1 /* QLogic qede NIC Driver 2 * Copyright (c) 2015-2017 QLogic Corporation 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and /or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 */ 32 #include <linux/module.h> 33 #include <linux/pci.h> 34 #include <linux/version.h> 35 #include <linux/device.h> 36 #include <linux/netdevice.h> 37 #include <linux/etherdevice.h> 38 #include <linux/skbuff.h> 39 #include <linux/errno.h> 40 #include <linux/list.h> 41 #include <linux/string.h> 42 #include <linux/dma-mapping.h> 43 #include <linux/interrupt.h> 44 #include <asm/byteorder.h> 45 #include <asm/param.h> 46 #include <linux/io.h> 47 #include <linux/netdev_features.h> 48 #include <linux/udp.h> 49 #include <linux/tcp.h> 50 #include <net/udp_tunnel.h> 51 #include <linux/ip.h> 52 #include <net/ipv6.h> 53 #include <net/tcp.h> 54 #include <linux/if_ether.h> 55 #include <linux/if_vlan.h> 56 #include <linux/pkt_sched.h> 57 #include <linux/ethtool.h> 58 #include <linux/in.h> 59 #include <linux/random.h> 60 #include <net/ip6_checksum.h> 61 #include <linux/bitops.h> 62 #include <linux/vmalloc.h> 63 #include "qede.h" 64 #include "qede_ptp.h" 65 66 static char version[] = 67 "QLogic FastLinQ 4xxxx Ethernet Driver qede " DRV_MODULE_VERSION "\n"; 68 69 MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver"); 70 MODULE_LICENSE("GPL"); 71 MODULE_VERSION(DRV_MODULE_VERSION); 72 73 static uint debug; 74 module_param(debug, uint, 0); 75 MODULE_PARM_DESC(debug, " Default debug msglevel"); 76 77 static const struct qed_eth_ops *qed_ops; 78 79 #define CHIP_NUM_57980S_40 0x1634 80 #define CHIP_NUM_57980S_10 0x1666 81 #define CHIP_NUM_57980S_MF 0x1636 82 #define CHIP_NUM_57980S_100 0x1644 83 #define CHIP_NUM_57980S_50 0x1654 84 #define CHIP_NUM_57980S_25 0x1656 85 #define CHIP_NUM_57980S_IOV 0x1664 86 #define CHIP_NUM_AH 0x8070 87 #define CHIP_NUM_AH_IOV 0x8090 88 89 #ifndef PCI_DEVICE_ID_NX2_57980E 90 #define PCI_DEVICE_ID_57980S_40 CHIP_NUM_57980S_40 91 #define PCI_DEVICE_ID_57980S_10 CHIP_NUM_57980S_10 92 #define PCI_DEVICE_ID_57980S_MF CHIP_NUM_57980S_MF 93 #define PCI_DEVICE_ID_57980S_100 CHIP_NUM_57980S_100 94 #define PCI_DEVICE_ID_57980S_50 CHIP_NUM_57980S_50 95 #define PCI_DEVICE_ID_57980S_25 CHIP_NUM_57980S_25 96 #define PCI_DEVICE_ID_57980S_IOV CHIP_NUM_57980S_IOV 97 #define PCI_DEVICE_ID_AH CHIP_NUM_AH 98 #define PCI_DEVICE_ID_AH_IOV CHIP_NUM_AH_IOV 99 100 #endif 101 102 enum qede_pci_private { 103 QEDE_PRIVATE_PF, 104 QEDE_PRIVATE_VF 105 }; 106 107 static const struct pci_device_id qede_pci_tbl[] = { 108 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF}, 109 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF}, 110 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF}, 111 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF}, 112 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF}, 113 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF}, 114 #ifdef CONFIG_QED_SRIOV 115 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF}, 116 #endif 117 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH), QEDE_PRIVATE_PF}, 118 #ifdef CONFIG_QED_SRIOV 119 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH_IOV), QEDE_PRIVATE_VF}, 120 #endif 121 { 0 } 122 }; 123 124 MODULE_DEVICE_TABLE(pci, qede_pci_tbl); 125 126 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id); 127 128 #define TX_TIMEOUT (5 * HZ) 129 130 /* Utilize last protocol index for XDP */ 131 #define XDP_PI 11 132 133 static void qede_remove(struct pci_dev *pdev); 134 static void qede_shutdown(struct pci_dev *pdev); 135 static void qede_link_update(void *dev, struct qed_link_output *link); 136 static void qede_get_eth_tlv_data(void *edev, void *data); 137 static void qede_get_generic_tlv_data(void *edev, 138 struct qed_generic_tlvs *data); 139 140 /* The qede lock is used to protect driver state change and driver flows that 141 * are not reentrant. 142 */ 143 void __qede_lock(struct qede_dev *edev) 144 { 145 mutex_lock(&edev->qede_lock); 146 } 147 148 void __qede_unlock(struct qede_dev *edev) 149 { 150 mutex_unlock(&edev->qede_lock); 151 } 152 153 #ifdef CONFIG_QED_SRIOV 154 static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos, 155 __be16 vlan_proto) 156 { 157 struct qede_dev *edev = netdev_priv(ndev); 158 159 if (vlan > 4095) { 160 DP_NOTICE(edev, "Illegal vlan value %d\n", vlan); 161 return -EINVAL; 162 } 163 164 if (vlan_proto != htons(ETH_P_8021Q)) 165 return -EPROTONOSUPPORT; 166 167 DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n", 168 vlan, vf); 169 170 return edev->ops->iov->set_vlan(edev->cdev, vlan, vf); 171 } 172 173 static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac) 174 { 175 struct qede_dev *edev = netdev_priv(ndev); 176 177 DP_VERBOSE(edev, QED_MSG_IOV, 178 "Setting MAC %02x:%02x:%02x:%02x:%02x:%02x to VF [%d]\n", 179 mac[0], mac[1], mac[2], mac[3], mac[4], mac[5], vfidx); 180 181 if (!is_valid_ether_addr(mac)) { 182 DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n"); 183 return -EINVAL; 184 } 185 186 return edev->ops->iov->set_mac(edev->cdev, mac, vfidx); 187 } 188 189 static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param) 190 { 191 struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev)); 192 struct qed_dev_info *qed_info = &edev->dev_info.common; 193 struct qed_update_vport_params *vport_params; 194 int rc; 195 196 vport_params = vzalloc(sizeof(*vport_params)); 197 if (!vport_params) 198 return -ENOMEM; 199 DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param); 200 201 rc = edev->ops->iov->configure(edev->cdev, num_vfs_param); 202 203 /* Enable/Disable Tx switching for PF */ 204 if ((rc == num_vfs_param) && netif_running(edev->ndev) && 205 !qed_info->b_inter_pf_switch && qed_info->tx_switching) { 206 vport_params->vport_id = 0; 207 vport_params->update_tx_switching_flg = 1; 208 vport_params->tx_switching_flg = num_vfs_param ? 1 : 0; 209 edev->ops->vport_update(edev->cdev, vport_params); 210 } 211 212 vfree(vport_params); 213 return rc; 214 } 215 #endif 216 217 static struct pci_driver qede_pci_driver = { 218 .name = "qede", 219 .id_table = qede_pci_tbl, 220 .probe = qede_probe, 221 .remove = qede_remove, 222 .shutdown = qede_shutdown, 223 #ifdef CONFIG_QED_SRIOV 224 .sriov_configure = qede_sriov_configure, 225 #endif 226 }; 227 228 static struct qed_eth_cb_ops qede_ll_ops = { 229 { 230 #ifdef CONFIG_RFS_ACCEL 231 .arfs_filter_op = qede_arfs_filter_op, 232 #endif 233 .link_update = qede_link_update, 234 .get_generic_tlv_data = qede_get_generic_tlv_data, 235 .get_protocol_tlv_data = qede_get_eth_tlv_data, 236 }, 237 .force_mac = qede_force_mac, 238 .ports_update = qede_udp_ports_update, 239 }; 240 241 static int qede_netdev_event(struct notifier_block *this, unsigned long event, 242 void *ptr) 243 { 244 struct net_device *ndev = netdev_notifier_info_to_dev(ptr); 245 struct ethtool_drvinfo drvinfo; 246 struct qede_dev *edev; 247 248 if (event != NETDEV_CHANGENAME && event != NETDEV_CHANGEADDR) 249 goto done; 250 251 /* Check whether this is a qede device */ 252 if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo) 253 goto done; 254 255 memset(&drvinfo, 0, sizeof(drvinfo)); 256 ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo); 257 if (strcmp(drvinfo.driver, "qede")) 258 goto done; 259 edev = netdev_priv(ndev); 260 261 switch (event) { 262 case NETDEV_CHANGENAME: 263 /* Notify qed of the name change */ 264 if (!edev->ops || !edev->ops->common) 265 goto done; 266 edev->ops->common->set_name(edev->cdev, edev->ndev->name); 267 break; 268 case NETDEV_CHANGEADDR: 269 edev = netdev_priv(ndev); 270 qede_rdma_event_changeaddr(edev); 271 break; 272 } 273 274 done: 275 return NOTIFY_DONE; 276 } 277 278 static struct notifier_block qede_netdev_notifier = { 279 .notifier_call = qede_netdev_event, 280 }; 281 282 static 283 int __init qede_init(void) 284 { 285 int ret; 286 287 pr_info("qede_init: %s\n", version); 288 289 qed_ops = qed_get_eth_ops(); 290 if (!qed_ops) { 291 pr_notice("Failed to get qed ethtool operations\n"); 292 return -EINVAL; 293 } 294 295 /* Must register notifier before pci ops, since we might miss 296 * interface rename after pci probe and netdev registration. 