xref: /linux/drivers/net/ethernet/realtek/8139cp.c (revision 0d456bad36d42d16022be045c8a53ddbb59ee478)
1 /* 8139cp.c: A Linux PCI Ethernet driver for the RealTek 8139C+ chips. */
2 /*
3 	Copyright 2001-2004 Jeff Garzik <jgarzik@pobox.com>
4 
5 	Copyright (C) 2001, 2002 David S. Miller (davem@redhat.com) [tg3.c]
6 	Copyright (C) 2000, 2001 David S. Miller (davem@redhat.com) [sungem.c]
7 	Copyright 2001 Manfred Spraul				    [natsemi.c]
8 	Copyright 1999-2001 by Donald Becker.			    [natsemi.c]
9        	Written 1997-2001 by Donald Becker.			    [8139too.c]
10 	Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. [acenic.c]
11 
12 	This software may be used and distributed according to the terms of
13 	the GNU General Public License (GPL), incorporated herein by reference.
14 	Drivers based on or derived from this code fall under the GPL and must
15 	retain the authorship, copyright and license notice.  This file is not
16 	a complete program and may only be used when the entire operating
17 	system is licensed under the GPL.
18 
19 	See the file COPYING in this distribution for more information.
20 
21 	Contributors:
22 
23 		Wake-on-LAN support - Felipe Damasio <felipewd@terra.com.br>
24 		PCI suspend/resume  - Felipe Damasio <felipewd@terra.com.br>
25 		LinkChg interrupt   - Felipe Damasio <felipewd@terra.com.br>
26 
27 	TODO:
28 	* Test Tx checksumming thoroughly
29 
30 	Low priority TODO:
31 	* Complete reset on PciErr
32 	* Consider Rx interrupt mitigation using TimerIntr
33 	* Investigate using skb->priority with h/w VLAN priority
34 	* Investigate using High Priority Tx Queue with skb->priority
35 	* Adjust Rx FIFO threshold and Max Rx DMA burst on Rx FIFO error
36 	* Adjust Tx FIFO threshold and Max Tx DMA burst on Tx FIFO error
37 	* Implement Tx software interrupt mitigation via
38 	  Tx descriptor bit
39 	* The real minimum of CP_MIN_MTU is 4 bytes.  However,
40 	  for this to be supported, one must(?) turn on packet padding.
41 	* Support external MII transceivers (patch available)
42 
43 	NOTES:
44 	* TX checksumming is considered experimental.  It is off by
45 	  default, use ethtool to turn it on.
46 
47  */
48 
49 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
50 
51 #define DRV_NAME		"8139cp"
52 #define DRV_VERSION		"1.3"
53 #define DRV_RELDATE		"Mar 22, 2004"
54 
55 
56 #include <linux/module.h>
57 #include <linux/moduleparam.h>
58 #include <linux/kernel.h>
59 #include <linux/compiler.h>
60 #include <linux/netdevice.h>
61 #include <linux/etherdevice.h>
62 #include <linux/init.h>
63 #include <linux/interrupt.h>
64 #include <linux/pci.h>
65 #include <linux/dma-mapping.h>
66 #include <linux/delay.h>
67 #include <linux/ethtool.h>
68 #include <linux/gfp.h>
69 #include <linux/mii.h>
70 #include <linux/if_vlan.h>
71 #include <linux/crc32.h>
72 #include <linux/in.h>
73 #include <linux/ip.h>
74 #include <linux/tcp.h>
75 #include <linux/udp.h>
76 #include <linux/cache.h>
77 #include <asm/io.h>
78 #include <asm/irq.h>
79 #include <asm/uaccess.h>
80 
81 /* These identify the driver base version and may not be removed. */
82 static char version[] =
83 DRV_NAME ": 10/100 PCI Ethernet driver v" DRV_VERSION " (" DRV_RELDATE ")\n";
84 
85 MODULE_AUTHOR("Jeff Garzik <jgarzik@pobox.com>");
86 MODULE_DESCRIPTION("RealTek RTL-8139C+ series 10/100 PCI Ethernet driver");
87 MODULE_VERSION(DRV_VERSION);
88 MODULE_LICENSE("GPL");
89 
90 static int debug = -1;
91 module_param(debug, int, 0);
92 MODULE_PARM_DESC (debug, "8139cp: bitmapped message enable number");
93 
94 /* Maximum number of multicast addresses to filter (vs. Rx-all-multicast).
95    The RTL chips use a 64 element hash table based on the Ethernet CRC.  */
96 static int multicast_filter_limit = 32;
97 module_param(multicast_filter_limit, int, 0);
98 MODULE_PARM_DESC (multicast_filter_limit, "8139cp: maximum number of filtered multicast addresses");
99 
100 #define CP_DEF_MSG_ENABLE	(NETIF_MSG_DRV		| \
101 				 NETIF_MSG_PROBE 	| \
102 				 NETIF_MSG_LINK)
103 #define CP_NUM_STATS		14	/* struct cp_dma_stats, plus one */
104 #define CP_STATS_SIZE		64	/* size in bytes of DMA stats block */
105 #define CP_REGS_SIZE		(0xff + 1)
106 #define CP_REGS_VER		1		/* version 1 */
107 #define CP_RX_RING_SIZE		64
108 #define CP_TX_RING_SIZE		64
109 #define CP_RING_BYTES		\
110 		((sizeof(struct cp_desc) * CP_RX_RING_SIZE) +	\
111 		 (sizeof(struct cp_desc) * CP_TX_RING_SIZE) +	\
112 		 CP_STATS_SIZE)
113 #define NEXT_TX(N)		(((N) + 1) & (CP_TX_RING_SIZE - 1))
114 #define NEXT_RX(N)		(((N) + 1) & (CP_RX_RING_SIZE - 1))
115 #define TX_BUFFS_AVAIL(CP)					\
116 	(((CP)->tx_tail <= (CP)->tx_head) ?			\
117 	  (CP)->tx_tail + (CP_TX_RING_SIZE - 1) - (CP)->tx_head :	\
118 	  (CP)->tx_tail - (CP)->tx_head - 1)
119 
120 #define PKT_BUF_SZ		1536	/* Size of each temporary Rx buffer.*/
121 #define CP_INTERNAL_PHY		32
122 
123 /* The following settings are log_2(bytes)-4:  0 == 16 bytes .. 6==1024, 7==end of packet. */
124 #define RX_FIFO_THRESH		5	/* Rx buffer level before first PCI xfer.  */
125 #define RX_DMA_BURST		4	/* Maximum PCI burst, '4' is 256 */
126 #define TX_DMA_BURST		6	/* Maximum PCI burst, '6' is 1024 */
127 #define TX_EARLY_THRESH		256	/* Early Tx threshold, in bytes */
128 
129 /* Time in jiffies before concluding the transmitter is hung. */
130 #define TX_TIMEOUT		(6*HZ)
131 
132 /* hardware minimum and maximum for a single frame's data payload */
133 #define CP_MIN_MTU		60	/* TODO: allow lower, but pad */
134 #define CP_MAX_MTU		4096
135 
136 enum {
137 	/* NIC register offsets */
138 	MAC0		= 0x00,	/* Ethernet hardware address. */
139 	MAR0		= 0x08,	/* Multicast filter. */
140 	StatsAddr	= 0x10,	/* 64-bit start addr of 64-byte DMA stats blk */
141 	TxRingAddr	= 0x20, /* 64-bit start addr of Tx ring */
142 	HiTxRingAddr	= 0x28, /* 64-bit start addr of high priority Tx ring */
143 	Cmd		= 0x37, /* Command register */
144 	IntrMask	= 0x3C, /* Interrupt mask */
145 	IntrStatus	= 0x3E, /* Interrupt status */
146 	TxConfig	= 0x40, /* Tx configuration */
147 	ChipVersion	= 0x43, /* 8-bit chip version, inside TxConfig */
148 	RxConfig	= 0x44, /* Rx configuration */
149 	RxMissed	= 0x4C,	/* 24 bits valid, write clears */
150 	Cfg9346		= 0x50, /* EEPROM select/control; Cfg reg [un]lock */
151 	Config1		= 0x52, /* Config1 */
152 	Config3		= 0x59, /* Config3 */
153 	Config4		= 0x5A, /* Config4 */
154 	MultiIntr	= 0x5C, /* Multiple interrupt select */
155 	BasicModeCtrl	= 0x62,	/* MII BMCR */
156 	BasicModeStatus	= 0x64, /* MII BMSR */
157 	NWayAdvert	= 0x66, /* MII ADVERTISE */
158 	NWayLPAR	= 0x68, /* MII LPA */
159 	NWayExpansion	= 0x6A, /* MII Expansion */
160 	Config5		= 0xD8,	/* Config5 */
161 	TxPoll		= 0xD9,	/* Tell chip to check Tx descriptors for work */
162 	RxMaxSize	= 0xDA, /* Max size of an Rx packet (8169 only) */
163 	CpCmd		= 0xE0, /* C+ Command register (C+ mode only) */
164 	IntrMitigate	= 0xE2,	/* rx/tx interrupt mitigation control */
165 	RxRingAddr	= 0xE4, /* 64-bit start addr of Rx ring */
166 	TxThresh	= 0xEC, /* Early Tx threshold */
167 	OldRxBufAddr	= 0x30, /* DMA address of Rx ring buffer (C mode) */
168 	OldTSD0		= 0x10, /* DMA address of first Tx desc (C mode) */
169 
170 	/* Tx and Rx status descriptors */
171 	DescOwn		= (1 << 31), /* Descriptor is owned by NIC */
172 	RingEnd		= (1 << 30), /* End of descriptor ring */
173 	FirstFrag	= (1 << 29), /* First segment of a packet */
174 	LastFrag	= (1 << 28), /* Final segment of a packet */
175 	LargeSend	= (1 << 27), /* TCP Large Send Offload (TSO) */
176 	MSSShift	= 16,	     /* MSS value position */
177 	MSSMask		= 0xfff,     /* MSS value: 11 bits */
178 	TxError		= (1 << 23), /* Tx error summary */
179 	RxError		= (1 << 20), /* Rx error summary */
180 	IPCS		= (1 << 18), /* Calculate IP checksum */
181 	UDPCS		= (1 << 17), /* Calculate UDP/IP checksum */
182 	TCPCS		= (1 << 16), /* Calculate TCP/IP checksum */
183 	TxVlanTag	= (1 << 17), /* Add VLAN tag */
184 	RxVlanTagged	= (1 << 16), /* Rx VLAN tag available */
185 	IPFail		= (1 << 15), /* IP checksum failed */
186 	UDPFail		= (1 << 14), /* UDP/IP checksum failed */
187 	TCPFail		= (1 << 13), /* TCP/IP checksum failed */
188 	NormalTxPoll	= (1 << 6),  /* One or more normal Tx packets to send */
189 	PID1		= (1 << 17), /* 2 protocol id bits:  0==non-IP, */
190 	PID0		= (1 << 16), /* 1==UDP/IP, 2==TCP/IP, 3==IP */
191 	RxProtoTCP	= 1,
192 	RxProtoUDP	= 2,
193 	RxProtoIP	= 3,
194 	TxFIFOUnder	= (1 << 25), /* Tx FIFO underrun */
195 	TxOWC		= (1 << 22), /* Tx Out-of-window collision */
196 	TxLinkFail	= (1 << 21), /* Link failed during Tx of packet */
197 	TxMaxCol	= (1 << 20), /* Tx aborted due to excessive collisions */
198 	TxColCntShift	= 16,	     /* Shift, to get 4-bit Tx collision cnt */
199 	TxColCntMask	= 0x01 | 0x02 | 0x04 | 0x08, /* 4-bit collision count */
200 	RxErrFrame	= (1 << 27), /* Rx frame alignment error */
201 	RxMcast		= (1 << 26), /* Rx multicast packet rcv'd */
202 	RxErrCRC	= (1 << 18), /* Rx CRC error */
203 	RxErrRunt	= (1 << 19), /* Rx error, packet < 64 bytes */
204 	RxErrLong	= (1 << 21), /* Rx error, packet > 4096 bytes */
205 	RxErrFIFO	= (1 << 22), /* Rx error, FIFO overflowed, pkt bad */
206 
207 	/* StatsAddr register */
208 	DumpStats	= (1 << 3),  /* Begin stats dump */
209 
210 	/* RxConfig register */
211 	RxCfgFIFOShift	= 13,	     /* Shift, to get Rx FIFO thresh value */
212 	RxCfgDMAShift	= 8,	     /* Shift, to get Rx Max DMA value */
213 	AcceptErr	= 0x20,	     /* Accept packets with CRC errors */
214 	AcceptRunt	= 0x10,	     /* Accept runt (<64 bytes) packets */
