1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause) 2 /* QLogic qede NIC Driver 3 * Copyright (c) 2015-2017 QLogic Corporation 4 * Copyright (c) 2019-2020 Marvell International Ltd. 5 */ 6 7 #include <linux/crash_dump.h> 8 #include <linux/module.h> 9 #include <linux/pci.h> 10 #include <linux/version.h> 11 #include <linux/device.h> 12 #include <linux/netdevice.h> 13 #include <linux/etherdevice.h> 14 #include <linux/skbuff.h> 15 #include <linux/errno.h> 16 #include <linux/list.h> 17 #include <linux/string.h> 18 #include <linux/dma-mapping.h> 19 #include <linux/interrupt.h> 20 #include <asm/byteorder.h> 21 #include <asm/param.h> 22 #include <linux/io.h> 23 #include <linux/netdev_features.h> 24 #include <linux/udp.h> 25 #include <linux/tcp.h> 26 #include <net/udp_tunnel.h> 27 #include <linux/ip.h> 28 #include <net/ipv6.h> 29 #include <net/tcp.h> 30 #include <linux/if_ether.h> 31 #include <linux/if_vlan.h> 32 #include <linux/pkt_sched.h> 33 #include <linux/ethtool.h> 34 #include <linux/in.h> 35 #include <linux/random.h> 36 #include <net/ip6_checksum.h> 37 #include <linux/bitops.h> 38 #include <linux/vmalloc.h> 39 #include <linux/aer.h> 40 #include "qede.h" 41 #include "qede_ptp.h" 42 43 static char version[] = 44 "QLogic FastLinQ 4xxxx Ethernet Driver qede " DRV_MODULE_VERSION "\n"; 45 46 MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver"); 47 MODULE_LICENSE("GPL"); 48 MODULE_VERSION(DRV_MODULE_VERSION); 49 50 static uint debug; 51 module_param(debug, uint, 0); 52 MODULE_PARM_DESC(debug, " Default debug msglevel"); 53 54 static const struct qed_eth_ops *qed_ops; 55 56 #define CHIP_NUM_57980S_40 0x1634 57 #define CHIP_NUM_57980S_10 0x1666 58 #define CHIP_NUM_57980S_MF 0x1636 59 #define CHIP_NUM_57980S_100 0x1644 60 #define CHIP_NUM_57980S_50 0x1654 61 #define CHIP_NUM_57980S_25 0x1656 62 #define CHIP_NUM_57980S_IOV 0x1664 63 #define CHIP_NUM_AH 0x8070 64 #define CHIP_NUM_AH_IOV 0x8090 65 66 #ifndef PCI_DEVICE_ID_NX2_57980E 67 #define PCI_DEVICE_ID_57980S_40 CHIP_NUM_57980S_40 68 #define PCI_DEVICE_ID_57980S_10 CHIP_NUM_57980S_10 69 #define PCI_DEVICE_ID_57980S_MF CHIP_NUM_57980S_MF 70 #define PCI_DEVICE_ID_57980S_100 CHIP_NUM_57980S_100 71 #define PCI_DEVICE_ID_57980S_50 CHIP_NUM_57980S_50 72 #define PCI_DEVICE_ID_57980S_25 CHIP_NUM_57980S_25 73 #define PCI_DEVICE_ID_57980S_IOV CHIP_NUM_57980S_IOV 74 #define PCI_DEVICE_ID_AH CHIP_NUM_AH 75 #define PCI_DEVICE_ID_AH_IOV CHIP_NUM_AH_IOV 76 77 #endif 78 79 enum qede_pci_private { 80 QEDE_PRIVATE_PF, 81 QEDE_PRIVATE_VF 82 }; 83 84 static const struct pci_device_id qede_pci_tbl[] = { 85 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF}, 86 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF}, 87 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF}, 88 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF}, 89 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF}, 90 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF}, 91 #ifdef CONFIG_QED_SRIOV 92 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF}, 93 #endif 94 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH), QEDE_PRIVATE_PF}, 95 #ifdef CONFIG_QED_SRIOV 96 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH_IOV), QEDE_PRIVATE_VF}, 97 #endif 98 { 0 } 99 }; 100 101 MODULE_DEVICE_TABLE(pci, qede_pci_tbl); 102 103 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id); 104 static pci_ers_result_t 105 qede_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state); 106 107 #define TX_TIMEOUT (5 * HZ) 108 109 /* Utilize last protocol index for XDP */ 110 #define XDP_PI 11 111 112 static void qede_remove(struct pci_dev *pdev); 113 static void qede_shutdown(struct pci_dev *pdev); 114 static void qede_link_update(void *dev, struct qed_link_output *link); 115 static void qede_schedule_recovery_handler(void *dev); 116 static void qede_recovery_handler(struct qede_dev *edev); 117 static void qede_schedule_hw_err_handler(void *dev, 118 enum qed_hw_err_type err_type); 119 static void qede_get_eth_tlv_data(void *edev, void *data); 120 static void qede_get_generic_tlv_data(void *edev, 121 struct qed_generic_tlvs *data); 122 static void qede_generic_hw_err_handler(struct qede_dev *edev); 123 #ifdef CONFIG_QED_SRIOV 124 static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos, 125 __be16 vlan_proto) 126 { 127 struct qede_dev *edev = netdev_priv(ndev); 128 129 if (vlan > 4095) { 130 DP_NOTICE(edev, "Illegal vlan value %d\n", vlan); 131 return -EINVAL; 132 } 133 134 if (vlan_proto != htons(ETH_P_8021Q)) 135 return -EPROTONOSUPPORT; 136 137 DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n", 138 vlan, vf); 139 140 return edev->ops->iov->set_vlan(edev->cdev, vlan, vf); 141 } 142 143 static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac) 144 { 145 struct qede_dev *edev = netdev_priv(ndev); 146 147 DP_VERBOSE(edev, QED_MSG_IOV, 148 "Setting MAC %02x:%02x:%02x:%02x:%02x:%02x to VF [%d]\n", 149 mac[0], mac[1], mac[2], mac[3], mac[4], mac[5], vfidx); 150 151 if (!is_valid_ether_addr(mac)) { 152 DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n"); 153 return -EINVAL; 154 } 155 156 return edev->ops->iov->set_mac(edev->cdev, mac, vfidx); 157 } 158 159 static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param) 160 { 161 struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev)); 162 struct qed_dev_info *qed_info = &edev->dev_info.common; 163 struct qed_update_vport_params *vport_params; 164 int rc; 165 166 vport_params = vzalloc(sizeof(*vport_params)); 167 if (!vport_params) 168 return -ENOMEM; 169 DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param); 170 171 rc = edev->ops->iov->configure(edev->cdev, num_vfs_param); 172 173 /* Enable/Disable Tx switching for PF */ 174 if ((rc == num_vfs_param) && netif_running(edev->ndev) && 175 !qed_info->b_inter_pf_switch && qed_info->tx_switching) { 176 vport_params->vport_id = 0; 177 vport_params->update_tx_switching_flg = 1; 178 vport_params->tx_switching_flg = num_vfs_param ? 1 : 0; 179 edev->ops->vport_update(edev->cdev, vport_params); 180 } 181 182 vfree(vport_params); 183 return rc; 184 } 185 #endif 186 187 static const struct pci_error_handlers qede_err_handler = { 188 .error_detected = qede_io_error_detected, 189 }; 190 191 static struct pci_driver qede_pci_driver = { 192 .name = "qede", 193 .id_table = qede_pci_tbl, 194 .probe = qede_probe, 195 .remove = qede_remove, 196 .shutdown = qede_shutdown, 197 #ifdef CONFIG_QED_SRIOV 198 .sriov_configure = qede_sriov_configure, 199 #endif 200 .err_handler = &qede_err_handler, 201 }; 202 203 static struct qed_eth_cb_ops qede_ll_ops = { 204 { 205 #ifdef CONFIG_RFS_ACCEL 206 .arfs_filter_op = qede_arfs_filter_op, 207 #endif 208 .link_update = qede_link_update, 209 .schedule_recovery_handler = qede_schedule_recovery_handler, 210 .schedule_hw_err_handler = qede_schedule_hw_err_handler, 211 .get_generic_tlv_data = qede_get_generic_tlv_data, 212 .get_protocol_tlv_data = qede_get_eth_tlv_data, 213 }, 214 .force_mac = qede_force_mac, 215 .ports_update = qede_udp_ports_update, 216 }; 217 218 static int qede_netdev_event(struct notifier_block *this, unsigned long event, 219 void *ptr) 220 { 221 struct net_device *ndev = netdev_notifier_info_to_dev(ptr); 222 struct ethtool_drvinfo drvinfo; 223 struct qede_dev *edev; 224 225 if (event != NETDEV_CHANGENAME && event != NETDEV_CHANGEADDR) 226 goto done; 227 228 /* Check whether this is a qede device */ 229 if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo) 230 goto done; 231 232 memset(&drvinfo, 0, sizeof(drvinfo)); 233 ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo); 234 if (strcmp(drvinfo.driver, "qede")) 235 goto done; 236 edev = netdev_priv(ndev); 237 238 switch (event) { 239 case NETDEV_CHANGENAME: 240 /* Notify qed of the name change */ 241 if (!edev->ops || !edev->ops->common) 242 goto done; 243 edev->ops->common->set_name(edev->cdev, edev->ndev->name); 244 break; 245 case NETDEV_CHANGEADDR: 246 edev = netdev_priv(ndev); 247 qede_rdma_event_changeaddr(edev); 248 break; 249 } 250 251 done: 252 return NOTIFY_DONE; 253 } 254 255 static struct notifier_block qede_netdev_notifier = { 256 .notifier_call = qede_netdev_event, 257 }; 258 259 static 260 int __init qede_init(void) 261 { 262 int ret; 263 264 pr_info("qede_init: %s\n", version); 265 266 qed_ops = qed_get_eth_ops(); 267 if (!qed_ops) { 268 pr_notice("Failed to get qed ethtool operations\n"); 269 return -EINVAL; 270 } 271 272 /* Must register notifier before pci ops, since we might miss 273 * interface rename after pci probe and netdev registration. 274 */ 275 ret = register_netdevice_notifier(&qede_netdev_notifier); 276 if (ret) { 277 pr_notice("Failed to register netdevice_notifier\n"); 278 qed_put_eth_ops(); 279 return -EINVAL; 280 } 281 282 ret = pci_register_driver(&qede_pci_driver); 283 if (ret) { 284 pr_notice("Failed to register driver\n"); 285 unregister_netdevice_notifier(&qede_netdev_notifier); 286 qed_put_eth_ops(); 287 return -EINVAL; 288 } 289 290 return 0; 291 } 292 293 static void __exit qede_cleanup(void) 294 { 295 if (debug & QED_LOG_INFO_MASK) 296 pr_info("qede_cleanup called\n"); 297 298 unregister_netdevice_notifier(&qede_netdev_notifier); 299 pci_unregister_driver(&qede_pci_driver); 300 qed_put_eth_ops(); 301 } 302 303 module_init(qede_init); 304 module_exit(qede_cleanup); 305 306 static int qede_open(struct net_device *ndev); 307 static int qede_close(struct net_device *ndev); 308 309 void qede_fill_by_demand_stats(struct qede_dev *edev) 310 { 311 struct qede_stats_common *p_common = &edev->stats.common; 312 struct qed_eth_stats stats; 313 314 edev->ops->get_vport_stats(edev->cdev, &stats); 315 316 p_common->no_buff_discards = stats.common.no_buff_discards; 317 p_common->packet_too_big_discard = stats.common.packet_too_big_discard; 318 p_common->ttl0_discard = stats.common.ttl0_discard; 319 p_common->rx_ucast_bytes = stats.common.rx_ucast_bytes; 320 p_common->rx_mcast_bytes = stats.common.rx_mcast_bytes; 321 p_common->rx_bcast_bytes = stats.common.rx_bcast_bytes; 322 p_common->rx_ucast_pkts = stats.common.rx_ucast_pkts; 323 p_common->rx_mcast_pkts = stats.common.rx_mcast_pkts; 324 p_common->rx_bcast_pkts = stats.common.rx_bcast_pkts; 325 p_common->mftag_filter_discards = stats.common.mftag_filter_discards; 326 p_common->mac_filter_discards = stats.common.mac_filter_discards; 327 p_common->gft_filter_drop = stats.common.gft_filter_drop; 328 329 p_common->tx_ucast_bytes = stats.common.tx_ucast_bytes; 330 p_common->tx_mcast_bytes = stats.common.tx_mcast_bytes; 331 p_common->tx_bcast_bytes = stats.common.tx_bcast_bytes; 332 p_common->tx_ucast_pkts = stats.common.tx_ucast_pkts; 333 p_common->tx_mcast_pkts = stats.common.tx_mcast_pkts; 334 p_common->tx_bcast_pkts = stats.common.tx_bcast_pkts; 335 p_common->tx_err_drop_pkts = stats.common.tx_err_drop_pkts; 336 p_common->coalesced_pkts = stats.common.tpa_coalesced_pkts; 337 p_common->coalesced_events = stats.common.tpa_coalesced_events; 338 p_common->coalesced_aborts_num = stats.common.tpa_aborts_num; 339 p_common->non_coalesced_pkts = stats.common.tpa_not_coalesced_pkts; 340 p_common->coalesced_bytes = stats.common.tpa_coalesced_bytes; 341 342 p_common->rx_64_byte_packets = stats.common.rx_64_byte_packets; 343 p_common->rx_65_to_127_byte_packets = 344 stats.common.rx_65_to_127_byte_packets; 345 p_common->rx_128_to_255_byte_packets = 346 stats.common.rx_128_to_255_byte_packets; 347 p_common->rx_256_to_511_byte_packets = 348 stats.common.rx_256_to_511_byte_packets; 349 p_common->rx_512_to_1023_byte_packets = 350 stats.common.rx_512_to_1023_byte_packets; 351 p_common->rx_1024_to_1518_byte_packets = 352 stats.common.rx_1024_to_1518_byte_packets; 353 p_common->rx_crc_errors = stats.common.rx_crc_errors; 354 p_common->rx_mac_crtl_frames = stats.common.rx_mac_crtl_frames; 355 p_common->rx_pause_frames = stats.common.rx_pause_frames; 356 p_common->rx_pfc_frames = stats.common.rx_pfc_frames; 357 p_common->rx_align_errors = stats.common.rx_align_errors; 358 p_common->rx_carrier_errors = stats.common.rx_carrier_errors; 359 p_common->rx_oversize_packets = stats.common.rx_oversize_packets; 360 p_common->rx_jabbers = stats.common.rx_jabbers; 361 p_common->rx_undersize_packets = stats.common.rx_undersize_packets; 362 p_common->rx_fragments = stats.common.rx_fragments; 363 p_common->tx_64_byte_packets = stats.common.tx_64_byte_packets; 364 p_common->tx_65_to_127_byte_packets = 365 stats.common.tx_65_to_127_byte_packets; 366 p_common->tx_128_to_255_byte_packets = 367 stats.common.tx_128_to_255_byte_packets; 368 p_common->tx_256_to_511_byte_packets = 369 stats.common.tx_256_to_511_byte_packets; 370 p_common->tx_512_to_1023_byte_packets = 371 stats.common.tx_512_to_1023_byte_packets; 372 p_common->tx_1024_to_1518_byte_packets = 373 stats.common.tx_1024_to_1518_byte_packets; 374 p_common->tx_pause_frames = stats.common.tx_pause_frames; 375 p_common->tx_pfc_frames = stats.common.tx_pfc_frames; 376 p_common->brb_truncates = stats.common.brb_truncates; 377 p_common->brb_discards = stats.common.brb_discards; 378 p_common->tx_mac_ctrl_frames = stats.common.tx_mac_ctrl_frames; 379 p_common->link_change_count = stats.common.link_change_count; 380 p_common->ptp_skip_txts = edev->ptp_skip_txts; 381 382 if (QEDE_IS_BB(edev)) { 383 struct qede_stats_bb *p_bb = &edev->stats.bb; 384 385 p_bb->rx_1519_to_1522_byte_packets = 386 stats.bb.rx_1519_to_1522_byte_packets; 387 p_bb->rx_1519_to_2047_byte_packets = 388 stats.bb.rx_1519_to_2047_byte_packets; 389 p_bb->rx_2048_to_4095_byte_packets = 390 stats.bb.rx_2048_to_4095_byte_packets; 391 p_bb->rx_4096_to_9216_byte_packets = 392 stats.bb.rx_4096_to_9216_byte_packets; 393 p_bb->rx_9217_to_16383_byte_packets = 394 stats.bb.rx_9217_to_16383_byte_packets; 395 p_bb->tx_1519_to_2047_byte_packets = 396 stats.bb.tx_1519_to_2047_byte_packets; 397 p_bb->tx_2048_to_4095_byte_packets = 398 stats.bb.tx_2048_to_4095_byte_packets; 399 p_bb->tx_4096_to_9216_byte_packets = 400 stats.bb.tx_4096_to_9216_byte_packets; 401 p_bb->tx_9217_to_16383_byte_packets = 402 stats.bb.tx_9217_to_16383_byte_packets; 403 p_bb->tx_lpi_entry_count = stats.bb.tx_lpi_entry_count; 404 p_bb->tx_total_collisions = stats.bb.tx_total_collisions; 405 } else { 406 struct qede_stats_ah *p_ah = &edev->stats.ah; 407 408 p_ah->rx_1519_to_max_byte_packets = 409 stats.ah.rx_1519_to_max_byte_packets; 410 p_ah->tx_1519_to_max_byte_packets = 411 stats.ah.tx_1519_to_max_byte_packets; 412 } 413 } 414 415 static void qede_get_stats64(struct net_device *dev, 416 struct rtnl_link_stats64 *stats) 417 { 418 struct qede_dev *edev = netdev_priv(dev); 419 struct qede_stats_common *p_common; 420 421 qede_fill_by_demand_stats(edev); 422 p_common = &edev->stats.common; 423 424 stats->rx_packets = p_common->rx_ucast_pkts + p_common->rx_mcast_pkts + 425 p_common->rx_bcast_pkts; 426 stats->tx_packets = p_common->tx_ucast_pkts + p_common->tx_mcast_pkts + 427 p_common->tx_bcast_pkts; 428 429 stats->rx_bytes = p_common->rx_ucast_bytes + p_common->rx_mcast_bytes + 430 p_common->rx_bcast_bytes; 431 stats->tx_bytes = p_common->tx_ucast_bytes + p_common->tx_mcast_bytes + 432 p_common->tx_bcast_bytes; 433 434 stats->tx_errors = p_common->tx_err_drop_pkts; 435 stats->multicast = p_common->rx_mcast_pkts + p_common->rx_bcast_pkts; 436 437 stats->rx_fifo_errors = p_common->no_buff_discards; 438 439 if (QEDE_IS_BB(edev)) 440 stats->collisions = edev->stats.bb.tx_total_collisions; 441 stats->rx_crc_errors = p_common->rx_crc_errors; 442 stats->rx_frame_errors = p_common->rx_align_errors; 443 } 444 445 #ifdef CONFIG_QED_SRIOV 446 static int qede_get_vf_config(struct net_device *dev, int vfidx, 447 struct ifla_vf_info *ivi) 448 { 449 struct qede_dev *edev = netdev_priv(dev); 450 451 if (!edev->ops) 452 return -EINVAL; 453 454 return edev->ops->iov->get_config(edev->cdev, vfidx, ivi); 455 } 456 457 static int qede_set_vf_rate(struct net_device *dev, int vfidx, 458 int min_tx_rate, int max_tx_rate) 459 { 460 struct qede_dev *edev = netdev_priv(dev); 461 462 return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate, 463 max_tx_rate); 464 } 465 466 static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val) 467 { 468 struct qede_dev *edev = netdev_priv(dev); 469 470 if (!edev->ops) 471 return -EINVAL; 472 473 return edev->ops->iov->set_spoof(edev->cdev, vfidx, val); 474 } 475 476 static int qede_set_vf_link_state(struct net_device *dev, int vfidx, 477 int link_state) 478 { 479 struct qede_dev *edev = netdev_priv(dev); 480 481 if (!edev->ops) 482 return -EINVAL; 483 484 return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state); 485 } 486 487 static int qede_set_vf_trust(struct net_device *dev, int vfidx, bool setting) 488 { 489 struct qede_dev *edev = netdev_priv(dev); 490 491 if (!edev->ops) 492 return -EINVAL; 493 494 return edev->ops->iov->set_trust(edev->cdev, vfidx, setting); 495 } 496 #endif 497 498 static int qede_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 499 { 500 struct qede_dev *edev = netdev_priv(dev); 501 502 if (!netif_running(dev)) 503 return -EAGAIN; 504 505 switch (cmd) { 506 case SIOCSHWTSTAMP: 507 return qede_ptp_hw_ts(edev, ifr); 508 default: 509 DP_VERBOSE(edev, QED_MSG_DEBUG, 510 "default IOCTL cmd 0x%x\n", cmd); 511 return -EOPNOTSUPP; 512 } 513 514 return 0; 515 } 516 517 static void qede_tx_log_print(struct qede_dev *edev, struct qede_tx_queue *txq) 518 { 519 DP_NOTICE(edev, 520 "Txq[%d]: FW cons [host] %04x, SW cons %04x, SW prod %04x [Jiffies %lu]\n", 521 txq->index, le16_to_cpu(*txq->hw_cons_ptr), 522 qed_chain_get_cons_idx(&txq->tx_pbl), 523 qed_chain_get_prod_idx(&txq->tx_pbl), 524 jiffies); 525 } 526 527 static void qede_tx_timeout(struct net_device *dev, unsigned int txqueue) 528 { 529 struct qede_dev *edev = netdev_priv(dev); 530 struct qede_tx_queue *txq; 531 int cos; 532 533 netif_carrier_off(dev); 534 DP_NOTICE(edev, "TX timeout on queue %u!\n", txqueue); 535 536 if (!(edev->fp_array[txqueue].type & QEDE_FASTPATH_TX)) 537 return; 538 539 for_each_cos_in_txq(edev, cos) { 540 txq = &edev->fp_array[txqueue].txq[cos]; 541 542 if (qed_chain_get_cons_idx(&txq->tx_pbl) != 543 qed_chain_get_prod_idx(&txq->tx_pbl)) 544 qede_tx_log_print(edev, txq); 545 } 546 547 if (IS_VF(edev)) 548 return; 549 550 if (test_and_set_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags) || 551 edev->state == QEDE_STATE_RECOVERY) { 552 DP_INFO(edev, 553 "Avoid handling a Tx timeout while another HW error is being handled\n"); 554 return; 555 } 556 557 set_bit(QEDE_ERR_GET_DBG_INFO, &edev->err_flags); 558 set_bit(QEDE_SP_HW_ERR, &edev->sp_flags); 559 schedule_delayed_work(&edev->sp_task, 0); 560 } 561 562 static int qede_setup_tc(struct net_device *ndev, u8 num_tc) 563 { 564 struct qede_dev *edev = netdev_priv(ndev); 565 int cos, count, offset; 566 567 if (num_tc > edev->dev_info.num_tc) 568 return -EINVAL; 569 570 netdev_reset_tc(ndev); 571 netdev_set_num_tc(ndev, num_tc); 572 573 for_each_cos_in_txq(edev, cos) { 574 count = QEDE_TSS_COUNT(edev); 575 offset = cos * QEDE_TSS_COUNT(edev); 576 netdev_set_tc_queue(ndev, cos, count, offset); 577 } 578 579 return 0; 580 } 581 582 static int 583 qede_set_flower(struct qede_dev *edev, struct flow_cls_offload *f, 584 __be16 proto) 585 { 586 switch (f->command) { 587 case FLOW_CLS_REPLACE: 588 return qede_add_tc_flower_fltr(edev, proto, f); 589 case FLOW_CLS_DESTROY: 590 return qede_delete_flow_filter(edev, f->cookie); 591 default: 592 return -EOPNOTSUPP; 593 } 594 } 595 596 static int qede_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 597 void *cb_priv) 598 { 599 struct flow_cls_offload *f; 600 struct qede_dev *edev = cb_priv; 601 602 if (!tc_cls_can_offload_and_chain0(edev->ndev, type_data)) 603 return -EOPNOTSUPP; 604 605 switch (type) { 606 case TC_SETUP_CLSFLOWER: 607 f = type_data; 608 return qede_set_flower(edev, f, f->common.protocol); 609 default: 610 return -EOPNOTSUPP; 611 } 612 } 613 614 static LIST_HEAD(qede_block_cb_list); 615 616 static int 617 qede_setup_tc_offload(struct net_device *dev, enum tc_setup_type type, 618 void *type_data) 619 { 620 struct qede_dev *edev = netdev_priv(dev); 621 struct tc_mqprio_qopt *mqprio; 622 623 switch (type) { 624 case TC_SETUP_BLOCK: 625 return flow_block_cb_setup_simple(type_data, 626 &qede_block_cb_list, 627 qede_setup_tc_block_cb, 628 edev, edev, true); 629 case TC_SETUP_QDISC_MQPRIO: 630 mqprio = type_data; 631 632 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; 633 return qede_setup_tc(dev, mqprio->num_tc); 