatsAddr, 0);
1560 	cpw32(StatsAddr + 4, 0);
1561 	cpr32(StatsAddr);
1562 
1563 	i = 0;
1564 	tmp_stats[i++] = le64_to_cpu(nic_stats->tx_ok);
1565 	tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok);
1566 	tmp_stats[i++] = le64_to_cpu(nic_stats->tx_err);
1567 	tmp_stats[i++] = le32_to_cpu(nic_stats->rx_err);
1568 	tmp_stats[i++] = le16_to_cpu(nic_stats->rx_fifo);
1569 	tmp_stats[i++] = le16_to_cpu(nic_stats->frame_align);
1570 	tmp_stats[i++] = le32_to_cpu(nic_stats->tx_ok_1col);
1571 	tmp_stats[i++] = le32_to_cpu(nic_stats->tx_ok_mcol);
1572 	tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok_phys);
1573 	tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok_bcast);
1574 	tmp_stats[i++] = le32_to_cpu(nic_stats->rx_ok_mcast);
1575 	tmp_stats[i++] = le16_to_cpu(nic_stats->tx_abort);
1576 	tmp_stats[i++] = le16_to_cpu(nic_stats->tx_underrun);
1577 	tmp_stats[i++] = cp->cp_stats.rx_frags;
1578 	BUG_ON(i != CP_NUM_STATS);
1579 
1580 	dma_free_coherent(&cp->pdev->dev, sizeof(*nic_stats), nic_stats, dma);
1581 }
1582 
1583 static const struct ethtool_ops cp_ethtool_ops = {
1584 	.get_drvinfo		= cp_get_drvinfo,
1585 	.get_regs_len		= cp_get_regs_len,
1586 	.get_sset_count		= cp_get_sset_count,
1587 	.nway_reset		= cp_nway_reset,
1588 	.get_link		= ethtool_op_get_link,
1589 	.get_msglevel		= cp_get_msglevel,
1590 	.set_msglevel		= cp_set_msglevel,
1591 	.get_regs		= cp_get_regs,
1592 	.get_wol		= cp_get_wol,
1593 	.set_wol		= cp_set_wol,
1594 	.get_strings		= cp_get_strings,
1595 	.get_ethtool_stats	= cp_get_ethtool_stats,
1596 	.get_eeprom_len		= cp_get_eeprom_len,
1597 	.get_eeprom		= cp_get_eeprom,
1598 	.set_eeprom		= cp_set_eeprom,
1599 	.get_ringparam		= cp_get_ringparam,
1600 	.get_link_ksettings	= cp_get_link_ksettings,
1601 	.set_link_ksettings	= cp_set_link_ksettings,
1602 };
1603 
1604 static int cp_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
1605 {
1606 	struct cp_private *cp = netdev_priv(dev);
1607 	int rc;
1608 	unsigned long flags;
1609 
1610 	if (!netif_running(dev))
1611 		return -EINVAL;
1612 
1613 	spin_lock_irqsave(&cp->lock, flags);
1614 	rc = generic_mii_ioctl(&cp->mii_if, if_mii(rq), cmd, NULL);
1615 	spin_unlock_irqrestore(&cp->lock, flags);
1616 	return rc;
1617 }
1618 
1619 static int cp_set_mac_address(struct net_device *dev, void *p)
1620 {
1621 	struct cp_private *cp = netdev_priv(dev);
1622 	struct sockaddr *addr = p;
1623 
1624 	if (!is_valid_ether_addr(addr->sa_data))
1625 		return -EADDRNOTAVAIL;
1626 
1627 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1628 
1629 	spin_lock_irq(&cp->lock);
1630 
1631 	cpw8_f(Cfg9346, Cfg9346_Unlock);
1632 	cpw32_f(MAC0 + 0, le32_to_cpu (*(__le32 *) (dev->dev_addr + 0)));
1633 	cpw32_f(MAC0 + 4, le32_to_cpu (*(__le32 *) (dev->dev_addr + 4)));
1634 	cpw8_f(Cfg9346, Cfg9346_Lock);
1635 
1636 	spin_unlock_irq(&cp->lock);
1637 
1638 	return 0;
1639 }
1640 
1641 /* Serial EEPROM section. */
1642 
1643 /*  EEPROM_Ctrl bits. */
1644 #define EE_SHIFT_CLK	0x04	/* EEPROM shift clock. */
1645 #define EE_CS			0x08	/* EEPROM chip select. */
1646 #define EE_DATA_WRITE	0x02	/* EEPROM chip data in. */
1647 #define EE_WRITE_0		0x00
1648 #define EE_WRITE_1		0x02
1649 #define EE_DATA_READ	0x01	/* EEPROM chip data out. */
1650 #define EE_ENB			(0x80 | EE_CS)
1651 
1652 /* Delay between EEPROM clock transitions.
