1 /* QLogic qede NIC Driver 2 * Copyright (c) 2015-2017 QLogic Corporation 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and /or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 */ 32 #include <linux/module.h> 33 #include <linux/pci.h> 34 #include <linux/version.h> 35 #include <linux/device.h> 36 #include <linux/netdevice.h> 37 #include <linux/etherdevice.h> 38 #include <linux/skbuff.h> 39 #include <linux/errno.h> 40 #include <linux/list.h> 41 #include <linux/string.h> 42 #include <linux/dma-mapping.h> 43 #include <linux/interrupt.h> 44 #include <asm/byteorder.h> 45 #include <asm/param.h> 46 #include <linux/io.h> 47 #include <linux/netdev_features.h> 48 #include <linux/udp.h> 49 #include <linux/tcp.h> 50 #include <net/udp_tunnel.h> 51 #include <linux/ip.h> 52 #include <net/ipv6.h> 53 #include <net/tcp.h> 54 #include <linux/if_ether.h> 55 #include <linux/if_vlan.h> 56 #include <linux/pkt_sched.h> 57 #include <linux/ethtool.h> 58 #include <linux/in.h> 59 #include <linux/random.h> 60 #include <net/ip6_checksum.h> 61 #include <linux/bitops.h> 62 #include <linux/vmalloc.h> 63 #include "qede.h" 64 #include "qede_ptp.h" 65 66 static char version[] = 67 "QLogic FastLinQ 4xxxx Ethernet Driver qede " DRV_MODULE_VERSION "\n"; 68 69 MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver"); 70 MODULE_LICENSE("GPL"); 71 MODULE_VERSION(DRV_MODULE_VERSION); 72 73 static uint debug; 74 module_param(debug, uint, 0); 75 MODULE_PARM_DESC(debug, " Default debug msglevel"); 76 77 static const struct qed_eth_ops *qed_ops; 78 79 #define CHIP_NUM_57980S_40 0x1634 80 #define CHIP_NUM_57980S_10 0x1666 81 #define CHIP_NUM_57980S_MF 0x1636 82 #define CHIP_NUM_57980S_100 0x1644 83 #define CHIP_NUM_57980S_50 0x1654 84 #define CHIP_NUM_57980S_25 0x1656 85 #define CHIP_NUM_57980S_IOV 0x1664 86 #define CHIP_NUM_AH 0x8070 87 #define CHIP_NUM_AH_IOV 0x8090 88 89 #ifndef PCI_DEVICE_ID_NX2_57980E 90 #define PCI_DEVICE_ID_57980S_40 CHIP_NUM_57980S_40 91 #define PCI_DEVICE_ID_57980S_10 CHIP_NUM_57980S_10 92 #define PCI_DEVICE_ID_57980S_MF CHIP_NUM_57980S_MF 93 #define PCI_DEVICE_ID_57980S_100 CHIP_NUM_57980S_100 94 #define PCI_DEVICE_ID_57980S_50 CHIP_NUM_57980S_50 95 #define PCI_DEVICE_ID_57980S_25 CHIP_NUM_57980S_25 96 #define PCI_DEVICE_ID_57980S_IOV CHIP_NUM_57980S_IOV 97 #define PCI_DEVICE_ID_AH CHIP_NUM_AH 98 #define PCI_DEVICE_ID_AH_IOV CHIP_NUM_AH_IOV 99 100 #endif 101 102 enum qede_pci_private { 103 QEDE_PRIVATE_PF, 104 QEDE_PRIVATE_VF 105 }; 106 107 static const struct pci_device_id qede_pci_tbl[] = { 108 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF}, 109 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF}, 110 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF}, 111 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF}, 112 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF}, 113 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF}, 114 #ifdef CONFIG_QED_SRIOV 115 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF}, 116 #endif 117 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH), QEDE_PRIVATE_PF}, 118 #ifdef CONFIG_QED_SRIOV 119 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH_IOV), QEDE_PRIVATE_VF}, 120 #endif 121 { 0 } 122 }; 123 124 MODULE_DEVICE_TABLE(pci, qede_pci_tbl); 125 126 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id); 127 128 #define TX_TIMEOUT (5 * HZ) 129 130 /* Utilize last protocol index for XDP */ 131 #define XDP_PI 11 132 133 static void qede_remove(struct pci_dev *pdev); 134 static void qede_shutdown(struct pci_dev *pdev); 135 static void qede_link_update(void *dev, struct qed_link_output *link); 136 static void qede_schedule_recovery_handler(void *dev); 137 static void qede_recovery_handler(struct qede_dev *edev); 138 static void qede_get_eth_tlv_data(void *edev, void *data); 139 static void qede_get_generic_tlv_data(void *edev, 140 struct qed_generic_tlvs *data); 141 142 #ifdef CONFIG_QED_SRIOV 143 static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos, 144 __be16 vlan_proto) 145 { 146 struct qede_dev *edev = netdev_priv(ndev); 147 148 if (vlan > 4095) { 149 DP_NOTICE(edev, "Illegal vlan value %d\n", vlan); 150 return -EINVAL; 151 } 152 153 if (vlan_proto != htons(ETH_P_8021Q)) 154 return -EPROTONOSUPPORT; 155 156 DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n", 157 vlan, vf); 158 159 return edev->ops->iov->set_vlan(edev->cdev, vlan, vf); 160 } 161 162 static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac) 163 { 164 struct qede_dev *edev = netdev_priv(ndev); 165 166 DP_VERBOSE(edev, QED_MSG_IOV, 167 "Setting MAC %02x:%02x:%02x:%02x:%02x:%02x to VF [%d]\n", 168 mac[0], mac[1], mac[2], mac[3], mac[4], mac[5], vfidx); 169 170 if (!is_valid_ether_addr(mac)) { 171 DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n"); 172 return -EINVAL; 173 } 174 175 return edev->ops->iov->set_mac(edev->cdev, mac, vfidx); 176 } 177 178 static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param) 179 { 180 struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev)); 181 struct qed_dev_info *qed_info = &edev->dev_info.common; 182 struct qed_update_vport_params *vport_params; 183 int rc; 184 185 vport_params = vzalloc(sizeof(*vport_params)); 186 if (!vport_params) 187 return -ENOMEM; 188 DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param); 189 190 rc = edev->ops->iov->configure(edev->cdev, num_vfs_param); 191 192 /* Enable/Disable Tx switching for PF */ 193 if ((rc == num_vfs_param) && netif_running(edev->ndev) && 194 !qed_info->b_inter_pf_switch && qed_info->tx_switching) { 195 vport_params->vport_id = 0; 196 vport_params->update_tx_switching_flg = 1; 197 vport_params->tx_switching_flg = num_vfs_param ? 1 : 0; 198 edev->ops->vport_update(edev->cdev, vport_params); 199 } 200 201 vfree(vport_params); 202 return rc; 203 } 204 #endif 205 206 static struct pci_driver qede_pci_driver = { 207 .name = "qede", 208 .id_table = qede_pci_tbl, 209 .probe = qede_probe, 210 .remove = qede_remove, 211 .shutdown = qede_shutdown, 212 #ifdef CONFIG_QED_SRIOV 213 .sriov_configure = qede_sriov_configure, 214 #endif 215 }; 216 217 static struct qed_eth_cb_ops qede_ll_ops = { 218 { 219 #ifdef CONFIG_RFS_ACCEL 220 .arfs_filter_op = qede_arfs_filter_op, 221 #endif 222 .link_update = qede_link_update, 223 .schedule_recovery_handler = qede_schedule_recovery_handler, 224 .get_generic_tlv_data = qede_get_generic_tlv_data, 225 .get_protocol_tlv_data = qede_get_eth_tlv_data, 226 }, 227 .force_mac = qede_force_mac, 228 .ports_update = qede_udp_ports_update, 229 }; 230 231 static int qede_netdev_event(struct notifier_block *this, unsigned long event, 232 void *ptr) 233 { 234 struct net_device *ndev = netdev_notifier_info_to_dev(ptr); 235 struct ethtool_drvinfo drvinfo; 236 struct qede_dev *edev; 237 238 if (event != NETDEV_CHANGENAME && event != NETDEV_CHANGEADDR) 239 goto done; 240 241 /* Check whether this is a qede device */ 242 if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo) 243 goto done; 244 245 memset(&drvinfo, 0, sizeof(drvinfo)); 246 ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo); 247 if (strcmp(drvinfo.driver, "qede")) 248 goto done; 249 edev = netdev_priv(ndev); 250 251 switch (event) { 252 case NETDEV_CHANGENAME: 253 /* Notify qed of the name change */ 254 if (!edev->ops || !edev->ops->common) 255 goto done; 256 edev->ops->common->set_name(edev->cdev, edev->ndev->name); 257 break; 258 case NETDEV_CHANGEADDR: 259 edev = netdev_priv(ndev); 260 qede_rdma_event_changeaddr(edev); 261 break; 262 } 263 264 done: 265 return NOTIFY_DONE; 266 } 267 268 static struct notifier_block qede_netdev_notifier = { 269 .notifier_call = qede_netdev_event, 270 }; 271 272 static 273 int __init qede_init(void) 274 { 275 int ret; 276 277 pr_info("qede_init: %s\n", version); 278 279 qed_ops = qed_get_eth_ops(); 280 if (!qed_ops) { 281 pr_notice("Failed to get qed ethtool operations\n"); 282 return -EINVAL; 283 } 284 285 /* Must register notifier before pci ops, since we might miss 286 * interface rename after pci probe and netdev registration. 