xref: /linux/drivers/net/ethernet/realtek/8139cp.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /* 8139cp.c: A Linux PCI Ethernet driver for the RealTek 8139C+ chips. */
2 /*
3 	Copyright 2001-2004 Jeff Garzik <jgarzik@pobox.com>
4 
5 	Copyright (C) 2001, 2002 David S. Miller (davem@redhat.com) [tg3.c]
6 	Copyright (C) 2000, 2001 David S. Miller (davem@redhat.com) [sungem.c]
7 	Copyright 2001 Manfred Spraul				    [natsemi.c]
8 	Copyright 1999-2001 by Donald Becker.			    [natsemi.c]
9        	Written 1997-2001 by Donald Becker.			    [8139too.c]
10 	Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. [acenic.c]
11 
12 	This software may be used and distributed according to the terms of
13 	the GNU General Public License (GPL), incorporated herein by reference.
14 	Drivers based on or derived from this code fall under the GPL and must
15 	retain the authorship, copyright and license notice.  This file is not
16 	a complete program and may only be used when the entire operating
17 	system is licensed under the GPL.
18 
19 	See the file COPYING in this distribution for more information.
20 
21 	Contributors:
22 
23 		Wake-on-LAN support - Felipe Damasio <felipewd@terra.com.br>
24 		PCI suspend/resume  - Felipe Damasio <felipewd@terra.com.br>
25 		LinkChg interrupt   - Felipe Damasio <felipewd@terra.com.br>
26 
27 	TODO:
28 	* Test Tx checksumming thoroughly
29 
30 	Low priority TODO:
31 	* Complete reset on PciErr
32 	* Consider Rx interrupt mitigation using TimerIntr
33 	* Investigate using skb->priority with h/w VLAN priority
34 	* Investigate using High Priority Tx Queue with skb->priority
35 	* Adjust Rx FIFO threshold and Max Rx DMA burst on Rx FIFO error
36 	* Adjust Tx FIFO threshold and Max Tx DMA burst on Tx FIFO error
37 	* Implement Tx software interrupt mitigation via
38 	  Tx descriptor bit
39 	* The real minimum of CP_MIN_MTU is 4 bytes.  However,
40 	  for this to be supported, one must(?) turn on packet padding.
41 	* Support external MII transceivers (patch available)
42 
43 	NOTES:
44 	* TX checksumming is considered experimental.  It is off by
45 	  default, use ethtool to turn it on.
46 
47  */
48 
49 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
50 
51 #define DRV_NAME		"8139cp"
52 #define DRV_VERSION		"1.3"
53 #define DRV_RELDATE		"Mar 22, 2004"
54 
55 
56 #include <linux/module.h>
57 #include <linux/moduleparam.h>
58 #include <linux/kernel.h>
59 #include <linux/compiler.h>
60 #include <linux/netdevice.h>
61 #include <linux/etherdevice.h>
62 #include <linux/init.h>
63 #include <linux/interrupt.h>
64 #include <linux/pci.h>
65 #include <linux/dma-mapping.h>
66 #include <linux/delay.h>
67 #include <linux/ethtool.h>
68 #include <linux/gfp.h>
69 #include <linux/mii.h>
70 #include <linux/if_vlan.h>
71 #include <linux/crc32.h>
72 #include <linux/in.h>
73 #include <linux/ip.h>
74 #include <linux/tcp.h>
75 #include <linux/udp.h>
76 #include <linux/cache.h>
77 #include <asm/io.h>
78 #include <asm/irq.h>
79 #include <asm/uaccess.h>
80 
81 /* These identify the driver base version and may not be removed. */
82 static char version[] =
83 DRV_NAME ": 10/100 PCI Ethernet driver v" DRV_VERSION " (" DRV_RELDATE ")\n";
84 
85 MODULE_AUTHOR("Jeff Garzik <jgarzik@pobox.com>");
86 MODULE_DESCRIPTION("RealTek RTL-8139C+ series 10/100 PCI Ethernet driver");
87 MODULE_VERSION(DRV_VERSION);
88 MODULE_LICENSE("GPL");
89 
90 static int debug = -1;
91 module_param(debug, int, 0);
92 MODULE_PARM_DESC (debug, "8139cp: bitmapped message enable number");
93 
94 /* Maximum number of multicast addresses to filter (vs. Rx-all-multicast).
95    The RTL chips use a 64 element hash table based on the Ethernet CRC.  */
96 static int multicast_filter_limit = 32;
97 module_param(multicast_filter_limit, int, 0);
98 MODULE_PARM_DESC (multicast_filter_limit, "8139cp: maximum number of filtered multicast addresses");
99 
100 #define CP_DEF_MSG_ENABLE	(NETIF_MSG_DRV		| \
101 				 NETIF_MSG_PROBE 	| \
102 				 NETIF_MSG_LINK)
103 #define CP_NUM_STATS		14	/* struct cp_dma_stats, plus one */
104 #define CP_STATS_SIZE		64	/* size in bytes of DMA stats block */
105 #define CP_REGS_SIZE		(0xff + 1)
106 #define CP_REGS_VER		1		/* version 1 */
107 #define CP_RX_RING_SIZE		64
108 #define CP_TX_RING_SIZE		64
109 #define CP_RING_BYTES		\
110 		((sizeof(struct cp_desc) * CP_RX_RING_SIZE) +	\
111 		 (sizeof(struct cp_desc) * CP_TX_RING_SIZE) +	\
112 		 CP_STATS_SIZE)
113 #define NEXT_TX(N)		(((N) + 1) & (CP_TX_RING_SIZE - 1))
114 #define NEXT_RX(N)		(((N) + 1) & (CP_RX_RING_SIZE - 1))
115 #define TX_BUFFS_AVAIL(CP)					\
116 	(((CP)->tx_tail <= (CP)->tx_head) ?			\
117 	  (CP)->tx_tail + (CP_TX_RING_SIZE - 1) - (CP)->tx_head :	\
118 	  (CP)->tx_tail - (CP)->tx_head - 1)
119 
120 #define PKT_BUF_SZ		1536	/* Size of each temporary Rx buffer.*/
121 #define CP_INTERNAL_PHY		32
122 
123 /* The following settings are log_2(bytes)-4:  0 == 16 bytes .. 6==1024, 7==end of packet. */
124 #define RX_FIFO_THRESH		5	/* Rx buffer level before first PCI xfer.  */
125 #define RX_DMA_BURST		4	/* Maximum PCI burst, '4' is 256 */
126 #define TX_DMA_BURST		6	/* Maximum PCI burst, '6' is 1024 */
127 #define TX_EARLY_THRESH		256	/* Early Tx threshold, in bytes */
128 
129 /* Time in jiffies before concluding the transmitter is hung. */
130 #define TX_TIMEOUT		(6*HZ)
131 
132 /* hardware minimum and maximum for a single frame's data payload */
133 #define CP_MIN_MTU		60	/* TODO: allow lower, but pad */
134 #define CP_MAX_MTU		4096
135 
136 enum {
137 	/* NIC register offsets */
138 	MAC0		= 0x00,	/* Ethernet hardware address. */
139 	MAR0		= 0x08,	/* Multicast filter. */
140 	StatsAddr	= 0x10,	/* 64-bit start addr of 64-byte DMA stats blk */
141 	TxRingAddr	= 0x20, /* 64-bit start addr of Tx ring */
142 	HiTxRingAddr	= 0x28, /* 64-bit start addr of high priority Tx ring */
143 	Cmd		= 0x37, /* Command register */
144 	IntrMask	= 0x3C, /* Interrupt mask */
145 	IntrStatus	= 0x3E, /* Interrupt status */
146 	TxConfig	= 0x40, /* Tx configuration */
147 	ChipVersion	= 0x43, /* 8-bit chip version, inside TxConfig */
148 	RxConfig	= 0x44, /* Rx configuration */
149 	RxMissed	= 0x4C,	/* 24 bits valid, write clears */
150 	Cfg9346		= 0x50, /* EEPROM select/control; Cfg reg [un]lock */
151 	Config1		= 0x52, /* Config1 */
152 	Config3		= 0x59, /* Config3 */
153 	Config4		= 0x5A, /* Config4 */
154 	MultiIntr	= 0x5C, /* Multiple interrupt select */
155 	BasicModeCtrl	= 0x62,	/* MII BMCR */
156 	BasicModeStatus	= 0x64, /* MII BMSR */
157 	NWayAdvert	= 0x66, /* MII ADVERTISE */
158 	NWayLPAR	= 0x68, /* MII LPA */
159 	NWayExpansion	= 0x6A, /* MII Expansion */
160 	TxDmaOkLowDesc  = 0x82, /* Low 16 bit address of a Tx descriptor. */
161 	Config5		= 0xD8,	/* Config5 */
162 	TxPoll		= 0xD9,	/* Tell chip to check Tx descriptors for work */
163 	RxMaxSize	= 0xDA, /* Max size of an Rx packet (8169 only) */
164 	CpCmd		= 0xE0, /* C+ Command register (C+ mode only) */
165 	IntrMitigate	= 0xE2,	/* rx/tx interrupt mitigation control */
166 	RxRingAddr	= 0xE4, /* 64-bit start addr of Rx ring */
167 	TxThresh	= 0xEC, /* Early Tx threshold */
168 	OldRxBufAddr	= 0x30, /* DMA address of Rx ring buffer (C mode) */
169 	OldTSD0		= 0x10, /* DMA address of first Tx desc (C mode) */
170 
171 	/* Tx and Rx status descriptors */
172 	DescOwn		= (1 << 31), /* Descriptor is owned by NIC */
173 	RingEnd		= (1 << 30), /* End of descriptor ring */
174 	FirstFrag	= (1 << 29), /* First segment of a packet */
175 	LastFrag	= (1 << 28), /* Final segment of a packet */
176 	LargeSend	= (1 << 27), /* TCP Large Send Offload (TSO) */
177 	MSSShift	= 16,	     /* MSS value position */
178 	MSSMask		= 0x7ff,     /* MSS value: 11 bits */
179 	TxError		= (1 << 23), /* Tx error summary */
180 	RxError		= (1 << 20), /* Rx error summary */
181 	IPCS		= (1 << 18), /* Calculate IP checksum */
182 	UDPCS		= (1 << 17), /* Calculate UDP/IP checksum */
183 	TCPCS		= (1 << 16), /* Calculate TCP/IP checksum */
184 	TxVlanTag	= (1 << 17), /* Add VLAN tag */
185 	RxVlanTagged	= (1 << 16), /* Rx VLAN tag available */
186 	IPFail		= (1 << 15), /* IP checksum failed */
187 	UDPFail		= (1 << 14), /* UDP/IP checksum failed */
188 	TCPFail		= (1 << 13), /* TCP/IP checksum failed */
189 	NormalTxPoll	= (1 << 6),  /* One or more normal Tx packets to send */
190 	PID1		= (1 << 17), /* 2 protocol id bits:  0==non-IP, */
191 	PID0		= (1 << 16), /* 1==UDP/IP, 2==TCP/IP, 3==IP */
192 	RxProtoTCP	= 1,
193 	RxProtoUDP	= 2,
194 	RxProtoIP	= 3,
195 	TxFIFOUnder	= (1 << 25), /* Tx FIFO underrun */
196 	TxOWC		= (1 << 22), /* Tx Out-of-window collision */
197 	TxLinkFail	= (1 << 21), /* Link failed during Tx of packet */
198 	TxMaxCol	= (1 << 20), /* Tx aborted due to excessive collisions */
199 	TxColCntShift	= 16,	     /* Shift, to get 4-bit Tx collision cnt */
200 	TxColCntMask	= 0x01 | 0x02 | 0x04 | 0x08, /* 4-bit collision count */
201 	RxErrFrame	= (1 << 27), /* Rx frame alignment error */
202 	RxMcast		= (1 << 26), /* Rx multicast packet rcv'd */
203 	RxErrCRC	= (1 << 18), /* Rx CRC error */
204 	RxErrRunt	= (1 << 19), /* Rx error, packet < 64 bytes */
205 	RxErrLong	= (1 << 21), /* Rx error, packet > 4096 bytes */
206 	RxErrFIFO	= (1 << 22), /* Rx error, FIFO overflowed, pkt bad */
207 
208 	/* StatsAddr register */
209 	DumpStats	= (1 << 3),  /* Begin stats dump */
210 
211 	/* RxConfig register */
212 	RxCfgFIFOShift	= 13,	     /* Shift, to get Rx FIFO thresh value */
213 	RxCfgDMAShift	= 8,	     /* Shift, to get Rx Max DMA value */
