xref: /linux/drivers/net/ethernet/qlogic/qede/qede_main.c (revision a6cdeeb16bff89c8486324f53577db058cbe81ba)
1 /* QLogic qede NIC Driver
2  * Copyright (c) 2015-2017  QLogic Corporation
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and /or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 #include <linux/module.h>
33 #include <linux/pci.h>
34 #include <linux/version.h>
35 #include <linux/device.h>
36 #include <linux/netdevice.h>
37 #include <linux/etherdevice.h>
38 #include <linux/skbuff.h>
39 #include <linux/errno.h>
40 #include <linux/list.h>
41 #include <linux/string.h>
42 #include <linux/dma-mapping.h>
43 #include <linux/interrupt.h>
44 #include <asm/byteorder.h>
45 #include <asm/param.h>
46 #include <linux/io.h>
47 #include <linux/netdev_features.h>
48 #include <linux/udp.h>
49 #include <linux/tcp.h>
50 #include <net/udp_tunnel.h>
51 #include <linux/ip.h>
52 #include <net/ipv6.h>
53 #include <net/tcp.h>
54 #include <linux/if_ether.h>
55 #include <linux/if_vlan.h>
56 #include <linux/pkt_sched.h>
57 #include <linux/ethtool.h>
58 #include <linux/in.h>
59 #include <linux/random.h>
60 #include <net/ip6_checksum.h>
61 #include <linux/bitops.h>
62 #include <linux/vmalloc.h>
63 #include "qede.h"
64 #include "qede_ptp.h"
65 
66 static char version[] =
67 	"QLogic FastLinQ 4xxxx Ethernet Driver qede " DRV_MODULE_VERSION "\n";
68 
69 MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver");
70 MODULE_LICENSE("GPL");
71 MODULE_VERSION(DRV_MODULE_VERSION);
72 
73 static uint debug;
74 module_param(debug, uint, 0);
75 MODULE_PARM_DESC(debug, " Default debug msglevel");
76 
77 static const struct qed_eth_ops *qed_ops;
78 
79 #define CHIP_NUM_57980S_40		0x1634
80 #define CHIP_NUM_57980S_10		0x1666
81 #define CHIP_NUM_57980S_MF		0x1636
82 #define CHIP_NUM_57980S_100		0x1644
83 #define CHIP_NUM_57980S_50		0x1654
84 #define CHIP_NUM_57980S_25		0x1656
85 #define CHIP_NUM_57980S_IOV		0x1664
86 #define CHIP_NUM_AH			0x8070
87 #define CHIP_NUM_AH_IOV			0x8090
88 
89 #ifndef PCI_DEVICE_ID_NX2_57980E
90 #define PCI_DEVICE_ID_57980S_40		CHIP_NUM_57980S_40
91 #define PCI_DEVICE_ID_57980S_10		CHIP_NUM_57980S_10
92 #define PCI_DEVICE_ID_57980S_MF		CHIP_NUM_57980S_MF
93 #define PCI_DEVICE_ID_57980S_100	CHIP_NUM_57980S_100
94 #define PCI_DEVICE_ID_57980S_50		CHIP_NUM_57980S_50
95 #define PCI_DEVICE_ID_57980S_25		CHIP_NUM_57980S_25
96 #define PCI_DEVICE_ID_57980S_IOV	CHIP_NUM_57980S_IOV
97 #define PCI_DEVICE_ID_AH		CHIP_NUM_AH
98 #define PCI_DEVICE_ID_AH_IOV		CHIP_NUM_AH_IOV
99 
100 #endif
101 
102 enum qede_pci_private {
103 	QEDE_PRIVATE_PF,
104 	QEDE_PRIVATE_VF
105 };
106 
107 static const struct pci_device_id qede_pci_tbl[] = {
108 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF},
109 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF},
110 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF},
111 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF},
112 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF},
113 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF},
114 #ifdef CONFIG_QED_SRIOV
115 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF},
116 #endif
117 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH), QEDE_PRIVATE_PF},
118 #ifdef CONFIG_QED_SRIOV
119 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH_IOV), QEDE_PRIVATE_VF},
120 #endif
121 	{ 0 }
122 };
123 
124 MODULE_DEVICE_TABLE(pci, qede_pci_tbl);
125 
126 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id);
127 
128 #define TX_TIMEOUT		(5 * HZ)
129 
130 /* Utilize last protocol index for XDP */
131 #define XDP_PI	11
132 
133 static void qede_remove(struct pci_dev *pdev);
134 static void qede_shutdown(struct pci_dev *pdev);
135 static void qede_link_update(void *dev, struct qed_link_output *link);
136 static void qede_schedule_recovery_handler(void *dev);
137 static void qede_recovery_handler(struct qede_dev *edev);
138 static void qede_get_eth_tlv_data(void *edev, void *data);
139 static void qede_get_generic_tlv_data(void *edev,
140 				      struct qed_generic_tlvs *data);
141 
142 #ifdef CONFIG_QED_SRIOV
143 static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos,
144 			    __be16 vlan_proto)
145 {
146 	struct qede_dev *edev = netdev_priv(ndev);
147 
148 	if (vlan > 4095) {
149 		DP_NOTICE(edev, "Illegal vlan value %d\n", vlan);
150 		return -EINVAL;
151 	}
152 
153 	if (vlan_proto != htons(ETH_P_8021Q))
154 		return -EPROTONOSUPPORT;
155 
156 	DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n",
157 		   vlan, vf);
158 
159 	return edev->ops->iov->set_vlan(edev->cdev, vlan, vf);
160 }
161 
162 static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac)
163 {
164 	struct qede_dev *edev = netdev_priv(ndev);
165 
166 	DP_VERBOSE(edev, QED_MSG_IOV,
167 		   "Setting MAC %02x:%02x:%02x:%02x:%02x:%02x to VF [%d]\n",
168 		   mac[0], mac[1], mac[2], mac[3], mac[4], mac[5], vfidx);
169 
170 	if (!is_valid_ether_addr(mac)) {
171 		DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n");
172 		return -EINVAL;
173 	}
174 
175 	return edev->ops->iov->set_mac(edev->cdev, mac, vfidx);
176 }
177 
178 static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param)
179 {
180 	struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev));
181 	struct qed_dev_info *qed_info = &edev->dev_info.common;
182 	struct qed_update_vport_params *vport_params;
183 	int rc;
184 
185 	vport_params = vzalloc(sizeof(*vport_params));
186 	if (!vport_params)
187 		return -ENOMEM;
188 	DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param);
189 
190 	rc = edev->ops->iov->configure(edev->cdev, num_vfs_param);
191 
192 	/* Enable/Disable Tx switching for PF */
193 	if ((rc == num_vfs_param) && netif_running(edev->ndev) &&
194 	    !qed_info->b_inter_pf_switch && qed_info->tx_switching) {
195 		vport_params->vport_id = 0;
196 		vport_params->update_tx_switching_flg = 1;
197 		vport_params->tx_switching_flg = num_vfs_param ? 1 : 0;
198 		edev->ops->vport_update(edev->cdev, vport_params);
199 	}
200 
201 	vfree(vport_params);
202 	return rc;
203 }
204 #endif
205 
206 static struct pci_driver qede_pci_driver = {
207 	.name = "qede",
208 	.id_table = qede_pci_tbl,
209 	.probe = qede_probe,
210 	.remove = qede_remove,
211 	.shutdown = qede_shutdown,
212 #ifdef CONFIG_QED_SRIOV
213 	.sriov_configure = qede_sriov_configure,
214 #endif
215 };
216 
217 static struct qed_eth_cb_ops qede_ll_ops = {
218 	{
219 #ifdef CONFIG_RFS_ACCEL
220 		.arfs_filter_op = qede_arfs_filter_op,
221 #endif
222 		.link_update = qede_link_update,
223 		.schedule_recovery_handler = qede_schedule_recovery_handler,
224 		.get_generic_tlv_data = qede_get_generic_tlv_data,
225 		.get_protocol_tlv_data = qede_get_eth_tlv_data,
226 	},
227 	.force_mac = qede_force_mac,
228 	.ports_update = qede_udp_ports_update,
229 };
230 
231 static int qede_netdev_event(struct notifier_block *this, unsigned long event,
232 			     void *ptr)
233 {
234 	struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
235 	struct ethtool_drvinfo drvinfo;
236 	struct qede_dev *edev;
237 
238 	if (event != NETDEV_CHANGENAME && event != NETDEV_CHANGEADDR)
239 		goto done;
240 
241 	/* Check whether this is a qede device */
242 	if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo)
243 		goto done;
244 
245 	memset(&drvinfo, 0, sizeof(drvinfo));
246 	ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo);
247 	if (strcmp(drvinfo.driver, "qede"))
248 		goto done;
249 	edev = netdev_priv(ndev);
250 
251 	switch (event) {
252 	case NETDEV_CHANGENAME:
253 		/* Notify qed of the name change */
254 		if (!edev->ops || !edev->ops->common)
255 			goto done;
256 		edev->ops->common->set_name(edev->cdev, edev->ndev->name);
257 		break;
258 	case NETDEV_CHANGEADDR:
259 		edev = netdev_priv(ndev);
260 		qede_rdma_event_changeaddr(edev);
261 		break;
262 	}
263 
264 done:
265 	return NOTIFY_DONE;
266 }
267 
268 static struct notifier_block qede_netdev_notifier = {
269 	.notifier_call = qede_netdev_event,
270 };
271 
272 static
273 int __init qede_init(void)
274 {
275 	int ret;
276 
277 	pr_info("qede_init: %s\n", version);
278 
279 	qed_ops = qed_get_eth_ops();
280 	if (!qed_ops) {
281 		pr_notice("Failed to get qed ethtool operations\n");
282 		return -EINVAL;
283 	}
284 
285 	/* Must register notifier before pci ops, since we might miss
286 	 * interface rename after pci probe and netdev registration.