287 */ 288 ret = register_netdevice_notifier(&qede_netdev_notifier); 289 if (ret) { 290 pr_notice("Failed to register netdevice_notifier\n"); 291 qed_put_eth_ops(); 292 return -EINVAL; 293 } 294 295 ret = pci_register_driver(&qede_pci_driver); 296 if (ret) { 297 pr_notice("Failed to register driver\n"); 298 unregister_netdevice_notifier(&qede_netdev_notifier); 299 qed_put_eth_ops(); 300 return -EINVAL; 301 } 302 303 return 0; 304 } 305 306 static void __exit qede_cleanup(void) 307 { 308 if (debug & QED_LOG_INFO_MASK) 309 pr_info("qede_cleanup called\n"); 310 311 unregister_netdevice_notifier(&qede_netdev_notifier); 312 pci_unregister_driver(&qede_pci_driver); 313 qed_put_eth_ops(); 314 } 315 316 module_init(qede_init); 317 module_exit(qede_cleanup); 318 319 static int qede_open(struct net_device *ndev); 320 static int qede_close(struct net_device *ndev); 321 322 void qede_fill_by_demand_stats(struct qede_dev *edev) 323 { 324 struct qede_stats_common *p_common = &edev->stats.common; 325 struct qed_eth_stats stats; 326 327 edev->ops->get_vport_stats(edev->cdev, &stats); 328 329 p_common->no_buff_discards = stats.common.no_buff_discards; 330 p_common->packet_too_big_discard = stats.common.packet_too_big_discard; 331 p_common->ttl0_discard = stats.common.ttl0_discard; 332 p_common->rx_ucast_bytes = stats.common.rx_ucast_bytes; 333 p_common->rx_mcast_bytes = stats.common.rx_mcast_bytes; 334 p_common->rx_bcast_bytes = stats.common.rx_bcast_bytes; 335 p_common->rx_ucast_pkts = stats.common.rx_ucast_pkts; 336 p_common->rx_mcast_pkts = stats.common.rx_mcast_pkts; 337 p_common->rx_bcast_pkts = stats.common.rx_bcast_pkts; 338 p_common->mftag_filter_discards = stats.common.mftag_filter_discards; 339 p_common->mac_filter_discards = stats.common.mac_filter_discards; 340 p_common->gft_filter_drop = stats.common.gft_filter_drop; 341 342 p_common->tx_ucast_bytes = stats.common.tx_ucast_bytes; 343 p_common->tx_mcast_bytes = stats.common.tx_mcast_bytes; 344 p_common->tx_bcast_bytes = stats.common.tx_bcast_bytes; 345 p_common->tx_ucast_pkts = stats.common.tx_ucast_pkts; 346 p_common->tx_mcast_pkts = stats.common.tx_mcast_pkts; 347 p_common->tx_bcast_pkts = stats.common.tx_bcast_pkts; 348 p_common->tx_err_drop_pkts = stats.common.tx_err_drop_pkts; 349 p_common->coalesced_pkts = stats.common.tpa_coalesced_pkts; 350 p_common->coalesced_events = stats.common.tpa_coalesced_events; 351 p_common->coalesced_aborts_num = stats.common.tpa_aborts_num; 352 p_common->non_coalesced_pkts = stats.common.tpa_not_coalesced_pkts; 353 p_common->coalesced_bytes = stats.common.tpa_coalesced_bytes; 354 355 p_common->rx_64_byte_packets = stats.common.rx_64_byte_packets; 356 p_common->rx_65_to_127_byte_packets = 357 stats.common.rx_65_to_127_byte_packets; 358 p_common->rx_128_to_255_byte_packets = 359 stats.common.rx_128_to_255_byte_packets; 360 p_common->rx_256_to_511_byte_packets = 361 stats.common.rx_256_to_511_byte_packets; 362 p_common->rx_512_to_1023_byte_packets = 363 stats.common.rx_512_to_1023_byte_packets; 364 p_common->rx_1024_to_1518_byte_packets = 365 stats.common.rx_1024_to_1518_byte_packets; 366 p_common->rx_crc_errors = stats.common.rx_crc_errors; 367 p_common->rx_mac_crtl_frames = stats.common.rx_mac_crtl_frames; 368 p_common->rx_pause_frames = stats.common.rx_pause_frames; 369 p_common->rx_pfc_frames = stats.common.rx_pfc_frames; 370 p_common->rx_align_errors = stats.common.rx_align_errors; 371 p_common->rx_carrier_errors = stats.common.rx_carrier_errors; 372 p_common->rx_oversize_packets = stats.common.rx_oversize_packets; 373 p_common->rx_jabbers = stats.common.rx_jabbers; 374 p_common->rx_undersize_packets = stats.common.rx_undersize_packets; 375 p_common->rx_fragments = stats.common.rx_fragments; 376 p_common->tx_64_byte_packets = stats.common.tx_64_byte_packets; 377 p_common->tx_65_to_127_byte_packets = 378 stats.common.tx_65_to_127_byte_packets; 379 p_common->tx_128_to_255_byte_packets = 380 stats.common.tx_128_to_255_byte_packets; 381 p_common->tx_256_to_511_byte_packets = 382 stats.common.tx_256_to_511_byte_packets; 383 p_common->tx_512_to_1023_byte_packets = 384 stats.common.tx_512_to_1023_byte_packets; 385 p_common->tx_1024_to_1518_byte_packets = 386 stats.common.tx_1024_to_1518_byte_packets; 387 p_common->tx_pause_frames = stats.common.tx_pause_frames; 388 p_common->tx_pfc_frames = stats.common.tx_pfc_frames; 389 p_common->brb_truncates = stats.common.brb_truncates; 390 p_common->brb_discards = stats.common.brb_discards; 391 p_common->tx_mac_ctrl_frames = stats.common.tx_mac_ctrl_frames; 392 p_common->link_change_count = stats.common.link_change_count; 393 p_common->ptp_skip_txts = edev->ptp_skip_txts; 394 395 if (QEDE_IS_BB(edev)) { 396 struct qede_stats_bb *p_bb = &edev->stats.bb; 397 398 p_bb->rx_1519_to_1522_byte_packets = 399 stats.bb.rx_1519_to_1522_byte_packets; 400 p_bb->rx_1519_to_2047_byte_packets = 401 stats.bb.rx_1519_to_2047_byte_packets; 402 p_bb->rx_2048_to_4095_byte_packets = 403 stats.bb.rx_2048_to_4095_byte_packets; 404 p_bb->rx_4096_to_9216_byte_packets = 405 stats.bb.rx_4096_to_9216_byte_packets; 406 p_bb->rx_9217_to_16383_byte_packets = 407 stats.bb.rx_9217_to_16383_byte_packets; 408 p_bb->tx_1519_to_2047_byte_packets = 409 stats.bb.tx_1519_to_2047_byte_packets; 410 p_bb->tx_2048_to_4095_byte_packets = 411 stats.bb.tx_2048_to_4095_byte_packets; 412 p_bb->tx_4096_to_9216_byte_packets = 413 stats.bb.tx_4096_to_9216_byte_packets; 414 p_bb->tx_9217_to_16383_byte_packets = 415 stats.bb.tx_9217_to_16383_byte_packets; 416 p_bb->tx_lpi_entry_count = stats.bb.tx_lpi_entry_count; 417 p_bb->tx_total_collisions = stats.bb.tx_total_collisions; 418 } else { 419 struct qede_stats_ah *p_ah = &edev->stats.ah; 420 421 p_ah->rx_1519_to_max_byte_packets = 422 stats.ah.rx_1519_to_max_byte_packets; 423 p_ah->tx_1519_to_max_byte_packets = 424 stats.ah.tx_1519_to_max_byte_packets; 425 } 426 } 427 428 static void qede_get_stats64(struct net_device *dev, 429 struct rtnl_link_stats64 *stats) 430 { 431 struct qede_dev *edev = netdev_priv(dev); 432 struct qede_stats_common *p_common; 433 434 qede_fill_by_demand_stats(edev); 435 p_common = &edev->stats.common; 436 437 stats->rx_packets = p_common->rx_ucast_pkts + p_common->rx_mcast_pkts + 438 p_common->rx_bcast_pkts; 439 stats->tx_packets = p_common->tx_ucast_pkts + p_common->tx_mcast_pkts + 440 p_common->tx_bcast_pkts; 441 442 stats->rx_bytes = p_common->rx_ucast_bytes + p_common->rx_mcast_bytes + 443 p_common->rx_bcast_bytes; 444 stats->tx_bytes = p_common->tx_ucast_bytes + p_common->tx_mcast_bytes + 445 p_common->tx_bcast_bytes; 446 447 stats->tx_errors = p_common->tx_err_drop_pkts; 448 stats->multicast = p_common->rx_mcast_pkts + p_common->rx_bcast_pkts; 449 450 stats->rx_fifo_errors = p_common->no_buff_discards; 451 452 if (QEDE_IS_BB(edev)) 453 stats->collisions = edev->stats.bb.tx_total_collisions; 454 stats->rx_crc_errors = p_common->rx_crc_errors; 455 stats->rx_frame_errors = p_common->rx_align_errors; 456 } 457 458 #ifdef CONFIG_QED_SRIOV 459 static int qede_get_vf_config(struct net_device *dev, int vfidx, 460 struct ifla_vf_info *ivi) 461 { 462 struct qede_dev *edev = netdev_priv(dev); 463 464 if (!edev->ops) 465 return -EINVAL; 466 467 return edev->ops->iov->get_config(edev->cdev, vfidx, ivi); 468 } 469 470 static int qede_set_vf_rate(struct net_device *dev, int vfidx, 471 int min_tx_rate, int max_tx_rate) 472 { 473 struct qede_dev *edev = netdev_priv(dev); 474 475 return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate, 476 max_tx_rate); 477 } 478 479 static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val) 480 { 481 struct qede_dev *edev = netdev_priv(dev); 482 483 if (!edev->ops) 484 return -EINVAL; 485 486 return edev->ops->iov->set_spoof(edev->cdev, vfidx, val); 487 } 488 489 static int qede_set_vf_link_state(struct net_device *dev, int vfidx, 490 int link_state) 491 { 492 struct qede_dev *edev = netdev_priv(dev); 493 494 if (!edev->ops) 495 return -EINVAL; 496 497 return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state); 498 } 499 500 static int qede_set_vf_trust(struct net_device *dev, int vfidx, bool setting) 501 { 502 struct qede_dev *edev = netdev_priv(dev); 503 504 if (!edev->ops) 505 return -EINVAL; 506 507 return edev->ops->iov->set_trust(edev->cdev, vfidx, setting); 508 } 509 #endif 510 511 static int qede_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 512 { 513 struct qede_dev *edev = netdev_priv(dev); 514 515 if (!netif_running(dev)) 516 return -EAGAIN; 517 518 switch (cmd) { 519 case SIOCSHWTSTAMP: 520 return qede_ptp_hw_ts(edev, ifr); 521 default: 522 DP_VERBOSE(edev, QED_MSG_DEBUG, 523 "default IOCTL cmd 0x%x\n", cmd); 524 return -EOPNOTSUPP; 525 } 526 527 return 0; 528 } 529 530 static int qede_setup_tc(struct net_device *ndev, u8 num_tc) 531 { 532 struct qede_dev *edev = netdev_priv(ndev); 533 int cos, count, offset; 534 535 if (num_tc > edev->dev_info.num_tc) 536 return -EINVAL; 537 538 netdev_reset_tc(ndev); 539 netdev_set_num_tc(ndev, num_tc); 540 541 for_each_cos_in_txq(edev, cos) { 542 count = QEDE_TSS_COUNT(edev); 543 offset = cos * QEDE_TSS_COUNT(edev); 544 netdev_set_tc_queue(ndev, cos, count, offset); 545 } 546 547 return 0; 548 } 549 550 static int 551 qede_set_flower(struct qede_dev *edev, struct tc_cls_flower_offload *f, 552 __be16 proto) 553 { 554 switch (f->command) { 555 case TC_CLSFLOWER_REPLACE: 556 return qede_add_tc_flower_fltr(edev, proto, f); 557 case TC_CLSFLOWER_DESTROY: 558 return qede_delete_flow_filter(edev, f->cookie); 559 default: 560 return -EOPNOTSUPP; 561 } 562 } 563 564 static int qede_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 565 void *cb_priv) 566 { 567 struct tc_cls_flower_offload *f; 568 struct qede_dev *edev = cb_priv; 569 570 if (!tc_cls_can_offload_and_chain0(edev->ndev, type_data)) 571 return -EOPNOTSUPP; 572 573 switch (type) { 574 case TC_SETUP_CLSFLOWER: 575 f = type_data; 576 return qede_set_flower(edev, f, f->common.protocol); 577 default: 578 return -EOPNOTSUPP; 579 } 580 } 581 582 static int qede_setup_tc_block(struct qede_dev *edev, 583 struct tc_block_offload *f) 584 { 585 if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 586 return -EOPNOTSUPP; 587 588 switch (f->command) { 589 case TC_BLOCK_BIND: 590 return tcf_block_cb_register(f->block, 591 qede_setup_tc_block_cb, 592 edev, edev, f->extack); 593 case TC_BLOCK_UNBIND: 594 tcf_block_cb_unregister(f->block, qede_setup_tc_block_cb, edev); 595 return 0; 596 default: 597 return -EOPNOTSUPP; 598 } 599 } 600 601 static int 602 qede_setup_tc_offload(struct net_device *dev, enum tc_setup_type type, 603 void *type_data) 604 { 605 struct qede_dev *edev = netdev_priv(dev); 606 struct tc_mqprio_qopt *mqprio; 607 608 switch (type) { 609 case TC_SETUP_BLOCK: 610 return