297 */ 298 ret = register_netdevice_notifier(&qede_netdev_notifier); 299 if (ret) { 300 pr_notice("Failed to register netdevice_notifier\n"); 301 qed_put_eth_ops(); 302 return -EINVAL; 303 } 304 305 ret = pci_register_driver(&qede_pci_driver); 306 if (ret) { 307 pr_notice("Failed to register driver\n"); 308 unregister_netdevice_notifier(&qede_netdev_notifier); 309 qed_put_eth_ops(); 310 return -EINVAL; 311 } 312 313 return 0; 314 } 315 316 static void __exit qede_cleanup(void) 317 { 318 if (debug & QED_LOG_INFO_MASK) 319 pr_info("qede_cleanup called\n"); 320 321 unregister_netdevice_notifier(&qede_netdev_notifier); 322 pci_unregister_driver(&qede_pci_driver); 323 qed_put_eth_ops(); 324 } 325 326 module_init(qede_init); 327 module_exit(qede_cleanup); 328 329 static int qede_open(struct net_device *ndev); 330 static int qede_close(struct net_device *ndev); 331 332 void qede_fill_by_demand_stats(struct qede_dev *edev) 333 { 334 struct qede_stats_common *p_common = &edev->stats.common; 335 struct qed_eth_stats stats; 336 337 edev->ops->get_vport_stats(edev->cdev, &stats); 338 339 p_common->no_buff_discards = stats.common.no_buff_discards; 340 p_common->packet_too_big_discard = stats.common.packet_too_big_discard; 341 p_common->ttl0_discard = stats.common.ttl0_discard; 342 p_common->rx_ucast_bytes = stats.common.rx_ucast_bytes; 343 p_common->rx_mcast_bytes = stats.common.rx_mcast_bytes; 344 p_common->rx_bcast_bytes = stats.common.rx_bcast_bytes; 345 p_common->rx_ucast_pkts = stats.common.rx_ucast_pkts; 346 p_common->rx_mcast_pkts = stats.common.rx_mcast_pkts; 347 p_common->rx_bcast_pkts = stats.common.rx_bcast_pkts; 348 p_common->mftag_filter_discards = stats.common.mftag_filter_discards; 349 p_common->mac_filter_discards = stats.common.mac_filter_discards; 350 p_common->gft_filter_drop = stats.common.gft_filter_drop; 351 352 p_common->tx_ucast_bytes = stats.common.tx_ucast_bytes; 353 p_common->tx_mcast_bytes = stats.common.tx_mcast_bytes; 354 p_common->tx_bcast_bytes = stats.common.tx_bcast_bytes; 355 p_common->tx_ucast_pkts = stats.common.tx_ucast_pkts; 356 p_common->tx_mcast_pkts = stats.common.tx_mcast_pkts; 357 p_common->tx_bcast_pkts = stats.common.tx_bcast_pkts; 358 p_common->tx_err_drop_pkts = stats.common.tx_err_drop_pkts; 359 p_common->coalesced_pkts = stats.common.tpa_coalesced_pkts; 360 p_common->coalesced_events = stats.common.tpa_coalesced_events; 361 p_common->coalesced_aborts_num = stats.common.tpa_aborts_num; 362 p_common->non_coalesced_pkts = stats.common.tpa_not_coalesced_pkts; 363 p_common->coalesced_bytes = stats.common.tpa_coalesced_bytes; 364 365 p_common->rx_64_byte_packets = stats.common.rx_64_byte_packets; 366 p_common->rx_65_to_127_byte_packets = 367 stats.common.rx_65_to_127_byte_packets; 368 p_common->rx_128_to_255_byte_packets = 369 stats.common.rx_128_to_255_byte_packets; 370 p_common->rx_256_to_511_byte_packets = 371 stats.common.rx_256_to_511_byte_packets; 372 p_common->rx_512_to_1023_byte_packets = 373 stats.common.rx_512_to_1023_byte_packets; 374 p_common->rx_1024_to_1518_byte_packets = 375 stats.common.rx_1024_to_1518_byte_packets; 376 p_common->rx_crc_errors = stats.common.rx_crc_errors; 377 p_common->rx_mac_crtl_frames = stats.common.rx_mac_crtl_frames; 378 p_common->rx_pause_frames = stats.common.rx_pause_frames; 379 p_common->rx_pfc_frames = stats.common.rx_pfc_frames; 380 p_common->rx_align_errors = stats.common.rx_align_errors; 381 p_common->rx_carrier_errors = stats.common.rx_carrier_errors; 382 p_common->rx_oversize_packets = stats.common.rx_oversize_packets; 383 p_common->rx_jabbers = stats.common.rx_jabbers; 384 p_common->rx_undersize_packets = stats.common.rx_undersize_packets; 385 p_common->rx_fragments = stats.common.rx_fragments; 386 p_common->tx_64_byte_packets = stats.common.tx_64_byte_packets; 387 p_common->tx_65_to_127_byte_packets = 388 stats.common.tx_65_to_127_byte_packets; 389 p_common->tx_128_to_255_byte_packets = 390 stats.common.tx_128_to_255_byte_packets; 391 p_common->tx_256_to_511_byte_packets = 392 stats.common.tx_256_to_511_byte_packets; 393 p_common->tx_512_to_1023_byte_packets = 394 stats.common.tx_512_to_1023_byte_packets; 395 p_common->tx_1024_to_1518_byte_packets = 396 stats.common.tx_1024_to_1518_byte_packets; 397 p_common->tx_pause_frames = stats.common.tx_pause_frames; 398 p_common->tx_pfc_frames = stats.common.tx_pfc_frames; 399 p_common->brb_truncates = stats.common.brb_truncates; 400 p_common->brb_discards = stats.common.brb_discards; 401 p_common->tx_mac_ctrl_frames = stats.common.tx_mac_ctrl_frames; 402 p_common->link_change_count = stats.common.link_change_count; 403 404 if (QEDE_IS_BB(edev)) { 405 struct qede_stats_bb *p_bb = &edev->stats.bb; 406 407 p_bb->rx_1519_to_1522_byte_packets = 408 stats.bb.rx_1519_to_1522_byte_packets; 409 p_bb->rx_1519_to_2047_byte_packets = 410 stats.bb.rx_1519_to_2047_byte_packets; 411 p_bb->rx_2048_to_4095_byte_packets = 412 stats.bb.rx_2048_to_4095_byte_packets; 413 p_bb->rx_4096_to_9216_byte_packets = 414 stats.bb.rx_4096_to_9216_byte_packets; 415 p_bb->rx_9217_to_16383_byte_packets = 416 stats.bb.rx_9217_to_16383_byte_packets; 417 p_bb->tx_1519_to_2047_byte_packets = 418 stats.bb.tx_1519_to_2047_byte_packets; 419 p_bb->tx_2048_to_4095_byte_packets = 420 stats.bb.tx_2048_to_4095_byte_packets; 421 p_bb->tx_4096_to_9216_byte_packets = 422 stats.bb.tx_4096_to_9216_byte_packets; 423 p_bb->tx_9217_to_16383_byte_packets = 424 stats.bb.tx_9217_to_16383_byte_packets; 425 p_bb->tx_lpi_entry_count = stats.bb.tx_lpi_entry_count; 426 p_bb->tx_total_collisions = stats.bb.tx_total_collisions; 427 } else { 428 struct qede_stats_ah *p_ah = &edev->stats.ah; 429 430 p_ah->rx_1519_to_max_byte_packets = 431 stats.ah.rx_1519_to_max_byte_packets; 432 p_ah->tx_1519_to_max_byte_packets = 433 stats.ah.tx_1519_to_max_byte_packets; 434 } 435 } 436 437 static void qede_get_stats64(struct net_device *dev, 438 struct rtnl_link_stats64 *stats) 439 { 440 struct qede_dev *edev = netdev_priv(dev); 441 struct qede_stats_common *p_common; 442 443 qede_fill_by_demand_stats(edev); 444 p_common = &edev->stats.common; 445 446 stats->rx_packets = p_common->rx_ucast_pkts + p_common->rx_mcast_pkts + 447 p_common->rx_bcast_pkts; 448 stats->tx_packets = p_common->tx_ucast_pkts + p_common->tx_mcast_pkts + 449 p_common->tx_bcast_pkts; 450 451 stats->rx_bytes = p_common->rx_ucast_bytes + p_common->rx_mcast_bytes + 452 p_common->rx_bcast_bytes; 453 stats->tx_bytes = p_common->tx_ucast_bytes + p_common->tx_mcast_bytes + 454 p_common->tx_bcast_bytes; 455 456 stats->tx_errors = p_common->tx_err_drop_pkts; 457 stats->multicast = p_common->rx_mcast_pkts + p_common->rx_bcast_pkts; 458 459 stats->rx_fifo_errors = p_common->no_buff_discards; 460 461 if (QEDE_IS_BB(edev)) 462 stats->collisions = edev->stats.bb.tx_total_collisions; 463 stats->rx_crc_errors = p_common->rx_crc_errors; 464 stats->rx_frame_errors = p_common->rx_align_errors; 465 } 466 467 #ifdef CONFIG_QED_SRIOV 468 static int qede_get_vf_config(struct net_device *dev, int vfidx, 469 struct ifla_vf_info *ivi) 470 { 471 struct qede_dev *edev = netdev_priv(dev); 472 473 if (!edev->ops) 474 return -EINVAL; 475 476 return edev->ops->iov->get_config(edev->cdev, vfidx, ivi); 477 } 478 479 static int qede_set_vf_rate(struct net_device *dev, int vfidx, 480 int min_tx_rate, int max_tx_rate) 481 { 482 struct qede_dev *edev = netdev_priv(dev); 483 484 return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate, 485 max_tx_rate); 486 } 487 488 static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val) 489 { 490 struct qede_dev *edev = netdev_priv(dev); 491 492 if (!edev->ops) 493 return -EINVAL; 494 495 return edev->ops->iov->set_spoof(edev->cdev, vfidx, val); 496 } 497 498 static int qede_set_vf_link_state(struct net_device *dev, int vfidx, 499 int link_state) 500 { 501 struct qede_dev *edev = netdev_priv(dev); 502 503 if (!edev->ops) 504 return -EINVAL; 505 506 return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state); 507 } 508 509 static int qede_set_vf_trust(struct net_device *dev, int vfidx, bool setting) 510 { 511 struct qede_dev *edev = netdev_priv(dev); 512 513 if (!edev->ops) 514 return -EINVAL; 515 516 return