287 	 */
288 	ret = register_netdevice_notifier(&qede_netdev_notifier);
289 	if (ret) {
290 		pr_notice("Failed to register netdevice_notifier\n");
291 		qed_put_eth_ops();
292 		return -EINVAL;
293 	}
294 
295 	ret = pci_register_driver(&qede_pci_driver);
296 	if (ret) {
297 		pr_notice("Failed to register driver\n");
298 		unregister_netdevice_notifier(&qede_netdev_notifier);
299 		qed_put_eth_ops();
300 		return -EINVAL;
301 	}
302 
303 	return 0;
304 }
305 
306 static void __exit qede_cleanup(void)
307 {
308 	if (debug & QED_LOG_INFO_MASK)
309 		pr_info("qede_cleanup called\n");
310 
311 	unregister_netdevice_notifier(&qede_netdev_notifier);
312 	pci_unregister_driver(&qede_pci_driver);
313 	qed_put_eth_ops();
314 }
315 
316 module_init(qede_init);
317 module_exit(qede_cleanup);
318 
319 static int qede_open(struct net_device *ndev);
320 static int qede_close(struct net_device *ndev);
321 
322 void qede_fill_by_demand_stats(struct qede_dev *edev)
323 {
324 	struct qede_stats_common *p_common = &edev->stats.common;
325 	struct qed_eth_stats stats;
326 
327 	edev->ops->get_vport_stats(edev->cdev, &stats);
328 
329 	p_common->no_buff_discards = stats.common.no_buff_discards;
330 	p_common->packet_too_big_discard = stats.common.packet_too_big_discard;
331 	p_common->ttl0_discard = stats.common.ttl0_discard;
332 	p_common->rx_ucast_bytes = stats.common.rx_ucast_bytes;
333 	p_common->rx_mcast_bytes = stats.common.rx_mcast_bytes;
334 	p_common->rx_bcast_bytes = stats.common.rx_bcast_bytes;
335 	p_common->rx_ucast_pkts = stats.common.rx_ucast_pkts;
336 	p_common->rx_mcast_pkts = stats.common.rx_mcast_pkts;
337 	p_common->rx_bcast_pkts = stats.common.rx_bcast_pkts;
338 	p_common->mftag_filter_discards = stats.common.mftag_filter_discards;
339 	p_common->mac_filter_discards = stats.common.mac_filter_discards;
340 	p_common->gft_filter_drop = stats.common.gft_filter_drop;
341 
342 	p_common->tx_ucast_bytes = stats.common.tx_ucast_bytes;
343 	p_common->tx_mcast_bytes = stats.common.tx_mcast_bytes;
344 	p_common->tx_bcast_bytes = stats.common.tx_bcast_bytes;
345 	p_common->tx_ucast_pkts = stats.common.tx_ucast_pkts;
346 	p_common->tx_mcast_pkts = stats.common.tx_mcast_pkts;
347 	p_common->tx_bcast_pkts = stats.common.tx_bcast_pkts;
348 	p_common->tx_err_drop_pkts = stats.common.tx_err_drop_pkts;
349 	p_common->coalesced_pkts = stats.common.tpa_coalesced_pkts;
350 	p_common->coalesced_events = stats.common.tpa_coalesced_events;
351 	p_common->coalesced_aborts_num = stats.common.tpa_aborts_num;
352 	p_common->non_coalesced_pkts = stats.common.tpa_not_coalesced_pkts;
353 	p_common->coalesced_bytes = stats.common.tpa_coalesced_bytes;
354 
355 	p_common->rx_64_byte_packets = stats.common.rx_64_byte_packets;
356 	p_common->rx_65_to_127_byte_packets =
357 	    stats.common.rx_65_to_127_byte_packets;
358 	p_common->rx_128_to_255_byte_packets =
359 	    stats.common.rx_128_to_255_byte_packets;
360 	p_common->rx_256_to_511_byte_packets =
361 	    stats.common.rx_256_to_511_byte_packets;
362 	p_common->rx_512_to_1023_byte_packets =
363 	    stats.common.rx_512_to_1023_byte_packets;
364 	p_common->rx_1024_to_1518_byte_packets =
365 	    stats.common.rx_1024_to_1518_byte_packets;
366 	p_common->rx_crc_errors = stats.common.rx_crc_errors;
367 	p_common->rx_mac_crtl_frames = stats.common.rx_mac_crtl_frames;
368 	p_common->rx_pause_frames = stats.common.rx_pause_frames;
369 	p_common->rx_pfc_frames = stats.common.rx_pfc_frames;
370 	p_common->rx_align_errors = stats.common.rx_align_errors;
371 	p_common->rx_carrier_errors = stats.common.rx_carrier_errors;
372 	p_common->rx_oversize_packets = stats.common.rx_oversize_packets;
373 	p_common->rx_jabbers = stats.common.rx_jabbers;
374 	p_common->rx_undersize_packets = stats.common.rx_undersize_packets;
375 	p_common->rx_fragments = stats.common.rx_fragments;
376 	p_common->tx_64_byte_packets = stats.common.tx_64_byte_packets;
377 	p_common->tx_65_to_127_byte_packets =
378 	    stats.common.tx_65_to_127_byte_packets;
379 	p_common->tx_128_to_255_byte_packets =
380 	    stats.common.tx_128_to_255_byte_packets;
381 	p_common->tx_256_to_511_byte_packets =
382 	    stats.common.tx_256_to_511_byte_packets;
383 	p_common->tx_512_to_1023_byte_packets =
384 	    stats.common.tx_512_to_1023_byte_packets;
385 	p_common->tx_1024_to_1518_byte_packets =
386 	    stats.common.tx_1024_to_1518_byte_packets;
387 	p_common->tx_pause_frames = stats.common.tx_pause_frames;
388 	p_common->tx_pfc_frames = stats.common.tx_pfc_frames;
389 	p_common->brb_truncates = stats.common.brb_truncates;
390 	p_common->brb_discards = stats.common.brb_discards;
391 	p_common->tx_mac_ctrl_frames = stats.common.tx_mac_ctrl_frames;
392 	p_common->link_change_count = stats.common.link_change_count;
393 	p_common->ptp_skip_txts = edev->ptp_skip_txts;
394 
395 	if (QEDE_IS_BB(edev)) {
396 		struct qede_stats_bb *p_bb = &edev->stats.bb;
397 
398 		p_bb->rx_1519_to_1522_byte_packets =
399 		    stats.bb.rx_1519_to_1522_byte_packets;
400 		p_bb->rx_1519_to_2047_byte_packets =
401 		    stats.bb.rx_1519_to_2047_byte_packets;
402 		p_bb->rx_2048_to_4095_byte_packets =
403 		    stats.bb.rx_2048_to_4095_byte_packets;
404 		p_bb->rx_4096_to_9216_byte_packets =
405 		    stats.bb.rx_4096_to_9216_byte_packets;
406 		p_bb->rx_9217_to_16383_byte_packets =
407 		    stats.bb.rx_9217_to_16383_byte_packets;
408 		p_bb->tx_1519_to_2047_byte_packets =
409 		    stats.bb.tx_1519_to_2047_byte_packets;
410 		p_bb->tx_2048_to_4095_byte_packets =
411 		    stats.bb.tx_2048_to_4095_byte_packets;
412 		p_bb->tx_4096_to_9216_byte_packets =
413 		    stats.bb.tx_4096_to_9216_byte_packets;
414 		p_bb->tx_9217_to_16383_byte_packets =
415 		    stats.bb.tx_9217_to_16383_byte_packets;
416 		p_bb->tx_lpi_entry_count = stats.bb.tx_lpi_entry_count;
417 		p_bb->tx_total_collisions = stats.bb.tx_total_collisions;
418 	} else {
419 		struct qede_stats_ah *p_ah = &edev->stats.ah;
420 
421 		p_ah->rx_1519_to_max_byte_packets =
422 		    stats.ah.rx_1519_to_max_byte_packets;
423 		p_ah->tx_1519_to_max_byte_packets =
424 		    stats.ah.tx_1519_to_max_byte_packets;
425 	}
426 }
427 
428 static void qede_get_stats64(struct net_device *dev,
429 			     struct rtnl_link_stats64 *stats)
430 {
431 	struct qede_dev *edev = netdev_priv(dev);
432 	struct qede_stats_common *p_common;
433 
434 	qede_fill_by_demand_stats(edev);
435 	p_common = &edev->stats.common;
436 
437 	stats->rx_packets = p_common->rx_ucast_pkts + p_common->rx_mcast_pkts +
438 			    p_common->rx_bcast_pkts;
439 	stats->tx_packets = p_common->tx_ucast_pkts + p_common->tx_mcast_pkts +
440 			    p_common->tx_bcast_pkts;
441 
442 	stats->rx_bytes = p_common->rx_ucast_bytes + p_common->rx_mcast_bytes +
443 			  p_common->rx_bcast_bytes;
444 	stats->tx_bytes = p_common->tx_ucast_bytes + p_common->tx_mcast_bytes +
445 			  p_common->tx_bcast_bytes;
446 
447 	stats->tx_errors = p_common->tx_err_drop_pkts;
448 	stats->multicast = p_common->rx_mcast_pkts + p_common->rx_bcast_pkts;
449 
450 	stats->rx_fifo_errors = p_common->no_buff_discards;
451 
452 	if (QEDE_IS_BB(edev))
453 		stats->collisions = edev->stats.bb.tx_total_collisions;
454 	stats->rx_crc_errors = p_common->rx_crc_errors;
455 	stats->rx_frame_errors = p_common->rx_align_errors;
456 }
457 
458 #ifdef CONFIG_QED_SRIOV
459 static int qede_get_vf_config(struct net_device *dev, int vfidx,
460 			      struct ifla_vf_info *ivi)
461 {
462 	struct qede_dev *edev = netdev_priv(dev);
463 
464 	if (!edev->ops)
465 		return -EINVAL;
466 
467 	return edev->ops->iov->get_config(edev->cdev, vfidx, ivi);
468 }
469 
470 static int qede_set_vf_rate(struct net_device *dev, int vfidx,
471 			    int min_tx_rate, int max_tx_rate)
472 {
473 	struct qede_dev *edev = netdev_priv(dev);
474 
475 	return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate,
476 					max_tx_rate);
477 }
478 
479 static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val)
480 {
481 	struct qede_dev *edev = netdev_priv(dev);
482 
483 	if (!edev->ops)
484 		return -EINVAL;
485 
486 	return edev->ops->iov->set_spoof(edev->cdev, vfidx, val);
487 }
488 
489 static int qede_set_vf_link_state(struct net_device *dev, int vfidx,
490 				  int link_state)
491 {
492 	struct qede_dev *edev = netdev_priv(dev);
493 
494 	if (!edev->ops)
495 		return -EINVAL;
496 
497 	return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state);
498 }
499 
500 static int qede_set_vf_trust(struct net_device *dev, int vfidx, bool setting)
501 {
502 	struct qede_dev *edev = netdev_priv(dev);
503 
504 	if (!edev->ops)
505 		return -EINVAL;
506 
507 	return edev->ops->iov->set_trust(edev->cdev, vfidx, setting);
508 }
509 #endif
510 
511 static int qede_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
512 {
513 	struct qede_dev *edev = netdev_priv(dev);
514 
515 	if (!netif_running(dev))
516 		return -EAGAIN;
517 
518 	switch (cmd) {
519 	case SIOCSHWTSTAMP:
520 		return qede_ptp_hw_ts(edev, ifr);
521 	default:
522 		DP_VERBOSE(edev, QED_MSG_DEBUG,
523 			   "default IOCTL cmd 0x%x\n", cmd);
524 		return -EOPNOTSUPP;
525 	}
526 
527 	return 0;
528 }
529 
530 static int qede_setup_tc(struct net_device *ndev, u8 num_tc)
531 {
532 	struct qede_dev *edev = netdev_priv(ndev);
533 	int cos, count, offset;
534 
535 	if (num_tc > edev->dev_info.num_tc)
536 		return -EINVAL;
537 
538 	netdev_reset_tc(ndev);
539 	netdev_set_num_tc(ndev, num_tc);
540 
541 	for_each_cos_in_txq(edev, cos) {
542 		count = QEDE_TSS_COUNT(edev);
543 		offset = cos * QEDE_TSS_COUNT(edev);
544 		netdev_set_tc_queue(ndev, cos, count, offset);
545 	}
546 
547 	return 0;
548 }
549 
550 static int
551 qede_set_flower(struct qede_dev *edev, struct tc_cls_flower_offload *f,
552 		__be16 proto)
553 {
554 	switch (f->command) {
555 	case TC_CLSFLOWER_REPLACE:
556 		return qede_add_tc_flower_fltr(edev, proto, f);
557 	case TC_CLSFLOWER_DESTROY:
558 		return qede_delete_flow_filter(edev, f->cookie);
559 	default:
560 		return -EOPNOTSUPP;
561 	}
562 }
563 
564 static int qede_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
565 				  void *cb_priv)
566 {
567 	struct tc_cls_flower_offload *f;
568 	struct qede_dev *edev = cb_priv;
569 
570 	if (!tc_cls_can_offload_and_chain0(edev->ndev, type_data))
571 		return -EOPNOTSUPP;
572 
573 	switch (type) {
574 	case TC_SETUP_CLSFLOWER:
575 		f = type_data;
576 		return qede_set_flower(edev, f, f->common.protocol);
577 	default:
578 		return -EOPNOTSUPP;
579 	}
580 }
581 
582 static int qede_setup_tc_block(struct qede_dev *edev,
583 			       struct tc_block_offload *f)
584 {
585 	if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
586 		return -EOPNOTSUPP;
587 
588 	switch (f->command) {
589 	case TC_BLOCK_BIND:
590 		return tcf_block_cb_register(f->block,
591 					     qede_setup_tc_block_cb,
592 					     edev, edev, f->extack);
593 	case TC_BLOCK_UNBIND:
594 		tcf_block_cb_unregister(f->block, qede_setup_tc_block_cb, edev);
595 		return 0;
596 	default:
597 		return -EOPNOTSUPP;
598 	}
599 }
600 
601 static int
602 qede_setup_tc_offload(struct net_device *dev, enum tc_setup_type type,
603 		      void *type_data)
604 {
605 	struct qede_dev *edev = netdev_priv(dev);
