xref: /linux/drivers/net/ethernet/qlogic/qede/qede_main.c (revision a44e4f3ab16bc808590763a543a93b6fbf3abcc4)
1 /* QLogic qede NIC Driver
2  * Copyright (c) 2015-2017  QLogic Corporation
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and /or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 #include <linux/module.h>
33 #include <linux/pci.h>
34 #include <linux/version.h>
35 #include <linux/device.h>
36 #include <linux/netdevice.h>
37 #include <linux/etherdevice.h>
38 #include <linux/skbuff.h>
39 #include <linux/errno.h>
40 #include <linux/list.h>
41 #include <linux/string.h>
42 #include <linux/dma-mapping.h>
43 #include <linux/interrupt.h>
44 #include <asm/byteorder.h>
45 #include <asm/param.h>
46 #include <linux/io.h>
47 #include <linux/netdev_features.h>
48 #include <linux/udp.h>
49 #include <linux/tcp.h>
50 #include <net/udp_tunnel.h>
51 #include <linux/ip.h>
52 #include <net/ipv6.h>
53 #include <net/tcp.h>
54 #include <linux/if_ether.h>
55 #include <linux/if_vlan.h>
56 #include <linux/pkt_sched.h>
57 #include <linux/ethtool.h>
58 #include <linux/in.h>
59 #include <linux/random.h>
60 #include <net/ip6_checksum.h>
61 #include <linux/bitops.h>
62 #include <linux/vmalloc.h>
63 #include "qede.h"
64 #include "qede_ptp.h"
65 
66 static char version[] =
67 	"QLogic FastLinQ 4xxxx Ethernet Driver qede " DRV_MODULE_VERSION "\n";
68 
69 MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver");
70 MODULE_LICENSE("GPL");
71 MODULE_VERSION(DRV_MODULE_VERSION);
72 
73 static uint debug;
74 module_param(debug, uint, 0);
75 MODULE_PARM_DESC(debug, " Default debug msglevel");
76 
77 static const struct qed_eth_ops *qed_ops;
78 
79 #define CHIP_NUM_57980S_40		0x1634
80 #define CHIP_NUM_57980S_10		0x1666
81 #define CHIP_NUM_57980S_MF		0x1636
82 #define CHIP_NUM_57980S_100		0x1644
83 #define CHIP_NUM_57980S_50		0x1654
84 #define CHIP_NUM_57980S_25		0x1656
85 #define CHIP_NUM_57980S_IOV		0x1664
86 #define CHIP_NUM_AH			0x8070
87 #define CHIP_NUM_AH_IOV			0x8090
88 
89 #ifndef PCI_DEVICE_ID_NX2_57980E
90 #define PCI_DEVICE_ID_57980S_40		CHIP_NUM_57980S_40
91 #define PCI_DEVICE_ID_57980S_10		CHIP_NUM_57980S_10
92 #define PCI_DEVICE_ID_57980S_MF		CHIP_NUM_57980S_MF
93 #define PCI_DEVICE_ID_57980S_100	CHIP_NUM_57980S_100
94 #define PCI_DEVICE_ID_57980S_50		CHIP_NUM_57980S_50
95 #define PCI_DEVICE_ID_57980S_25		CHIP_NUM_57980S_25
96 #define PCI_DEVICE_ID_57980S_IOV	CHIP_NUM_57980S_IOV
97 #define PCI_DEVICE_ID_AH		CHIP_NUM_AH
98 #define PCI_DEVICE_ID_AH_IOV		CHIP_NUM_AH_IOV
99 
100 #endif
101 
102 enum qede_pci_private {
103 	QEDE_PRIVATE_PF,
104 	QEDE_PRIVATE_VF
105 };
106 
107 static const struct pci_device_id qede_pci_tbl[] = {
108 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF},
109 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF},
110 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF},
111 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF},
112 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF},
113 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF},
114 #ifdef CONFIG_QED_SRIOV
115 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF},
116 #endif
117 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH), QEDE_PRIVATE_PF},
118 #ifdef CONFIG_QED_SRIOV
119 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH_IOV), QEDE_PRIVATE_VF},
120 #endif
121 	{ 0 }
122 };
123 
124 MODULE_DEVICE_TABLE(pci, qede_pci_tbl);
125 
126 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id);
127 
128 #define TX_TIMEOUT		(5 * HZ)
129 
130 /* Utilize last protocol index for XDP */
131 #define XDP_PI	11
132 
133 static void qede_remove(struct pci_dev *pdev);
134 static void qede_shutdown(struct pci_dev *pdev);
135 static void qede_link_update(void *dev, struct qed_link_output *link);
136 static void qede_schedule_recovery_handler(void *dev);
137 static void qede_recovery_handler(struct qede_dev *edev);
138 static void qede_get_eth_tlv_data(void *edev, void *data);
139 static void qede_get_generic_tlv_data(void *edev,
140 				      struct qed_generic_tlvs *data);
141 
142 #ifdef CONFIG_QED_SRIOV
143 static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos,
144 			    __be16 vlan_proto)
145 {
146 	struct qede_dev *edev = netdev_priv(ndev);
147 
148 	if (vlan > 4095) {
149 		DP_NOTICE(edev, "Illegal vlan value %d\n", vlan);
150 		return -EINVAL;
151 	}
152 
153 	if (vlan_proto != htons(ETH_P_8021Q))
154 		return -EPROTONOSUPPORT;
155 
156 	DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n",
157 		   vlan, vf);
158 
159 	return edev->ops->iov->set_vlan(edev->cdev, vlan, vf);
160 }
161 
162 static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac)
163 {
164 	struct qede_dev *edev = netdev_priv(ndev);
165 
166 	DP_VERBOSE(edev, QED_MSG_IOV,
167 		   "Setting MAC %02x:%02x:%02x:%02x:%02x:%02x to VF [%d]\n",
168 		   mac[0], mac[1], mac[2], mac[3], mac[4], mac[5], vfidx);
169 
170 	if (!is_valid_ether_addr(mac)) {
171 		DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n");
172 		return -EINVAL;
173 	}
174 
175 	return edev->ops->iov->set_mac(edev->cdev, mac, vfidx);
176 }
177 
178 static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param)
179 {
180 	struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev));
181 	struct qed_dev_info *qed_info = &edev->dev_info.common;
182 	struct qed_update_vport_params *vport_params;
183 	int rc;
184 
185 	vport_params = vzalloc(sizeof(*vport_params));
186 	if (!vport_params)
187 		return -ENOMEM;
188 	DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param);
189 
190 	rc = edev->ops->iov->configure(edev->cdev, num_vfs_param);
191 
192 	/* Enable/Disable Tx switching for PF */
193 	if ((rc == num_vfs_param) && netif_running(edev->ndev) &&
194 	    !qed_info->b_inter_pf_switch && qed_info->tx_switching) {
195 		vport_params->vport_id = 0;
196 		vport_params->update_tx_switching_flg = 1;
197 		vport_params->tx_switching_flg = num_vfs_param ? 1 : 0;
198 		edev->ops->vport_update(edev->cdev, vport_params);
199 	}
200 
201 	vfree(vport_params);
202 	return rc;
203 }
204 #endif
205 
206 static struct pci_driver qede_pci_driver = {
207 	.name = "qede",
208 	.id_table = qede_pci_tbl,
209 	.probe = qede_probe,
210 	.remove = qede_remove,
211 	.shutdown = qede_shutdown,
212 #ifdef CONFIG_QED_SRIOV
213 	.sriov_configure = qede_sriov_configure,
214 #endif
215 };
216 
217 static struct qed_eth_cb_ops qede_ll_ops = {
218 	{
219 #ifdef CONFIG_RFS_ACCEL
220 		.arfs_filter_op = qede_arfs_filter_op,
221 #endif
222 		.link_update = qede_link_update,
223 		.schedule_recovery_handler = qede_schedule_recovery_handler,
224 		.get_generic_tlv_data = qede_get_generic_tlv_data,
225 		.get_protocol_tlv_data = qede_get_eth_tlv_data,
226 	},
227 	.force_mac = qede_force_mac,
228 	.ports_update = qede_udp_ports_update,
229 };
230 
231 static int qede_netdev_event(struct notifier_block *this, unsigned long event,
232 			     void *ptr)
233 {
234 	struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
235 	struct ethtool_drvinfo drvinfo;
236 	struct qede_dev *edev;
237 
238 	if (event != NETDEV_CHANGENAME && event != NETDEV_CHANGEADDR)
239 		goto done;
240 
241 	/* Check whether this is a qede device */
242 	if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo)
243 		goto done;
244 
245 	memset(&drvinfo, 0, sizeof(drvinfo));
246 	ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo);
247 	if (strcmp(drvinfo.driver, "qede"))
248 		goto done;
249 	edev = netdev_priv(ndev);
250 
251 	switch (event) {
252 	case NETDEV_CHANGENAME:
253 		/* Notify qed of the name change */
254 		if (!edev->ops || !edev->ops->common)
255 			goto done;
256 		edev->ops->common->set_name(edev->cdev, edev->ndev->name);
257 		break;
258 	case NETDEV_CHANGEADDR:
259 		edev = netdev_priv(ndev);
260 		qede_rdma_event_changeaddr(edev);
261 		break;
262 	}
263 
264 done:
265 	return NOTIFY_DONE;
266 }
267 
268 static struct notifier_block qede_netdev_notifier = {
269 	.notifier_call = qede_netdev_event,
270 };
271 
272 static
273 int __init qede_init(void)
274 {
275 	int ret;
276 
277 	pr_info("qede_init: %s\n", version);
278 
279 	qed_ops = qed_get_eth_ops();
280 	if (!qed_ops) {
281 		pr_notice("Failed to get qed ethtool operations\n");
282 		return -EINVAL;
283 	}
284 
285 	/* Must register notifier before pci ops, since we might miss
286 	 * interface rename after pci probe and netdev registration.