215 	AcceptBroadcast	= 0x08,	     /* Accept broadcast packets */
216 	AcceptMulticast	= 0x04,	     /* Accept multicast packets */
217 	AcceptMyPhys	= 0x02,	     /* Accept pkts with our MAC as dest */
218 	AcceptAllPhys	= 0x01,	     /* Accept all pkts w/ physical dest */
219 
220 	/* IntrMask / IntrStatus registers */
221 	PciErr		= (1 << 15), /* System error on the PCI bus */
222 	TimerIntr	= (1 << 14), /* Asserted when TCTR reaches TimerInt value */
223 	LenChg		= (1 << 13), /* Cable length change */
224 	SWInt		= (1 << 8),  /* Software-requested interrupt */
225 	TxEmpty		= (1 << 7),  /* No Tx descriptors available */
226 	RxFIFOOvr	= (1 << 6),  /* Rx FIFO Overflow */
227 	LinkChg		= (1 << 5),  /* Packet underrun, or link change */
228 	RxEmpty		= (1 << 4),  /* No Rx descriptors available */
229 	TxErr		= (1 << 3),  /* Tx error */
230 	TxOK		= (1 << 2),  /* Tx packet sent */
231 	RxErr		= (1 << 1),  /* Rx error */
232 	RxOK		= (1 << 0),  /* Rx packet received */
233 	IntrResvd	= (1 << 10), /* reserved, according to RealTek engineers,
234 					but hardware likes to raise it */
235 
236 	IntrAll		= PciErr | TimerIntr | LenChg | SWInt | TxEmpty |
237 			  RxFIFOOvr | LinkChg | RxEmpty | TxErr | TxOK |
238 			  RxErr | RxOK | IntrResvd,
239 
240 	/* C mode command register */
241 	CmdReset	= (1 << 4),  /* Enable to reset; self-clearing */
242 	RxOn		= (1 << 3),  /* Rx mode enable */
243 	TxOn		= (1 << 2),  /* Tx mode enable */
244 
245 	/* C+ mode command register */
246 	RxVlanOn	= (1 << 6),  /* Rx VLAN de-tagging enable */
247 	RxChkSum	= (1 << 5),  /* Rx checksum offload enable */
248 	PCIDAC		= (1 << 4),  /* PCI Dual Address Cycle (64-bit PCI) */
249 	PCIMulRW	= (1 << 3),  /* Enable PCI read/write multiple */
250 	CpRxOn		= (1 << 1),  /* Rx mode enable */
251 	CpTxOn		= (1 << 0),  /* Tx mode enable */
252 
253 	/* Cfg9436 EEPROM control register */
254 	Cfg9346_Lock	= 0x00,	     /* Lock ConfigX/MII register access */
255 	Cfg9346_Unlock	= 0xC0,	     /* Unlock ConfigX/MII register access */
256 
257 	/* TxConfig register */
258 	IFG		= (1 << 25) | (1 << 24), /* standard IEEE interframe gap */
259 	TxDMAShift	= 8,	     /* DMA burst value (0-7) is shift this many bits */
260 
261 	/* Early Tx Threshold register */
262 	TxThreshMask	= 0x3f,	     /* Mask bits 5-0 */
263 	TxThreshMax	= 2048,	     /* Max early Tx threshold */
264 
265 	/* Config1 register */
266 	DriverLoaded	= (1 << 5),  /* Software marker, driver is loaded */
267 	LWACT           = (1 << 4),  /* LWAKE active mode */
268 	PMEnable	= (1 << 0),  /* Enable various PM features of chip */
269 
270 	/* Config3 register */
271 	PARMEnable	= (1 << 6),  /* Enable auto-loading of PHY parms */
272 	MagicPacket     = (1 << 5),  /* Wake up when receives a Magic Packet */
273 	LinkUp          = (1 << 4),  /* Wake up when the cable connection is re-established */
274 
275 	/* Config4 register */
276 	LWPTN           = (1 << 1),  /* LWAKE Pattern */
277 	LWPME           = (1 << 4),  /* LANWAKE vs PMEB */
278 
279 	/* Config5 register */
280 	BWF             = (1 << 6),  /* Accept Broadcast wakeup frame */
281 	MWF             = (1 << 5),  /* Accept Multicast wakeup frame */
282 	UWF             = (1 << 4),  /* Accept Unicast wakeup frame */
283 	LANWake         = (1 << 1),  /* Enable LANWake signal */
284 	PMEStatus	= (1 << 0),  /* PME status can be reset by PCI RST# */
285 
286 	cp_norx_intr_mask = PciErr | LinkChg | TxOK | TxErr | TxEmpty,
287 	cp_rx_intr_mask = RxOK | RxErr | RxEmpty | RxFIFOOvr,
288 	cp_intr_mask = cp_rx_intr_mask | cp_norx_intr_mask,
289 };
290 
291 static const unsigned int cp_rx_config =
292 	  (RX_FIFO_THRESH << RxCfgFIFOShift) |
293 	  (RX_DMA_BURST << RxCfgDMAShift);
294 
295 struct cp_desc {
296 	__le32		opts1;
297 	__le32		opts2;
298 	__le64		addr;
299 };
300 
301 struct cp_dma_stats {
302 	__le64			tx_ok;
303 	__le64			rx_ok;
304 	__le64			tx_err;
305 	__le32			rx_err;
306 	__le16			rx_fifo;
307 	__le16			frame_align;
308 	__le32			tx_ok_1col;
309 	__le32			tx_ok_mcol;
310 	__le64			rx_ok_phys;
311 	__le64			rx_ok_bcast;
312 	__le32			rx_ok_mcast;
313 	__le16			tx_abort;
314 	__le16			tx_underrun;
315 } __packed;
316 
317 struct cp_extra_stats {
318 	unsigned long		rx_frags;
319 };
320 
321 struct cp_private {
322 	void			__iomem *regs;
323 	struct net_device	*dev;
324 	spinlock_t		lock;
325 	u32			msg_enable;
326 
327 	struct napi_struct	napi;
328 
329 	struct pci_dev		*pdev;
330 	u32			rx_config;
331 	u16			cpcmd;
332 
333 	struct cp_extra_stats	cp_stats;
334 
335 	unsigned		rx_head		____cacheline_aligned;
336 	unsigned		rx_tail;
337 	struct cp_desc		*rx_ring;
338 	struct sk_buff		*rx_skb[CP_RX_RING_SIZE];
339 
340 	unsigned		tx_head		____cacheline_aligned;
341 	unsigned		tx_tail;
342 	struct cp_desc		*tx_ring;
343 	struct sk_buff		*tx_skb[CP_TX_RING_SIZE];
344 
345 	unsigned		rx_buf_sz;
346 	unsigned		wol_enabled : 1; /* Is Wake-on-LAN enabled? */
347 
348 	dma_addr_t		ring_dma;
349 
350 	struct mii_if_info	mii_if;
351 };
352 
353 #define cpr8(reg)	readb(cp->regs + (reg))
354 #define cpr16(reg)	readw(cp->regs + (reg))
355 #define cpr32(reg)	readl(cp->regs + (reg))
356 #define cpw8(reg,val)	writeb((val), cp->regs + (reg))
357 #define cpw16(reg,val)	writew((val), cp->regs + (reg))
358 #define cpw32(reg,val)	writel((val), cp->regs + (reg))
359 #define cpw8_f(reg,val) do {			\
360 	writeb((val), cp->regs + (reg));	\
361 	readb(cp->regs + (reg));		\
362 	} while (0)
363 #define cpw16_f(reg,val) do {			\
364 	writew((val), cp->regs + (reg));	\
365 	readw(cp->regs + (reg));		\
366 	} while (0)
367 #define cpw32_f(reg,val) do {			\
368 	writel((val), cp->regs + (reg));	\
369 	readl(cp->regs + (reg));		\
370 	} while (0)
371 
372 
373 static void __cp_set_rx_mode (struct net_device *dev);
374 static void cp_tx (struct cp_private *cp);
375 static void cp_clean_rings (struct cp_private *cp);
376 #ifdef CONFIG_NET_POLL_CONTROLLER
377 static void cp_poll_controller(struct net_device *dev);
378 #endif
379 static int cp_get_eeprom_len(struct net_device *dev);
380 static int cp_get_eeprom(struct net_device *dev,
381 			 struct ethtool_eeprom *eeprom, u8 *data);
382 static int cp_set_eeprom(struct net_device *dev,
383 			 struct ethtool_eeprom *eeprom, u8 *data);
384 
385 static DEFINE_PCI_DEVICE_TABLE(cp_pci_tbl) = {
386 	{ PCI_DEVICE(PCI_VENDOR_ID_REALTEK,	PCI_DEVICE_ID_REALTEK_8139), },
387 	{ PCI_DEVICE(PCI_VENDOR_ID_TTTECH,	PCI_DEVICE_ID_TTTECH_MC322), },
388 	{ },
389 };
390 MODULE_DEVICE_TABLE(pci, cp_pci_tbl);
391 
392 static struct {
393 	const char str[ETH_GSTRING_LEN];
394 } ethtool_stats_keys[] = {
395 	{ "tx_ok" },
396 	{ "rx_ok" },
397 	{ "tx_err" },
398 	{ "rx_err" },
399 	{ "rx_fifo" },
400 	{ "frame_align" },
401 	{ "tx_ok_1col" },
402 	{ "tx_ok_mcol" },
403 	{ "rx_ok_phys" },
404 	{ "rx_ok_bcast" },
405 	{ "rx_ok_mcast" },
406 	{ "tx_abort" },
407 	{ "tx_underrun" },
408 	{ "rx_frags" },
409 };
410 
411 
412 static inline void cp_set_rxbufsize (struct cp_private *cp)
413 {
414 	unsigned int mtu = cp->dev->mtu;
415 
416 	if (mtu > ETH_DATA_LEN)
417 		/* MTU + ethernet header + FCS + optional VLAN tag */
418 		cp->rx_buf_sz = mtu + ETH_HLEN + 8;
419 	else
420 		cp->rx_buf_sz = PKT_BUF_SZ;
421 }
422 
423 static inline void cp_rx_skb (struct cp_private *cp, struct sk_buff *skb,
424 			      struct cp_desc *desc)
425 {
426 	u32 opts2 = le32_to_cpu(desc->opts2);
427 
428 	skb->protocol = eth_type_trans (skb, cp->dev);
429 
430 	cp->dev->stats.rx_packets++;
431 	cp->dev->stats.rx_bytes += skb->len;
432 
433 	if (opts2 & RxVlanTagged)
434 		__vlan_hwaccel_put_tag(skb, swab16(opts2 & 0xffff));
435 
436 	napi_gro_receive(&cp->napi, skb);
437 }
438 
439 static void cp_rx_err_acct (struct cp_private *cp, unsigned rx_tail,
440 			    u32 status, u32 len)
441 {
442 	netif_dbg(cp, rx_err, cp->dev, "rx err, slot %d status 0x%x len %d\n",
443 		  rx_tail, status, len);
444 	cp->dev->stats.rx_errors++;
445 	if (status & RxErrFrame)
446 		cp->dev->stats.rx_frame_errors++;
447 	if (status & RxErrCRC)
448 		cp->dev->stats.rx_crc_errors++;
449 	if ((status & RxErrRunt) || (status & RxErrLong))
450 		cp->dev->stats.rx_length_errors++;
451 	if ((status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag))
452 		cp->dev->stats.rx_length_errors++;
453 	if (status & RxErrFIFO)
454 		cp->dev->stats.rx_fifo_errors++;
455 }
456 
457 static inline unsigned int cp_rx_csum_ok (u32 status)
458 {
459 	unsigned int protocol = (status >> 16) & 0x3;
460 
461 	if (((protocol == RxProtoTCP) && !(status & TCPFail)) ||
462 	    ((protocol == RxProtoUDP) && !(status & UDPFail)))
463 		return 1;
464 	else
465 		return 0;
466 }
467 
468 static int cp_rx_poll(struct napi_struct *napi, int budget)
469 {
470 	struct cp_private *cp = container_of(napi, struct cp_private, napi);
471 	struct net_device *dev = cp->dev;
472 	unsigned int rx_tail = cp->rx_tail;
473 	int rx;
474 
475 rx_status_loop:
476 	rx = 0;
477 	cpw16(IntrStatus, cp_rx_intr_mask);
478 
479 	while (1) {
480 		u32 status, len;
481 		dma_addr_t mapping;
482 		struct sk_buff *skb, *new_skb;
483 		struct cp_desc *desc;
484 		const unsigned buflen = cp->rx_buf_sz;
485 
486 		skb = cp->rx_skb[rx_tail];
487 		BUG_ON(!skb);
488 
489 		desc = &cp->rx_ring[rx_tail];
490 		status = le32_to_cpu(desc->opts1);
491 		if (status & DescOwn)
492 			break;
493 
494 		len = (status & 0x1fff) - 4;
495 		mapping = le64_to_cpu(desc->addr);
496 
497 		if ((status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag)) {
498 			/* we don't support incoming fragmented frames.