606 	struct tc_mqprio_qopt *mqprio;
607 
608 	switch (type) {
609 	case TC_SETUP_BLOCK:
610 		return qede_setup_tc_block(edev, type_data);
611 	case TC_SETUP_QDISC_MQPRIO:
612 		mqprio = type_data;
613 
614 		mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
615 		return qede_setup_tc(dev, mqprio->num_tc);
616 	default:
617 		return -EOPNOTSUPP;
618 	}
619 }
620 
621 static const struct net_device_ops qede_netdev_ops = {
622 	.ndo_open = qede_open,
623 	.ndo_stop = qede_close,
624 	.ndo_start_xmit = qede_start_xmit,
625 	.ndo_select_queue = qede_select_queue,
626 	.ndo_set_rx_mode = qede_set_rx_mode,
627 	.ndo_set_mac_address = qede_set_mac_addr,
628 	.ndo_validate_addr = eth_validate_addr,
629 	.ndo_change_mtu = qede_change_mtu,
630 	.ndo_do_ioctl = qede_ioctl,
631 #ifdef CONFIG_QED_SRIOV
632 	.ndo_set_vf_mac = qede_set_vf_mac,
633 	.ndo_set_vf_vlan = qede_set_vf_vlan,
634 	.ndo_set_vf_trust = qede_set_vf_trust,
635 #endif
636 	.ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
637 	.ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
638 	.ndo_fix_features = qede_fix_features,
639 	.ndo_set_features = qede_set_features,
640 	.ndo_get_stats64 = qede_get_stats64,
641 #ifdef CONFIG_QED_SRIOV
642 	.ndo_set_vf_link_state = qede_set_vf_link_state,
643 	.ndo_set_vf_spoofchk = qede_set_vf_spoofchk,
644 	.ndo_get_vf_config = qede_get_vf_config,
645 	.ndo_set_vf_rate = qede_set_vf_rate,
646 #endif
647 	.ndo_udp_tunnel_add = qede_udp_tunnel_add,
648 	.ndo_udp_tunnel_del = qede_udp_tunnel_del,
649 	.ndo_features_check = qede_features_check,
650 	.ndo_bpf = qede_xdp,
651 #ifdef CONFIG_RFS_ACCEL
652 	.ndo_rx_flow_steer = qede_rx_flow_steer,
653 #endif
654 	.ndo_setup_tc = qede_setup_tc_offload,
655 };
656 
657 static const struct net_device_ops qede_netdev_vf_ops = {
658 	.ndo_open = qede_open,
659 	.ndo_stop = qede_close,
660 	.ndo_start_xmit = qede_start_xmit,
661 	.ndo_select_queue = qede_select_queue,
662 	.ndo_set_rx_mode = qede_set_rx_mode,
663 	.ndo_set_mac_address = qede_set_mac_addr,
664 	.ndo_validate_addr = eth_validate_addr,
665 	.ndo_change_mtu = qede_change_mtu,
666 	.ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
667 	.ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
668 	.ndo_fix_features = qede_fix_features,
669 	.ndo_set_features = qede_set_features,
670 	.ndo_get_stats64 = qede_get_stats64,
671 	.ndo_udp_tunnel_add = qede_udp_tunnel_add,
672 	.ndo_udp_tunnel_del = qede_udp_tunnel_del,
673 	.ndo_features_check = qede_features_check,
674 };
675 
676 static const struct net_device_ops qede_netdev_vf_xdp_ops = {
677 	.ndo_open = qede_open,
678 	.ndo_stop = qede_close,
679 	.ndo_start_xmit = qede_start_xmit,
680 	.ndo_select_queue = qede_select_queue,
681 	.ndo_set_rx_mode = qede_set_rx_mode,
682 	.ndo_set_mac_address = qede_set_mac_addr,
683 	.ndo_validate_addr = eth_validate_addr,
684 	.ndo_change_mtu = qede_change_mtu,
685 	.ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
686 	.ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
687 	.ndo_fix_features = qede_fix_features,
688 	.ndo_set_features = qede_set_features,
689 	.ndo_get_stats64 = qede_get_stats64,
690 	.ndo_udp_tunnel_add = qede_udp_tunnel_add,
691 	.ndo_udp_tunnel_del = qede_udp_tunnel_del,
692 	.ndo_features_check = qede_features_check,
693 	.ndo_bpf = qede_xdp,
694 };
695 
696 /* -------------------------------------------------------------------------
697  * START OF PROBE / REMOVE
698  * -------------------------------------------------------------------------
699  */
700 
701 static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev,
702 					    struct pci_dev *pdev,
703 					    struct qed_dev_eth_info *info,
704 					    u32 dp_module, u8 dp_level)
705 {
706 	struct net_device *ndev;
707 	struct qede_dev *edev;
708 
709 	ndev = alloc_etherdev_mqs(sizeof(*edev),
710 				  info->num_queues * info->num_tc,
711 				  info->num_queues);
712 	if (!ndev) {
713 		pr_err("etherdev allocation failed\n");
714 		return NULL;
715 	}
716 
717 	edev = netdev_priv(ndev);
718 	edev->ndev = ndev;
719 	edev->cdev = cdev;
720 	edev->pdev = pdev;
721 	edev->dp_module = dp_module;
722 	edev->dp_level = dp_level;
723 	edev->ops = qed_ops;
724 	edev->q_num_rx_buffers = NUM_RX_BDS_DEF;
725 	edev->q_num_tx_buffers = NUM_TX_BDS_DEF;
726 
727 	DP_INFO(edev, "Allocated netdev with %d tx queues and %d rx queues\n",
728 		info->num_queues, info->num_queues);
729 
730 	SET_NETDEV_DEV(ndev, &pdev->dev);
731 
732 	memset(&edev->stats, 0, sizeof(edev->stats));
733 	memcpy(&edev->dev_info, info, sizeof(*info));
734 
735 	/* As ethtool doesn't have the ability to show WoL behavior as
736 	 * 'default', if device supports it declare it's enabled.
737 	 */
738 	if (edev->dev_info.common.wol_support)
739 		edev->wol_enabled = true;
740 
741 	INIT_LIST_HEAD(&edev->vlan_list);
742 
743 	return edev;
744 }
745 
746 static void qede_init_ndev(struct qede_dev *edev)
747 {
748 	struct net_device *ndev = edev->ndev;
749 	struct pci_dev *pdev = edev->pdev;
750 	bool udp_tunnel_enable = false;
751 	netdev_features_t hw_features;
752 
753 	pci_set_drvdata(pdev, ndev);
754 
755 	ndev->mem_start = edev->dev_info.common.pci_mem_start;
756 	ndev->base_addr = ndev->mem_start;
757 	ndev->mem_end = edev->dev_info.common.pci_mem_end;
758 	ndev->irq = edev->dev_info.common.pci_irq;
759 
760 	ndev->watchdog_timeo = TX_TIMEOUT;
761 
762 	if (IS_VF(edev)) {
763 		if (edev->dev_info.xdp_supported)
764 			ndev->netdev_ops = &qede_netdev_vf_xdp_ops;
765 		else
766 			ndev->netdev_ops = &qede_netdev_vf_ops;
767 	} else {
768 		ndev->netdev_ops = &qede_netdev_ops;
769 	}
770 
771 	qede_set_ethtool_ops(ndev);
772 
773 	ndev->priv_flags |= IFF_UNICAST_FLT;
774 
775 	/* user-changeble features */
776 	hw_features = NETIF_F_GRO | NETIF_F_GRO_HW | NETIF_F_SG |
777 		      NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
778 		      NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_HW_TC;
779 
780 	if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1)
781 		hw_features |= NETIF_F_NTUPLE;
782 
783 	if (edev->dev_info.common.vxlan_enable ||
784 	    edev->dev_info.common.geneve_enable)
785 		udp_tunnel_enable = true;
786 
787 	if (udp_tunnel_enable || edev->dev_info.common.gre_enable) {
788 		hw_features |= NETIF_F_TSO_ECN;
789 		ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
790 					NETIF_F_SG | NETIF_F_TSO |
791 					NETIF_F_TSO_ECN | NETIF_F_TSO6 |
792 					NETIF_F_RXCSUM;
793 	}
794 
795 	if (udp_tunnel_enable) {
796 		hw_features |= (NETIF_F_GSO_UDP_TUNNEL |
797 				NETIF_F_GSO_UDP_TUNNEL_CSUM);
798 		ndev->hw_enc_features |= (NETIF_F_GSO_UDP_TUNNEL |
799 					  NETIF_F_GSO_UDP_TUNNEL_CSUM);
800 	}
801 
802 	if (edev->dev_info.common.gre_enable) {
803 		hw_features |= (NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM);
804 		ndev->hw_enc_features |= (NETIF_F_GSO_GRE |
805 					  NETIF_F_GSO_GRE_CSUM);
806 	}
807 
808 	ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
809 			      NETIF_F_HIGHDMA;
810 	ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
811 			 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA |
812 			 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX;
813 
814 	ndev->hw_features = hw_features;
815 
816 	/* MTU range: 46 - 9600 */
817 	ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
818 	ndev->max_mtu = QEDE_MAX_JUMBO_PACKET_SIZE;
819 
820 	/* Set network device HW mac */
821 	ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac);
822 
823 	ndev->mtu = edev->dev_info.common.mtu;
824 }
825 
826 /* This function converts from 32b param to two params of level and module
827  * Input 32b decoding:
828  * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the
829  * 'happy' flow, e.g. memory allocation failed.
830  * b30 - enable all INFO prints. INFO prints are for major steps in the flow
831  * and provide important parameters.
832  * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that
833  * module. VERBOSE prints are for tracking the specific flow in low level.
834  *
835  * Notice that the level should be that of the lowest required logs.
836  */
837 void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level)
838 {
839 	*p_dp_level = QED_LEVEL_NOTICE;
840 	*p_dp_module = 0;
841 
842 	if (debug & QED_LOG_VERBOSE_MASK) {
843 		*p_dp_level = QED_LEVEL_VERBOSE;
844 		*p_dp_module = (debug & 0x3FFFFFFF);
845 	} else if (debug & QED_LOG_INFO_MASK) {
846 		*p_dp_level = QED_LEVEL_INFO;
847 	} else if (debug & QED_LOG_NOTICE_MASK) {
848 		*p_dp_level = QED_LEVEL_NOTICE;
849 	}
850 }
851 
852 static void qede_free_fp_array(struct qede_dev *edev)
853 {
854 	if (edev->fp_array) {
855 		struct qede_fastpath *fp;
856 		int i;
857 
858 		for_each_queue(i) {
859 			fp = &edev->fp_array[i];
860 
861 			kfree(fp->sb_info);
862 			/* Handle mem alloc failure case where qede_init_fp
863 			 * didn't register xdp_rxq_info yet.
864 			 * Implicit only (fp->type & QEDE_FASTPATH_RX)
865 			 */
866 			if (fp->rxq && xdp_rxq_info_is_reg(&fp->rxq->xdp_rxq))
867 				xdp_rxq_info_unreg(&fp->rxq->xdp_rxq);
868 			kfree(fp->rxq);
869 			kfree(fp->xdp_tx);
870 			kfree(fp->txq);
871 		}
872 		kfree(edev->fp_array);
873 	}
874 
875 	edev->num_queues = 0;
876 	edev->fp_num_tx = 0;
877 	edev->fp_num_rx = 0;
878 }
879 
880 static int qede_alloc_fp_array(struct qede_dev *edev)
881 {
882 	u8 fp_combined, fp_rx = edev->fp_num_rx;
883 	struct qede_fastpath *fp;
884 	int i;
885 
886 	edev->fp_array = kcalloc(QEDE_QUEUE_CNT(edev),
887 				 sizeof(*edev->fp_array), GFP_KERNEL);
888 	if (!edev->fp_array) {
889 		DP_NOTICE(edev, "fp array allocation failed\n");
890 		goto err;
891 	}
892 
893 	fp_combined = QEDE_QUEUE_CNT(edev) - fp_rx - edev->fp_num_tx;
894 
895 	/* Allocate the FP elements for Rx queues followed by combined and then
896 	 * the Tx. This ordering should be maintained so that the respective
897 	 * queues (Rx or Tx) will be together in the fastpath array and the
898 	 * associated ids will be sequential.
899 	 */
900 	for_each_queue(i) {
901 		fp = &edev->fp_array[i];
902 
903 		fp->sb_info = kzalloc(sizeof(*fp->sb_info), GFP_KERNEL);
904 		if (!fp->sb_info) {
905 			DP_NOTICE(edev, "sb info struct allocation failed\n");
906 			goto err;
907 		}
908 
909 		if (fp_rx) {
910 			fp->type = QEDE_FASTPATH_RX;
911 			fp_rx--;
912 		} else if (fp_combined) {
913 			fp->type = QEDE_FASTPATH_COMBINED;
914 			fp_combined--;
915 		} else {
916 			fp->type = QEDE_FASTPATH_TX;
917 		}
918 
919 		if (fp->type & QEDE_FASTPATH_TX) {
920 			fp->txq = kcalloc(edev->dev_info.num_tc,
921 					  sizeof(*fp->txq), GFP_KERNEL);
922 			if (!fp->txq)
923 				goto err;
924 		}
925 
926 		if (fp->type & QEDE_FASTPATH_RX) {
927 			fp->rxq = kzalloc(sizeof(*fp->rxq), GFP_KERNEL);
928 			if (!fp->rxq)
929 				goto err;
930 
931 			if (edev->xdp_prog) {
932 				fp->xdp_tx = kzalloc(sizeof(*fp->xdp_tx),
933 						     GFP_KERNEL);
934 				if (!fp->xdp_tx)
935 					goto err;
936 				fp->type |= QEDE_FASTPATH_XDP;
937 			}
938 		}
939 	}
940 
941 	return 0;
942 err:
943 	qede_free_fp_array(edev);
944 	return -ENOMEM;
945 }
946 
947 /* The qede lock is used to protect driver state change and driver flows that
948  * are not reentrant.