287 	 */
288 	ret = register_netdevice_notifier(&qede_netdev_notifier);
289 	if (ret) {
290 		pr_notice("Failed to register netdevice_notifier\n");
291 		qed_put_eth_ops();
292 		return -EINVAL;
293 	}
294 
295 	ret = pci_register_driver(&qede_pci_driver);
296 	if (ret) {
297 		pr_notice("Failed to register driver\n");
298 		unregister_netdevice_notifier(&qede_netdev_notifier);
299 		qed_put_eth_ops();
300 		return -EINVAL;
301 	}
302 
303 	return 0;
304 }
305 
306 static void __exit qede_cleanup(void)
307 {
308 	if (debug & QED_LOG_INFO_MASK)
309 		pr_info("qede_cleanup called\n");
310 
311 	unregister_netdevice_notifier(&qede_netdev_notifier);
312 	pci_unregister_driver(&qede_pci_driver);
313 	qed_put_eth_ops();
314 }
315 
316 module_init(qede_init);
317 module_exit(qede_cleanup);
318 
319 static int qede_open(struct net_device *ndev);
320 static int qede_close(struct net_device *ndev);
321 
322 void qede_fill_by_demand_stats(struct qede_dev *edev)
323 {
324 	struct qede_stats_common *p_common = &edev->stats.common;
325 	struct qed_eth_stats stats;
326 
327 	edev->ops->get_vport_stats(edev->cdev, &stats);
328 
329 	p_common->no_buff_discards = stats.common.no_buff_discards;
330 	p_common->packet_too_big_discard = stats.common.packet_too_big_discard;
331 	p_common->ttl0_discard = stats.common.ttl0_discard;
332 	p_common->rx_ucast_bytes = stats.common.rx_ucast_bytes;
333 	p_common->rx_mcast_bytes = stats.common.rx_mcast_bytes;
334 	p_common->rx_bcast_bytes = stats.common.rx_bcast_bytes;
335 	p_common->rx_ucast_pkts = stats.common.rx_ucast_pkts;
336 	p_common->rx_mcast_pkts = stats.common.rx_mcast_pkts;
337 	p_common->rx_bcast_pkts = stats.common.rx_bcast_pkts;
338 	p_common->mftag_filter_discards = stats.common.mftag_filter_discards;
339 	p_common->mac_filter_discards = stats.common.mac_filter_discards;
340 	p_common->gft_filter_drop = stats.common.gft_filter_drop;
341 
342 	p_common->tx_ucast_bytes = stats.common.tx_ucast_bytes;
343 	p_common->tx_mcast_bytes = stats.common.tx_mcast_bytes;
344 	p_common->tx_bcast_bytes = stats.common.tx_bcast_bytes;
345 	p_common->tx_ucast_pkts = stats.common.tx_ucast_pkts;
346 	p_common->tx_mcast_pkts = stats.common.tx_mcast_pkts;
347 	p_common->tx_bcast_pkts = stats.common.tx_bcast_pkts;
348 	p_common->tx_err_drop_pkts = stats.common.tx_err_drop_pkts;
349 	p_common->coalesced_pkts = stats.common.tpa_coalesced_pkts;
350 	p_common->coalesced_events = stats.common.tpa_coalesced_events;
351 	p_common->coalesced_aborts_num = stats.common.tpa_aborts_num;
352 	p_common->non_coalesced_pkts = stats.common.tpa_not_coalesced_pkts;
353 	p_common->coalesced_bytes = stats.common.tpa_coalesced_bytes;
354 
355 	p_common->rx_64_byte_packets = stats.common.rx_64_byte_packets;
356 	p_common->rx_65_to_127_byte_packets =
357 	    stats.common.rx_65_to_127_byte_packets;
358 	p_common->rx_128_to_255_byte_packets =
359 	    stats.common.rx_128_to_255_byte_packets;
360 	p_common->rx_256_to_511_byte_packets =
361 	    stats.common.rx_256_to_511_byte_packets;
362 	p_common->rx_512_to_1023_byte_packets =
363 	    stats.common.rx_512_to_1023_byte_packets;
364 	p_common->rx_1024_to_1518_byte_packets =
365 	    stats.common.rx_1024_to_1518_byte_packets;
366 	p_common->rx_crc_errors = stats.common.rx_crc_errors;
367 	p_common->rx_mac_crtl_frames = stats.common.rx_mac_crtl_frames;
368 	p_common->rx_pause_frames = stats.common.rx_pause_frames;
369 	p_common->rx_pfc_frames = stats.common.rx_pfc_frames;
370 	p_common->rx_align_errors = stats.common.rx_align_errors;
371 	p_common->rx_carrier_errors = stats.common.rx_carrier_errors;
372 	p_common->rx_oversize_packets = stats.common.rx_oversize_packets;
373 	p_common->rx_jabbers = stats.common.rx_jabbers;
374 	p_common->rx_undersize_packets = stats.common.rx_undersize_packets;
375 	p_common->rx_fragments = stats.common.rx_fragments;
376 	p_common->tx_64_byte_packets = stats.common.tx_64_byte_packets;
377 	p_common->tx_65_to_127_byte_packets =
378 	    stats.common.tx_65_to_127_byte_packets;
379 	p_common->tx_128_to_255_byte_packets =
380 	    stats.common.tx_128_to_255_byte_packets;
381 	p_common->tx_256_to_511_byte_packets =
382 	    stats.common.tx_256_to_511_byte_packets;
383 	p_common->tx_512_to_1023_byte_packets =
384 	    stats.common.tx_512_to_1023_byte_packets;
385 	p_common->tx_1024_to_1518_byte_packets =
386 	    stats.common.tx_1024_to_1518_byte_packets;
387 	p_common->tx_pause_frames = stats.common.tx_pause_frames;
388 	p_common->tx_pfc_frames = stats.common.tx_pfc_frames;
389 	p_common->brb_truncates = stats.common.brb_truncates;
390 	p_common->brb_discards = stats.common.brb_discards;
391 	p_common->tx_mac_ctrl_frames = stats.common.tx_mac_ctrl_frames;
392 	p_common->link_change_count = stats.common.link_change_count;
393 	p_common->ptp_skip_txts = edev->ptp_skip_txts;
394 
395 	if (QEDE_IS_BB(edev)) {
396 		struct qede_stats_bb *p_bb = &edev->stats.bb;
397 
398 		p_bb->rx_1519_to_1522_byte_packets =
399 		    stats.bb.rx_1519_to_1522_byte_packets;
400 		p_bb->rx_1519_to_2047_byte_packets =
401 		    stats.bb.rx_1519_to_2047_byte_packets;
402 		p_bb->rx_2048_to_4095_byte_packets =
403 		    stats.bb.rx_2048_to_4095_byte_packets;
404 		p_bb->rx_4096_to_9216_byte_packets =
405 		    stats.bb.rx_4096_to_9216_byte_packets;
406 		p_bb->rx_9217_to_16383_byte_packets =
407 		    stats.bb.rx_9217_to_16383_byte_packets;
408 		p_bb->tx_1519_to_2047_byte_packets =
409 		    stats.bb.tx_1519_to_2047_byte_packets;
410 		p_bb->tx_2048_to_4095_byte_packets =
411 		    stats.bb.tx_2048_to_4095_byte_packets;
412 		p_bb->tx_4096_to_9216_byte_packets =
413 		    stats.bb.tx_4096_to_9216_byte_packets;
414 		p_bb->tx_9217_to_16383_byte_packets =
415 		    stats.bb.tx_9217_to_16383_byte_packets;
416 		p_bb->tx_lpi_entry_count = stats.bb.tx_lpi_entry_count;
417 		p_bb->tx_total_collisions = stats.bb.tx_total_collisions;
418 	} else {
419 		struct qede_stats_ah *p_ah = &edev->stats.ah;
420 
421 		p_ah->rx_1519_to_max_byte_packets =
422 		    stats.ah.rx_1519_to_max_byte_packets;
423 		p_ah->tx_1519_to_max_byte_packets =
424 		    stats.ah.tx_1519_to_max_byte_packets;
425 	}
426 }
427 
428 static void qede_get_stats64(struct net_device *dev,
429 			     struct rtnl_link_stats64 *stats)
430 {
431 	struct qede_dev *edev = netdev_priv(dev);
432 	struct qede_stats_common *p_common;
433 
434 	qede_fill_by_demand_stats(edev);
435 	p_common = &edev->stats.common;
436 
437 	stats->rx_packets = p_common->rx_ucast_pkts + p_common->rx_mcast_pkts +
438 			    p_common->rx_bcast_pkts;
439 	stats->tx_packets = p_common->tx_ucast_pkts + p_common->tx_mcast_pkts +
440 			    p_common->tx_bcast_pkts;
441 
442 	stats->rx_bytes = p_common->rx_ucast_bytes + p_common->rx_mcast_bytes +
443 			  p_common->rx_bcast_bytes;
444 	stats->tx_bytes = p_common->tx_ucast_bytes + p_common->tx_mcast_bytes +
445 			  p_common->tx_bcast_bytes;
446 
447 	stats->tx_errors = p_common->tx_err_drop_pkts;
448 	stats->multicast = p_common->rx_mcast_pkts + p_common->rx_bcast_pkts;
449 
450 	stats->rx_fifo_errors = p_common->no_buff_discards;
451 
452 	if (QEDE_IS_BB(edev))
453 		stats->collisions = edev->stats.bb.tx_total_collisions;
454 	stats->rx_crc_errors = p_common->rx_crc_errors;
455 	stats->rx_frame_errors = p_common->rx_align_errors;
456 }
457 
458 #ifdef CONFIG_QED_SRIOV
459 static int qede_get_vf_config(struct net_device *dev, int vfidx,
460 			      struct ifla_vf_info *ivi)
461 {
462 	struct qede_dev *edev = netdev_priv(dev);
463 
464 	if (!edev->ops)
465 		return -EINVAL;
466 
467 	return edev->ops->iov->get_config(edev->cdev, vfidx, ivi);
468 }
469 
470 static int qede_set_vf_rate(struct net_device *dev, int vfidx,
471 			    int min_tx_rate, int max_tx_rate)
472 {
473 	struct qede_dev *edev = netdev_priv(dev);
474 
475 	return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate,
476 					max_tx_rate);
477 }
478 
479 static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val)
480 {
481 	struct qede_dev *edev = netdev_priv(dev);
482 
483 	if (!edev->ops)
484 		return -EINVAL;
485 
486 	return edev->ops->iov->set_spoof(edev->cdev, vfidx, val);
487 }
488 
489 static int qede_set_vf_link_state(struct net_device *dev, int vfidx,
490 				  int link_state)
491 {
492 	struct qede_dev *edev = netdev_priv(dev);
493 
494 	if (!edev->ops)
495 		return -EINVAL;
496 
497 	return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state);
498 }
499 
500 static int qede_set_vf_trust(struct net_device *dev, int vfidx, bool setting)
501 {
502 	struct qede_dev *edev = netdev_priv(dev);
503 
504 	if (!edev->ops)
505 		return -EINVAL;
506 
507 	return edev->ops->iov->set_trust(edev->cdev, vfidx, setting);
508 }
509 #endif
510 
511 static int qede_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
512 {
513 	struct qede_dev *edev = netdev_priv(dev);
514 
515 	if (!netif_running(dev))
516 		return -EAGAIN;
517 
518 	switch (cmd) {
519 	case SIOCSHWTSTAMP:
520 		return qede_ptp_hw_ts(edev, ifr);
521 	default:
522 		DP_VERBOSE(edev, QED_MSG_DEBUG,
523 			   "default IOCTL cmd 0x%x\n", cmd);
524 		return -EOPNOTSUPP;
525 	}
526 
527 	return 0;
528 }
529 
530 static int qede_setup_tc(struct net_device *ndev, u8 num_tc)
531 {
532 	struct qede_dev *edev = netdev_priv(ndev);
533 	int cos, count, offset;
534 
535 	if (num_tc > edev->dev_info.num_tc)
536 		return -EINVAL;
537 
538 	netdev_reset_tc(ndev);
539 	netdev_set_num_tc(ndev, num_tc);
540 
541 	for_each_cos_in_txq(edev, cos) {
542 		count = QEDE_TSS_COUNT(edev);
543 		offset = cos * QEDE_TSS_COUNT(edev);
544 		netdev_set_tc_queue(ndev, cos, count, offset);
545 	}
546 
547 	return 0;
548 }
549 
550 static int
551 qede_set_flower(struct qede_dev *edev, struct flow_cls_offload *f,
552 		__be16 proto)
553 {
554 	switch (f->command) {
555 	case FLOW_CLS_REPLACE:
556 		return qede_add_tc_flower_fltr(edev, proto, f);
557 	case FLOW_CLS_DESTROY:
558 		return qede_delete_flow_filter(edev, f->cookie);
559 	default:
560 		return -EOPNOTSUPP;
561 	}
562 }
563 
564 static int qede_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
565 				  void *cb_priv)
566 {
567 	struct flow_cls_offload *f;
568 	struct qede_dev *edev = cb_priv;
569 
570 	if (!tc_cls_can_offload_and_chain0(edev->ndev, type_data))
571 		return -EOPNOTSUPP;
572 
573 	switch (type) {
574 	case TC_SETUP_CLSFLOWER:
575 		f = type_data;
576 		return qede_set_flower(edev, f, f->common.protocol);
577 	default:
578 		return -EOPNOTSUPP;
579 	}
580 }
581 
582 static LIST_HEAD(qede_block_cb_list);
583 
584 static int
585 qede_setup_tc_offload(struct net_device *dev, enum tc_setup_type type,
586 		      void *type_data)
587 {
588 	struct qede_dev *edev = netdev_priv(dev);
589 	struct tc_mqprio_qopt *mqprio;
590 
591 	switch (type) {
592 	case TC_SETUP_BLOCK:
593 		return flow_block_cb_setup_simple(type_data,
594 						  &qede_block_cb_list,
595 						  qede_setup_tc_block_cb,
596 						  edev, edev, true);
597 	case TC_SETUP_QDISC_MQPRIO:
598 		mqprio = type_data;
599 
600 		mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
601 		return qede_setup_tc(dev, mqprio->num_tc);
602 	default:
603 		return -EOPNOTSUPP;
604 	}
605 }
606 