499 			 * instead, we attempt to ensure that the
500 			 * pre-allocated RX skbs are properly sized such
501 			 * that RX fragments are never encountered
502 			 */
503 			cp_rx_err_acct(cp, rx_tail, status, len);
504 			dev->stats.rx_dropped++;
505 			cp->cp_stats.rx_frags++;
506 			goto rx_next;
507 		}
508 
509 		if (status & (RxError | RxErrFIFO)) {
510 			cp_rx_err_acct(cp, rx_tail, status, len);
511 			goto rx_next;
512 		}
513 
514 		netif_dbg(cp, rx_status, dev, "rx slot %d status 0x%x len %d\n",
515 			  rx_tail, status, len);
516 
517 		new_skb = netdev_alloc_skb_ip_align(dev, buflen);
518 		if (!new_skb) {
519 			dev->stats.rx_dropped++;
520 			goto rx_next;
521 		}
522 
523 		dma_unmap_single(&cp->pdev->dev, mapping,
524 				 buflen, PCI_DMA_FROMDEVICE);
525 
526 		/* Handle checksum offloading for incoming packets. */
527 		if (cp_rx_csum_ok(status))
528 			skb->ip_summed = CHECKSUM_UNNECESSARY;
529 		else
530 			skb_checksum_none_assert(skb);
531 
532 		skb_put(skb, len);
533 
534 		mapping = dma_map_single(&cp->pdev->dev, new_skb->data, buflen,
535 					 PCI_DMA_FROMDEVICE);
536 		cp->rx_skb[rx_tail] = new_skb;
537 
538 		cp_rx_skb(cp, skb, desc);
539 		rx++;
540 
541 rx_next:
542 		cp->rx_ring[rx_tail].opts2 = 0;
543 		cp->rx_ring[rx_tail].addr = cpu_to_le64(mapping);
544 		if (rx_tail == (CP_RX_RING_SIZE - 1))
545 			desc->opts1 = cpu_to_le32(DescOwn | RingEnd |
546 						  cp->rx_buf_sz);
547 		else
548 			desc->opts1 = cpu_to_le32(DescOwn | cp->rx_buf_sz);
549 		rx_tail = NEXT_RX(rx_tail);
550 
551 		if (rx >= budget)
552 			break;
553 	}
554 
555 	cp->rx_tail = rx_tail;
556 
557 	/* if we did not reach work limit, then we're done with
558 	 * this round of polling
559 	 */
560 	if (rx < budget) {
561 		unsigned long flags;
562 
563 		if (cpr16(IntrStatus) & cp_rx_intr_mask)
564 			goto rx_status_loop;
565 
566 		napi_gro_flush(napi, false);
567 		spin_lock_irqsave(&cp->lock, flags);
568 		__napi_complete(napi);
569 		cpw16_f(IntrMask, cp_intr_mask);
570 		spin_unlock_irqrestore(&cp->lock, flags);
571 	}
572 
573 	return rx;
574 }
575 
576 static irqreturn_t cp_interrupt (int irq, void *dev_instance)
577 {
578 	struct net_device *dev = dev_instance;
579 	struct cp_private *cp;
580 	u16 status;
581 
582 	if (unlikely(dev == NULL))
583 		return IRQ_NONE;
584 	cp = netdev_priv(dev);
585 
586 	status = cpr16(IntrStatus);
587 	if (!status || (status == 0xFFFF))
588 		return IRQ_NONE;
589 
590 	netif_dbg(cp, intr, dev, "intr, status %04x cmd %02x cpcmd %04x\n",
591 		  status, cpr8(Cmd), cpr16(CpCmd));
592 
593 	cpw16(IntrStatus, status & ~cp_rx_intr_mask);
594 
595 	spin_lock(&cp->lock);
596 
597 	/* close possible race's with dev_close */
598 	if (unlikely(!netif_running(dev))) {
599 		cpw16(IntrMask, 0);
600 		spin_unlock(&cp->lock);
601 		return IRQ_HANDLED;
602 	}
603 
604 	if (status & (RxOK | RxErr | RxEmpty | RxFIFOOvr))
605 		if (napi_schedule_prep(&cp->napi)) {
606 			cpw16_f(IntrMask, cp_norx_intr_mask);
607 			__napi_schedule(&cp->napi);
608 		}
609 
610 	if (status & (TxOK | TxErr | TxEmpty | SWInt))
611 		cp_tx(cp);
612 	if (status & LinkChg)
613 		mii_check_media(&cp->mii_if, netif_msg_link(cp), false);
614 
615 	spin_unlock(&cp->lock);
616 
617 	if (status & PciErr) {
618 		u16 pci_status;
619 
620 		pci_read_config_word(cp->pdev, PCI_STATUS, &pci_status);
621 		pci_write_config_word(cp->pdev, PCI_STATUS, pci_status);
622 		netdev_err(dev, "PCI bus error, status=%04x, PCI status=%04x\n",
623 			   status, pci_status);
624 
625 		/* TODO: reset hardware */
626 	}
627 
628 	return IRQ_HANDLED;
629 }
630 
631 #ifdef CONFIG_NET_POLL_CONTROLLER
632 /*
633  * Polling receive - used by netconsole and other diagnostic tools
634  * to allow network i/o with interrupts disabled.
635  */
636 static void cp_poll_controller(struct net_device *dev)
637 {
638 	struct cp_private *cp = netdev_priv(dev);
639 	const int irq = cp->pdev->irq;
640 
641 	disable_irq(irq);
642 	cp_interrupt(irq, dev);
643 	enable_irq(irq);
644 }
645 #endif
646 
647 static void cp_tx (struct cp_private *cp)
648 {
649 	unsigned tx_head = cp->tx_head;
650 	unsigned tx_tail = cp->tx_tail;
651 	unsigned bytes_compl = 0, pkts_compl = 0;
652 
653 	while (tx_tail != tx_head) {
654 		struct cp_desc *txd = cp->tx_ring + tx_tail;
655 		struct sk_buff *skb;
656 		u32 status;
657 
658 		rmb();
659 		status = le32_to_cpu(txd->opts1);
660 		if (status & DescOwn)
661 			break;
662 
663 		skb = cp->tx_skb[tx_tail];
664 		BUG_ON(!skb);
665 
666 		dma_unmap_single(&cp->pdev->dev, le64_to_cpu(txd->addr),
667 				 le32_to_cpu(txd->opts1) & 0xffff,
668 				 PCI_DMA_TODEVICE);
669 
670 		bytes_compl += skb->len;
671 		pkts_compl++;
672 
673 		if (status & LastFrag) {
674 			if (status & (TxError | TxFIFOUnder)) {
675 				netif_dbg(cp, tx_err, cp->dev,
676 					  "tx err, status 0x%x\n", status);
677 				cp->dev->stats.tx_errors++;
678 				if (status & TxOWC)
679 					cp->dev->stats.tx_window_errors++;
680 				if (status & TxMaxCol)
681 					cp->dev->stats.tx_aborted_errors++;
682 				if (status & TxLinkFail)
683 					cp->dev->stats.tx_carrier_errors++;
684 				if (status & TxFIFOUnder)
685 					cp->dev->stats.tx_fifo_errors++;
686 			} else {
687 				cp->dev->stats.collisions +=
688 					((status >> TxColCntShift) & TxColCntMask);
689 				cp->dev->stats.tx_packets++;
690 				cp->dev->stats.tx_bytes += skb->len;
691 				netif_dbg(cp, tx_done, cp->dev,
692 					  "tx done, slot %d\n", tx_tail);
693 			}
694 			dev_kfree_skb_irq(skb);
695 		}
696 
697 		cp->tx_skb[tx_tail] = NULL;
698 
699 		tx_tail = NEXT_TX(tx_tail);
700 	}
701 
702 	cp->tx_tail = tx_tail;
703 
704 	netdev_completed_queue(cp->dev, pkts_compl, bytes_compl);
705 	if (TX_BUFFS_AVAIL(cp) > (MAX_SKB_FRAGS + 1))
706 		netif_wake_queue(cp->dev);
707 }
708 
709 static inline u32 cp_tx_vlan_tag(struct sk_buff *skb)
710 {
711 	return vlan_tx_tag_present(skb) ?