634 default: 635 return -EOPNOTSUPP; 636 } 637 } 638 639 static const struct net_device_ops qede_netdev_ops = { 640 .ndo_open = qede_open, 641 .ndo_stop = qede_close, 642 .ndo_start_xmit = qede_start_xmit, 643 .ndo_select_queue = qede_select_queue, 644 .ndo_set_rx_mode = qede_set_rx_mode, 645 .ndo_set_mac_address = qede_set_mac_addr, 646 .ndo_validate_addr = eth_validate_addr, 647 .ndo_change_mtu = qede_change_mtu, 648 .ndo_do_ioctl = qede_ioctl, 649 .ndo_tx_timeout = qede_tx_timeout, 650 #ifdef CONFIG_QED_SRIOV 651 .ndo_set_vf_mac = qede_set_vf_mac, 652 .ndo_set_vf_vlan = qede_set_vf_vlan, 653 .ndo_set_vf_trust = qede_set_vf_trust, 654 #endif 655 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid, 656 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid, 657 .ndo_fix_features = qede_fix_features, 658 .ndo_set_features = qede_set_features, 659 .ndo_get_stats64 = qede_get_stats64, 660 #ifdef CONFIG_QED_SRIOV 661 .ndo_set_vf_link_state = qede_set_vf_link_state, 662 .ndo_set_vf_spoofchk = qede_set_vf_spoofchk, 663 .ndo_get_vf_config = qede_get_vf_config, 664 .ndo_set_vf_rate = qede_set_vf_rate, 665 #endif 666 .ndo_udp_tunnel_add = qede_udp_tunnel_add, 667 .ndo_udp_tunnel_del = qede_udp_tunnel_del, 668 .ndo_features_check = qede_features_check, 669 .ndo_bpf = qede_xdp, 670 #ifdef CONFIG_RFS_ACCEL 671 .ndo_rx_flow_steer = qede_rx_flow_steer, 672 #endif 673 .ndo_setup_tc = qede_setup_tc_offload, 674 }; 675 676 static const struct net_device_ops qede_netdev_vf_ops = { 677 .ndo_open = qede_open, 678 .ndo_stop = qede_close, 679 .ndo_start_xmit = qede_start_xmit, 680 .ndo_select_queue = qede_select_queue, 681 .ndo_set_rx_mode = qede_set_rx_mode, 682 .ndo_set_mac_address = qede_set_mac_addr, 683 .ndo_validate_addr = eth_validate_addr, 684 .ndo_change_mtu = qede_change_mtu, 685 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid, 686 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid, 687 .ndo_fix_features = qede_fix_features, 688 .ndo_set_features = qede_set_features, 689 .ndo_get_stats64 = qede_get_stats64, 690 .ndo_udp_tunnel_add = qede_udp_tunnel_add, 691 .ndo_udp_tunnel_del = qede_udp_tunnel_del, 692 .ndo_features_check = qede_features_check, 693 }; 694 695 static const struct net_device_ops qede_netdev_vf_xdp_ops = { 696 .ndo_open = qede_open, 697 .ndo_stop = qede_close, 698 .ndo_start_xmit = qede_start_xmit, 699 .ndo_select_queue = qede_select_queue, 700 .ndo_set_rx_mode = qede_set_rx_mode, 701 .ndo_set_mac_address = qede_set_mac_addr, 702 .ndo_validate_addr = eth_validate_addr, 703 .ndo_change_mtu = qede_change_mtu, 704 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid, 705 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid, 706 .ndo_fix_features = qede_fix_features, 707 .ndo_set_features = qede_set_features, 708 .ndo_get_stats64 = qede_get_stats64, 709 .ndo_udp_tunnel_add = qede_udp_tunnel_add, 710 .ndo_udp_tunnel_del = qede_udp_tunnel_del, 711 .ndo_features_check = qede_features_check, 712 .ndo_bpf = qede_xdp, 713 }; 714 715 /* ------------------------------------------------------------------------- 716 * START OF PROBE / REMOVE 717 * ------------------------------------------------------------------------- 718 */ 719 720 static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev, 721 struct pci_dev *pdev, 722 struct qed_dev_eth_info *info, 723 u32 dp_module, u8 dp_level) 724 { 725 struct net_device *ndev; 726 struct qede_dev *edev; 727 728 ndev = alloc_etherdev_mqs(sizeof(*edev), 729 info->num_queues * info->num_tc, 730 info->num_queues); 731 if (!ndev) { 732 pr_err("etherdev allocation failed\n"); 733 return NULL; 734 } 735 736 edev = netdev_priv(ndev); 737 edev->ndev = ndev; 738 edev->cdev = cdev; 739 edev->pdev = pdev; 740 edev->dp_module = dp_module; 741 edev->dp_level = dp_level; 742 edev->ops = qed_ops; 743 744 if (is_kdump_kernel()) { 745 edev->q_num_rx_buffers = NUM_RX_BDS_KDUMP_MIN; 746 edev->q_num_tx_buffers = NUM_TX_BDS_KDUMP_MIN; 747 } else { 748 edev->q_num_rx_buffers = NUM_RX_BDS_DEF; 749 edev->q_num_tx_buffers = NUM_TX_BDS_DEF; 750 } 751 752 DP_INFO(edev, "Allocated netdev with %d tx queues and %d rx queues\n", 753 info->num_queues, info->num_queues); 754 755 SET_NETDEV_DEV(ndev, &pdev->dev); 756 757 memset(&edev->stats, 0, sizeof(edev->stats)); 758 memcpy(&edev->dev_info, info, sizeof(*info)); 759 760 /* As ethtool doesn't have the ability to show WoL behavior as 761 * 'default', if device supports it declare it's enabled. 762 */ 763 if (edev->dev_info.common.wol_support) 764 edev->wol_enabled = true; 765 766 INIT_LIST_HEAD(&edev->vlan_list); 767 768 return edev; 769 } 770 771 static void qede_init_ndev(struct qede_dev *edev) 772 { 773 struct net_device *ndev = edev->ndev; 774 struct pci_dev *pdev = edev->pdev; 775 bool udp_tunnel_enable = false; 776 netdev_features_t hw_features; 777 778 pci_set_drvdata(pdev, ndev); 779 780 ndev->mem_start = edev->dev_info.common.pci_mem_start; 781 ndev->base_addr = ndev->mem_start; 782 ndev->mem_end = edev->dev_info.common.pci_mem_end; 783 ndev->irq = edev->dev_info.common.pci_irq; 784 785 ndev->watchdog_timeo = TX_TIMEOUT; 786 787 if (IS_VF(edev)) { 788 if (edev->dev_info.xdp_supported) 789 ndev->netdev_ops = &qede_netdev_vf_xdp_ops; 790 else 791 ndev->netdev_ops = &qede_netdev_vf_ops; 792 } else { 793 ndev->netdev_ops = &qede_netdev_ops; 794 } 795 796 qede_set_ethtool_ops(ndev); 797 798 ndev->priv_flags |= IFF_UNICAST_FLT; 799 800 /* user-changeble features */ 801 hw_features = NETIF_F_GRO | NETIF_F_GRO_HW | NETIF_F_SG | 802 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 803 NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_HW_TC; 804 805 if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) 806 hw_features |= NETIF_F_NTUPLE; 807 808 if (edev->dev_info.common.vxlan_enable || 809 edev->dev_info.common.geneve_enable) 810 udp_tunnel_enable = true; 811 812 if (udp_tunnel_enable || edev->dev_info.common.gre_enable) { 813 hw_features |= NETIF_F_TSO_ECN; 814 ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 815 NETIF_F_SG | NETIF_F_TSO | 816 NETIF_F_TSO_ECN | NETIF_F_TSO6 | 817 NETIF_F_RXCSUM; 818 } 819 820 if (udp_tunnel_enable) { 821 hw_features |= (NETIF_F_GSO_UDP_TUNNEL | 822 NETIF_F_GSO_UDP_TUNNEL_CSUM); 823 ndev->hw_enc_features |= (NETIF_F_GSO_UDP_TUNNEL | 824 NETIF_F_GSO_UDP_TUNNEL_CSUM); 825 } 826 827 if (edev->dev_info.common.gre_enable) { 828 hw_features |= (NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM); 829 ndev->hw_enc_features |= (NETIF_F_GSO_GRE | 830 NETIF_F_GSO_GRE_CSUM); 831 } 832 833 ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM | 834 NETIF_F_HIGHDMA; 835 ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM | 836 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA | 837 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX; 838 839 ndev->hw_features = hw_features; 840 841 /* MTU range: 46 - 9600 */ 842 ndev->min_mtu = ETH_ZLEN - ETH_HLEN; 843 ndev->max_mtu = QEDE_MAX_JUMBO_PACKET_SIZE; 844 845 /* Set network device HW mac */ 846 ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac); 847 848 ndev->mtu = edev->dev_info.common.mtu; 849 } 850 851 /* This function converts from 32b param to two params of level and module 852 * Input 32b decoding: 853 * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the 854 * 'happy' flow, e.g. memory allocation failed. 855 * b30 - enable all INFO prints. INFO prints are for major steps in the flow 856 * and provide important parameters. 857 * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that 858 * module. VERBOSE prints are for tracking the specific flow in low level. 859 * 860 * Notice that the level should be that of the lowest required logs. 861 */ 862 void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level) 863 { 864 *p_dp_level = QED_LEVEL_NOTICE; 865 *p_dp_module = 0; 866 867 if (debug & QED_LOG_VERBOSE_MASK) { 868 *p_dp_level = QED_LEVEL_VERBOSE; 869 *p_dp_module = (debug & 0x3FFFFFFF); 870 } else if (debug & QED_LOG_INFO_MASK) { 871 *p_dp_level = QED_LEVEL_INFO; 872 } else if (debug & QED_LOG_NOTICE_MASK) { 873 *p_dp_level = QED_LEVEL_NOTICE; 874 } 875 } 876 877 static void qede_free_fp_array(struct qede_dev *edev) 878 { 879 if (edev->fp_array) { 880 struct qede_fastpath *fp; 881 int i; 882 883 for_each_queue(i) { 884 fp = &edev->fp_array[i]; 885 886 kfree(fp->sb_info); 887 /* Handle mem alloc failure case where qede_init_fp 888 * didn't register xdp_rxq_info yet. 889 * Implicit only (fp->type & QEDE_FASTPATH_RX) 890 */ 891 if (fp->rxq && xdp_rxq_info_is_reg(&fp->rxq->xdp_rxq)) 892 xdp_rxq_info_unreg(&fp->rxq->xdp_rxq); 893 kfree(fp->rxq); 894 kfree(fp->xdp_tx); 895 kfree(fp->txq); 896 } 897 kfree(edev->fp_array); 898 } 899 900 edev->num_queues = 0; 901 edev->fp_num_tx = 0; 902 edev->fp_num_rx = 0; 903 } 904 905 static int qede_alloc_fp_array(struct qede_dev *edev) 906 { 907 u8 fp_combined, fp_rx = edev->fp_num_rx; 908 struct qede_fastpath *fp; 909 int i; 910 911 edev->fp_array = kcalloc(QEDE_QUEUE_CNT(edev), 912 sizeof(*edev->fp_array), GFP_KERNEL); 913 if (!edev->fp_array) { 914 DP_NOTICE(edev, "fp array allocation failed\n"); 915 goto err; 916 } 917 918 fp_combined = QEDE_QUEUE_CNT(edev) - fp_rx - edev->fp_num_tx; 919 920 /* Allocate the FP elements for Rx queues followed by combined and then 921 * the Tx. This ordering should be maintained so that the respective 922 * queues (Rx or Tx) will be together in the fastpath array and the 923 * associated ids will be sequential. 924 */ 925 for_each_queue(i) { 926 fp = &edev->fp_array[i]; 927 928 fp->sb_info = kzalloc(sizeof(*fp->sb_info), GFP_KERNEL); 929 if (!fp->sb_info) { 930 DP_NOTICE(edev, "sb info struct allocation failed\n"); 931 goto err; 932 } 933 934 if (fp_rx) { 935 fp->type = QEDE_FASTPATH_RX; 936 fp_rx--; 937 } else if (fp_combined) { 938 fp->type = QEDE_FASTPATH_COMBINED; 939 fp_combined--; 940 } else { 941 fp->type = QEDE_FASTPATH_TX; 942 } 943 944 if (fp->type & QEDE_FASTPATH_TX) { 945 fp->txq = kcalloc(edev->dev_info.num_tc, 946 sizeof(*fp->txq), GFP_KERNEL); 947 if (!fp->txq) 948 goto err; 949 } 950 951 if (fp->type & QEDE_FASTPATH_RX) { 952 fp->rxq = kzalloc(sizeof(*fp->rxq), GFP_KERNEL); 953 if (!fp->rxq) 954 goto err; 955 956 if (edev->xdp_prog) { 957 fp->xdp_tx = kzalloc(sizeof(*fp->xdp_tx), 958 GFP_KERNEL); 959 if (!fp->xdp_tx) 960 goto err; 961 fp->type |= QEDE_FASTPATH_XDP; 962 } 963 } 964 } 965 966 return 0; 967 err: 968 qede_free_fp_array(edev); 969 return -ENOMEM; 970 } 971 972 /* The qede lock is used to protect driver state change and driver flows that 973 * are not reentrant. 