607 static const struct net_device_ops qede_netdev_ops = {
608 	.ndo_open = qede_open,
609 	.ndo_stop = qede_close,
610 	.ndo_start_xmit = qede_start_xmit,
611 	.ndo_select_queue = qede_select_queue,
612 	.ndo_set_rx_mode = qede_set_rx_mode,
613 	.ndo_set_mac_address = qede_set_mac_addr,
614 	.ndo_validate_addr = eth_validate_addr,
615 	.ndo_change_mtu = qede_change_mtu,
616 	.ndo_do_ioctl = qede_ioctl,
617 #ifdef CONFIG_QED_SRIOV
618 	.ndo_set_vf_mac = qede_set_vf_mac,
619 	.ndo_set_vf_vlan = qede_set_vf_vlan,
620 	.ndo_set_vf_trust = qede_set_vf_trust,
621 #endif
622 	.ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
623 	.ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
624 	.ndo_fix_features = qede_fix_features,
625 	.ndo_set_features = qede_set_features,
626 	.ndo_get_stats64 = qede_get_stats64,
627 #ifdef CONFIG_QED_SRIOV
628 	.ndo_set_vf_link_state = qede_set_vf_link_state,
629 	.ndo_set_vf_spoofchk = qede_set_vf_spoofchk,
630 	.ndo_get_vf_config = qede_get_vf_config,
631 	.ndo_set_vf_rate = qede_set_vf_rate,
632 #endif
633 	.ndo_udp_tunnel_add = qede_udp_tunnel_add,
634 	.ndo_udp_tunnel_del = qede_udp_tunnel_del,
635 	.ndo_features_check = qede_features_check,
636 	.ndo_bpf = qede_xdp,
637 #ifdef CONFIG_RFS_ACCEL
638 	.ndo_rx_flow_steer = qede_rx_flow_steer,
639 #endif
640 	.ndo_setup_tc = qede_setup_tc_offload,
641 };
642 
643 static const struct net_device_ops qede_netdev_vf_ops = {
644 	.ndo_open = qede_open,
645 	.ndo_stop = qede_close,
646 	.ndo_start_xmit = qede_start_xmit,
647 	.ndo_select_queue = qede_select_queue,
648 	.ndo_set_rx_mode = qede_set_rx_mode,
649 	.ndo_set_mac_address = qede_set_mac_addr,
650 	.ndo_validate_addr = eth_validate_addr,
651 	.ndo_change_mtu = qede_change_mtu,
652 	.ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
653 	.ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
654 	.ndo_fix_features = qede_fix_features,
655 	.ndo_set_features = qede_set_features,
656 	.ndo_get_stats64 = qede_get_stats64,
657 	.ndo_udp_tunnel_add = qede_udp_tunnel_add,
658 	.ndo_udp_tunnel_del = qede_udp_tunnel_del,
659 	.ndo_features_check = qede_features_check,
660 };
661 
662 static const struct net_device_ops qede_netdev_vf_xdp_ops = {
663 	.ndo_open = qede_open,
664 	.ndo_stop = qede_close,
665 	.ndo_start_xmit = qede_start_xmit,
666 	.ndo_select_queue = qede_select_queue,
667 	.ndo_set_rx_mode = qede_set_rx_mode,
668 	.ndo_set_mac_address = qede_set_mac_addr,
669 	.ndo_validate_addr = eth_validate_addr,
670 	.ndo_change_mtu = qede_change_mtu,
671 	.ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
672 	.ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
673 	.ndo_fix_features = qede_fix_features,
674 	.ndo_set_features = qede_set_features,
675 	.ndo_get_stats64 = qede_get_stats64,
676 	.ndo_udp_tunnel_add = qede_udp_tunnel_add,
677 	.ndo_udp_tunnel_del = qede_udp_tunnel_del,
678 	.ndo_features_check = qede_features_check,
679 	.ndo_bpf = qede_xdp,
680 };
681 
682 /* -------------------------------------------------------------------------
683  * START OF PROBE / REMOVE
684  * -------------------------------------------------------------------------
685  */
686 
687 static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev,
688 					    struct pci_dev *pdev,
689 					    struct qed_dev_eth_info *info,
690 					    u32 dp_module, u8 dp_level)
691 {
692 	struct net_device *ndev;
693 	struct qede_dev *edev;
694 
695 	ndev = alloc_etherdev_mqs(sizeof(*edev),
696 				  info->num_queues * info->num_tc,
697 				  info->num_queues);
698 	if (!ndev) {
699 		pr_err("etherdev allocation failed\n");
700 		return NULL;
701 	}
702 
703 	edev = netdev_priv(ndev);
704 	edev->ndev = ndev;
705 	edev->cdev = cdev;
706 	edev->pdev = pdev;
707 	edev->dp_module = dp_module;
708 	edev->dp_level = dp_level;
709 	edev->ops = qed_ops;
710 	edev->q_num_rx_buffers = NUM_RX_BDS_DEF;
711 	edev->q_num_tx_buffers = NUM_TX_BDS_DEF;
712 
713 	DP_INFO(edev, "Allocated netdev with %d tx queues and %d rx queues\n",
714 		info->num_queues, info->num_queues);
715 
716 	SET_NETDEV_DEV(ndev, &pdev->dev);
717 
718 	memset(&edev->stats, 0, sizeof(edev->stats));
719 	memcpy(&edev->dev_info, info, sizeof(*info));
720 
721 	/* As ethtool doesn't have the ability to show WoL behavior as
722 	 * 'default', if device supports it declare it's enabled.
723 	 */
724 	if (edev->dev_info.common.wol_support)
725 		edev->wol_enabled = true;
726 
727 	INIT_LIST_HEAD(&edev->vlan_list);
728 
729 	return edev;
730 }
731 
732 static void qede_init_ndev(struct qede_dev *edev)
733 {
734 	struct net_device *ndev = edev->ndev;
735 	struct pci_dev *pdev = edev->pdev;
736 	bool udp_tunnel_enable = false;
737 	netdev_features_t hw_features;
738 
739 	pci_set_drvdata(pdev, ndev);
740 
741 	ndev->mem_start = edev->dev_info.common.pci_mem_start;
742 	ndev->base_addr = ndev->mem_start;
743 	ndev->mem_end = edev->dev_info.common.pci_mem_end;
744 	ndev->irq = edev->dev_info.common.pci_irq;
745 
746 	ndev->watchdog_timeo = TX_TIMEOUT;
747 
748 	if (IS_VF(edev)) {
749 		if (edev->dev_info.xdp_supported)
750 			ndev->netdev_ops = &qede_netdev_vf_xdp_ops;
751 		else
752 			ndev->netdev_ops = &qede_netdev_vf_ops;
753 	} else {
754 		ndev->netdev_ops = &qede_netdev_ops;
755 	}
756 
757 	qede_set_ethtool_ops(ndev);
758 
759 	ndev->priv_flags |= IFF_UNICAST_FLT;
760 
761 	/* user-changeble features */
762 	hw_features = NETIF_F_GRO | NETIF_F_GRO_HW | NETIF_F_SG |
763 		      NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
764 		      NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_HW_TC;
765 
766 	if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1)
767 		hw_features |= NETIF_F_NTUPLE;
768 
769 	if (edev->dev_info.common.vxlan_enable ||
770 	    edev->dev_info.common.geneve_enable)
771 		udp_tunnel_enable = true;
772 
773 	if (udp_tunnel_enable || edev->dev_info.common.gre_enable) {
774 		hw_features |= NETIF_F_TSO_ECN;
775 		ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
776 					NETIF_F_SG | NETIF_F_TSO |
777 					NETIF_F_TSO_ECN | NETIF_F_TSO6 |
778 					NETIF_F_RXCSUM;
779 	}
780 
781 	if (udp_tunnel_enable) {
782 		hw_features |= (NETIF_F_GSO_UDP_TUNNEL |
783 				NETIF_F_GSO_UDP_TUNNEL_CSUM);
784 		ndev->hw_enc_features |= (NETIF_F_GSO_UDP_TUNNEL |
785 					  NETIF_F_GSO_UDP_TUNNEL_CSUM);
786 	}
787 
788 	if (edev->dev_info.common.gre_enable) {
789 		hw_features |= (NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM);
790 		ndev->hw_enc_features |= (NETIF_F_GSO_GRE |
791 					  NETIF_F_GSO_GRE_CSUM);
792 	}
793 
794 	ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
795 			      NETIF_F_HIGHDMA;
796 	ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
797 			 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA |
798 			 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX;
799 
800 	ndev->hw_features = hw_features;
801 
802 	/* MTU range: 46 - 9600 */
803 	ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
804 	ndev->max_mtu = QEDE_MAX_JUMBO_PACKET_SIZE;
805 
806 	/* Set network device HW mac */
807 	ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac);
808 
809 	ndev->mtu = edev->dev_info.common.mtu;
810 }
811 
812 /* This function converts from 32b param to two params of level and module
813  * Input 32b decoding:
814  * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the
815  * 'happy' flow, e.g. memory allocation failed.
816  * b30 - enable all INFO prints. INFO prints are for major steps in the flow
817  * and provide important parameters.
818  * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that
819  * module. VERBOSE prints are for tracking the specific flow in low level.
820  *
821  * Notice that the level should be that of the lowest required logs.
822  */
823 void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level)
824 {
825 	*p_dp_level = QED_LEVEL_NOTICE;
826 	*p_dp_module = 0;
827 
828 	if (debug & QED_LOG_VERBOSE_MASK) {
829 		*p_dp_level = QED_LEVEL_VERBOSE;
830 		*p_dp_module = (debug & 0x3FFFFFFF);
831 	} else if (debug & QED_LOG_INFO_MASK) {
832 		*p_dp_level = QED_LEVEL_INFO;
833 	} else if (debug & QED_LOG_NOTICE_MASK) {
834 		*p_dp_level = QED_LEVEL_NOTICE;
835 	}
836 }
837 
838 static void qede_free_fp_array(struct qede_dev *edev)
839 {
840 	if (edev->fp_array) {
841 		struct qede_fastpath *fp;
842 		int i;
843 
844 		for_each_queue(i) {
845 			fp = &edev->fp_array[i];
846 
847 			kfree(fp->sb_info);
848 			/* Handle mem alloc failure case where qede_init_fp
849 			 * didn't register xdp_rxq_info yet.
850 			 * Implicit only (fp->type & QEDE_FASTPATH_RX)
851 			 */
852 			if (fp->rxq && xdp_rxq_info_is_reg(&fp->rxq->xdp_rxq))
853 				xdp_rxq_info_unreg(&fp->rxq->xdp_rxq);
854 			kfree(fp->rxq);
855 			kfree(fp->xdp_tx);
856 			kfree(fp->txq);
857 		}
858 		kfree(edev->fp_array);
859 	}
860 
861 	edev->num_queues = 0;
862 	edev->fp_num_tx = 0;
863 	edev->fp_num_rx = 0;
864 }
865 
866 static int qede_alloc_fp_array(struct qede_dev *edev)
867 {
868 	u8 fp_combined, fp_rx = edev->fp_num_rx;
869 	struct qede_fastpath *fp;
870 	int i;
871 
872 	edev->fp_array = kcalloc(QEDE_QUEUE_CNT(edev),
873 				 sizeof(*edev->fp_array), GFP_KERNEL);
874 	if (!edev->fp_array) {
875 		DP_NOTICE(edev, "fp array allocation failed\n");
876 		goto err;
877 	}
878 
879 	fp_combined = QEDE_QUEUE_CNT(edev) - fp_rx - edev->fp_num_tx;
880 
881 	/* Allocate the FP elements for Rx queues followed by combined and then
882 	 * the Tx. This ordering should be maintained so that the respective
883 	 * queues (Rx or Tx) will be together in the fastpath array and the
884 	 * associated ids will be sequential.
885 	 */
886 	for_each_queue(i) {
887 		fp = &edev->fp_array[i];
888 
889 		fp->sb_info = kzalloc(sizeof(*fp->sb_info), GFP_KERNEL);
890 		if (!fp->sb_info) {
891 			DP_NOTICE(edev, "sb info struct allocation failed\n");
892 			goto err;
893 		}
894 
895 		if (fp_rx) {
896 			fp->type = QEDE_FASTPATH_RX;
897 			fp_rx--;
898 		} else if (fp_combined) {
899 			fp->type = QEDE_FASTPATH_COMBINED;
900 			fp_combined--;
901 		} else {
902 			fp->type = QEDE_FASTPATH_TX;
903 		}
904 
905 		if (fp->type & QEDE_FASTPATH_TX) {
906 			fp->txq = kcalloc(edev->dev_info.num_tc,
907 					  sizeof(*fp->txq), GFP_KERNEL);
908 			if (!fp->txq)
909 				goto err;
910 		}
911 
912 		if (fp->type & QEDE_FASTPATH_RX) {
913 			fp->rxq = kzalloc(sizeof(*fp->rxq), GFP_KERNEL);
914 			if (!fp->rxq)
915 				goto err;
916 
917 			if (edev->xdp_prog) {
918 				fp->xdp_tx = kzalloc(sizeof(*fp->xdp_tx),
919 						     GFP_KERNEL);
920 				if (!fp->xdp_tx)
921 					goto err;
922 				fp->type |= QEDE_FASTPATH_XDP;
923 			}
924 		}
925 	}
926 
927 	return 0;
928 err:
929 	qede_free_fp_array(edev);
930 	return -ENOMEM;
931 }
932 
933 /* The qede lock is used to protect driver state change and driver flows that
934  * are not reentrant.
935  */
936 void __qede_lock(struct qede_dev *edev)
937 {
938 	mutex_lock(&edev->qede_lock);
939 }
940 
941 void __qede_unlock(struct qede_dev *edev)
942 {
943 	mutex_unlock(&edev->qede_lock);
944 }
945 
946 /* This version of the lock should be used when acquiring the RTNL lock is also
947  * needed in addition to the internal qede lock.