214 	AcceptErr	= 0x20,	     /* Accept packets with CRC errors */
215 	AcceptRunt	= 0x10,	     /* Accept runt (<64 bytes) packets */
216 	AcceptBroadcast	= 0x08,	     /* Accept broadcast packets */
217 	AcceptMulticast	= 0x04,	     /* Accept multicast packets */
218 	AcceptMyPhys	= 0x02,	     /* Accept pkts with our MAC as dest */
219 	AcceptAllPhys	= 0x01,	     /* Accept all pkts w/ physical dest */
220 
221 	/* IntrMask / IntrStatus registers */
222 	PciErr		= (1 << 15), /* System error on the PCI bus */
223 	TimerIntr	= (1 << 14), /* Asserted when TCTR reaches TimerInt value */
224 	LenChg		= (1 << 13), /* Cable length change */
225 	SWInt		= (1 << 8),  /* Software-requested interrupt */
226 	TxEmpty		= (1 << 7),  /* No Tx descriptors available */
227 	RxFIFOOvr	= (1 << 6),  /* Rx FIFO Overflow */
228 	LinkChg		= (1 << 5),  /* Packet underrun, or link change */
229 	RxEmpty		= (1 << 4),  /* No Rx descriptors available */
230 	TxErr		= (1 << 3),  /* Tx error */
231 	TxOK		= (1 << 2),  /* Tx packet sent */
232 	RxErr		= (1 << 1),  /* Rx error */
233 	RxOK		= (1 << 0),  /* Rx packet received */
234 	IntrResvd	= (1 << 10), /* reserved, according to RealTek engineers,
235 					but hardware likes to raise it */
236 
237 	IntrAll		= PciErr | TimerIntr | LenChg | SWInt | TxEmpty |
238 			  RxFIFOOvr | LinkChg | RxEmpty | TxErr | TxOK |
239 			  RxErr | RxOK | IntrResvd,
240 
241 	/* C mode command register */
242 	CmdReset	= (1 << 4),  /* Enable to reset; self-clearing */
243 	RxOn		= (1 << 3),  /* Rx mode enable */
244 	TxOn		= (1 << 2),  /* Tx mode enable */
245 
246 	/* C+ mode command register */
247 	RxVlanOn	= (1 << 6),  /* Rx VLAN de-tagging enable */
248 	RxChkSum	= (1 << 5),  /* Rx checksum offload enable */
249 	PCIDAC		= (1 << 4),  /* PCI Dual Address Cycle (64-bit PCI) */
250 	PCIMulRW	= (1 << 3),  /* Enable PCI read/write multiple */
251 	CpRxOn		= (1 << 1),  /* Rx mode enable */
252 	CpTxOn		= (1 << 0),  /* Tx mode enable */
253 
254 	/* Cfg9436 EEPROM control register */
255 	Cfg9346_Lock	= 0x00,	     /* Lock ConfigX/MII register access */
256 	Cfg9346_Unlock	= 0xC0,	     /* Unlock ConfigX/MII register access */
257 
258 	/* TxConfig register */
259 	IFG		= (1 << 25) | (1 << 24), /* standard IEEE interframe gap */
260 	TxDMAShift	= 8,	     /* DMA burst value (0-7) is shift this many bits */
261 
262 	/* Early Tx Threshold register */
263 	TxThreshMask	= 0x3f,	     /* Mask bits 5-0 */
264 	TxThreshMax	= 2048,	     /* Max early Tx threshold */
265 
266 	/* Config1 register */
267 	DriverLoaded	= (1 << 5),  /* Software marker, driver is loaded */
268 	LWACT           = (1 << 4),  /* LWAKE active mode */
269 	PMEnable	= (1 << 0),  /* Enable various PM features of chip */
270 
271 	/* Config3 register */
272 	PARMEnable	= (1 << 6),  /* Enable auto-loading of PHY parms */
273 	MagicPacket     = (1 << 5),  /* Wake up when receives a Magic Packet */
274 	LinkUp          = (1 << 4),  /* Wake up when the cable connection is re-established */
275 
276 	/* Config4 register */
277 	LWPTN           = (1 << 1),  /* LWAKE Pattern */
278 	LWPME           = (1 << 4),  /* LANWAKE vs PMEB */
279 
280 	/* Config5 register */
281 	BWF             = (1 << 6),  /* Accept Broadcast wakeup frame */
282 	MWF             = (1 << 5),  /* Accept Multicast wakeup frame */
283 	UWF             = (1 << 4),  /* Accept Unicast wakeup frame */
284 	LANWake         = (1 << 1),  /* Enable LANWake signal */
285 	PMEStatus	= (1 << 0),  /* PME status can be reset by PCI RST# */
286 
287 	cp_norx_intr_mask = PciErr | LinkChg | TxOK | TxErr | TxEmpty,
288 	cp_rx_intr_mask = RxOK | RxErr | RxEmpty | RxFIFOOvr,
289 	cp_intr_mask = cp_rx_intr_mask | cp_norx_intr_mask,
290 };
291 
292 static const unsigned int cp_rx_config =
293 	  (RX_FIFO_THRESH << RxCfgFIFOShift) |
294 	  (RX_DMA_BURST << RxCfgDMAShift);
295 
296 struct cp_desc {
297 	__le32		opts1;
298 	__le32		opts2;
299 	__le64		addr;
300 };
301 
302 struct cp_dma_stats {
303 	__le64			tx_ok;
304 	__le64			rx_ok;
305 	__le64			tx_err;
306 	__le32			rx_err;
307 	__le16			rx_fifo;
308 	__le16			frame_align;
309 	__le32			tx_ok_1col;
310 	__le32			tx_ok_mcol;
311 	__le64			rx_ok_phys;
312 	__le64			rx_ok_bcast;
313 	__le32			rx_ok_mcast;
314 	__le16			tx_abort;
315 	__le16			tx_underrun;
316 } __packed;
317 
318 struct cp_extra_stats {
319 	unsigned long		rx_frags;
320 };
321 
322 struct cp_private {
323 	void			__iomem *regs;
324 	struct net_device	*dev;
325 	spinlock_t		lock;
326 	u32			msg_enable;
327 
328 	struct napi_struct	napi;
329 
330 	struct pci_dev		*pdev;
331 	u32			rx_config;
332 	u16			cpcmd;
333 
334 	struct cp_extra_stats	cp_stats;
335 
336 	unsigned		rx_head		____cacheline_aligned;
337 	unsigned		rx_tail;
338 	struct cp_desc		*rx_ring;
339 	struct sk_buff		*rx_skb[CP_RX_RING_SIZE];
340 
341 	unsigned		tx_head		____cacheline_aligned;
342 	unsigned		tx_tail;
343 	struct cp_desc		*tx_ring;
344 	struct sk_buff		*tx_skb[CP_TX_RING_SIZE];
345 	u32			tx_opts[CP_TX_RING_SIZE];
346 
347 	unsigned		rx_buf_sz;
348 	unsigned		wol_enabled : 1; /* Is Wake-on-LAN enabled? */
349 
350 	dma_addr_t		ring_dma;
351 
352 	struct mii_if_info	mii_if;
353 };
354 
355 #define cpr8(reg)	readb(cp->regs + (reg))
356 #define cpr16(reg)	readw(cp->regs + (reg))
357 #define cpr32(reg)	readl(cp->regs + (reg))
358 #define cpw8(reg,val)	writeb((val), cp->regs + (reg))
359 #define cpw16(reg,val)	writew((val), cp->regs + (reg))
360 #define cpw32(reg,val)	writel((val), cp->regs + (reg))
361 #define cpw8_f(reg,val) do {			\
362 	writeb((val), cp->regs + (reg));	\
363 	readb(cp->regs + (reg));		\
364 	} while (0)
365 #define cpw16_f(reg,val) do {			\
366 	writew((val), cp->regs + (reg));	\
367 	readw(cp->regs + (reg));		\
368 	} while (0)
369 #define cpw32_f(reg,val) do {			\
370 	writel((val), cp->regs + (reg));	\
371 	readl(cp->regs + (reg));		\
372 	} while (0)
373 
374 
375 static void __cp_set_rx_mode (struct net_device *dev);
376 static void cp_tx (struct cp_private *cp);
377 static void cp_clean_rings (struct cp_private *cp);
378 #ifdef CONFIG_NET_POLL_CONTROLLER
379 static void cp_poll_controller(struct net_device *dev);
380 #endif
381 static int cp_get_eeprom_len(struct net_device *dev);
382 static int cp_get_eeprom(struct net_device *dev,
383 			 struct ethtool_eeprom *eeprom, u8 *data);
384 static int cp_set_eeprom(struct net_device *dev,
385 			 struct ethtool_eeprom *eeprom, u8 *data);
386 
387 static struct {
388 	const char str[ETH_GSTRING_LEN];
389 } ethtool_stats_keys[] = {
390 	{ "tx_ok" },
391 	{ "rx_ok" },
392 	{ "tx_err" },
393 	{ "rx_err" },
394 	{ "rx_fifo" },
395 	{ "frame_align" },
396 	{ "tx_ok_1col" },
397 	{ "tx_ok_mcol" },
398 	{ "rx_ok_phys" },
399 	{ "rx_ok_bcast" },
400 	{ "rx_ok_mcast" },
401 	{ "tx_abort" },
402 	{ "tx_underrun" },
403 	{ "rx_frags" },
404 };
405 
406 
407 static inline void cp_set_rxbufsize (struct cp_private *cp)
408 {
409 	unsigned int mtu = cp->dev->mtu;
410 
411 	if (mtu > ETH_DATA_LEN)
412 		/* MTU + ethernet header + FCS + optional VLAN tag */
413 		cp->rx_buf_sz = mtu + ETH_HLEN + 8;
414 	else
415 		cp->rx_buf_sz = PKT_BUF_SZ;
416 }
417 
418 static inline void cp_rx_skb (struct cp_private *cp, struct sk_buff *skb,
419 			      struct cp_desc *desc)
420 {
421 	u32 opts2 = le32_to_cpu(desc->opts2);
422 
423 	skb->protocol = eth_type_trans (skb, cp->dev);
424 
425 	cp->dev->stats.rx_packets++;
426 	cp->dev->stats.rx_bytes += skb->len;
427 
428 	if (opts2 & RxVlanTagged)
429 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), swab16(opts2 & 0xffff));
430 
431 	napi_gro_receive(&cp->napi, skb);
432 }
433 
434 static void cp_rx_err_acct (struct cp_private *cp, unsigned rx_tail,
435 			    u32 status, u32 len)
436 {
437 	netif_dbg(cp, rx_err, cp->dev, "rx err, slot %d status 0x%x len %d\n",
438 		  rx_tail, status, len);
439 	cp->dev->stats.rx_errors++;
440 	if (status & RxErrFrame)
441 		cp->dev->stats.rx_frame_errors++;
442 	if (status & RxErrCRC)
443 		cp->dev->stats.rx_crc_errors++;
444 	if ((status & RxErrRunt) || (status & RxErrLong))
445 		cp->dev->stats.rx_length_errors++;
446 	if ((status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag))
447 		cp->dev->stats.rx_length_errors++;
448 	if (status & RxErrFIFO)
449 		cp->dev->stats.rx_fifo_errors++;
450 }
451 
452 static inline unsigned int cp_rx_csum_ok (u32 status)
453 {
454 	unsigned int protocol = (status >> 16) & 0x3;
455 
456 	if (((protocol == RxProtoTCP) && !(status & TCPFail)) ||
457 	    ((protocol == RxProtoUDP) && !(status & UDPFail)))
458 		return 1;
459 	else
460 		return 0;
461 }
462 
463 static int cp_rx_poll(struct napi_struct *napi, int budget)
464 {
465 	struct cp_private *cp = container_of(napi, struct cp_private, napi);
466 	struct net_device *dev = cp->dev;
467 	unsigned int rx_tail = cp->rx_tail;
468 	int rx;
469 
470 rx_status_loop:
471 	rx = 0;
472 	cpw16(IntrStatus, cp_rx_intr_mask);
473 
474 	while (rx < budget) {
475 		u32 status, len;
476 		dma_addr_t mapping, new_mapping;
477 		struct sk_buff *skb, *new_skb;
478 		struct cp_desc *desc;
479 		const unsigned buflen = cp->rx_buf_sz;
480 
481 		skb = cp->rx_skb[rx_tail];
482 		BUG_ON(!skb);
483 
484 		desc = &cp->rx_ring[rx_tail];
485 		status = le32_to_cpu(desc->opts1);
486 		if (status & DescOwn)
487 			break;
488 
489 		len = (status & 0x1fff) - 4;
490 		mapping = le64_to_cpu(desc->addr);
491 
492 		if ((status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag)) {
493 			/* we don't support incoming fragmented frames.