edev->ops->iov->set_trust(edev->cdev, vfidx, setting); 517 } 518 #endif 519 520 static int qede_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 521 { 522 struct qede_dev *edev = netdev_priv(dev); 523 524 if (!netif_running(dev)) 525 return -EAGAIN; 526 527 switch (cmd) { 528 case SIOCSHWTSTAMP: 529 return qede_ptp_hw_ts(edev, ifr); 530 default: 531 DP_VERBOSE(edev, QED_MSG_DEBUG, 532 "default IOCTL cmd 0x%x\n", cmd); 533 return -EOPNOTSUPP; 534 } 535 536 return 0; 537 } 538 539 static const struct net_device_ops qede_netdev_ops = { 540 .ndo_open = qede_open, 541 .ndo_stop = qede_close, 542 .ndo_start_xmit = qede_start_xmit, 543 .ndo_set_rx_mode = qede_set_rx_mode, 544 .ndo_set_mac_address = qede_set_mac_addr, 545 .ndo_validate_addr = eth_validate_addr, 546 .ndo_change_mtu = qede_change_mtu, 547 .ndo_do_ioctl = qede_ioctl, 548 #ifdef CONFIG_QED_SRIOV 549 .ndo_set_vf_mac = qede_set_vf_mac, 550 .ndo_set_vf_vlan = qede_set_vf_vlan, 551 .ndo_set_vf_trust = qede_set_vf_trust, 552 #endif 553 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid, 554 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid, 555 .ndo_fix_features = qede_fix_features, 556 .ndo_set_features = qede_set_features, 557 .ndo_get_stats64 = qede_get_stats64, 558 #ifdef CONFIG_QED_SRIOV 559 .ndo_set_vf_link_state = qede_set_vf_link_state, 560 .ndo_set_vf_spoofchk = qede_set_vf_spoofchk, 561 .ndo_get_vf_config = qede_get_vf_config, 562 .ndo_set_vf_rate = qede_set_vf_rate, 563 #endif 564 .ndo_udp_tunnel_add = qede_udp_tunnel_add, 565 .ndo_udp_tunnel_del = qede_udp_tunnel_del, 566 .ndo_features_check = qede_features_check, 567 .ndo_bpf = qede_xdp, 568 #ifdef CONFIG_RFS_ACCEL 569 .ndo_rx_flow_steer = qede_rx_flow_steer, 570 #endif 571 }; 572 573 static const struct net_device_ops qede_netdev_vf_ops = { 574 .ndo_open = qede_open, 575 .ndo_stop = qede_close, 576 .ndo_start_xmit = qede_start_xmit, 577 .ndo_set_rx_mode = qede_set_rx_mode, 578 .ndo_set_mac_address = qede_set_mac_addr, 579 .ndo_validate_addr = eth_validate_addr, 580 .ndo_change_mtu = qede_change_mtu, 581 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid, 582 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid, 583 .ndo_fix_features = qede_fix_features, 584 .ndo_set_features = qede_set_features, 585 .ndo_get_stats64 = qede_get_stats64, 586 .ndo_udp_tunnel_add = qede_udp_tunnel_add, 587 .ndo_udp_tunnel_del = qede_udp_tunnel_del, 588 .ndo_features_check = qede_features_check, 589 }; 590 591 static const struct net_device_ops qede_netdev_vf_xdp_ops = { 592 .ndo_open = qede_open, 593 .ndo_stop = qede_close, 594 .ndo_start_xmit = qede_start_xmit, 595 .ndo_set_rx_mode = qede_set_rx_mode, 596 .ndo_set_mac_address = qede_set_mac_addr, 597 .ndo_validate_addr = eth_validate_addr, 598 .ndo_change_mtu = qede_change_mtu, 599 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid, 600 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid, 601 .ndo_fix_features = qede_fix_features, 602 .ndo_set_features = qede_set_features, 603 .ndo_get_stats64 = qede_get_stats64, 604 .ndo_udp_tunnel_add = qede_udp_tunnel_add, 605 .ndo_udp_tunnel_del = qede_udp_tunnel_del, 606 .ndo_features_check = qede_features_check, 607 .ndo_bpf = qede_xdp, 608 }; 609 610 /* ------------------------------------------------------------------------- 611 * START OF PROBE / REMOVE 612 * ------------------------------------------------------------------------- 613 */ 614 615 static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev, 616 struct pci_dev *pdev, 617 struct qed_dev_eth_info *info, 618 u32 dp_module, u8 dp_level) 619 { 620 struct net_device *ndev; 621 struct qede_dev *edev; 622 623 ndev = alloc_etherdev_mqs(sizeof(*edev), 624 info->num_queues, info->num_queues); 625 if (!ndev) { 626 pr_err("etherdev allocation failed\n"); 627 return NULL; 628 } 629 630 edev = netdev_priv(ndev); 631 edev->ndev = ndev; 632 edev->cdev = cdev; 633 edev->pdev = pdev; 634 edev->dp_module = dp_module; 635 edev->dp_level = dp_level; 636 edev->ops = qed_ops; 637 edev->q_num_rx_buffers = NUM_RX_BDS_DEF; 638 edev->q_num_tx_buffers = NUM_TX_BDS_DEF; 639 640 DP_INFO(edev, "Allocated netdev with %d tx queues and %d rx queues\n", 641 info->num_queues, info->num_queues); 642 643 SET_NETDEV_DEV(ndev, &pdev->dev); 644 645 memset(&edev->stats, 0, sizeof(edev->stats)); 646 memcpy(&edev->dev_info, info, sizeof(*info)); 647 648 /* As ethtool doesn't have the ability to show WoL behavior as 649 * 'default', if device supports it declare it's enabled. 650 */ 651 if (edev->dev_info.common.wol_support) 652 edev->wol_enabled = true; 653 654 INIT_LIST_HEAD(&edev->vlan_list); 655 656 return edev; 657 } 658 659 static void qede_init_ndev(struct qede_dev *edev) 660 { 661 struct net_device *ndev = edev->ndev; 662 struct pci_dev *pdev = edev->pdev; 663 bool udp_tunnel_enable = false; 664 netdev_features_t hw_features; 665 666 pci_set_drvdata(pdev, ndev); 667 668 ndev->mem_start = edev->dev_info.common.pci_mem_start; 669 ndev->base_addr = ndev->mem_start; 670 ndev->mem_end = edev->dev_info.common.pci_mem_end; 671 ndev->irq = edev->dev_info.common.pci_irq; 672 673 ndev->watchdog_timeo = TX_TIMEOUT; 674 675 if (IS_VF(edev)) { 676 if (edev->dev_info.xdp_supported) 677 ndev->netdev_ops = &qede_netdev_vf_xdp_ops; 678 else 679 ndev->netdev_ops = &qede_netdev_vf_ops; 680 } else { 681 ndev->netdev_ops = &qede_netdev_ops; 682 } 683 684 qede_set_ethtool_ops(ndev); 685 686 ndev->priv_flags |= IFF_UNICAST_FLT; 687 688 /* user-changeble features */ 689 hw_features = NETIF_F_GRO | NETIF_F_GRO_HW | NETIF_F_SG | 690 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 691 NETIF_F_TSO | NETIF_F_TSO6; 692 693 if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) 694 hw_features |= NETIF_F_NTUPLE; 695 696 if (edev->dev_info.common.vxlan_enable || 697 edev->dev_info.common.geneve_enable) 698 udp_tunnel_enable = true; 699 700 if (udp_tunnel_enable || edev->dev_info.common.gre_enable) { 701 hw_features |= NETIF_F_TSO_ECN; 702 ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 703 NETIF_F_SG | NETIF_F_TSO | 704 NETIF_F_TSO_ECN | NETIF_F_TSO6 | 705 NETIF_F_RXCSUM; 706 } 707 708 if (udp_tunnel_enable) { 709 hw_features |= (NETIF_F_GSO_UDP_TUNNEL | 710 NETIF_F_GSO_UDP_TUNNEL_CSUM); 711 ndev->hw_enc_features |= (NETIF_F_GSO_UDP_TUNNEL | 712 NETIF_F_GSO_UDP_TUNNEL_CSUM); 713 } 714 715 if (edev->dev_info.common.gre_enable) { 716 hw_features |= (NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM); 717 ndev->hw_enc_features |= (NETIF_F_GSO_GRE | 718 NETIF_F_GSO_GRE_CSUM); 719 } 720 721 ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM | 722 NETIF_F_HIGHDMA; 723 ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM | 724 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA | 725 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX; 726 727 ndev->hw_features = hw_features; 728 729 /* MTU range: 46 - 9600 */ 730 ndev->min_mtu = ETH_ZLEN - ETH_HLEN; 731 ndev->max_mtu = QEDE_MAX_JUMBO_PACKET_SIZE; 732 733 /* Set network device HW mac */ 734 ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac); 735 736 ndev->mtu = edev->dev_info.common.mtu; 737 } 738 739 /* This function converts from 32b param to two params of level and module 740 * Input 32b decoding: 741 * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the 742 * 'happy' flow, e.g. memory allocation failed. 743 * b30 - enable all INFO prints. INFO prints are for major steps in the flow 744 * and provide important parameters. 745 * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that 746 * module. VERBOSE prints are for tracking the specific flow in low level. 