948  */
949 static void qede_lock(struct qede_dev *edev)
950 {
951 	rtnl_lock();
952 	__qede_lock(edev);
953 }
954 
955 static void qede_unlock(struct qede_dev *edev)
956 {
957 	__qede_unlock(edev);
958 	rtnl_unlock();
959 }
960 
961 static void qede_sp_task(struct work_struct *work)
962 {
963 	struct qede_dev *edev = container_of(work, struct qede_dev,
964 					     sp_task.work);
965 
966 	/* The locking scheme depends on the specific flag:
967 	 * In case of QEDE_SP_RECOVERY, acquiring the RTNL lock is required to
968 	 * ensure that ongoing flows are ended and new ones are not started.
969 	 * In other cases - only the internal qede lock should be acquired.
970 	 */
971 
972 	if (test_and_clear_bit(QEDE_SP_RECOVERY, &edev->sp_flags)) {
973 #ifdef CONFIG_QED_SRIOV
974 		/* SRIOV must be disabled outside the lock to avoid a deadlock.
975 		 * The recovery of the active VFs is currently not supported.
976 		 */
977 		qede_sriov_configure(edev->pdev, 0);
978 #endif
979 		qede_lock(edev);
980 		qede_recovery_handler(edev);
981 		qede_unlock(edev);
982 	}
983 
984 	__qede_lock(edev);
985 
986 	if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags))
987 		if (edev->state == QEDE_STATE_OPEN)
988 			qede_config_rx_mode(edev->ndev);
989 
990 #ifdef CONFIG_RFS_ACCEL
991 	if (test_and_clear_bit(QEDE_SP_ARFS_CONFIG, &edev->sp_flags)) {
992 		if (edev->state == QEDE_STATE_OPEN)
993 			qede_process_arfs_filters(edev, false);
994 	}
995 #endif
996 	__qede_unlock(edev);
997 }
998 
999 static void qede_update_pf_params(struct qed_dev *cdev)
1000 {
1001 	struct qed_pf_params pf_params;
1002 	u16 num_cons;
1003 
1004 	/* 64 rx + 64 tx + 64 XDP */
1005 	memset(&pf_params, 0, sizeof(struct qed_pf_params));
1006 
1007 	/* 1 rx + 1 xdp + max tx cos */
1008 	num_cons = QED_MIN_L2_CONS;
1009 
1010 	pf_params.eth_pf_params.num_cons = (MAX_SB_PER_PF_MIMD - 1) * num_cons;
1011 
1012 	/* Same for VFs - make sure they'll have sufficient connections
1013 	 * to support XDP Tx queues.
1014 	 */
1015 	pf_params.eth_pf_params.num_vf_cons = 48;
1016 
1017 	pf_params.eth_pf_params.num_arfs_filters = QEDE_RFS_MAX_FLTR;
1018 	qed_ops->common->update_pf_params(cdev, &pf_params);
1019 }
1020 
1021 #define QEDE_FW_VER_STR_SIZE	80
1022 
1023 static void qede_log_probe(struct qede_dev *edev)
1024 {
1025 	struct qed_dev_info *p_dev_info = &edev->dev_info.common;
1026 	u8 buf[QEDE_FW_VER_STR_SIZE];
1027 	size_t left_size;
1028 
1029 	snprintf(buf, QEDE_FW_VER_STR_SIZE,
1030 		 "Storm FW %d.%d.%d.%d, Management FW %d.%d.%d.%d",
1031 		 p_dev_info->fw_major, p_dev_info->fw_minor, p_dev_info->fw_rev,
1032 		 p_dev_info->fw_eng,
1033 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_3_MASK) >>
1034 		 QED_MFW_VERSION_3_OFFSET,
1035 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_2_MASK) >>
1036 		 QED_MFW_VERSION_2_OFFSET,
1037 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_1_MASK) >>
1038 		 QED_MFW_VERSION_1_OFFSET,
1039 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_0_MASK) >>
1040 		 QED_MFW_VERSION_0_OFFSET);
1041 
1042 	left_size = QEDE_FW_VER_STR_SIZE - strlen(buf);
1043 	if (p_dev_info->mbi_version && left_size)
1044 		snprintf(buf + strlen(buf), left_size,
1045 			 " [MBI %d.%d.%d]",
1046 			 (p_dev_info->mbi_version & QED_MBI_VERSION_2_MASK) >>
1047 			 QED_MBI_VERSION_2_OFFSET,
1048 			 (p_dev_info->mbi_version & QED_MBI_VERSION_1_MASK) >>
1049 			 QED_MBI_VERSION_1_OFFSET,
1050 			 (p_dev_info->mbi_version & QED_MBI_VERSION_0_MASK) >>
1051 			 QED_MBI_VERSION_0_OFFSET);
1052 
1053 	pr_info("qede %02x:%02x.%02x: %s [%s]\n", edev->pdev->bus->number,
1054 		PCI_SLOT(edev->pdev->devfn), PCI_FUNC(edev->pdev->devfn),
1055 		buf, edev->ndev->name);
1056 }
1057 
1058 enum qede_probe_mode {
1059 	QEDE_PROBE_NORMAL,
1060 	QEDE_PROBE_RECOVERY,
1061 };
1062 
1063 static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level,
1064 			bool is_vf, enum qede_probe_mode mode)
1065 {
1066 	struct qed_probe_params probe_params;
1067 	struct qed_slowpath_params sp_params;
1068 	struct qed_dev_eth_info dev_info;
1069 	struct qede_dev *edev;
1070 	struct qed_dev *cdev;
1071 	int rc;
1072 
1073 	if (unlikely(dp_level & QED_LEVEL_INFO))
1074 		pr_notice("Starting qede probe\n");
1075 
1076 	memset(&probe_params, 0, sizeof(probe_params));
1077 	probe_params.protocol = QED_PROTOCOL_ETH;
1078 	probe_params.dp_module = dp_module;
1079 	probe_params.dp_level = dp_level;
1080 	probe_params.is_vf = is_vf;
1081 	probe_params.recov_in_prog = (mode == QEDE_PROBE_RECOVERY);
1082 	cdev = qed_ops->common->probe(pdev, &probe_params);
1083 	if (!cdev) {
1084 		rc = -ENODEV;
1085 		goto err0;
1086 	}
1087 
1088 	qede_update_pf_params(cdev);
1089 
1090 	/* Start the Slowpath-process */
1091 	memset(&sp_params, 0, sizeof(sp_params));
1092 	sp_params.int_mode = QED_INT_MODE_MSIX;
1093 	sp_params.drv_major = QEDE_MAJOR_VERSION;
1094 	sp_params.drv_minor = QEDE_MINOR_VERSION;
1095 	sp_params.drv_rev = QEDE_REVISION_VERSION;
1096 	sp_params.drv_eng = QEDE_ENGINEERING_VERSION;
1097 	strlcpy(sp_params.name, "qede LAN", QED_DRV_VER_STR_SIZE);
1098 	rc = qed_ops->common->slowpath_start(cdev, &sp_params);
1099 	if (rc) {
1100 		pr_notice("Cannot start slowpath\n");
1101 		goto err1;
1102 	}
1103 
1104 	/* Learn information crucial for qede to progress */
1105 	rc = qed_ops->fill_dev_info(cdev, &dev_info);
1106 	if (rc)
1107 		goto err2;
1108 
1109 	if (mode != QEDE_PROBE_RECOVERY) {
1110 		edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module,
1111 					   dp_level);
1112 		if (!edev) {
1113 			rc = -ENOMEM;
1114 			goto err2;
1115 		}
1116 	} else {
1117 		struct net_device *ndev = pci_get_drvdata(pdev);
1118 
1119 		edev = netdev_priv(ndev);
1120 		edev->cdev = cdev;
1121 		memset(&edev->stats, 0, sizeof(edev->stats));
1122 		memcpy(&edev->dev_info, &dev_info, sizeof(dev_info));
1123 	}
1124 
1125 	if (is_vf)
1126 		set_bit(QEDE_FLAGS_IS_VF, &edev->flags);
1127 
1128 	qede_init_ndev(edev);
1129 
1130 	rc = qede_rdma_dev_add(edev, (mode == QEDE_PROBE_RECOVERY));
1131 	if (rc)
1132 		goto err3;
1133 
1134 	if (mode != QEDE_PROBE_RECOVERY) {
1135 		/* Prepare the lock prior to the registration of the netdev,
1136 		 * as once it's registered we might reach flows requiring it
1137 		 * [it's even possible to reach a flow needing it directly
1138 		 * from there, although it's unlikely].
1139 		 */
1140 		INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task);
1141 		mutex_init(&edev->qede_lock);
1142 
1143 		rc = register_netdev(edev->ndev);
1144 		if (rc) {
1145 			DP_NOTICE(edev, "Cannot register net-device\n");
1146 			goto err4;
1147 		}
1148 	}
1149 
1150 	edev->ops->common->set_name(cdev, edev->ndev->name);
1151 
1152 	/* PTP not supported on VFs */
1153 	if (!is_vf)
1154 		qede_ptp_enable(edev, (mode == QEDE_PROBE_NORMAL));
1155 
1156 	edev->ops->register_ops(cdev, &qede_ll_ops, edev);
1157 
1158 #ifdef CONFIG_DCB
1159 	if (!IS_VF(edev))
1160 		qede_set_dcbnl_ops(edev->ndev);
1161 #endif
1162 
1163 	edev->rx_copybreak = QEDE_RX_HDR_SIZE;
1164 
1165 	qede_log_probe(edev);
1166 	return 0;
1167 
1168 err4:
1169 	qede_rdma_dev_remove(edev, (mode == QEDE_PROBE_RECOVERY));
1170 err3:
1171 	free_netdev(edev->ndev);
1172 err2:
1173 	qed_ops->common->slowpath_stop(cdev);
1174 err1:
1175 	qed_ops->common->remove(cdev);
1176 err0:
1177 	return rc;
1178 }
1179 
1180 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1181 {
1182 	bool is_vf = false;
1183 	u32 dp_module = 0;
1184 	u8 dp_level = 0;
1185 
1186 	switch ((enum qede_pci_private)id->driver_data) {
1187 	case QEDE_PRIVATE_VF:
1188 		if (debug & QED_LOG_VERBOSE_MASK)
1189 			dev_err(&pdev->dev, "Probing a VF\n");
1190 		is_vf = true;
1191 		break;
1192 	default:
1193 		if (debug & QED_LOG_VERBOSE_MASK)
1194 			dev_err(&pdev->dev, "Probing a PF\n");
1195 	}
1196 
1197 	qede_config_debug(debug, &dp_module, &dp_level);
1198 
1199 	return __qede_probe(pdev, dp_module, dp_level, is_vf,
1200 			    QEDE_PROBE_NORMAL);
1201 }
1202 
1203 enum qede_remove_mode {
1204 	QEDE_REMOVE_NORMAL,
1205 	QEDE_REMOVE_RECOVERY,
1206 };
1207 
1208 static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode)
1209 {
1210 	struct net_device *ndev = pci_get_drvdata(pdev);
1211 	struct qede_dev *edev;
1212 	struct qed_dev *cdev;
1213 
1214 	if (!ndev) {
1215 		dev_info(&pdev->dev, "Device has already been removed\n");
1216 		return;
1217 	}
1218 
1219 	edev = netdev_priv(ndev);
1220 	cdev = edev->cdev;
1221 
1222 	DP_INFO(edev, "Starting qede_remove\n");
1223 
1224 	qede_rdma_dev_remove(edev, (mode == QEDE_REMOVE_RECOVERY));
1225 
1226 	if (mode != QEDE_REMOVE_RECOVERY) {
1227 		unregister_netdev(ndev);
1228 
1229 		cancel_delayed_work_sync(&edev->sp_task);
1230 
1231 		edev->ops->common->set_power_state(cdev, PCI_D0);
1232 
1233 		pci_set_drvdata(pdev, NULL);
1234 	}
1235 
1236 	qede_ptp_disable(edev);
1237 
1238 	/* Use global ops since we've freed edev */
1239 	qed_ops->common->slowpath_stop(cdev);
1240 	if (system_state == SYSTEM_POWER_OFF)
1241 		return;
1242 	qed_ops->common->remove(cdev);
1243 
1244 	/* Since this can happen out-of-sync with other flows,
1245 	 * don't release the netdevice until after slowpath stop
1246 	 * has been called to guarantee various other contexts
1247 	 * [e.g., QED register callbacks] won't break anything when
1248 	 * accessing the netdevice.