712 		TxVlanTag | swab16(vlan_tx_tag_get(skb)) : 0x00;
713 }
714 
715 static netdev_tx_t cp_start_xmit (struct sk_buff *skb,
716 					struct net_device *dev)
717 {
718 	struct cp_private *cp = netdev_priv(dev);
719 	unsigned entry;
720 	u32 eor, flags;
721 	unsigned long intr_flags;
722 	__le32 opts2;
723 	int mss = 0;
724 
725 	spin_lock_irqsave(&cp->lock, intr_flags);
726 
727 	/* This is a hard error, log it. */
728 	if (TX_BUFFS_AVAIL(cp) <= (skb_shinfo(skb)->nr_frags + 1)) {
729 		netif_stop_queue(dev);
730 		spin_unlock_irqrestore(&cp->lock, intr_flags);
731 		netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
732 		return NETDEV_TX_BUSY;
733 	}
734 
735 	entry = cp->tx_head;
736 	eor = (entry == (CP_TX_RING_SIZE - 1)) ? RingEnd : 0;
737 	mss = skb_shinfo(skb)->gso_size;
738 
739 	opts2 = cpu_to_le32(cp_tx_vlan_tag(skb));
740 
741 	if (skb_shinfo(skb)->nr_frags == 0) {
742 		struct cp_desc *txd = &cp->tx_ring[entry];
743 		u32 len;
744 		dma_addr_t mapping;
745 
746 		len = skb->len;
747 		mapping = dma_map_single(&cp->pdev->dev, skb->data, len, PCI_DMA_TODEVICE);
748 		txd->opts2 = opts2;
749 		txd->addr = cpu_to_le64(mapping);
750 		wmb();
751 
752 		flags = eor | len | DescOwn | FirstFrag | LastFrag;
753 
754 		if (mss)
755 			flags |= LargeSend | ((mss & MSSMask) << MSSShift);
756 		else if (skb->ip_summed == CHECKSUM_PARTIAL) {
757 			const struct iphdr *ip = ip_hdr(skb);
758 			if (ip->protocol == IPPROTO_TCP)
759 				flags |= IPCS | TCPCS;
760 			else if (ip->protocol == IPPROTO_UDP)
761 				flags |= IPCS | UDPCS;
762 			else
763 				WARN_ON(1);	/* we need a WARN() */
764 		}
765 
766 		txd->opts1 = cpu_to_le32(flags);
767 		wmb();
768 
769 		cp->tx_skb[entry] = skb;
770 		entry = NEXT_TX(entry);
771 	} else {
772 		struct cp_desc *txd;
773 		u32 first_len, first_eor;
774 		dma_addr_t first_mapping;
775 		int frag, first_entry = entry;
776 		const struct iphdr *ip = ip_hdr(skb);
777 
778 		/* We must give this initial chunk to the device last.
779 		 * Otherwise we could race with the device.
780 		 */
781 		first_eor = eor;
782 		first_len = skb_headlen(skb);
783 		first_mapping = dma_map_single(&cp->pdev->dev, skb->data,
784 					       first_len, PCI_DMA_TODEVICE);
785 		cp->tx_skb[entry] = skb;
786 		entry = NEXT_TX(entry);
787 
788 		for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
789 			const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
790 			u32 len;
791 			u32 ctrl;
792 			dma_addr_t mapping;
793 
794 			len = skb_frag_size(this_frag);
795 			mapping = dma_map_single(&cp->pdev->dev,
796 						 skb_frag_address(this_frag),
797 						 len, PCI_DMA_TODEVICE);
798 			eor = (entry == (CP_TX_RING_SIZE - 1)) ? RingEnd : 0;
799 
800 			ctrl = eor | len | DescOwn;
801 
802 			if (mss)
803 				ctrl |= LargeSend |
804 					((mss & MSSMask) << MSSShift);
805 			else if (skb->ip_summed == CHECKSUM_PARTIAL) {
806 				if (ip->protocol == IPPROTO_TCP)
807 					ctrl |= IPCS | TCPCS;
808 				else if (ip->protocol == IPPROTO_UDP)
809 					ctrl |= IPCS | UDPCS;
810 				else
811 					BUG();
812 			}
813 
814 			if (frag == skb_shinfo(skb)->nr_frags - 1)
815 				ctrl |= LastFrag;
816 
817 			txd = &cp->tx_ring[entry];
818 			txd->opts2 = opts2;
819 			txd->addr = cpu_to_le64(mapping);
820 			wmb();
821 
822 			txd->opts1 = cpu_to_le32(ctrl);
823 			wmb();
824 
825 			cp->tx_skb[entry] = skb;
826 			entry = NEXT_TX(entry);
827 		}
828 
829 		txd = &cp->tx_ring[first_entry];
830 		txd->opts2 = opts2;
831 		txd->addr = cpu_to_le64(first_mapping);
832 		wmb();
833 
834 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
835 			if (ip->protocol == IPPROTO_TCP)
836 				txd->opts1 = cpu_to_le32(first_eor | first_len |
837 							 FirstFrag | DescOwn |
838 							 IPCS | TCPCS);
839 			else if (ip->protocol == IPPROTO_UDP)
840 				txd->opts1 = cpu_to_le32(first_eor | first_len |
841 							 FirstFrag | DescOwn |
842 							 IPCS | UDPCS);
843 			else
844 				BUG();
845 		} else
846 			txd->opts1 = cpu_to_le32(first_eor | first_len |
847 						 FirstFrag | DescOwn);
848 		wmb();
849 	}
850 	cp->tx_head = entry;
851 
852 	netdev_sent_queue(dev, skb->len);
853 	netif_dbg(cp, tx_queued, cp->dev, "tx queued, slot %d, skblen %d\n",
854 		  entry, skb->len);
855 	if (TX_BUFFS_AVAIL(cp) <= (MAX_SKB_FRAGS + 1))
856 		netif_stop_queue(dev);
857 
858 	spin_unlock_irqrestore(&cp->lock, intr_flags);
859 
860 	cpw8(TxPoll, NormalTxPoll);
861 
862 	return NETDEV_TX_OK;
863 }
864 
865 /* Set or clear the multicast filter for this adaptor.
866    This routine is not state sensitive and need not be SMP locked. */
867 
868 static void __cp_set_rx_mode (struct net_device *dev)
869 {
870 	struct cp_private *cp = netdev_priv(dev);
871 	u32 mc_filter[2];	/* Multicast hash filter */
872 	int rx_mode;
873 
874 	/* Note: do not reorder, GCC is clever about common statements. */
875 	if (dev->flags & IFF_PROMISC) {
876 		/* Unconditionally log net taps. */
877 		rx_mode =
878 		    AcceptBroadcast | AcceptMulticast | AcceptMyPhys |
879 		    AcceptAllPhys;
880 		mc_filter[1] = mc_filter[0] = 0xffffffff;
881 	} else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
882 		   (dev->flags & IFF_ALLMULTI)) {
883 		/* Too many to filter perfectly -- accept all multicasts. */
884 		rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys;
885 		mc_filter[1] = mc_filter[0] = 0xffffffff;
886 	} else {
887 		struct netdev_hw_addr *ha;
888 		rx_mode = AcceptBroadcast | AcceptMyPhys;
889 		mc_filter[1] = mc_filter[0] = 0;
890 		netdev_for_each_mc_addr(ha, dev) {
891 			int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26;
892 
893 			mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
894 			rx_mode |= AcceptMulticast;
895 		}
896 	}
897 
898 	/* We can safely update without stopping the chip. */
899 	cp->rx_config = cp_rx_config | rx_mode;
900 	cpw32_f(RxConfig, cp->rx_config);
901 
902 	cpw32_f (MAR0 + 0, mc_filter[0]);
903 	cpw32_f (MAR0 + 4, mc_filter[1]);
904 }
905 
906 static void cp_set_rx_mode (struct net_device *dev)
907 {
908 	unsigned long flags;
909 	struct cp_private *cp = netdev_priv(dev);
910 
911 	spin_lock_irqsave (&cp->lock, flags);
912 	__cp_set_rx_mode(dev);
913 	spin_unlock_irqrestore (&cp->lock, flags);
914 }
915 
916 static void __cp_get_stats(struct cp_private *cp)
917 {
918 	/* only lower 24 bits valid; write any value to clear */
919 	cp->dev->stats.rx_missed_errors += (cpr32 (RxMissed) & 0xffffff);
920 	cpw32 (RxMissed, 0);
921 }
922 
923 static struct net_device_stats *cp_get_stats(struct net_device *dev)
924 {
925 	struct cp_private *cp = netdev_priv(dev);
926 	unsigned long flags;
927 
928 	/* The chip only need report frame silently dropped. */
929 	spin_lock_irqsave(&cp->lock, flags);
930  	if (netif_running(dev) && netif_device_present(dev))
931  		__cp_get_stats(cp);
932 	spin_unlock_irqrestore(&cp->lock, flags);
933 
934 	return &dev->stats;
935 }
936 
937 static void cp_stop_hw (struct cp_private *cp)
938 {
939 	cpw16(IntrStatus, ~(cpr16(IntrStatus)));
940 	cpw16_f(IntrMask, 0);
941 	cpw8(Cmd, 0);
942 	cpw16_f(CpCmd, 0);
943 	cpw16_f(IntrStatus, ~(cpr16(IntrStatus)));
944 
945 	cp->rx_tail = 0;
946 	cp->tx_head = cp->tx_tail = 0;
947 
948 	netdev_reset_queue(cp->dev);
949 }
950 
951 static void cp_reset_hw (struct cp_private *cp)
952 {
953 	unsigned work = 1000;
954 
955 	cpw8(Cmd, CmdReset);
956 
957 	while (work--) {
958 		if (!(cpr8(Cmd) & CmdReset))
959 			return;
960 
961 		schedule_timeout_uninterruptible(10);
962 	}
963 
964 	netdev_err(cp->dev, "hardware reset timeout\n");
965 }
966 
967 static inline void cp_start_hw (struct cp_private *cp)
968 {
969 	dma_addr_t ring_dma;
970 
971 	cpw16(CpCmd, cp->cpcmd);
972 
973 	/*
974 	 * These (at least TxRingAddr) need to be configured after the
975 	 * corresponding bits in CpCmd are enabled. Datasheet v1.6 §6.33
976 	 * (C+ Command Register) recommends that these and more be configured
977 	 * *after* the [RT]xEnable bits in CpCmd are set. And on some hardware
978 	 * it's been observed that the TxRingAddr is actually reset to garbage
979 	 * when C+ mode Tx is enabled in CpCmd.