qede_setup_tc_block(edev, type_data); 611 case TC_SETUP_QDISC_MQPRIO: 612 mqprio = type_data; 613 614 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; 615 return qede_setup_tc(dev, mqprio->num_tc); 616 default: 617 return -EOPNOTSUPP; 618 } 619 } 620 621 static const struct net_device_ops qede_netdev_ops = { 622 .ndo_open = qede_open, 623 .ndo_stop = qede_close, 624 .ndo_start_xmit = qede_start_xmit, 625 .ndo_select_queue = qede_select_queue, 626 .ndo_set_rx_mode = qede_set_rx_mode, 627 .ndo_set_mac_address = qede_set_mac_addr, 628 .ndo_validate_addr = eth_validate_addr, 629 .ndo_change_mtu = qede_change_mtu, 630 .ndo_do_ioctl = qede_ioctl, 631 #ifdef CONFIG_QED_SRIOV 632 .ndo_set_vf_mac = qede_set_vf_mac, 633 .ndo_set_vf_vlan = qede_set_vf_vlan, 634 .ndo_set_vf_trust = qede_set_vf_trust, 635 #endif 636 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid, 637 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid, 638 .ndo_fix_features = qede_fix_features, 639 .ndo_set_features = qede_set_features, 640 .ndo_get_stats64 = qede_get_stats64, 641 #ifdef CONFIG_QED_SRIOV 642 .ndo_set_vf_link_state = qede_set_vf_link_state, 643 .ndo_set_vf_spoofchk = qede_set_vf_spoofchk, 644 .ndo_get_vf_config = qede_get_vf_config, 645 .ndo_set_vf_rate = qede_set_vf_rate, 646 #endif 647 .ndo_udp_tunnel_add = qede_udp_tunnel_add, 648 .ndo_udp_tunnel_del = qede_udp_tunnel_del, 649 .ndo_features_check = qede_features_check, 650 .ndo_bpf = qede_xdp, 651 #ifdef CONFIG_RFS_ACCEL 652 .ndo_rx_flow_steer = qede_rx_flow_steer, 653 #endif 654 .ndo_setup_tc = qede_setup_tc_offload, 655 }; 656 657 static const struct net_device_ops qede_netdev_vf_ops = { 658 .ndo_open = qede_open, 659 .ndo_stop = qede_close, 660 .ndo_start_xmit = qede_start_xmit, 661 .ndo_select_queue = qede_select_queue, 662 .ndo_set_rx_mode = qede_set_rx_mode, 663 .ndo_set_mac_address = qede_set_mac_addr, 664 .ndo_validate_addr = eth_validate_addr, 665 .ndo_change_mtu = qede_change_mtu, 666 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid, 667 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid, 668 .ndo_fix_features = qede_fix_features, 669 .ndo_set_features = qede_set_features, 670 .ndo_get_stats64 = qede_get_stats64, 671 .ndo_udp_tunnel_add = qede_udp_tunnel_add, 672 .ndo_udp_tunnel_del = qede_udp_tunnel_del, 673 .ndo_features_check = qede_features_check, 674 }; 675 676 static const struct net_device_ops qede_netdev_vf_xdp_ops = { 677 .ndo_open = qede_open, 678 .ndo_stop = qede_close, 679 .ndo_start_xmit = qede_start_xmit, 680 .ndo_select_queue = qede_select_queue, 681 .ndo_set_rx_mode = qede_set_rx_mode, 682 .ndo_set_mac_address = qede_set_mac_addr, 683 .ndo_validate_addr = eth_validate_addr, 684 .ndo_change_mtu = qede_change_mtu, 685 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid, 686 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid, 687 .ndo_fix_features = qede_fix_features, 688 .ndo_set_features = qede_set_features, 689 .ndo_get_stats64 = qede_get_stats64, 690 .ndo_udp_tunnel_add = qede_udp_tunnel_add, 691 .ndo_udp_tunnel_del = qede_udp_tunnel_del, 692 .ndo_features_check = qede_features_check, 693 .ndo_bpf = qede_xdp, 694 }; 695 696 /* ------------------------------------------------------------------------- 697 * START OF PROBE / REMOVE 698 * ------------------------------------------------------------------------- 699 */ 700 701 static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev, 702 struct pci_dev *pdev, 703 struct qed_dev_eth_info *info, 704 u32 dp_module, u8 dp_level) 705 { 706 struct net_device *ndev; 707 struct qede_dev *edev; 708 709 ndev = alloc_etherdev_mqs(sizeof(*edev), 710 info->num_queues * info->num_tc, 711 info->num_queues); 712 if (!ndev) { 713 pr_err("etherdev allocation failed\n"); 714 return NULL; 715 } 716 717 edev = netdev_priv(ndev); 718 edev->ndev = ndev; 719 edev->cdev = cdev; 720 edev->pdev = pdev; 721 edev->dp_module = dp_module; 722 edev->dp_level = dp_level; 723 edev->ops = qed_ops; 724 edev->q_num_rx_buffers = NUM_RX_BDS_DEF; 725 edev->q_num_tx_buffers = NUM_TX_BDS_DEF; 726 727 DP_INFO(edev, "Allocated netdev with %d tx queues and %d rx queues\n", 728 info->num_queues, info->num_queues); 729 730 SET_NETDEV_DEV(ndev, &pdev->dev); 731 732 memset(&edev->stats, 0, sizeof(edev->stats)); 733 memcpy(&edev->dev_info, info, sizeof(*info)); 734 735 /* As ethtool doesn't have the ability to show WoL behavior as 736 * 'default', if device supports it declare it's enabled. 737 */ 738 if (edev->dev_info.common.wol_support) 739 edev->wol_enabled = true; 740 741 INIT_LIST_HEAD(&edev->vlan_list); 742 743 return edev; 744 } 745 746 static void qede_init_ndev(struct qede_dev *edev) 747 { 748 struct net_device *ndev = edev->ndev; 749 struct pci_dev *pdev = edev->pdev; 750 bool udp_tunnel_enable = false; 751 netdev_features_t hw_features; 752 753 pci_set_drvdata(pdev, ndev); 754 755 ndev->mem_start = edev->dev_info.common.pci_mem_start; 756 ndev->base_addr = ndev->mem_start; 757 ndev->mem_end = edev->dev_info.common.pci_mem_end; 758 ndev->irq = edev->dev_info.common.pci_irq; 759 760 ndev->watchdog_timeo = TX_TIMEOUT; 761 762 if (IS_VF(edev)) { 763 if (edev->dev_info.xdp_supported) 764 ndev->netdev_ops = &qede_netdev_vf_xdp_ops; 765 else 766 ndev->netdev_ops = &qede_netdev_vf_ops; 767 } else { 768 ndev->netdev_ops = &qede_netdev_ops; 769 } 770 771 qede_set_ethtool_ops(ndev); 772 773 ndev->priv_flags |= IFF_UNICAST_FLT; 774 775 /* user-changeble features */ 776 hw_features = NETIF_F_GRO | NETIF_F_GRO_HW | NETIF_F_SG | 777 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 778 NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_HW_TC; 779 780 if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) 781 hw_features |= NETIF_F_NTUPLE; 782 783 if (edev->dev_info.common.vxlan_enable || 784 edev->dev_info.common.geneve_enable) 785 udp_tunnel_enable = true; 786 787 if (udp_tunnel_enable || edev->dev_info.common.gre_enable) { 788 hw_features |= NETIF_F_TSO_ECN; 789 ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 790 NETIF_F_SG | NETIF_F_TSO | 791 NETIF_F_TSO_ECN | NETIF_F_TSO6 | 792 NETIF_F_RXCSUM; 793 } 794 795 if (udp_tunnel_enable) { 796 hw_features |= (NETIF_F_GSO_UDP_TUNNEL | 797 NETIF_F_GSO_UDP_TUNNEL_CSUM); 798 ndev->hw_enc_features |= (NETIF_F_GSO_UDP_TUNNEL | 799 NETIF_F_GSO_UDP_TUNNEL_CSUM); 800 } 801 802 if (edev->dev_info.common.gre_enable) { 803 hw_features |= (NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM); 804 ndev->hw_enc_features |= (NETIF_F_GSO_GRE | 805 NETIF_F_GSO_GRE_CSUM); 806 } 807 808 ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM | 809 NETIF_F_HIGHDMA; 810 ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM | 811 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA | 812 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX; 813 814 ndev->hw_features = hw_features; 815 816 /* MTU range: 46 - 9600 */ 817 ndev->min_mtu = ETH_ZLEN - ETH_HLEN; 818 ndev->max_mtu = QEDE_MAX_JUMBO_PACKET_SIZE; 819 820 /* Set network device HW mac */ 821 ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac); 822 823 ndev->mtu = edev->dev_info.common.mtu; 824 } 825 826 /* This function converts from 32b param to two params of level and module 827 * Input 32b decoding: 828 * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the 829 * 'happy' flow, e.g. memory allocation failed. 830 * b30 - enable all INFO prints. INFO prints are for major steps in the flow 831 * and provide important parameters. 832 * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that 833 * module. VERBOSE prints are for tracking the specific flow in low level. 834 * 835 * Notice that the level should be that of the lowest required logs. 836 */ 837 void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level) 838 { 839 *p_dp_level = QED_LEVEL_NOTICE; 840 *p_dp_module = 0; 841 842 if (debug & QED_LOG_VERBOSE_MASK) { 843 *p_dp_level = QED_LEVEL_VERBOSE; 844 *p_dp_module = (debug & 0x3FFFFFFF); 845 } else if (debug & QED_LOG_INFO_MASK) { 846 *p_dp_level = QED_LEVEL_INFO; 847 } else if (debug & QED_LOG_NOTICE_MASK) { 848 *p_dp_level = QED_LEVEL_NOTICE; 849 } 850 } 851 852 static void qede_free_fp_array(struct qede_dev *edev) 853 { 854 if (edev->fp_array) { 855 struct qede_fastpath *fp; 856 int i; 857 858 for_each_queue(i) { 859 fp = &edev->fp_array[i]; 860 861 kfree(fp->sb_info); 862 /* Handle mem alloc failure case where qede_init_fp 863 * didn't register xdp_rxq_info yet. 864 * Implicit only (fp->type & QEDE_FASTPATH_RX) 865 */ 866 if (fp->rxq && xdp_rxq_info_is_reg(&fp->rxq->xdp_rxq)) 867 xdp_rxq_info_unreg(&fp->rxq->xdp_rxq); 868 kfree(fp->rxq); 869 kfree(fp->xdp_tx); 870 kfree(fp->txq); 871 } 872 kfree(edev->fp_array); 873 } 874 875 edev->num_queues = 0; 876 edev->fp_num_tx = 0; 877 edev->fp_num_rx = 0; 878 } 879 880 static int qede_alloc_fp_array(struct qede_dev *edev) 881 { 882 u8 fp_combined, fp_rx = edev->fp_num_rx; 883 struct qede_fastpath *fp; 884 int i; 885 886 edev->fp_array = kcalloc(QEDE_QUEUE_CNT(edev), 887 sizeof(*edev->fp_array), GFP_KERNEL); 888 if (!edev->fp_array) { 889 DP_NOTICE(edev, "fp array allocation failed\n"); 890 goto err; 891 } 892 893 fp_combined = QEDE_QUEUE_CNT(edev) - fp_rx - edev->fp_num_tx; 894 895 /* Allocate the FP elements for Rx queues followed by combined and then 896 * the Tx. This ordering should be maintained so that the respective 897 * queues (Rx or Tx) will be together in the fastpath array and the 898 * associated ids will be sequential. 