1249 	 */
1250 	if (mode != QEDE_REMOVE_RECOVERY)
1251 		free_netdev(ndev);
1252 
1253 	dev_info(&pdev->dev, "Ending qede_remove successfully\n");
1254 }
1255 
1256 static void qede_remove(struct pci_dev *pdev)
1257 {
1258 	__qede_remove(pdev, QEDE_REMOVE_NORMAL);
1259 }
1260 
1261 static void qede_shutdown(struct pci_dev *pdev)
1262 {
1263 	__qede_remove(pdev, QEDE_REMOVE_NORMAL);
1264 }
1265 
1266 /* -------------------------------------------------------------------------
1267  * START OF LOAD / UNLOAD
1268  * -------------------------------------------------------------------------
1269  */
1270 
1271 static int qede_set_num_queues(struct qede_dev *edev)
1272 {
1273 	int rc;
1274 	u16 rss_num;
1275 
1276 	/* Setup queues according to possible resources*/
1277 	if (edev->req_queues)
1278 		rss_num = edev->req_queues;
1279 	else
1280 		rss_num = netif_get_num_default_rss_queues() *
1281 			  edev->dev_info.common.num_hwfns;
1282 
1283 	rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num);
1284 
1285 	rc = edev->ops->common->set_fp_int(edev->cdev, rss_num);
1286 	if (rc > 0) {
1287 		/* Managed to request interrupts for our queues */
1288 		edev->num_queues = rc;
1289 		DP_INFO(edev, "Managed %d [of %d] RSS queues\n",
1290 			QEDE_QUEUE_CNT(edev), rss_num);
1291 		rc = 0;
1292 	}
1293 
1294 	edev->fp_num_tx = edev->req_num_tx;
1295 	edev->fp_num_rx = edev->req_num_rx;
1296 
1297 	return rc;
1298 }
1299 
1300 static void qede_free_mem_sb(struct qede_dev *edev, struct qed_sb_info *sb_info,
1301 			     u16 sb_id)
1302 {
1303 	if (sb_info->sb_virt) {
1304 		edev->ops->common->sb_release(edev->cdev, sb_info, sb_id,
1305 					      QED_SB_TYPE_L2_QUEUE);
1306 		dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt),
1307 				  (void *)sb_info->sb_virt, sb_info->sb_phys);
1308 		memset(sb_info, 0, sizeof(*sb_info));
1309 	}
1310 }
1311 
1312 /* This function allocates fast-path status block memory */
1313 static int qede_alloc_mem_sb(struct qede_dev *edev,
1314 			     struct qed_sb_info *sb_info, u16 sb_id)
1315 {
1316 	struct status_block_e4 *sb_virt;
1317 	dma_addr_t sb_phys;
1318 	int rc;
1319 
1320 	sb_virt = dma_alloc_coherent(&edev->pdev->dev,
1321 				     sizeof(*sb_virt), &sb_phys, GFP_KERNEL);
1322 	if (!sb_virt) {
1323 		DP_ERR(edev, "Status block allocation failed\n");
1324 		return -ENOMEM;
1325 	}
1326 
1327 	rc = edev->ops->common->sb_init(edev->cdev, sb_info,
1328 					sb_virt, sb_phys, sb_id,
1329 					QED_SB_TYPE_L2_QUEUE);
1330 	if (rc) {
1331 		DP_ERR(edev, "Status block initialization failed\n");
1332 		dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt),
1333 				  sb_virt, sb_phys);
1334 		return rc;
1335 	}
1336 
1337 	return 0;
1338 }
1339 
1340 static void qede_free_rx_buffers(struct qede_dev *edev,
1341 				 struct qede_rx_queue *rxq)
1342 {
1343 	u16 i;
1344 
1345 	for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) {
1346 		struct sw_rx_data *rx_buf;
1347 		struct page *data;
1348 
1349 		rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX];
1350 		data = rx_buf->data;
1351 
1352 		dma_unmap_page(&edev->pdev->dev,
1353 			       rx_buf->mapping, PAGE_SIZE, rxq->data_direction);
1354 
1355 		rx_buf->data = NULL;
1356 		__free_page(data);
1357 	}
1358 }
1359 
1360 static void qede_free_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1361 {
1362 	/* Free rx buffers */
1363 	qede_free_rx_buffers(edev, rxq);
1364 
1365 	/* Free the parallel SW ring */
1366 	kfree(rxq->sw_rx_ring);
1367 
1368 	/* Free the real RQ ring used by FW */
1369 	edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring);
1370 	edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring);
1371 }
1372 
1373 static void qede_set_tpa_param(struct qede_rx_queue *rxq)
1374 {
1375 	int i;
1376 
1377 	for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
1378 		struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
1379 
1380 		tpa_info->state = QEDE_AGG_STATE_NONE;
1381 	}
1382 }
1383 
1384 /* This function allocates all memory needed per Rx queue */
1385 static int qede_alloc_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1386 {
1387 	int i, rc, size;
1388 
1389 	rxq->num_rx_buffers = edev->q_num_rx_buffers;
1390 
1391 	rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD + edev->ndev->mtu;
1392 
1393 	rxq->rx_headroom = edev->xdp_prog ? XDP_PACKET_HEADROOM : NET_SKB_PAD;
1394 	size = rxq->rx_headroom +
1395 	       SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1396 
1397 	/* Make sure that the headroom and  payload fit in a single page */
1398 	if (rxq->rx_buf_size + size > PAGE_SIZE)
1399 		rxq->rx_buf_size = PAGE_SIZE - size;
1400 
1401 	/* Segment size to spilt a page in multiple equal parts ,
1402 	 * unless XDP is used in which case we'd use the entire page.
1403 	 */
1404 	if (!edev->xdp_prog) {
1405 		size = size + rxq->rx_buf_size;
1406 		rxq->rx_buf_seg_size = roundup_pow_of_two(size);
1407 	} else {
1408 		rxq->rx_buf_seg_size = PAGE_SIZE;
1409 	}
1410 
1411 	/* Allocate the parallel driver ring for Rx buffers */
1412 	size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE;
1413 	rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL);
1414 	if (!rxq->sw_rx_ring) {
1415 		DP_ERR(edev, "Rx buffers ring allocation failed\n");
1416 		rc = -ENOMEM;
1417 		goto err;
1418 	}
1419 
1420 	/* Allocate FW Rx ring  */
1421 	rc = edev->ops->common->chain_alloc(edev->cdev,
1422 					    QED_CHAIN_USE_TO_CONSUME_PRODUCE,
1423 					    QED_CHAIN_MODE_NEXT_PTR,
1424 					    QED_CHAIN_CNT_TYPE_U16,
1425 					    RX_RING_SIZE,
1426 					    sizeof(struct eth_rx_bd),
1427 					    &rxq->rx_bd_ring, NULL);
1428 	if (rc)
1429 		goto err;
1430 
1431 	/* Allocate FW completion ring */
1432 	rc = edev->ops->common->chain_alloc(edev->cdev,
1433 					    QED_CHAIN_USE_TO_CONSUME,
1434 					    QED_CHAIN_MODE_PBL,
1435 					    QED_CHAIN_CNT_TYPE_U16,
1436 					    RX_RING_SIZE,
1437 					    sizeof(union eth_rx_cqe),
1438 					    &rxq->rx_comp_ring, NULL);
1439 	if (rc)
1440 		goto err;
1441 
1442 	/* Allocate buffers for the Rx ring */
1443 	rxq->filled_buffers = 0;
1444 	for (i = 0; i < rxq->num_rx_buffers; i++) {
1445 		rc = qede_alloc_rx_buffer(rxq, false);
1446 		if (rc) {
1447 			DP_ERR(edev,
1448 			       "Rx buffers allocation failed at index %d\n", i);
1449 			goto err;
1450 		}
1451 	}
1452 
1453 	if (!edev->gro_disable)
1454 		qede_set_tpa_param(rxq);
1455 err:
1456 	return rc;
1457 }
1458 
1459 static void qede_free_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1460 {
1461 	/* Free the parallel SW ring */
1462 	if (txq->is_xdp)
1463 		kfree(txq->sw_tx_ring.xdp);
1464 	else
1465 		kfree(txq->sw_tx_ring.skbs);
1466 
1467 	/* Free the real RQ ring used by FW */
1468 	edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl);
1469 }
1470 
1471 /* This function allocates all memory needed per Tx queue */
1472 static int qede_alloc_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1473 {
1474 	union eth_tx_bd_types *p_virt;
1475 	int size, rc;
1476 
1477 	txq->num_tx_buffers = edev->q_num_tx_buffers;
1478 
1479 	/* Allocate the parallel driver ring for Tx buffers */
1480 	if (txq->is_xdp) {
1481 		size = sizeof(*txq->sw_tx_ring.xdp) * txq->num_tx_buffers;
1482 		txq->sw_tx_ring.xdp = kzalloc(size, GFP_KERNEL);
1483 		if (!txq->sw_tx_ring.xdp)
1484 			goto err;
1485 	} else {
1486 		size = sizeof(*txq->sw_tx_ring.skbs) * txq->num_tx_buffers;
1487 		txq->sw_tx_ring.skbs = kzalloc(size, GFP_KERNEL);
1488 		if (!txq->sw_tx_ring.skbs)
1489 			goto err;
1490 	}
1491 
1492 	rc = edev->ops->common->chain_alloc(edev->cdev,
1493 					    QED_CHAIN_USE_TO_CONSUME_PRODUCE,
1494 					    QED_CHAIN_MODE_PBL,
1495 					    QED_CHAIN_CNT_TYPE_U16,
1496 					    txq->num_tx_buffers,
1497 					    sizeof(*p_virt),
1498 					    &txq->tx_pbl, NULL);
1499 	if (rc)
1500 		goto err;
1501 
1502 	return 0;
1503 
1504 err:
1505 	qede_free_mem_txq(edev, txq);
1506 	return -ENOMEM;
1507 }
1508 
1509 /* This function frees all memory of a single fp */
1510 static void qede_free_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1511 {
1512 	qede_free_mem_sb(edev, fp->sb_info, fp->id);
1513 
1514 	if (fp->type & QEDE_FASTPATH_RX)
1515 		qede_free_mem_rxq(edev, fp->rxq);
1516 
1517 	if (fp->type & QEDE_FASTPATH_XDP)
1518 		qede_free_mem_txq(edev, fp->xdp_tx);
1519 
1520 	if (fp->type & QEDE_FASTPATH_TX) {
1521 		int cos;
1522 
1523 		for_each_cos_in_txq(edev, cos)
1524 			qede_free_mem_txq(edev, &fp->txq[cos]);
1525 	}
1526 }
1527 
1528 /* This function allocates all memory needed for a single fp (i.e. an entity
1529  * which contains status block, one rx queue and/or multiple per-TC tx queues.