1653    No extra delay is needed with 33Mhz PCI, but 66Mhz may change this.
1654  */
1655 
1656 #define eeprom_delay()	readb(ee_addr)
1657 
1658 /* The EEPROM commands include the alway-set leading bit. */
1659 #define EE_EXTEND_CMD	(4)
1660 #define EE_WRITE_CMD	(5)
1661 #define EE_READ_CMD		(6)
1662 #define EE_ERASE_CMD	(7)
1663 
1664 #define EE_EWDS_ADDR	(0)
1665 #define EE_WRAL_ADDR	(1)
1666 #define EE_ERAL_ADDR	(2)
1667 #define EE_EWEN_ADDR	(3)
1668 
1669 #define CP_EEPROM_MAGIC PCI_DEVICE_ID_REALTEK_8139
1670 
1671 static void eeprom_cmd_start(void __iomem *ee_addr)
1672 {
1673 	writeb (EE_ENB & ~EE_CS, ee_addr);
1674 	writeb (EE_ENB, ee_addr);
1675 	eeprom_delay ();
1676 }
1677 
1678 static void eeprom_cmd(void __iomem *ee_addr, int cmd, int cmd_len)
1679 {
1680 	int i;
1681 
1682 	/* Shift the command bits out. */
1683 	for (i = cmd_len - 1; i >= 0; i--) {
1684 		int dataval = (cmd & (1 << i)) ? EE_DATA_WRITE : 0;
1685 		writeb (EE_ENB | dataval, ee_addr);
1686 		eeprom_delay ();
1687 		writeb (EE_ENB | dataval | EE_SHIFT_CLK, ee_addr);
1688 		eeprom_delay ();
1689 	}
1690 	writeb (EE_ENB, ee_addr);
1691 	eeprom_delay ();
1692 }
1693 
1694 static void eeprom_cmd_end(void __iomem *ee_addr)
1695 {
1696 	writeb(0, ee_addr);
1697 	eeprom_delay ();
1698 }
1699 
1700 static void eeprom_extend_cmd(void __iomem *ee_addr, int extend_cmd,
1701 			      int addr_len)
1702 {
1703 	int cmd = (EE_EXTEND_CMD << addr_len) | (extend_cmd << (addr_len - 2));
1704 
1705 	eeprom_cmd_start(ee_addr);
1706 	eeprom_cmd(ee_addr, cmd, 3 + addr_len);
1707 	eeprom_cmd_end(ee_addr);
1708 }
1709 
1710 static u16 read_eeprom (void __iomem *ioaddr, int location, int addr_len)
1711 {
1712 	int i;
1713 	u16 retval = 0;
1714 	void __iomem *ee_addr = ioaddr + Cfg9346;
1715 	int read_cmd = location | (EE_READ_CMD << addr_len);
1716 
1717 	eeprom_cmd_start(ee_addr);
1718 	eeprom_cmd(ee_addr, read_cmd, 3 + addr_len);
1719 
1720 	for (i = 16; i > 0; i--) {
1721 		writeb (EE_ENB | EE_SHIFT_CLK, ee_addr);
1722 		eeprom_delay ();
1723 		retval =
1724 		    (retval << 1) | ((readb (ee_addr) & EE_DATA_READ) ? 1 :
1725 				     0);
1726 		writeb (EE_ENB, ee_addr);
1727 		eeprom_delay ();
1728 	}
1729 
1730 	eeprom_cmd_end(ee_addr);
1731 
1732 	return retval;
1733 }
1734 
1735 static void write_eeprom(void __iomem *ioaddr, int location, u16 val,
1736 			 int addr_len)
1737 {
1738 	int i;
1739 	void __iomem *ee_addr = ioaddr + Cfg9346;
1740 	int write_cmd = location | (EE_WRITE_CMD << addr_len);
1741 
1742 	eeprom_extend_cmd(ee_addr, EE_EWEN_ADDR, addr_len);
1743 
1744 	eeprom_cmd_start(ee_addr);
1745 	eeprom_cmd(ee_addr, write_cmd, 3 + addr_len);
1746 	eeprom_cmd(ee_addr, val, 16);
1747 	eeprom_cmd_end(ee_addr);
1748 
1749 	eeprom_cmd_start(ee_addr);
1750 	for (i = 0; i < 20000; i++)