747 * 748 * Notice that the level should be that of the lowest required logs. 749 */ 750 void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level) 751 { 752 *p_dp_level = QED_LEVEL_NOTICE; 753 *p_dp_module = 0; 754 755 if (debug & QED_LOG_VERBOSE_MASK) { 756 *p_dp_level = QED_LEVEL_VERBOSE; 757 *p_dp_module = (debug & 0x3FFFFFFF); 758 } else if (debug & QED_LOG_INFO_MASK) { 759 *p_dp_level = QED_LEVEL_INFO; 760 } else if (debug & QED_LOG_NOTICE_MASK) { 761 *p_dp_level = QED_LEVEL_NOTICE; 762 } 763 } 764 765 static void qede_free_fp_array(struct qede_dev *edev) 766 { 767 if (edev->fp_array) { 768 struct qede_fastpath *fp; 769 int i; 770 771 for_each_queue(i) { 772 fp = &edev->fp_array[i]; 773 774 kfree(fp->sb_info); 775 /* Handle mem alloc failure case where qede_init_fp 776 * didn't register xdp_rxq_info yet. 777 * Implicit only (fp->type & QEDE_FASTPATH_RX) 778 */ 779 if (fp->rxq && xdp_rxq_info_is_reg(&fp->rxq->xdp_rxq)) 780 xdp_rxq_info_unreg(&fp->rxq->xdp_rxq); 781 kfree(fp->rxq); 782 kfree(fp->xdp_tx); 783 kfree(fp->txq); 784 } 785 kfree(edev->fp_array); 786 } 787 788 edev->num_queues = 0; 789 edev->fp_num_tx = 0; 790 edev->fp_num_rx = 0; 791 } 792 793 static int qede_alloc_fp_array(struct qede_dev *edev) 794 { 795 u8 fp_combined, fp_rx = edev->fp_num_rx; 796 struct qede_fastpath *fp; 797 int i; 798 799 edev->fp_array = kcalloc(QEDE_QUEUE_CNT(edev), 800 sizeof(*edev->fp_array), GFP_KERNEL); 801 if (!edev->fp_array) { 802 DP_NOTICE(edev, "fp array allocation failed\n"); 803 goto err; 804 } 805 806 fp_combined = QEDE_QUEUE_CNT(edev) - fp_rx - edev->fp_num_tx; 807 808 /* Allocate the FP elements for Rx queues followed by combined and then 809 * the Tx. This ordering should be maintained so that the respective 810 * queues (Rx or Tx) will be together in the fastpath array and the 811 * associated ids will be sequential. 812 */ 813 for_each_queue(i) { 814 fp = &edev->fp_array[i]; 815 816 fp->sb_info = kzalloc(sizeof(*fp->sb_info), GFP_KERNEL); 817 if (!fp->sb_info) { 818 DP_NOTICE(edev, "sb info struct allocation failed\n"); 819 goto err; 820 } 821 822 if (fp_rx) { 823 fp->type = QEDE_FASTPATH_RX; 824 fp_rx--; 825 } else if (fp_combined) { 826 fp->type = QEDE_FASTPATH_COMBINED; 827 fp_combined--; 828 } else { 829 fp->type = QEDE_FASTPATH_TX; 830 } 831 832 if (fp->type & QEDE_FASTPATH_TX) { 833 fp->txq = kzalloc(sizeof(*fp->txq), GFP_KERNEL); 834 if (!fp->txq) 835 goto err; 836 } 837 838 if (fp->type & QEDE_FASTPATH_RX) { 839 fp->rxq = kzalloc(sizeof(*fp->rxq), GFP_KERNEL); 840 if (!fp->rxq) 841 goto err; 842 843 if (edev->xdp_prog) { 844 fp->xdp_tx = kzalloc(sizeof(*fp->xdp_tx), 845 GFP_KERNEL); 846 if (!fp->xdp_tx) 847 goto err; 848 fp->type |= QEDE_FASTPATH_XDP; 849 } 850 } 851 } 852 853 return 0; 854 err: 855 qede_free_fp_array(edev); 856 return -ENOMEM; 857 } 858 859 static void qede_sp_task(struct work_struct *work) 860 { 861 struct qede_dev *edev = container_of(work, struct qede_dev, 862 sp_task.work); 863 864 __qede_lock(edev); 865 866 if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags)) 867 if (edev->state == QEDE_STATE_OPEN) 868 qede_config_rx_mode(edev->ndev); 869 870 #ifdef CONFIG_RFS_ACCEL 871 if (test_and_clear_bit(QEDE_SP_ARFS_CONFIG, &edev->sp_flags)) { 872 if (edev->state == QEDE_STATE_OPEN) 873 qede_process_arfs_filters(edev, false); 874 } 875 #endif 876 __qede_unlock(edev); 877 } 878 879 static void qede_update_pf_params(struct qed_dev *cdev) 880 { 881 struct qed_pf_params pf_params; 882 883 /* 64 rx + 64 tx + 64 XDP */ 884 memset(&pf_params, 0, sizeof(struct qed_pf_params)); 885 pf_params.eth_pf_params.num_cons = (MAX_SB_PER_PF_MIMD - 1) * 3; 886 887 /* Same for VFs - make sure they'll have sufficient connections 888 * to support XDP Tx queues. 889 */ 890 pf_params.eth_pf_params.num_vf_cons = 48; 891 892 pf_params.eth_pf_params.num_arfs_filters = QEDE_RFS_MAX_FLTR; 893 qed_ops->common->update_pf_params(cdev, &pf_params); 894 } 895 896 #define QEDE_FW_VER_STR_SIZE 80 897 898 static void qede_log_probe(struct qede_dev *edev) 899 { 900 struct qed_dev_info *p_dev_info = &edev->dev_info.common; 901 u8 buf[QEDE_FW_VER_STR_SIZE]; 902 size_t left_size; 903 904 snprintf(buf, QEDE_FW_VER_STR_SIZE, 905 "Storm FW %d.%d.%d.%d, Management FW %d.%d.%d.%d", 906 p_dev_info->fw_major, p_dev_info->fw_minor, p_dev_info->fw_rev, 907 p_dev_info->fw_eng, 908 (p_dev_info->mfw_rev & QED_MFW_VERSION_3_MASK) >> 909 QED_MFW_VERSION_3_OFFSET, 910 (p_dev_info->mfw_rev & QED_MFW_VERSION_2_MASK) >> 911 QED_MFW_VERSION_2_OFFSET, 912 (p_dev_info->mfw_rev & QED_MFW_VERSION_1_MASK) >> 913 QED_MFW_VERSION_1_OFFSET, 914 (p_dev_info->mfw_rev & QED_MFW_VERSION_0_MASK) >> 915 QED_MFW_VERSION_0_OFFSET); 916 917 left_size = QEDE_FW_VER_STR_SIZE - strlen(buf); 918 if (p_dev_info->mbi_version && left_size) 919 snprintf(buf + strlen(buf), left_size, 920 " [MBI %d.%d.%d]", 921 (p_dev_info->mbi_version & QED_MBI_VERSION_2_MASK) >> 922 QED_MBI_VERSION_2_OFFSET, 923 (p_dev_info->mbi_version & QED_MBI_VERSION_1_MASK) >> 924 QED_MBI_VERSION_1_OFFSET, 925 (p_dev_info->mbi_version & QED_MBI_VERSION_0_MASK) >> 926 QED_MBI_VERSION_0_OFFSET); 927 928 pr_info("qede %02x:%02x.%02x: %s [%s]\n", edev->pdev->bus->number, 929 PCI_SLOT(edev->pdev->devfn), PCI_FUNC(edev->pdev->devfn), 930 buf, edev->ndev->name); 931 } 932 933 enum qede_probe_mode { 934 QEDE_PROBE_NORMAL, 935 }; 936 937 static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level, 938 bool is_vf, enum qede_probe_mode mode) 939 { 940 struct qed_probe_params probe_params; 941 struct qed_slowpath_params sp_params; 942 struct qed_dev_eth_info dev_info; 943 struct qede_dev *edev; 944 struct qed_dev *cdev; 945 int rc; 946 947 if (unlikely(dp_level & QED_LEVEL_INFO)) 948 pr_notice("Starting qede probe\n"); 949 950 memset(&probe_params, 0, sizeof(probe_params)); 951 probe_params.protocol = QED_PROTOCOL_ETH; 952 probe_params.dp_module = dp_module; 953 probe_params.dp_level = dp_level; 954 probe_params.is_vf = is_vf; 955 cdev = qed_ops->common->probe(pdev, &probe_params); 956 if (!cdev) { 957 rc = -ENODEV; 958 goto err0; 959 } 960 961 qede_update_pf_params(cdev); 962 963 /* Start the Slowpath-process */ 964 memset(&sp_params, 0, sizeof(sp_params)); 965 sp_params.int_mode = QED_INT_MODE_MSIX; 966 sp_params.drv_major = QEDE_MAJOR_VERSION; 967 sp_params.drv_minor = QEDE_MINOR_VERSION; 968 sp_params.drv_rev = QEDE_REVISION_VERSION; 969 sp_params.drv_eng = QEDE_ENGINEERING_VERSION; 970 strlcpy(sp_params.name, "qede LAN", QED_DRV_VER_STR_SIZE); 971 rc = qed_ops->common->slowpath_start(cdev, &sp_params); 972 if (rc) { 973 pr_notice("Cannot start slowpath\n"); 974 goto err1; 975 } 976 977 /* Learn information crucial for qede to progress */ 978 rc = qed_ops->fill_dev_info(cdev, &dev_info); 979 if (rc) 980 goto err2; 981 982 edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module, 983 dp_level); 984 if (!edev) { 985 rc = -ENOMEM; 986 goto err2; 987 } 988 989 if (is_vf) 990 edev->flags |= QEDE_FLAG_IS_VF; 991 992 qede_init_ndev(edev); 993 994 rc = qede_rdma_dev_add(edev); 995 if (rc) 996 goto err3; 997 998 /* Prepare the lock prior to the registration of the netdev, 999 * as once it's registered we might reach flows requiring it 1000 * [it's even possible to reach a flow needing it directly 1001 * from there, although it's unlikely]. 1002 */ 1003 INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task); 1004 mutex_init(&edev->qede_lock); 1005 rc = register_netdev(edev->ndev); 1006 if (rc) { 1007 DP_NOTICE(edev, "Cannot register net-device\n"); 1008 goto err4; 1009 } 1010 1011 edev->ops->common->set_name(cdev, edev->ndev->name); 1012 1013 /* PTP not supported on VFs */ 1014 if (!is_vf) 1015 qede_ptp_enable(edev, true); 1016 1017 edev->ops->register_ops(cdev, &qede_ll_ops, edev); 1018 1019 #ifdef CONFIG_DCB 1020 if (!IS_VF(edev)) 1021 qede_set_dcbnl_ops(edev->ndev); 1022 #endif 1023 1024 edev->rx_copybreak = QEDE_RX_HDR_SIZE; 1025 1026 qede_log_probe(edev); 1027 return 0; 1028 1029 err4: 1030 qede_rdma_dev_remove(edev); 1031 err3: 1032 free_netdev(edev->ndev); 1033 err2: 1034 qed_ops->common->slowpath_stop(cdev); 1035 err1: 1036 qed_ops->common->remove(cdev); 1037 err0: 1038 return rc; 1039 } 1040 1041 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id) 1042 { 1043 bool is_vf = false; 1044 u32 dp_module = 0; 1045 u8 dp_level = 0; 1046 1047 switch ((enum qede_pci_private)id->driver_data) { 1048 case QEDE_PRIVATE_VF: 1049 if (debug & QED_LOG_VERBOSE_MASK) 1050 dev_err(&pdev->dev, "Probing a VF\n"); 1051 is_vf = true; 1052 break; 1053 default: 1054 if (debug & QED_LOG_VERBOSE_MASK) 1055 dev_err(&pdev->dev, "Probing a PF\n"); 1056 } 1057 1058 qede_config_debug(debug, &dp_module, &dp_level); 1059 1060 return __qede_probe(pdev, dp_module, dp_level, is_vf, 1061 QEDE_PROBE_NORMAL); 1062 } 1063 1064 enum qede_remove_mode { 1065 QEDE_REMOVE_NORMAL, 1066 }; 1067 1068 static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode) 1069 { 1070 struct net_device *ndev = pci_get_drvdata(pdev); 1071 struct qede_dev *edev = netdev_priv(ndev); 1072 struct qed_dev *cdev = edev->cdev; 1073 1074 DP_INFO(edev, "Starting qede_remove\n"); 1075 1076 qede_rdma_dev_remove(edev); 1077 unregister_netdev(ndev); 1078 cancel_delayed_work_sync(&edev->sp_task); 1079 1080 qede_ptp_disable(edev); 1081 1082 edev->ops->common->set_power_state(cdev, PCI_D0); 1083 1084 pci_set_drvdata(pdev, NULL); 1085 1086 /* Use global ops since we've freed edev */ 1087 qed_ops->common->slowpath_stop(cdev); 1088 if (system_state == SYSTEM_POWER_OFF) 1089 return; 1090 qed_ops->common->remove(cdev); 1091 1092 /* Since this can happen out-of-sync with other flows, 1093 * don't release the netdevice until after slowpath stop 1094 * has been called to guarantee various other contexts 1095 * [e.g., QED register callbacks] won't break anything when 1096 * accessing the netdevice. 