1530  */
1531 static int qede_alloc_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1532 {
1533 	int rc = 0;
1534 
1535 	rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->id);
1536 	if (rc)
1537 		goto out;
1538 
1539 	if (fp->type & QEDE_FASTPATH_RX) {
1540 		rc = qede_alloc_mem_rxq(edev, fp->rxq);
1541 		if (rc)
1542 			goto out;
1543 	}
1544 
1545 	if (fp->type & QEDE_FASTPATH_XDP) {
1546 		rc = qede_alloc_mem_txq(edev, fp->xdp_tx);
1547 		if (rc)
1548 			goto out;
1549 	}
1550 
1551 	if (fp->type & QEDE_FASTPATH_TX) {
1552 		int cos;
1553 
1554 		for_each_cos_in_txq(edev, cos) {
1555 			rc = qede_alloc_mem_txq(edev, &fp->txq[cos]);
1556 			if (rc)
1557 				goto out;
1558 		}
1559 	}
1560 
1561 out:
1562 	return rc;
1563 }
1564 
1565 static void qede_free_mem_load(struct qede_dev *edev)
1566 {
1567 	int i;
1568 
1569 	for_each_queue(i) {
1570 		struct qede_fastpath *fp = &edev->fp_array[i];
1571 
1572 		qede_free_mem_fp(edev, fp);
1573 	}
1574 }
1575 
1576 /* This function allocates all qede memory at NIC load. */
1577 static int qede_alloc_mem_load(struct qede_dev *edev)
1578 {
1579 	int rc = 0, queue_id;
1580 
1581 	for (queue_id = 0; queue_id < QEDE_QUEUE_CNT(edev); queue_id++) {
1582 		struct qede_fastpath *fp = &edev->fp_array[queue_id];
1583 
1584 		rc = qede_alloc_mem_fp(edev, fp);
1585 		if (rc) {
1586 			DP_ERR(edev,
1587 			       "Failed to allocate memory for fastpath - rss id = %d\n",
1588 			       queue_id);
1589 			qede_free_mem_load(edev);
1590 			return rc;
1591 		}
1592 	}
1593 
1594 	return 0;
1595 }
1596 
1597 static void qede_empty_tx_queue(struct qede_dev *edev,
1598 				struct qede_tx_queue *txq)
1599 {
1600 	unsigned int pkts_compl = 0, bytes_compl = 0;
1601 	struct netdev_queue *netdev_txq;
1602 	int rc, len = 0;
1603 
1604 	netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id);
1605 
1606 	while (qed_chain_get_cons_idx(&txq->tx_pbl) !=
1607 	       qed_chain_get_prod_idx(&txq->tx_pbl)) {
1608 		DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
1609 			   "Freeing a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n",
1610 			   txq->index, qed_chain_get_cons_idx(&txq->tx_pbl),
1611 			   qed_chain_get_prod_idx(&txq->tx_pbl));
1612 
1613 		rc = qede_free_tx_pkt(edev, txq, &len);
1614 		if (rc) {
1615 			DP_NOTICE(edev,
1616 				  "Failed to free a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n",
1617 				  txq->index,
1618 				  qed_chain_get_cons_idx(&txq->tx_pbl),
1619 				  qed_chain_get_prod_idx(&txq->tx_pbl));
1620 			break;
1621 		}
1622 
1623 		bytes_compl += len;
1624 		pkts_compl++;
1625 		txq->sw_tx_cons++;
1626 	}
1627 
1628 	netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl);
1629 }
1630 
1631 static void qede_empty_tx_queues(struct qede_dev *edev)
1632 {
1633 	int i;
1634 
1635 	for_each_queue(i)
1636 		if (edev->fp_array[i].type & QEDE_FASTPATH_TX) {
1637 			int cos;
1638 
1639 			for_each_cos_in_txq(edev, cos) {
1640 				struct qede_fastpath *fp;
1641 
1642 				fp = &edev->fp_array[i];
1643 				qede_empty_tx_queue(edev,
1644 						    &fp->txq[cos]);
1645 			}
1646 		}
1647 }
1648 
1649 /* This function inits fp content and resets the SB, RXQ and TXQ structures */
1650 static void qede_init_fp(struct qede_dev *edev)
1651 {
1652 	int queue_id, rxq_index = 0, txq_index = 0;
1653 	struct qede_fastpath *fp;
1654 
1655 	for_each_queue(queue_id) {
1656 		fp = &edev->fp_array[queue_id];
1657 
1658 		fp->edev = edev;
1659 		fp->id = queue_id;
1660 
1661 		if (fp->type & QEDE_FASTPATH_XDP) {
1662 			fp->xdp_tx->index = QEDE_TXQ_IDX_TO_XDP(edev,
1663 								rxq_index);
1664 			fp->xdp_tx->is_xdp = 1;
1665 		}
1666 
1667 		if (fp->type & QEDE_FASTPATH_RX) {
1668 			fp->rxq->rxq_id = rxq_index++;
1669 
1670 			/* Determine how to map buffers for this queue */
1671 			if (fp->type & QEDE_FASTPATH_XDP)
1672 				fp->rxq->data_direction = DMA_BIDIRECTIONAL;
1673 			else
1674 				fp->rxq->data_direction = DMA_FROM_DEVICE;
1675 			fp->rxq->dev = &edev->pdev->dev;
1676 
1677 			/* Driver have no error path from here */
1678 			WARN_ON(xdp_rxq_info_reg(&fp->rxq->xdp_rxq, edev->ndev,
1679 						 fp->rxq->rxq_id) < 0);
1680 		}
1681 
1682 		if (fp->type & QEDE_FASTPATH_TX) {
1683 			int cos;
1684 
1685 			for_each_cos_in_txq(edev, cos) {
1686 				struct qede_tx_queue *txq = &fp->txq[cos];
1687 				u16 ndev_tx_id;
1688 
1689 				txq->cos = cos;
1690 				txq->index = txq_index;
1691 				ndev_tx_id = QEDE_TXQ_TO_NDEV_TXQ_ID(edev, txq);
1692 				txq->ndev_txq_id = ndev_tx_id;
1693 
1694 				if (edev->dev_info.is_legacy)
1695 					txq->is_legacy = 1;
1696 				txq->dev = &edev->pdev->dev;
1697 			}
1698 
1699 			txq_index++;
1700 		}
1701 
1702 		snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
1703 			 edev->ndev->name, queue_id);
1704 	}
1705 
1706 	edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO_HW);
1707 }
1708 
1709 static int qede_set_real_num_queues(struct qede_dev *edev)
1710 {
1711 	int rc = 0;
1712 
1713 	rc = netif_set_real_num_tx_queues(edev->ndev,
1714 					  QEDE_TSS_COUNT(edev) *
1715 					  edev->dev_info.num_tc);
1716 	if (rc) {
1717 		DP_NOTICE(edev, "Failed to set real number of Tx queues\n");
1718 		return rc;
1719 	}
1720 
1721 	rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_COUNT(edev));
1722 	if (rc) {
1723 		DP_NOTICE(edev, "Failed to set real number of Rx queues\n");
1724 		return rc;
1725 	}
1726 
1727 	return 0;
1728 }
1729 
1730 static void qede_napi_disable_remove(struct qede_dev *edev)
1731 {
1732 	int i;
1733 
1734 	for_each_queue(i) {
1735 		napi_disable(&edev->fp_array[i].napi);
1736 
1737 		netif_napi_del(&edev->fp_array[i].napi);
1738 	}
1739 }
1740 
1741 static void qede_napi_add_enable(struct qede_dev *edev)
1742 {
1743 	int i;
1744 
1745 	/* Add NAPI objects */
1746 	for_each_queue(i) {
1747 		netif_napi_add(edev->ndev, &edev->fp_array[i].napi,
1748 			       qede_poll, NAPI_POLL_WEIGHT);
1749 		napi_enable(&edev->fp_array[i].napi);
1750 	}
1751 }
1752 
1753 static void qede_sync_free_irqs(struct qede_dev *edev)
1754 {
1755 	int i;
1756 
1757 	for (i = 0; i < edev->int_info.used_cnt; i++) {
1758 		if (edev->int_info.msix_cnt) {
1759 			synchronize_irq(edev->int_info.msix[i].vector);
1760 			free_irq(edev->int_info.msix[i].vector,
1761 				 &edev->fp_array[i]);
1762 		} else {
1763 			edev->ops->common->simd_handler_clean(edev->cdev, i);
1764 		}
1765 	}
1766 
1767 	edev->int_info.used_cnt = 0;
1768 }
1769 
1770 static int qede_req_msix_irqs(struct qede_dev *edev)
1771 {
1772 	int i, rc;
1773 
1774 	/* Sanitize number of interrupts == number of prepared RSS queues */
1775 	if (QEDE_QUEUE_CNT(edev) > edev->int_info.msix_cnt) {
1776 		DP_ERR(edev,
1777 		       "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n",
1778 		       QEDE_QUEUE_CNT(edev), edev->int_info.msix_cnt);
1779 		return -EINVAL;
1780 	}
1781 
1782 	for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) {
1783 #ifdef CONFIG_RFS_ACCEL
1784 		struct qede_fastpath *fp = &edev->fp_array[i];
1785 
1786 		if (edev->ndev->rx_cpu_rmap && (fp->type & QEDE_FASTPATH_RX)) {
1787 			rc = irq_cpu_rmap_add(edev->ndev->rx_cpu_rmap,
1788 					      edev->int_info.msix[i].vector);
1789 			if (rc) {
1790 				DP_ERR(edev, "Failed to add CPU rmap\n");
1791 				qede_free_arfs(edev);
1792 			}
1793 		}
1794 #endif
1795 		rc = request_irq(edev->int_info.msix[i].vector,
1796 				 qede_msix_fp_int, 0, edev->fp_array[i].name,
1797 				 &edev->fp_array[i]);
1798 		if (rc) {
1799 			DP_ERR(edev, "Request fp %d irq failed\n", i);
1800 			qede_sync_free_irqs(edev);
1801 			return rc;
1802 		}
1803 		DP_VERBOSE(edev, NETIF_MSG_INTR,
1804 			   "Requested fp irq for %s [entry %d]. Cookie is at %p\n",
1805 			   edev->fp_array[i].name, i,
1806 			   &edev->fp_array[i]);
1807 		edev->int_info.used_cnt++;
1808 	}
1809 
1810 	return 0;
1811 }
1812 
1813 static void qede_simd_fp_handler(void *cookie)
1814 {
1815 	struct qede_fastpath *fp = (struct qede_fastpath *)cookie;
1816 
1817 	napi_schedule_irqoff(&fp->napi);
1818 }
1819 
1820 static int qede_setup_irqs(struct qede_dev *edev)
1821 {
1822 	int i, rc = 0;
1823 
1824 	/* Learn Interrupt configuration */
1825 	rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info);
1826 	if (rc)
1827 		return rc;
1828 
1829 	if (edev->int_info.msix_cnt) {
1830 		rc = qede_req_msix_irqs(edev);
1831 		if (rc)
1832 			return rc;
1833 		edev->ndev->irq = edev->int_info.msix[0].vector;
1834 	} else {
1835 		const struct qed_common_ops *ops;
1836 
1837 		/* qed should learn receive the RSS ids and callbacks */
1838 		ops = edev->ops->common;
1839 		for (i = 0; i < QEDE_QUEUE_CNT(edev); i++)
1840 			ops->simd_handler_config(edev->cdev,
1841 						 &edev->fp_array[i], i,
1842 						 qede_simd_fp_handler);
1843 		edev->int_info.used_cnt = QEDE_QUEUE_CNT(edev);
1844 	}
1845 	return 0;
1846 }
1847 
1848 static int qede_drain_txq(struct qede_dev *edev,
1849 			  struct qede_tx_queue *txq, bool allow_drain)
1850 {
1851 	int rc, cnt = 1000;
1852 
1853 	while (txq->sw_tx_cons != txq->sw_tx_prod) {
1854 		if (!cnt) {
1855 			if (allow_drain) {
1856 				DP_NOTICE(edev,
1857 					  "Tx queue[%d] is stuck, requesting MCP to drain\n",
1858 					  txq->index);
1859 				rc = edev->ops->common->drain(edev->cdev);
1860 				if (rc)
1861 					return rc;
1862 				return qede_drain_txq(edev, txq, false);
1863 			}
1864 			DP_NOTICE(edev,
1865 				  "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n",
1866 				  txq->index, txq->sw_tx_prod,
1867 				  txq->sw_tx_cons);
1868 			return -ENODEV;
1869 		}
1870 		cnt--;
1871 		usleep_range(1000, 2000);
1872 		barrier();
1873 	}
1874 
1875 	/* FW finished processing, wait for HW to transmit all tx packets */
1876 	usleep_range(1000, 2000);
1877 
1878 	return 0;
1879 }
1880 
1881 static int qede_stop_txq(struct qede_dev *edev,
1882 			 struct qede_tx_queue *txq, int rss_id)
1883 {
1884 	/* delete doorbell from doorbell recovery mechanism */
1885 	edev->ops->common->db_recovery_del(edev->cdev, txq->doorbell_addr,
1886 					   &txq->tx_db);
1887 
1888 	return edev->ops->q_tx_stop(edev->cdev, rss_id, txq->handle);
1889 }
1890 
1891 static int qede_stop_queues(struct qede_dev *edev)
1892 {
1893 	struct qed_update_vport_params *vport_update_params;
1894 	struct qed_dev *cdev = edev->cdev;
1895 	struct qede_fastpath *fp;
1896 	int rc, i;
1897 
1898 	/* Disable the vport */
1899 	vport_update_params = vzalloc(sizeof(*vport_update_params));
1900 	if (!vport_update_params)
1901 		return -ENOMEM;
1902 
1903 	vport_update_params->vport_id = 0;
1904 	vport_update_params->update_vport_active_flg = 1;
1905 	vport_update_params->vport_active_flg = 0;
1906 	vport_update_params->update_rss_flg = 0;
1907 
1908 	rc = edev->ops->vport_update(cdev, vport_update_params);
1909 	vfree(vport_update_params);
1910 
1911 	if (rc) {
1912 		DP_ERR(edev, "Failed to update vport\n");
1913 		return rc;
1914 	}
1915 
1916 	/* Flush Tx queues. If needed, request drain from MCP */
1917 	for_each_queue(i) {
1918 		fp = &edev->fp_array[i];
1919 
1920 		if (fp->type & QEDE_FASTPATH_TX) {
1921 			int cos;
1922 
1923 			for_each_cos_in_txq(edev, cos) {
1924 				rc = qede_drain_txq(edev, &fp->txq[cos], true);
1925 				if (rc)
1926 					return rc;
1927 			}
1928 		}
1929 
1930 		if (fp->type & QEDE_FASTPATH_XDP) {
1931 			rc = qede_drain_txq(edev, fp->xdp_tx, true);
1932 			if (rc)
1933 				return rc;
1934 		}
1935 	}
1936 
1937 	/* Stop all Queues in reverse order */
1938 	for (i = QEDE_QUEUE_CNT(edev) - 1; i >= 0; i--) {
1939 		fp = &edev->fp_array[i];
1940 
1941 		/* Stop the Tx Queue(s) */
1942 		if (fp->type & QEDE_FASTPATH_TX) {
1943 			int cos;
1944 
1945 			for_each_cos_in_txq(edev, cos) {
1946 				rc = qede_stop_txq(edev, &fp->txq[cos], i);
1947 				if (rc)
1948 					return rc;
1949 			}
1950 		}
1951 
1952 		/* Stop the Rx Queue */
1953 		if (fp->type & QEDE_FASTPATH_RX) {
1954 			rc = edev->ops->q_rx_stop(cdev, i, fp->rxq->handle);
1955 			if (rc) {
1956 				DP_ERR(edev, "Failed to stop RXQ #%d\n", i);
1957 				return rc;
1958 			}
1959 		}
1960 
1961 		/* Stop the XDP forwarding queue */
1962 		if (fp->type & QEDE_FASTPATH_XDP) {
1963 			rc = qede_stop_txq(edev, fp->xdp_tx, i);
1964 			if (rc)
1965 				return rc;
1966 
1967 			bpf_prog_put(fp->rxq->xdp_prog);
1968 		}
1969 	}
1970 
1971 	/* Stop the vport */
1972 	rc = edev->ops->vport_stop(cdev, 0);
1973 	if (rc)
1974 		DP_ERR(edev, "Failed to stop VPORT\n");
1975 
1976 	return rc;
1977 }
1978 
1979 static int qede_start_txq(struct qede_dev *edev,
1980 			  struct qede_fastpath *fp,
1981 			  struct qede_tx_queue *txq, u8 rss_id, u16 sb_idx)
1982 {
1983 	dma_addr_t phys_table = qed_chain_get_pbl_phys(&txq->tx_pbl);
1984 	u32 page_cnt = qed_chain_get_page_cnt(&txq->tx_pbl);
1985 	struct qed_queue_start_common_params params;
1986 	struct qed_txq_start_ret_params ret_params;
1987 	int rc;
1988 
1989 	memset(&params, 0, sizeof(params));
1990 	memset(&ret_params, 0, sizeof(ret_params));
1991 
1992 	/* Let the XDP queue share the queue-zone with one of the regular txq.