974 */ 975 void __qede_lock(struct qede_dev *edev) 976 { 977 mutex_lock(&edev->qede_lock); 978 } 979 980 void __qede_unlock(struct qede_dev *edev) 981 { 982 mutex_unlock(&edev->qede_lock); 983 } 984 985 /* This version of the lock should be used when acquiring the RTNL lock is also 986 * needed in addition to the internal qede lock. 987 */ 988 static void qede_lock(struct qede_dev *edev) 989 { 990 rtnl_lock(); 991 __qede_lock(edev); 992 } 993 994 static void qede_unlock(struct qede_dev *edev) 995 { 996 __qede_unlock(edev); 997 rtnl_unlock(); 998 } 999 1000 static void qede_sp_task(struct work_struct *work) 1001 { 1002 struct qede_dev *edev = container_of(work, struct qede_dev, 1003 sp_task.work); 1004 1005 /* The locking scheme depends on the specific flag: 1006 * In case of QEDE_SP_RECOVERY, acquiring the RTNL lock is required to 1007 * ensure that ongoing flows are ended and new ones are not started. 1008 * In other cases - only the internal qede lock should be acquired. 1009 */ 1010 1011 if (test_and_clear_bit(QEDE_SP_RECOVERY, &edev->sp_flags)) { 1012 #ifdef CONFIG_QED_SRIOV 1013 /* SRIOV must be disabled outside the lock to avoid a deadlock. 1014 * The recovery of the active VFs is currently not supported. 1015 */ 1016 if (pci_num_vf(edev->pdev)) 1017 qede_sriov_configure(edev->pdev, 0); 1018 #endif 1019 qede_lock(edev); 1020 qede_recovery_handler(edev); 1021 qede_unlock(edev); 1022 } 1023 1024 __qede_lock(edev); 1025 1026 if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags)) 1027 if (edev->state == QEDE_STATE_OPEN) 1028 qede_config_rx_mode(edev->ndev); 1029 1030 #ifdef CONFIG_RFS_ACCEL 1031 if (test_and_clear_bit(QEDE_SP_ARFS_CONFIG, &edev->sp_flags)) { 1032 if (edev->state == QEDE_STATE_OPEN) 1033 qede_process_arfs_filters(edev, false); 1034 } 1035 #endif 1036 if (test_and_clear_bit(QEDE_SP_HW_ERR, &edev->sp_flags)) 1037 qede_generic_hw_err_handler(edev); 1038 __qede_unlock(edev); 1039 1040 if (test_and_clear_bit(QEDE_SP_AER, &edev->sp_flags)) { 1041 #ifdef CONFIG_QED_SRIOV 1042 /* SRIOV must be disabled outside the lock to avoid a deadlock. 1043 * The recovery of the active VFs is currently not supported. 1044 */ 1045 if (pci_num_vf(edev->pdev)) 1046 qede_sriov_configure(edev->pdev, 0); 1047 #endif 1048 edev->ops->common->recovery_process(edev->cdev); 1049 } 1050 } 1051 1052 static void qede_update_pf_params(struct qed_dev *cdev) 1053 { 1054 struct qed_pf_params pf_params; 1055 u16 num_cons; 1056 1057 /* 64 rx + 64 tx + 64 XDP */ 1058 memset(&pf_params, 0, sizeof(struct qed_pf_params)); 1059 1060 /* 1 rx + 1 xdp + max tx cos */ 1061 num_cons = QED_MIN_L2_CONS; 1062 1063 pf_params.eth_pf_params.num_cons = (MAX_SB_PER_PF_MIMD - 1) * num_cons; 1064 1065 /* Same for VFs - make sure they'll have sufficient connections 1066 * to support XDP Tx queues. 1067 */ 1068 pf_params.eth_pf_params.num_vf_cons = 48; 1069 1070 pf_params.eth_pf_params.num_arfs_filters = QEDE_RFS_MAX_FLTR; 1071 qed_ops->common->update_pf_params(cdev, &pf_params); 1072 } 1073 1074 #define QEDE_FW_VER_STR_SIZE 80 1075 1076 static void qede_log_probe(struct qede_dev *edev) 1077 { 1078 struct qed_dev_info *p_dev_info = &edev->dev_info.common; 1079 u8 buf[QEDE_FW_VER_STR_SIZE]; 1080 size_t left_size; 1081 1082 snprintf(buf, QEDE_FW_VER_STR_SIZE, 1083 "Storm FW %d.%d.%d.%d, Management FW %d.%d.%d.%d", 1084 p_dev_info->fw_major, p_dev_info->fw_minor, p_dev_info->fw_rev, 1085 p_dev_info->fw_eng, 1086 (p_dev_info->mfw_rev & QED_MFW_VERSION_3_MASK) >> 1087 QED_MFW_VERSION_3_OFFSET, 1088 (p_dev_info->mfw_rev & QED_MFW_VERSION_2_MASK) >> 1089 QED_MFW_VERSION_2_OFFSET, 1090 (p_dev_info->mfw_rev & QED_MFW_VERSION_1_MASK) >> 1091 QED_MFW_VERSION_1_OFFSET, 1092 (p_dev_info->mfw_rev & QED_MFW_VERSION_0_MASK) >> 1093 QED_MFW_VERSION_0_OFFSET); 1094 1095 left_size = QEDE_FW_VER_STR_SIZE - strlen(buf); 1096 if (p_dev_info->mbi_version && left_size) 1097 snprintf(buf + strlen(buf), left_size, 1098 " [MBI %d.%d.%d]", 1099 (p_dev_info->mbi_version & QED_MBI_VERSION_2_MASK) >> 1100 QED_MBI_VERSION_2_OFFSET, 1101 (p_dev_info->mbi_version & QED_MBI_VERSION_1_MASK) >> 1102 QED_MBI_VERSION_1_OFFSET, 1103 (p_dev_info->mbi_version & QED_MBI_VERSION_0_MASK) >> 1104 QED_MBI_VERSION_0_OFFSET); 1105 1106 pr_info("qede %02x:%02x.%02x: %s [%s]\n", edev->pdev->bus->number, 1107 PCI_SLOT(edev->pdev->devfn), PCI_FUNC(edev->pdev->devfn), 1108 buf, edev->ndev->name); 1109 } 1110 1111 enum qede_probe_mode { 1112 QEDE_PROBE_NORMAL, 1113 QEDE_PROBE_RECOVERY, 1114 }; 1115 1116 static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level, 1117 bool is_vf, enum qede_probe_mode mode) 1118 { 1119 struct qed_probe_params probe_params; 1120 struct qed_slowpath_params sp_params; 1121 struct qed_dev_eth_info dev_info; 1122 struct qede_dev *edev; 1123 struct qed_dev *cdev; 1124 int rc; 1125 1126 if (unlikely(dp_level & QED_LEVEL_INFO)) 1127 pr_notice("Starting qede probe\n"); 1128 1129 memset(&probe_params, 0, sizeof(probe_params)); 1130 probe_params.protocol = QED_PROTOCOL_ETH; 1131 probe_params.dp_module = dp_module; 1132 probe_params.dp_level = dp_level; 1133 probe_params.is_vf = is_vf; 1134 probe_params.recov_in_prog = (mode == QEDE_PROBE_RECOVERY); 1135 cdev = qed_ops->common->probe(pdev, &probe_params); 1136 if (!cdev) { 1137 rc = -ENODEV; 1138 goto err0; 1139 } 1140 1141 qede_update_pf_params(cdev); 1142 1143 /* Start the Slowpath-process */ 1144 memset(&sp_params, 0, sizeof(sp_params)); 1145 sp_params.int_mode = QED_INT_MODE_MSIX; 1146 sp_params.drv_major = QEDE_MAJOR_VERSION; 1147 sp_params.drv_minor = QEDE_MINOR_VERSION; 1148 sp_params.drv_rev = QEDE_REVISION_VERSION; 1149 sp_params.drv_eng = QEDE_ENGINEERING_VERSION; 1150 strlcpy(sp_params.name, "qede LAN", QED_DRV_VER_STR_SIZE); 1151 rc = qed_ops->common->slowpath_start(cdev, &sp_params); 1152 if (rc) { 1153 pr_notice("Cannot start slowpath\n"); 1154 goto err1; 1155 } 1156 1157 /* Learn information crucial for qede to progress */ 1158 rc = qed_ops->fill_dev_info(cdev, &dev_info); 1159 if (rc) 1160 goto err2; 1161 1162 if (mode != QEDE_PROBE_RECOVERY) { 1163 edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module, 1164 dp_level); 1165 if (!edev) { 1166 rc = -ENOMEM; 1167 goto err2; 1168 } 1169 } else { 1170 struct net_device *ndev = pci_get_drvdata(pdev); 1171 1172 edev = netdev_priv(ndev); 1173 edev->cdev = cdev; 1174 memset(&edev->stats, 0, sizeof(edev->stats)); 1175 memcpy(&edev->dev_info, &dev_info, sizeof(dev_info)); 1176 } 1177 1178 if (is_vf) 1179 set_bit(QEDE_FLAGS_IS_VF, &edev->flags); 1180 1181 qede_init_ndev(edev); 1182 1183 rc = qede_rdma_dev_add(edev, (mode == QEDE_PROBE_RECOVERY)); 1184 if (rc) 1185 goto err3; 1186 1187 if (mode != QEDE_PROBE_RECOVERY) { 1188 /* Prepare the lock prior to the registration of the netdev, 1189 * as once it's registered we might reach flows requiring it 1190 * [it's even possible to reach a flow needing it directly 1191 * from there, although it's unlikely]. 1192 */ 1193 INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task); 1194 mutex_init(&edev->qede_lock); 1195 1196 rc = register_netdev(edev->ndev); 1197 if (rc) { 1198 DP_NOTICE(edev, "Cannot register net-device\n"); 1199 goto err4; 1200 } 1201 } 1202 1203 edev->ops->common->set_name(cdev, edev->ndev->name); 1204 1205 /* PTP not supported on VFs */ 1206 if (!is_vf) 1207 qede_ptp_enable(edev); 1208 1209 edev->ops->register_ops(cdev, &qede_ll_ops, edev); 1210 1211 #ifdef CONFIG_DCB 1212 if (!IS_VF(edev)) 1213 qede_set_dcbnl_ops(edev->ndev); 1214 #endif 1215 1216 edev->rx_copybreak = QEDE_RX_HDR_SIZE; 1217 1218 qede_log_probe(edev); 1219 return 0; 1220 1221 err4: 1222 qede_rdma_dev_remove(edev, (mode == QEDE_PROBE_RECOVERY)); 1223 err3: 1224 free_netdev(edev->ndev); 1225 err2: 1226 qed_ops->common->slowpath_stop(cdev); 1227 err1: 1228 qed_ops->common->remove(cdev); 1229 err0: 1230 return rc; 1231 } 1232 1233 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id) 1234 { 1235 bool is_vf = false; 1236 u32 dp_module = 0; 1237 u8 dp_level = 0; 1238 1239 switch ((enum qede_pci_private)id->driver_data) { 1240 case QEDE_PRIVATE_VF: 1241 if (debug & QED_LOG_VERBOSE_MASK) 1242 dev_err(&pdev->dev, "Probing a VF\n"); 1243 is_vf = true; 1244 break; 1245 default: 1246 if (debug & QED_LOG_VERBOSE_MASK) 1247 dev_err(&pdev->dev, "Probing a PF\n"); 1248 } 1249 1250 qede_config_debug(debug, &dp_module, &dp_level); 1251 1252 return __qede_probe(pdev, dp_module, dp_level, is_vf, 1253 QEDE_PROBE_NORMAL); 1254 } 1255 1256 enum qede_remove_mode { 1257 QEDE_REMOVE_NORMAL, 1258 QEDE_REMOVE_RECOVERY, 1259 }; 1260 1261 static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode) 1262 { 1263 struct net_device *ndev = pci_get_drvdata(pdev); 1264 struct qede_dev *edev; 1265 struct qed_dev *cdev; 1266 1267 if (!ndev) { 1268 dev_info(&pdev->dev, "Device has already been removed\n"); 1269 return; 1270 } 1271 1272 edev = netdev_priv(ndev); 1273 cdev = edev->cdev; 1274 1275 DP_INFO(edev, "Starting qede_remove\n"); 1276 1277 qede_rdma_dev_remove(edev, (mode == QEDE_REMOVE_RECOVERY)); 1278 1279 if (mode != QEDE_REMOVE_RECOVERY) { 1280 unregister_netdev(ndev); 1281 1282 cancel_delayed_work_sync(&edev->sp_task); 1283 1284 edev->ops->common->set_power_state(cdev, PCI_D0); 1285 1286 pci_set_drvdata(pdev, NULL); 1287 } 1288 1289 qede_ptp_disable(edev); 1290 1291 /* Use global ops since we've freed edev */ 1292 qed_ops->common->slowpath_stop(cdev); 1293 if (system_state == SYSTEM_POWER_OFF) 1294 return; 1295 qed_ops->common->remove(cdev); 1296 edev->cdev = NULL; 1297 1298 /* Since this can happen out-of-sync with other flows, 1299 * don't release the netdevice until after slowpath stop 1300 * has been called to guarantee various other contexts 1301 * [e.g., QED register callbacks] won't break anything when 1302 * accessing the netdevice. 