949  */
950 void __qede_lock(struct qede_dev *edev)
951 {
952 	mutex_lock(&edev->qede_lock);
953 }
954 
955 void __qede_unlock(struct qede_dev *edev)
956 {
957 	mutex_unlock(&edev->qede_lock);
958 }
959 
960 /* This version of the lock should be used when acquiring the RTNL lock is also
961  * needed in addition to the internal qede lock.
962  */
963 void qede_lock(struct qede_dev *edev)
964 {
965 	rtnl_lock();
966 	__qede_lock(edev);
967 }
968 
969 void qede_unlock(struct qede_dev *edev)
970 {
971 	__qede_unlock(edev);
972 	rtnl_unlock();
973 }
974 
975 static void qede_sp_task(struct work_struct *work)
976 {
977 	struct qede_dev *edev = container_of(work, struct qede_dev,
978 					     sp_task.work);
979 
980 	/* The locking scheme depends on the specific flag:
981 	 * In case of QEDE_SP_RECOVERY, acquiring the RTNL lock is required to
982 	 * ensure that ongoing flows are ended and new ones are not started.
983 	 * In other cases - only the internal qede lock should be acquired.
984 	 */
985 
986 	if (test_and_clear_bit(QEDE_SP_RECOVERY, &edev->sp_flags)) {
987 #ifdef CONFIG_QED_SRIOV
988 		/* SRIOV must be disabled outside the lock to avoid a deadlock.
989 		 * The recovery of the active VFs is currently not supported.
990 		 */
991 		qede_sriov_configure(edev->pdev, 0);
992 #endif
993 		qede_lock(edev);
994 		qede_recovery_handler(edev);
995 		qede_unlock(edev);
996 	}
997 
998 	__qede_lock(edev);
999 
1000 	if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags))
1001 		if (edev->state == QEDE_STATE_OPEN)
1002 			qede_config_rx_mode(edev->ndev);
1003 
1004 #ifdef CONFIG_RFS_ACCEL
1005 	if (test_and_clear_bit(QEDE_SP_ARFS_CONFIG, &edev->sp_flags)) {
1006 		if (edev->state == QEDE_STATE_OPEN)
1007 			qede_process_arfs_filters(edev, false);
1008 	}
1009 #endif
1010 	__qede_unlock(edev);
1011 }
1012 
1013 static void qede_update_pf_params(struct qed_dev *cdev)
1014 {
1015 	struct qed_pf_params pf_params;
1016 	u16 num_cons;
1017 
1018 	/* 64 rx + 64 tx + 64 XDP */
1019 	memset(&pf_params, 0, sizeof(struct qed_pf_params));
1020 
1021 	/* 1 rx + 1 xdp + max tx cos */
1022 	num_cons = QED_MIN_L2_CONS;
1023 
1024 	pf_params.eth_pf_params.num_cons = (MAX_SB_PER_PF_MIMD - 1) * num_cons;
1025 
1026 	/* Same for VFs - make sure they'll have sufficient connections
1027 	 * to support XDP Tx queues.
1028 	 */
1029 	pf_params.eth_pf_params.num_vf_cons = 48;
1030 
1031 	pf_params.eth_pf_params.num_arfs_filters = QEDE_RFS_MAX_FLTR;
1032 	qed_ops->common->update_pf_params(cdev, &pf_params);
1033 }
1034 
1035 #define QEDE_FW_VER_STR_SIZE	80
1036 
1037 static void qede_log_probe(struct qede_dev *edev)
1038 {
1039 	struct qed_dev_info *p_dev_info = &edev->dev_info.common;
1040 	u8 buf[QEDE_FW_VER_STR_SIZE];
1041 	size_t left_size;
1042 
1043 	snprintf(buf, QEDE_FW_VER_STR_SIZE,
1044 		 "Storm FW %d.%d.%d.%d, Management FW %d.%d.%d.%d",
1045 		 p_dev_info->fw_major, p_dev_info->fw_minor, p_dev_info->fw_rev,
1046 		 p_dev_info->fw_eng,
1047 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_3_MASK) >>
1048 		 QED_MFW_VERSION_3_OFFSET,
1049 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_2_MASK) >>
1050 		 QED_MFW_VERSION_2_OFFSET,
1051 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_1_MASK) >>
1052 		 QED_MFW_VERSION_1_OFFSET,
1053 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_0_MASK) >>
1054 		 QED_MFW_VERSION_0_OFFSET);
1055 
1056 	left_size = QEDE_FW_VER_STR_SIZE - strlen(buf);
1057 	if (p_dev_info->mbi_version && left_size)
1058 		snprintf(buf + strlen(buf), left_size,
1059 			 " [MBI %d.%d.%d]",
1060 			 (p_dev_info->mbi_version & QED_MBI_VERSION_2_MASK) >>
1061 			 QED_MBI_VERSION_2_OFFSET,
1062 			 (p_dev_info->mbi_version & QED_MBI_VERSION_1_MASK) >>
1063 			 QED_MBI_VERSION_1_OFFSET,
1064 			 (p_dev_info->mbi_version & QED_MBI_VERSION_0_MASK) >>
1065 			 QED_MBI_VERSION_0_OFFSET);
1066 
1067 	pr_info("qede %02x:%02x.%02x: %s [%s]\n", edev->pdev->bus->number,
1068 		PCI_SLOT(edev->pdev->devfn), PCI_FUNC(edev->pdev->devfn),
1069 		buf, edev->ndev->name);
1070 }
1071 
1072 enum qede_probe_mode {
1073 	QEDE_PROBE_NORMAL,
1074 	QEDE_PROBE_RECOVERY,
1075 };
1076 
1077 static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level,
1078 			bool is_vf, enum qede_probe_mode mode)
1079 {
1080 	struct qed_probe_params probe_params;
1081 	struct qed_slowpath_params sp_params;
1082 	struct qed_dev_eth_info dev_info;
1083 	struct qede_dev *edev;
1084 	struct qed_dev *cdev;
1085 	int rc;
1086 
1087 	if (unlikely(dp_level & QED_LEVEL_INFO))
1088 		pr_notice("Starting qede probe\n");
1089 
1090 	memset(&probe_params, 0, sizeof(probe_params));
1091 	probe_params.protocol = QED_PROTOCOL_ETH;
1092 	probe_params.dp_module = dp_module;
1093 	probe_params.dp_level = dp_level;
1094 	probe_params.is_vf = is_vf;
1095 	probe_params.recov_in_prog = (mode == QEDE_PROBE_RECOVERY);
1096 	cdev = qed_ops->common->probe(pdev, &probe_params);
1097 	if (!cdev) {
1098 		rc = -ENODEV;
1099 		goto err0;
1100 	}
1101 
1102 	qede_update_pf_params(cdev);
1103 
1104 	/* Start the Slowpath-process */
1105 	memset(&sp_params, 0, sizeof(sp_params));
1106 	sp_params.int_mode = QED_INT_MODE_MSIX;
1107 	sp_params.drv_major = QEDE_MAJOR_VERSION;
1108 	sp_params.drv_minor = QEDE_MINOR_VERSION;
1109 	sp_params.drv_rev = QEDE_REVISION_VERSION;
1110 	sp_params.drv_eng = QEDE_ENGINEERING_VERSION;
1111 	strlcpy(sp_params.name, "qede LAN", QED_DRV_VER_STR_SIZE);
1112 	rc = qed_ops->common->slowpath_start(cdev, &sp_params);
1113 	if (rc) {
1114 		pr_notice("Cannot start slowpath\n");
1115 		goto err1;
1116 	}
1117 
1118 	/* Learn information crucial for qede to progress */
1119 	rc = qed_ops->fill_dev_info(cdev, &dev_info);
1120 	if (rc)
1121 		goto err2;
1122 
1123 	if (mode != QEDE_PROBE_RECOVERY) {
1124 		edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module,
1125 					   dp_level);
1126 		if (!edev) {
1127 			rc = -ENOMEM;
1128 			goto err2;
1129 		}
1130 	} else {
1131 		struct net_device *ndev = pci_get_drvdata(pdev);
1132 
1133 		edev = netdev_priv(ndev);
1134 		edev->cdev = cdev;
1135 		memset(&edev->stats, 0, sizeof(edev->stats));
1136 		memcpy(&edev->dev_info, &dev_info, sizeof(dev_info));
1137 	}
1138 
1139 	if (is_vf)
1140 		set_bit(QEDE_FLAGS_IS_VF, &edev->flags);
1141 
1142 	qede_init_ndev(edev);
1143 
1144 	rc = qede_rdma_dev_add(edev, (mode == QEDE_PROBE_RECOVERY));
1145 	if (rc)
1146 		goto err3;
1147 
1148 	if (mode != QEDE_PROBE_RECOVERY) {
1149 		/* Prepare the lock prior to the registration of the netdev,
1150 		 * as once it's registered we might reach flows requiring it
1151 		 * [it's even possible to reach a flow needing it directly
1152 		 * from there, although it's unlikely].
1153 		 */
1154 		INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task);
1155 		mutex_init(&edev->qede_lock);
1156 
1157 		rc = register_netdev(edev->ndev);
1158 		if (rc) {
1159 			DP_NOTICE(edev, "Cannot register net-device\n");
1160 			goto err4;
1161 		}
1162 	}
1163 
1164 	edev->ops->common->set_name(cdev, edev->ndev->name);
1165 
1166 	/* PTP not supported on VFs */
1167 	if (!is_vf)
1168 		qede_ptp_enable(edev, (mode == QEDE_PROBE_NORMAL));
1169 
1170 	edev->ops->register_ops(cdev, &qede_ll_ops, edev);
1171 
1172 #ifdef CONFIG_DCB
1173 	if (!IS_VF(edev))
1174 		qede_set_dcbnl_ops(edev->ndev);
1175 #endif
1176 
1177 	edev->rx_copybreak = QEDE_RX_HDR_SIZE;
1178 
1179 	qede_log_probe(edev);
1180 	return 0;
1181 
1182 err4:
1183 	qede_rdma_dev_remove(edev, (mode == QEDE_PROBE_RECOVERY));
1184 err3:
1185 	free_netdev(edev->ndev);
1186 err2:
1187 	qed_ops->common->slowpath_stop(cdev);
1188 err1:
1189 	qed_ops->common->remove(cdev);
1190 err0:
1191 	return rc;
1192 }
1193 
1194 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1195 {
1196 	bool is_vf = false;
1197 	u32 dp_module = 0;
1198 	u8 dp_level = 0;
1199 
1200 	switch ((enum qede_pci_private)id->driver_data) {
1201 	case QEDE_PRIVATE_VF:
1202 		if (debug & QED_LOG_VERBOSE_MASK)
1203 			dev_err(&pdev->dev, "Probing a VF\n");
1204 		is_vf = true;
1205 		break;
1206 	default:
1207 		if (debug & QED_LOG_VERBOSE_MASK)
1208 			dev_err(&pdev->dev, "Probing a PF\n");
1209 	}
1210 
1211 	qede_config_debug(debug, &dp_module, &dp_level);
1212 
1213 	return __qede_probe(pdev, dp_module, dp_level, is_vf,
1214 			    QEDE_PROBE_NORMAL);
1215 }
1216 
1217 enum qede_remove_mode {
1218 	QEDE_REMOVE_NORMAL,
1219 	QEDE_REMOVE_RECOVERY,
1220 };
1221 
1222 static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode)
1223 {
1224 	struct net_device *ndev = pci_get_drvdata(pdev);
1225 	struct qede_dev *edev = netdev_priv(ndev);
1226 	struct qed_dev *cdev = edev->cdev;
1227 
1228 	DP_INFO(edev, "Starting qede_remove\n");
1229 
1230 	qede_rdma_dev_remove(edev, (mode == QEDE_REMOVE_RECOVERY));
1231 
1232 	if (mode != QEDE_REMOVE_RECOVERY) {
1233 		unregister_netdev(ndev);
1234 
1235 		cancel_delayed_work_sync(&edev->sp_task);
1236 
1237 		edev->ops->common->set_power_state(cdev, PCI_D0);
1238 
1239 		pci_set_drvdata(pdev, NULL);
1240 	}
1241 
1242 	qede_ptp_disable(edev);
1243 
1244 	/* Use global ops since we've freed edev */
1245 	qed_ops->common->slowpath_stop(cdev);
1246 	if (system_state == SYSTEM_POWER_OFF)
1247 		return;
1248 	qed_ops->common->remove(cdev);
1249 
1250 	/* Since this can happen out-of-sync with other flows,
1251 	 * don't release the netdevice until after slowpath stop
1252 	 * has been called to guarantee various other contexts
1253 	 * [e.g., QED register callbacks] won't break anything when
1254 	 * accessing the netdevice.