1993 	 * We don't really care about its coalescing.
1994 	 */
1995 	if (txq->is_xdp)
1996 		params.queue_id = QEDE_TXQ_XDP_TO_IDX(edev, txq);
1997 	else
1998 		params.queue_id = txq->index;
1999 
2000 	params.p_sb = fp->sb_info;
2001 	params.sb_idx = sb_idx;
2002 	params.tc = txq->cos;
2003 
2004 	rc = edev->ops->q_tx_start(edev->cdev, rss_id, &params, phys_table,
2005 				   page_cnt, &ret_params);
2006 	if (rc) {
2007 		DP_ERR(edev, "Start TXQ #%d failed %d\n", txq->index, rc);
2008 		return rc;
2009 	}
2010 
2011 	txq->doorbell_addr = ret_params.p_doorbell;
2012 	txq->handle = ret_params.p_handle;
2013 
2014 	/* Determine the FW consumer address associated */
2015 	txq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[sb_idx];
2016 
2017 	/* Prepare the doorbell parameters */
2018 	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST, DB_DEST_XCM);
2019 	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD, DB_AGG_CMD_SET);
2020 	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_VAL_SEL,
2021 		  DQ_XCM_ETH_TX_BD_PROD_CMD);
2022 	txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
2023 
2024 	/* register doorbell with doorbell recovery mechanism */
2025 	rc = edev->ops->common->db_recovery_add(edev->cdev, txq->doorbell_addr,
2026 						&txq->tx_db, DB_REC_WIDTH_32B,
2027 						DB_REC_KERNEL);
2028 
2029 	return rc;
2030 }
2031 
2032 static int qede_start_queues(struct qede_dev *edev, bool clear_stats)
2033 {
2034 	int vlan_removal_en = 1;
2035 	struct qed_dev *cdev = edev->cdev;
2036 	struct qed_dev_info *qed_info = &edev->dev_info.common;
2037 	struct qed_update_vport_params *vport_update_params;
2038 	struct qed_queue_start_common_params q_params;
2039 	struct qed_start_vport_params start = {0};
2040 	int rc, i;
2041 
2042 	if (!edev->num_queues) {
2043 		DP_ERR(edev,
2044 		       "Cannot update V-VPORT as active as there are no Rx queues\n");
2045 		return -EINVAL;
2046 	}
2047 
2048 	vport_update_params = vzalloc(sizeof(*vport_update_params));
2049 	if (!vport_update_params)
2050 		return -ENOMEM;
2051 
2052 	start.handle_ptp_pkts = !!(edev->ptp);
2053 	start.gro_enable = !edev->gro_disable;
2054 	start.mtu = edev->ndev->mtu;
2055 	start.vport_id = 0;
2056 	start.drop_ttl0 = true;
2057 	start.remove_inner_vlan = vlan_removal_en;
2058 	start.clear_stats = clear_stats;
2059 
2060 	rc = edev->ops->vport_start(cdev, &start);
2061 
2062 	if (rc) {
2063 		DP_ERR(edev, "Start V-PORT failed %d\n", rc);
2064 		goto out;
2065 	}
2066 
2067 	DP_VERBOSE(edev, NETIF_MSG_IFUP,
2068 		   "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n",
2069 		   start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en);
2070 
2071 	for_each_queue(i) {
2072 		struct qede_fastpath *fp = &edev->fp_array[i];
2073 		dma_addr_t p_phys_table;
2074 		u32 page_cnt;
2075 
2076 		if (fp->type & QEDE_FASTPATH_RX) {
2077 			struct qed_rxq_start_ret_params ret_params;
2078 			struct qede_rx_queue *rxq = fp->rxq;
2079 			__le16 *val;
2080 
2081 			memset(&ret_params, 0, sizeof(ret_params));
2082 			memset(&q_params, 0, sizeof(q_params));
2083 			q_params.queue_id = rxq->rxq_id;
2084 			q_params.vport_id = 0;
2085 			q_params.p_sb = fp->sb_info;
2086 			q_params.sb_idx = RX_PI;
2087 
2088 			p_phys_table =
2089 			    qed_chain_get_pbl_phys(&rxq->rx_comp_ring);
2090 			page_cnt = qed_chain_get_page_cnt(&rxq->rx_comp_ring);
2091 
2092 			rc = edev->ops->q_rx_start(cdev, i, &q_params,
2093 						   rxq->rx_buf_size,
2094 						   rxq->rx_bd_ring.p_phys_addr,
2095 						   p_phys_table,
2096 						   page_cnt, &ret_params);
2097 			if (rc) {
2098 				DP_ERR(edev, "Start RXQ #%d failed %d\n", i,
2099 				       rc);
2100 				goto out;
2101 			}
2102 
2103 			/* Use the return parameters */
2104 			rxq->hw_rxq_prod_addr = ret_params.p_prod;
2105 			rxq->handle = ret_params.p_handle;
2106 
2107 			val = &fp->sb_info->sb_virt->pi_array[RX_PI];
2108 			rxq->hw_cons_ptr = val;
2109 
2110 			qede_update_rx_prod(edev, rxq);
2111 		}
2112 
2113 		if (fp->type & QEDE_FASTPATH_XDP) {
2114 			rc = qede_start_txq(edev, fp, fp->xdp_tx, i, XDP_PI);
2115 			if (rc)
2116 				goto out;
2117 
2118 			fp->rxq->xdp_prog = bpf_prog_add(edev->xdp_prog, 1);
2119 			if (IS_ERR(fp->rxq->xdp_prog)) {
2120 				rc = PTR_ERR(fp->rxq->xdp_prog);
2121 				fp->rxq->xdp_prog = NULL;
2122 				goto out;
2123 			}
2124 		}
2125 
2126 		if (fp->type & QEDE_FASTPATH_TX) {
2127 			int cos;
2128 
2129 			for_each_cos_in_txq(edev, cos) {
2130 				rc = qede_start_txq(edev, fp, &fp->txq[cos], i,
2131 						    TX_PI(cos));
2132 				if (rc)
2133 					goto out;
2134 			}
2135 		}
2136 	}
2137 
2138 	/* Prepare and send the vport enable */
2139 	vport_update_params->vport_id = start.vport_id;
2140 	vport_update_params->update_vport_active_flg = 1;
2141 	vport_update_params->vport_active_flg = 1;
2142 
2143 	if ((qed_info->b_inter_pf_switch || pci_num_vf(edev->pdev)) &&
2144 	    qed_info->tx_switching) {
2145 		vport_update_params->update_tx_switching_flg = 1;
2146 		vport_update_params->tx_switching_flg = 1;
2147 	}
2148 
2149 	qede_fill_rss_params(edev, &vport_update_params->rss_params,
2150 			     &vport_update_params->update_rss_flg);
2151 
2152 	rc = edev->ops->vport_update(cdev, vport_update_params);
2153 	if (rc)
2154 		DP_ERR(edev, "Update V-PORT failed %d\n", rc);
2155 
2156 out:
2157 	vfree(vport_update_params);
2158 	return rc;
2159 }
2160 
2161 enum qede_unload_mode {
2162 	QEDE_UNLOAD_NORMAL,
2163 	QEDE_UNLOAD_RECOVERY,
2164 };
2165 
2166 static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode,
2167 			bool is_locked)
2168 {
2169 	struct qed_link_params link_params;
2170 	int rc;
2171 
2172 	DP_INFO(edev, "Starting qede unload\n");
2173 
2174 	if (!is_locked)
2175 		__qede_lock(edev);
2176 
2177 	clear_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags);
2178 
2179 	if (mode != QEDE_UNLOAD_RECOVERY)
2180 		edev->state = QEDE_STATE_CLOSED;
2181 
2182 	qede_rdma_dev_event_close(edev);
2183 
2184 	/* Close OS Tx */
2185 	netif_tx_disable(edev->ndev);
2186 	netif_carrier_off(edev->ndev);
2187 
2188 	if (mode != QEDE_UNLOAD_RECOVERY) {
2189 		/* Reset the link */
2190 		memset(&link_params, 0, sizeof(link_params));
2191 		link_params.link_up = false;
2192 		edev->ops->common->set_link(edev->cdev, &link_params);
2193 
2194 		rc = qede_stop_queues(edev);
2195 		if (rc) {
2196 			qede_sync_free_irqs(edev);
2197 			goto out;
2198 		}
2199 
2200 		DP_INFO(edev, "Stopped Queues\n");
2201 	}
2202 
2203 	qede_vlan_mark_nonconfigured(edev);
2204 	edev->ops->fastpath_stop(edev->cdev);
2205 
2206 	if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) {
2207 		qede_poll_for_freeing_arfs_filters(edev);
2208 		qede_free_arfs(edev);
2209 	}
2210 
2211 	/* Release the interrupts */
2212 	qede_sync_free_irqs(edev);
2213 	edev->ops->common->set_fp_int(edev->cdev, 0);
2214 
2215 	qede_napi_disable_remove(edev);
2216 
2217 	if (mode == QEDE_UNLOAD_RECOVERY)
2218 		qede_empty_tx_queues(edev);
2219 
2220 	qede_free_mem_load(edev);
2221 	qede_free_fp_array(edev);
2222 
2223 out:
2224 	if (!is_locked)
2225 		__qede_unlock(edev);
2226 
2227 	if (mode != QEDE_UNLOAD_RECOVERY)
2228 		DP_NOTICE(edev, "Link is down\n");
2229 
2230 	edev->ptp_skip_txts = 0;
2231 
2232 	DP_INFO(edev, "Ending qede unload\n");
2233 }
2234 
2235 enum qede_load_mode {
2236 	QEDE_LOAD_NORMAL,
2237 	QEDE_LOAD_RELOAD,
2238 	QEDE_LOAD_RECOVERY,
2239 };
2240 
2241 static int qede_load(struct qede_dev *edev, enum qede_load_mode mode,
2242 		     bool is_locked)
2243 {
2244 	struct qed_link_params link_params;
2245 	u8 num_tc;
2246 	int rc;
2247 
2248 	DP_INFO(edev, "Starting qede load\n");
2249 
2250 	if (!is_locked)
2251 		__qede_lock(edev);
2252 
2253 	rc = qede_set_num_queues(edev);
2254 	if (rc)
2255 		goto out;
2256 
2257 	rc = qede_alloc_fp_array(edev);
2258 	if (rc)
2259 		goto out;
2260 
2261 	qede_init_fp(edev);
2262 
2263 	rc = qede_alloc_mem_load(edev);
2264 	if (rc)
2265 		goto err1;
2266 	DP_INFO(edev, "Allocated %d Rx, %d Tx queues\n",
2267 		QEDE_RSS_COUNT(edev), QEDE_TSS_COUNT(edev));
2268 
2269 	rc = qede_set_real_num_queues(edev);
2270 	if (rc)
2271 		goto err2;
2272 
2273 	if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) {
2274 		rc = qede_alloc_arfs(edev);
2275 		if (rc)
2276 			DP_NOTICE(edev, "aRFS memory allocation failed\n");
2277 	}
2278 
2279 	qede_napi_add_enable(edev);
2280 	DP_INFO(edev, "Napi added and enabled\n");
2281 
2282 	rc = qede_setup_irqs(edev);
2283 	if (rc)
2284 		goto err3;
2285 	DP_INFO(edev, "Setup IRQs succeeded\n");
2286 
2287 	rc = qede_start_queues(edev, mode != QEDE_LOAD_RELOAD);
2288 	if (rc)
2289 		goto err4;
2290 	DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n");
2291 
2292 	num_tc = netdev_get_num_tc(edev->ndev);
2293 	num_tc = num_tc ? num_tc : edev->dev_info.num_tc;
2294 	qede_setup_tc(edev->ndev, num_tc);
2295 
2296 	/* Program un-configured VLANs */
2297 	qede_configure_vlan_filters(edev);
2298 
2299 	set_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags);
2300 
2301 	/* Ask for link-up using current configuration */
2302 	memset(&link_params, 0, sizeof(link_params));
2303 	link_params.link_up = true;
2304 	edev->ops->common->set_link(edev->cdev, &link_params);
2305 
2306 	edev->state = QEDE_STATE_OPEN;
2307 
2308 	DP_INFO(edev, "Ending successfully qede load\n");
2309 
2310 	goto out;
2311 err4:
2312 	qede_sync_free_irqs(edev);
2313 	memset(&edev->int_info.msix_cnt, 0, sizeof(struct qed_int_info));
2314 err3:
2315 	qede_napi_disable_remove(edev);
2316 err2:
2317 	qede_free_mem_load(edev);
2318 err1:
2319 	edev->ops->common->set_fp_int(edev->cdev, 0);
2320 	qede_free_fp_array(edev);
2321 	edev->num_queues = 0;
2322 	edev->fp_num_tx = 0;
2323 	edev->fp_num_rx = 0;
2324 out:
2325 	if (!is_locked)
2326 		__qede_unlock(edev);
2327 
2328 	return rc;
2329 }
2330 
2331 /* 'func' should be able to run between unload and reload assuming interface
2332  * is actually running, or afterwards in case it's currently DOWN.