494 			 * instead, we attempt to ensure that the
495 			 * pre-allocated RX skbs are properly sized such
496 			 * that RX fragments are never encountered
497 			 */
498 			cp_rx_err_acct(cp, rx_tail, status, len);
499 			dev->stats.rx_dropped++;
500 			cp->cp_stats.rx_frags++;
501 			goto rx_next;
502 		}
503 
504 		if (status & (RxError | RxErrFIFO)) {
505 			cp_rx_err_acct(cp, rx_tail, status, len);
506 			goto rx_next;
507 		}
508 
509 		netif_dbg(cp, rx_status, dev, "rx slot %d status 0x%x len %d\n",
510 			  rx_tail, status, len);
511 
512 		new_skb = napi_alloc_skb(napi, buflen);
513 		if (!new_skb) {
514 			dev->stats.rx_dropped++;
515 			goto rx_next;
516 		}
517 
518 		new_mapping = dma_map_single(&cp->pdev->dev, new_skb->data, buflen,
519 					 PCI_DMA_FROMDEVICE);
520 		if (dma_mapping_error(&cp->pdev->dev, new_mapping)) {
521 			dev->stats.rx_dropped++;
522 			kfree_skb(new_skb);
523 			goto rx_next;
524 		}
525 
526 		dma_unmap_single(&cp->pdev->dev, mapping,
527 				 buflen, PCI_DMA_FROMDEVICE);
528 
529 		/* Handle checksum offloading for incoming packets. */
530 		if (cp_rx_csum_ok(status))
531 			skb->ip_summed = CHECKSUM_UNNECESSARY;
532 		else
533 			skb_checksum_none_assert(skb);
534 
535 		skb_put(skb, len);
536 
537 		cp->rx_skb[rx_tail] = new_skb;
538 
539 		cp_rx_skb(cp, skb, desc);
540 		rx++;
541 		mapping = new_mapping;
542 
543 rx_next:
544 		cp->rx_ring[rx_tail].opts2 = 0;
545 		cp->rx_ring[rx_tail].addr = cpu_to_le64(mapping);
546 		if (rx_tail == (CP_RX_RING_SIZE - 1))
547 			desc->opts1 = cpu_to_le32(DescOwn | RingEnd |
548 						  cp->rx_buf_sz);
549 		else
550 			desc->opts1 = cpu_to_le32(DescOwn | cp->rx_buf_sz);
551 		rx_tail = NEXT_RX(rx_tail);
552 	}
553 
554 	cp->rx_tail = rx_tail;
555 
556 	/* if we did not reach work limit, then we're done with
557 	 * this round of polling
558 	 */
559 	if (rx < budget) {
560 		unsigned long flags;
561 
562 		if (cpr16(IntrStatus) & cp_rx_intr_mask)
563 			goto rx_status_loop;
564 
565 		napi_gro_flush(napi, false);
566 		spin_lock_irqsave(&cp->lock, flags);
567 		__napi_complete(napi);
568 		cpw16_f(IntrMask, cp_intr_mask);
569 		spin_unlock_irqrestore(&cp->lock, flags);
570 	}
571 
572 	return rx;
573 }
574 
575 static irqreturn_t cp_interrupt (int irq, void *dev_instance)
576 {
577 	struct net_device *dev = dev_instance;
578 	struct cp_private *cp;
579 	int handled = 0;
580 	u16 status;
581 
582 	if (unlikely(dev == NULL))
583 		return IRQ_NONE;
584 	cp = netdev_priv(dev);
585 
586 	spin_lock(&cp->lock);
587 
588 	status = cpr16(IntrStatus);
589 	if (!status || (status == 0xFFFF))
590 		goto out_unlock;
591 
592 	handled = 1;
593 
594 	netif_dbg(cp, intr, dev, "intr, status %04x cmd %02x cpcmd %04x\n",
595 		  status, cpr8(Cmd), cpr16(CpCmd));
596 
597 	cpw16(IntrStatus, status & ~cp_rx_intr_mask);
598 
599 	/* close possible race's with dev_close */
600 	if (unlikely(!netif_running(dev))) {
601 		cpw16(IntrMask, 0);
602 		goto out_unlock;
603 	}
604 
605 	if (status & (RxOK | RxErr | RxEmpty | RxFIFOOvr))
606 		if (napi_schedule_prep(&cp->napi)) {
607 			cpw16_f(IntrMask, cp_norx_intr_mask);
608 			__napi_schedule(&cp->napi);
609 		}
610 
611 	if (status & (TxOK | TxErr | TxEmpty | SWInt))
612 		cp_tx(cp);
613 	if (status & LinkChg)
614 		mii_check_media(&cp->mii_if, netif_msg_link(cp), false);
615 
616 
617 	if (status & PciErr) {
618 		u16 pci_status;
619 
620 		pci_read_config_word(cp->pdev, PCI_STATUS, &pci_status);
621 		pci_write_config_word(cp->pdev, PCI_STATUS, pci_status);
622 		netdev_err(dev, "PCI bus error, status=%04x, PCI status=%04x\n",
623 			   status, pci_status);
624 
625 		/* TODO: reset hardware */
626 	}
627 
628 out_unlock:
629 	spin_unlock(&cp->lock);
630 
631 	return IRQ_RETVAL(handled);
632 }
633 
634 #ifdef CONFIG_NET_POLL_CONTROLLER
635 /*
636  * Polling receive - used by netconsole and other diagnostic tools
637  * to allow network i/o with interrupts disabled.
638  */
639 static void cp_poll_controller(struct net_device *dev)
640 {
641 	struct cp_private *cp = netdev_priv(dev);
642 	const int irq = cp->pdev->irq;
643 
644 	disable_irq(irq);
645 	cp_interrupt(irq, dev);
646 	enable_irq(irq);
647 }
648 #endif
649 
650 static void cp_tx (struct cp_private *cp)
651 {
652 	unsigned tx_head = cp->tx_head;
653 	unsigned tx_tail = cp->tx_tail;
654 	unsigned bytes_compl = 0, pkts_compl = 0;
655 
656 	while (tx_tail != tx_head) {
657 		struct cp_desc *txd = cp->tx_ring + tx_tail;
658 		struct sk_buff *skb;
659 		u32 status;
660 
661 		rmb();
662 		status = le32_to_cpu(txd->opts1);
663 		if (status & DescOwn)
664 			break;
665 
666 		skb = cp->tx_skb[tx_tail];
667 		BUG_ON(!skb);
668 
669 		dma_unmap_single(&cp->pdev->dev, le64_to_cpu(txd->addr),
670 				 cp->tx_opts[tx_tail] & 0xffff,
671 				 PCI_DMA_TODEVICE);
672 
673 		if (status & LastFrag) {
674 			if (status & (TxError | TxFIFOUnder)) {
675 				netif_dbg(cp, tx_err, cp->dev,
676 					  "tx err, status 0x%x\n", status);
677 				cp->dev->stats.tx_errors++;
678 				if (status & TxOWC)
679 					cp->dev->stats.tx_window_errors++;
680 				if (status & TxMaxCol)
681 					cp->dev->stats.tx_aborted_errors++;
682 				if (status & TxLinkFail)
683 					cp->dev->stats.tx_carrier_errors++;
684 				if (status & TxFIFOUnder)
685 					cp->dev->stats.tx_fifo_errors++;
686 			} else {
687 				cp->dev->stats.collisions +=
688 					((status >> TxColCntShift) & TxColCntMask);
689 				cp->dev->stats.tx_packets++;
690 				cp->dev->stats.tx_bytes += skb->len;
691 				netif_dbg(cp, tx_done, cp->dev,
692 					  "tx done, slot %d\n", tx_tail);
693 			}
694 			bytes_compl += skb->len;
695 			pkts_compl++;
696 			dev_kfree_skb_irq(skb);
697 		}
698 
699 		cp->tx_skb[tx_tail] = NULL;
700 
701 		tx_tail = NEXT_TX(tx_tail);
702 	}
703 
704 	cp->tx_tail = tx_tail;
705 
706 	netdev_completed_queue(cp->dev, pkts_compl, bytes_compl);
707 	if (TX_BUFFS_AVAIL(cp) > (MAX_SKB_FRAGS + 1))
708 		netif_wake_queue(cp->dev);
709 }
710 
711 static inline u32 cp_tx_vlan_tag(struct sk_buff *skb)
712 {
713 	return skb_vlan_tag_present(skb) ?