899 */ 900 for_each_queue(i) { 901 fp = &edev->fp_array[i]; 902 903 fp->sb_info = kzalloc(sizeof(*fp->sb_info), GFP_KERNEL); 904 if (!fp->sb_info) { 905 DP_NOTICE(edev, "sb info struct allocation failed\n"); 906 goto err; 907 } 908 909 if (fp_rx) { 910 fp->type = QEDE_FASTPATH_RX; 911 fp_rx--; 912 } else if (fp_combined) { 913 fp->type = QEDE_FASTPATH_COMBINED; 914 fp_combined--; 915 } else { 916 fp->type = QEDE_FASTPATH_TX; 917 } 918 919 if (fp->type & QEDE_FASTPATH_TX) { 920 fp->txq = kcalloc(edev->dev_info.num_tc, 921 sizeof(*fp->txq), GFP_KERNEL); 922 if (!fp->txq) 923 goto err; 924 } 925 926 if (fp->type & QEDE_FASTPATH_RX) { 927 fp->rxq = kzalloc(sizeof(*fp->rxq), GFP_KERNEL); 928 if (!fp->rxq) 929 goto err; 930 931 if (edev->xdp_prog) { 932 fp->xdp_tx = kzalloc(sizeof(*fp->xdp_tx), 933 GFP_KERNEL); 934 if (!fp->xdp_tx) 935 goto err; 936 fp->type |= QEDE_FASTPATH_XDP; 937 } 938 } 939 } 940 941 return 0; 942 err: 943 qede_free_fp_array(edev); 944 return -ENOMEM; 945 } 946 947 /* The qede lock is used to protect driver state change and driver flows that 948 * are not reentrant. 949 */ 950 void __qede_lock(struct qede_dev *edev) 951 { 952 mutex_lock(&edev->qede_lock); 953 } 954 955 void __qede_unlock(struct qede_dev *edev) 956 { 957 mutex_unlock(&edev->qede_lock); 958 } 959 960 /* This version of the lock should be used when acquiring the RTNL lock is also 961 * needed in addition to the internal qede lock. 962 */ 963 void qede_lock(struct qede_dev *edev) 964 { 965 rtnl_lock(); 966 __qede_lock(edev); 967 } 968 969 void qede_unlock(struct qede_dev *edev) 970 { 971 __qede_unlock(edev); 972 rtnl_unlock(); 973 } 974 975 static void qede_sp_task(struct work_struct *work) 976 { 977 struct qede_dev *edev = container_of(work, struct qede_dev, 978 sp_task.work); 979 980 /* The locking scheme depends on the specific flag: 981 * In case of QEDE_SP_RECOVERY, acquiring the RTNL lock is required to 982 * ensure that ongoing flows are ended and new ones are not started. 983 * In other cases - only the internal qede lock should be acquired. 984 */ 985 986 if (test_and_clear_bit(QEDE_SP_RECOVERY, &edev->sp_flags)) { 987 #ifdef CONFIG_QED_SRIOV 988 /* SRIOV must be disabled outside the lock to avoid a deadlock. 989 * The recovery of the active VFs is currently not supported. 990 */ 991 qede_sriov_configure(edev->pdev, 0); 992 #endif 993 qede_lock(edev); 994 qede_recovery_handler(edev); 995 qede_unlock(edev); 996 } 997 998 __qede_lock(edev); 999 1000 if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags)) 1001 if (edev->state == QEDE_STATE_OPEN) 1002 qede_config_rx_mode(edev->ndev); 1003 1004 #ifdef CONFIG_RFS_ACCEL 1005 if (test_and_clear_bit(QEDE_SP_ARFS_CONFIG, &edev->sp_flags)) { 1006 if (edev->state == QEDE_STATE_OPEN) 1007 qede_process_arfs_filters(edev, false); 1008 } 1009 #endif 1010 __qede_unlock(edev); 1011 } 1012 1013 static void qede_update_pf_params(struct qed_dev *cdev) 1014 { 1015 struct qed_pf_params pf_params; 1016 u16 num_cons; 1017 1018 /* 64 rx + 64 tx + 64 XDP */ 1019 memset(&pf_params, 0, sizeof(struct qed_pf_params)); 1020 1021 /* 1 rx + 1 xdp + max tx cos */ 1022 num_cons = QED_MIN_L2_CONS; 1023 1024 pf_params.eth_pf_params.num_cons = (MAX_SB_PER_PF_MIMD - 1) * num_cons; 1025 1026 /* Same for VFs - make sure they'll have sufficient connections 1027 * to support XDP Tx queues. 1028 */ 1029 pf_params.eth_pf_params.num_vf_cons = 48; 1030 1031 pf_params.eth_pf_params.num_arfs_filters = QEDE_RFS_MAX_FLTR; 1032 qed_ops->common->update_pf_params(cdev, &pf_params); 1033 } 1034 1035 #define QEDE_FW_VER_STR_SIZE 80 1036 1037 static void qede_log_probe(struct qede_dev *edev) 1038 { 1039 struct qed_dev_info *p_dev_info = &edev->dev_info.common; 1040 u8 buf[QEDE_FW_VER_STR_SIZE]; 1041 size_t left_size; 1042 1043 snprintf(buf, QEDE_FW_VER_STR_SIZE, 1044 "Storm FW %d.%d.%d.%d, Management FW %d.%d.%d.%d", 1045 p_dev_info->fw_major, p_dev_info->fw_minor, p_dev_info->fw_rev, 1046 p_dev_info->fw_eng, 1047 (p_dev_info->mfw_rev & QED_MFW_VERSION_3_MASK) >> 1048 QED_MFW_VERSION_3_OFFSET, 1049 (p_dev_info->mfw_rev & QED_MFW_VERSION_2_MASK) >> 1050 QED_MFW_VERSION_2_OFFSET, 1051 (p_dev_info->mfw_rev & QED_MFW_VERSION_1_MASK) >> 1052 QED_MFW_VERSION_1_OFFSET, 1053 (p_dev_info->mfw_rev & QED_MFW_VERSION_0_MASK) >> 1054 QED_MFW_VERSION_0_OFFSET); 1055 1056 left_size = QEDE_FW_VER_STR_SIZE - strlen(buf); 1057 if (p_dev_info->mbi_version && left_size) 1058 snprintf(buf + strlen(buf), left_size, 1059 " [MBI %d.%d.%d]", 1060 (p_dev_info->mbi_version & QED_MBI_VERSION_2_MASK) >> 1061 QED_MBI_VERSION_2_OFFSET, 1062 (p_dev_info->mbi_version & QED_MBI_VERSION_1_MASK) >> 1063 QED_MBI_VERSION_1_OFFSET, 1064 (p_dev_info->mbi_version & QED_MBI_VERSION_0_MASK) >> 1065 QED_MBI_VERSION_0_OFFSET); 1066 1067 pr_info("qede %02x:%02x.%02x: %s [%s]\n", edev->pdev->bus->number, 1068 PCI_SLOT(edev->pdev->devfn), PCI_FUNC(edev->pdev->devfn), 1069 buf, edev->ndev->name); 1070 } 1071 1072 enum qede_probe_mode { 1073 QEDE_PROBE_NORMAL, 1074 QEDE_PROBE_RECOVERY, 1075 }; 1076 1077 static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level, 1078 bool is_vf, enum qede_probe_mode mode) 1079 { 1080 struct qed_probe_params probe_params; 1081 struct qed_slowpath_params sp_params; 1082 struct qed_dev_eth_info dev_info; 1083 struct qede_dev *edev; 1084 struct qed_dev *cdev; 1085 int rc; 1086 1087 if (unlikely(dp_level & QED_LEVEL_INFO)) 1088 pr_notice("Starting qede probe\n"); 1089 1090 memset(&probe_params, 0, sizeof(probe_params)); 1091 probe_params.protocol = QED_PROTOCOL_ETH; 1092 probe_params.dp_module = dp_module; 1093 probe_params.dp_level = dp_level; 1094 probe_params.is_vf = is_vf; 1095 probe_params.recov_in_prog = (mode == QEDE_PROBE_RECOVERY); 1096 cdev = qed_ops->common->probe(pdev, &probe_params); 1097 if (!cdev) { 1098 rc = -ENODEV; 1099 goto err0; 1100 } 1101 1102 qede_update_pf_params(cdev); 1103 1104 /* Start the Slowpath-process */ 1105 memset(&sp_params, 0, sizeof(sp_params)); 1106 sp_params.int_mode = QED_INT_MODE_MSIX; 1107 sp_params.drv_major = QEDE_MAJOR_VERSION; 1108 sp_params.drv_minor = QEDE_MINOR_VERSION; 1109 sp_params.drv_rev = QEDE_REVISION_VERSION; 1110 sp_params.drv_eng = QEDE_ENGINEERING_VERSION; 1111 strlcpy(sp_params.name, "qede LAN", QED_DRV_VER_STR_SIZE); 1112 rc = qed_ops->common->slowpath_start(cdev, &sp_params); 1113 if (rc) { 1114 pr_notice("Cannot start slowpath\n"); 1115 goto err1; 1116 } 1117 1118 /* Learn information crucial for qede to progress */ 1119 rc = qed_ops->fill_dev_info(cdev, &dev_info); 1120 if (rc) 1121 goto err2; 1122 1123 if (mode != QEDE_PROBE_RECOVERY) { 1124 edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module, 1125 dp_level); 1126 if (!edev) { 1127 rc = -ENOMEM; 1128 goto err2; 1129 } 1130 } else { 1131 struct net_device *ndev = pci_get_drvdata(pdev); 1132 1133 edev = netdev_priv(ndev); 1134 edev->cdev = cdev; 1135 memset(&edev->stats, 0, sizeof(edev->stats)); 1136 memcpy(&edev->dev_info, &dev_info, sizeof(dev_info)); 1137 } 1138 1139 if (is_vf) 1140 set_bit(QEDE_FLAGS_IS_VF, &edev->flags); 1141 1142 qede_init_ndev(edev); 1143 1144 rc = qede_rdma_dev_add(edev, (mode == QEDE_PROBE_RECOVERY)); 1145 if (rc) 1146 goto err3; 1147 1148 if (mode != QEDE_PROBE_RECOVERY) { 1149 /* Prepare the lock prior to the registration of the netdev, 1150 * as once it's registered we might reach flows requiring it 1151 * [it's even possible to reach a flow needing it directly 1152 * from there, although it's unlikely]. 1153 */ 1154 INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task); 1155 mutex_init(&edev->qede_lock); 1156 1157 rc = register_netdev(edev->ndev); 1158 if (rc) { 1159 DP_NOTICE(edev, "Cannot register net-device\n"); 1160 goto err4; 1161 } 1162 } 1163 1164 edev->ops->common->set_name(cdev, edev->ndev->name); 1165 1166 /* PTP not supported on VFs */ 1167 if (!is_vf) 1168 qede_ptp_enable(edev, (mode == QEDE_PROBE_NORMAL)); 1169 1170 edev->ops->register_ops(cdev, &qede_ll_ops, edev); 1171 1172 #ifdef CONFIG_DCB 1173 if (!IS_VF(edev)) 1174 qede_set_dcbnl_ops(edev->ndev); 1175 #endif 1176 1177 edev->rx_copybreak = QEDE_RX_HDR_SIZE; 1178 1179 qede_log_probe(edev); 1180 return 0; 1181 1182 err4: 1183 qede_rdma_dev_remove(edev, (mode == QEDE_PROBE_RECOVERY)); 1184 err3: 1185 free_netdev(edev->ndev); 1186 err2: 1187 qed_ops->common->slowpath_stop(cdev); 1188 err1: 1189 qed_ops->common->remove(cdev); 1190 err0: 1191 return rc; 1192 } 1193 1194 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id) 1195 { 1196 bool is_vf = false; 1197 u32 dp_module = 0; 1198 u8 dp_level = 0; 1199 1200 switch ((enum qede_pci_private)id->driver_data) { 1201 case QEDE_PRIVATE_VF: 1202 if (debug & QED_LOG_VERBOSE_MASK) 1203 dev_err(&pdev->dev, "Probing a VF\n"); 1204 is_vf = true; 1205 break; 1206 default: 1207 if (debug & QED_LOG_VERBOSE_MASK) 1208 dev_err(&pdev->dev, "Probing a PF\n"); 1209 } 1210 1211 qede_config_debug(debug, &dp_module, &dp_level); 1212 1213 return __qede_probe(pdev, dp_module, dp_level, is_vf, 1214 QEDE_PROBE_NORMAL); 1215 } 1216 1217 enum qede_remove_mode { 1218 QEDE_REMOVE_NORMAL, 1219 QEDE_REMOVE_RECOVERY, 1220 }; 1221 1222 static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode) 1223 { 1224 struct net_device *ndev = pci_get_drvdata(pdev); 1225 struct qede_dev *edev = netdev_priv(ndev); 1226 struct qed_dev *cdev = edev->cdev; 1227 1228 DP_INFO(edev, "Starting qede_remove\n"); 1229 1230 qede_rdma_dev_remove(edev, (mode == QEDE_REMOVE_RECOVERY)); 1231 1232 if (mode != QEDE_REMOVE_RECOVERY) { 1233 unregister_netdev(ndev); 1234 1235 cancel_delayed_work_sync(&edev->sp_task); 1236 1237 edev->ops->common->set_power_state(cdev, PCI_D0); 1238 1239 pci_set_drvdata(pdev, NULL); 1240 } 1241 1242 qede_ptp_disable(edev); 1243 1244 /* Use global ops since we've freed edev */ 1245 qed_ops->common->slowpath_stop(cdev); 1246 if (system_state == SYSTEM_POWER_OFF) 1247 return; 1248 qed_ops->common->remove(cdev); 1249 1250 /* Since this can happen out-of-sync with other flows, 1251 * don't release the netdevice until after slowpath stop 1252 * has been called to guarantee various other contexts 1253 * [e.g., QED register callbacks] won't break anything when 1254 * accessing the netdevice. 