1097 */ 1098 free_netdev(ndev); 1099 1100 dev_info(&pdev->dev, "Ending qede_remove successfully\n"); 1101 } 1102 1103 static void qede_remove(struct pci_dev *pdev) 1104 { 1105 __qede_remove(pdev, QEDE_REMOVE_NORMAL); 1106 } 1107 1108 static void qede_shutdown(struct pci_dev *pdev) 1109 { 1110 __qede_remove(pdev, QEDE_REMOVE_NORMAL); 1111 } 1112 1113 /* ------------------------------------------------------------------------- 1114 * START OF LOAD / UNLOAD 1115 * ------------------------------------------------------------------------- 1116 */ 1117 1118 static int qede_set_num_queues(struct qede_dev *edev) 1119 { 1120 int rc; 1121 u16 rss_num; 1122 1123 /* Setup queues according to possible resources*/ 1124 if (edev->req_queues) 1125 rss_num = edev->req_queues; 1126 else 1127 rss_num = netif_get_num_default_rss_queues() * 1128 edev->dev_info.common.num_hwfns; 1129 1130 rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num); 1131 1132 rc = edev->ops->common->set_fp_int(edev->cdev, rss_num); 1133 if (rc > 0) { 1134 /* Managed to request interrupts for our queues */ 1135 edev->num_queues = rc; 1136 DP_INFO(edev, "Managed %d [of %d] RSS queues\n", 1137 QEDE_QUEUE_CNT(edev), rss_num); 1138 rc = 0; 1139 } 1140 1141 edev->fp_num_tx = edev->req_num_tx; 1142 edev->fp_num_rx = edev->req_num_rx; 1143 1144 return rc; 1145 } 1146 1147 static void qede_free_mem_sb(struct qede_dev *edev, struct qed_sb_info *sb_info, 1148 u16 sb_id) 1149 { 1150 if (sb_info->sb_virt) { 1151 edev->ops->common->sb_release(edev->cdev, sb_info, sb_id); 1152 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt), 1153 (void *)sb_info->sb_virt, sb_info->sb_phys); 1154 memset(sb_info, 0, sizeof(*sb_info)); 1155 } 1156 } 1157 1158 /* This function allocates fast-path status block memory */ 1159 static int qede_alloc_mem_sb(struct qede_dev *edev, 1160 struct qed_sb_info *sb_info, u16 sb_id) 1161 { 1162 struct status_block_e4 *sb_virt; 1163 dma_addr_t sb_phys; 1164 int rc; 1165 1166 sb_virt = dma_alloc_coherent(&edev->pdev->dev, 1167 sizeof(*sb_virt), &sb_phys, GFP_KERNEL); 1168 if (!sb_virt) { 1169 DP_ERR(edev, "Status block allocation failed\n"); 1170 return -ENOMEM; 1171 } 1172 1173 rc = edev->ops->common->sb_init(edev->cdev, sb_info, 1174 sb_virt, sb_phys, sb_id, 1175 QED_SB_TYPE_L2_QUEUE); 1176 if (rc) { 1177 DP_ERR(edev, "Status block initialization failed\n"); 1178 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt), 1179 sb_virt, sb_phys); 1180 return rc; 1181 } 1182 1183 return 0; 1184 } 1185 1186 static void qede_free_rx_buffers(struct qede_dev *edev, 1187 struct qede_rx_queue *rxq) 1188 { 1189 u16 i; 1190 1191 for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) { 1192 struct sw_rx_data *rx_buf; 1193 struct page *data; 1194 1195 rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX]; 1196 data = rx_buf->data; 1197 1198 dma_unmap_page(&edev->pdev->dev, 1199 rx_buf->mapping, PAGE_SIZE, rxq->data_direction); 1200 1201 rx_buf->data = NULL; 1202 __free_page(data); 1203 } 1204 } 1205 1206 static void qede_free_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq) 1207 { 1208 /* Free rx buffers */ 1209 qede_free_rx_buffers(edev, rxq); 1210 1211 /* Free the parallel SW ring */ 1212 kfree(rxq->sw_rx_ring); 1213 1214 /* Free the real RQ ring used by FW */ 1215 edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring); 1216 edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring); 1217 } 1218 1219 static void qede_set_tpa_param(struct qede_rx_queue *rxq) 1220 { 1221 int i; 1222 1223 for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) { 1224 struct qede_agg_info *tpa_info = &rxq->tpa_info[i]; 1225 1226 tpa_info->state = QEDE_AGG_STATE_NONE; 1227 } 1228 } 1229 1230 /* This function allocates all memory needed per Rx queue */ 1231 static int qede_alloc_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq) 1232 { 1233 int i, rc, size; 1234 1235 rxq->num_rx_buffers = edev->q_num_rx_buffers; 1236 1237 rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD + edev->ndev->mtu; 1238 1239 rxq->rx_headroom = edev->xdp_prog ? XDP_PACKET_HEADROOM : NET_SKB_PAD; 1240 size = rxq->rx_headroom + 1241 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 1242 1243 /* Make sure that the headroom and payload fit in a single page */ 1244 if (rxq->rx_buf_size + size > PAGE_SIZE) 1245 rxq->rx_buf_size = PAGE_SIZE - size; 1246 1247 /* Segment size to spilt a page in multiple equal parts , 1248 * unless XDP is used in which case we'd use the entire page. 1249 */ 1250 if (!edev->xdp_prog) { 1251 size = size + rxq->rx_buf_size; 1252 rxq->rx_buf_seg_size = roundup_pow_of_two(size); 1253 } else { 1254 rxq->rx_buf_seg_size = PAGE_SIZE; 1255 } 1256 1257 /* Allocate the parallel driver ring for Rx buffers */ 1258 size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE; 1259 rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL); 1260 if (!rxq->sw_rx_ring) { 1261 DP_ERR(edev, "Rx buffers ring allocation failed\n"); 1262 rc = -ENOMEM; 1263 goto err; 1264 } 1265 1266 /* Allocate FW Rx ring */ 1267 rc = edev->ops->common->chain_alloc(edev->cdev, 1268 QED_CHAIN_USE_TO_CONSUME_PRODUCE, 1269 QED_CHAIN_MODE_NEXT_PTR, 1270 QED_CHAIN_CNT_TYPE_U16, 1271 RX_RING_SIZE, 1272 sizeof(struct eth_rx_bd), 1273 &rxq->rx_bd_ring, NULL); 1274 if (rc) 1275 goto err; 1276 1277 /* Allocate FW completion ring */ 1278 rc = edev->ops->common->chain_alloc(edev->cdev, 1279 QED_CHAIN_USE_TO_CONSUME, 1280 QED_CHAIN_MODE_PBL, 1281 QED_CHAIN_CNT_TYPE_U16, 1282 RX_RING_SIZE, 1283 sizeof(union eth_rx_cqe), 1284 &rxq->rx_comp_ring, NULL); 1285 if (rc) 1286 goto err; 1287 1288 /* Allocate buffers for the Rx ring */ 1289 rxq->filled_buffers = 0; 1290 for (i = 0; i < rxq->num_rx_buffers; i++) { 1291 rc = qede_alloc_rx_buffer(rxq, false); 1292 if (rc) { 1293 DP_ERR(edev, 1294 "Rx buffers allocation failed at index %d\n", i); 1295 goto err; 1296 } 1297 } 1298 1299 if (!edev->gro_disable) 1300 qede_set_tpa_param(rxq); 1301 err: 1302 return rc; 1303 } 1304 1305 static void qede_free_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq) 1306 { 1307 /* Free the parallel SW ring */ 1308 if (txq->is_xdp) 1309 kfree(txq->sw_tx_ring.xdp); 1310 else 1311 kfree(txq->sw_tx_ring.skbs); 1312 1313 /* Free the real RQ ring used by FW */ 1314 edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl); 1315 } 1316 1317 /* This function allocates all memory needed per Tx queue */ 1318 static int qede_alloc_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq) 1319 { 1320 union eth_tx_bd_types *p_virt; 1321 int size, rc; 1322 1323 txq->num_tx_buffers = edev->q_num_tx_buffers; 1324 1325 /* Allocate the parallel driver ring for Tx buffers */ 1326 if (txq->is_xdp) { 1327 size = sizeof(*txq->sw_tx_ring.xdp) * txq->num_tx_buffers; 1328 txq->sw_tx_ring.xdp = kzalloc(size, GFP_KERNEL); 1329 if (!txq->sw_tx_ring.xdp) 1330 goto err; 1331 } else { 1332 size = sizeof(*txq->sw_tx_ring.skbs) * txq->num_tx_buffers; 1333 txq->sw_tx_ring.skbs = kzalloc(size, GFP_KERNEL); 1334 if (!txq->sw_tx_ring.skbs) 1335 goto err; 1336 } 1337 1338 rc = edev->ops->common->chain_alloc(edev->cdev, 1339 QED_CHAIN_USE_TO_CONSUME_PRODUCE, 1340 QED_CHAIN_MODE_PBL, 1341 QED_CHAIN_CNT_TYPE_U16, 1342 txq->num_tx_buffers, 1343 sizeof(*p_virt), 1344 &txq->tx_pbl, NULL); 1345 if (rc) 1346 goto err; 1347 1348 return 0; 1349 1350 err: 1351 qede_free_mem_txq(edev, txq); 1352 return -ENOMEM; 1353 } 1354 1355 /* This function frees all memory of a single fp */ 1356 static void qede_free_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp) 1357 { 1358 qede_free_mem_sb(edev, fp->sb_info, fp->id); 1359 1360 if (fp->type & QEDE_FASTPATH_RX) 1361 qede_free_mem_rxq(edev, fp->rxq); 1362 1363 if (fp->type & QEDE_FASTPATH_XDP) 1364 qede_free_mem_txq(edev, fp->xdp_tx); 1365 1366 if (fp->type & QEDE_FASTPATH_TX) 1367 qede_free_mem_txq(edev, fp->txq); 1368 } 1369 1370 /* This function allocates all memory needed for a single fp (i.e. an entity 1371 * which contains status block, one rx queue and/or multiple per-TC tx queues. 