1751 		if (readb(ee_addr) & EE_DATA_READ)
1752 			break;
1753 	eeprom_cmd_end(ee_addr);
1754 
1755 	eeprom_extend_cmd(ee_addr, EE_EWDS_ADDR, addr_len);
1756 }
1757 
1758 static int cp_get_eeprom_len(struct net_device *dev)
1759 {
1760 	struct cp_private *cp = netdev_priv(dev);
1761 	int size;
1762 
1763 	spin_lock_irq(&cp->lock);
1764 	size = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 256 : 128;
1765 	spin_unlock_irq(&cp->lock);
1766 
1767 	return size;
1768 }
1769 
1770 static int cp_get_eeprom(struct net_device *dev,
1771 			 struct ethtool_eeprom *eeprom, u8 *data)
1772 {
1773 	struct cp_private *cp = netdev_priv(dev);
1774 	unsigned int addr_len;
1775 	u16 val;
1776 	u32 offset = eeprom->offset >> 1;
1777 	u32 len = eeprom->len;
1778 	u32 i = 0;
1779 
1780 	eeprom->magic = CP_EEPROM_MAGIC;
1781 
1782 	spin_lock_irq(&cp->lock);
1783 
1784 	addr_len = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 8 : 6;
1785 
1786 	if (eeprom->offset & 1) {
1787 		val = read_eeprom(cp->regs, offset, addr_len);
1788 		data[i++] = (u8)(val >> 8);
1789 		offset++;
1790 	}
1791 
1792 	while (i < len - 1) {
1793 		val = read_eeprom(cp->regs, offset, addr_len);
1794 		data[i++] = (u8)val;
1795 		data[i++] = (u8)(val >> 8);
1796 		offset++;
1797 	}
1798 
1799 	if (i < len) {
1800 		val = read_eeprom(cp->regs, offset, addr_len);
1801 		data[i] = (u8)val;
1802 	}
1803 
1804 	spin_unlock_irq(&cp->lock);
1805 	return 0;
1806 }
1807 
1808 static int cp_set_eeprom(struct net_device *dev,
1809 			 struct ethtool_eeprom *eeprom, u8 *data)
1810 {
1811 	struct cp_private *cp = netdev_priv(dev);
1812 	unsigned int addr_len;
1813 	u16 val;
1814 	u32 offset = eeprom->offset >> 1;
1815 	u32 len = eeprom->len;
1816 	u32 i = 0;
1817 
1818 	if (eeprom->magic != CP_EEPROM_MAGIC)
1819 		return -EINVAL;
1820 
1821 	spin_lock_irq(&cp->lock);
1822 
1823 	addr_len = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 8 : 6;
1824 
1825 	if (eeprom->offset & 1) {
1826 		val = read_eeprom(cp->regs, offset, addr_len) & 0xff;
1827 		val |= (u16)data[i++] << 8;
1828 		write_eeprom(cp->regs, offset, val, addr_len);
1829 		offset++;
1830 	}
1831 
1832 	while (i < len - 1) {
1833 		val = (u16)data[i++];
1834 		val |= (u16)data[i++] << 8;
1835 		write_eeprom(cp->regs, offset, val, addr_len);
1836 		offset++;
1837 	}
1838 
1839 	if (i < len) {
1840 		val = read_eeprom(cp->regs, offset, addr_len) & 0xff00;
1841 		val |= (u16)data[i];
1842 		write_eeprom(cp->regs, offset, val, addr_len);
1843 	}
1844 
1845 	spin_unlock_irq(&cp->lock);
1846 	return 0;
1847 }
1848 
1849 /* Put the board into D3cold state and wait for WakeUp signal */
1850 static void cp_set_d3_state (struct cp_private *cp)
1851 {
1852 	pci_enable_wake(cp->pdev, PCI_D0, 1); /* Enable PME# generation */