1255 */ 1256 if (mode != QEDE_REMOVE_RECOVERY) 1257 free_netdev(ndev); 1258 1259 dev_info(&pdev->dev, "Ending qede_remove successfully\n"); 1260 } 1261 1262 static void qede_remove(struct pci_dev *pdev) 1263 { 1264 __qede_remove(pdev, QEDE_REMOVE_NORMAL); 1265 } 1266 1267 static void qede_shutdown(struct pci_dev *pdev) 1268 { 1269 __qede_remove(pdev, QEDE_REMOVE_NORMAL); 1270 } 1271 1272 /* ------------------------------------------------------------------------- 1273 * START OF LOAD / UNLOAD 1274 * ------------------------------------------------------------------------- 1275 */ 1276 1277 static int qede_set_num_queues(struct qede_dev *edev) 1278 { 1279 int rc; 1280 u16 rss_num; 1281 1282 /* Setup queues according to possible resources*/ 1283 if (edev->req_queues) 1284 rss_num = edev->req_queues; 1285 else 1286 rss_num = netif_get_num_default_rss_queues() * 1287 edev->dev_info.common.num_hwfns; 1288 1289 rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num); 1290 1291 rc = edev->ops->common->set_fp_int(edev->cdev, rss_num); 1292 if (rc > 0) { 1293 /* Managed to request interrupts for our queues */ 1294 edev->num_queues = rc; 1295 DP_INFO(edev, "Managed %d [of %d] RSS queues\n", 1296 QEDE_QUEUE_CNT(edev), rss_num); 1297 rc = 0; 1298 } 1299 1300 edev->fp_num_tx = edev->req_num_tx; 1301 edev->fp_num_rx = edev->req_num_rx; 1302 1303 return rc; 1304 } 1305 1306 static void qede_free_mem_sb(struct qede_dev *edev, struct qed_sb_info *sb_info, 1307 u16 sb_id) 1308 { 1309 if (sb_info->sb_virt) { 1310 edev->ops->common->sb_release(edev->cdev, sb_info, sb_id, 1311 QED_SB_TYPE_L2_QUEUE); 1312 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt), 1313 (void *)sb_info->sb_virt, sb_info->sb_phys); 1314 memset(sb_info, 0, sizeof(*sb_info)); 1315 } 1316 } 1317 1318 /* This function allocates fast-path status block memory */ 1319 static int qede_alloc_mem_sb(struct qede_dev *edev, 1320 struct qed_sb_info *sb_info, u16 sb_id) 1321 { 1322 struct status_block_e4 *sb_virt; 1323 dma_addr_t sb_phys; 1324 int rc; 1325 1326 sb_virt = dma_alloc_coherent(&edev->pdev->dev, 1327 sizeof(*sb_virt), &sb_phys, GFP_KERNEL); 1328 if (!sb_virt) { 1329 DP_ERR(edev, "Status block allocation failed\n"); 1330 return -ENOMEM; 1331 } 1332 1333 rc = edev->ops->common->sb_init(edev->cdev, sb_info, 1334 sb_virt, sb_phys, sb_id, 1335 QED_SB_TYPE_L2_QUEUE); 1336 if (rc) { 1337 DP_ERR(edev, "Status block initialization failed\n"); 1338 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt), 1339 sb_virt, sb_phys); 1340 return rc; 1341 } 1342 1343 return 0; 1344 } 1345 1346 static void qede_free_rx_buffers(struct qede_dev *edev, 1347 struct qede_rx_queue *rxq) 1348 { 1349 u16 i; 1350 1351 for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) { 1352 struct sw_rx_data *rx_buf; 1353 struct page *data; 1354 1355 rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX]; 1356 data = rx_buf->data; 1357 1358 dma_unmap_page(&edev->pdev->dev, 1359 rx_buf->mapping, PAGE_SIZE, rxq->data_direction); 1360 1361 rx_buf->data = NULL; 1362 __free_page(data); 1363 } 1364 } 1365 1366 static void qede_free_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq) 1367 { 1368 /* Free rx buffers */ 1369 qede_free_rx_buffers(edev, rxq); 1370 1371 /* Free the parallel SW ring */ 1372 kfree(rxq->sw_rx_ring); 1373 1374 /* Free the real RQ ring used by FW */ 1375 edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring); 1376 edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring); 1377 } 1378 1379 static void qede_set_tpa_param(struct qede_rx_queue *rxq) 1380 { 1381 int i; 1382 1383 for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) { 1384 struct qede_agg_info *tpa_info = &rxq->tpa_info[i]; 1385 1386 tpa_info->state = QEDE_AGG_STATE_NONE; 1387 } 1388 } 1389 1390 /* This function allocates all memory needed per Rx queue */ 1391 static int qede_alloc_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq) 1392 { 1393 int i, rc, size; 1394 1395 rxq->num_rx_buffers = edev->q_num_rx_buffers; 1396 1397 rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD + edev->ndev->mtu; 1398 1399 rxq->rx_headroom = edev->xdp_prog ? XDP_PACKET_HEADROOM : NET_SKB_PAD; 1400 size = rxq->rx_headroom + 1401 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 1402 1403 /* Make sure that the headroom and payload fit in a single page */ 1404 if (rxq->rx_buf_size + size > PAGE_SIZE) 1405 rxq->rx_buf_size = PAGE_SIZE - size; 1406 1407 /* Segment size to spilt a page in multiple equal parts , 1408 * unless XDP is used in which case we'd use the entire page. 1409 */ 1410 if (!edev->xdp_prog) { 1411 size = size + rxq->rx_buf_size; 1412 rxq->rx_buf_seg_size = roundup_pow_of_two(size); 1413 } else { 1414 rxq->rx_buf_seg_size = PAGE_SIZE; 1415 } 1416 1417 /* Allocate the parallel driver ring for Rx buffers */ 1418 size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE; 1419 rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL); 1420 if (!rxq->sw_rx_ring) { 1421 DP_ERR(edev, "Rx buffers ring allocation failed\n"); 1422 rc = -ENOMEM; 1423 goto err; 1424 } 1425 1426 /* Allocate FW Rx ring */ 1427 rc = edev->ops->common->chain_alloc(edev->cdev, 1428 QED_CHAIN_USE_TO_CONSUME_PRODUCE, 1429 QED_CHAIN_MODE_NEXT_PTR, 1430 QED_CHAIN_CNT_TYPE_U16, 1431 RX_RING_SIZE, 1432 sizeof(struct eth_rx_bd), 1433 &rxq->rx_bd_ring, NULL); 1434 if (rc) 1435 goto err; 1436 1437 /* Allocate FW completion ring */ 1438 rc = edev->ops->common->chain_alloc(edev->cdev, 1439 QED_CHAIN_USE_TO_CONSUME, 1440 QED_CHAIN_MODE_PBL, 1441 QED_CHAIN_CNT_TYPE_U16, 1442 RX_RING_SIZE, 1443 sizeof(union eth_rx_cqe), 1444 &rxq->rx_comp_ring, NULL); 1445 if (rc) 1446 goto err; 1447 1448 /* Allocate buffers for the Rx ring */ 1449 rxq->filled_buffers = 0; 1450 for (i = 0; i < rxq->num_rx_buffers; i++) { 1451 rc = qede_alloc_rx_buffer(rxq, false); 1452 if (rc) { 1453 DP_ERR(edev, 1454 "Rx buffers allocation failed at index %d\n", i); 1455 goto err; 1456 } 1457 } 1458 1459 if (!edev->gro_disable) 1460 qede_set_tpa_param(rxq); 1461 err: 1462 return rc; 1463 } 1464 1465 static void qede_free_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq) 1466 { 1467 /* Free the parallel SW ring */ 1468 if (txq->is_xdp) 1469 kfree(txq->sw_tx_ring.xdp); 1470 else 1471 kfree(txq->sw_tx_ring.skbs); 1472 1473 /* Free the real RQ ring used by FW */ 1474 edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl); 1475 } 1476 1477 /* This function allocates all memory needed per Tx queue */ 1478 static int qede_alloc_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq) 1479 { 1480 union eth_tx_bd_types *p_virt; 1481 int size, rc; 1482 1483 txq->num_tx_buffers = edev->q_num_tx_buffers; 1484 1485 /* Allocate the parallel driver ring for Tx buffers */ 1486 if (txq->is_xdp) { 1487 size = sizeof(*txq->sw_tx_ring.xdp) * txq->num_tx_buffers; 1488 txq->sw_tx_ring.xdp = kzalloc(size, GFP_KERNEL); 1489 if (!txq->sw_tx_ring.xdp) 1490 goto err; 1491 } else { 1492 size = sizeof(*txq->sw_tx_ring.skbs) * txq->num_tx_buffers; 1493 txq->sw_tx_ring.skbs = kzalloc(size, GFP_KERNEL); 1494 if (!txq->sw_tx_ring.skbs) 1495 goto err; 1496 } 1497 1498 rc = edev->ops->common->chain_alloc(edev->cdev, 1499 QED_CHAIN_USE_TO_CONSUME_PRODUCE, 1500 QED_CHAIN_MODE_PBL, 1501 QED_CHAIN_CNT_TYPE_U16, 1502 txq->num_tx_buffers, 1503 sizeof(*p_virt), 1504 &txq->tx_pbl, NULL); 1505 if (rc) 1506 goto err; 1507 1508 return 0; 1509 1510 err: 1511 qede_free_mem_txq(edev, txq); 1512 return -ENOMEM; 1513 } 1514 1515 /* This function frees all memory of a single fp */ 1516 static void qede_free_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp) 1517 { 1518 qede_free_mem_sb(edev, fp->sb_info, fp->id); 1519 1520 if (fp->type & QEDE_FASTPATH_RX) 1521 qede_free_mem_rxq(edev, fp->rxq); 1522 1523 if (fp->type & QEDE_FASTPATH_XDP) 1524 qede_free_mem_txq(edev, fp->xdp_tx); 1525 1526 if (fp->type & QEDE_FASTPATH_TX) { 1527 int cos; 1528 1529 for_each_cos_in_txq(edev, cos) 1530 qede_free_mem_txq(edev, &fp->txq[cos]); 1531 } 1532 } 1533 1534 /* This function allocates all memory needed for a single fp (i.e. an entity 1535 * which contains status block, one rx queue and/or multiple per-TC tx queues. 