1303 */ 1304 if (mode != QEDE_REMOVE_RECOVERY) 1305 free_netdev(ndev); 1306 1307 dev_info(&pdev->dev, "Ending qede_remove successfully\n"); 1308 } 1309 1310 static void qede_remove(struct pci_dev *pdev) 1311 { 1312 __qede_remove(pdev, QEDE_REMOVE_NORMAL); 1313 } 1314 1315 static void qede_shutdown(struct pci_dev *pdev) 1316 { 1317 __qede_remove(pdev, QEDE_REMOVE_NORMAL); 1318 } 1319 1320 /* ------------------------------------------------------------------------- 1321 * START OF LOAD / UNLOAD 1322 * ------------------------------------------------------------------------- 1323 */ 1324 1325 static int qede_set_num_queues(struct qede_dev *edev) 1326 { 1327 int rc; 1328 u16 rss_num; 1329 1330 /* Setup queues according to possible resources*/ 1331 if (edev->req_queues) 1332 rss_num = edev->req_queues; 1333 else 1334 rss_num = netif_get_num_default_rss_queues() * 1335 edev->dev_info.common.num_hwfns; 1336 1337 rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num); 1338 1339 rc = edev->ops->common->set_fp_int(edev->cdev, rss_num); 1340 if (rc > 0) { 1341 /* Managed to request interrupts for our queues */ 1342 edev->num_queues = rc; 1343 DP_INFO(edev, "Managed %d [of %d] RSS queues\n", 1344 QEDE_QUEUE_CNT(edev), rss_num); 1345 rc = 0; 1346 } 1347 1348 edev->fp_num_tx = edev->req_num_tx; 1349 edev->fp_num_rx = edev->req_num_rx; 1350 1351 return rc; 1352 } 1353 1354 static void qede_free_mem_sb(struct qede_dev *edev, struct qed_sb_info *sb_info, 1355 u16 sb_id) 1356 { 1357 if (sb_info->sb_virt) { 1358 edev->ops->common->sb_release(edev->cdev, sb_info, sb_id, 1359 QED_SB_TYPE_L2_QUEUE); 1360 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt), 1361 (void *)sb_info->sb_virt, sb_info->sb_phys); 1362 memset(sb_info, 0, sizeof(*sb_info)); 1363 } 1364 } 1365 1366 /* This function allocates fast-path status block memory */ 1367 static int qede_alloc_mem_sb(struct qede_dev *edev, 1368 struct qed_sb_info *sb_info, u16 sb_id) 1369 { 1370 struct status_block_e4 *sb_virt; 1371 dma_addr_t sb_phys; 1372 int rc; 1373 1374 sb_virt = dma_alloc_coherent(&edev->pdev->dev, 1375 sizeof(*sb_virt), &sb_phys, GFP_KERNEL); 1376 if (!sb_virt) { 1377 DP_ERR(edev, "Status block allocation failed\n"); 1378 return -ENOMEM; 1379 } 1380 1381 rc = edev->ops->common->sb_init(edev->cdev, sb_info, 1382 sb_virt, sb_phys, sb_id, 1383 QED_SB_TYPE_L2_QUEUE); 1384 if (rc) { 1385 DP_ERR(edev, "Status block initialization failed\n"); 1386 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt), 1387 sb_virt, sb_phys); 1388 return rc; 1389 } 1390 1391 return 0; 1392 } 1393 1394 static void qede_free_rx_buffers(struct qede_dev *edev, 1395 struct qede_rx_queue *rxq) 1396 { 1397 u16 i; 1398 1399 for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) { 1400 struct sw_rx_data *rx_buf; 1401 struct page *data; 1402 1403 rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX]; 1404 data = rx_buf->data; 1405 1406 dma_unmap_page(&edev->pdev->dev, 1407 rx_buf->mapping, PAGE_SIZE, rxq->data_direction); 1408 1409 rx_buf->data = NULL; 1410 __free_page(data); 1411 } 1412 } 1413 1414 static void qede_free_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq) 1415 { 1416 /* Free rx buffers */ 1417 qede_free_rx_buffers(edev, rxq); 1418 1419 /* Free the parallel SW ring */ 1420 kfree(rxq->sw_rx_ring); 1421 1422 /* Free the real RQ ring used by FW */ 1423 edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring); 1424 edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring); 1425 } 1426 1427 static void qede_set_tpa_param(struct qede_rx_queue *rxq) 1428 { 1429 int i; 1430 1431 for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) { 1432 struct qede_agg_info *tpa_info = &rxq->tpa_info[i]; 1433 1434 tpa_info->state = QEDE_AGG_STATE_NONE; 1435 } 1436 } 1437 1438 /* This function allocates all memory needed per Rx queue */ 1439 static int qede_alloc_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq) 1440 { 1441 int i, rc, size; 1442 1443 rxq->num_rx_buffers = edev->q_num_rx_buffers; 1444 1445 rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD + edev->ndev->mtu; 1446 1447 rxq->rx_headroom = edev->xdp_prog ? XDP_PACKET_HEADROOM : NET_SKB_PAD; 1448 size = rxq->rx_headroom + 1449 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 1450 1451 /* Make sure that the headroom and payload fit in a single page */ 1452 if (rxq->rx_buf_size + size > PAGE_SIZE) 1453 rxq->rx_buf_size = PAGE_SIZE - size; 1454 1455 /* Segment size to split a page in multiple equal parts, 1456 * unless XDP is used in which case we'd use the entire page. 1457 */ 1458 if (!edev->xdp_prog) { 1459 size = size + rxq->rx_buf_size; 1460 rxq->rx_buf_seg_size = roundup_pow_of_two(size); 1461 } else { 1462 rxq->rx_buf_seg_size = PAGE_SIZE; 1463 edev->ndev->features &= ~NETIF_F_GRO_HW; 1464 } 1465 1466 /* Allocate the parallel driver ring for Rx buffers */ 1467 size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE; 1468 rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL); 1469 if (!rxq->sw_rx_ring) { 1470 DP_ERR(edev, "Rx buffers ring allocation failed\n"); 1471 rc = -ENOMEM; 1472 goto err; 1473 } 1474 1475 /* Allocate FW Rx ring */ 1476 rc = edev->ops->common->chain_alloc(edev->cdev, 1477 QED_CHAIN_USE_TO_CONSUME_PRODUCE, 1478 QED_CHAIN_MODE_NEXT_PTR, 1479 QED_CHAIN_CNT_TYPE_U16, 1480 RX_RING_SIZE, 1481 sizeof(struct eth_rx_bd), 1482 &rxq->rx_bd_ring, NULL); 1483 if (rc) 1484 goto err; 1485 1486 /* Allocate FW completion ring */ 1487 rc = edev->ops->common->chain_alloc(edev->cdev, 1488 QED_CHAIN_USE_TO_CONSUME, 1489 QED_CHAIN_MODE_PBL, 1490 QED_CHAIN_CNT_TYPE_U16, 1491 RX_RING_SIZE, 1492 sizeof(union eth_rx_cqe), 1493 &rxq->rx_comp_ring, NULL); 1494 if (rc) 1495 goto err; 1496 1497 /* Allocate buffers for the Rx ring */ 1498 rxq->filled_buffers = 0; 1499 for (i = 0; i < rxq->num_rx_buffers; i++) { 1500 rc = qede_alloc_rx_buffer(rxq, false); 1501 if (rc) { 1502 DP_ERR(edev, 1503 "Rx buffers allocation failed at index %d\n", i); 1504 goto err; 1505 } 1506 } 1507 1508 edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO_HW); 1509 if (!edev->gro_disable) 1510 qede_set_tpa_param(rxq); 1511 err: 1512 return rc; 1513 } 1514 1515 static void qede_free_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq) 1516 { 1517 /* Free the parallel SW ring */ 1518 if (txq->is_xdp) 1519 kfree(txq->sw_tx_ring.xdp); 1520 else 1521 kfree(txq->sw_tx_ring.skbs); 1522 1523 /* Free the real RQ ring used by FW */ 1524 edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl); 1525 } 1526 1527 /* This function allocates all memory needed per Tx queue */ 1528 static int qede_alloc_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq) 1529 { 1530 union eth_tx_bd_types *p_virt; 1531 int size, rc; 1532 1533 txq->num_tx_buffers = edev->q_num_tx_buffers; 1534 1535 /* Allocate the parallel driver ring for Tx buffers */ 1536 if (txq->is_xdp) { 1537 size = sizeof(*txq->sw_tx_ring.xdp) * txq->num_tx_buffers; 1538 txq->sw_tx_ring.xdp = kzalloc(size, GFP_KERNEL); 1539 if (!txq->sw_tx_ring.xdp) 1540 goto err; 1541 } else { 1542 size = sizeof(*txq->sw_tx_ring.skbs) * txq->num_tx_buffers; 1543 txq->sw_tx_ring.skbs = kzalloc(size, GFP_KERNEL); 1544 if (!txq->sw_tx_ring.skbs) 1545 goto err; 1546 } 1547 1548 rc = edev->ops->common->chain_alloc(edev->cdev, 1549 QED_CHAIN_USE_TO_CONSUME_PRODUCE, 1550 QED_CHAIN_MODE_PBL, 1551 QED_CHAIN_CNT_TYPE_U16, 1552 txq->num_tx_buffers, 1553 sizeof(*p_virt), 1554 &txq->tx_pbl, NULL); 1555 if (rc) 1556 goto err; 1557 1558 return 0; 1559 1560 err: 1561 qede_free_mem_txq(edev, txq); 1562 return -ENOMEM; 1563 } 1564 1565 /* This function frees all memory of a single fp */ 1566 static void qede_free_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp) 1567 { 1568 qede_free_mem_sb(edev, fp->sb_info, fp->id); 1569 1570 if (fp->type & QEDE_FASTPATH_RX) 1571 qede_free_mem_rxq(edev, fp->rxq); 1572 1573 if (fp->type & QEDE_FASTPATH_XDP) 1574 qede_free_mem_txq(edev, fp->xdp_tx); 1575 1576 if (fp->type & QEDE_FASTPATH_TX) { 1577 int cos; 1578 1579 for_each_cos_in_txq(edev, cos) 1580 qede_free_mem_txq(edev, &fp->txq[cos]); 1581 } 1582 } 1583 1584 /* This function allocates all memory needed for a single fp (i.e. an entity 1585 * which contains status block, one rx queue and/or multiple per-TC tx queues. 1586 */ 1587 static int qede_alloc_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp) 1588 { 1589 int rc = 0; 1590 1591 rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->id); 1592 if (rc) 1593 goto out; 1594 1595 if (fp->type & QEDE_FASTPATH_RX) { 1596 rc = qede_alloc_mem_rxq(edev, fp->rxq); 1597 if (rc) 1598 goto out; 1599 } 1600 1601 if (fp->type & QEDE_FASTPATH_XDP) { 1602 rc = qede_alloc_mem_txq(edev, fp->xdp_tx); 1603 if (rc) 1604 goto out; 1605 } 1606 1607 if (fp->type & QEDE_FASTPATH_TX) { 1608 int cos; 1609 1610 for_each_cos_in_txq(edev, cos) { 1611 rc = qede_alloc_mem_txq(edev, &fp->txq[cos]); 1612 if (rc) 1613 goto out; 1614 } 1615 } 1616 1617 out: 1618 return rc; 1619 } 1620 1621 static void qede_free_mem_load(struct qede_dev *edev) 1622 { 1623 int i; 1624 1625 for_each_queue(i) { 1626 struct qede_fastpath *fp = &edev->fp_array[i]; 1627 1628 qede_free_mem_fp(edev, fp); 1629 } 1630 } 1631 1632 /* This function allocates all qede memory at NIC load. */ 1633 static int qede_alloc_mem_load(struct qede_dev *edev) 1634 { 1635 int rc = 0, queue_id; 1636 1637 for (queue_id = 0; queue_id < QEDE_QUEUE_CNT(edev); queue_id++) { 1638 struct qede_fastpath *fp = &edev->fp_array[queue_id]; 1639 1640 rc = qede_alloc_mem_fp(edev, fp); 1641 if (rc) { 1642 DP_ERR(edev, 1643 "Failed to allocate memory for fastpath - rss id = %d\n", 1644 queue_id); 1645 qede_free_mem_load(edev); 1646 return rc; 1647 } 1648 } 1649 1650 return 0; 1651 } 1652 1653 static void qede_empty_tx_queue(struct qede_dev *edev, 1654 struct qede_tx_queue *txq) 1655 { 1656 unsigned int pkts_compl = 0, bytes_compl = 0; 1657 struct netdev_queue *netdev_txq; 1658 int rc, len = 0; 1659 1660 netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id); 1661 1662 while (qed_chain_get_cons_idx(&txq->tx_pbl) != 1663 qed_chain_get_prod_idx(&txq->tx_pbl)) { 1664 DP_VERBOSE(edev, NETIF_MSG_IFDOWN, 1665 "Freeing a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n", 1666 txq->index, qed_chain_get_cons_idx(&txq->tx_pbl), 1667 qed_chain_get_prod_idx(&txq->tx_pbl)); 1668 1669 rc = qede_free_tx_pkt(edev, txq, &len); 