714 		TxVlanTag | swab16(skb_vlan_tag_get(skb)) : 0x00;
715 }
716 
717 static void unwind_tx_frag_mapping(struct cp_private *cp, struct sk_buff *skb,
718 				   int first, int entry_last)
719 {
720 	int frag, index;
721 	struct cp_desc *txd;
722 	skb_frag_t *this_frag;
723 	for (frag = 0; frag+first < entry_last; frag++) {
724 		index = first+frag;
725 		cp->tx_skb[index] = NULL;
726 		txd = &cp->tx_ring[index];
727 		this_frag = &skb_shinfo(skb)->frags[frag];
728 		dma_unmap_single(&cp->pdev->dev, le64_to_cpu(txd->addr),
729 				 skb_frag_size(this_frag), PCI_DMA_TODEVICE);
730 	}
731 }
732 
733 static netdev_tx_t cp_start_xmit (struct sk_buff *skb,
734 					struct net_device *dev)
735 {
736 	struct cp_private *cp = netdev_priv(dev);
737 	unsigned entry;
738 	u32 eor, opts1;
739 	unsigned long intr_flags;
740 	__le32 opts2;
741 	int mss = 0;
742 
743 	spin_lock_irqsave(&cp->lock, intr_flags);
744 
745 	/* This is a hard error, log it. */
746 	if (TX_BUFFS_AVAIL(cp) <= (skb_shinfo(skb)->nr_frags + 1)) {
747 		netif_stop_queue(dev);
748 		spin_unlock_irqrestore(&cp->lock, intr_flags);
749 		netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
750 		return NETDEV_TX_BUSY;
751 	}
752 
753 	entry = cp->tx_head;
754 	eor = (entry == (CP_TX_RING_SIZE - 1)) ? RingEnd : 0;
755 	mss = skb_shinfo(skb)->gso_size;
756 
757 	if (mss > MSSMask) {
758 		WARN_ONCE(1, "Net bug: GSO size %d too large for 8139CP\n",
759 			  mss);
760 		goto out_dma_error;
761 	}
762 
763 	opts2 = cpu_to_le32(cp_tx_vlan_tag(skb));
764 	opts1 = DescOwn;
765 	if (mss)
766 		opts1 |= LargeSend | (mss << MSSShift);
767 	else if (skb->ip_summed == CHECKSUM_PARTIAL) {
768 		const struct iphdr *ip = ip_hdr(skb);
769 		if (ip->protocol == IPPROTO_TCP)
770 			opts1 |= IPCS | TCPCS;
771 		else if (ip->protocol == IPPROTO_UDP)
772 			opts1 |= IPCS | UDPCS;
773 		else {
774 			WARN_ONCE(1,
775 				  "Net bug: asked to checksum invalid Legacy IP packet\n");
776 			goto out_dma_error;
777 		}
778 	}
779 
780 	if (skb_shinfo(skb)->nr_frags == 0) {
781 		struct cp_desc *txd = &cp->tx_ring[entry];
782 		u32 len;
783 		dma_addr_t mapping;
784 
785 		len = skb->len;
786 		mapping = dma_map_single(&cp->pdev->dev, skb->data, len, PCI_DMA_TODEVICE);
787 		if (dma_mapping_error(&cp->pdev->dev, mapping))
788 			goto out_dma_error;
789 
790 		txd->opts2 = opts2;
791 		txd->addr = cpu_to_le64(mapping);
792 		wmb();
793 
794 		opts1 |= eor | len | FirstFrag | LastFrag;
795 
796 		txd->opts1 = cpu_to_le32(opts1);
797 		wmb();
798 
799 		cp->tx_skb[entry] = skb;
800 		cp->tx_opts[entry] = opts1;
801 		netif_dbg(cp, tx_queued, cp->dev, "tx queued, slot %d, skblen %d\n",
802 			  entry, skb->len);
803 	} else {
804 		struct cp_desc *txd;
805 		u32 first_len, first_eor, ctrl;
806 		dma_addr_t first_mapping;
807 		int frag, first_entry = entry;
808 
809 		/* We must give this initial chunk to the device last.
810 		 * Otherwise we could race with the device.
811 		 */
812 		first_eor = eor;
813 		first_len = skb_headlen(skb);
814 		first_mapping = dma_map_single(&cp->pdev->dev, skb->data,
815 					       first_len, PCI_DMA_TODEVICE);
816 		if (dma_mapping_error(&cp->pdev->dev, first_mapping))
817 			goto out_dma_error;
818 
819 		cp->tx_skb[entry] = skb;
820 
821 		for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
822 			const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
823 			u32 len;
824 			dma_addr_t mapping;
825 
826 			entry = NEXT_TX(entry);
827 
828 			len = skb_frag_size(this_frag);
829 			mapping = dma_map_single(&cp->pdev->dev,
830 						 skb_frag_address(this_frag),
831 						 len, PCI_DMA_TODEVICE);
832 			if (dma_mapping_error(&cp->pdev->dev, mapping)) {
833 				unwind_tx_frag_mapping(cp, skb, first_entry, entry);
834 				goto out_dma_error;
835 			}
836 
837 			eor = (entry == (CP_TX_RING_SIZE - 1)) ? RingEnd : 0;
838 
839 			ctrl = opts1 | eor | len;
840 
841 			if (frag == skb_shinfo(skb)->nr_frags - 1)
842 				ctrl |= LastFrag;
843 
844 			txd = &cp->tx_ring[entry];
845 			txd->opts2 = opts2;
846 			txd->addr = cpu_to_le64(mapping);
847 			wmb();
848 
849 			txd->opts1 = cpu_to_le32(ctrl);
850 			wmb();
851 
852 			cp->tx_opts[entry] = ctrl;
853 			cp->tx_skb[entry] = skb;
854 		}
855 
856 		txd = &cp->tx_ring[first_entry];
857 		txd->opts2 = opts2;
858 		txd->addr = cpu_to_le64(first_mapping);
859 		wmb();
860 
861 		ctrl = opts1 | first_eor | first_len | FirstFrag;
862 		txd->opts1 = cpu_to_le32(ctrl);
863 		wmb();
864 
865 		cp->tx_opts[first_entry] = ctrl;
866 		netif_dbg(cp, tx_queued, cp->dev, "tx queued, slots %d-%d, skblen %d\n",
867 			  first_entry, entry, skb->len);
868 	}
869 	cp->tx_head = NEXT_TX(entry);
870 
871 	netdev_sent_queue(dev, skb->len);
872 	if (TX_BUFFS_AVAIL(cp) <= (MAX_SKB_FRAGS + 1))
873 		netif_stop_queue(dev);
874 
875 out_unlock:
876 	spin_unlock_irqrestore(&cp->lock, intr_flags);
877 
878 	cpw8(TxPoll, NormalTxPoll);
879 
880 	return NETDEV_TX_OK;
881 out_dma_error:
882 	dev_kfree_skb_any(skb);
883 	cp->dev->stats.tx_dropped++;
884 	goto out_unlock;
885 }
886 
887 /* Set or clear the multicast filter for this adaptor.
888    This routine is not state sensitive and need not be SMP locked. */
889 
890 static void __cp_set_rx_mode (struct net_device *dev)
891 {
892 	struct cp_private *cp = netdev_priv(dev);
893 	u32 mc_filter[2];	/* Multicast hash filter */
894 	int rx_mode;
895 
896 	/* Note: do not reorder, GCC is clever about common statements. */
897 	if (dev->flags & IFF_PROMISC) {
898 		/* Unconditionally log net taps. */
899 		rx_mode =
900 		    AcceptBroadcast | AcceptMulticast | AcceptMyPhys |
901 		    AcceptAllPhys;
902 		mc_filter[1] = mc_filter[0] = 0xffffffff;
903 	} else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
904 		   (dev->flags & IFF_ALLMULTI)) {
905 		/* Too many to filter perfectly -- accept all multicasts. */
906 		rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys;
907 		mc_filter[1] = mc_filter[0] = 0xffffffff;
908 	} else {
909 		struct netdev_hw_addr *ha;
910 		rx_mode = AcceptBroadcast | AcceptMyPhys;
911 		mc_filter[1] = mc_filter[0] = 0;
912 		netdev_for_each_mc_addr(ha, dev) {
913 			int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26;
914 
915 			mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
916 			rx_mode |= AcceptMulticast;
917 		}
918 	}
919 
920 	/* We can safely update without stopping the chip. */
921 	cp->rx_config = cp_rx_config | rx_mode;
922 	cpw32_f(RxConfig, cp->rx_config);
923 
924 	cpw32_f (MAR0 + 0, mc_filter[0]);
925 	cpw32_f (MAR0 + 4, mc_filter[1]);
926 }
927 
928 static void cp_set_rx_mode (struct net_device *dev)
929 {
930 	unsigned long flags;
931 	struct cp_private *cp = netdev_priv(dev);
932 
933 	spin_lock_irqsave (&cp->lock, flags);
934 	__cp_set_rx_mode(dev);
935 	spin_unlock_irqrestore (&cp->lock, flags);
936 }
937 
938 static void __cp_get_stats(struct cp_private *cp)
939 {
940 	/* only lower 24 bits valid; write any value to clear */
941 	cp->dev->stats.rx_missed_errors += (cpr32 (RxMissed) & 0xffffff);
942 	cpw32 (RxMissed, 0);
943 }
944 
945 static struct net_device_stats *cp_get_stats(struct net_device *dev)
946 {
947 	struct cp_private *cp = netdev_priv(dev);
948 	unsigned long flags;
949 
950 	/* The chip only need report frame silently dropped. */
951 	spin_lock_irqsave(&cp->lock, flags);
952  	if (netif_running(dev) && netif_device_present(dev))
953  		__cp_get_stats(cp);
954 	spin_unlock_irqrestore(&cp->lock, flags);
955 
956 	return &dev->stats;
957 }
958 
959 static void cp_stop_hw (struct cp_private *cp)
960 {
961 	cpw16(IntrStatus, ~(cpr16(IntrStatus)));
962 	cpw16_f(IntrMask, 0);
963 	cpw8(Cmd, 0);
964 	cpw16_f(CpCmd, 0);
965 	cpw16_f(IntrStatus, ~(cpr16(IntrStatus)));
966 
967 	cp->rx_tail = 0;
968 	cp->tx_head = cp->tx_tail = 0;
969 
970 	netdev_reset_queue(cp->dev);
971 }
972 
973 static void cp_reset_hw (struct cp_private *cp)
974 {
975 	unsigned work = 1000;
976 
977 	cpw8(Cmd, CmdReset);
978 
979 	while (work--) {
980 		if (!(cpr8(Cmd) & CmdReset))
981 			return;
982 
983 		schedule_timeout_uninterruptible(10);
984 	}
985 
986 	netdev_err(cp->dev, "hardware reset timeout\n");
987 }
988 
989 static inline void cp_start_hw (struct cp_private *cp)
990 {
991 	dma_addr_t ring_dma;
992 
993 	cpw16(CpCmd, cp->cpcmd);
994 
995 	/*
996 	 * These (at least TxRingAddr) need to be configured after the
997 	 * corresponding bits in CpCmd are enabled. Datasheet v1.6 §6.33
998 	 * (C+ Command Register) recommends that these and more be configured
999 	 * *after* the [RT]xEnable bits in CpCmd are set. And on some hardware
1000 	 * it's been observed that the TxRingAddr is actually reset to garbage
1001 	 * when C+ mode Tx is enabled in CpCmd.
1002 	 */
1003 	cpw32_f(HiTxRingAddr, 0);
1004 	cpw32_f(HiTxRingAddr + 4, 0);
1005 
1006 	ring_dma = cp->ring_dma;
1007 	cpw32_f(RxRingAddr, ring_dma & 0xffffffff);
1008 	cpw32_f(RxRingAddr + 4, (ring_dma >> 16) >> 16);
1009 
1010 	ring_dma += sizeof(struct cp_desc) * CP_RX_RING_SIZE;
1011 	cpw32_f(TxRingAddr, ring_dma & 0xffffffff);
1012 	cpw32_f(TxRingAddr + 4, (ring_dma >> 16) >> 16);
1013 
1014 	/*
1015 	 * Strictly speaking, the datasheet says this should be enabled
1016 	 * *before* setting the descriptor addresses. But what, then, would
1017 	 * prevent it from doing DMA to random unconfigured addresses?