1536 */ 1537 static int qede_alloc_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp) 1538 { 1539 int rc = 0; 1540 1541 rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->id); 1542 if (rc) 1543 goto out; 1544 1545 if (fp->type & QEDE_FASTPATH_RX) { 1546 rc = qede_alloc_mem_rxq(edev, fp->rxq); 1547 if (rc) 1548 goto out; 1549 } 1550 1551 if (fp->type & QEDE_FASTPATH_XDP) { 1552 rc = qede_alloc_mem_txq(edev, fp->xdp_tx); 1553 if (rc) 1554 goto out; 1555 } 1556 1557 if (fp->type & QEDE_FASTPATH_TX) { 1558 int cos; 1559 1560 for_each_cos_in_txq(edev, cos) { 1561 rc = qede_alloc_mem_txq(edev, &fp->txq[cos]); 1562 if (rc) 1563 goto out; 1564 } 1565 } 1566 1567 out: 1568 return rc; 1569 } 1570 1571 static void qede_free_mem_load(struct qede_dev *edev) 1572 { 1573 int i; 1574 1575 for_each_queue(i) { 1576 struct qede_fastpath *fp = &edev->fp_array[i]; 1577 1578 qede_free_mem_fp(edev, fp); 1579 } 1580 } 1581 1582 /* This function allocates all qede memory at NIC load. */ 1583 static int qede_alloc_mem_load(struct qede_dev *edev) 1584 { 1585 int rc = 0, queue_id; 1586 1587 for (queue_id = 0; queue_id < QEDE_QUEUE_CNT(edev); queue_id++) { 1588 struct qede_fastpath *fp = &edev->fp_array[queue_id]; 1589 1590 rc = qede_alloc_mem_fp(edev, fp); 1591 if (rc) { 1592 DP_ERR(edev, 1593 "Failed to allocate memory for fastpath - rss id = %d\n", 1594 queue_id); 1595 qede_free_mem_load(edev); 1596 return rc; 1597 } 1598 } 1599 1600 return 0; 1601 } 1602 1603 static void qede_empty_tx_queue(struct qede_dev *edev, 1604 struct qede_tx_queue *txq) 1605 { 1606 unsigned int pkts_compl = 0, bytes_compl = 0; 1607 struct netdev_queue *netdev_txq; 1608 int rc, len = 0; 1609 1610 netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id); 1611 1612 while (qed_chain_get_cons_idx(&txq->tx_pbl) != 1613 qed_chain_get_prod_idx(&txq->tx_pbl)) { 1614 DP_VERBOSE(edev, NETIF_MSG_IFDOWN, 1615 "Freeing a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n", 1616 txq->index, qed_chain_get_cons_idx(&txq->tx_pbl), 1617 qed_chain_get_prod_idx(&txq->tx_pbl)); 1618 1619 rc = qede_free_tx_pkt(edev, txq, &len); 1620 if (rc) { 1621 DP_NOTICE(edev, 1622 "Failed to free a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n", 1623 txq->index, 1624 qed_chain_get_cons_idx(&txq->tx_pbl), 1625 qed_chain_get_prod_idx(&txq->tx_pbl)); 1626 break; 1627 } 1628 1629 bytes_compl += len; 1630 pkts_compl++; 1631 txq->sw_tx_cons++; 1632 } 1633 1634 netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl); 1635 } 1636 1637 static void qede_empty_tx_queues(struct qede_dev *edev) 1638 { 1639 int i; 1640 1641 for_each_queue(i) 1642 if (edev->fp_array[i].type & QEDE_FASTPATH_TX) { 1643 int cos; 1644 1645 for_each_cos_in_txq(edev, cos) { 1646 struct qede_fastpath *fp; 1647 1648 fp = &edev->fp_array[i]; 1649 qede_empty_tx_queue(edev, 1650 &fp->txq[cos]); 1651 } 1652 } 1653 } 1654 1655 /* This function inits fp content and resets the SB, RXQ and TXQ structures */ 1656 static void qede_init_fp(struct qede_dev *edev) 1657 { 1658 int queue_id, rxq_index = 0, txq_index = 0; 1659 struct qede_fastpath *fp; 1660 1661 for_each_queue(queue_id) { 1662 fp = &edev->fp_array[queue_id]; 1663 1664 fp->edev = edev; 1665 fp->id = queue_id; 1666 1667 if (fp->type & QEDE_FASTPATH_XDP) { 1668 fp->xdp_tx->index = QEDE_TXQ_IDX_TO_XDP(edev, 1669 rxq_index); 1670 fp->xdp_tx->is_xdp = 1; 1671 } 1672 1673 if (fp->type & QEDE_FASTPATH_RX) { 1674 fp->rxq->rxq_id = rxq_index++; 1675 1676 /* Determine how to map buffers for this queue */ 1677 if (fp->type & QEDE_FASTPATH_XDP) 1678 fp->rxq->data_direction = DMA_BIDIRECTIONAL; 1679 else 1680 fp->rxq->data_direction = DMA_FROM_DEVICE; 1681 fp->rxq->dev = &edev->pdev->dev; 1682 1683 /* Driver have no error path from here */ 1684 WARN_ON(xdp_rxq_info_reg(&fp->rxq->xdp_rxq, edev->ndev, 1685 fp->rxq->rxq_id) < 0); 1686 } 1687 1688 if (fp->type & QEDE_FASTPATH_TX) { 1689 int cos; 1690 1691 for_each_cos_in_txq(edev, cos) { 1692 struct qede_tx_queue *txq = &fp->txq[cos]; 1693 u16 ndev_tx_id; 1694 1695 txq->cos = cos; 1696 txq->index = txq_index; 1697 ndev_tx_id = QEDE_TXQ_TO_NDEV_TXQ_ID(edev, txq); 1698 txq->ndev_txq_id = ndev_tx_id; 1699 1700 if (edev->dev_info.is_legacy) 1701 txq->is_legacy = 1; 1702 txq->dev = &edev->pdev->dev; 1703 } 1704 1705 txq_index++; 1706 } 1707 1708 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d", 1709 edev->ndev->name, queue_id); 1710 } 1711 1712 edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO_HW); 1713 } 1714 1715 static int qede_set_real_num_queues(struct qede_dev *edev) 1716 { 1717 int rc = 0; 1718 1719 rc = netif_set_real_num_tx_queues(edev->ndev, 1720 QEDE_TSS_COUNT(edev) * 1721 edev->dev_info.num_tc); 1722 if (rc) { 1723 DP_NOTICE(edev, "Failed to set real number of Tx queues\n"); 1724 return rc; 1725 } 1726 1727 rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_COUNT(edev)); 1728 if (rc) { 1729 DP_NOTICE(edev, "Failed to set real number of Rx queues\n"); 1730 return rc; 1731 } 1732 1733 return 0; 1734 } 1735 1736 static void qede_napi_disable_remove(struct qede_dev *edev) 1737 { 1738 int i; 1739 1740 for_each_queue(i) { 1741 napi_disable(&edev->fp_array[i].napi); 1742 1743 netif_napi_del(&edev->fp_array[i].napi); 1744 } 1745 } 1746 1747 static void qede_napi_add_enable(struct qede_dev *edev) 1748 { 1749 int i; 1750 1751 /* Add NAPI objects */ 1752 for_each_queue(i) { 1753 netif_napi_add(edev->ndev, &edev->fp_array[i].napi, 1754 qede_poll, NAPI_POLL_WEIGHT); 1755 napi_enable(&edev->fp_array[i].napi); 1756 } 1757 } 1758 1759 static void qede_sync_free_irqs(struct qede_dev *edev) 1760 { 1761 int i; 1762 1763 for (i = 0; i < edev->int_info.used_cnt; i++) { 1764 if (edev->int_info.msix_cnt) { 1765 synchronize_irq(edev->int_info.msix[i].vector); 1766 free_irq(edev->int_info.msix[i].vector, 1767 &edev->fp_array[i]); 1768 } else { 1769 edev->ops->common->simd_handler_clean(edev->cdev, i); 1770 } 1771 } 1772 1773 edev->int_info.used_cnt = 0; 1774 } 1775 1776 static int qede_req_msix_irqs(struct qede_dev *edev) 1777 { 1778 int i, rc; 1779 1780 /* Sanitize number of interrupts == number of prepared RSS queues */ 1781 if (QEDE_QUEUE_CNT(edev) > edev->int_info.msix_cnt) { 1782 DP_ERR(edev, 1783 "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n", 1784 QEDE_QUEUE_CNT(edev), edev->int_info.msix_cnt); 1785 return -EINVAL; 1786 } 1787 1788 for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) { 1789 #ifdef CONFIG_RFS_ACCEL 1790 struct qede_fastpath *fp = &edev->fp_array[i]; 1791 1792 if (edev->ndev->rx_cpu_rmap && (fp->type & QEDE_FASTPATH_RX)) { 1793 rc = irq_cpu_rmap_add(edev->ndev->rx_cpu_rmap, 1794 edev->int_info.msix[i].vector); 1795 if (rc) { 1796 DP_ERR(edev, "Failed to add CPU rmap\n"); 1797 qede_free_arfs(edev); 1798 } 1799 } 1800 #endif 1801 rc = request_irq(edev->int_info.msix[i].vector, 1802 qede_msix_fp_int, 0, edev->fp_array[i].name, 1803 &edev->fp_array[i]); 1804 if (rc) { 1805 DP_ERR(edev, "Request fp %d irq failed\n", i); 1806 qede_sync_free_irqs(edev); 1807 return rc; 1808 } 1809 DP_VERBOSE(edev, NETIF_MSG_INTR, 1810 "Requested fp irq for %s [entry %d]. Cookie is at %p\n", 1811 edev->fp_array[i].name, i, 1812 &edev->fp_array[i]); 1813 edev->int_info.used_cnt++; 1814 } 1815 1816 return 0; 1817 } 1818 1819 static void qede_simd_fp_handler(void *cookie) 1820 { 1821 struct qede_fastpath *fp = (struct qede_fastpath *)cookie; 1822 1823 napi_schedule_irqoff(&fp->napi); 1824 } 1825 1826 static int qede_setup_irqs(struct qede_dev *edev) 1827 { 1828 int i, rc = 0; 1829 1830 /* Learn Interrupt configuration */ 1831 rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info); 1832 if (rc) 1833 return rc; 1834 1835 if (edev->int_info.msix_cnt) { 1836 rc = qede_req_msix_irqs(edev); 1837 if (rc) 1838 return rc; 1839 edev->ndev->irq = edev->int_info.msix[0].vector; 1840 } else { 1841 const struct qed_common_ops *ops; 1842 1843 /* qed should learn receive the RSS ids and callbacks */ 1844 ops = edev->ops->common; 1845 for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) 1846 ops->simd_handler_config(edev->cdev, 1847 &edev->fp_array[i], i, 1848 qede_simd_fp_handler); 1849 edev->int_info.used_cnt = QEDE_QUEUE_CNT(edev); 1850 } 1851 return 0; 1852 } 1853 1854 static int qede_drain_txq(struct qede_dev *edev, 1855 struct qede_tx_queue *txq, bool allow_drain) 1856 { 1857 int rc, cnt = 1000; 1858 1859 while (txq->sw_tx_cons != txq->sw_tx_prod) { 1860 if (!cnt) { 1861 if (allow_drain) { 1862 DP_NOTICE(edev, 1863 "Tx queue[%d] is stuck, requesting MCP to drain\n", 1864 txq->index); 1865 rc = edev->ops->common->drain(edev->cdev); 1866 if (rc) 1867 return rc; 1868 return qede_drain_txq(edev, txq, false); 1869 } 1870 DP_NOTICE(edev, 1871 "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n", 1872 txq->index, txq->sw_tx_prod, 1873 txq->sw_tx_cons); 1874 return -ENODEV; 1875 } 1876 cnt--; 1877 usleep_range(1000, 2000); 1878 barrier(); 1879 } 1880 1881 /* FW finished processing, wait for HW to transmit all tx packets */ 1882 usleep_range(1000, 2000); 1883 1884 return 0; 1885 } 1886 1887 static int qede_stop_txq(struct qede_dev *edev, 1888 struct qede_tx_queue *txq, int rss_id) 1889 { 1890 /* delete doorbell from doorbell recovery mechanism */ 1891 edev->ops->common->db_recovery_del(edev->cdev, txq->doorbell_addr, 1892 &txq->tx_db); 1893 1894 return edev->ops->q_tx_stop(edev->cdev, rss_id, txq->handle); 1895 } 1896 1897 static int qede_stop_queues(struct qede_dev *edev) 1898 { 1899 struct qed_update_vport_params *vport_update_params; 1900 struct qed_dev *cdev = edev->cdev; 1901 struct qede_fastpath *fp; 1902 int rc, i; 1903 1904 /* Disable the vport */ 1905 vport_update_params = vzalloc(sizeof(*vport_update_params)); 1906 if (!vport_update_params) 1907 return -ENOMEM; 1908 1909 vport_update_params->vport_id = 0; 1910 vport_update_params->update_vport_active_flg = 1; 1911 