2333  */
2334 void qede_reload(struct qede_dev *edev,
2335 		 struct qede_reload_args *args, bool is_locked)
2336 {
2337 	if (!is_locked)
2338 		__qede_lock(edev);
2339 
2340 	/* Since qede_lock is held, internal state wouldn't change even
2341 	 * if netdev state would start transitioning. Check whether current
2342 	 * internal configuration indicates device is up, then reload.
2343 	 */
2344 	if (edev->state == QEDE_STATE_OPEN) {
2345 		qede_unload(edev, QEDE_UNLOAD_NORMAL, true);
2346 		if (args)
2347 			args->func(edev, args);
2348 		qede_load(edev, QEDE_LOAD_RELOAD, true);
2349 
2350 		/* Since no one is going to do it for us, re-configure */
2351 		qede_config_rx_mode(edev->ndev);
2352 	} else if (args) {
2353 		args->func(edev, args);
2354 	}
2355 
2356 	if (!is_locked)
2357 		__qede_unlock(edev);
2358 }
2359 
2360 /* called with rtnl_lock */
2361 static int qede_open(struct net_device *ndev)
2362 {
2363 	struct qede_dev *edev = netdev_priv(ndev);
2364 	int rc;
2365 
2366 	netif_carrier_off(ndev);
2367 
2368 	edev->ops->common->set_power_state(edev->cdev, PCI_D0);
2369 
2370 	rc = qede_load(edev, QEDE_LOAD_NORMAL, false);
2371 	if (rc)
2372 		return rc;
2373 
2374 	udp_tunnel_get_rx_info(ndev);
2375 
2376 	edev->ops->common->update_drv_state(edev->cdev, true);
2377 
2378 	return 0;
2379 }
2380 
2381 static int qede_close(struct net_device *ndev)
2382 {
2383 	struct qede_dev *edev = netdev_priv(ndev);
2384 
2385 	qede_unload(edev, QEDE_UNLOAD_NORMAL, false);
2386 
2387 	edev->ops->common->update_drv_state(edev->cdev, false);
2388 
2389 	return 0;
2390 }
2391 
2392 static void qede_link_update(void *dev, struct qed_link_output *link)
2393 {
2394 	struct qede_dev *edev = dev;
2395 
2396 	if (!test_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags)) {
2397 		DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not ready\n");
2398 		return;
2399 	}
2400 
2401 	if (link->link_up) {
2402 		if (!netif_carrier_ok(edev->ndev)) {
2403 			DP_NOTICE(edev, "Link is up\n");
2404 			netif_tx_start_all_queues(edev->ndev);
2405 			netif_carrier_on(edev->ndev);
2406 			qede_rdma_dev_event_open(edev);
2407 		}
2408 	} else {
2409 		if (netif_carrier_ok(edev->ndev)) {
2410 			DP_NOTICE(edev, "Link is down\n");
2411 			netif_tx_disable(edev->ndev);
2412 			netif_carrier_off(edev->ndev);
2413 			qede_rdma_dev_event_close(edev);
2414 		}
2415 	}
2416 }
2417 
2418 static void qede_schedule_recovery_handler(void *dev)
2419 {
2420 	struct qede_dev *edev = dev;
2421 
2422 	if (edev->state == QEDE_STATE_RECOVERY) {
2423 		DP_NOTICE(edev,
2424 			  "Avoid scheduling a recovery handling since already in recovery state\n");
2425 		return;
2426 	}
2427 
2428 	set_bit(QEDE_SP_RECOVERY, &edev->sp_flags);
2429 	schedule_delayed_work(&edev->sp_task, 0);
2430 
2431 	DP_INFO(edev, "Scheduled a recovery handler\n");
2432 }
2433 
2434 static void qede_recovery_failed(struct qede_dev *edev)
2435 {
2436 	netdev_err(edev->ndev, "Recovery handling has failed. Power cycle is needed.\n");
2437 
2438 	netif_device_detach(edev->ndev);
2439 
2440 	if (edev->cdev)
2441 		edev->ops->common->set_power_state(edev->cdev, PCI_D3hot);
2442 }
2443 
2444 static void qede_recovery_handler(struct qede_dev *edev)
2445 {
2446 	u32 curr_state = edev->state;
2447 	int rc;
2448 
2449 	DP_NOTICE(edev, "Starting a recovery process\n");
2450 
2451 	/* No need to acquire first the qede_lock since is done by qede_sp_task
2452 	 * before calling this function.
2453 	 */
2454 	edev->state = QEDE_STATE_RECOVERY;
2455 
2456 	edev->ops->common->recovery_prolog(edev->cdev);
2457 
2458 	if (curr_state == QEDE_STATE_OPEN)
2459 		qede_unload(edev, QEDE_UNLOAD_RECOVERY, true);
2460 
2461 	__qede_remove(edev->pdev, QEDE_REMOVE_RECOVERY);
2462 
2463 	rc = __qede_probe(edev->pdev, edev->dp_module, edev->dp_level,
2464 			  IS_VF(edev), QEDE_PROBE_RECOVERY);
2465 	if (rc) {
2466 		edev->cdev = NULL;
2467 		goto err;
2468 	}
2469 
2470 	if (curr_state == QEDE_STATE_OPEN) {
2471 		rc = qede_load(edev, QEDE_LOAD_RECOVERY, true);
2472 		if (rc)
2473 			goto err;
2474 
2475 		qede_config_rx_mode(edev->ndev);
2476 		udp_tunnel_get_rx_info(edev->ndev);
2477 	}
2478 
2479 	edev->state = curr_state;
2480 
2481 	DP_NOTICE(edev, "Recovery handling is done\n");
2482 
2483 	return;
2484 
2485 err:
2486 	qede_recovery_failed(edev);
2487 }
2488 
2489 static bool qede_is_txq_full(struct qede_dev *edev, struct qede_tx_queue *txq)
2490 {
2491 	struct netdev_queue *netdev_txq;
2492 
2493 	netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id);
2494 	if (netif_xmit_stopped(netdev_txq))
2495 		return true;
2496 
2497 	return false;
2498 }
2499 
2500 static void qede_get_generic_tlv_data(void *dev, struct qed_generic_tlvs *data)
2501 {
2502 	struct qede_dev *edev = dev;
2503 	struct netdev_hw_addr *ha;
2504 	int i;
2505 
2506 	if (edev->ndev->features & NETIF_F_IP_CSUM)
2507 		data->feat_flags |= QED_TLV_IP_CSUM;
2508 	if (edev->ndev->features & NETIF_F_TSO)
2509 		data->feat_flags |= QED_TLV_LSO;
2510 
2511 	ether_addr_copy(data->mac[0], edev->ndev->dev_addr);
2512 	memset(data->mac[1], 0, ETH_ALEN);
2513 	memset(data->mac[2], 0, ETH_ALEN);
2514 	/* Copy the first two UC macs */
2515 	netif_addr_lock_bh(edev->ndev);
2516 	i = 1;
2517 	netdev_for_each_uc_addr(ha, edev->ndev) {
2518 		ether_addr_copy(data->mac[i++], ha->addr);
2519 		if (i == QED_TLV_MAC_COUNT)
2520 			break;
2521 	}
2522 
2523 	netif_addr_unlock_bh(edev->ndev);
2524 }
2525 
2526 static void qede_get_eth_tlv_data(void *dev, void *data)
2527 {
2528 	struct qed_mfw_tlv_eth *etlv = data;
2529 	struct qede_dev *edev = dev;
2530 	struct qede_fastpath *fp;
2531 	int i;
2532 
2533 	etlv->lso_maxoff_size = 0XFFFF;
2534 	etlv->lso_maxoff_size_set = true;
2535 	etlv->lso_minseg_size = (u16)ETH_TX_LSO_WINDOW_MIN_LEN;
2536 	etlv->lso_minseg_size_set = true;
2537 	etlv->prom_mode = !!(edev->ndev->flags & IFF_PROMISC);
2538 	etlv->prom_mode_set = true;
2539 	etlv->tx_descr_size = QEDE_TSS_COUNT(edev);
2540 	etlv->tx_descr_size_set = true;
2541 	etlv->rx_descr_size = QEDE_RSS_COUNT(edev);
2542 	etlv->rx_descr_size_set = true;
2543 	etlv->iov_offload = QED_MFW_TLV_IOV_OFFLOAD_VEB;
2544 	etlv->iov_offload_set = true;
2545 
2546 	/* Fill information regarding queues; Should be done under the qede
2547 	 * lock to guarantee those don't change beneath our feet.
2548 	 */
2549 	etlv->txqs_empty = true;
2550 	etlv->rxqs_empty = true;
2551 	etlv->num_txqs_full = 0;
2552 	etlv->num_rxqs_full = 0;
2553 
2554 	__qede_lock(edev);
2555 	for_each_queue(i) {
2556 		fp = &edev->fp_array[i];
2557 		if (fp->type & QEDE_FASTPATH_TX) {
2558 			struct qede_tx_queue *txq = QEDE_FP_TC0_TXQ(fp);
2559 
2560 			if (txq->sw_tx_cons != txq->sw_tx_prod)
2561 				etlv->txqs_empty = false;
2562 			if (qede_is_txq_full(edev, txq))
2563 				etlv->num_txqs_full++;
2564 		}
2565 		if (fp->type & QEDE_FASTPATH_RX) {
2566 			if (qede_has_rx_work(fp->rxq))
2567 				etlv->rxqs_empty = false;
2568 
2569 			/* This one is a bit tricky; Firmware might stop
2570 			 * placing packets if ring is not yet full.
2571 			 * Give an approximation.
2572 			 */
2573 			if (le16_to_cpu(*fp->rxq->hw_cons_ptr) -
2574 			    qed_chain_get_cons_idx(&fp->rxq->rx_comp_ring) >
2575 			    RX_RING_SIZE - 100)
2576 				etlv->num_rxqs_full++;
2577 		}
2578 	}
2579 	__qede_unlock(edev);
2580 
2581 	etlv->txqs_empty_set = true;
2582 	etlv->rxqs_empty_set = true;
2583 	etlv->num_txqs_full_set = true;
2584 	etlv->num_rxqs_full_set = true;
2585 }
2586