1255 	 */
1256 	if (mode != QEDE_REMOVE_RECOVERY)
1257 		free_netdev(ndev);
1258 
1259 	dev_info(&pdev->dev, "Ending qede_remove successfully\n");
1260 }
1261 
1262 static void qede_remove(struct pci_dev *pdev)
1263 {
1264 	__qede_remove(pdev, QEDE_REMOVE_NORMAL);
1265 }
1266 
1267 static void qede_shutdown(struct pci_dev *pdev)
1268 {
1269 	__qede_remove(pdev, QEDE_REMOVE_NORMAL);
1270 }
1271 
1272 /* -------------------------------------------------------------------------
1273  * START OF LOAD / UNLOAD
1274  * -------------------------------------------------------------------------
1275  */
1276 
1277 static int qede_set_num_queues(struct qede_dev *edev)
1278 {
1279 	int rc;
1280 	u16 rss_num;
1281 
1282 	/* Setup queues according to possible resources*/
1283 	if (edev->req_queues)
1284 		rss_num = edev->req_queues;
1285 	else
1286 		rss_num = netif_get_num_default_rss_queues() *
1287 			  edev->dev_info.common.num_hwfns;
1288 
1289 	rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num);
1290 
1291 	rc = edev->ops->common->set_fp_int(edev->cdev, rss_num);
1292 	if (rc > 0) {
1293 		/* Managed to request interrupts for our queues */
1294 		edev->num_queues = rc;
1295 		DP_INFO(edev, "Managed %d [of %d] RSS queues\n",
1296 			QEDE_QUEUE_CNT(edev), rss_num);
1297 		rc = 0;
1298 	}
1299 
1300 	edev->fp_num_tx = edev->req_num_tx;
1301 	edev->fp_num_rx = edev->req_num_rx;
1302 
1303 	return rc;
1304 }
1305 
1306 static void qede_free_mem_sb(struct qede_dev *edev, struct qed_sb_info *sb_info,
1307 			     u16 sb_id)
1308 {
1309 	if (sb_info->sb_virt) {
1310 		edev->ops->common->sb_release(edev->cdev, sb_info, sb_id,
1311 					      QED_SB_TYPE_L2_QUEUE);
1312 		dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt),
1313 				  (void *)sb_info->sb_virt, sb_info->sb_phys);
1314 		memset(sb_info, 0, sizeof(*sb_info));
1315 	}
1316 }
1317 
1318 /* This function allocates fast-path status block memory */
1319 static int qede_alloc_mem_sb(struct qede_dev *edev,
1320 			     struct qed_sb_info *sb_info, u16 sb_id)
1321 {
1322 	struct status_block_e4 *sb_virt;
1323 	dma_addr_t sb_phys;
1324 	int rc;
1325 
1326 	sb_virt = dma_alloc_coherent(&edev->pdev->dev,
1327 				     sizeof(*sb_virt), &sb_phys, GFP_KERNEL);
1328 	if (!sb_virt) {
1329 		DP_ERR(edev, "Status block allocation failed\n");
1330 		return -ENOMEM;
1331 	}
1332 
1333 	rc = edev->ops->common->sb_init(edev->cdev, sb_info,
1334 					sb_virt, sb_phys, sb_id,
1335 					QED_SB_TYPE_L2_QUEUE);
1336 	if (rc) {
1337 		DP_ERR(edev, "Status block initialization failed\n");
1338 		dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt),
1339 				  sb_virt, sb_phys);
1340 		return rc;
1341 	}
1342 
1343 	return 0;
1344 }
1345 
1346 static void qede_free_rx_buffers(struct qede_dev *edev,
1347 				 struct qede_rx_queue *rxq)
1348 {
1349 	u16 i;
1350 
1351 	for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) {
1352 		struct sw_rx_data *rx_buf;
1353 		struct page *data;
1354 
1355 		rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX];
1356 		data = rx_buf->data;
1357 
1358 		dma_unmap_page(&edev->pdev->dev,
1359 			       rx_buf->mapping, PAGE_SIZE, rxq->data_direction);
1360 
1361 		rx_buf->data = NULL;
1362 		__free_page(data);
1363 	}
1364 }
1365 
1366 static void qede_free_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1367 {
1368 	/* Free rx buffers */
1369 	qede_free_rx_buffers(edev, rxq);
1370 
1371 	/* Free the parallel SW ring */
1372 	kfree(rxq->sw_rx_ring);
1373 
1374 	/* Free the real RQ ring used by FW */
1375 	edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring);
1376 	edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring);
1377 }
1378 
1379 static void qede_set_tpa_param(struct qede_rx_queue *rxq)
1380 {
1381 	int i;
1382 
1383 	for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
1384 		struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
1385 
1386 		tpa_info->state = QEDE_AGG_STATE_NONE;
1387 	}
1388 }
1389 
1390 /* This function allocates all memory needed per Rx queue */
1391 static int qede_alloc_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1392 {
1393 	int i, rc, size;
1394 
1395 	rxq->num_rx_buffers = edev->q_num_rx_buffers;
1396 
1397 	rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD + edev->ndev->mtu;
1398 
1399 	rxq->rx_headroom = edev->xdp_prog ? XDP_PACKET_HEADROOM : NET_SKB_PAD;
1400 	size = rxq->rx_headroom +
1401 	       SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1402 
1403 	/* Make sure that the headroom and  payload fit in a single page */
1404 	if (rxq->rx_buf_size + size > PAGE_SIZE)
1405 		rxq->rx_buf_size = PAGE_SIZE - size;
1406 
1407 	/* Segment size to spilt a page in multiple equal parts ,
1408 	 * unless XDP is used in which case we'd use the entire page.
1409 	 */
1410 	if (!edev->xdp_prog) {
1411 		size = size + rxq->rx_buf_size;
1412 		rxq->rx_buf_seg_size = roundup_pow_of_two(size);
1413 	} else {
1414 		rxq->rx_buf_seg_size = PAGE_SIZE;
1415 	}
1416 
1417 	/* Allocate the parallel driver ring for Rx buffers */
1418 	size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE;
1419 	rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL);
1420 	if (!rxq->sw_rx_ring) {
1421 		DP_ERR(edev, "Rx buffers ring allocation failed\n");
1422 		rc = -ENOMEM;
1423 		goto err;
1424 	}
1425 
1426 	/* Allocate FW Rx ring  */
1427 	rc = edev->ops->common->chain_alloc(edev->cdev,
1428 					    QED_CHAIN_USE_TO_CONSUME_PRODUCE,
1429 					    QED_CHAIN_MODE_NEXT_PTR,
1430 					    QED_CHAIN_CNT_TYPE_U16,
1431 					    RX_RING_SIZE,
1432 					    sizeof(struct eth_rx_bd),
1433 					    &rxq->rx_bd_ring, NULL);
1434 	if (rc)
1435 		goto err;
1436 
1437 	/* Allocate FW completion ring */
1438 	rc = edev->ops->common->chain_alloc(edev->cdev,
1439 					    QED_CHAIN_USE_TO_CONSUME,
1440 					    QED_CHAIN_MODE_PBL,
1441 					    QED_CHAIN_CNT_TYPE_U16,
1442 					    RX_RING_SIZE,
1443 					    sizeof(union eth_rx_cqe),
1444 					    &rxq->rx_comp_ring, NULL);
1445 	if (rc)
1446 		goto err;
1447 
1448 	/* Allocate buffers for the Rx ring */
1449 	rxq->filled_buffers = 0;
1450 	for (i = 0; i < rxq->num_rx_buffers; i++) {
1451 		rc = qede_alloc_rx_buffer(rxq, false);
1452 		if (rc) {
1453 			DP_ERR(edev,
1454 			       "Rx buffers allocation failed at index %d\n", i);
1455 			goto err;
1456 		}
1457 	}
1458 
1459 	if (!edev->gro_disable)
1460 		qede_set_tpa_param(rxq);
1461 err:
1462 	return rc;
1463 }
1464 
1465 static void qede_free_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1466 {
1467 	/* Free the parallel SW ring */
1468 	if (txq->is_xdp)
1469 		kfree(txq->sw_tx_ring.xdp);
1470 	else
1471 		kfree(txq->sw_tx_ring.skbs);
1472 
1473 	/* Free the real RQ ring used by FW */
1474 	edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl);
1475 }
1476 
1477 /* This function allocates all memory needed per Tx queue */
1478 static int qede_alloc_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1479 {
1480 	union eth_tx_bd_types *p_virt;
1481 	int size, rc;
1482 
1483 	txq->num_tx_buffers = edev->q_num_tx_buffers;
1484 
1485 	/* Allocate the parallel driver ring for Tx buffers */
1486 	if (txq->is_xdp) {
1487 		size = sizeof(*txq->sw_tx_ring.xdp) * txq->num_tx_buffers;
1488 		txq->sw_tx_ring.xdp = kzalloc(size, GFP_KERNEL);
1489 		if (!txq->sw_tx_ring.xdp)
1490 			goto err;
1491 	} else {
1492 		size = sizeof(*txq->sw_tx_ring.skbs) * txq->num_tx_buffers;
1493 		txq->sw_tx_ring.skbs = kzalloc(size, GFP_KERNEL);
1494 		if (!txq->sw_tx_ring.skbs)
1495 			goto err;
1496 	}
1497 
1498 	rc = edev->ops->common->chain_alloc(edev->cdev,
1499 					    QED_CHAIN_USE_TO_CONSUME_PRODUCE,
1500 					    QED_CHAIN_MODE_PBL,
1501 					    QED_CHAIN_CNT_TYPE_U16,
1502 					    txq->num_tx_buffers,
1503 					    sizeof(*p_virt),
1504 					    &txq->tx_pbl, NULL);
1505 	if (rc)
1506 		goto err;
1507 
1508 	return 0;
1509 
1510 err:
1511 	qede_free_mem_txq(edev, txq);
1512 	return -ENOMEM;
1513 }
1514 
1515 /* This function frees all memory of a single fp */
1516 static void qede_free_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1517 {
1518 	qede_free_mem_sb(edev, fp->sb_info, fp->id);
1519 
1520 	if (fp->type & QEDE_FASTPATH_RX)
1521 		qede_free_mem_rxq(edev, fp->rxq);
1522 
1523 	if (fp->type & QEDE_FASTPATH_XDP)
1524 		qede_free_mem_txq(edev, fp->xdp_tx);
1525 
1526 	if (fp->type & QEDE_FASTPATH_TX) {
1527 		int cos;
1528 
1529 		for_each_cos_in_txq(edev, cos)
1530 			qede_free_mem_txq(edev, &fp->txq[cos]);
1531 	}
1532 }
1533 
1534 /* This function allocates all memory needed for a single fp (i.e. an entity
1535  * which contains status block, one rx queue and/or multiple per-TC tx queues.