980 	 */
981 	cpw32_f(HiTxRingAddr, 0);
982 	cpw32_f(HiTxRingAddr + 4, 0);
983 
984 	ring_dma = cp->ring_dma;
985 	cpw32_f(RxRingAddr, ring_dma & 0xffffffff);
986 	cpw32_f(RxRingAddr + 4, (ring_dma >> 16) >> 16);
987 
988 	ring_dma += sizeof(struct cp_desc) * CP_RX_RING_SIZE;
989 	cpw32_f(TxRingAddr, ring_dma & 0xffffffff);
990 	cpw32_f(TxRingAddr + 4, (ring_dma >> 16) >> 16);
991 
992 	/*
993 	 * Strictly speaking, the datasheet says this should be enabled
994 	 * *before* setting the descriptor addresses. But what, then, would
995 	 * prevent it from doing DMA to random unconfigured addresses?
996 	 * This variant appears to work fine.
997 	 */
998 	cpw8(Cmd, RxOn | TxOn);
999 
1000 	netdev_reset_queue(cp->dev);
1001 }
1002 
1003 static void cp_enable_irq(struct cp_private *cp)
1004 {
1005 	cpw16_f(IntrMask, cp_intr_mask);
1006 }
1007 
1008 static void cp_init_hw (struct cp_private *cp)
1009 {
1010 	struct net_device *dev = cp->dev;
1011 
1012 	cp_reset_hw(cp);
1013 
1014 	cpw8_f (Cfg9346, Cfg9346_Unlock);
1015 
1016 	/* Restore our idea of the MAC address. */
1017 	cpw32_f (MAC0 + 0, le32_to_cpu (*(__le32 *) (dev->dev_addr + 0)));
1018 	cpw32_f (MAC0 + 4, le32_to_cpu (*(__le32 *) (dev->dev_addr + 4)));
1019 
1020 	cp_start_hw(cp);
1021 	cpw8(TxThresh, 0x06); /* XXX convert magic num to a constant */
1022 
1023 	__cp_set_rx_mode(dev);
1024 	cpw32_f (TxConfig, IFG | (TX_DMA_BURST << TxDMAShift));
1025 
1026 	cpw8(Config1, cpr8(Config1) | DriverLoaded | PMEnable);
1027 	/* Disable Wake-on-LAN. Can be turned on with ETHTOOL_SWOL */
1028 	cpw8(Config3, PARMEnable);
1029 	cp->wol_enabled = 0;
1030 
1031 	cpw8(Config5, cpr8(Config5) & PMEStatus);
1032 
1033 	cpw16(MultiIntr, 0);
1034 
1035 	cpw8_f(Cfg9346, Cfg9346_Lock);
1036 }
1037 
1038 static int cp_refill_rx(struct cp_private *cp)
1039 {
1040 	struct net_device *dev = cp->dev;
1041 	unsigned i;
1042 
1043 	for (i = 0; i < CP_RX_RING_SIZE; i++) {
1044 		struct sk_buff *skb;
1045 		dma_addr_t mapping;
1046 
1047 		skb = netdev_alloc_skb_ip_align(dev, cp->rx_buf_sz);
1048 		if (!skb)
1049 			goto err_out;
1050 
1051 		mapping = dma_map_single(&cp->pdev->dev, skb->data,
1052 					 cp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1053 		cp->rx_skb[i] = skb;
1054 
1055 		cp->rx_ring[i].opts2 = 0;
1056 		cp->rx_ring[i].addr = cpu_to_le64(mapping);
1057 		if (i == (CP_RX_RING_SIZE - 1))
1058 			cp->rx_ring[i].opts1 =
1059 				cpu_to_le32(DescOwn | RingEnd | cp->rx_buf_sz);
1060 		else
1061 			cp->rx_ring[i].opts1 =
1062 				cpu_to_le32(DescOwn | cp->rx_buf_sz);
1063 	}
1064 
1065 	return 0;
1066 
1067 err_out:
1068 	cp_clean_rings(cp);
1069 	return -ENOMEM;
1070 }
1071 
1072 static void cp_init_rings_index (struct cp_private *cp)
1073 {
1074 	cp->rx_tail = 0;
1075 	cp->tx_head = cp->tx_tail = 0;
1076 }
1077 
1078 static int cp_init_rings (struct cp_private *cp)
1079 {
1080 	memset(cp->tx_ring, 0, sizeof(struct cp_desc) * CP_TX_RING_SIZE);
1081 	cp->tx_ring[CP_TX_RING_SIZE - 1].opts1 = cpu_to_le32(RingEnd);
1082 
1083 	cp_init_rings_index(cp);
1084 
1085 	return cp_refill_rx (cp);
1086 }
1087 
1088 static int cp_alloc_rings (struct cp_private *cp)
1089 {
1090 	struct device *d = &cp->pdev->dev;
1091 	void *mem;
1092 	int rc;
1093 
1094 	mem = dma_alloc_coherent(d, CP_RING_BYTES, &cp->ring_dma, GFP_KERNEL);
1095 	if (!mem)
1096 		return -ENOMEM;
1097 
1098 	cp->rx_ring = mem;
1099 	cp->tx_ring = &cp->rx_ring[CP_RX_RING_SIZE];
1100 
1101 	rc = cp_init_rings(cp);
1102 	if (rc < 0)
1103 		dma_free_coherent(d, CP_RING_BYTES, cp->rx_ring, cp->ring_dma);
1104 
1105 	return rc;
1106 }
1107 
1108 static void cp_clean_rings (struct cp_private *cp)
1109 {
1110 	struct cp_desc *desc;
1111 	unsigned i;
1112 
1113 	for (i = 0; i < CP_RX_RING_SIZE; i++) {
1114 		if (cp->rx_skb[i]) {
1115 			desc = cp->rx_ring + i;
1116 			dma_unmap_single(&cp->pdev->dev,le64_to_cpu(desc->addr),
1117 					 cp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1118 			dev_kfree_skb(cp->rx_skb[i]);
1119 		}
1120 	}
1121 
1122 	for (i = 0; i < CP_TX_RING_SIZE; i++) {
1123 		if (cp->tx_skb[i]) {
1124 			struct sk_buff *skb = cp->tx_skb[i];
1125 
1126 			desc = cp->tx_ring + i;
1127 			dma_unmap_single(&cp->pdev->dev,le64_to_cpu(desc->addr),
1128 					 le32_to_cpu(desc->opts1) & 0xffff,
1129 					 PCI_DMA_TODEVICE);
1130 			if (le32_to_cpu(desc->opts1) & LastFrag)
1131 				dev_kfree_skb(skb);
1132 			cp->dev->stats.tx_dropped++;
1133 		}
1134 	}
1135 
1136 	memset(cp->rx_ring, 0, sizeof(struct cp_desc) * CP_RX_RING_SIZE);
1137 	memset(cp->tx_ring, 0, sizeof(struct cp_desc) * CP_TX_RING_SIZE);
1138 
1139 	memset(cp->rx_skb, 0, sizeof(struct sk_buff *) * CP_RX_RING_SIZE);
1140 	memset(cp->tx_skb, 0, sizeof(struct sk_buff *) * CP_TX_RING_SIZE);
1141 }
1142 
1143 static void cp_free_rings (struct cp_private *cp)
1144 {
1145 	cp_clean_rings(cp);
1146 	dma_free_coherent(&cp->pdev->dev, CP_RING_BYTES, cp->rx_ring,
1147 			  cp->ring_dma);
1148 	cp->rx_ring = NULL;
1149 	cp->tx_ring = NULL;
1150 }
1151 
1152 static int cp_open (struct net_device *dev)
1153 {
1154 	struct cp_private *cp = netdev_priv(dev);
1155 	const int irq = cp->pdev->irq;
1156 	int rc;
1157 
1158 	netif_dbg(cp, ifup, dev, "enabling interface\n");
1159 
1160 	rc = cp_alloc_rings(cp);
1161 	if (rc)
1162 		return rc;
1163 
1164 	napi_enable(&cp->napi);
1165 
1166 	cp_init_hw(cp);
1167 
1168 	rc = request_irq(irq, cp_interrupt, IRQF_SHARED, dev->name, dev);
1169 	if (rc)
1170 		goto err_out_hw;
1171 
1172 	cp_enable_irq(cp);
1173 
1174 	netif_carrier_off(dev);
1175 	mii_check_media(&cp->mii_if, netif_msg_link(cp), true);
1176 	netif_start_queue(dev);
1177 
1178 	return 0;
1179 
1180 err_out_hw:
1181 	napi_disable(&cp->napi);
1182 	cp_stop_hw(cp);
1183 	cp_free_rings(cp);
1184 	return rc;
1185 }
1186 
1187 static int cp_close (struct net_device *dev)
1188 {
1189 	struct cp_private *cp = netdev_priv(dev);
1190 	unsigned long flags;
1191 
1192 	napi_disable(&cp->napi);
1193 
1194 	netif_dbg(cp, ifdown, dev, "disabling interface\n");
1195 
1196 	spin_lock_irqsave(&cp->lock, flags);
1197 
1198 	netif_stop_queue(dev);
1199 	netif_carrier_off(dev);
1200 
1201 	cp_stop_hw(cp);
1202 
1203 	spin_unlock_irqrestore(&cp->lock, flags);
1204 
1205 	free_irq(cp->pdev->irq, dev);
1206 
1207 	cp_free_rings(cp);
1208 	return 0;
1209 }
1210 
1211 static void cp_tx_timeout(struct net_device *dev)
1212 {
1213 	struct cp_private *cp = netdev_priv(dev);
1214 	unsigned long flags;
1215 	int rc;
1216 
1217 	netdev_warn(dev, "Transmit timeout, status %2x %4x %4x %4x\n",
1218 		    cpr8(Cmd), cpr16(CpCmd),
1219 		    cpr16(IntrStatus), cpr16(IntrMask));
1220 
1221 	spin_lock_irqsave(&cp->lock, flags);
1222 
1223 	cp_stop_hw(cp);
1224 	cp_clean_rings(cp);
1225 	rc = cp_init_rings(cp);
1226 	cp_start_hw(cp);
1227 	cp_enable_irq(cp);
1228 
1229 	netif_wake_queue(dev);
1230 
1231 	spin_unlock_irqrestore(&cp->lock, flags);
1232 }
1233 
1234 static int cp_change_mtu(struct net_device *dev, int new_mtu)
1235 {
1236 	struct cp_private *cp = netdev_priv(dev);
1237 
1238 	/* check for invalid MTU, according to hardware limits */
1239 	if (new_mtu < CP_MIN_MTU || new_mtu > CP_MAX_MTU)
1240 		return -EINVAL;
1241 
1242 	/* if network interface not up, no need for complexity */
1243 	if (!netif_running(dev)) {
1244 		dev->mtu = new_mtu;
1245 		cp_set_rxbufsize(cp);	/* set new rx buf size */
1246 		return 0;
1247 	}
1248 
1249 	/* network IS up, close it, reset MTU, and come up again. */
1250 	cp_close(dev);
1251 	dev->mtu = new_mtu;
1252 	cp_set_rxbufsize(cp);
1253 	return cp_open(dev);
1254 }
1255 
1256 static const char mii_2_8139_map[8] = {
1257 	BasicModeCtrl,
1258 	BasicModeStatus,
1259 	0,
1260 	0,
1261 	NWayAdvert,
1262 	NWayLPAR,
1263 	NWayExpansion,
1264 	0
1265 };
1266 
1267 static int mdio_read(struct net_device *dev, int phy_id, int location)
1268 {
1269 	struct cp_private *cp = netdev_priv(dev);
1270 
1271 	return location < 8 && mii_2_8139_map[location] ?