1853 	pci_set_power_state (cp->pdev, PCI_D3hot);
1854 }
1855 
1856 static netdev_features_t cp_features_check(struct sk_buff *skb,
1857 					   struct net_device *dev,
1858 					   netdev_features_t features)
1859 {
1860 	if (skb_shinfo(skb)->gso_size > MSSMask)
1861 		features &= ~NETIF_F_TSO;
1862 
1863 	return vlan_features_check(skb, features);
1864 }
1865 static const struct net_device_ops cp_netdev_ops = {
1866 	.ndo_open		= cp_open,
1867 	.ndo_stop		= cp_close,
1868 	.ndo_validate_addr	= eth_validate_addr,
1869 	.ndo_set_mac_address 	= cp_set_mac_address,
1870 	.ndo_set_rx_mode	= cp_set_rx_mode,
1871 	.ndo_get_stats		= cp_get_stats,
1872 	.ndo_do_ioctl		= cp_ioctl,
1873 	.ndo_start_xmit		= cp_start_xmit,
1874 	.ndo_tx_timeout		= cp_tx_timeout,
1875 	.ndo_set_features	= cp_set_features,
1876 	.ndo_change_mtu		= cp_change_mtu,
1877 	.ndo_features_check	= cp_features_check,
1878 
1879 #ifdef CONFIG_NET_POLL_CONTROLLER
1880 	.ndo_poll_controller	= cp_poll_controller,
1881 #endif
1882 };
1883 
1884 static int cp_init_one (struct pci_dev *pdev, const struct pci_device_id *ent)
1885 {
1886 	struct net_device *dev;
1887 	struct cp_private *cp;
1888 	int rc;
1889 	void __iomem *regs;
1890 	resource_size_t pciaddr;
1891 	unsigned int addr_len, i, pci_using_dac;
1892 
1893 	pr_info_once("%s", version);
1894 
1895 	if (pdev->vendor == PCI_VENDOR_ID_REALTEK &&
1896 	    pdev->device == PCI_DEVICE_ID_REALTEK_8139 && pdev->revision < 0x20) {
1897 		dev_info(&pdev->dev,
1898 			 "This (id %04x:%04x rev %02x) is not an 8139C+ compatible chip, use 8139too\n",
1899 			 pdev->vendor, pdev->device, pdev->revision);
1900 		return -ENODEV;
1901 	}
1902 
1903 	dev = alloc_etherdev(sizeof(struct cp_private));
1904 	if (!dev)
1905 		return -ENOMEM;
1906 	SET_NETDEV_DEV(dev, &pdev->dev);
1907 
1908 	cp = netdev_priv(dev);
1909 	cp->pdev = pdev;
1910 	cp->dev = dev;
1911 	cp->msg_enable = (debug < 0 ? CP_DEF_MSG_ENABLE : debug);
1912 	spin_lock_init (&cp->lock);
1913 	cp->mii_if.dev = dev;
1914 	cp->mii_if.mdio_read = mdio_read;
1915 	cp->mii_if.mdio_write = mdio_write;
1916 	cp->mii_if.phy_id = CP_INTERNAL_PHY;
1917 	cp->mii_if.phy_id_mask = 0x1f;
1918 	cp->mii_if.reg_num_mask = 0x1f;
1919 	cp_set_rxbufsize(cp);
1920 
1921 	rc = pci_enable_device(pdev);
1922 	if (rc)
1923 		goto err_out_free;
1924 
1925 	rc = pci_set_mwi(pdev);
1926 	if (rc)
1927 		goto err_out_disable;
1928 
1929 	rc = pci_request_regions(pdev, DRV_NAME);
1930 	if (rc)
1931 		goto err_out_mwi;
1932 
1933 	pciaddr = pci_resource_start(pdev, 1);
1934 	if (!pciaddr) {
1935 		rc = -EIO;
1936 		dev_err(&pdev->dev, "no MMIO resource\n");
1937 		goto err_out_res;
1938 	}
1939 	if (pci_resource_len(pdev, 1) < CP_REGS_SIZE) {
1940 		rc = -EIO;
1941 		dev_err(&pdev->dev, "MMIO resource (%llx) too small\n",
