1 /* QLogic qede NIC Driver 2 * Copyright (c) 2015-2017 QLogic Corporation 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and /or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 */ 32 #include <linux/module.h> 33 #include <linux/pci.h> 34 #include <linux/version.h> 35 #include <linux/device.h> 36 #include <linux/netdevice.h> 37 #include <linux/etherdevice.h> 38 #include <linux/skbuff.h> 39 #include <linux/errno.h> 40 #include <linux/list.h> 41 #include <linux/string.h> 42 #include <linux/dma-mapping.h> 43 #include <linux/interrupt.h> 44 #include <asm/byteorder.h> 45 #include <asm/param.h> 46 #include <linux/io.h> 47 #include <linux/netdev_features.h> 48 #include <linux/udp.h> 49 #include <linux/tcp.h> 50 #include <net/udp_tunnel.h> 51 #include <linux/ip.h> 52 #include <net/ipv6.h> 53 #include <net/tcp.h> 54 #include <linux/if_ether.h> 55 #include <linux/if_vlan.h> 56 #include <linux/pkt_sched.h> 57 #include <linux/ethtool.h> 58 #include <linux/in.h> 59 #include <linux/random.h> 60 #include <net/ip6_checksum.h> 61 #include <linux/bitops.h> 62 #include <linux/vmalloc.h> 63 #include "qede.h" 64 #include "qede_ptp.h" 65 66 static char version[] = 67 "QLogic FastLinQ 4xxxx Ethernet Driver qede " DRV_MODULE_VERSION "\n"; 68 69 MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver"); 70 MODULE_LICENSE("GPL"); 71 MODULE_VERSION(DRV_MODULE_VERSION); 72 73 static uint debug; 74 module_param(debug, uint, 0); 75 MODULE_PARM_DESC(debug, " Default debug msglevel"); 76 77 static const struct qed_eth_ops *qed_ops; 78 79 #define CHIP_NUM_57980S_40 0x1634 80 #define CHIP_NUM_57980S_10 0x1666 81 #define CHIP_NUM_57980S_MF 0x1636 82 #define CHIP_NUM_57980S_100 0x1644 83 #define CHIP_NUM_57980S_50 0x1654 84 #define CHIP_NUM_57980S_25 0x1656 85 #define CHIP_NUM_57980S_IOV 0x1664 86 #define CHIP_NUM_AH 0x8070 87 #define CHIP_NUM_AH_IOV 0x8090 88 89 #ifndef PCI_DEVICE_ID_NX2_57980E 90 #define PCI_DEVICE_ID_57980S_40 CHIP_NUM_57980S_40 91 #define PCI_DEVICE_ID_57980S_10 CHIP_NUM_57980S_10 92 #define PCI_DEVICE_ID_57980S_MF CHIP_NUM_57980S_MF 93 #define PCI_DEVICE_ID_57980S_100 CHIP_NUM_57980S_100 94 #define PCI_DEVICE_ID_57980S_50 CHIP_NUM_57980S_50 95 #define PCI_DEVICE_ID_57980S_25 CHIP_NUM_57980S_25 96 #define PCI_DEVICE_ID_57980S_IOV CHIP_NUM_57980S_IOV 97 #define PCI_DEVICE_ID_AH CHIP_NUM_AH 98 #define PCI_DEVICE_ID_AH_IOV CHIP_NUM_AH_IOV 99 100 #endif 101 102 enum qede_pci_private { 103 QEDE_PRIVATE_PF, 104 QEDE_PRIVATE_VF 105 }; 106 107 static const struct pci_device_id qede_pci_tbl[] = { 108 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF}, 109 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF}, 110 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF}, 111 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF}, 112 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF}, 113 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF}, 114 #ifdef CONFIG_QED_SRIOV 115 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF}, 116 #endif 117 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH), QEDE_PRIVATE_PF}, 118 #ifdef CONFIG_QED_SRIOV 119 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH_IOV), QEDE_PRIVATE_VF}, 120 #endif 121 { 0 } 122 }; 123 124 MODULE_DEVICE_TABLE(pci, qede_pci_tbl); 125 126 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id); 127 128 #define TX_TIMEOUT (5 * HZ) 129 130 /* Utilize last protocol index for XDP */ 131 #define XDP_PI 11 132 133 static void qede_remove(struct pci_dev *pdev); 134 static void qede_shutdown(struct pci_dev *pdev); 135 static void qede_link_update(void *dev, struct qed_link_output *link); 136 static void qede_schedule_recovery_handler(void *dev); 137 static void qede_recovery_handler(struct qede_dev *edev); 138 static void qede_get_eth_tlv_data(void *edev, void *data); 139 static void qede_get_generic_tlv_data(void *edev, 140 struct qed_generic_tlvs *data); 141 142 #ifdef CONFIG_QED_SRIOV 143 static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos, 144 __be16 vlan_proto) 145 { 146 struct qede_dev *edev = netdev_priv(ndev); 147 148 if (vlan > 4095) { 149 DP_NOTICE(edev, "Illegal vlan value %d\n", vlan); 150 return -EINVAL; 151 } 152 153 if (vlan_proto != htons(ETH_P_8021Q)) 154 return -EPROTONOSUPPORT; 155 156 DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n", 157 vlan, vf); 158 159 return edev->ops->iov->set_vlan(edev->cdev, vlan, vf); 160 } 161 162 static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac) 163 { 164 struct qede_dev *edev = netdev_priv(ndev); 165 166 DP_VERBOSE(edev, QED_MSG_IOV, 167 "Setting MAC %02x:%02x:%02x:%02x:%02x:%02x to VF [%d]\n", 168 mac[0], mac[1], mac[2], mac[3], mac[4], mac[5], vfidx); 