1536  */
1537 static int qede_alloc_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1538 {
1539 	int rc = 0;
1540 
1541 	rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->id);
1542 	if (rc)
1543 		goto out;
1544 
1545 	if (fp->type & QEDE_FASTPATH_RX) {
1546 		rc = qede_alloc_mem_rxq(edev, fp->rxq);
1547 		if (rc)
1548 			goto out;
1549 	}
1550 
1551 	if (fp->type & QEDE_FASTPATH_XDP) {
1552 		rc = qede_alloc_mem_txq(edev, fp->xdp_tx);
1553 		if (rc)
1554 			goto out;
1555 	}
1556 
1557 	if (fp->type & QEDE_FASTPATH_TX) {
1558 		int cos;
1559 
1560 		for_each_cos_in_txq(edev, cos) {
1561 			rc = qede_alloc_mem_txq(edev, &fp->txq[cos]);
1562 			if (rc)
1563 				goto out;
1564 		}
1565 	}
1566 
1567 out:
1568 	return rc;
1569 }
1570 
1571 static void qede_free_mem_load(struct qede_dev *edev)
1572 {
1573 	int i;
1574 
1575 	for_each_queue(i) {
1576 		struct qede_fastpath *fp = &edev->fp_array[i];
1577 
1578 		qede_free_mem_fp(edev, fp);
1579 	}
1580 }
1581 
1582 /* This function allocates all qede memory at NIC load. */
1583 static int qede_alloc_mem_load(struct qede_dev *edev)
1584 {
1585 	int rc = 0, queue_id;
1586 
1587 	for (queue_id = 0; queue_id < QEDE_QUEUE_CNT(edev); queue_id++) {
1588 		struct qede_fastpath *fp = &edev->fp_array[queue_id];
1589 
1590 		rc = qede_alloc_mem_fp(edev, fp);
1591 		if (rc) {
1592 			DP_ERR(edev,
1593 			       "Failed to allocate memory for fastpath - rss id = %d\n",
1594 			       queue_id);
1595 			qede_free_mem_load(edev);
1596 			return rc;
1597 		}
1598 	}
1599 
1600 	return 0;
1601 }
1602 
1603 static void qede_empty_tx_queue(struct qede_dev *edev,
1604 				struct qede_tx_queue *txq)
1605 {
1606 	unsigned int pkts_compl = 0, bytes_compl = 0;
1607 	struct netdev_queue *netdev_txq;
1608 	int rc, len = 0;
1609 
1610 	netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id);
1611 
1612 	while (qed_chain_get_cons_idx(&txq->tx_pbl) !=
1613 	       qed_chain_get_prod_idx(&txq->tx_pbl)) {
1614 		DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
1615 			   "Freeing a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n",
1616 			   txq->index, qed_chain_get_cons_idx(&txq->tx_pbl),
1617 			   qed_chain_get_prod_idx(&txq->tx_pbl));
1618 
1619 		rc = qede_free_tx_pkt(edev, txq, &len);
1620 		if (rc) {
1621 			DP_NOTICE(edev,
1622 				  "Failed to free a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n",
1623 				  txq->index,
1624 				  qed_chain_get_cons_idx(&txq->tx_pbl),
1625 				  qed_chain_get_prod_idx(&txq->tx_pbl));
1626 			break;
1627 		}
1628 
1629 		bytes_compl += len;
1630 		pkts_compl++;
1631 		txq->sw_tx_cons++;
1632 	}
1633 
1634 	netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl);
1635 }
1636 
1637 static void qede_empty_tx_queues(struct qede_dev *edev)
1638 {
1639 	int i;
1640 
1641 	for_each_queue(i)
1642 		if (edev->fp_array[i].type & QEDE_FASTPATH_TX) {
1643 			int cos;
1644 
1645 			for_each_cos_in_txq(edev, cos) {
1646 				struct qede_fastpath *fp;
1647 
1648 				fp = &edev->fp_array[i];
1649 				qede_empty_tx_queue(edev,
1650 						    &fp->txq[cos]);
1651 			}
1652 		}
1653 }
1654 
1655 /* This function inits fp content and resets the SB, RXQ and TXQ structures */
1656 static void qede_init_fp(struct qede_dev *edev)
1657 {
1658 	int queue_id, rxq_index = 0, txq_index = 0;
1659 	struct qede_fastpath *fp;
1660 
1661 	for_each_queue(queue_id) {
1662 		fp = &edev->fp_array[queue_id];
1663 
1664 		fp->edev = edev;
1665 		fp->id = queue_id;
1666 
1667 		if (fp->type & QEDE_FASTPATH_XDP) {
1668 			fp->xdp_tx->index = QEDE_TXQ_IDX_TO_XDP(edev,
1669 								rxq_index);
1670 			fp->xdp_tx->is_xdp = 1;
1671 		}
1672 
1673 		if (fp->type & QEDE_FASTPATH_RX) {
1674 			fp->rxq->rxq_id = rxq_index++;
1675 
1676 			/* Determine how to map buffers for this queue */
1677 			if (fp->type & QEDE_FASTPATH_XDP)
1678 				fp->rxq->data_direction = DMA_BIDIRECTIONAL;
1679 			else
1680 				fp->rxq->data_direction = DMA_FROM_DEVICE;
1681 			fp->rxq->dev = &edev->pdev->dev;
1682 
1683 			/* Driver have no error path from here */
1684 			WARN_ON(xdp_rxq_info_reg(&fp->rxq->xdp_rxq, edev->ndev,
1685 						 fp->rxq->rxq_id) < 0);
1686 		}
1687 
1688 		if (fp->type & QEDE_FASTPATH_TX) {
1689 			int cos;
1690 
1691 			for_each_cos_in_txq(edev, cos) {
1692 				struct qede_tx_queue *txq = &fp->txq[cos];
1693 				u16 ndev_tx_id;
1694 
1695 				txq->cos = cos;
1696 				txq->index = txq_index;
1697 				ndev_tx_id = QEDE_TXQ_TO_NDEV_TXQ_ID(edev, txq);
1698 				txq->ndev_txq_id = ndev_tx_id;
1699 
1700 				if (edev->dev_info.is_legacy)
1701 					txq->is_legacy = 1;
1702 				txq->dev = &edev->pdev->dev;
1703 			}
1704 
1705 			txq_index++;
1706 		}
1707 
1708 		snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
1709 			 edev->ndev->name, queue_id);
1710 	}
1711 
1712 	edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO_HW);
1713 }
1714 
1715 static int qede_set_real_num_queues(struct qede_dev *edev)
1716 {
1717 	int rc = 0;
1718 
1719 	rc = netif_set_real_num_tx_queues(edev->ndev,
1720 					  QEDE_TSS_COUNT(edev) *
1721 					  edev->dev_info.num_tc);
1722 	if (rc) {
1723 		DP_NOTICE(edev, "Failed to set real number of Tx queues\n");
1724 		return rc;
1725 	}
1726 
1727 	rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_COUNT(edev));
1728 	if (rc) {
1729 		DP_NOTICE(edev, "Failed to set real number of Rx queues\n");
1730 		return rc;
1731 	}
1732 
1733 	return 0;
1734 }
1735 
1736 static void qede_napi_disable_remove(struct qede_dev *edev)
1737 {
1738 	int i;
1739 
1740 	for_each_queue(i) {
1741 		napi_disable(&edev->fp_array[i].napi);
1742 
1743 		netif_napi_del(&edev->fp_array[i].napi);
1744 	}
1745 }
1746 
1747 static void qede_napi_add_enable(struct qede_dev *edev)
1748 {
1749 	int i;
1750 
1751 	/* Add NAPI objects */
1752 	for_each_queue(i) {
1753 		netif_napi_add(edev->ndev, &edev->fp_array[i].napi,
1754 			       qede_poll, NAPI_POLL_WEIGHT);
1755 		napi_enable(&edev->fp_array[i].napi);
1756 	}
1757 }
1758 
1759 static void qede_sync_free_irqs(struct qede_dev *edev)
1760 {
1761 	int i;
1762 
1763 	for (i = 0; i < edev->int_info.used_cnt; i++) {
1764 		if (edev->int_info.msix_cnt) {
1765 			synchronize_irq(edev->int_info.msix[i].vector);
1766 			free_irq(edev->int_info.msix[i].vector,
1767 				 &edev->fp_array[i]);
1768 		} else {
1769 			edev->ops->common->simd_handler_clean(edev->cdev, i);
1770 		}
1771 	}
1772 
1773 	edev->int_info.used_cnt = 0;
1774 }
1775 
1776 static int qede_req_msix_irqs(struct qede_dev *edev)
1777 {
1778 	int i, rc;
1779 
1780 	/* Sanitize number of interrupts == number of prepared RSS queues */
1781 	if (QEDE_QUEUE_CNT(edev) > edev->int_info.msix_cnt) {
1782 		DP_ERR(edev,
1783 		       "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n",
1784 		       QEDE_QUEUE_CNT(edev), edev->int_info.msix_cnt);
1785 		return -EINVAL;
1786 	}
1787 
1788 	for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) {
1789 #ifdef CONFIG_RFS_ACCEL
1790 		struct qede_fastpath *fp = &edev->fp_array[i];
1791 
1792 		if (edev->ndev->rx_cpu_rmap && (fp->type & QEDE_FASTPATH_RX)) {
1793 			rc = irq_cpu_rmap_add(edev->ndev->rx_cpu_rmap,
1794 					      edev->int_info.msix[i].vector);
1795 			if (rc) {
1796 				DP_ERR(edev, "Failed to add CPU rmap\n");
1797 				qede_free_arfs(edev);
1798 			}
1799 		}
1800 #endif
1801 		rc = request_irq(edev->int_info.msix[i].vector,
1802 				 qede_msix_fp_int, 0, edev->fp_array[i].name,
1803 				 &edev->fp_array[i]);
1804 		if (rc) {
1805 			DP_ERR(edev, "Request fp %d irq failed\n", i);
1806 			qede_sync_free_irqs(edev);
1807 			return rc;
1808 		}
1809 		DP_VERBOSE(edev, NETIF_MSG_INTR,
1810 			   "Requested fp irq for %s [entry %d]. Cookie is at %p\n",
1811 			   edev->fp_array[i].name, i,
1812 			   &edev->fp_array[i]);
1813 		edev->int_info.used_cnt++;
1814 	}
1815 
1816 	return 0;
1817 }
1818 
1819 static void qede_simd_fp_handler(void *cookie)
1820 {
1821 	struct qede_fastpath *fp = (struct qede_fastpath *)cookie;
1822 
1823 	napi_schedule_irqoff(&fp->napi);
1824 }
1825 
1826 static int qede_setup_irqs(struct qede_dev *edev)
1827 {
1828 	int i, rc = 0;
1829 
1830 	/* Learn Interrupt configuration */
1831 	rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info);
1832 	if (rc)
1833 		return rc;
1834 
1835 	if (edev->int_info.msix_cnt) {
1836 		rc = qede_req_msix_irqs(edev);
1837 		if (rc)
1838 			return rc;
1839 		edev->ndev->irq = edev->int_info.msix[0].vector;
1840 	} else {
1841 		const struct qed_common_ops *ops;
1842 
1843 		/* qed should learn receive the RSS ids and callbacks */
1844 		ops = edev->ops->common;
1845 		for (i = 0; i < QEDE_QUEUE_CNT(edev); i++)
1846 			ops->simd_handler_config(edev->cdev,
1847 						 &edev->fp_array[i], i,
1848 						 qede_simd_fp_handler);
1849 		edev->int_info.used_cnt = QEDE_QUEUE_CNT(edev);
1850 	}
1851 	return 0;
1852 }
1853 
1854 static int qede_drain_txq(struct qede_dev *edev,
1855 			  struct qede_tx_queue *txq, bool allow_drain)
1856 {
1857 	int rc, cnt = 1000;
1858 
1859 	while (txq->sw_tx_cons != txq->sw_tx_prod) {
1860 		if (!cnt) {
1861 			if (allow_drain) {
1862 				DP_NOTICE(edev,
1863 					  "Tx queue[%d] is stuck, requesting MCP to drain\n",
1864 					  txq->index);
1865 				rc = edev->ops->common->drain(edev->cdev);
1866 				if (rc)
1867 					return rc;
1868 				return qede_drain_txq(edev, txq, false);
1869 			}
1870 			DP_NOTICE(edev,
1871 				  "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n",
1872 				  txq->index, txq->sw_tx_prod,
1873 				  txq->sw_tx_cons);
1874 			return -ENODEV;
1875 		}
1876 		cnt--;
1877 		usleep_range(1000, 2000);
1878 		barrier();
1879 	}
1880 
1881 	/* FW finished processing, wait for HW to transmit all tx packets */
1882 	usleep_range(1000, 2000);
1883 
1884 	return 0;
1885 }
1886 
1887 static int qede_stop_txq(struct qede_dev *edev,
1888 			 struct qede_tx_queue *txq, int rss_id)
1889 {
1890 	/* delete doorbell from doorbell recovery mechanism */
1891 	edev->ops->common->db_recovery_del(edev->cdev, txq->doorbell_addr,
1892 					   &txq->tx_db);
1893 
1894 	return edev->ops->q_tx_stop(edev->cdev, rss_id, txq->handle);
1895 }
1896 
1897 static int qede_stop_queues(struct qede_dev *edev)
1898 {
1899 	struct qed_update_vport_params *vport_update_params;
1900 	struct qed_dev *cdev = edev->cdev;
1901 	struct qede_fastpath *fp;
1902 	int rc, i;
1903 
1904 	/* Disable the vport */
1905 	vport_update_params = vzalloc(sizeof(*vport_update_params));
1906 	if (!vport_update_params)
1907 		return -ENOMEM;
1908 
1909 	vport_update_params->vport_id = 0;
1910 	vport_update_params->update_vport_active_flg = 1;
1911 	vport_update_params->vport_active_flg = 0;
1912 	vport_update_params->update_rss_flg = 0;
1913 
1914 	rc = edev->ops->vport_update(cdev, vport_update_params);
1915 	vfree(vport_update_params);
1916 
1917 	if (rc) {
1918 		DP_ERR(edev, "Failed to update vport\n");
1919 		return rc;
1920 	}
1921 
1922 	/* Flush Tx queues. If needed, request drain from MCP */
1923 	for_each_queue(i) {
1924 		fp = &edev->fp_array[i];
1925 
1926 		if (fp->type & QEDE_FASTPATH_TX) {
1927 			int cos;
1928 
1929 			for_each_cos_in_txq(edev, cos) {
1930 				rc = qede_drain_txq(edev, &fp->txq[cos], true);
1931 				if (rc)
1932 					return rc;
1933 			}
1934 		}
1935 
1936 		if (fp->type & QEDE_FASTPATH_XDP) {
1937 			rc = qede_drain_txq(edev, fp->xdp_tx, true);
1938 			if (rc)
1939 				return rc;
1940 		}
1941 	}
1942 
1943 	/* Stop all Queues in reverse order */
1944 	for (i = QEDE_QUEUE_CNT(edev) - 1; i >= 0; i--) {
1945 		fp = &edev->fp_array[i];
1946 
1947 		/* Stop the Tx Queue(s) */
1948 		if (fp->type & QEDE_FASTPATH_TX) {
1949 			int cos;
1950 
1951 			for_each_cos_in_txq(edev, cos) {
1952 				rc = qede_stop_txq(edev, &fp->txq[cos], i);
1953 				if (rc)
1954 					return rc;
1955 			}
1956 		}
1957 
1958 		/* Stop the Rx Queue */
1959 		if (fp->type & QEDE_FASTPATH_RX) {
1960 			rc = edev->ops->q_rx_stop(cdev, i, fp->rxq->handle);
1961 			if (rc) {
1962 				DP_ERR(edev, "Failed to stop RXQ #%d\n", i);
1963 				return rc;
1964 			}
1965 		}
1966 
1967 		/* Stop the XDP forwarding queue */
1968 		if (fp->type & QEDE_FASTPATH_XDP) {
1969 			rc = qede_stop_txq(edev, fp->xdp_tx, i);
1970 			if (rc)
1971 				return rc;
1972 
1973 			bpf_prog_put(fp->rxq->xdp_prog);
1974 		}
1975 	}
1976 
1977 	/* Stop the vport */
1978 	rc = edev->ops->vport_stop(cdev, 0);
1979 	if (rc)
1980 		DP_ERR(edev, "Failed to stop VPORT\n");
1981 
1982 	return rc;
1983 }
1984 
1985 static int qede_start_txq(struct qede_dev *edev,
1986 			  struct qede_fastpath *fp,
1987 			  struct qede_tx_queue *txq, u8 rss_id, u16 sb_idx)
1988 {
1989 	dma_addr_t phys_table = qed_chain_get_pbl_phys(&txq->tx_pbl);
1990 	u32 page_cnt = qed_chain_get_page_cnt(&txq->tx_pbl);
1991 	struct qed_queue_start_common_params params;
1992 	struct qed_txq_start_ret_params ret_params;
1993 	int rc;
1994 
1995 	memset(&params, 0, sizeof(params));
1996 	memset(&ret_params, 0, sizeof(ret_params));
1997 
1998 	/* Let the XDP queue share the queue-zone with one of the regular txq.