vport_update_params->vport_active_flg = 0; 1912 vport_update_params->update_rss_flg = 0; 1913 1914 rc = edev->ops->vport_update(cdev, vport_update_params); 1915 vfree(vport_update_params); 1916 1917 if (rc) { 1918 DP_ERR(edev, "Failed to update vport\n"); 1919 return rc; 1920 } 1921 1922 /* Flush Tx queues. If needed, request drain from MCP */ 1923 for_each_queue(i) { 1924 fp = &edev->fp_array[i]; 1925 1926 if (fp->type & QEDE_FASTPATH_TX) { 1927 int cos; 1928 1929 for_each_cos_in_txq(edev, cos) { 1930 rc = qede_drain_txq(edev, &fp->txq[cos], true); 1931 if (rc) 1932 return rc; 1933 } 1934 } 1935 1936 if (fp->type & QEDE_FASTPATH_XDP) { 1937 rc = qede_drain_txq(edev, fp->xdp_tx, true); 1938 if (rc) 1939 return rc; 1940 } 1941 } 1942 1943 /* Stop all Queues in reverse order */ 1944 for (i = QEDE_QUEUE_CNT(edev) - 1; i >= 0; i--) { 1945 fp = &edev->fp_array[i]; 1946 1947 /* Stop the Tx Queue(s) */ 1948 if (fp->type & QEDE_FASTPATH_TX) { 1949 int cos; 1950 1951 for_each_cos_in_txq(edev, cos) { 1952 rc = qede_stop_txq(edev, &fp->txq[cos], i); 1953 if (rc) 1954 return rc; 1955 } 1956 } 1957 1958 /* Stop the Rx Queue */ 1959 if (fp->type & QEDE_FASTPATH_RX) { 1960 rc = edev->ops->q_rx_stop(cdev, i, fp->rxq->handle); 1961 if (rc) { 1962 DP_ERR(edev, "Failed to stop RXQ #%d\n", i); 1963 return rc; 1964 } 1965 } 1966 1967 /* Stop the XDP forwarding queue */ 1968 if (fp->type & QEDE_FASTPATH_XDP) { 1969 rc = qede_stop_txq(edev, fp->xdp_tx, i); 1970 if (rc) 1971 return rc; 1972 1973 bpf_prog_put(fp->rxq->xdp_prog); 1974 } 1975 } 1976 1977 /* Stop the vport */ 1978 rc = edev->ops->vport_stop(cdev, 0); 1979 if (rc) 1980 DP_ERR(edev, "Failed to stop VPORT\n"); 1981 1982 return rc; 1983 } 1984 1985 static int qede_start_txq(struct qede_dev *edev, 1986 struct qede_fastpath *fp, 1987 struct qede_tx_queue *txq, u8 rss_id, u16 sb_idx) 1988 { 1989 dma_addr_t phys_table = qed_chain_get_pbl_phys(&txq->tx_pbl); 1990 u32 page_cnt = qed_chain_get_page_cnt(&txq->tx_pbl); 1991 struct qed_queue_start_common_params params; 1992 struct qed_txq_start_ret_params ret_params; 1993 int rc; 1994 1995 memset(¶ms, 0, sizeof(params)); 1996 memset(&ret_params, 0, sizeof(ret_params)); 1997 1998 /* Let the XDP queue share the queue-zone with one of the regular txq. 1999 * We don't really care about its coalescing. 2000 */ 2001 if (txq->is_xdp) 2002 params.queue_id = QEDE_TXQ_XDP_TO_IDX(edev, txq); 2003 else 2004 params.queue_id = txq->index; 2005 2006 params.p_sb = fp->sb_info; 2007 params.sb_idx = sb_idx; 2008 params.tc = txq->cos; 2009 2010 rc = edev->ops->q_tx_start(edev->cdev, rss_id, ¶ms, phys_table, 2011 page_cnt, &ret_params); 2012 if (rc) { 2013 DP_ERR(edev, "Start TXQ #%d failed %d\n", txq->index, rc); 2014 return rc; 2015 } 2016 2017 txq->doorbell_addr = ret_params.p_doorbell; 2018 txq->handle = ret_params.p_handle; 2019 2020 /* Determine the FW consumer address associated */ 2021 txq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[sb_idx]; 2022 2023 /* Prepare the doorbell parameters */ 2024 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST, DB_DEST_XCM); 2025 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD, DB_AGG_CMD_SET); 2026 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_VAL_SEL, 2027 DQ_XCM_ETH_TX_BD_PROD_CMD); 2028 txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD; 2029 2030 /* register doorbell with doorbell recovery mechanism */ 2031 rc = edev->ops->common->db_recovery_add(edev->cdev, txq->doorbell_addr, 2032 &txq->tx_db, DB_REC_WIDTH_32B, 2033 DB_REC_KERNEL); 2034 2035 return rc; 2036 } 2037 2038 static int qede_start_queues(struct qede_dev *edev, bool clear_stats) 2039 { 2040 int vlan_removal_en = 1; 2041 struct qed_dev *cdev = edev->cdev; 2042 struct qed_dev_info *qed_info = &edev->dev_info.common; 2043 struct qed_update_vport_params *vport_update_params; 2044 struct qed_queue_start_common_params q_params; 2045 struct qed_start_vport_params start = {0}; 2046 int rc, i; 2047 2048 if (!edev->num_queues) { 2049 DP_ERR(edev, 2050 "Cannot update V-VPORT as active as there are no Rx queues\n"); 2051 return -EINVAL; 2052 } 2053 2054 vport_update_params = vzalloc(sizeof(*vport_update_params)); 2055 if (!vport_update_params) 2056 return -ENOMEM; 2057 2058 start.handle_ptp_pkts = !!(edev->ptp); 2059 start.gro_enable = !edev->gro_disable; 2060 start.mtu = edev->ndev->mtu; 2061 start.vport_id = 0; 2062 start.drop_ttl0 = true; 2063 start.remove_inner_vlan = vlan_removal_en; 2064 start.clear_stats = clear_stats; 2065 2066 rc = edev->ops->vport_start(cdev, &start); 2067 2068 if (rc) { 2069 DP_ERR(edev, "Start V-PORT failed %d\n", rc); 2070 goto out; 2071 } 2072 2073 DP_VERBOSE(edev, NETIF_MSG_IFUP, 2074 "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n", 2075 start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en); 2076 2077 for_each_queue(i) { 2078 struct qede_fastpath *fp = &edev->fp_array[i]; 2079 dma_addr_t p_phys_table; 2080 u32 page_cnt; 2081 2082 if (fp->type & QEDE_FASTPATH_RX) { 2083 struct qed_rxq_start_ret_params ret_params; 2084 struct qede_rx_queue *rxq = fp->rxq; 2085 __le16 *val; 2086 2087 memset(&ret_params, 0, sizeof(ret_params)); 2088 memset(&q_params, 0, sizeof(q_params)); 2089 q_params.queue_id = rxq->rxq_id; 2090 q_params.vport_id = 0; 2091 q_params.p_sb = fp->sb_info; 2092 q_params.sb_idx = RX_PI; 2093 2094 p_phys_table = 2095 qed_chain_get_pbl_phys(&rxq->rx_comp_ring); 2096 page_cnt = qed_chain_get_page_cnt(&rxq->rx_comp_ring); 2097 2098 rc = edev->ops->q_rx_start(cdev, i, &q_params, 2099 rxq->rx_buf_size, 2100 rxq->rx_bd_ring.p_phys_addr, 2101 p_phys_table, 2102 page_cnt, &ret_params); 2103 if (rc) { 2104 DP_ERR(edev, "Start RXQ #%d failed %d\n", i, 2105 rc); 2106 goto out; 2107 } 2108 2109 /* Use the return parameters */ 2110 rxq->hw_rxq_prod_addr = ret_params.p_prod; 2111 rxq->handle = ret_params.p_handle; 2112 2113 val = &fp->sb_info->sb_virt->pi_array[RX_PI]; 2114 rxq->hw_cons_ptr = val; 2115 2116 qede_update_rx_prod(edev, rxq); 2117 } 2118 2119 if (fp->type & QEDE_FASTPATH_XDP) { 2120 rc = qede_start_txq(edev, fp, fp->xdp_tx, i, XDP_PI); 2121 if (rc) 2122 goto out; 2123 2124 fp->rxq->xdp_prog = bpf_prog_add(edev->xdp_prog, 1); 2125 if (IS_ERR(fp->rxq->xdp_prog)) { 2126 rc = PTR_ERR(fp->rxq->xdp_prog); 2127 fp->rxq->xdp_prog = NULL; 2128 goto out; 2129 } 2130 } 2131 2132 if (fp->type & QEDE_FASTPATH_TX) { 2133 int cos; 2134 2135 for_each_cos_in_txq(edev, cos) { 2136 rc = qede_start_txq(edev, fp, &fp->txq[cos], i, 2137 TX_PI(cos)); 2138 if (rc) 2139 goto out; 2140 } 2141 } 2142 } 2143 2144 /* Prepare and send the vport enable */ 2145 vport_update_params->vport_id = start.vport_id; 2146 vport_update_params->update_vport_active_flg = 1; 2147 vport_update_params->vport_active_flg = 1; 2148 2149 if ((qed_info->b_inter_pf_switch || pci_num_vf(edev->pdev)) && 2150 qed_info->tx_switching) { 2151 vport_update_params->update_tx_switching_flg = 1; 2152 vport_update_params->tx_switching_flg = 1; 2153 } 2154 2155 qede_fill_rss_params(edev, &vport_update_params->rss_params, 2156 &vport_update_params->update_rss_flg); 2157 2158 rc = edev->ops->vport_update(cdev, vport_update_params); 2159 if (rc) 2160 DP_ERR(edev, "Update V-PORT failed %d\n", rc); 2161 2162 out: 2163 vfree(vport_update_params); 2164 return rc; 2165 } 2166 2167 enum qede_unload_mode { 2168 QEDE_UNLOAD_NORMAL, 2169 QEDE_UNLOAD_RECOVERY, 2170 }; 2171 2172 static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode, 2173 bool is_locked) 2174 { 2175 struct qed_link_params link_params; 2176 int rc; 2177 2178 DP_INFO(edev, "Starting qede unload\n"); 2179 2180 if (!is_locked) 2181 __qede_lock(edev); 2182 2183 clear_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags); 2184 2185 if (mode != QEDE_UNLOAD_RECOVERY) 2186 edev->state = QEDE_STATE_CLOSED; 2187 2188 qede_rdma_dev_event_close(edev); 2189 2190 /* Close OS Tx */ 2191 netif_tx_disable(edev->ndev); 2192 netif_carrier_off(edev->ndev); 2193 2194 if (mode != QEDE_UNLOAD_RECOVERY) { 2195 /* Reset the link */ 2196 memset(&link_params, 0, sizeof(link_params)); 2197 link_params.link_up = false; 2198 edev->ops->common->set_link(edev->cdev, &link_params); 2199 2200 rc = qede_stop_queues(edev); 2201 if (rc) { 2202 qede_sync_free_irqs(edev); 2203 goto out; 2204 } 2205 2206 DP_INFO(edev, "Stopped Queues\n"); 2207 } 2208 2209 qede_vlan_mark_nonconfigured(edev); 2210 edev->ops->fastpath_stop(edev->cdev); 2211 2212 if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) { 2213 qede_poll_for_freeing_arfs_filters(edev); 2214 qede_free_arfs(edev); 2215 } 2216 2217 /* Release the interrupts */ 2218 qede_sync_free_irqs(edev); 2219 edev->ops->common->set_fp_int(edev->cdev, 0); 2220 2221 qede_napi_disable_remove(edev); 2222 2223 if (mode == QEDE_UNLOAD_RECOVERY) 2224 qede_empty_tx_queues(edev); 2225 2226 qede_free_mem_load(edev); 2227 qede_free_fp_array(edev); 2228 2229 out: 2230 if (!is_locked) 2231 __qede_unlock(edev); 2232 2233 if (mode != QEDE_UNLOAD_RECOVERY) 2234 DP_NOTICE(edev, "Link is down\n"); 2235 2236 edev->ptp_skip_txts = 0; 2237 2238 DP_INFO(edev, "Ending qede unload\n"); 2239 } 2240 2241 enum qede_load_mode { 2242 QEDE_LOAD_NORMAL, 2243 QEDE_LOAD_RELOAD, 2244 QEDE_LOAD_RECOVERY, 2245 }; 2246 2247 static int qede_load(struct qede_dev *edev, enum qede_load_mode mode, 2248 bool is_locked) 2249 { 2250 struct qed_link_params link_params; 2251 u8 num_tc; 2252 int rc; 2253 2254 DP_INFO(edev, "Starting qede