1272 	       readw(cp->regs + mii_2_8139_map[location]) : 0;
1273 }
1274 
1275 
1276 static void mdio_write(struct net_device *dev, int phy_id, int location,
1277 		       int value)
1278 {
1279 	struct cp_private *cp = netdev_priv(dev);
1280 
1281 	if (location == 0) {
1282 		cpw8(Cfg9346, Cfg9346_Unlock);
1283 		cpw16(BasicModeCtrl, value);
1284 		cpw8(Cfg9346, Cfg9346_Lock);
1285 	} else if (location < 8 && mii_2_8139_map[location])
1286 		cpw16(mii_2_8139_map[location], value);
1287 }
1288 
1289 /* Set the ethtool Wake-on-LAN settings */
1290 static int netdev_set_wol (struct cp_private *cp,
1291 			   const struct ethtool_wolinfo *wol)
1292 {
1293 	u8 options;
1294 
1295 	options = cpr8 (Config3) & ~(LinkUp | MagicPacket);
1296 	/* If WOL is being disabled, no need for complexity */
1297 	if (wol->wolopts) {
1298 		if (wol->wolopts & WAKE_PHY)	options |= LinkUp;
1299 		if (wol->wolopts & WAKE_MAGIC)	options |= MagicPacket;
1300 	}
1301 
1302 	cpw8 (Cfg9346, Cfg9346_Unlock);
1303 	cpw8 (Config3, options);
1304 	cpw8 (Cfg9346, Cfg9346_Lock);
1305 
1306 	options = 0; /* Paranoia setting */
1307 	options = cpr8 (Config5) & ~(UWF | MWF | BWF);
1308 	/* If WOL is being disabled, no need for complexity */
1309 	if (wol->wolopts) {
1310 		if (wol->wolopts & WAKE_UCAST)  options |= UWF;
1311 		if (wol->wolopts & WAKE_BCAST)	options |= BWF;
1312 		if (wol->wolopts & WAKE_MCAST)	options |= MWF;
1313 	}
1314 
1315 	cpw8 (Config5, options);
1316 
1317 	cp->wol_enabled = (wol->wolopts) ? 1 : 0;
1318 
1319 	return 0;
1320 }
1321 
1322 /* Get the ethtool Wake-on-LAN settings */
1323 static void netdev_get_wol (struct cp_private *cp,
1324 	             struct ethtool_wolinfo *wol)
1325 {
1326 	u8 options;
1327 
1328 	wol->wolopts   = 0; /* Start from scratch */
1329 	wol->supported = WAKE_PHY   | WAKE_BCAST | WAKE_MAGIC |
1330 		         WAKE_MCAST | WAKE_UCAST;
1331 	/* We don't need to go on if WOL is disabled */
1332 	if (!cp->wol_enabled) return;
1333 
1334 	options        = cpr8 (Config3);
1335 	if (options & LinkUp)        wol->wolopts |= WAKE_PHY;
1336 	if (options & MagicPacket)   wol->wolopts |= WAKE_MAGIC;
1337 
1338 	options        = 0; /* Paranoia setting */
1339 	options        = cpr8 (Config5);
1340 	if (options & UWF)           wol->wolopts |= WAKE_UCAST;
1341 	if (options & BWF)           wol->wolopts |= WAKE_BCAST;
1342 	if (options & MWF)           wol->wolopts |= WAKE_MCAST;
1343 }
1344 
1345 static void cp_get_drvinfo (struct net_device *dev, struct ethtool_drvinfo *info)
1346 {
1347 	struct cp_private *cp = netdev_priv(dev);
1348 
1349 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1350 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1351 	strlcpy(info->bus_info, pci_name(cp->pdev), sizeof(info->bus_info));
1352 }
1353 
1354 static void cp_get_ringparam(struct net_device *dev,
1355 				struct ethtool_ringparam *ring)
1356 {
1357 	ring->rx_max_pending = CP_RX_RING_SIZE;
1358 	ring->tx_max_pending = CP_TX_RING_SIZE;
1359 	ring->rx_pending = CP_RX_RING_SIZE;
1360 	ring->tx_pending = CP_TX_RING_SIZE;
1361 }
1362 
1363 static int cp_get_regs_len(struct net_device *dev)
1364 {
1365 	return CP_REGS_SIZE;
1366 }
1367 
1368 static int cp_get_sset_count (struct net_device *dev, int sset)
1369 {
1370 	switch (sset) {
1371 	case ETH_SS_STATS:
1372 		return CP_NUM_STATS;
1373 	default:
1374 		return -EOPNOTSUPP;
1375 	}
1376 }
1377 
1378 static int cp_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1379 {
1380 	struct cp_private *cp = netdev_priv(dev);
1381 	int rc;
1382 	unsigned long flags;
1383 
1384 	spin_lock_irqsave(&cp->lock, flags);
1385 	rc = mii_ethtool_gset(&cp->mii_if, cmd);
1386 	spin_unlock_irqrestore(&cp->lock, flags);
1387 
1388 	return rc;
1389 }
1390 
1391 static int cp_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1392 {
1393 	struct cp_private *cp = netdev_priv(dev);
1394 	int rc;
1395 	unsigned long flags;
1396 
1397 	spin_lock_irqsave(&cp->lock, flags);
1398 	rc = mii_ethtool_sset(&cp->mii_if, cmd);
1399 	spin_unlock_irqrestore(&cp->lock, flags);
1400 
1401 	return rc;
1402 }
1403 
1404 static int cp_nway_reset(struct net_device *dev)
1405 {
1406 	struct cp_private *cp = netdev_priv(dev);
1407 	return mii_nway_restart(&cp->mii_if);
1408 }
1409 
1410 static u32 cp_get_msglevel(struct net_device *dev)
1411 {
1412 	struct cp_private *cp = netdev_priv(dev);
1413 	return cp->msg_enable;
1414 }
1415 
1416 static void cp_set_msglevel(struct net_device *dev, u32 value)
1417 {
1418 	struct cp_private *cp = netdev_priv(dev);
1419 	cp->msg_enable = value;
1420 }
1421 
1422 static int cp_set_features(struct net_device *dev, netdev_features_t features)
1423 {
1424 	struct cp_private *cp = netdev_priv(dev);
1425 	unsigned long flags;
1426 
1427 	if (!((dev->features ^ features) & NETIF_F_RXCSUM))
1428 		return 0;
1429 
1430 	spin_lock_irqsave(&cp->lock, flags);
1431 
1432 	if (features & NETIF_F_RXCSUM)
1433 		cp->cpcmd |= RxChkSum;
1434 	else
1435 		cp->cpcmd &= ~RxChkSum;
1436 
1437 	if (features & NETIF_F_HW_VLAN_RX)
1438 		cp->cpcmd |= RxVlanOn;
1439 	else
1440 		cp->cpcmd &= ~RxVlanOn;
1441 
1442 	cpw16_f(CpCmd, cp->cpcmd);
1443 	spin_unlock_irqrestore(&cp->lock, flags);
1444 
1445 	return 0;
1446 }
1447 
1448 static void cp_get_regs(struct net_device *dev, struct ethtool_regs *regs,
1449 		        void *p)
1450 {
1451 	struct cp_private *cp = netdev_priv(dev);
1452 	unsigned long flags;
1453 
1454 	if (regs->len < CP_REGS_SIZE)
1455 		return /* -EINVAL */;
1456 
1457 	regs->version = CP_REGS_VER;
1458 
1459 	spin_lock_irqsave(&cp->lock, flags);
1460 	memcpy_fromio(p, cp->regs, CP_REGS_SIZE);
1461 	spin_unlock_irqrestore(&cp->lock, flags);
1462 }
1463 
1464 static void cp_get_wol (struct net_device *dev, struct ethtool_wolinfo *wol)
1465 {
1466 	struct cp_private *cp = netdev_priv(dev);
1467 	unsigned long flags;
1468 
1469 	spin_lock_irqsave (&cp->lock, flags);
1470 	netdev_get_wol (cp, wol);
1471 	spin_unlock_irqrestore (&cp->lock, flags);
1472 }
1473 
1474 static int cp_set_wol (struct net_device *dev, struct ethtool_wolinfo *wol)
1475 {
1476 	struct cp_private *cp = netdev_priv(dev);
1477 	unsigned long flags;
1478 	int rc;
1479 
1480 	spin_lock_irqsave (&cp->lock, flags);
1481 	rc = netdev_set_wol (cp, wol);
1482 	spin_unlock_irqrestore (&cp->lock, flags);
1483 
1484 	return rc;
1485 }
1486 
1487 static void cp_get_strings (struct net_device *dev, u32 stringset, u8 *buf)
1488 {
1489 	switch (stringset) {
1490 	case ETH_SS_STATS:
1491 		memcpy(buf, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
1492 		break;
1493 	default:
1494 		BUG();
1495 		break;
1496 	}
1497 }
1498 
1499 static void cp_get_ethtool_stats (struct net_device *dev,
1500 				  struct ethtool_stats *estats, u64 *tmp_stats)
1501 {
1502 	struct cp_private *cp = netdev_priv(dev);
1503 	struct cp_dma_stats *nic_stats;
1504 	dma_addr_t dma;
1505 	int i;
1506 
1507 	nic_stats = dma_alloc_coherent(&cp->pdev->dev, sizeof(*nic_stats),
1508 				       &dma, GFP_KERNEL);
1509 	if (!nic_stats)
1510 		return;
1511 
1512 	/* begin NIC statistics dump */
1513 	cpw32(StatsAddr + 4, (u64)dma >> 32);
1514 	cpw32(StatsAddr, ((u64)dma & DMA_BIT_MASK(32)) | DumpStats);
1515 	cpr32(StatsAddr);
1516 
1517 	for (i = 0; i < 1000; i++) {
1518 		if ((cpr32(StatsAddr) & DumpStats) == 0)
1519 			break;
1520 		udelay(10);
1521 	}
1522 	cpw32(StatsAddr, 0);
1523 	cpw32(StatsAddr + 4, 0);
1524 	cpr32(StatsAddr);
1525 
1526 	i = 0;
1527 	tmp_stats[i++] = le64_to_cpu(nic_stats->tx_ok);
1528 	tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok);
1529 	tmp_stats[i++] = le64_to_cpu(nic_stats->tx_err);
1530 	tmp_stats[i++] = le32_to_cpu(nic_stats->rx_err);
1531 	tmp_stats[i++] = le16_to_cpu(nic_stats->rx_fifo);
1532 	tmp_stats[i++] = le16_to_cpu(nic_stats->frame_align);
1533 	tmp_stats[i++] = le32_to_cpu(nic_stats->tx_ok_1col);
1534 	tmp_stats[i++] = le32_to_cpu(nic_stats->tx_ok_mcol);
1535 	tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok_phys);
1536 	tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok_bcast);
1537 	tmp_stats[i++] = le32_to_cpu(nic_stats->rx_ok_mcast);