1670 if (rc) { 1671 DP_NOTICE(edev, 1672 "Failed to free a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n", 1673 txq->index, 1674 qed_chain_get_cons_idx(&txq->tx_pbl), 1675 qed_chain_get_prod_idx(&txq->tx_pbl)); 1676 break; 1677 } 1678 1679 bytes_compl += len; 1680 pkts_compl++; 1681 txq->sw_tx_cons++; 1682 } 1683 1684 netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl); 1685 } 1686 1687 static void qede_empty_tx_queues(struct qede_dev *edev) 1688 { 1689 int i; 1690 1691 for_each_queue(i) 1692 if (edev->fp_array[i].type & QEDE_FASTPATH_TX) { 1693 int cos; 1694 1695 for_each_cos_in_txq(edev, cos) { 1696 struct qede_fastpath *fp; 1697 1698 fp = &edev->fp_array[i]; 1699 qede_empty_tx_queue(edev, 1700 &fp->txq[cos]); 1701 } 1702 } 1703 } 1704 1705 /* This function inits fp content and resets the SB, RXQ and TXQ structures */ 1706 static void qede_init_fp(struct qede_dev *edev) 1707 { 1708 int queue_id, rxq_index = 0, txq_index = 0; 1709 struct qede_fastpath *fp; 1710 1711 for_each_queue(queue_id) { 1712 fp = &edev->fp_array[queue_id]; 1713 1714 fp->edev = edev; 1715 fp->id = queue_id; 1716 1717 if (fp->type & QEDE_FASTPATH_XDP) { 1718 fp->xdp_tx->index = QEDE_TXQ_IDX_TO_XDP(edev, 1719 rxq_index); 1720 fp->xdp_tx->is_xdp = 1; 1721 } 1722 1723 if (fp->type & QEDE_FASTPATH_RX) { 1724 fp->rxq->rxq_id = rxq_index++; 1725 1726 /* Determine how to map buffers for this queue */ 1727 if (fp->type & QEDE_FASTPATH_XDP) 1728 fp->rxq->data_direction = DMA_BIDIRECTIONAL; 1729 else 1730 fp->rxq->data_direction = DMA_FROM_DEVICE; 1731 fp->rxq->dev = &edev->pdev->dev; 1732 1733 /* Driver have no error path from here */ 1734 WARN_ON(xdp_rxq_info_reg(&fp->rxq->xdp_rxq, edev->ndev, 1735 fp->rxq->rxq_id) < 0); 1736 } 1737 1738 if (fp->type & QEDE_FASTPATH_TX) { 1739 int cos; 1740 1741 for_each_cos_in_txq(edev, cos) { 1742 struct qede_tx_queue *txq = &fp->txq[cos]; 1743 u16 ndev_tx_id; 1744 1745 txq->cos = cos; 1746 txq->index = txq_index; 1747 ndev_tx_id = QEDE_TXQ_TO_NDEV_TXQ_ID(edev, txq); 1748 txq->ndev_txq_id = ndev_tx_id; 1749 1750 if (edev->dev_info.is_legacy) 1751 txq->is_legacy = true; 1752 txq->dev = &edev->pdev->dev; 1753 } 1754 1755 txq_index++; 1756 } 1757 1758 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d", 1759 edev->ndev->name, queue_id); 1760 } 1761 } 1762 1763 static int qede_set_real_num_queues(struct qede_dev *edev) 1764 { 1765 int rc = 0; 1766 1767 rc = netif_set_real_num_tx_queues(edev->ndev, 1768 QEDE_TSS_COUNT(edev) * 1769 edev->dev_info.num_tc); 1770 if (rc) { 1771 DP_NOTICE(edev, "Failed to set real number of Tx queues\n"); 1772 return rc; 1773 } 1774 1775 rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_COUNT(edev)); 1776 if (rc) { 1777 DP_NOTICE(edev, "Failed to set real number of Rx queues\n"); 1778 return rc; 1779 } 1780 1781 return 0; 1782 } 1783 1784 static void qede_napi_disable_remove(struct qede_dev *edev) 1785 { 1786 int i; 1787 1788 for_each_queue(i) { 1789 napi_disable(&edev->fp_array[i].napi); 1790 1791 netif_napi_del(&edev->fp_array[i].napi); 1792 } 1793 } 1794 1795 static void qede_napi_add_enable(struct qede_dev *edev) 1796 { 1797 int i; 1798 1799 /* Add NAPI objects */ 1800 for_each_queue(i) { 1801 netif_napi_add(edev->ndev, &edev->fp_array[i].napi, 1802 qede_poll, NAPI_POLL_WEIGHT); 1803 napi_enable(&edev->fp_array[i].napi); 1804 } 1805 } 1806 1807 static void qede_sync_free_irqs(struct qede_dev *edev) 1808 { 1809 int i; 1810 1811 for (i = 0; i < edev->int_info.used_cnt; i++) { 1812 if (edev->int_info.msix_cnt) { 1813 synchronize_irq(edev->int_info.msix[i].vector); 1814 free_irq(edev->int_info.msix[i].vector, 1815 &edev->fp_array[i]); 1816 } else { 1817 edev->ops->common->simd_handler_clean(edev->cdev, i); 1818 } 1819 } 1820 1821 edev->int_info.used_cnt = 0; 1822 } 1823 1824 static int qede_req_msix_irqs(struct qede_dev *edev) 1825 { 1826 int i, rc; 1827 1828 /* Sanitize number of interrupts == number of prepared RSS queues */ 1829 if (QEDE_QUEUE_CNT(edev) > edev->int_info.msix_cnt) { 1830 DP_ERR(edev, 1831 "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n", 1832 QEDE_QUEUE_CNT(edev), edev->int_info.msix_cnt); 1833 return -EINVAL; 1834 } 1835 1836 for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) { 1837 #ifdef CONFIG_RFS_ACCEL 1838 struct qede_fastpath *fp = &edev->fp_array[i]; 1839 1840 if (edev->ndev->rx_cpu_rmap && (fp->type & QEDE_FASTPATH_RX)) { 1841 rc = irq_cpu_rmap_add(edev->ndev->rx_cpu_rmap, 1842 edev->int_info.msix[i].vector); 1843 if (rc) { 1844 DP_ERR(edev, "Failed to add CPU rmap\n"); 1845 qede_free_arfs(edev); 1846 } 1847 } 1848 #endif 1849 rc = request_irq(edev->int_info.msix[i].vector, 1850 qede_msix_fp_int, 0, edev->fp_array[i].name, 1851 &edev->fp_array[i]); 1852 if (rc) { 1853 DP_ERR(edev, "Request fp %d irq failed\n", i); 1854 qede_sync_free_irqs(edev); 1855 return rc; 1856 } 1857 DP_VERBOSE(edev, NETIF_MSG_INTR, 1858 "Requested fp irq for %s [entry %d]. Cookie is at %p\n", 1859 edev->fp_array[i].name, i, 1860 &edev->fp_array[i]); 1861 edev->int_info.used_cnt++; 1862 } 1863 1864 return 0; 1865 } 1866 1867 static void qede_simd_fp_handler(void *cookie) 1868 { 1869 struct qede_fastpath *fp = (struct qede_fastpath *)cookie; 1870 1871 napi_schedule_irqoff(&fp->napi); 1872 } 1873 1874 static int qede_setup_irqs(struct qede_dev *edev) 1875 { 1876 int i, rc = 0; 1877 1878 /* Learn Interrupt configuration */ 1879 rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info); 1880 if (rc) 1881 return rc; 1882 1883 if (edev->int_info.msix_cnt) { 1884 rc = qede_req_msix_irqs(edev); 1885 if (rc) 1886 return rc; 1887 edev->ndev->irq = edev->int_info.msix[0].vector; 1888 } else { 1889 const struct qed_common_ops *ops; 1890 1891 /* qed should learn receive the RSS ids and callbacks */ 1892 ops = edev->ops->common; 1893 for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) 1894 ops->simd_handler_config(edev->cdev, 1895 &edev->fp_array[i], i, 1896 qede_simd_fp_handler); 1897 edev->int_info.used_cnt = QEDE_QUEUE_CNT(edev); 1898 } 1899 return 0; 1900 } 1901 1902 static int qede_drain_txq(struct qede_dev *edev, 1903 struct qede_tx_queue *txq, bool allow_drain) 1904 { 1905 int rc, cnt = 1000; 1906 1907 while (txq->sw_tx_cons != txq->sw_tx_prod) { 1908 if (!cnt) { 1909 if (allow_drain) { 1910 DP_NOTICE(edev, 1911 "Tx queue[%d] is stuck, requesting MCP to drain\n", 1912 txq->index); 1913 rc = edev->ops->common->drain(edev->cdev); 1914 if (rc) 1915 return rc; 1916 return qede_drain_txq(edev, txq, false); 1917 } 1918 DP_NOTICE(edev, 1919 "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n", 1920 txq->index, txq->sw_tx_prod, 1921 txq->sw_tx_cons); 1922 return -ENODEV; 1923 } 1924 cnt--; 1925 usleep_range(1000, 2000); 1926 barrier(); 1927 } 1928 1929 /* FW finished processing, wait for HW to transmit all tx packets */ 1930 usleep_range(1000, 2000); 1931 1932 return 0; 1933 } 1934 1935 static int qede_stop_txq(struct qede_dev *edev, 1936 struct qede_tx_queue *txq, int rss_id) 1937 { 1938 /* delete doorbell from doorbell recovery mechanism */ 1939 edev->ops->common->db_recovery_del(edev->cdev, txq->doorbell_addr, 1940 &txq->tx_db); 1941 1942 return edev->ops->q_tx_stop(edev->cdev, rss_id, txq->handle); 1943 } 1944 1945 static int qede_stop_queues(struct qede_dev *edev) 1946 { 1947 struct qed_update_vport_params *vport_update_params; 1948 struct qed_dev *cdev = edev->cdev; 1949 struct qede_fastpath *fp; 1950 int rc, i; 1951 1952 /* Disable the vport */ 1953 vport_update_params = vzalloc(sizeof(*vport_update_params)); 1954 if (!vport_update_params) 1955 return -ENOMEM; 1956 1957 vport_update_params->vport_id = 0; 1958 vport_update_params->update_vport_active_flg = 1; 1959 vport_update_params->vport_active_flg = 0; 1960 vport_update_params->update_rss_flg = 0; 1961 1962 rc = edev->ops->vport_update(cdev, vport_update_params); 1963 vfree(vport_update_params); 1964 1965 if (rc) { 1966 DP_ERR(edev, "Failed to update vport\n"); 1967 return rc; 1968 } 1969 1970 /* Flush Tx queues. If needed, request drain from MCP */ 1971 for_each_queue(i) { 1972 fp = &edev->fp_array[i]; 1973 1974 if (fp->type & QEDE_FASTPATH_TX) { 1975 int cos; 1976 1977 for_each_cos_in_txq(edev, cos) { 1978 rc = qede_drain_txq(edev, &fp->txq[cos], true); 1979 if (rc) 1980 return rc; 1981 } 1982 } 1983 1984 if (fp->type & QEDE_FASTPATH_XDP) { 1985 rc = qede_drain_txq(edev, fp->xdp_tx, true); 1986 if (rc) 1987 return rc; 1988 } 1989 } 1990 1991 /* Stop all Queues in reverse order */ 1992 for (i = QEDE_QUEUE_CNT(edev) - 1; i >= 0; i--) { 1993 fp = &edev->fp_array[i]; 1994 1995 /* Stop the Tx Queue(s) */ 1996 if (fp->type & QEDE_FASTPATH_TX) { 1997 int cos; 1998 1999 for_each_cos_in_txq(edev, cos) { 2000 rc = qede_stop_txq(edev, &fp->txq[cos], i); 2001 if (rc) 2002 return rc; 2003 } 2004 } 2005 2006 /* Stop the Rx Queue */ 2007 if (fp->type & QEDE_FASTPATH_RX) { 2008 rc = edev->ops->q_rx_stop(cdev, i, fp->rxq->handle); 2009 if (rc) { 2010 DP_ERR(edev, "Failed to stop RXQ #%d\n", i); 2011 return rc; 2012 } 2013 } 2014 2015 /* Stop the XDP forwarding queue */ 2016 if (fp->type & QEDE_FASTPATH_XDP) { 2017 rc = qede_stop_txq(edev, fp->xdp_tx, i); 2018 if (rc) 2019 return rc; 2020 2021 bpf_prog_put(fp->rxq->xdp_prog); 2022 } 2023 } 2024 2025 /* Stop the vport */ 2026 rc = edev->ops->vport_stop(cdev, 0); 2027 if (rc) 2028 DP_ERR(edev, "Failed to stop VPORT\n"); 2029 2030 return rc; 2031 } 2032 2033 static int qede_start_txq(struct qede_dev *edev, 2034 struct qede_fastpath *fp, 2035 struct qede_tx_queue *txq, u8 rss_id, u16 sb_idx) 2036 { 2037 dma_addr_t phys_table = qed_chain_get_pbl_phys(&txq->tx_pbl); 2038 u32 page_cnt = qed_chain_get_page_cnt(&txq->tx_pbl); 2039 struct qed_queue_start_common_params params; 2040 struct qed_txq_start_ret_params ret_params; 2041 int rc; 2042 2043 memset(¶ms, 0, sizeof(params)); 2044 memset(&ret_params, 0, sizeof(ret_params)); 2045 2046 /* Let the XDP queue share the queue-zone with one of the regular txq. 2047 * We don't really care about its coalescing. 