1999 	 * We don't really care about its coalescing.
2000 	 */
2001 	if (txq->is_xdp)
2002 		params.queue_id = QEDE_TXQ_XDP_TO_IDX(edev, txq);
2003 	else
2004 		params.queue_id = txq->index;
2005 
2006 	params.p_sb = fp->sb_info;
2007 	params.sb_idx = sb_idx;
2008 	params.tc = txq->cos;
2009 
2010 	rc = edev->ops->q_tx_start(edev->cdev, rss_id, &params, phys_table,
2011 				   page_cnt, &ret_params);
2012 	if (rc) {
2013 		DP_ERR(edev, "Start TXQ #%d failed %d\n", txq->index, rc);
2014 		return rc;
2015 	}
2016 
2017 	txq->doorbell_addr = ret_params.p_doorbell;
2018 	txq->handle = ret_params.p_handle;
2019 
2020 	/* Determine the FW consumer address associated */
2021 	txq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[sb_idx];
2022 
2023 	/* Prepare the doorbell parameters */
2024 	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST, DB_DEST_XCM);
2025 	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD, DB_AGG_CMD_SET);
2026 	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_VAL_SEL,
2027 		  DQ_XCM_ETH_TX_BD_PROD_CMD);
2028 	txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
2029 
2030 	/* register doorbell with doorbell recovery mechanism */
2031 	rc = edev->ops->common->db_recovery_add(edev->cdev, txq->doorbell_addr,
2032 						&txq->tx_db, DB_REC_WIDTH_32B,
2033 						DB_REC_KERNEL);
2034 
2035 	return rc;
2036 }
2037 
2038 static int qede_start_queues(struct qede_dev *edev, bool clear_stats)
2039 {
2040 	int vlan_removal_en = 1;
2041 	struct qed_dev *cdev = edev->cdev;
2042 	struct qed_dev_info *qed_info = &edev->dev_info.common;
2043 	struct qed_update_vport_params *vport_update_params;
2044 	struct qed_queue_start_common_params q_params;
2045 	struct qed_start_vport_params start = {0};
2046 	int rc, i;
2047 
2048 	if (!edev->num_queues) {
2049 		DP_ERR(edev,
2050 		       "Cannot update V-VPORT as active as there are no Rx queues\n");
2051 		return -EINVAL;
2052 	}
2053 
2054 	vport_update_params = vzalloc(sizeof(*vport_update_params));
2055 	if (!vport_update_params)
2056 		return -ENOMEM;
2057 
2058 	start.handle_ptp_pkts = !!(edev->ptp);
2059 	start.gro_enable = !edev->gro_disable;
2060 	start.mtu = edev->ndev->mtu;
2061 	start.vport_id = 0;
2062 	start.drop_ttl0 = true;
2063 	start.remove_inner_vlan = vlan_removal_en;
2064 	start.clear_stats = clear_stats;
2065 
2066 	rc = edev->ops->vport_start(cdev, &start);
2067 
2068 	if (rc) {
2069 		DP_ERR(edev, "Start V-PORT failed %d\n", rc);
2070 		goto out;
2071 	}
2072 
2073 	DP_VERBOSE(edev, NETIF_MSG_IFUP,
2074 		   "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n",
2075 		   start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en);
2076 
2077 	for_each_queue(i) {
2078 		struct qede_fastpath *fp = &edev->fp_array[i];
2079 		dma_addr_t p_phys_table;
2080 		u32 page_cnt;
2081 
2082 		if (fp->type & QEDE_FASTPATH_RX) {
2083 			struct qed_rxq_start_ret_params ret_params;
2084 			struct qede_rx_queue *rxq = fp->rxq;
2085 			__le16 *val;
2086 
2087 			memset(&ret_params, 0, sizeof(ret_params));
2088 			memset(&q_params, 0, sizeof(q_params));
2089 			q_params.queue_id = rxq->rxq_id;
2090 			q_params.vport_id = 0;
2091 			q_params.p_sb = fp->sb_info;
2092 			q_params.sb_idx = RX_PI;
2093 
2094 			p_phys_table =
2095 			    qed_chain_get_pbl_phys(&rxq->rx_comp_ring);
2096 			page_cnt = qed_chain_get_page_cnt(&rxq->rx_comp_ring);
2097 
2098 			rc = edev->ops->q_rx_start(cdev, i, &q_params,
2099 						   rxq->rx_buf_size,
2100 						   rxq->rx_bd_ring.p_phys_addr,
2101 						   p_phys_table,
2102 						   page_cnt, &ret_params);
2103 			if (rc) {
2104 				DP_ERR(edev, "Start RXQ #%d failed %d\n", i,
2105 				       rc);
2106 				goto out;
2107 			}
2108 
2109 			/* Use the return parameters */
2110 			rxq->hw_rxq_prod_addr = ret_params.p_prod;
2111 			rxq->handle = ret_params.p_handle;
2112 
2113 			val = &fp->sb_info->sb_virt->pi_array[RX_PI];
2114 			rxq->hw_cons_ptr = val;
2115 
2116 			qede_update_rx_prod(edev, rxq);
2117 		}
2118 
2119 		if (fp->type & QEDE_FASTPATH_XDP) {
2120 			rc = qede_start_txq(edev, fp, fp->xdp_tx, i, XDP_PI);
2121 			if (rc)
2122 				goto out;
2123 
2124 			fp->rxq->xdp_prog = bpf_prog_add(edev->xdp_prog, 1);
2125 			if (IS_ERR(fp->rxq->xdp_prog)) {
2126 				rc = PTR_ERR(fp->rxq->xdp_prog);
2127 				fp->rxq->xdp_prog = NULL;
2128 				goto out;
2129 			}
2130 		}
2131 
2132 		if (fp->type & QEDE_FASTPATH_TX) {
2133 			int cos;
2134 
2135 			for_each_cos_in_txq(edev, cos) {
2136 				rc = qede_start_txq(edev, fp, &fp->txq[cos], i,
2137 						    TX_PI(cos));
2138 				if (rc)
2139 					goto out;
2140 			}
2141 		}
2142 	}
2143 
2144 	/* Prepare and send the vport enable */
2145 	vport_update_params->vport_id = start.vport_id;
2146 	vport_update_params->update_vport_active_flg = 1;
2147 	vport_update_params->vport_active_flg = 1;
2148 
2149 	if ((qed_info->b_inter_pf_switch || pci_num_vf(edev->pdev)) &&
2150 	    qed_info->tx_switching) {
2151 		vport_update_params->update_tx_switching_flg = 1;
2152 		vport_update_params->tx_switching_flg = 1;
2153 	}
2154 
2155 	qede_fill_rss_params(edev, &vport_update_params->rss_params,
2156 			     &vport_update_params->update_rss_flg);
2157 
2158 	rc = edev->ops->vport_update(cdev, vport_update_params);
2159 	if (rc)
2160 		DP_ERR(edev, "Update V-PORT failed %d\n", rc);
2161 
2162 out:
2163 	vfree(vport_update_params);
2164 	return rc;
2165 }
2166 
2167 enum qede_unload_mode {
2168 	QEDE_UNLOAD_NORMAL,
2169 	QEDE_UNLOAD_RECOVERY,
2170 };
2171 
2172 static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode,
2173 			bool is_locked)
2174 {
2175 	struct qed_link_params link_params;
2176 	int rc;
2177 
2178 	DP_INFO(edev, "Starting qede unload\n");
2179 
2180 	if (!is_locked)
2181 		__qede_lock(edev);
2182 
2183 	clear_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags);
2184 
2185 	if (mode != QEDE_UNLOAD_RECOVERY)
2186 		edev->state = QEDE_STATE_CLOSED;
2187 
2188 	qede_rdma_dev_event_close(edev);
2189 
2190 	/* Close OS Tx */
2191 	netif_tx_disable(edev->ndev);
2192 	netif_carrier_off(edev->ndev);
2193 
2194 	if (mode != QEDE_UNLOAD_RECOVERY) {
2195 		/* Reset the link */
2196 		memset(&link_params, 0, sizeof(link_params));
2197 		link_params.link_up = false;
2198 		edev->ops->common->set_link(edev->cdev, &link_params);
2199 
2200 		rc = qede_stop_queues(edev);
2201 		if (rc) {
2202 			qede_sync_free_irqs(edev);
2203 			goto out;
2204 		}
2205 
2206 		DP_INFO(edev, "Stopped Queues\n");
2207 	}
2208 
2209 	qede_vlan_mark_nonconfigured(edev);
2210 	edev->ops->fastpath_stop(edev->cdev);
2211 
2212 	if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) {
2213 		qede_poll_for_freeing_arfs_filters(edev);
2214 		qede_free_arfs(edev);
2215 	}
2216 
2217 	/* Release the interrupts */
2218 	qede_sync_free_irqs(edev);
2219 	edev->ops->common->set_fp_int(edev->cdev, 0);
2220 
2221 	qede_napi_disable_remove(edev);
2222 
2223 	if (mode == QEDE_UNLOAD_RECOVERY)
2224 		qede_empty_tx_queues(edev);
2225 
2226 	qede_free_mem_load(edev);
2227 	qede_free_fp_array(edev);
2228 
2229 out:
2230 	if (!is_locked)
2231 		__qede_unlock(edev);
2232 
2233 	if (mode != QEDE_UNLOAD_RECOVERY)
2234 		DP_NOTICE(edev, "Link is down\n");
2235 
2236 	edev->ptp_skip_txts = 0;
2237 
2238 	DP_INFO(edev, "Ending qede unload\n");
2239 }
2240 
2241 enum qede_load_mode {
2242 	QEDE_LOAD_NORMAL,
2243 	QEDE_LOAD_RELOAD,
2244 	QEDE_LOAD_RECOVERY,
2245 };
2246 
2247 static int qede_load(struct qede_dev *edev, enum qede_load_mode mode,
2248 		     bool is_locked)
2249 {
2250 	struct qed_link_params link_params;
2251 	u8 num_tc;
2252 	int rc;
2253 
2254 	DP_INFO(edev, "Starting qede load\n");
2255 
2256 	if (!is_locked)
2257 		__qede_lock(edev);
2258 
2259 	rc = qede_set_num_queues(edev);
2260 	if (rc)
2261 		goto out;
2262 
2263 	rc = qede_alloc_fp_array(edev);
2264 	if (rc)
2265 		goto out;
2266 
2267 	qede_init_fp(edev);
2268 
2269 	rc = qede_alloc_mem_load(edev);
2270 	if (rc)
2271 		goto err1;
2272 	DP_INFO(edev, "Allocated %d Rx, %d Tx queues\n",
2273 		QEDE_RSS_COUNT(edev), QEDE_TSS_COUNT(edev));
2274 
2275 	rc = qede_set_real_num_queues(edev);
2276 	if (rc)
2277 		goto err2;
2278 
2279 	if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) {
2280 		rc = qede_alloc_arfs(edev);
2281 		if (rc)
2282 			DP_NOTICE(edev, "aRFS memory allocation failed\n");
2283 	}
2284 
2285 	qede_napi_add_enable(edev);
2286 	DP_INFO(edev, "Napi added and enabled\n");
2287 
2288 	rc = qede_setup_irqs(edev);
2289 	if (rc)
2290 		goto err3;
2291 	DP_INFO(edev, "Setup IRQs succeeded\n");
2292 
2293 	rc = qede_start_queues(edev, mode != QEDE_LOAD_RELOAD);
2294 	if (rc)
2295 		goto err4;
2296 	DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n");
2297 
2298 	num_tc = netdev_get_num_tc(edev->ndev);
2299 	num_tc = num_tc ? num_tc : edev->dev_info.num_tc;
2300 	qede_setup_tc(edev->ndev, num_tc);
2301 
2302 	/* Program un-configured VLANs */
2303 	qede_configure_vlan_filters(edev);
2304 
2305 	set_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags);
2306 
2307 	/* Ask for link-up using current configuration */
2308 	memset(&link_params, 0, sizeof(link_params));
2309 	link_params.link_up = true;
2310 	edev->ops->common->set_link(edev->cdev, &link_params);
2311 
2312 	edev->state = QEDE_STATE_OPEN;
2313 
2314 	DP_INFO(edev, "Ending successfully qede load\n");
2315 
2316 	goto out;
2317 err4:
2318 	qede_sync_free_irqs(edev);
2319 	memset(&edev->int_info.msix_cnt, 0, sizeof(struct qed_int_info));
2320 err3:
2321 	qede_napi_disable_remove(edev);
2322 err2:
2323 	qede_free_mem_load(edev);
2324 err1:
2325 	edev->ops->common->set_fp_int(edev->cdev, 0);
2326 	qede_free_fp_array(edev);
2327 	edev->num_queues = 0;
2328 	edev->fp_num_tx = 0;
2329 	edev->fp_num_rx = 0;
2330 out:
2331 	if (!is_locked)
2332 		__qede_unlock(edev);
2333 
2334 	return rc;
2335 }
2336 
2337 /* 'func' should be able to run between unload and reload assuming interface
2338  * is actually running, or afterwards in case it's currently DOWN.