1942 		       (unsigned long long)pci_resource_len(pdev, 1));
1943 		goto err_out_res;
1944 	}
1945 
1946 	/* Configure DMA attributes. */
1947 	if ((sizeof(dma_addr_t) > 4) &&
1948 	    !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)) &&
1949 	    !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
1950 		pci_using_dac = 1;
1951 	} else {
1952 		pci_using_dac = 0;
1953 
1954 		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1955 		if (rc) {
1956 			dev_err(&pdev->dev,
1957 				"No usable DMA configuration, aborting\n");
1958 			goto err_out_res;
1959 		}
1960 		rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
1961 		if (rc) {
1962 			dev_err(&pdev->dev,
1963 				"No usable consistent DMA configuration, aborting\n");
1964 			goto err_out_res;
1965 		}
1966 	}
1967 
1968 	cp->cpcmd = (pci_using_dac ? PCIDAC : 0) |
1969 		    PCIMulRW | RxChkSum | CpRxOn | CpTxOn;
1970 
1971 	dev->features |= NETIF_F_RXCSUM;
1972 	dev->hw_features |= NETIF_F_RXCSUM;
1973 
1974 	regs = ioremap(pciaddr, CP_REGS_SIZE);
1975 	if (!regs) {
1976 		rc = -EIO;
1977 		dev_err(&pdev->dev, "Cannot map PCI MMIO (%Lx@%Lx)\n",
1978 			(unsigned long long)pci_resource_len(pdev, 1),
1979 		       (unsigned long long)pciaddr);
1980 		goto err_out_res;
1981 	}
1982 	cp->regs = regs;
1983 
1984 	cp_stop_hw(cp);
1985 
1986 	/* read MAC address from EEPROM */
1987 	addr_len = read_eeprom (regs, 0, 8) == 0x8129 ? 8 : 6;
1988 	for (i = 0; i < 3; i++)
1989 		((__le16 *) (dev->dev_addr))[i] =
1990 		    cpu_to_le16(read_eeprom (regs, i + 7, addr_len));
1991 
1992 	dev->netdev_ops = &cp_netdev_ops;
1993 	netif_napi_add(dev, &cp->napi, cp_rx_poll, 16);
1994 	dev->ethtool_ops = &cp_ethtool_ops;
1995 	dev->watchdog_timeo = TX_TIMEOUT;
1996 
1997 	dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO |
1998 		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
1999 
2000 	if (pci_using_dac)
2001 		dev->features |= NETIF_F_HIGHDMA;
2002 
2003 	dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO |
2004 		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
2005 	dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO |
2006 		NETIF_F_HIGHDMA;
2007 
2008 	/* MTU range: 60 - 4096 */
2009 	dev->min_mtu = CP_MIN_MTU;
2010 	dev->max_mtu = CP_MAX_MTU;
2011 
2012 	rc = register_netdev(dev);
2013 	if (rc)
2014 		goto err_out_iomap;
2015 
2016 	netdev_info(dev, "RTL-8139C+ at 0x%p, %pM, IRQ %d\n",
2017 		    regs, dev->dev_addr, pdev->irq);
2018 
2019 	pci_set_drvdata(pdev, dev);
2020 
2021 	/* enable busmastering and memory-write-invalidate */
2022 	pci_set_master(pdev);
2023 
2024 	if (cp->wol_enabled)
2025 		cp_set_d3_state (cp);
2026 
2027 	return 0;
2028 
2029 err_out_iomap:
2030 	iounmap(regs);
2031 err_out_res:
2032 	pci_release_regions(pdev);
2033 err_out_mwi:
2034 	pci_clear_mwi(pdev);