2048 */ 2049 if (txq->is_xdp) 2050 params.queue_id = QEDE_TXQ_XDP_TO_IDX(edev, txq); 2051 else 2052 params.queue_id = txq->index; 2053 2054 params.p_sb = fp->sb_info; 2055 params.sb_idx = sb_idx; 2056 params.tc = txq->cos; 2057 2058 rc = edev->ops->q_tx_start(edev->cdev, rss_id, ¶ms, phys_table, 2059 page_cnt, &ret_params); 2060 if (rc) { 2061 DP_ERR(edev, "Start TXQ #%d failed %d\n", txq->index, rc); 2062 return rc; 2063 } 2064 2065 txq->doorbell_addr = ret_params.p_doorbell; 2066 txq->handle = ret_params.p_handle; 2067 2068 /* Determine the FW consumer address associated */ 2069 txq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[sb_idx]; 2070 2071 /* Prepare the doorbell parameters */ 2072 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST, DB_DEST_XCM); 2073 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD, DB_AGG_CMD_SET); 2074 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_VAL_SEL, 2075 DQ_XCM_ETH_TX_BD_PROD_CMD); 2076 txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD; 2077 2078 /* register doorbell with doorbell recovery mechanism */ 2079 rc = edev->ops->common->db_recovery_add(edev->cdev, txq->doorbell_addr, 2080 &txq->tx_db, DB_REC_WIDTH_32B, 2081 DB_REC_KERNEL); 2082 2083 return rc; 2084 } 2085 2086 static int qede_start_queues(struct qede_dev *edev, bool clear_stats) 2087 { 2088 int vlan_removal_en = 1; 2089 struct qed_dev *cdev = edev->cdev; 2090 struct qed_dev_info *qed_info = &edev->dev_info.common; 2091 struct qed_update_vport_params *vport_update_params; 2092 struct qed_queue_start_common_params q_params; 2093 struct qed_start_vport_params start = {0}; 2094 int rc, i; 2095 2096 if (!edev->num_queues) { 2097 DP_ERR(edev, 2098 "Cannot update V-VPORT as active as there are no Rx queues\n"); 2099 return -EINVAL; 2100 } 2101 2102 vport_update_params = vzalloc(sizeof(*vport_update_params)); 2103 if (!vport_update_params) 2104 return -ENOMEM; 2105 2106 start.handle_ptp_pkts = !!(edev->ptp); 2107 start.gro_enable = !edev->gro_disable; 2108 start.mtu = edev->ndev->mtu; 2109 start.vport_id = 0; 2110 start.drop_ttl0 = true; 2111 start.remove_inner_vlan = vlan_removal_en; 2112 start.clear_stats = clear_stats; 2113 2114 rc = edev->ops->vport_start(cdev, &start); 2115 2116 if (rc) { 2117 DP_ERR(edev, "Start V-PORT failed %d\n", rc); 2118 goto out; 2119 } 2120 2121 DP_VERBOSE(edev, NETIF_MSG_IFUP, 2122 "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n", 2123 start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en); 2124 2125 for_each_queue(i) { 2126 struct qede_fastpath *fp = &edev->fp_array[i]; 2127 dma_addr_t p_phys_table; 2128 u32 page_cnt; 2129 2130 if (fp->type & QEDE_FASTPATH_RX) { 2131 struct qed_rxq_start_ret_params ret_params; 2132 struct qede_rx_queue *rxq = fp->rxq; 2133 __le16 *val; 2134 2135 memset(&ret_params, 0, sizeof(ret_params)); 2136 memset(&q_params, 0, sizeof(q_params)); 2137 q_params.queue_id = rxq->rxq_id; 2138 q_params.vport_id = 0; 2139 q_params.p_sb = fp->sb_info; 2140 q_params.sb_idx = RX_PI; 2141 2142 p_phys_table = 2143 qed_chain_get_pbl_phys(&rxq->rx_comp_ring); 2144 page_cnt = qed_chain_get_page_cnt(&rxq->rx_comp_ring); 2145 2146 rc = edev->ops->q_rx_start(cdev, i, &q_params, 2147 rxq->rx_buf_size, 2148 rxq->rx_bd_ring.p_phys_addr, 2149 p_phys_table, 2150 page_cnt, &ret_params); 2151 if (rc) { 2152 DP_ERR(edev, "Start RXQ #%d failed %d\n", i, 2153 rc); 2154 goto out; 2155 } 2156 2157 /* Use the return parameters */ 2158 rxq->hw_rxq_prod_addr = ret_params.p_prod; 2159 rxq->handle = ret_params.p_handle; 2160 2161 val = &fp->sb_info->sb_virt->pi_array[RX_PI]; 2162 rxq->hw_cons_ptr = val; 2163 2164 qede_update_rx_prod(edev, rxq); 2165 } 2166 2167 if (fp->type & QEDE_FASTPATH_XDP) { 2168 rc = qede_start_txq(edev, fp, fp->xdp_tx, i, XDP_PI); 2169 if (rc) 2170 goto out; 2171 2172 bpf_prog_add(edev->xdp_prog, 1); 2173 fp->rxq->xdp_prog = edev->xdp_prog; 2174 } 2175 2176 if (fp->type & QEDE_FASTPATH_TX) { 2177 int cos; 2178 2179 for_each_cos_in_txq(edev, cos) { 2180 rc = qede_start_txq(edev, fp, &fp->txq[cos], i, 2181 TX_PI(cos)); 2182 if (rc) 2183 goto out; 2184 } 2185 } 2186 } 2187 2188 /* Prepare and send the vport enable */ 2189 vport_update_params->vport_id = start.vport_id; 2190 vport_update_params->update_vport_active_flg = 1; 2191 vport_update_params->vport_active_flg = 1; 2192 2193 if ((qed_info->b_inter_pf_switch || pci_num_vf(edev->pdev)) && 2194 qed_info->tx_switching) { 2195 vport_update_params->update_tx_switching_flg = 1; 2196 vport_update_params->tx_switching_flg = 1; 2197 } 2198 2199 qede_fill_rss_params(edev, &vport_update_params->rss_params, 2200 &vport_update_params->update_rss_flg); 2201 2202 rc = edev->ops->vport_update(cdev, vport_update_params); 2203 if (rc) 2204 DP_ERR(edev, "Update V-PORT failed %d\n", rc); 2205 2206 out: 2207 vfree(vport_update_params); 2208 return rc; 2209 } 2210 2211 enum qede_unload_mode { 2212 QEDE_UNLOAD_NORMAL, 2213 QEDE_UNLOAD_RECOVERY, 2214 }; 2215 2216 static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode, 2217 bool is_locked) 2218 { 2219 struct qed_link_params link_params; 2220 int rc; 2221 2222 DP_INFO(edev, "Starting qede unload\n"); 2223 2224 if (!is_locked) 2225 __qede_lock(edev); 2226 2227 clear_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags); 2228 2229 if (mode != QEDE_UNLOAD_RECOVERY) 2230 edev->state = QEDE_STATE_CLOSED; 2231 2232 qede_rdma_dev_event_close(edev); 2233 2234 /* Close OS Tx */ 2235 netif_tx_disable(edev->ndev); 2236 netif_carrier_off(edev->ndev); 2237 2238 if (mode != QEDE_UNLOAD_RECOVERY) { 2239 /* Reset the link */ 2240 memset(&link_params, 0, sizeof(link_params)); 2241 link_params.link_up = false; 2242 edev->ops->common->set_link(edev->cdev, &link_params); 2243 2244 rc = qede_stop_queues(edev); 2245 if (rc) { 2246 qede_sync_free_irqs(edev); 2247 goto out; 2248 } 2249 2250 DP_INFO(edev, "Stopped Queues\n"); 2251 } 2252 2253 qede_vlan_mark_nonconfigured(edev); 2254 edev->ops->fastpath_stop(edev->cdev); 2255 2256 if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) { 2257 qede_poll_for_freeing_arfs_filters(edev); 2258 qede_free_arfs(edev); 2259 } 2260 2261 /* Release the interrupts */ 2262 qede_sync_free_irqs(edev); 2263 edev->ops->common->set_fp_int(edev->cdev, 0); 2264 2265 qede_napi_disable_remove(edev); 2266 2267 if (mode == QEDE_UNLOAD_RECOVERY) 2268 qede_empty_tx_queues(edev); 2269 2270 qede_free_mem_load(edev); 2271 qede_free_fp_array(edev); 2272 2273 out: 2274 if (!is_locked) 2275 __qede_unlock(edev); 2276 2277 if (mode != QEDE_UNLOAD_RECOVERY) 2278 DP_NOTICE(edev, "Link is down\n"); 2279 2280 edev->ptp_skip_txts = 0; 2281 2282 DP_INFO(edev, "Ending qede unload\n"); 2283 } 2284 2285 enum qede_load_mode { 2286 QEDE_LOAD_NORMAL, 2287 QEDE_LOAD_RELOAD, 2288 QEDE_LOAD_RECOVERY, 2289 }; 2290 2291 static int qede_load(struct qede_dev *edev, enum qede_load_mode mode, 2292 bool is_locked) 2293 { 2294 struct qed_link_params link_params; 2295 u8 num_tc; 2296 int rc; 2297 2298 DP_INFO(edev, "Starting qede load\n"); 2299 2300 if (!is_locked) 2301 __qede_lock(edev); 2302 2303 rc = qede_set_num_queues(edev); 2304 if (rc) 2305 goto out; 2306 2307 rc = qede_alloc_fp_array(edev); 2308 if (rc) 2309 goto out; 2310 2311 qede_init_fp(edev); 2312 2313 rc = qede_alloc_mem_load(edev); 2314 if (rc) 2315 goto err1; 2316 DP_INFO(edev, "Allocated %d Rx, %d Tx queues\n", 2317 QEDE_RSS_COUNT(edev), QEDE_TSS_COUNT(edev)); 2318 2319 rc = qede_set_real_num_queues(edev); 2320 if (rc) 2321 goto err2; 2322 2323 if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) { 2324 rc = qede_alloc_arfs(edev); 2325 if (rc) 2326 DP_NOTICE(edev, "aRFS memory allocation failed\n"); 2327 } 2328 2329 qede_napi_add_enable(edev); 2330 DP_INFO(edev, "Napi added and enabled\n"); 2331 2332 rc = qede_setup_irqs(edev); 2333 if (rc) 2334 goto err3; 2335 DP_INFO(edev, "Setup IRQs succeeded\n"); 2336 2337 rc = qede_start_queues(edev, mode != QEDE_LOAD_RELOAD); 2338 if (rc) 2339 goto err4; 2340 DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n"); 2341 2342 num_tc = netdev_get_num_tc(edev->ndev); 2343 num_tc = num_tc ? num_tc : edev->dev_info.num_tc; 2344 qede_setup_tc(edev->ndev, num_tc); 2345 2346 /* Program un-configured VLANs */ 2347 qede_configure_vlan_filters(edev); 2348 2349 set_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags); 2350 2351 /* Ask for link-up using current configuration */ 2352 memset(&link_params, 0, sizeof(link_params)); 2353 link_params.link_up = true; 2354 edev->ops->common->set_link(edev->cdev, &link_params); 2355 2356 edev->state = QEDE_STATE_OPEN; 2357 2358 DP_INFO(edev, "Ending successfully qede load\n"); 2359 2360 goto out; 2361 err4: 2362 qede_sync_free_irqs(edev); 2363 memset(&edev->int_info.msix_cnt, 0, sizeof(struct qed_int_info)); 2364 err3: 2365 qede_napi_disable_remove(edev); 2366 err2: 2367 qede_free_mem_load(edev); 2368 err1: 2369 edev->ops->common->set_fp_int(edev->cdev, 0); 2370 qede_free_fp_array(edev); 2371 edev->num_queues = 0; 2372 edev->fp_num_tx = 0; 2373 edev->fp_num_rx = 0; 2374 out: 2375 if (!is_locked) 2376 __qede_unlock(edev); 2377 2378 return rc; 2379 } 2380 2381 /* 'func' should be able to run between unload and reload assuming interface 2382 * is actually running, or afterwards in case it's currently DOWN. 2383 */ 2384 void qede_reload(struct qede_dev *edev, 2385 struct qede_reload_args *args, bool is_locked) 2386 { 2387 if (!is_locked) 2388 __qede_lock(edev); 2389 2390 /* Since qede_lock is held, internal state wouldn't change even 2391 * if netdev state would start transitioning. Check whether current 2392 * internal configuration indicates device is up, then reload. 