1018 	 * This variant appears to work fine.
1019 	 */
1020 	cpw8(Cmd, RxOn | TxOn);
1021 
1022 	netdev_reset_queue(cp->dev);
1023 }
1024 
1025 static void cp_enable_irq(struct cp_private *cp)
1026 {
1027 	cpw16_f(IntrMask, cp_intr_mask);
1028 }
1029 
1030 static void cp_init_hw (struct cp_private *cp)
1031 {
1032 	struct net_device *dev = cp->dev;
1033 
1034 	cp_reset_hw(cp);
1035 
1036 	cpw8_f (Cfg9346, Cfg9346_Unlock);
1037 
1038 	/* Restore our idea of the MAC address. */
1039 	cpw32_f (MAC0 + 0, le32_to_cpu (*(__le32 *) (dev->dev_addr + 0)));
1040 	cpw32_f (MAC0 + 4, le32_to_cpu (*(__le32 *) (dev->dev_addr + 4)));
1041 
1042 	cp_start_hw(cp);
1043 	cpw8(TxThresh, 0x06); /* XXX convert magic num to a constant */
1044 
1045 	__cp_set_rx_mode(dev);
1046 	cpw32_f (TxConfig, IFG | (TX_DMA_BURST << TxDMAShift));
1047 
1048 	cpw8(Config1, cpr8(Config1) | DriverLoaded | PMEnable);
1049 	/* Disable Wake-on-LAN. Can be turned on with ETHTOOL_SWOL */
1050 	cpw8(Config3, PARMEnable);
1051 	cp->wol_enabled = 0;
1052 
1053 	cpw8(Config5, cpr8(Config5) & PMEStatus);
1054 
1055 	cpw16(MultiIntr, 0);
1056 
1057 	cpw8_f(Cfg9346, Cfg9346_Lock);
1058 }
1059 
1060 static int cp_refill_rx(struct cp_private *cp)
1061 {
1062 	struct net_device *dev = cp->dev;
1063 	unsigned i;
1064 
1065 	for (i = 0; i < CP_RX_RING_SIZE; i++) {
1066 		struct sk_buff *skb;
1067 		dma_addr_t mapping;
1068 
1069 		skb = netdev_alloc_skb_ip_align(dev, cp->rx_buf_sz);
1070 		if (!skb)
1071 			goto err_out;
1072 
1073 		mapping = dma_map_single(&cp->pdev->dev, skb->data,
1074 					 cp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1075 		if (dma_mapping_error(&cp->pdev->dev, mapping)) {
1076 			kfree_skb(skb);
1077 			goto err_out;
1078 		}
1079 		cp->rx_skb[i] = skb;
1080 
1081 		cp->rx_ring[i].opts2 = 0;
1082 		cp->rx_ring[i].addr = cpu_to_le64(mapping);
1083 		if (i == (CP_RX_RING_SIZE - 1))
1084 			cp->rx_ring[i].opts1 =
1085 				cpu_to_le32(DescOwn | RingEnd | cp->rx_buf_sz);
1086 		else
1087 			cp->rx_ring[i].opts1 =
1088 				cpu_to_le32(DescOwn | cp->rx_buf_sz);
1089 	}
1090 
1091 	return 0;
1092 
1093 err_out:
1094 	cp_clean_rings(cp);
1095 	return -ENOMEM;
1096 }
1097 
1098 static void cp_init_rings_index (struct cp_private *cp)
1099 {
1100 	cp->rx_tail = 0;
1101 	cp->tx_head = cp->tx_tail = 0;
1102 }
1103 
1104 static int cp_init_rings (struct cp_private *cp)
1105 {
1106 	memset(cp->tx_ring, 0, sizeof(struct cp_desc) * CP_TX_RING_SIZE);
1107 	cp->tx_ring[CP_TX_RING_SIZE - 1].opts1 = cpu_to_le32(RingEnd);
1108 	memset(cp->tx_opts, 0, sizeof(cp->tx_opts));
1109 
1110 	cp_init_rings_index(cp);
1111 
1112 	return cp_refill_rx (cp);
1113 }
1114 
1115 static int cp_alloc_rings (struct cp_private *cp)
1116 {
1117 	struct device *d = &cp->pdev->dev;
1118 	void *mem;
1119 	int rc;
1120 
1121 	mem = dma_alloc_coherent(d, CP_RING_BYTES, &cp->ring_dma, GFP_KERNEL);
1122 	if (!mem)
1123 		return -ENOMEM;
1124 
1125 	cp->rx_ring = mem;
1126 	cp->tx_ring = &cp->rx_ring[CP_RX_RING_SIZE];
1127 
1128 	rc = cp_init_rings(cp);
1129 	if (rc < 0)
1130 		dma_free_coherent(d, CP_RING_BYTES, cp->rx_ring, cp->ring_dma);
1131 
1132 	return rc;
1133 }
1134 
1135 static void cp_clean_rings (struct cp_private *cp)
1136 {
1137 	struct cp_desc *desc;
1138 	unsigned i;
1139 
1140 	for (i = 0; i < CP_RX_RING_SIZE; i++) {
1141 		if (cp->rx_skb[i]) {
1142 			desc = cp->rx_ring + i;
1143 			dma_unmap_single(&cp->pdev->dev,le64_to_cpu(desc->addr),
1144 					 cp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1145 			dev_kfree_skb_any(cp->rx_skb[i]);
1146 		}
1147 	}
1148 
1149 	for (i = 0; i < CP_TX_RING_SIZE; i++) {
1150 		if (cp->tx_skb[i]) {
1151 			struct sk_buff *skb = cp->tx_skb[i];
1152 
1153 			desc = cp->tx_ring + i;
1154 			dma_unmap_single(&cp->pdev->dev,le64_to_cpu(desc->addr),
1155 					 le32_to_cpu(desc->opts1) & 0xffff,
1156 					 PCI_DMA_TODEVICE);
1157 			if (le32_to_cpu(desc->opts1) & LastFrag)
1158 				dev_kfree_skb_any(skb);
1159 			cp->dev->stats.tx_dropped++;
1160 		}
1161 	}
1162 	netdev_reset_queue(cp->dev);
1163 
1164 	memset(cp->rx_ring, 0, sizeof(struct cp_desc) * CP_RX_RING_SIZE);
1165 	memset(cp->tx_ring, 0, sizeof(struct cp_desc) * CP_TX_RING_SIZE);
1166 	memset(cp->tx_opts, 0, sizeof(cp->tx_opts));
1167 
1168 	memset(cp->rx_skb, 0, sizeof(struct sk_buff *) * CP_RX_RING_SIZE);
1169 	memset(cp->tx_skb, 0, sizeof(struct sk_buff *) * CP_TX_RING_SIZE);
1170 }
1171 
1172 static void cp_free_rings (struct cp_private *cp)
1173 {
1174 	cp_clean_rings(cp);
1175 	dma_free_coherent(&cp->pdev->dev, CP_RING_BYTES, cp->rx_ring,
1176 			  cp->ring_dma);
1177 	cp->rx_ring = NULL;
1178 	cp->tx_ring = NULL;
1179 }
1180 
1181 static int cp_open (struct net_device *dev)
1182 {
1183 	struct cp_private *cp = netdev_priv(dev);
1184 	const int irq = cp->pdev->irq;
1185 	int rc;
1186 
1187 	netif_dbg(cp, ifup, dev, "enabling interface\n");
1188 
1189 	rc = cp_alloc_rings(cp);
1190 	if (rc)
1191 		return rc;
1192 
1193 	napi_enable(&cp->napi);
1194 
1195 	cp_init_hw(cp);
1196 
1197 	rc = request_irq(irq, cp_interrupt, IRQF_SHARED, dev->name, dev);
1198 	if (rc)
1199 		goto err_out_hw;
1200 
1201 	cp_enable_irq(cp);
1202 
1203 	netif_carrier_off(dev);
1204 	mii_check_media(&cp->mii_if, netif_msg_link(cp), true);
1205 	netif_start_queue(dev);
1206 
1207 	return 0;
1208 
1209 err_out_hw:
1210 	napi_disable(&cp->napi);
1211 	cp_stop_hw(cp);
1212 	cp_free_rings(cp);
1213 	return rc;
1214 }
1215 
1216 static int cp_close (struct net_device *dev)
1217 {
1218 	struct cp_private *cp = netdev_priv(dev);
1219 	unsigned long flags;
1220 
1221 	napi_disable(&cp->napi);
1222 
1223 	netif_dbg(cp, ifdown, dev, "disabling interface\n");
1224 
1225 	spin_lock_irqsave(&cp->lock, flags);
1226 
1227 	netif_stop_queue(dev);
1228 	netif_carrier_off(dev);
1229 
1230 	cp_stop_hw(cp);
1231 
1232 	spin_unlock_irqrestore(&cp->lock, flags);
1233 
1234 	free_irq(cp->pdev->irq, dev);
1235 
1236 	cp_free_rings(cp);
1237 	return 0;
1238 }
1239 
1240 static void cp_tx_timeout(struct net_device *dev)
1241 {
1242 	struct cp_private *cp = netdev_priv(dev);
1243 	unsigned long flags;
1244 	int rc, i;
1245 
1246 	netdev_warn(dev, "Transmit timeout, status %2x %4x %4x %4x\n",
1247 		    cpr8(Cmd), cpr16(CpCmd),
1248 		    cpr16(IntrStatus), cpr16(IntrMask));
1249 
1250 	spin_lock_irqsave(&cp->lock, flags);
1251 
1252 	netif_dbg(cp, tx_err, cp->dev, "TX ring head %d tail %d desc %x\n",
1253 		  cp->tx_head, cp->tx_tail, cpr16(TxDmaOkLowDesc));
1254 	for (i = 0; i < CP_TX_RING_SIZE; i++) {
1255 		netif_dbg(cp, tx_err, cp->dev,
1256 			  "TX slot %d @%p: %08x (%08x) %08x %llx %p\n",
1257 			  i, &cp->tx_ring[i], le32_to_cpu(cp->tx_ring[i].opts1),
1258 			  cp->tx_opts[i], le32_to_cpu(cp->tx_ring[i].opts2),
1259 			  le64_to_cpu(cp->tx_ring[i].addr),
1260 			  cp->tx_skb[i]);
1261 	}
1262 
1263 	cp_stop_hw(cp);
1264 	cp_clean_rings(cp);
1265 	rc = cp_init_rings(cp);
1266 	cp_start_hw(cp);
1267 	__cp_set_rx_mode(dev);
1268 	cpw16_f(IntrMask, cp_norx_intr_mask);
1269 
1270 	netif_wake_queue(dev);
1271 	napi_schedule_irqoff(&cp->napi);
1272 
1273 	spin_unlock_irqrestore(&cp->lock, flags);
1274 }
1275 
1276 static int cp_change_mtu(struct net_device *dev, int new_mtu)
1277 {
1278 	struct cp_private *cp = netdev_priv(dev);
1279 
1280 	/* check for invalid MTU, according to hardware limits */
1281 	if (new_mtu < CP_MIN_MTU || new_mtu > CP_MAX_MTU)
1282 		return -EINVAL;
1283 
1284 	/* if network interface not up, no need for complexity */
1285 	if (!netif_running(dev)) {
1286 		dev->mtu = new_mtu;
1287 		cp_set_rxbufsize(cp);	/* set new rx buf size */
1288 		return 0;
1289 	}
1290 
1291 	/* network IS up, close it, reset MTU, and come up again. */
1292 	cp_close(dev);
1293 	dev->mtu = new_mtu;
1294 	cp_set_rxbufsize(cp);
1295 	return cp_open(dev);
1296 }
1297 
1298 static const char mii_2_8139_map[8] = {
1299 	BasicModeCtrl,
1300 	BasicModeStatus,
1301 	0,
1302 	0,
1303 	NWayAdvert,
1304 	NWayLPAR,
1305 	NWayExpansion,
1306 	0
1307 };
1308 
1309 static int mdio_read(struct net_device *dev, int phy_id, int location)
1310 {
1311 	struct cp_private *cp = netdev_priv(dev);
1312 
1313 	return location < 8 && mii_2_8139_map[location] ?