1538 	tmp_stats[i++] = le16_to_cpu(nic_stats->tx_abort);
1539 	tmp_stats[i++] = le16_to_cpu(nic_stats->tx_underrun);
1540 	tmp_stats[i++] = cp->cp_stats.rx_frags;
1541 	BUG_ON(i != CP_NUM_STATS);
1542 
1543 	dma_free_coherent(&cp->pdev->dev, sizeof(*nic_stats), nic_stats, dma);
1544 }
1545 
1546 static const struct ethtool_ops cp_ethtool_ops = {
1547 	.get_drvinfo		= cp_get_drvinfo,
1548 	.get_regs_len		= cp_get_regs_len,
1549 	.get_sset_count		= cp_get_sset_count,
1550 	.get_settings		= cp_get_settings,
1551 	.set_settings		= cp_set_settings,
1552 	.nway_reset		= cp_nway_reset,
1553 	.get_link		= ethtool_op_get_link,
1554 	.get_msglevel		= cp_get_msglevel,
1555 	.set_msglevel		= cp_set_msglevel,
1556 	.get_regs		= cp_get_regs,
1557 	.get_wol		= cp_get_wol,
1558 	.set_wol		= cp_set_wol,
1559 	.get_strings		= cp_get_strings,
1560 	.get_ethtool_stats	= cp_get_ethtool_stats,
1561 	.get_eeprom_len		= cp_get_eeprom_len,
1562 	.get_eeprom		= cp_get_eeprom,
1563 	.set_eeprom		= cp_set_eeprom,
1564 	.get_ringparam		= cp_get_ringparam,
1565 };
1566 
1567 static int cp_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
1568 {
1569 	struct cp_private *cp = netdev_priv(dev);
1570 	int rc;
1571 	unsigned long flags;
1572 
1573 	if (!netif_running(dev))
1574 		return -EINVAL;
1575 
1576 	spin_lock_irqsave(&cp->lock, flags);
1577 	rc = generic_mii_ioctl(&cp->mii_if, if_mii(rq), cmd, NULL);
1578 	spin_unlock_irqrestore(&cp->lock, flags);
1579 	return rc;
1580 }
1581 
1582 static int cp_set_mac_address(struct net_device *dev, void *p)
1583 {
1584 	struct cp_private *cp = netdev_priv(dev);
1585 	struct sockaddr *addr = p;
1586 
1587 	if (!is_valid_ether_addr(addr->sa_data))
1588 		return -EADDRNOTAVAIL;
1589 
1590 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1591 
1592 	spin_lock_irq(&cp->lock);
1593 
1594 	cpw8_f(Cfg9346, Cfg9346_Unlock);
1595 	cpw32_f(MAC0 + 0, le32_to_cpu (*(__le32 *) (dev->dev_addr + 0)));
1596 	cpw32_f(MAC0 + 4, le32_to_cpu (*(__le32 *) (dev->dev_addr + 4)));
1597 	cpw8_f(Cfg9346, Cfg9346_Lock);
1598 
1599 	spin_unlock_irq(&cp->lock);
1600 
1601 	return 0;
1602 }
1603 
1604 /* Serial EEPROM section. */
1605 
1606 /*  EEPROM_Ctrl bits. */
1607 #define EE_SHIFT_CLK	0x04	/* EEPROM shift clock. */
1608 #define EE_CS			0x08	/* EEPROM chip select. */
1609 #define EE_DATA_WRITE	0x02	/* EEPROM chip data in. */
1610 #define EE_WRITE_0		0x00
1611 #define EE_WRITE_1		0x02
1612 #define EE_DATA_READ	0x01	/* EEPROM chip data out. */
1613 #define EE_ENB			(0x80 | EE_CS)
1614 
1615 /* Delay between EEPROM clock transitions.
1616    No extra delay is needed with 33Mhz PCI, but 66Mhz may change this.
1617  */
1618 
1619 #define eeprom_delay()	readb(ee_addr)
1620 
1621 /* The EEPROM commands include the alway-set leading bit. */
1622 #define EE_EXTEND_CMD	(4)
1623 #define EE_WRITE_CMD	(5)
1624 #define EE_READ_CMD		(6)
1625 #define EE_ERASE_CMD	(7)
1626 
1627 #define EE_EWDS_ADDR	(0)
1628 #define EE_WRAL_ADDR	(1)
1629 #define EE_ERAL_ADDR	(2)
1630 #define EE_EWEN_ADDR	(3)
1631 
1632 #define CP_EEPROM_MAGIC PCI_DEVICE_ID_REALTEK_8139
1633 
1634 static void eeprom_cmd_start(void __iomem *ee_addr)
1635 {
1636 	writeb (EE_ENB & ~EE_CS, ee_addr);
1637 	writeb (EE_ENB, ee_addr);
1638 	eeprom_delay ();
1639 }
1640 
1641 static void eeprom_cmd(void __iomem *ee_addr, int cmd, int cmd_len)
1642 {
1643 	int i;
1644 
1645 	/* Shift the command bits out. */
1646 	for (i = cmd_len - 1; i >= 0; i--) {
1647 		int dataval = (cmd & (1 << i)) ? EE_DATA_WRITE : 0;
1648 		writeb (EE_ENB | dataval, ee_addr);
1649 		eeprom_delay ();
1650 		writeb (EE_ENB | dataval | EE_SHIFT_CLK, ee_addr);
1651 		eeprom_delay ();
1652 	}
1653 	writeb (EE_ENB, ee_addr);
1654 	eeprom_delay ();
1655 }
1656 
1657 static void eeprom_cmd_end(void __iomem *ee_addr)
1658 {
1659 	writeb(0, ee_addr);
1660 	eeprom_delay ();
1661 }
1662 
1663 static void eeprom_extend_cmd(void __iomem *ee_addr, int extend_cmd,
1664 			      int addr_len)
1665 {
1666 	int cmd = (EE_EXTEND_CMD << addr_len) | (extend_cmd << (addr_len - 2));
1667 
1668 	eeprom_cmd_start(ee_addr);
1669 	eeprom_cmd(ee_addr, cmd, 3 + addr_len);
1670 	eeprom_cmd_end(ee_addr);
1671 }
1672 
1673 static u16 read_eeprom (void __iomem *ioaddr, int location, int addr_len)
1674 {
1675 	int i;
1676 	u16 retval = 0;
1677 	void __iomem *ee_addr = ioaddr + Cfg9346;
1678 	int read_cmd = location | (EE_READ_CMD << addr_len);
1679 
1680 	eeprom_cmd_start(ee_addr);
1681 	eeprom_cmd(ee_addr, read_cmd, 3 + addr_len);
1682 
1683 	for (i = 16; i > 0; i--) {
1684 		writeb (EE_ENB | EE_SHIFT_CLK, ee_addr);
1685 		eeprom_delay ();
1686 		retval =
1687 		    (retval << 1) | ((readb (ee_addr) & EE_DATA_READ) ? 1 :
1688 				     0);
1689 		writeb (EE_ENB, ee_addr);
1690 		eeprom_delay ();
1691 	}
1692 
1693 	eeprom_cmd_end(ee_addr);
1694 
1695 	return retval;
1696 }
1697 
1698 static void write_eeprom(void __iomem *ioaddr, int location, u16 val,
1699 			 int addr_len)
1700 {
1701 	int i;
1702 	void __iomem *ee_addr = ioaddr + Cfg9346;
1703 	int write_cmd = location | (EE_WRITE_CMD << addr_len);
1704 
1705 	eeprom_extend_cmd(ee_addr, EE_EWEN_ADDR, addr_len);
1706 
1707 	eeprom_cmd_start(ee_addr);
1708 	eeprom_cmd(ee_addr, write_cmd, 3 + addr_len);
1709 	eeprom_cmd(ee_addr, val, 16);
1710 	eeprom_cmd_end(ee_addr);
1711 
1712 	eeprom_cmd_start(ee_addr);
1713 	for (i = 0; i < 20000; i++)
1714 		if (readb(ee_addr) & EE_DATA_READ)
1715 			break;
1716 	eeprom_cmd_end(ee_addr);
1717 
1718 	eeprom_extend_cmd(ee_addr, EE_EWDS_ADDR, addr_len);
1719 }
1720 
1721 static int cp_get_eeprom_len(struct net_device *dev)
1722 {
1723 	struct cp_private *cp = netdev_priv(dev);
1724 	int size;
1725 
1726 	spin_lock_irq(&cp->lock);
1727 	size = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 256 : 128;
1728 	spin_unlock_irq(&cp->lock);
1729 
1730 	return size;
1731 }
1732 
1733 static int cp_get_eeprom(struct net_device *dev,
1734 			 struct ethtool_eeprom *eeprom, u8 *data)
1735 {
1736 	struct cp_private *cp = netdev_priv(dev);
1737 	unsigned int addr_len;
1738 	u16 val;
1739 	u32 offset = eeprom->offset >> 1;
1740 	u32 len = eeprom->len;
1741 	u32 i = 0;
1742 
1743 	eeprom->magic = CP_EEPROM_MAGIC;
1744 
1745 	spin_lock_irq(&cp->lock);
1746 
1747 	addr_len = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 8 : 6;
1748 
1749 	if (eeprom->offset & 1) {
1750 		val = read_eeprom(cp->regs, offset, addr_len);
1751 		data[i++] = (u8)(val >> 8);
1752 		offset++;
1753 	}
1754 
1755 	while (i < len - 1) {
1756 		val = read_eeprom(cp->regs, offset, addr_len);
1757 		data[i++] = (u8)val;
1758 		data[i++] = (u8)(val >> 8);
1759 		offset++;
1760 	}
1761 
1762 	if (i < len) {
1763 		val = read_eeprom(cp->regs, offset, addr_len);
1764 		data[i] = (u8)val;
1765 	}
1766 
1767 	spin_unlock_irq(&cp->lock);
1768 	return 0;
1769 }
1770 
1771 static int cp_set_eeprom(struct net_device *dev,
1772 			 struct ethtool_eeprom *eeprom, u8 *data)
1773 {
1774 	struct cp_private *cp = netdev_priv(dev);
1775 	unsigned int addr_len;
1776 	u16 val;
1777 	u32 offset = eeprom->offset >> 1;
1778 	u32 len = eeprom->len;
1779 	u32 i = 0;
1780 
1781 	if (eeprom->magic != CP_EEPROM_MAGIC)
1782 		return -EINVAL;
1783 
1784 	spin_lock_irq(&cp->lock);
1785 
1786 	addr_len = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 8 : 6;
1787 
1788 	if (eeprom->offset & 1) {
1789 		val = read_eeprom(cp->regs, offset, addr_len) & 0xff;
1790 		val |= (u16)data[i++] << 8;
1791 		write_eeprom(cp->regs, offset, val, addr_len);
1792 		offset++;
1793 	}
1794 
1795 	while (i < len - 1) {
1796 		val = (u16)data[i++];
1797 		val |= (u16)data[i++] << 8;
1798 		write_eeprom(cp->regs, offset, val, addr_len);
1799 		offset++;
1800 	}
1801 
1802 	if (i < len) {
1803 		val = read_eeprom(cp->regs, offset, addr_len) & 0xff00;
1804 		val |= (u16)data[i];
1805 		write_eeprom(cp->regs, offset, val, addr_len);
1806 	}
1807 
1808 	spin_unlock_irq(&cp->lock);
1809 	return 0;
1810 }
1811 
1812 /* Put the board into D3cold state and wait for WakeUp signal */
1813 static void cp_set_d3_state (struct cp_private *cp)
1814 {
1815 	pci_enable_wake (cp->pdev, 0, 1); /* Enable PME# generation */