2035 err_out_disable:
2036 	pci_disable_device(pdev);
2037 err_out_free:
2038 	free_netdev(dev);
2039 	return rc;
2040 }
2041 
2042 static void cp_remove_one (struct pci_dev *pdev)
2043 {
2044 	struct net_device *dev = pci_get_drvdata(pdev);
2045 	struct cp_private *cp = netdev_priv(dev);
2046 
2047 	unregister_netdev(dev);
2048 	iounmap(cp->regs);
2049 	if (cp->wol_enabled)
2050 		pci_set_power_state (pdev, PCI_D0);
2051 	pci_release_regions(pdev);
2052 	pci_clear_mwi(pdev);
2053 	pci_disable_device(pdev);
2054 	free_netdev(dev);
2055 }
2056 
2057 #ifdef CONFIG_PM
2058 static int cp_suspend (struct pci_dev *pdev, pm_message_t state)
2059 {
2060 	struct net_device *dev = pci_get_drvdata(pdev);
2061 	struct cp_private *cp = netdev_priv(dev);
2062 	unsigned long flags;
2063 
2064 	if (!netif_running(dev))
2065 		return 0;
2066 
2067 	netif_device_detach (dev);
2068 	netif_stop_queue (dev);
2069 
2070 	spin_lock_irqsave (&cp->lock, flags);
2071 
2072 	/* Disable Rx and Tx */
2073 	cpw16 (IntrMask, 0);
2074 	cpw8  (Cmd, cpr8 (Cmd) & (~RxOn | ~TxOn));
2075 
2076 	spin_unlock_irqrestore (&cp->lock, flags);
2077 
2078 	pci_save_state(pdev);
2079 	pci_enable_wake(pdev, pci_choose_state(pdev, state), cp->wol_enabled);
2080 	pci_set_power_state(pdev, pci_choose_state(pdev, state));
2081 
2082 	return 0;
2083 }
2084 
2085 static int cp_resume (struct pci_dev *pdev)
2086 {
2087 	struct net_device *dev = pci_get_drvdata (pdev);
2088 	struct cp_private *cp = netdev_priv(dev);
2089 	unsigned long flags;
2090 
2091 	if (!netif_running(dev))
2092 		return 0;
2093 
2094 	netif_device_attach (dev);
2095 
2096 	pci_set_power_state(pdev, PCI_D0);
2097 	pci_restore_state(pdev);
2098 	pci_enable_wake(pdev, PCI_D0, 0);
2099 
2100 	/* FIXME: sh*t may happen if the Rx ring buffer is depleted */
2101 	cp_init_rings_index (cp);
2102 	cp_init_hw (cp);
2103 	cp_enable_irq(cp);
2104 	netif_start_queue (dev);
2105 
2106 	spin_lock_irqsave (&cp->lock, flags);
2107 
2108 	mii_check_media(&cp->mii_if, netif_msg_link(cp), false);
2109 
2110 	spin_unlock_irqrestore (&cp->lock, flags);
2111 
2112 	return 0;
2113 }
2114 #endif /* CONFIG_PM */
2115 
2116 static const struct pci_device_id cp_pci_tbl[] = {
2117         { PCI_DEVICE(PCI_VENDOR_ID_REALTEK,     PCI_DEVICE_ID_REALTEK_8139), },
2118         { PCI_DEVICE(PCI_VENDOR_ID_TTTECH,      PCI_DEVICE_ID_TTTECH_MC322), },
2119         { },
2120 };
2121 MODULE_DEVICE_TABLE(pci, cp_pci_tbl);
2122 
2123 static struct pci_driver cp_driver = {
2124 	.name         = DRV_NAME,
2125 	.id_table     = cp_pci_tbl,
2126 	.probe        =	cp_init_one,
2127 	.remove       = cp_remove_one,
2128 #ifdef CONFIG_PM
2129 	.resume       = cp_resume,
2130 	.suspend      = cp_suspend,
2131 #endif
2132 };
2133 
2134 module_pci_driver(cp_driver);
2135