1314 	       readw(cp->regs + mii_2_8139_map[location]) : 0;
1315 }
1316 
1317 
1318 static void mdio_write(struct net_device *dev, int phy_id, int location,
1319 		       int value)
1320 {
1321 	struct cp_private *cp = netdev_priv(dev);
1322 
1323 	if (location == 0) {
1324 		cpw8(Cfg9346, Cfg9346_Unlock);
1325 		cpw16(BasicModeCtrl, value);
1326 		cpw8(Cfg9346, Cfg9346_Lock);
1327 	} else if (location < 8 && mii_2_8139_map[location])
1328 		cpw16(mii_2_8139_map[location], value);
1329 }
1330 
1331 /* Set the ethtool Wake-on-LAN settings */
1332 static int netdev_set_wol (struct cp_private *cp,
1333 			   const struct ethtool_wolinfo *wol)
1334 {
1335 	u8 options;
1336 
1337 	options = cpr8 (Config3) & ~(LinkUp | MagicPacket);
1338 	/* If WOL is being disabled, no need for complexity */
1339 	if (wol->wolopts) {
1340 		if (wol->wolopts & WAKE_PHY)	options |= LinkUp;
1341 		if (wol->wolopts & WAKE_MAGIC)	options |= MagicPacket;
1342 	}
1343 
1344 	cpw8 (Cfg9346, Cfg9346_Unlock);
1345 	cpw8 (Config3, options);
1346 	cpw8 (Cfg9346, Cfg9346_Lock);
1347 
1348 	options = 0; /* Paranoia setting */
1349 	options = cpr8 (Config5) & ~(UWF | MWF | BWF);
1350 	/* If WOL is being disabled, no need for complexity */
1351 	if (wol->wolopts) {
1352 		if (wol->wolopts & WAKE_UCAST)  options |= UWF;
1353 		if (wol->wolopts & WAKE_BCAST)	options |= BWF;
1354 		if (wol->wolopts & WAKE_MCAST)	options |= MWF;
1355 	}
1356 
1357 	cpw8 (Config5, options);
1358 
1359 	cp->wol_enabled = (wol->wolopts) ? 1 : 0;
1360 
1361 	return 0;
1362 }
1363 
1364 /* Get the ethtool Wake-on-LAN settings */
1365 static void netdev_get_wol (struct cp_private *cp,
1366 	             struct ethtool_wolinfo *wol)
1367 {
1368 	u8 options;
1369 
1370 	wol->wolopts   = 0; /* Start from scratch */
1371 	wol->supported = WAKE_PHY   | WAKE_BCAST | WAKE_MAGIC |
1372 		         WAKE_MCAST | WAKE_UCAST;
1373 	/* We don't need to go on if WOL is disabled */
1374 	if (!cp->wol_enabled) return;
1375 
1376 	options        = cpr8 (Config3);
1377 	if (options & LinkUp)        wol->wolopts |= WAKE_PHY;
1378 	if (options & MagicPacket)   wol->wolopts |= WAKE_MAGIC;
1379 
1380 	options        = 0; /* Paranoia setting */
1381 	options        = cpr8 (Config5);
1382 	if (options & UWF)           wol->wolopts |= WAKE_UCAST;
1383 	if (options & BWF)           wol->wolopts |= WAKE_BCAST;
1384 	if (options & MWF)           wol->wolopts |= WAKE_MCAST;
1385 }
1386 
1387 static void cp_get_drvinfo (struct net_device *dev, struct ethtool_drvinfo *info)
1388 {
1389 	struct cp_private *cp = netdev_priv(dev);
1390 
1391 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1392 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1393 	strlcpy(info->bus_info, pci_name(cp->pdev), sizeof(info->bus_info));
1394 }
1395 
1396 static void cp_get_ringparam(struct net_device *dev,
1397 				struct ethtool_ringparam *ring)
1398 {
1399 	ring->rx_max_pending = CP_RX_RING_SIZE;
1400 	ring->tx_max_pending = CP_TX_RING_SIZE;
1401 	ring->rx_pending = CP_RX_RING_SIZE;
1402 	ring->tx_pending = CP_TX_RING_SIZE;
1403 }
1404 
1405 static int cp_get_regs_len(struct net_device *dev)
1406 {
1407 	return CP_REGS_SIZE;
1408 }
1409 
1410 static int cp_get_sset_count (struct net_device *dev, int sset)
1411 {
1412 	switch (sset) {
1413 	case ETH_SS_STATS:
1414 		return CP_NUM_STATS;
1415 	default:
1416 		return -EOPNOTSUPP;
1417 	}
1418 }
1419 
1420 static int cp_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1421 {
1422 	struct cp_private *cp = netdev_priv(dev);
1423 	int rc;
1424 	unsigned long flags;
1425 
1426 	spin_lock_irqsave(&cp->lock, flags);
1427 	rc = mii_ethtool_gset(&cp->mii_if, cmd);
1428 	spin_unlock_irqrestore(&cp->lock, flags);
1429 
1430 	return rc;
1431 }
1432 
1433 static int cp_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1434 {
1435 	struct cp_private *cp = netdev_priv(dev);
1436 	int rc;
1437 	unsigned long flags;
1438 
1439 	spin_lock_irqsave(&cp->lock, flags);
1440 	rc = mii_ethtool_sset(&cp->mii_if, cmd);
1441 	spin_unlock_irqrestore(&cp->lock, flags);
1442 
1443 	return rc;
1444 }
1445 
1446 static int cp_nway_reset(struct net_device *dev)
1447 {
1448 	struct cp_private *cp = netdev_priv(dev);
1449 	return mii_nway_restart(&cp->mii_if);
1450 }
1451 
1452 static u32 cp_get_msglevel(struct net_device *dev)
1453 {
1454 	struct cp_private *cp = netdev_priv(dev);
1455 	return cp->msg_enable;
1456 }
1457 
1458 static void cp_set_msglevel(struct net_device *dev, u32 value)
1459 {
1460 	struct cp_private *cp = netdev_priv(dev);
1461 	cp->msg_enable = value;
1462 }
1463 
1464 static int cp_set_features(struct net_device *dev, netdev_features_t features)
1465 {
1466 	struct cp_private *cp = netdev_priv(dev);
1467 	unsigned long flags;
1468 
1469 	if (!((dev->features ^ features) & NETIF_F_RXCSUM))
1470 		return 0;
1471 
1472 	spin_lock_irqsave(&cp->lock, flags);
1473 
1474 	if (features & NETIF_F_RXCSUM)
1475 		cp->cpcmd |= RxChkSum;
1476 	else
1477 		cp->cpcmd &= ~RxChkSum;
1478 
1479 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
1480 		cp->cpcmd |= RxVlanOn;
1481 	else
1482 		cp->cpcmd &= ~RxVlanOn;
1483 
1484 	cpw16_f(CpCmd, cp->cpcmd);
1485 	spin_unlock_irqrestore(&cp->lock, flags);
1486 
1487 	return 0;
1488 }
1489 
1490 static void cp_get_regs(struct net_device *dev, struct ethtool_regs *regs,
1491 		        void *p)
1492 {
1493 	struct cp_private *cp = netdev_priv(dev);
1494 	unsigned long flags;
1495 
1496 	if (regs->len < CP_REGS_SIZE)
1497 		return /* -EINVAL */;
1498 
1499 	regs->version = CP_REGS_VER;
1500 
1501 	spin_lock_irqsave(&cp->lock, flags);
1502 	memcpy_fromio(p, cp->regs, CP_REGS_SIZE);
1503 	spin_unlock_irqrestore(&cp->lock, flags);
1504 }
1505 
1506 static void cp_get_wol (struct net_device *dev, struct ethtool_wolinfo *wol)
1507 {
1508 	struct cp_private *cp = netdev_priv(dev);
1509 	unsigned long flags;
1510 
1511 	spin_lock_irqsave (&cp->lock, flags);
1512 	netdev_get_wol (cp, wol);
1513 	spin_unlock_irqrestore (&cp->lock, flags);
1514 }
1515 
1516 static int cp_set_wol (struct net_device *dev, struct ethtool_wolinfo *wol)
1517 {
1518 	struct cp_private *cp = netdev_priv(dev);
1519 	unsigned long flags;
1520 	int rc;
1521 
1522 	spin_lock_irqsave (&cp->lock, flags);
1523 	rc = netdev_set_wol (cp, wol);
1524 	spin_unlock_irqrestore (&cp->lock, flags);
1525 
1526 	return rc;
1527 }
1528 
1529 static void cp_get_strings (struct net_device *dev, u32 stringset, u8 *buf)
1530 {
1531 	switch (stringset) {
1532 	case ETH_SS_STATS:
1533 		memcpy(buf, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
1534 		break;
1535 	default:
1536 		BUG();
1537 		break;
1538 	}
1539 }
1540 
1541 static void cp_get_ethtool_stats (struct net_device *dev,
1542 				  struct ethtool_stats *estats, u64 *tmp_stats)
1543 {
1544 	struct cp_private *cp = netdev_priv(dev);
1545 	struct cp_dma_stats *nic_stats;
1546 	dma_addr_t dma;
1547 	int i;
1548 
1549 	nic_stats = dma_alloc_coherent(&cp->pdev->dev, sizeof(*nic_stats),
1550 				       &dma, GFP_KERNEL);
1551 	if (!nic_stats)
1552 		return;
1553 
1554 	/* begin NIC statistics dump */
1555 	cpw32(StatsAddr + 4, (u64)dma >> 32);
1556 	cpw32(StatsAddr, ((u64)dma & DMA_BIT_MASK(32)) | DumpStats);
1557 	cpr32(StatsAddr);
1558 
1559 	for (i = 0; i < 1000; i++) {
1560 		if ((cpr32(StatsAddr) & DumpStats) == 0)
1561 			break;
1562 		udelay(10);
1563 	}
1564 	cpw32(StatsAddr, 0);
1565 	cpw32(StatsAddr + 4, 0);
1566 	cpr32(StatsAddr);
1567 
1568 	i = 0;
1569 	tmp_stats[i++] = le64_to_cpu(nic_stats->tx_ok);
1570 	tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok);
1571 	tmp_stats[i++] = le64_to_cpu(nic_stats->tx_err);
1572 	tmp_stats[i++] = le32_to_cpu(nic_stats->rx_err);
1573 	tmp_stats[i++] = le16_to_cpu(nic_stats->rx_fifo);
1574 	tmp_stats[i++] = le16_to_cpu(nic_stats->frame_align);
1575 	tmp_stats[i++] = le32_to_cpu(nic_stats->tx_ok_1col);
1576 	tmp_stats[i++] = le32_to_cpu(nic_stats->tx_ok_mcol);
1577 	tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok_phys);
1578 	tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok_bcast);
1579 	tmp_stats[i++] = le32_to_cpu(nic_stats->rx_ok_mcast);
1580 	tmp_stats[i++] = le16_to_cpu(nic_stats->tx_abort);