1372 */ 1373 static int qede_alloc_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp) 1374 { 1375 int rc = 0; 1376 1377 rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->id); 1378 if (rc) 1379 goto out; 1380 1381 if (fp->type & QEDE_FASTPATH_RX) { 1382 rc = qede_alloc_mem_rxq(edev, fp->rxq); 1383 if (rc) 1384 goto out; 1385 } 1386 1387 if (fp->type & QEDE_FASTPATH_XDP) { 1388 rc = qede_alloc_mem_txq(edev, fp->xdp_tx); 1389 if (rc) 1390 goto out; 1391 } 1392 1393 if (fp->type & QEDE_FASTPATH_TX) { 1394 rc = qede_alloc_mem_txq(edev, fp->txq); 1395 if (rc) 1396 goto out; 1397 } 1398 1399 out: 1400 return rc; 1401 } 1402 1403 static void qede_free_mem_load(struct qede_dev *edev) 1404 { 1405 int i; 1406 1407 for_each_queue(i) { 1408 struct qede_fastpath *fp = &edev->fp_array[i]; 1409 1410 qede_free_mem_fp(edev, fp); 1411 } 1412 } 1413 1414 /* This function allocates all qede memory at NIC load. */ 1415 static int qede_alloc_mem_load(struct qede_dev *edev) 1416 { 1417 int rc = 0, queue_id; 1418 1419 for (queue_id = 0; queue_id < QEDE_QUEUE_CNT(edev); queue_id++) { 1420 struct qede_fastpath *fp = &edev->fp_array[queue_id]; 1421 1422 rc = qede_alloc_mem_fp(edev, fp); 1423 if (rc) { 1424 DP_ERR(edev, 1425 "Failed to allocate memory for fastpath - rss id = %d\n", 1426 queue_id); 1427 qede_free_mem_load(edev); 1428 return rc; 1429 } 1430 } 1431 1432 return 0; 1433 } 1434 1435 /* This function inits fp content and resets the SB, RXQ and TXQ structures */ 1436 static void qede_init_fp(struct qede_dev *edev) 1437 { 1438 int queue_id, rxq_index = 0, txq_index = 0; 1439 struct qede_fastpath *fp; 1440 1441 for_each_queue(queue_id) { 1442 fp = &edev->fp_array[queue_id]; 1443 1444 fp->edev = edev; 1445 fp->id = queue_id; 1446 1447 if (fp->type & QEDE_FASTPATH_XDP) { 1448 fp->xdp_tx->index = QEDE_TXQ_IDX_TO_XDP(edev, 1449 rxq_index); 1450 fp->xdp_tx->is_xdp = 1; 1451 } 1452 1453 if (fp->type & QEDE_FASTPATH_RX) { 1454 fp->rxq->rxq_id = rxq_index++; 1455 1456 /* Determine how to map buffers for this queue */ 1457 if (fp->type & QEDE_FASTPATH_XDP) 1458 fp->rxq->data_direction = DMA_BIDIRECTIONAL; 1459 else 1460 fp->rxq->data_direction = DMA_FROM_DEVICE; 1461 fp->rxq->dev = &edev->pdev->dev; 1462 1463 /* Driver have no error path from here */ 1464 WARN_ON(xdp_rxq_info_reg(&fp->rxq->xdp_rxq, edev->ndev, 1465 fp->rxq->rxq_id) < 0); 1466 } 1467 1468 if (fp->type & QEDE_FASTPATH_TX) { 1469 fp->txq->index = txq_index++; 1470 if (edev->dev_info.is_legacy) 1471 fp->txq->is_legacy = 1; 1472 fp->txq->dev = &edev->pdev->dev; 1473 } 1474 1475 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d", 1476 edev->ndev->name, queue_id); 1477 } 1478 1479 edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO_HW); 1480 } 1481 1482 static int qede_set_real_num_queues(struct qede_dev *edev) 1483 { 1484 int rc = 0; 1485 1486 rc = netif_set_real_num_tx_queues(edev->ndev, QEDE_TSS_COUNT(edev)); 1487 if (rc) { 1488 DP_NOTICE(edev, "Failed to set real number of Tx queues\n"); 1489 return rc; 1490 } 1491 1492 rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_COUNT(edev)); 1493 if (rc) { 1494 DP_NOTICE(edev, "Failed to set real number of Rx queues\n"); 1495 return rc; 1496 } 1497 1498 return 0; 1499 } 1500 1501 static void qede_napi_disable_remove(struct qede_dev *edev) 1502 { 1503 int i; 1504 1505 for_each_queue(i) { 1506 napi_disable(&edev->fp_array[i].napi); 1507 1508 netif_napi_del(&edev->fp_array[i].napi); 1509 } 1510 } 1511 1512 static void qede_napi_add_enable(struct qede_dev *edev) 1513 { 1514 int i; 1515 1516 /* Add NAPI objects */ 1517 for_each_queue(i) { 1518 netif_napi_add(edev->ndev, &edev->fp_array[i].napi, 1519 qede_poll, NAPI_POLL_WEIGHT); 1520 napi_enable(&edev->fp_array[i].napi); 1521 } 1522 } 1523 1524 static void qede_sync_free_irqs(struct qede_dev *edev) 1525 { 1526 int i; 1527 1528 for (i = 0; i < edev->int_info.used_cnt; i++) { 1529 if (edev->int_info.msix_cnt) { 1530 synchronize_irq(edev->int_info.msix[i].vector); 1531 free_irq(edev->int_info.msix[i].vector, 1532 &edev->fp_array[i]); 1533 } else { 1534 edev->ops->common->simd_handler_clean(edev->cdev, i); 1535 } 1536 } 1537 1538 edev->int_info.used_cnt = 0; 1539 } 1540 1541 static int qede_req_msix_irqs(struct qede_dev *edev) 1542 { 1543 int i, rc; 1544 1545 /* Sanitize number of interrupts == number of prepared RSS queues */ 1546 if (QEDE_QUEUE_CNT(edev) > edev->int_info.msix_cnt) { 1547 DP_ERR(edev, 1548 "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n", 1549 QEDE_QUEUE_CNT(edev), edev->int_info.msix_cnt); 1550 return -EINVAL; 1551 } 1552 1553 for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) { 1554 #ifdef CONFIG_RFS_ACCEL 1555 struct qede_fastpath *fp = &edev->fp_array[i]; 1556 1557 if (edev->ndev->rx_cpu_rmap && (fp->type & QEDE_FASTPATH_RX)) { 1558 rc = irq_cpu_rmap_add(edev->ndev->rx_cpu_rmap, 1559 edev->int_info.msix[i].vector); 1560 if (rc) { 1561 DP_ERR(edev, "Failed to add CPU rmap\n"); 1562 qede_free_arfs(edev); 1563 } 1564 } 1565 #endif 1566 rc = request_irq(edev->int_info.msix[i].vector, 1567 qede_msix_fp_int, 0, edev->fp_array[i].name, 1568 &edev->fp_array[i]); 1569 if (rc) { 1570 DP_ERR(edev, "Request fp %d irq failed\n", i); 1571 qede_sync_free_irqs(edev); 1572 return rc; 1573 } 1574 DP_VERBOSE(edev, NETIF_MSG_INTR, 1575 "Requested fp irq for %s [entry %d]. Cookie is at %p\n", 1576 edev->fp_array[i].name, i, 1577 &edev->fp_array[i]); 1578 edev->int_info.used_cnt++; 1579 } 1580 1581 return 0; 1582 } 1583 1584 static void qede_simd_fp_handler(void *cookie) 1585 { 1586 struct qede_fastpath *fp = (struct qede_fastpath *)cookie; 1587 1588 napi_schedule_irqoff(&fp->napi); 1589 } 1590 1591 static int qede_setup_irqs(struct qede_dev *edev) 1592 { 1593 int i, rc = 0; 1594 1595 /* Learn Interrupt configuration */ 1596 rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info); 1597 if (rc) 1598 return rc; 1599 1600 if (edev->int_info.msix_cnt) { 1601 rc = qede_req_msix_irqs(edev); 1602 if (rc) 1603 return rc; 1604 edev->ndev->irq = edev->int_info.msix[0].vector; 1605 } else { 1606 const struct qed_common_ops *ops; 1607 1608 /* qed should learn receive the RSS ids and callbacks */ 1609 ops = edev->ops->common; 1610 for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) 1611 ops->simd_handler_config(edev->cdev, 1612 &edev->fp_array[i], i, 1613 qede_simd_fp_handler); 1614 edev->int_info.used_cnt = QEDE_QUEUE_CNT(edev); 1615 } 1616 return 0; 1617 } 1618 1619 static int qede_drain_txq(struct qede_dev *edev, 1620 struct qede_tx_queue *txq, bool allow_drain) 1621 { 1622 int rc, cnt = 1000; 1623 1624 while (txq->sw_tx_cons != txq->sw_tx_prod) { 1625 if (!cnt) { 1626 if (allow_drain) { 1627 DP_NOTICE(edev, 1628 "Tx queue[%d] is stuck, requesting MCP to drain\n", 1629 txq->index); 1630 rc = edev->ops->common->drain(edev->cdev); 1631 if (rc) 1632 return rc; 1633 return qede_drain_txq(edev, txq, false); 1634 } 1635 DP_NOTICE(edev, 1636 "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n", 1637 txq->index, txq->sw_tx_prod, 1638 txq->sw_tx_cons); 1639 return -ENODEV; 1640 } 1641 cnt--; 1642 usleep_range(1000, 2000); 1643 barrier(); 1644 } 1645 1646 /* FW finished processing, wait for HW to transmit all tx packets */ 1647 usleep_range(1000, 2000); 1648 1649 return 0; 1650 } 1651 1652 static int qede_stop_txq(struct qede_dev *edev, 1653 struct qede_tx_queue *txq, int rss_id) 1654 { 1655 return edev->ops->q_tx_stop(edev->cdev, rss_id, txq->handle); 1656 } 1657 1658 static int qede_stop_queues(struct qede_dev *edev) 1659 { 1660 struct qed_update_vport_params *vport_update_params; 1661 struct qed_dev *cdev = edev->cdev; 1662 struct qede_fastpath *fp; 1663 int rc, i; 1664 1665 /* Disable the vport */ 1666 vport_update_params = vzalloc(sizeof(*vport_update_params)); 1667 if (!vport_update_params) 1668 return -ENOMEM; 1669 1670 vport_update_params->vport_id = 0; 1671 vport_update_params->update_vport_active_flg = 1; 1672 vport_update_params->vport_active_flg = 0; 1673 vport_update_params->update_rss_flg = 0; 1674 1675 rc = edev->ops->vport_update(cdev, vport_update_params); 1676 vfree(vport_update_params); 1677 1678 if (rc) { 1679 DP_ERR(edev, "Failed to update vport\n"); 1680 return rc; 1681 } 1682 1683 /* Flush Tx queues. If needed, request drain from MCP */ 1684 for_each_queue(i) { 1685 fp = &edev->fp_array[i]; 1686 1687 if (fp->type & QEDE_FASTPATH_TX) { 1688 rc = qede_drain_txq(edev, fp->txq, true); 1689 if (rc) 1690 return rc; 1691 } 1692 1693 if (fp->type & QEDE_FASTPATH_XDP) { 1694 rc = qede_drain_txq(edev, fp->xdp_tx, true); 1695 if (rc) 1696 return rc; 1697 } 1698 } 1699 1700 /* Stop all Queues in reverse order */ 1701 for (i = QEDE_QUEUE_CNT(edev) - 1; i >= 0; i--) { 1702 fp = &edev->fp_array[i]; 1703 1704 /* Stop the Tx Queue(s) */ 1705 if (fp->type & QEDE_FASTPATH_TX) { 1706 rc = qede_stop_txq(edev, fp->txq, i); 1707 if (rc) 1708 return rc; 1709 } 1710 1711 /* Stop the Rx Queue */ 1712 if (fp->type & QEDE_FASTPATH_RX) { 1713 rc = edev->ops->q_rx_stop(cdev, i, fp->rxq->handle); 1714 if (rc) { 1715 DP_ERR(edev, "Failed to stop RXQ #%d\n", i); 1716 return rc; 1717 } 1718 } 1719 1720 /* Stop the XDP forwarding queue */ 1721 if (fp->type & QEDE_FASTPATH_XDP) { 1722 rc = qede_stop_txq(edev, fp->xdp_tx, i); 1723 if (rc) 1724 return rc; 1725 1726 bpf_prog_put(fp->rxq->xdp_prog); 1727 } 1728 } 1729 1730 /* Stop the vport */ 1731 rc = edev->ops->vport_stop(cdev, 0); 1732 if (rc) 1733 DP_ERR(edev, "Failed to stop VPORT\n"); 1734 1735 return rc; 1736 } 1737 1738 static int qede_start_txq(struct qede_dev *edev, 1739 struct qede_fastpath *fp, 1740 struct qede_tx_queue *txq, u8 rss_id, u16 sb_idx) 1741 { 1742 dma_addr_t phys_table = qed_chain_get_pbl_phys(&txq->tx_pbl); 1743 u32 page_cnt = qed_chain_get_page_cnt(&txq->tx_pbl); 1744 struct qed_queue_start_common_params params; 1745 struct qed_txq_start_ret_params ret_params; 1746 int rc; 1747 1748 memset(¶ms, 0, sizeof(params)); 1749 memset(&ret_params, 0, sizeof(ret_params)); 1750 1751 /* Let the XDP queue share the queue-zone with one of the regular txq. 1752 * We don't really care about its coalescing. 1753 */ 1754 if (txq->is_xdp) 1755 params.queue_id = QEDE_TXQ_XDP_TO_IDX(edev, txq); 1756 else 1757 params.queue_id = txq->index; 1758 1759 params.p_sb = fp->sb_info; 1760 params.sb_idx = sb_idx; 1761 1762 rc = edev->ops->q_tx_start(edev->cdev, rss_id, ¶ms, phys_table, 1763 page_cnt, &ret_params); 1764 if (rc) { 1765 DP_ERR(edev, "Start TXQ #%d failed %d\n", txq->index, rc); 1766 return rc; 1767 } 1768 1769 txq->doorbell_addr = ret_params.p_doorbell; 1770 txq->handle = ret_params.p_handle; 1771 1772 /* Determine the FW consumer address associated */ 1773 txq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[sb_idx]; 1774 1775 /* Prepare the doorbell parameters */ 1776 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST, DB_DEST_XCM); 1777 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD, DB_AGG_CMD_SET); 1778 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_VAL_SEL, 1779 DQ_XCM_ETH_TX_BD_PROD_CMD); 1780 txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD; 1781 1782 return rc; 1783 } 1784 1785 static int qede_start_queues(struct qede_dev *edev, bool clear_stats) 1786 { 1787 int vlan_removal_en = 1; 1788 struct qed_dev *cdev = edev->cdev; 1789 struct qed_dev_info *qed_info = &edev->dev_info.common; 1790 struct qed_update_vport_params *vport_update_params; 1791 struct qed_queue_start_common_params q_params; 1792 struct qed_start_vport_params start = {0}; 1793 int rc, i; 1794 1795 if (!edev->num_queues) { 1796 DP_ERR(edev, 1797 "Cannot update V-VPORT as active as there are no Rx queues\n"); 1798 return -EINVAL; 1799 } 1800 1801 vport_update_params = vzalloc(sizeof(*vport_update_params)); 1802 if (!vport_update_params) 1803 return -ENOMEM; 1804 1805 start.handle_ptp_pkts = !!(edev->ptp); 1806 start.gro_enable = !edev->gro_disable; 1807 start.mtu = edev->ndev->mtu; 1808 start.vport_id = 0; 1809 start.drop_ttl0 = true; 1810 start.remove_inner_vlan = vlan_removal_en; 1811 start.clear_stats = clear_stats; 1812 1813 rc = edev->ops->vport_start(cdev, &start); 1814 1815 if (rc) { 1816 DP_ERR(edev, "Start V-PORT failed %d\n", rc); 1817 goto out; 1818 } 1819 1820 DP_VERBOSE(edev, NETIF_MSG_IFUP, 1821 "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n", 1822 start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en); 1823 1824 for_each_queue(i) { 1825 struct qede_fastpath *fp = &edev->fp_array[i]; 1826 dma_addr_t p_phys_table; 1827 u32 page_cnt; 1828 1829 if (fp->type & QEDE_FASTPATH_RX) { 1830 struct qed_rxq_start_ret_params ret_params; 1831 struct qede_rx_queue *rxq = fp->rxq; 1832 __le16 *val; 1833 1834 memset(&ret_params, 0, sizeof(ret_params)); 1835 memset(&q_params, 0, sizeof(q_params)); 1836 q_params.queue_id = rxq->rxq_id; 1837 q_params.vport_id = 0; 1838 q_params.p_sb = fp->sb_info; 1839 q_params.sb_idx = RX_PI; 1840 1841 p_phys_table = 1842 qed_chain_get_pbl_phys(&rxq->rx_comp_ring); 1843 page_cnt = qed_chain_get_page_cnt(&rxq->rx_comp_ring); 1844 1845 rc = edev->ops->q_rx_start(cdev, i, &q_params, 1846 rxq->rx_buf_size, 1847 rxq->rx_bd_ring.p_phys_addr, 1848 p_phys_table, 1849 page_cnt, &ret_params); 1850 if (rc) { 1851 DP_ERR(edev, "Start RXQ #%d failed %d\n", i, 1852 rc); 1853 goto out; 1854 } 1855 1856 /* Use the return parameters */ 1857 rxq->hw_rxq_prod_addr = ret_params.p_prod; 1858 rxq->handle = ret_params.p_handle; 1859 1860 val = &fp->sb_info->sb_virt->pi_array[RX_PI]; 1861 rxq->hw_cons_ptr = val; 1862 1863 qede_update_rx_prod(edev, rxq); 1864 } 1865 1866 if (fp->type & QEDE_FASTPATH_XDP) { 1867 rc = qede_start_txq(edev, fp, fp->xdp_tx, i, XDP_PI); 1868 if (rc) 1869 goto out; 1870 1871 fp->rxq->xdp_prog = bpf_prog_add(edev->xdp_prog, 1); 1872 if (IS_ERR(fp->rxq->xdp_prog)) { 1873 rc = PTR_ERR(fp->rxq->xdp_prog); 1874 fp->rxq->xdp_prog = NULL; 1875 goto out; 1876 } 1877 } 1878 1879 if (fp->type & QEDE_FASTPATH_TX) { 1880 rc = qede_start_txq(edev, fp, fp->txq, i, TX_PI(0)); 1881 if (rc) 1882 goto out; 1883 } 1884 } 1885 1886 /* Prepare and send the vport enable */ 1887 vport_update_params->vport_id = start.vport_id; 1888 vport_update_params->update_vport_active_flg = 1; 1889 vport_update_params->vport_active_flg = 1; 1890 1891 if ((qed_info->b_inter_pf_switch || pci_num_vf(edev->pdev)) && 1892 qed_info->tx_switching) { 1893 vport_update_params->update_tx_switching_flg = 1; 1894 vport_update_params->tx_switching_flg = 1; 1895 } 1896 1897 qede_fill_rss_params(edev, &vport_update_params->rss_params, 1898 &vport_update_params->update_rss_flg); 1899 1900 rc = edev->ops->vport_update(cdev, vport_update_params); 1901 if (rc) 1902 DP_ERR(edev, "Update V-PORT failed %d\n", rc); 1903 1904 out: 1905 vfree(vport_update_params); 1906 return rc; 1907 } 1908 1909 enum qede_unload_mode { 1910 QEDE_UNLOAD_NORMAL, 1911 }; 1912 1913 static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode, 1914 bool is_locked) 1915 { 1916 struct qed_link_params link_params; 1917 int rc; 1918 1919 DP_INFO(edev, "Starting qede unload\n"); 1920 1921 if (!is_locked) 1922 __qede_lock(edev); 1923 1924 edev->state = QEDE_STATE_CLOSED; 1925 1926 qede_rdma_dev_event_close(edev); 1927 1928 /* Close OS Tx */ 1929 netif_tx_disable(edev->ndev); 1930 netif_carrier_off(edev->ndev); 1931 1932 /* Reset the link */ 1933 memset(&link_params, 0, sizeof(link_params)); 1934 link_params.link_up = false; 1935 edev->ops->common->set_link(edev->cdev, &link_params); 1936 rc = qede_stop_queues(edev); 1937 if (rc) { 1938 qede_sync_free_irqs(edev); 