1816 	pci_set_power_state (cp->pdev, PCI_D3hot);
1817 }
1818 
1819 static const struct net_device_ops cp_netdev_ops = {
1820 	.ndo_open		= cp_open,
1821 	.ndo_stop		= cp_close,
1822 	.ndo_validate_addr	= eth_validate_addr,
1823 	.ndo_set_mac_address 	= cp_set_mac_address,
1824 	.ndo_set_rx_mode	= cp_set_rx_mode,
1825 	.ndo_get_stats		= cp_get_stats,
1826 	.ndo_do_ioctl		= cp_ioctl,
1827 	.ndo_start_xmit		= cp_start_xmit,
1828 	.ndo_tx_timeout		= cp_tx_timeout,
1829 	.ndo_set_features	= cp_set_features,
1830 	.ndo_change_mtu		= cp_change_mtu,
1831 
1832 #ifdef CONFIG_NET_POLL_CONTROLLER
1833 	.ndo_poll_controller	= cp_poll_controller,
1834 #endif
1835 };
1836 
1837 static int cp_init_one (struct pci_dev *pdev, const struct pci_device_id *ent)
1838 {
1839 	struct net_device *dev;
1840 	struct cp_private *cp;
1841 	int rc;
1842 	void __iomem *regs;
1843 	resource_size_t pciaddr;
1844 	unsigned int addr_len, i, pci_using_dac;
1845 
1846 #ifndef MODULE
1847 	static int version_printed;
1848 	if (version_printed++ == 0)
1849 		pr_info("%s", version);
1850 #endif
1851 
1852 	if (pdev->vendor == PCI_VENDOR_ID_REALTEK &&
1853 	    pdev->device == PCI_DEVICE_ID_REALTEK_8139 && pdev->revision < 0x20) {
1854 		dev_info(&pdev->dev,
1855 			 "This (id %04x:%04x rev %02x) is not an 8139C+ compatible chip, use 8139too\n",
1856 			 pdev->vendor, pdev->device, pdev->revision);
1857 		return -ENODEV;
1858 	}
1859 
1860 	dev = alloc_etherdev(sizeof(struct cp_private));
1861 	if (!dev)
1862 		return -ENOMEM;
1863 	SET_NETDEV_DEV(dev, &pdev->dev);
1864 
1865 	cp = netdev_priv(dev);
1866 	cp->pdev = pdev;
1867 	cp->dev = dev;
1868 	cp->msg_enable = (debug < 0 ? CP_DEF_MSG_ENABLE : debug);
1869 	spin_lock_init (&cp->lock);
1870 	cp->mii_if.dev = dev;
1871 	cp->mii_if.mdio_read = mdio_read;
1872 	cp->mii_if.mdio_write = mdio_write;
1873 	cp->mii_if.phy_id = CP_INTERNAL_PHY;
1874 	cp->mii_if.phy_id_mask = 0x1f;
1875 	cp->mii_if.reg_num_mask = 0x1f;
1876 	cp_set_rxbufsize(cp);
1877 
1878 	rc = pci_enable_device(pdev);
1879 	if (rc)
1880 		goto err_out_free;
1881 
1882 	rc = pci_set_mwi(pdev);
1883 	if (rc)
1884 		goto err_out_disable;
1885 
1886 	rc = pci_request_regions(pdev, DRV_NAME);
1887 	if (rc)
1888 		goto err_out_mwi;
1889 
1890 	pciaddr = pci_resource_start(pdev, 1);
1891 	if (!pciaddr) {
1892 		rc = -EIO;
1893 		dev_err(&pdev->dev, "no MMIO resource\n");
1894 		goto err_out_res;
1895 	}
1896 	if (pci_resource_len(pdev, 1) < CP_REGS_SIZE) {
1897 		rc = -EIO;
1898 		dev_err(&pdev->dev, "MMIO resource (%llx) too small\n",
1899 		       (unsigned long long)pci_resource_len(pdev, 1));
1900 		goto err_out_res;
1901 	}
1902 
1903 	/* Configure DMA attributes. */
1904 	if ((sizeof(dma_addr_t) > 4) &&
1905 	    !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)) &&
1906 	    !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
1907 		pci_using_dac = 1;
1908 	} else {
1909 		pci_using_dac = 0;
1910 
1911 		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1912 		if (rc) {
1913 			dev_err(&pdev->dev,
1914 				"No usable DMA configuration, aborting\n");
1915 			goto err_out_res;
1916 		}
1917 		rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
1918 		if (rc) {
1919 			dev_err(&pdev->dev,
1920 				"No usable consistent DMA configuration, aborting\n");
1921 			goto err_out_res;
1922 		}
1923 	}
1924 
1925 	cp->cpcmd = (pci_using_dac ? PCIDAC : 0) |
1926 		    PCIMulRW | RxChkSum | CpRxOn | CpTxOn;
1927 
1928 	dev->features |= NETIF_F_RXCSUM;
1929 	dev->hw_features |= NETIF_F_RXCSUM;
1930 
1931 	regs = ioremap(pciaddr, CP_REGS_SIZE);
1932 	if (!regs) {
1933 		rc = -EIO;
1934 		dev_err(&pdev->dev, "Cannot map PCI MMIO (%Lx@%Lx)\n",
1935 			(unsigned long long)pci_resource_len(pdev, 1),
1936 		       (unsigned long long)pciaddr);
1937 		goto err_out_res;
1938 	}
1939 	cp->regs = regs;
1940 
1941 	cp_stop_hw(cp);
1942 
1943 	/* read MAC address from EEPROM */
1944 	addr_len = read_eeprom (regs, 0, 8) == 0x8129 ? 8 : 6;
1945 	for (i = 0; i < 3; i++)
1946 		((__le16 *) (dev->dev_addr))[i] =
1947 		    cpu_to_le16(read_eeprom (regs, i + 7, addr_len));
1948 	memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
1949 
1950 	dev->netdev_ops = &cp_netdev_ops;
1951 	netif_napi_add(dev, &cp->napi, cp_rx_poll, 16);
1952 	dev->ethtool_ops = &cp_ethtool_ops;
1953 	dev->watchdog_timeo = TX_TIMEOUT;
1954 
1955 	dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
1956 
1957 	if (pci_using_dac)
1958 		dev->features |= NETIF_F_HIGHDMA;
1959 
1960 	/* disabled by default until verified */
1961 	dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO |
1962 		NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
1963 	dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO |
1964 		NETIF_F_HIGHDMA;
1965 
1966 	rc = register_netdev(dev);
1967 	if (rc)
1968 		goto err_out_iomap;
1969 
1970 	netdev_info(dev, "RTL-8139C+ at 0x%p, %pM, IRQ %d\n",
1971 		    regs, dev->dev_addr, pdev->irq);
1972 
1973 	pci_set_drvdata(pdev, dev);
1974 
1975 	/* enable busmastering and memory-write-invalidate */
1976 	pci_set_master(pdev);
1977 
1978 	if (cp->wol_enabled)
1979 		cp_set_d3_state (cp);
1980 
1981 	return 0;
1982 
1983 err_out_iomap:
1984 	iounmap(regs);
1985 err_out_res:
1986 	pci_release_regions(pdev);
1987 err_out_mwi:
1988 	pci_clear_mwi(pdev);
1989 err_out_disable:
1990 	pci_disable_device(pdev);
1991 err_out_free:
1992 	free_netdev(dev);
1993 	return rc;
1994 }
1995 
1996 static void cp_remove_one (struct pci_dev *pdev)
1997 {
1998 	struct net_device *dev = pci_get_drvdata(pdev);
1999 	struct cp_private *cp = netdev_priv(dev);
2000 
2001 	unregister_netdev(dev);
2002 	iounmap(cp->regs);
2003 	if (cp->wol_enabled)
2004 		pci_set_power_state (pdev, PCI_D0);
2005 	pci_release_regions(pdev);
2006 	pci_clear_mwi(pdev);
2007 	pci_disable_device(pdev);
2008 	pci_set_drvdata(pdev, NULL);
2009 	free_netdev(dev);
2010 }
2011 
2012 #ifdef CONFIG_PM
2013 static int cp_suspend (struct pci_dev *pdev, pm_message_t state)
2014 {
2015 	struct net_device *dev = pci_get_drvdata(pdev);
2016 	struct cp_private *cp = netdev_priv(dev);
2017 	unsigned long flags;
2018 
2019 	if (!netif_running(dev))
2020 		return 0;
2021 
2022 	netif_device_detach (dev);
2023 	netif_stop_queue (dev);
2024 
2025 	spin_lock_irqsave (&cp->lock, flags);
2026 
2027 	/* Disable Rx and Tx */
2028 	cpw16 (IntrMask, 0);
2029 	cpw8  (Cmd, cpr8 (Cmd) & (~RxOn | ~TxOn));
2030 
2031 	spin_unlock_irqrestore (&cp->lock, flags);
2032 
2033 	pci_save_state(pdev);
2034 	pci_enable_wake(pdev, pci_choose_state(pdev, state), cp->wol_enabled);
2035 	pci_set_power_state(pdev, pci_choose_state(pdev, state));
2036 
2037 	return 0;
2038 }
2039 
2040 static int cp_resume (struct pci_dev *pdev)
2041 {
2042 	struct net_device *dev = pci_get_drvdata (pdev);
2043 	struct cp_private *cp = netdev_priv(dev);
2044 	unsigned long flags;
2045 
2046 	if (!netif_running(dev))
2047 		return 0;
2048 
2049 	netif_device_attach (dev);
2050 
2051 	pci_set_power_state(pdev, PCI_D0);
2052 	pci_restore_state(pdev);
2053 	pci_enable_wake(pdev, PCI_D0, 0);
2054 
2055 	/* FIXME: sh*t may happen if the Rx ring buffer is depleted */
2056 	cp_init_rings_index (cp);
2057 	cp_init_hw (cp);
2058 	cp_enable_irq(cp);
2059 	netif_start_queue (dev);
2060 
2061 	spin_lock_irqsave (&cp->lock, flags);
2062 
2063 	mii_check_media(&cp->mii_if, netif_msg_link(cp), false);
2064 
2065 	spin_unlock_irqrestore (&cp->lock, flags);
2066 
2067 	return 0;
2068 }
2069 #endif /* CONFIG_PM */
2070 
2071 static struct pci_driver cp_driver = {
2072 	.name         = DRV_NAME,
2073 	.id_table     = cp_pci_tbl,
2074 	.probe        =	cp_init_one,
2075 	.remove       = cp_remove_one,
2076 #ifdef CONFIG_PM
2077 	.resume       = cp_resume,
2078 	.suspend      = cp_suspend,
2079 #endif
2080 };
2081 
2082 static int __init cp_init (void)
2083 {
2084 #ifdef MODULE
2085 	pr_info("%s", version);
2086 #endif
2087 	return pci_register_driver(&cp_driver);
2088 }
2089 
2090 static void __exit cp_exit (void)
2091 {
2092 	pci_unregister_driver (&cp_driver);
2093 }
2094 
2095 module_init(cp_init);
2096 module_exit(cp_exit);
2097