1581 	tmp_stats[i++] = le16_to_cpu(nic_stats->tx_underrun);
1582 	tmp_stats[i++] = cp->cp_stats.rx_frags;
1583 	BUG_ON(i != CP_NUM_STATS);
1584 
1585 	dma_free_coherent(&cp->pdev->dev, sizeof(*nic_stats), nic_stats, dma);
1586 }
1587 
1588 static const struct ethtool_ops cp_ethtool_ops = {
1589 	.get_drvinfo		= cp_get_drvinfo,
1590 	.get_regs_len		= cp_get_regs_len,
1591 	.get_sset_count		= cp_get_sset_count,
1592 	.get_settings		= cp_get_settings,
1593 	.set_settings		= cp_set_settings,
1594 	.nway_reset		= cp_nway_reset,
1595 	.get_link		= ethtool_op_get_link,
1596 	.get_msglevel		= cp_get_msglevel,
1597 	.set_msglevel		= cp_set_msglevel,
1598 	.get_regs		= cp_get_regs,
1599 	.get_wol		= cp_get_wol,
1600 	.set_wol		= cp_set_wol,
1601 	.get_strings		= cp_get_strings,
1602 	.get_ethtool_stats	= cp_get_ethtool_stats,
1603 	.get_eeprom_len		= cp_get_eeprom_len,
1604 	.get_eeprom		= cp_get_eeprom,
1605 	.set_eeprom		= cp_set_eeprom,
1606 	.get_ringparam		= cp_get_ringparam,
1607 };
1608 
1609 static int cp_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
1610 {
1611 	struct cp_private *cp = netdev_priv(dev);
1612 	int rc;
1613 	unsigned long flags;
1614 
1615 	if (!netif_running(dev))
1616 		return -EINVAL;
1617 
1618 	spin_lock_irqsave(&cp->lock, flags);
1619 	rc = generic_mii_ioctl(&cp->mii_if, if_mii(rq), cmd, NULL);
1620 	spin_unlock_irqrestore(&cp->lock, flags);
1621 	return rc;
1622 }
1623 
1624 static int cp_set_mac_address(struct net_device *dev, void *p)
1625 {
1626 	struct cp_private *cp = netdev_priv(dev);
1627 	struct sockaddr *addr = p;
1628 
1629 	if (!is_valid_ether_addr(addr->sa_data))
1630 		return -EADDRNOTAVAIL;
1631 
1632 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1633 
1634 	spin_lock_irq(&cp->lock);
1635 
1636 	cpw8_f(Cfg9346, Cfg9346_Unlock);
1637 	cpw32_f(MAC0 + 0, le32_to_cpu (*(__le32 *) (dev->dev_addr + 0)));
1638 	cpw32_f(MAC0 + 4, le32_to_cpu (*(__le32 *) (dev->dev_addr + 4)));
1639 	cpw8_f(Cfg9346, Cfg9346_Lock);
1640 
1641 	spin_unlock_irq(&cp->lock);
1642 
1643 	return 0;
1644 }
1645 
1646 /* Serial EEPROM section. */
1647 
1648 /*  EEPROM_Ctrl bits. */
1649 #define EE_SHIFT_CLK	0x04	/* EEPROM shift clock. */
1650 #define EE_CS			0x08	/* EEPROM chip select. */
1651 #define EE_DATA_WRITE	0x02	/* EEPROM chip data in. */
1652 #define EE_WRITE_0		0x00
1653 #define EE_WRITE_1		0x02
1654 #define EE_DATA_READ	0x01	/* EEPROM chip data out. */
1655 #define EE_ENB			(0x80 | EE_CS)
1656 
1657 /* Delay between EEPROM clock transitions.
1658    No extra delay is needed with 33Mhz PCI, but 66Mhz may change this.
1659  */
1660 
1661 #define eeprom_delay()	readb(ee_addr)
1662 
1663 /* The EEPROM commands include the alway-set leading bit. */
1664 #define EE_EXTEND_CMD	(4)
1665 #define EE_WRITE_CMD	(5)
1666 #define EE_READ_CMD		(6)
1667 #define EE_ERASE_CMD	(7)
1668 
1669 #define EE_EWDS_ADDR	(0)
1670 #define EE_WRAL_ADDR	(1)
1671 #define EE_ERAL_ADDR	(2)
1672 #define EE_EWEN_ADDR	(3)
1673 
1674 #define CP_EEPROM_MAGIC PCI_DEVICE_ID_REALTEK_8139
1675 
1676 static void eeprom_cmd_start(void __iomem *ee_addr)
1677 {
1678 	writeb (EE_ENB & ~EE_CS, ee_addr);
1679 	writeb (EE_ENB, ee_addr);
1680 	eeprom_delay ();
1681 }
1682 
1683 static void eeprom_cmd(void __iomem *ee_addr, int cmd, int cmd_len)
1684 {
1685 	int i;
1686 
1687 	/* Shift the command bits out. */
1688 	for (i = cmd_len - 1; i >= 0; i--) {
1689 		int dataval = (cmd & (1 << i)) ? EE_DATA_WRITE : 0;
1690 		writeb (EE_ENB | dataval, ee_addr);
1691 		eeprom_delay ();
1692 		writeb (EE_ENB | dataval | EE_SHIFT_CLK, ee_addr);
1693 		eeprom_delay ();
1694 	}
1695 	writeb (EE_ENB, ee_addr);
1696 	eeprom_delay ();
1697 }
1698 
1699 static void eeprom_cmd_end(void __iomem *ee_addr)
1700 {
1701 	writeb(0, ee_addr);
1702 	eeprom_delay ();
1703 }
1704 
1705 static void eeprom_extend_cmd(void __iomem *ee_addr, int extend_cmd,
1706 			      int addr_len)
1707 {
1708 	int cmd = (EE_EXTEND_CMD << addr_len) | (extend_cmd << (addr_len - 2));
1709 
1710 	eeprom_cmd_start(ee_addr);
1711 	eeprom_cmd(ee_addr, cmd, 3 + addr_len);
1712 	eeprom_cmd_end(ee_addr);
1713 }
1714 
1715 static u16 read_eeprom (void __iomem *ioaddr, int location, int addr_len)
1716 {
1717 	int i;
1718 	u16 retval = 0;
1719 	void __iomem *ee_addr = ioaddr + Cfg9346;
1720 	int read_cmd = location | (EE_READ_CMD << addr_len);
1721 
1722 	eeprom_cmd_start(ee_addr);
1723 	eeprom_cmd(ee_addr, read_cmd, 3 + addr_len);
1724 
1725 	for (i = 16; i > 0; i--) {
1726 		writeb (EE_ENB | EE_SHIFT_CLK, ee_addr);
1727 		eeprom_delay ();
1728 		retval =
1729 		    (retval << 1) | ((readb (ee_addr) & EE_DATA_READ) ? 1 :
1730 				     0);
1731 		writeb (EE_ENB, ee_addr);
1732 		eeprom_delay ();
1733 	}
1734 
1735 	eeprom_cmd_end(ee_addr);
1736 
1737 	return retval;
1738 }
1739 
1740 static void write_eeprom(void __iomem *ioaddr, int location, u16 val,
1741 			 int addr_len)
1742 {
1743 	int i;
1744 	void __iomem *ee_addr = ioaddr + Cfg9346;
1745 	int write_cmd = location | (EE_WRITE_CMD << addr_len);
1746 
1747 	eeprom_extend_cmd(ee_addr, EE_EWEN_ADDR, addr_len);
1748 
1749 	eeprom_cmd_start(ee_addr);
1750 	eeprom_cmd(ee_addr, write_cmd, 3 + addr_len);
1751 	eeprom_cmd(ee_addr, val, 16);
1752 	eeprom_cmd_end(ee_addr);
1753 
1754 	eeprom_cmd_start(ee_addr);
1755 	for (i = 0; i < 20000; i++)
1756 		if (readb(ee_addr) & EE_DATA_READ)
1757 			break;
1758 	eeprom_cmd_end(ee_addr);
1759 
1760 	eeprom_extend_cmd(ee_addr, EE_EWDS_ADDR, addr_len);
1761 }
1762 
1763 static int cp_get_eeprom_len(struct net_device *dev)
1764 {
1765 	struct cp_private *cp = netdev_priv(dev);
1766 	int size;
1767 
1768 	spin_lock_irq(&cp->lock);
1769 	size = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 256 : 128;
1770 	spin_unlock_irq(&cp->lock);
1771 
1772 	return size;
1773 }
1774 
1775 static int cp_get_eeprom(struct net_device *dev,
1776 			 struct ethtool_eeprom *eeprom, u8 *data)
1777 {
1778 	struct cp_private *cp = netdev_priv(dev);
1779 	unsigned int addr_len;
1780 	u16 val;
1781 	u32 offset = eeprom->offset >> 1;
1782 	u32 len = eeprom->len;
1783 	u32 i = 0;
1784 
1785 	eeprom->magic = CP_EEPROM_MAGIC;
1786 
1787 	spin_lock_irq(&cp->lock);
1788 
1789 	addr_len = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 8 : 6;
1790 
1791 	if (eeprom->offset & 1) {
1792 		val = read_eeprom(cp->regs, offset, addr_len);
1793 		data[i++] = (u8)(val >> 8);
1794 		offset++;
1795 	}
1796 
1797 	while (i < len - 1) {
1798 		val = read_eeprom(cp->regs, offset, addr_len);
1799 		data[i++] = (u8)val;
1800 		data[i++] = (u8)(val >> 8);
1801 		offset++;
1802 	}
1803 
1804 	if (i < len) {
1805 		val = read_eeprom(cp->regs, offset, addr_len);
1806 		data[i] = (u8)val;
1807 	}
1808 
1809 	spin_unlock_irq(&cp->lock);
1810 	return 0;
1811 }
1812 
1813 static int cp_set_eeprom(struct net_device *dev,
1814 			 struct ethtool_eeprom *eeprom, u8 *data)
1815 {
1816 	struct cp_private *cp = netdev_priv(dev);
1817 	unsigned int addr_len;
1818 	u16 val;
1819 	u32 offset = eeprom->offset >> 1;
1820 	u32 len = eeprom->len;
1821 	u32 i = 0;
1822 
1823 	if (eeprom->magic != CP_EEPROM_MAGIC)
1824 		return -EINVAL;
1825 
1826 	spin_lock_irq(&cp->lock);
1827 
1828 	addr_len = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 8 : 6;
1829 
1830 	if (eeprom->offset & 1) {
1831 		val = read_eeprom(cp->regs, offset, addr_len) & 0xff;
1832 		val |= (u16)data[i++] << 8;
1833 		write_eeprom(cp->regs, offset, val, addr_len);
1834 		offset++;
1835 	}
1836 
1837 	while (i < len - 1) {
1838 		val = (u16)data[i++];
1839 		val |= (u16)data[i++] << 8;
1840 		write_eeprom(cp->regs, offset, val, addr_len);
1841 		offset++;
1842 	}
1843 
1844 	if (i < len) {
1845 		val = read_eeprom(cp->regs, offset, addr_len) & 0xff00;
1846 		val |= (u16)data[i];
1847 		write_eeprom(cp->regs, offset, val, addr_len);
1848 	}
1849 
1850 	spin_unlock_irq(&cp->lock);
1851 	return 0;
1852 }
1853 
1854 /* Put the board into D3cold state and wait for WakeUp signal */
1855 static void cp_set_d3_state (struct cp_private *cp)
1856 {
1857 	pci_enable_wake(cp->pdev, PCI_D0, 1); /* Enable PME# generation */
1858 	pci_set_power_state (cp->pdev, PCI_D3hot);
1859 }
1860 
1861 static netdev_features_t cp_features_check(struct sk_buff *skb,