2339  */
2340 void qede_reload(struct qede_dev *edev,
2341 		 struct qede_reload_args *args, bool is_locked)
2342 {
2343 	if (!is_locked)
2344 		__qede_lock(edev);
2345 
2346 	/* Since qede_lock is held, internal state wouldn't change even
2347 	 * if netdev state would start transitioning. Check whether current
2348 	 * internal configuration indicates device is up, then reload.
2349 	 */
2350 	if (edev->state == QEDE_STATE_OPEN) {
2351 		qede_unload(edev, QEDE_UNLOAD_NORMAL, true);
2352 		if (args)
2353 			args->func(edev, args);
2354 		qede_load(edev, QEDE_LOAD_RELOAD, true);
2355 
2356 		/* Since no one is going to do it for us, re-configure */
2357 		qede_config_rx_mode(edev->ndev);
2358 	} else if (args) {
2359 		args->func(edev, args);
2360 	}
2361 
2362 	if (!is_locked)
2363 		__qede_unlock(edev);
2364 }
2365 
2366 /* called with rtnl_lock */
2367 static int qede_open(struct net_device *ndev)
2368 {
2369 	struct qede_dev *edev = netdev_priv(ndev);
2370 	int rc;
2371 
2372 	netif_carrier_off(ndev);
2373 
2374 	edev->ops->common->set_power_state(edev->cdev, PCI_D0);
2375 
2376 	rc = qede_load(edev, QEDE_LOAD_NORMAL, false);
2377 	if (rc)
2378 		return rc;
2379 
2380 	udp_tunnel_get_rx_info(ndev);
2381 
2382 	edev->ops->common->update_drv_state(edev->cdev, true);
2383 
2384 	return 0;
2385 }
2386 
2387 static int qede_close(struct net_device *ndev)
2388 {
2389 	struct qede_dev *edev = netdev_priv(ndev);
2390 
2391 	qede_unload(edev, QEDE_UNLOAD_NORMAL, false);
2392 
2393 	edev->ops->common->update_drv_state(edev->cdev, false);
2394 
2395 	return 0;
2396 }
2397 
2398 static void qede_link_update(void *dev, struct qed_link_output *link)
2399 {
2400 	struct qede_dev *edev = dev;
2401 
2402 	if (!test_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags)) {
2403 		DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not ready\n");
2404 		return;
2405 	}
2406 
2407 	if (link->link_up) {
2408 		if (!netif_carrier_ok(edev->ndev)) {
2409 			DP_NOTICE(edev, "Link is up\n");
2410 			netif_tx_start_all_queues(edev->ndev);
2411 			netif_carrier_on(edev->ndev);
2412 			qede_rdma_dev_event_open(edev);
2413 		}
2414 	} else {
2415 		if (netif_carrier_ok(edev->ndev)) {
2416 			DP_NOTICE(edev, "Link is down\n");
2417 			netif_tx_disable(edev->ndev);
2418 			netif_carrier_off(edev->ndev);
2419 			qede_rdma_dev_event_close(edev);
2420 		}
2421 	}
2422 }
2423 
2424 static void qede_schedule_recovery_handler(void *dev)
2425 {
2426 	struct qede_dev *edev = dev;
2427 
2428 	if (edev->state == QEDE_STATE_RECOVERY) {
2429 		DP_NOTICE(edev,
2430 			  "Avoid scheduling a recovery handling since already in recovery state\n");
2431 		return;
2432 	}
2433 
2434 	set_bit(QEDE_SP_RECOVERY, &edev->sp_flags);
2435 	schedule_delayed_work(&edev->sp_task, 0);
2436 
2437 	DP_INFO(edev, "Scheduled a recovery handler\n");
2438 }
2439 
2440 static void qede_recovery_failed(struct qede_dev *edev)
2441 {
2442 	netdev_err(edev->ndev, "Recovery handling has failed. Power cycle is needed.\n");
2443 
2444 	netif_device_detach(edev->ndev);
2445 
2446 	if (edev->cdev)
2447 		edev->ops->common->set_power_state(edev->cdev, PCI_D3hot);
2448 }
2449 
2450 static void qede_recovery_handler(struct qede_dev *edev)
2451 {
2452 	u32 curr_state = edev->state;
2453 	int rc;
2454 
2455 	DP_NOTICE(edev, "Starting a recovery process\n");
2456 
2457 	/* No need to acquire first the qede_lock since is done by qede_sp_task
2458 	 * before calling this function.
2459 	 */
2460 	edev->state = QEDE_STATE_RECOVERY;
2461 
2462 	edev->ops->common->recovery_prolog(edev->cdev);
2463 
2464 	if (curr_state == QEDE_STATE_OPEN)
2465 		qede_unload(edev, QEDE_UNLOAD_RECOVERY, true);
2466 
2467 	__qede_remove(edev->pdev, QEDE_REMOVE_RECOVERY);
2468 
2469 	rc = __qede_probe(edev->pdev, edev->dp_module, edev->dp_level,
2470 			  IS_VF(edev), QEDE_PROBE_RECOVERY);
2471 	if (rc) {
2472 		edev->cdev = NULL;
2473 		goto err;
2474 	}
2475 
2476 	if (curr_state == QEDE_STATE_OPEN) {
2477 		rc = qede_load(edev, QEDE_LOAD_RECOVERY, true);
2478 		if (rc)
2479 			goto err;
2480 
2481 		qede_config_rx_mode(edev->ndev);
2482 		udp_tunnel_get_rx_info(edev->ndev);
2483 	}
2484 
2485 	edev->state = curr_state;
2486 
2487 	DP_NOTICE(edev, "Recovery handling is done\n");
2488 
2489 	return;
2490 
2491 err:
2492 	qede_recovery_failed(edev);
2493 }
2494 
2495 static bool qede_is_txq_full(struct qede_dev *edev, struct qede_tx_queue *txq)
2496 {
2497 	struct netdev_queue *netdev_txq;
2498 
2499 	netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id);
2500 	if (netif_xmit_stopped(netdev_txq))
2501 		return true;
2502 
2503 	return false;
2504 }
2505 
2506 static void qede_get_generic_tlv_data(void *dev, struct qed_generic_tlvs *data)
2507 {
2508 	struct qede_dev *edev = dev;
2509 	struct netdev_hw_addr *ha;
2510 	int i;
2511 
2512 	if (edev->ndev->features & NETIF_F_IP_CSUM)
2513 		data->feat_flags |= QED_TLV_IP_CSUM;
2514 	if (edev->ndev->features & NETIF_F_TSO)
2515 		data->feat_flags |= QED_TLV_LSO;
2516 
2517 	ether_addr_copy(data->mac[0], edev->ndev->dev_addr);
2518 	memset(data->mac[1], 0, ETH_ALEN);
2519 	memset(data->mac[2], 0, ETH_ALEN);
2520 	/* Copy the first two UC macs */
2521 	netif_addr_lock_bh(edev->ndev);
2522 	i = 1;
2523 	netdev_for_each_uc_addr(ha, edev->ndev) {
2524 		ether_addr_copy(data->mac[i++], ha->addr);
2525 		if (i == QED_TLV_MAC_COUNT)
2526 			break;
2527 	}
2528 
2529 	netif_addr_unlock_bh(edev->ndev);
2530 }
2531 
2532 static void qede_get_eth_tlv_data(void *dev, void *data)
2533 {
2534 	struct qed_mfw_tlv_eth *etlv = data;
2535 	struct qede_dev *edev = dev;
2536 	struct qede_fastpath *fp;
2537 	int i;
2538 
2539 	etlv->lso_maxoff_size = 0XFFFF;
2540 	etlv->lso_maxoff_size_set = true;
2541 	etlv->lso_minseg_size = (u16)ETH_TX_LSO_WINDOW_MIN_LEN;
2542 	etlv->lso_minseg_size_set = true;
2543 	etlv->prom_mode = !!(edev->ndev->flags & IFF_PROMISC);
2544 	etlv->prom_mode_set = true;
2545 	etlv->tx_descr_size = QEDE_TSS_COUNT(edev);
2546 	etlv->tx_descr_size_set = true;
2547 	etlv->rx_descr_size = QEDE_RSS_COUNT(edev);
2548 	etlv->rx_descr_size_set = true;
2549 	etlv->iov_offload = QED_MFW_TLV_IOV_OFFLOAD_VEB;
2550 	etlv->iov_offload_set = true;
2551 
2552 	/* Fill information regarding queues; Should be done under the qede
2553 	 * lock to guarantee those don't change beneath our feet.
2554 	 */
2555 	etlv->txqs_empty = true;
2556 	etlv->rxqs_empty = true;
2557 	etlv->num_txqs_full = 0;
2558 	etlv->num_rxqs_full = 0;
2559 
2560 	__qede_lock(edev);
2561 	for_each_queue(i) {
2562 		fp = &edev->fp_array[i];
2563 		if (fp->type & QEDE_FASTPATH_TX) {
2564 			struct qede_tx_queue *txq = QEDE_FP_TC0_TXQ(fp);
2565 
2566 			if (txq->sw_tx_cons != txq->sw_tx_prod)
2567 				etlv->txqs_empty = false;
2568 			if (qede_is_txq_full(edev, txq))
2569 				etlv->num_txqs_full++;
2570 		}
2571 		if (fp->type & QEDE_FASTPATH_RX) {
2572 			if (qede_has_rx_work(fp->rxq))
2573 				etlv->rxqs_empty = false;
2574 
2575 			/* This one is a bit tricky; Firmware might stop
2576 			 * placing packets if ring is not yet full.
2577 			 * Give an approximation.
2578 			 */
2579 			if (le16_to_cpu(*fp->rxq->hw_cons_ptr) -
2580 			    qed_chain_get_cons_idx(&fp->rxq->rx_comp_ring) >
2581 			    RX_RING_SIZE - 100)
2582 				etlv->num_rxqs_full++;
2583 		}
2584 	}
2585 	__qede_unlock(edev);
2586 
2587 	etlv->txqs_empty_set = true;
2588 	etlv->rxqs_empty_set = true;
2589 	etlv->num_txqs_full_set = true;
2590 	etlv->num_rxqs_full_set = true;
2591 }
2592