1939 goto out; 1940 } 1941 1942 DP_INFO(edev, "Stopped Queues\n"); 1943 1944 qede_vlan_mark_nonconfigured(edev); 1945 edev->ops->fastpath_stop(edev->cdev); 1946 1947 if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) { 1948 qede_poll_for_freeing_arfs_filters(edev); 1949 qede_free_arfs(edev); 1950 } 1951 1952 /* Release the interrupts */ 1953 qede_sync_free_irqs(edev); 1954 edev->ops->common->set_fp_int(edev->cdev, 0); 1955 1956 qede_napi_disable_remove(edev); 1957 1958 qede_free_mem_load(edev); 1959 qede_free_fp_array(edev); 1960 1961 out: 1962 if (!is_locked) 1963 __qede_unlock(edev); 1964 DP_INFO(edev, "Ending qede unload\n"); 1965 } 1966 1967 enum qede_load_mode { 1968 QEDE_LOAD_NORMAL, 1969 QEDE_LOAD_RELOAD, 1970 }; 1971 1972 static int qede_load(struct qede_dev *edev, enum qede_load_mode mode, 1973 bool is_locked) 1974 { 1975 struct qed_link_params link_params; 1976 int rc; 1977 1978 DP_INFO(edev, "Starting qede load\n"); 1979 1980 if (!is_locked) 1981 __qede_lock(edev); 1982 1983 rc = qede_set_num_queues(edev); 1984 if (rc) 1985 goto out; 1986 1987 rc = qede_alloc_fp_array(edev); 1988 if (rc) 1989 goto out; 1990 1991 qede_init_fp(edev); 1992 1993 rc = qede_alloc_mem_load(edev); 1994 if (rc) 1995 goto err1; 1996 DP_INFO(edev, "Allocated %d Rx, %d Tx queues\n", 1997 QEDE_RSS_COUNT(edev), QEDE_TSS_COUNT(edev)); 1998 1999 rc = qede_set_real_num_queues(edev); 2000 if (rc) 2001 goto err2; 2002 2003 if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) { 2004 rc = qede_alloc_arfs(edev); 2005 if (rc) 2006 DP_NOTICE(edev, "aRFS memory allocation failed\n"); 2007 } 2008 2009 qede_napi_add_enable(edev); 2010 DP_INFO(edev, "Napi added and enabled\n"); 2011 2012 rc = qede_setup_irqs(edev); 2013 if (rc) 2014 goto err3; 2015 DP_INFO(edev, "Setup IRQs succeeded\n"); 2016 2017 rc = qede_start_queues(edev, mode != QEDE_LOAD_RELOAD); 2018 if (rc) 2019 goto err4; 2020 DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n"); 2021 2022 /* Program un-configured VLANs */ 2023 qede_configure_vlan_filters(edev); 2024 2025 /* Ask for link-up using current configuration */ 2026 memset(&link_params, 0, sizeof(link_params)); 2027 link_params.link_up = true; 2028 edev->ops->common->set_link(edev->cdev, &link_params); 2029 2030 edev->state = QEDE_STATE_OPEN; 2031 2032 DP_INFO(edev, "Ending successfully qede load\n"); 2033 2034 goto out; 2035 err4: 2036 qede_sync_free_irqs(edev); 2037 memset(&edev->int_info.msix_cnt, 0, sizeof(struct qed_int_info)); 2038 err3: 2039 qede_napi_disable_remove(edev); 2040 err2: 2041 qede_free_mem_load(edev); 2042 err1: 2043 edev->ops->common->set_fp_int(edev->cdev, 0); 2044 qede_free_fp_array(edev); 2045 edev->num_queues = 0; 2046 edev->fp_num_tx = 0; 2047 edev->fp_num_rx = 0; 2048 out: 2049 if (!is_locked) 2050 __qede_unlock(edev); 2051 2052 return rc; 2053 } 2054 2055 /* 'func' should be able to run between unload and reload assuming interface 2056 * is actually running, or afterwards in case it's currently DOWN. 2057 */ 2058 void qede_reload(struct qede_dev *edev, 2059 struct qede_reload_args *args, bool is_locked) 2060 { 2061 if (!is_locked) 2062 __qede_lock(edev); 2063 2064 /* Since qede_lock is held, internal state wouldn't change even 2065 * if netdev state would start transitioning. Check whether current 2066 * internal configuration indicates device is up, then reload. 2067 */ 2068 if (edev->state == QEDE_STATE_OPEN) { 2069 qede_unload(edev, QEDE_UNLOAD_NORMAL, true); 2070 if (args) 2071 args->func(edev, args); 2072 qede_load(edev, QEDE_LOAD_RELOAD, true); 2073 2074 /* Since no one is going to do it for us, re-configure */ 2075 qede_config_rx_mode(edev->ndev); 2076 } else if (args) { 2077 args->func(edev, args); 2078 } 2079 2080 if (!is_locked) 2081 __qede_unlock(edev); 2082 } 2083 2084 /* called with rtnl_lock */ 2085 static int qede_open(struct net_device *ndev) 2086 { 2087 struct qede_dev *edev = netdev_priv(ndev); 2088 int rc; 2089 2090 netif_carrier_off(ndev); 2091 2092 edev->ops->common->set_power_state(edev->cdev, PCI_D0); 2093 2094 rc = qede_load(edev, QEDE_LOAD_NORMAL, false); 2095 if (rc) 2096 return rc; 2097 2098 udp_tunnel_get_rx_info(ndev); 2099 2100 edev->ops->common->update_drv_state(edev->cdev, true); 2101 2102 return 0; 2103 } 2104 2105 static int qede_close(struct net_device *ndev) 2106 { 2107 struct qede_dev *edev = netdev_priv(ndev); 2108 2109 qede_unload(edev, QEDE_UNLOAD_NORMAL, false); 2110 2111 edev->ops->common->update_drv_state(edev->cdev, false); 2112 2113 return 0; 2114 } 2115 2116 static void qede_link_update(void *dev, struct qed_link_output *link) 2117 { 2118 struct qede_dev *edev = dev; 2119 2120 if (!netif_running(edev->ndev)) { 2121 DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not running\n"); 2122 return; 2123 } 2124 2125 if (link->link_up) { 2126 if (!netif_carrier_ok(edev->ndev)) { 2127 DP_NOTICE(edev, "Link is up\n"); 2128 netif_tx_start_all_queues(edev->ndev); 2129 netif_carrier_on(edev->ndev); 2130 qede_rdma_dev_event_open(edev); 2131 } 2132 } else { 2133 if (netif_carrier_ok(edev->ndev)) { 2134 DP_NOTICE(edev, "Link is down\n"); 2135 netif_tx_disable(edev->ndev); 2136 netif_carrier_off(edev->ndev); 2137 qede_rdma_dev_event_close(edev); 2138 } 2139 } 2140 } 2141 2142 static bool qede_is_txq_full(struct qede_dev *edev, struct qede_tx_queue *txq) 2143 { 2144 struct netdev_queue *netdev_txq; 2145 2146 netdev_txq = netdev_get_tx_queue(edev->ndev, txq->index); 2147 if (netif_xmit_stopped(netdev_txq)) 2148 return true; 2149 2150 return false; 2151 } 2152 2153 static void qede_get_generic_tlv_data(void *dev, struct qed_generic_tlvs *data) 2154 { 2155 struct qede_dev *edev = dev; 2156 struct netdev_hw_addr *ha; 2157 int i; 2158 2159 if (edev->ndev->features & NETIF_F_IP_CSUM) 2160 data->feat_flags |= QED_TLV_IP_CSUM; 2161 if (edev->ndev->features & NETIF_F_TSO) 2162 data->feat_flags |= QED_TLV_LSO; 2163 2164 ether_addr_copy(data->mac[0], edev->ndev->dev_addr); 2165 memset(data->mac[1], 0, ETH_ALEN); 2166 memset(data->mac[2], 0, ETH_ALEN); 2167 /* Copy the first two UC macs */ 2168 netif_addr_lock_bh(edev->ndev); 2169 i = 1; 2170 netdev_for_each_uc_addr(ha, edev->ndev) { 2171 ether_addr_copy(data->mac[i++], ha->addr); 2172 if (i == QED_TLV_MAC_COUNT) 2173 break; 2174 } 2175 2176 netif_addr_unlock_bh(edev->ndev); 2177 } 2178 2179 static void qede_get_eth_tlv_data(void *dev, void *data) 2180 { 2181 struct qed_mfw_tlv_eth *etlv = data; 2182 struct qede_dev *edev = dev; 2183 struct qede_fastpath *fp; 2184 int i; 2185 2186 etlv->lso_maxoff_size = 0XFFFF; 2187 etlv->lso_maxoff_size_set = true; 2188 etlv->lso_minseg_size = (u16)ETH_TX_LSO_WINDOW_MIN_LEN; 2189 etlv->lso_minseg_size_set = true; 2190 etlv->prom_mode = !!(edev->ndev->flags & IFF_PROMISC); 2191 etlv->prom_mode_set = true; 2192 etlv->tx_descr_size = QEDE_TSS_COUNT(edev); 2193 etlv->tx_descr_size_set = true; 2194 etlv->rx_descr_size = QEDE_RSS_COUNT(edev); 2195 etlv->rx_descr_size_set = true; 2196 etlv->iov_offload = QED_MFW_TLV_IOV_OFFLOAD_VEB; 2197 etlv->iov_offload_set = true; 2198 2199 /* Fill information regarding queues; Should be done under the qede 2200 * lock to guarantee those don't change beneath our feet. 2201 */ 2202 etlv->txqs_empty = true; 2203 etlv->rxqs_empty = true; 2204 etlv->num_txqs_full = 0; 2205 etlv->num_rxqs_full = 0; 2206 2207 __qede_lock(edev); 2208 for_each_queue(i) { 2209 fp = &edev->fp_array[i]; 2210 if (fp->type & QEDE_FASTPATH_TX) { 2211 if (fp->txq->sw_tx_cons != fp->txq->sw_tx_prod) 2212 etlv->txqs_empty = false; 2213 if (qede_is_txq_full(edev, fp->txq)) 2214 etlv->num_txqs_full++; 2215 } 2216 if (fp->type & QEDE_FASTPATH_RX) { 2217 if (qede_has_rx_work(fp->rxq)) 2218 etlv->rxqs_empty = false; 2219 2220 /* This one is a bit tricky; Firmware might stop 2221 * placing packets if ring is not yet full. 2222 * Give an approximation. 2223 */ 2224 if (le16_to_cpu(*fp->rxq->hw_cons_ptr) - 2225 qed_chain_get_cons_idx(&fp->rxq->rx_comp_ring) > 2226 RX_RING_SIZE - 100) 2227 etlv->num_rxqs_full++; 2228 } 2229 } 2230 __qede_unlock(edev); 2231 2232 etlv->txqs_empty_set = true; 2233 etlv->rxqs_empty_set = true; 2234 etlv->num_txqs_full_set = true; 2235 etlv->num_rxqs_full_set = true; 2236 } 2237