load\n"); 2255 2256 if (!is_locked) 2257 __qede_lock(edev); 2258 2259 rc = qede_set_num_queues(edev); 2260 if (rc) 2261 goto out; 2262 2263 rc = qede_alloc_fp_array(edev); 2264 if (rc) 2265 goto out; 2266 2267 qede_init_fp(edev); 2268 2269 rc = qede_alloc_mem_load(edev); 2270 if (rc) 2271 goto err1; 2272 DP_INFO(edev, "Allocated %d Rx, %d Tx queues\n", 2273 QEDE_RSS_COUNT(edev), QEDE_TSS_COUNT(edev)); 2274 2275 rc = qede_set_real_num_queues(edev); 2276 if (rc) 2277 goto err2; 2278 2279 if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) { 2280 rc = qede_alloc_arfs(edev); 2281 if (rc) 2282 DP_NOTICE(edev, "aRFS memory allocation failed\n"); 2283 } 2284 2285 qede_napi_add_enable(edev); 2286 DP_INFO(edev, "Napi added and enabled\n"); 2287 2288 rc = qede_setup_irqs(edev); 2289 if (rc) 2290 goto err3; 2291 DP_INFO(edev, "Setup IRQs succeeded\n"); 2292 2293 rc = qede_start_queues(edev, mode != QEDE_LOAD_RELOAD); 2294 if (rc) 2295 goto err4; 2296 DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n"); 2297 2298 num_tc = netdev_get_num_tc(edev->ndev); 2299 num_tc = num_tc ? num_tc : edev->dev_info.num_tc; 2300 qede_setup_tc(edev->ndev, num_tc); 2301 2302 /* Program un-configured VLANs */ 2303 qede_configure_vlan_filters(edev); 2304 2305 set_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags); 2306 2307 /* Ask for link-up using current configuration */ 2308 memset(&link_params, 0, sizeof(link_params)); 2309 link_params.link_up = true; 2310 edev->ops->common->set_link(edev->cdev, &link_params); 2311 2312 edev->state = QEDE_STATE_OPEN; 2313 2314 DP_INFO(edev, "Ending successfully qede load\n"); 2315 2316 goto out; 2317 err4: 2318 qede_sync_free_irqs(edev); 2319 memset(&edev->int_info.msix_cnt, 0, sizeof(struct qed_int_info)); 2320 err3: 2321 qede_napi_disable_remove(edev); 2322 err2: 2323 qede_free_mem_load(edev); 2324 err1: 2325 edev->ops->common->set_fp_int(edev->cdev, 0); 2326 qede_free_fp_array(edev); 2327 edev->num_queues = 0; 2328 edev->fp_num_tx = 0; 2329 edev->fp_num_rx = 0; 2330 out: 2331 if (!is_locked) 2332 __qede_unlock(edev); 2333 2334 return rc; 2335 } 2336 2337 /* 'func' should be able to run between unload and reload assuming interface 2338 * is actually running, or afterwards in case it's currently DOWN. 2339 */ 2340 void qede_reload(struct qede_dev *edev, 2341 struct qede_reload_args *args, bool is_locked) 2342 { 2343 if (!is_locked) 2344 __qede_lock(edev); 2345 2346 /* Since qede_lock is held, internal state wouldn't change even 2347 * if netdev state would start transitioning. Check whether current 2348 * internal configuration indicates device is up, then reload. 2349 */ 2350 if (edev->state == QEDE_STATE_OPEN) { 2351 qede_unload(edev, QEDE_UNLOAD_NORMAL, true); 2352 if (args) 2353 args->func(edev, args); 2354 qede_load(edev, QEDE_LOAD_RELOAD, true); 2355 2356 /* Since no one is going to do it for us, re-configure */ 2357 qede_config_rx_mode(edev->ndev); 2358 } else if (args) { 2359 args->func(edev, args); 2360 } 2361 2362 if (!is_locked) 2363 __qede_unlock(edev); 2364 } 2365 2366 /* called with rtnl_lock */ 2367 static int qede_open(struct net_device *ndev) 2368 { 2369 struct qede_dev *edev = netdev_priv(ndev); 2370 int rc; 2371 2372 netif_carrier_off(ndev); 2373 2374 edev->ops->common->set_power_state(edev->cdev, PCI_D0); 2375 2376 rc = qede_load(edev, QEDE_LOAD_NORMAL, false); 2377 if (rc) 2378 return rc; 2379 2380 udp_tunnel_get_rx_info(ndev); 2381 2382 edev->ops->common->update_drv_state(edev->cdev, true); 2383 2384 return 0; 2385 } 2386 2387 static int qede_close(struct net_device *ndev) 2388 { 2389 struct qede_dev *edev = netdev_priv(ndev); 2390 2391 qede_unload(edev, QEDE_UNLOAD_NORMAL, false); 2392 2393 edev->ops->common->update_drv_state(edev->cdev, false); 2394 2395 return 0; 2396 } 2397 2398 static void qede_link_update(void *dev, struct qed_link_output *link) 2399 { 2400 struct qede_dev *edev = dev; 2401 2402 if (!test_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags)) { 2403 DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not ready\n"); 2404 return; 2405 } 2406 2407 if (link->link_up) { 2408 if (!netif_carrier_ok(edev->ndev)) { 2409 DP_NOTICE(edev, "Link is up\n"); 2410 netif_tx_start_all_queues(edev->ndev); 2411 netif_carrier_on(edev->ndev); 2412 qede_rdma_dev_event_open(edev); 2413 } 2414 } else { 2415 if (netif_carrier_ok(edev->ndev)) { 2416 DP_NOTICE(edev, "Link is down\n"); 2417 netif_tx_disable(edev->ndev); 2418 netif_carrier_off(edev->ndev); 2419 qede_rdma_dev_event_close(edev); 2420 } 2421 } 2422 } 2423 2424 static void qede_schedule_recovery_handler(void *dev) 2425 { 2426 struct qede_dev *edev = dev; 2427 2428 if (edev->state == QEDE_STATE_RECOVERY) { 2429 DP_NOTICE(edev, 2430 "Avoid scheduling a recovery handling since already in recovery state\n"); 2431 return; 2432 } 2433 2434 set_bit(QEDE_SP_RECOVERY, &edev->sp_flags); 2435 schedule_delayed_work(&edev->sp_task, 0); 2436 2437 DP_INFO(edev, "Scheduled a recovery handler\n"); 2438 } 2439 2440 static void qede_recovery_failed(struct qede_dev *edev) 2441 { 2442 netdev_err(edev->ndev, "Recovery handling has failed. Power cycle is needed.\n"); 2443 2444 netif_device_detach(edev->ndev); 2445 2446 if (edev->cdev) 2447 edev->ops->common->set_power_state(edev->cdev, PCI_D3hot); 2448 } 2449 2450 static void qede_recovery_handler(struct qede_dev *edev) 2451 { 2452 u32 curr_state = edev->state; 2453 int rc; 2454 2455 DP_NOTICE(edev, "Starting a recovery process\n"); 2456 2457 /* No need to acquire first the qede_lock since is done by qede_sp_task 2458 * before calling this function. 2459 */ 2460 edev->state = QEDE_STATE_RECOVERY; 2461 2462 edev->ops->common->recovery_prolog(edev->cdev); 2463 2464 if (curr_state == QEDE_STATE_OPEN) 2465 qede_unload(edev, QEDE_UNLOAD_RECOVERY, true); 2466 2467 __qede_remove(edev->pdev, QEDE_REMOVE_RECOVERY); 2468 2469 rc = __qede_probe(edev->pdev, edev->dp_module, edev->dp_level, 2470 IS_VF(edev), QEDE_PROBE_RECOVERY); 2471 if (rc) { 2472 edev->cdev = NULL; 2473 goto err; 2474 } 2475 2476 if (curr_state == QEDE_STATE_OPEN) { 2477 rc = qede_load(edev, QEDE_LOAD_RECOVERY, true); 2478 if (rc) 2479 goto err; 2480 2481 qede_config_rx_mode(edev->ndev); 2482 udp_tunnel_get_rx_info(edev->ndev); 2483 } 2484 2485 edev->state = curr_state; 2486 2487 DP_NOTICE(edev, "Recovery handling is done\n"); 2488 2489 return; 2490 2491 err: 2492 qede_recovery_failed(edev); 2493 } 2494 2495 static bool qede_is_txq_full(struct qede_dev *edev, struct qede_tx_queue *txq) 2496 { 2497 struct netdev_queue *netdev_txq; 2498 2499 netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id); 2500 if (netif_xmit_stopped(netdev_txq)) 2501 return true; 2502 2503 return false; 2504 } 2505 2506 static void qede_get_generic_tlv_data(void *dev, struct qed_generic_tlvs *data) 2507 { 2508 struct qede_dev *edev = dev; 2509 struct netdev_hw_addr *ha; 2510 int i; 2511 2512 if (edev->ndev->features & NETIF_F_IP_CSUM) 2513 data->feat_flags |= QED_TLV_IP_CSUM; 2514 if (edev->ndev->features & NETIF_F_TSO) 2515 data->feat_flags |= QED_TLV_LSO; 2516 2517 ether_addr_copy(data->mac[0], edev->ndev->dev_addr); 2518 memset(data->mac[1], 0, ETH_ALEN); 2519 memset(data->mac[2], 0, ETH_ALEN); 2520 /* Copy the first two UC macs */ 2521 netif_addr_lock_bh(edev->ndev); 2522 i = 1; 2523 netdev_for_each_uc_addr(ha, edev->ndev) { 2524 ether_addr_copy(data->mac[i++], ha->addr); 2525 if (i == QED_TLV_MAC_COUNT) 2526 break; 2527 } 2528 2529 netif_addr_unlock_bh(edev->ndev); 2530 } 2531 2532 static void qede_get_eth_tlv_data(void *dev, void *data) 2533 { 2534 struct qed_mfw_tlv_eth *etlv = data; 2535 struct qede_dev *edev = dev; 2536 struct qede_fastpath *fp; 2537 int i; 2538 2539 etlv->lso_maxoff_size = 0XFFFF; 2540 etlv->lso_maxoff_size_set = true; 2541 etlv->lso_minseg_size = (u16)ETH_TX_LSO_WINDOW_MIN_LEN; 2542 etlv->lso_minseg_size_set = true; 2543 etlv->prom_mode = !!(edev->ndev->flags & IFF_PROMISC); 2544 etlv->prom_mode_set = true; 2545 etlv->tx_descr_size = QEDE_TSS_COUNT(edev); 2546 etlv->tx_descr_size_set = true; 2547 etlv->rx_descr_size = QEDE_RSS_COUNT(edev); 2548 etlv->rx_descr_size_set = true; 2549 etlv->iov_offload = QED_MFW_TLV_IOV_OFFLOAD_VEB; 2550 etlv->iov_offload_set = true; 2551 2552 /* Fill information regarding queues; Should be done under the qede 2553 * lock to guarantee those don't change beneath our feet. 2554 */ 2555 etlv->txqs_empty = true; 2556 etlv->rxqs_empty = true; 2557 etlv->num_txqs_full = 0; 2558 etlv->num_rxqs_full = 0; 2559 2560 __qede_lock(edev); 2561 for_each_queue(i) { 2562 fp = &edev->fp_array[i]; 2563 if (fp->type & QEDE_FASTPATH_TX) { 2564 struct qede_tx_queue *txq = QEDE_FP_TC0_TXQ(fp); 2565 2566 if (txq->sw_tx_cons != txq->sw_tx_prod) 2567 etlv->txqs_empty = false; 2568 if (qede_is_txq_full(edev, txq)) 2569 etlv->num_txqs_full++; 2570 } 2571 if (fp->type & QEDE_FASTPATH_RX) { 2572 if (qede_has_rx_work(fp->rxq)) 2573 etlv->rxqs_empty = false; 2574 2575 /* This one is a bit tricky; Firmware might stop 2576 * placing packets if ring is not yet full. 2577 * Give an approximation. 2578 */ 2579 if (le16_to_cpu(*fp->rxq->hw_cons_ptr) - 2580 qed_chain_get_cons_idx(&fp->rxq->rx_comp_ring) > 2581 RX_RING_SIZE - 100) 2582 etlv->num_rxqs_full++; 2583 } 2584 } 2585 __qede_unlock(edev); 2586 2587 etlv->txqs_empty_set = true; 2588 etlv->rxqs_empty_set = true; 2589 etlv->num_txqs_full_set = true; 2590 etlv->num_rxqs_full_set = true; 2591 } 2592