2393 */ 2394 if (edev->state == QEDE_STATE_OPEN) { 2395 qede_unload(edev, QEDE_UNLOAD_NORMAL, true); 2396 if (args) 2397 args->func(edev, args); 2398 qede_load(edev, QEDE_LOAD_RELOAD, true); 2399 2400 /* Since no one is going to do it for us, re-configure */ 2401 qede_config_rx_mode(edev->ndev); 2402 } else if (args) { 2403 args->func(edev, args); 2404 } 2405 2406 if (!is_locked) 2407 __qede_unlock(edev); 2408 } 2409 2410 /* called with rtnl_lock */ 2411 static int qede_open(struct net_device *ndev) 2412 { 2413 struct qede_dev *edev = netdev_priv(ndev); 2414 int rc; 2415 2416 netif_carrier_off(ndev); 2417 2418 edev->ops->common->set_power_state(edev->cdev, PCI_D0); 2419 2420 rc = qede_load(edev, QEDE_LOAD_NORMAL, false); 2421 if (rc) 2422 return rc; 2423 2424 udp_tunnel_get_rx_info(ndev); 2425 2426 edev->ops->common->update_drv_state(edev->cdev, true); 2427 2428 return 0; 2429 } 2430 2431 static int qede_close(struct net_device *ndev) 2432 { 2433 struct qede_dev *edev = netdev_priv(ndev); 2434 2435 qede_unload(edev, QEDE_UNLOAD_NORMAL, false); 2436 2437 edev->ops->common->update_drv_state(edev->cdev, false); 2438 2439 return 0; 2440 } 2441 2442 static void qede_link_update(void *dev, struct qed_link_output *link) 2443 { 2444 struct qede_dev *edev = dev; 2445 2446 if (!test_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags)) { 2447 DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not ready\n"); 2448 return; 2449 } 2450 2451 if (link->link_up) { 2452 if (!netif_carrier_ok(edev->ndev)) { 2453 DP_NOTICE(edev, "Link is up\n"); 2454 netif_tx_start_all_queues(edev->ndev); 2455 netif_carrier_on(edev->ndev); 2456 qede_rdma_dev_event_open(edev); 2457 } 2458 } else { 2459 if (netif_carrier_ok(edev->ndev)) { 2460 DP_NOTICE(edev, "Link is down\n"); 2461 netif_tx_disable(edev->ndev); 2462 netif_carrier_off(edev->ndev); 2463 qede_rdma_dev_event_close(edev); 2464 } 2465 } 2466 } 2467 2468 static void qede_schedule_recovery_handler(void *dev) 2469 { 2470 struct qede_dev *edev = dev; 2471 2472 if (edev->state == QEDE_STATE_RECOVERY) { 2473 DP_NOTICE(edev, 2474 "Avoid scheduling a recovery handling since already in recovery state\n"); 2475 return; 2476 } 2477 2478 set_bit(QEDE_SP_RECOVERY, &edev->sp_flags); 2479 schedule_delayed_work(&edev->sp_task, 0); 2480 2481 DP_INFO(edev, "Scheduled a recovery handler\n"); 2482 } 2483 2484 static void qede_recovery_failed(struct qede_dev *edev) 2485 { 2486 netdev_err(edev->ndev, "Recovery handling has failed. Power cycle is needed.\n"); 2487 2488 netif_device_detach(edev->ndev); 2489 2490 if (edev->cdev) 2491 edev->ops->common->set_power_state(edev->cdev, PCI_D3hot); 2492 } 2493 2494 static void qede_recovery_handler(struct qede_dev *edev) 2495 { 2496 u32 curr_state = edev->state; 2497 int rc; 2498 2499 DP_NOTICE(edev, "Starting a recovery process\n"); 2500 2501 /* No need to acquire first the qede_lock since is done by qede_sp_task 2502 * before calling this function. 2503 */ 2504 edev->state = QEDE_STATE_RECOVERY; 2505 2506 edev->ops->common->recovery_prolog(edev->cdev); 2507 2508 if (curr_state == QEDE_STATE_OPEN) 2509 qede_unload(edev, QEDE_UNLOAD_RECOVERY, true); 2510 2511 __qede_remove(edev->pdev, QEDE_REMOVE_RECOVERY); 2512 2513 rc = __qede_probe(edev->pdev, edev->dp_module, edev->dp_level, 2514 IS_VF(edev), QEDE_PROBE_RECOVERY); 2515 if (rc) { 2516 edev->cdev = NULL; 2517 goto err; 2518 } 2519 2520 if (curr_state == QEDE_STATE_OPEN) { 2521 rc = qede_load(edev, QEDE_LOAD_RECOVERY, true); 2522 if (rc) 2523 goto err; 2524 2525 qede_config_rx_mode(edev->ndev); 2526 udp_tunnel_get_rx_info(edev->ndev); 2527 } 2528 2529 edev->state = curr_state; 2530 2531 DP_NOTICE(edev, "Recovery handling is done\n"); 2532 2533 return; 2534 2535 err: 2536 qede_recovery_failed(edev); 2537 } 2538 2539 static void qede_atomic_hw_err_handler(struct qede_dev *edev) 2540 { 2541 struct qed_dev *cdev = edev->cdev; 2542 2543 DP_NOTICE(edev, 2544 "Generic non-sleepable HW error handling started - err_flags 0x%lx\n", 2545 edev->err_flags); 2546 2547 /* Get a call trace of the flow that led to the error */ 2548 WARN_ON(test_bit(QEDE_ERR_WARN, &edev->err_flags)); 2549 2550 /* Prevent HW attentions from being reasserted */ 2551 if (test_bit(QEDE_ERR_ATTN_CLR_EN, &edev->err_flags)) 2552 edev->ops->common->attn_clr_enable(cdev, true); 2553 2554 DP_NOTICE(edev, "Generic non-sleepable HW error handling is done\n"); 2555 } 2556 2557 static void qede_generic_hw_err_handler(struct qede_dev *edev) 2558 { 2559 struct qed_dev *cdev = edev->cdev; 2560 2561 DP_NOTICE(edev, 2562 "Generic sleepable HW error handling started - err_flags 0x%lx\n", 2563 edev->err_flags); 2564 2565 /* Trigger a recovery process. 2566 * This is placed in the sleep requiring section just to make 2567 * sure it is the last one, and that all the other operations 2568 * were completed. 2569 */ 2570 if (test_bit(QEDE_ERR_IS_RECOVERABLE, &edev->err_flags)) 2571 edev->ops->common->recovery_process(cdev); 2572 2573 clear_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags); 2574 2575 DP_NOTICE(edev, "Generic sleepable HW error handling is done\n"); 2576 } 2577 2578 static void qede_set_hw_err_flags(struct qede_dev *edev, 2579 enum qed_hw_err_type err_type) 2580 { 2581 unsigned long err_flags = 0; 2582 2583 switch (err_type) { 2584 case QED_HW_ERR_DMAE_FAIL: 2585 set_bit(QEDE_ERR_WARN, &err_flags); 2586 fallthrough; 2587 case QED_HW_ERR_MFW_RESP_FAIL: 2588 case QED_HW_ERR_HW_ATTN: 2589 case QED_HW_ERR_RAMROD_FAIL: 2590 case QED_HW_ERR_FW_ASSERT: 2591 set_bit(QEDE_ERR_ATTN_CLR_EN, &err_flags); 2592 set_bit(QEDE_ERR_GET_DBG_INFO, &err_flags); 2593 break; 2594 2595 default: 2596 DP_NOTICE(edev, "Unexpected HW error [%d]\n", err_type); 2597 break; 2598 } 2599 2600 edev->err_flags |= err_flags; 2601 } 2602 2603 static void qede_schedule_hw_err_handler(void *dev, 2604 enum qed_hw_err_type err_type) 2605 { 2606 struct qede_dev *edev = dev; 2607 2608 /* Fan failure cannot be masked by handling of another HW error or by a 2609 * concurrent recovery process. 2610 */ 2611 if ((test_and_set_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags) || 2612 edev->state == QEDE_STATE_RECOVERY) && 2613 err_type != QED_HW_ERR_FAN_FAIL) { 2614 DP_INFO(edev, 2615 "Avoid scheduling an error handling while another HW error is being handled\n"); 2616 return; 2617 } 2618 2619 if (err_type >= QED_HW_ERR_LAST) { 2620 DP_NOTICE(edev, "Unknown HW error [%d]\n", err_type); 2621 clear_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags); 2622 return; 2623 } 2624 2625 qede_set_hw_err_flags(edev, err_type); 2626 qede_atomic_hw_err_handler(edev); 2627 set_bit(QEDE_SP_HW_ERR, &edev->sp_flags); 2628 schedule_delayed_work(&edev->sp_task, 0); 2629 2630 DP_INFO(edev, "Scheduled a error handler [err_type %d]\n", err_type); 2631 } 2632 2633 static bool qede_is_txq_full(struct qede_dev *edev, struct qede_tx_queue *txq) 2634 { 2635 struct netdev_queue *netdev_txq; 2636 2637 netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id); 2638 if (netif_xmit_stopped(netdev_txq)) 2639 return true; 2640 2641 return false; 2642 } 2643 2644 static void qede_get_generic_tlv_data(void *dev, struct qed_generic_tlvs *data) 2645 { 2646 struct qede_dev *edev = dev; 2647 struct netdev_hw_addr *ha; 2648 int i; 2649 2650 if (edev->ndev->features & NETIF_F_IP_CSUM) 2651 data->feat_flags |= QED_TLV_IP_CSUM; 2652 if (edev->ndev->features & NETIF_F_TSO) 2653 data->feat_flags |= QED_TLV_LSO; 2654 2655 ether_addr_copy(data->mac[0], edev->ndev->dev_addr); 2656 memset(data->mac[1], 0, ETH_ALEN); 2657 memset(data->mac[2], 0, ETH_ALEN); 2658 /* Copy the first two UC macs */ 2659 netif_addr_lock_bh(edev->ndev); 2660 i = 1; 2661 netdev_for_each_uc_addr(ha, edev->ndev) { 2662 ether_addr_copy(data->mac[i++], ha->addr); 2663 if (i == QED_TLV_MAC_COUNT) 2664 break; 2665 } 2666 2667 netif_addr_unlock_bh(edev->ndev); 2668 } 2669 2670 static void qede_get_eth_tlv_data(void *dev, void *data) 2671 { 2672 struct qed_mfw_tlv_eth *etlv = data; 2673 struct qede_dev *edev = dev; 2674 struct qede_fastpath *fp; 2675 int i; 2676 2677 etlv->lso_maxoff_size = 0XFFFF; 2678 etlv->lso_maxoff_size_set = true; 2679 etlv->lso_minseg_size = (u16)ETH_TX_LSO_WINDOW_MIN_LEN; 2680 etlv->lso_minseg_size_set = true; 2681 etlv->prom_mode = !!(edev->ndev->flags & IFF_PROMISC); 2682 etlv->prom_mode_set = true; 2683 etlv->tx_descr_size = QEDE_TSS_COUNT(edev); 2684 etlv->tx_descr_size_set = true; 2685 etlv->rx_descr_size = QEDE_RSS_COUNT(edev); 2686 etlv->rx_descr_size_set = true; 2687 etlv->iov_offload = QED_MFW_TLV_IOV_OFFLOAD_VEB; 2688 etlv->iov_offload_set = true; 2689 2690 /* Fill information regarding queues; Should be done under the qede 2691 * lock to guarantee those don't change beneath our feet. 2692 */ 2693 etlv->txqs_empty = true; 2694 etlv->rxqs_empty = true; 2695 etlv->num_txqs_full = 0; 2696 etlv->num_rxqs_full = 0; 2697 2698 __qede_lock(edev); 2699 for_each_queue(i) { 2700 fp = &edev->fp_array[i]; 2701 if (fp->type & QEDE_FASTPATH_TX) { 2702 struct qede_tx_queue *txq = QEDE_FP_TC0_TXQ(fp); 2703 2704 if (txq->sw_tx_cons != txq->sw_tx_prod) 2705 etlv->txqs_empty = false; 2706 if (qede_is_txq_full(edev, txq)) 2707 etlv->num_txqs_full++; 2708 } 2709 if (fp->type & QEDE_FASTPATH_RX) { 2710 if (qede_has_rx_work(fp->rxq)) 2711 etlv->rxqs_empty = false; 2712 2713 /* This one is a bit tricky; Firmware might stop 2714 * placing packets if ring is not yet full. 2715 * Give an approximation. 2716 */ 2717 if (le16_to_cpu(*fp->rxq->hw_cons_ptr) - 2718 qed_chain_get_cons_idx(&fp->rxq->rx_comp_ring) > 2719 RX_RING_SIZE - 100) 2720 etlv->num_rxqs_full++; 2721 } 2722 } 2723 __qede_unlock(edev); 2724 2725 etlv->txqs_empty_set = true; 2726 etlv->rxqs_empty_set = true; 2727 etlv->num_txqs_full_set = true; 2728 etlv->num_rxqs_full_set = true; 2729 } 2730 2731 /** 2732 * qede_io_error_detected - called when PCI error is detected 2733 * @pdev: Pointer to PCI device 2734 * @state: The current pci connection state 2735 * 2736 * This function is called after a PCI bus error affecting 2737 * this device has been detected. 2738 */ 2739 static pci_ers_result_t 2740 qede_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state) 2741 { 2742 struct net_device *dev = pci_get_drvdata(pdev); 2743 struct qede_dev *edev = netdev_priv(dev); 2744 2745 if (!edev) 2746 return PCI_ERS_RESULT_NONE; 2747 2748 DP_NOTICE(edev, "IO error detected [%d]\n", state); 2749 2750 __qede_lock(edev); 2751 if (edev->state == QEDE_STATE_RECOVERY) { 2752 DP_NOTICE(edev, "Device already in the recovery state\n"); 2753 __qede_unlock(edev); 2754 return PCI_ERS_RESULT_NONE; 2755 } 2756 2757 /* PF handles the recovery of its VFs */ 2758 if (IS_VF(edev)) { 2759 DP_VERBOSE(edev, QED_MSG_IOV, 2760 "VF recovery is handled by its PF\n"); 2761 __qede_unlock(edev); 2762 return PCI_ERS_RESULT_RECOVERED; 2763 } 2764 2765 /* Close OS Tx */ 2766 netif_tx_disable(edev->ndev); 2767 netif_carrier_off(edev->ndev); 2768 2769 set_bit(QEDE_SP_AER, &edev->sp_flags); 2770 schedule_delayed_work(&edev->sp_task, 0); 2771 2772 __qede_unlock(edev); 2773 2774 return PCI_ERS_RESULT_CAN_RECOVER; 2775 } 2776