1862 					   struct net_device *dev,
1863 					   netdev_features_t features)
1864 {
1865 	if (skb_shinfo(skb)->gso_size > MSSMask)
1866 		features &= ~NETIF_F_TSO;
1867 
1868 	return vlan_features_check(skb, features);
1869 }
1870 static const struct net_device_ops cp_netdev_ops = {
1871 	.ndo_open		= cp_open,
1872 	.ndo_stop		= cp_close,
1873 	.ndo_validate_addr	= eth_validate_addr,
1874 	.ndo_set_mac_address 	= cp_set_mac_address,
1875 	.ndo_set_rx_mode	= cp_set_rx_mode,
1876 	.ndo_get_stats		= cp_get_stats,
1877 	.ndo_do_ioctl		= cp_ioctl,
1878 	.ndo_start_xmit		= cp_start_xmit,
1879 	.ndo_tx_timeout		= cp_tx_timeout,
1880 	.ndo_set_features	= cp_set_features,
1881 	.ndo_change_mtu		= cp_change_mtu,
1882 	.ndo_features_check	= cp_features_check,
1883 
1884 #ifdef CONFIG_NET_POLL_CONTROLLER
1885 	.ndo_poll_controller	= cp_poll_controller,
1886 #endif
1887 };
1888 
1889 static int cp_init_one (struct pci_dev *pdev, const struct pci_device_id *ent)
1890 {
1891 	struct net_device *dev;
1892 	struct cp_private *cp;
1893 	int rc;
1894 	void __iomem *regs;
1895 	resource_size_t pciaddr;
1896 	unsigned int addr_len, i, pci_using_dac;
1897 
1898 	pr_info_once("%s", version);
1899 
1900 	if (pdev->vendor == PCI_VENDOR_ID_REALTEK &&
1901 	    pdev->device == PCI_DEVICE_ID_REALTEK_8139 && pdev->revision < 0x20) {
1902 		dev_info(&pdev->dev,
1903 			 "This (id %04x:%04x rev %02x) is not an 8139C+ compatible chip, use 8139too\n",
1904 			 pdev->vendor, pdev->device, pdev->revision);
1905 		return -ENODEV;
1906 	}
1907 
1908 	dev = alloc_etherdev(sizeof(struct cp_private));
1909 	if (!dev)
1910 		return -ENOMEM;
1911 	SET_NETDEV_DEV(dev, &pdev->dev);
1912 
1913 	cp = netdev_priv(dev);
1914 	cp->pdev = pdev;
1915 	cp->dev = dev;
1916 	cp->msg_enable = (debug < 0 ? CP_DEF_MSG_ENABLE : debug);
1917 	spin_lock_init (&cp->lock);
1918 	cp->mii_if.dev = dev;
1919 	cp->mii_if.mdio_read = mdio_read;
1920 	cp->mii_if.mdio_write = mdio_write;
1921 	cp->mii_if.phy_id = CP_INTERNAL_PHY;
1922 	cp->mii_if.phy_id_mask = 0x1f;
1923 	cp->mii_if.reg_num_mask = 0x1f;
1924 	cp_set_rxbufsize(cp);
1925 
1926 	rc = pci_enable_device(pdev);
1927 	if (rc)
1928 		goto err_out_free;
1929 
1930 	rc = pci_set_mwi(pdev);
1931 	if (rc)
1932 		goto err_out_disable;
1933 
1934 	rc = pci_request_regions(pdev, DRV_NAME);
1935 	if (rc)
1936 		goto err_out_mwi;
1937 
1938 	pciaddr = pci_resource_start(pdev, 1);
1939 	if (!pciaddr) {
1940 		rc = -EIO;
1941 		dev_err(&pdev->dev, "no MMIO resource\n");
1942 		goto err_out_res;
1943 	}
1944 	if (pci_resource_len(pdev, 1) < CP_REGS_SIZE) {
1945 		rc = -EIO;
1946 		dev_err(&pdev->dev, "MMIO resource (%llx) too small\n",
1947 		       (unsigned long long)pci_resource_len(pdev, 1));
1948 		goto err_out_res;
1949 	}
1950 
1951 	/* Configure DMA attributes. */
1952 	if ((sizeof(dma_addr_t) > 4) &&
1953 	    !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)) &&
1954 	    !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
1955 		pci_using_dac = 1;
1956 	} else {
1957 		pci_using_dac = 0;
1958 
1959 		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1960 		if (rc) {
1961 			dev_err(&pdev->dev,
1962 				"No usable DMA configuration, aborting\n");
1963 			goto err_out_res;
1964 		}
1965 		rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
1966 		if (rc) {
1967 			dev_err(&pdev->dev,
1968 				"No usable consistent DMA configuration, aborting\n");
1969 			goto err_out_res;
1970 		}
1971 	}
1972 
1973 	cp->cpcmd = (pci_using_dac ? PCIDAC : 0) |
1974 		    PCIMulRW | RxChkSum | CpRxOn | CpTxOn;
1975 
1976 	dev->features |= NETIF_F_RXCSUM;
1977 	dev->hw_features |= NETIF_F_RXCSUM;
1978 
1979 	regs = ioremap(pciaddr, CP_REGS_SIZE);
1980 	if (!regs) {
1981 		rc = -EIO;
1982 		dev_err(&pdev->dev, "Cannot map PCI MMIO (%Lx@%Lx)\n",
1983 			(unsigned long long)pci_resource_len(pdev, 1),
1984 		       (unsigned long long)pciaddr);
1985 		goto err_out_res;
1986 	}
1987 	cp->regs = regs;
1988 
1989 	cp_stop_hw(cp);
1990 
1991 	/* read MAC address from EEPROM */
1992 	addr_len = read_eeprom (regs, 0, 8) == 0x8129 ? 8 : 6;
1993 	for (i = 0; i < 3; i++)
1994 		((__le16 *) (dev->dev_addr))[i] =
1995 		    cpu_to_le16(read_eeprom (regs, i + 7, addr_len));
1996 
1997 	dev->netdev_ops = &cp_netdev_ops;
1998 	netif_napi_add(dev, &cp->napi, cp_rx_poll, 16);
1999 	dev->ethtool_ops = &cp_ethtool_ops;
2000 	dev->watchdog_timeo = TX_TIMEOUT;
2001 
2002 	dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO |
2003 		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
2004 
2005 	if (pci_using_dac)
2006 		dev->features |= NETIF_F_HIGHDMA;
2007 
2008 	dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO |
2009 		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
2010 	dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO |
2011 		NETIF_F_HIGHDMA;
2012 
2013 	rc = register_netdev(dev);
2014 	if (rc)
2015 		goto err_out_iomap;
2016 
2017 	netdev_info(dev, "RTL-8139C+ at 0x%p, %pM, IRQ %d\n",
2018 		    regs, dev->dev_addr, pdev->irq);
2019 
2020 	pci_set_drvdata(pdev, dev);
2021 
2022 	/* enable busmastering and memory-write-invalidate */
2023 	pci_set_master(pdev);
2024 
2025 	if (cp->wol_enabled)
2026 		cp_set_d3_state (cp);
2027 
2028 	return 0;
2029 
2030 err_out_iomap:
2031 	iounmap(regs);
2032 err_out_res:
2033 	pci_release_regions(pdev);
2034 err_out_mwi:
2035 	pci_clear_mwi(pdev);
2036 err_out_disable:
2037 	pci_disable_device(pdev);
2038 err_out_free:
2039 	free_netdev(dev);
2040 	return rc;
2041 }
2042 
2043 static void cp_remove_one (struct pci_dev *pdev)
2044 {
2045 	struct net_device *dev = pci_get_drvdata(pdev);
2046 	struct cp_private *cp = netdev_priv(dev);
2047 
2048 	unregister_netdev(dev);
2049 	iounmap(cp->regs);
2050 	if (cp->wol_enabled)
2051 		pci_set_power_state (pdev, PCI_D0);
2052 	pci_release_regions(pdev);
2053 	pci_clear_mwi(pdev);
2054 	pci_disable_device(pdev);
2055 	free_netdev(dev);
2056 }
2057 
2058 #ifdef CONFIG_PM
2059 static int cp_suspend (struct pci_dev *pdev, pm_message_t state)
2060 {
2061 	struct net_device *dev = pci_get_drvdata(pdev);
2062 	struct cp_private *cp = netdev_priv(dev);
2063 	unsigned long flags;
2064 
2065 	if (!netif_running(dev))
2066 		return 0;
2067 
2068 	netif_device_detach (dev);
2069 	netif_stop_queue (dev);
2070 
2071 	spin_lock_irqsave (&cp->lock, flags);
2072 
2073 	/* Disable Rx and Tx */
2074 	cpw16 (IntrMask, 0);
2075 	cpw8  (Cmd, cpr8 (Cmd) & (~RxOn | ~TxOn));
2076 
2077 	spin_unlock_irqrestore (&cp->lock, flags);
2078 
2079 	pci_save_state(pdev);
2080 	pci_enable_wake(pdev, pci_choose_state(pdev, state), cp->wol_enabled);
2081 	pci_set_power_state(pdev, pci_choose_state(pdev, state));
2082 
2083 	return 0;
2084 }
2085 
2086 static int cp_resume (struct pci_dev *pdev)
2087 {
2088 	struct net_device *dev = pci_get_drvdata (pdev);
2089 	struct cp_private *cp = netdev_priv(dev);
2090 	unsigned long flags;
2091 
2092 	if (!netif_running(dev))
2093 		return 0;
2094 
2095 	netif_device_attach (dev);
2096 
2097 	pci_set_power_state(pdev, PCI_D0);
2098 	pci_restore_state(pdev);
2099 	pci_enable_wake(pdev, PCI_D0, 0);
2100 
2101 	/* FIXME: sh*t may happen if the Rx ring buffer is depleted */
2102 	cp_init_rings_index (cp);
2103 	cp_init_hw (cp);
2104 	cp_enable_irq(cp);
2105 	netif_start_queue (dev);
2106 
2107 	spin_lock_irqsave (&cp->lock, flags);
2108 
2109 	mii_check_media(&cp->mii_if, netif_msg_link(cp), false);
2110 
2111 	spin_unlock_irqrestore (&cp->lock, flags);
2112 
2113 	return 0;
2114 }
2115 #endif /* CONFIG_PM */
2116 
2117 static const struct pci_device_id cp_pci_tbl[] = {
2118         { PCI_DEVICE(PCI_VENDOR_ID_REALTEK,     PCI_DEVICE_ID_REALTEK_8139), },
2119         { PCI_DEVICE(PCI_VENDOR_ID_TTTECH,      PCI_DEVICE_ID_TTTECH_MC322), },
2120         { },
2121 };
2122 MODULE_DEVICE_TABLE(pci, cp_pci_tbl);
2123 
2124 static struct pci_driver cp_driver = {
2125 	.name         = DRV_NAME,
2126 	.id_table     = cp_pci_tbl,
2127 	.probe        =	cp_init_one,
2128 	.remove       = cp_remove_one,
2129 #ifdef CONFIG_PM
2130 	.resume       = cp_resume,
2131 	.suspend      = cp_suspend,
2132 #endif
2133 };
2134 
2135 module_pci_driver(cp_driver);
2136