169 170 if (!is_valid_ether_addr(mac)) { 171 DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n"); 172 return -EINVAL; 173 } 174 175 return edev->ops->iov->set_mac(edev->cdev, mac, vfidx); 176 } 177 178 static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param) 179 { 180 struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev)); 181 struct qed_dev_info *qed_info = &edev->dev_info.common; 182 struct qed_update_vport_params *vport_params; 183 int rc; 184 185 vport_params = vzalloc(sizeof(*vport_params)); 186 if (!vport_params) 187 return -ENOMEM; 188 DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param); 189 190 rc = edev->ops->iov->configure(edev->cdev, num_vfs_param); 191 192 /* Enable/Disable Tx switching for PF */ 193 if ((rc == num_vfs_param) && netif_running(edev->ndev) && 194 !qed_info->b_inter_pf_switch && qed_info->tx_switching) { 195 vport_params->vport_id = 0; 196 vport_params->update_tx_switching_flg = 1; 197 vport_params->tx_switching_flg = num_vfs_param ? 1 : 0; 198 edev->ops->vport_update(edev->cdev, vport_params); 199 } 200 201 vfree(vport_params); 202 return rc; 203 } 204 #endif 205 206 static struct pci_driver qede_pci_driver = { 207 .name = "qede", 208 .id_table = qede_pci_tbl, 209 .probe = qede_probe, 210 .remove = qede_remove, 211 .shutdown = qede_shutdown, 212 #ifdef CONFIG_QED_SRIOV 213 .sriov_configure = qede_sriov_configure, 214 #endif 215 }; 216 217 static struct qed_eth_cb_ops qede_ll_ops = { 218 { 219 #ifdef CONFIG_RFS_ACCEL 220 .arfs_filter_op = qede_arfs_filter_op, 221 #endif 222 .link_update = qede_link_update, 223 .schedule_recovery_handler = qede_schedule_recovery_handler, 224 .get_generic_tlv_data = qede_get_generic_tlv_data, 225 .get_protocol_tlv_data = qede_get_eth_tlv_data, 226 }, 227 .force_mac = qede_force_mac, 228 .ports_update = qede_udp_ports_update, 229 }; 230 231 static int qede_netdev_event(struct notifier_block *this, unsigned long event, 232 void *ptr) 233 { 234 struct net_device *ndev = netdev_notifier_info_to_dev(ptr); 235 struct ethtool_drvinfo drvinfo; 236 struct qede_dev *edev; 237 238 if (event != NETDEV_CHANGENAME && event != NETDEV_CHANGEADDR) 239 goto done; 240 241 /* Check whether this is a qede device */ 242 if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo) 243 goto done; 244 245 memset(&drvinfo, 0, sizeof(drvinfo)); 246 ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo); 247 if (strcmp(drvinfo.driver, "qede")) 248 goto done; 249 edev = netdev_priv(ndev); 250 251 switch (event) { 252 case NETDEV_CHANGENAME: 253 /* Notify qed of the name change */ 254 if (!edev->ops || !edev->ops->common) 255 goto done; 256 edev->ops->common->set_name(edev->cdev, edev->ndev->name); 257 break; 258 case NETDEV_CHANGEADDR: 259 edev = netdev_priv(ndev); 260 qede_rdma_event_changeaddr(edev); 261 break; 262 } 263 264 done: 265 return NOTIFY_DONE; 266 } 267 268 static struct notifier_block qede_netdev_notifier = { 269 .notifier_call = qede_netdev_event, 270 }; 271 272 static 273 int __init qede_init(void) 274 { 275 int ret; 276 277 pr_info("qede_init: %s\n", version); 278 279 qed_ops = qed_get_eth_ops(); 280 if (!qed_ops) { 281 pr_notice("Failed to get qed ethtool operations\n"); 282 return -EINVAL; 283 } 284 285 /* Must register notifier before pci ops, since we might miss 286 * interface rename after pci probe and netdev registration. 287 */ 288 ret = register_netdevice_notifier(&qede_netdev_notifier); 289 if (ret) { 290 pr_notice("Failed to register netdevice_notifier\n"); 291 qed_put_eth_ops(); 292 return -EINVAL; 293 } 294 295 ret = pci_register_driver(&qede_pci_driver); 296 if (ret) { 297 pr_notice("Failed to register driver\n"); 298 unregister_netdevice_notifier(&qede_netdev_notifier); 299 qed_put_eth_ops(); 300 return -EINVAL; 301 } 302 303 return 0; 304 } 305 306 static void __exit qede_cleanup(void) 307 { 308 if (debug & QED_LOG_INFO_MASK) 309 pr_info("qede_cleanup called\n"); 310 311 unregister_netdevice_notifier(&qede_netdev_notifier); 312 pci_unregister_driver(&qede_pci_driver); 313 qed_put_eth_ops(); 314 } 315 316 module_init(qede_init); 317 module_exit(qede_cleanup); 318 319 static int qede_open(struct net_device *ndev); 320 static int qede_close(struct net_device *ndev); 321 322 void qede_fill_by_demand_stats(struct qede_dev *edev) 323 { 324 struct qede_stats_common *p_common = &edev->stats.common; 325 struct qed_eth_stats stats; 326 327 edev->ops->get_vport_stats(edev->cdev, &stats); 328 329 p_common->no_buff_discards = stats.common.no_buff_discards; 330 p_common->packet_too_big_discard = stats.common.packet_too_big_discard; 331 p_common->ttl0_discard = stats.common.ttl0_discard; 332 p_common->rx_ucast_bytes = stats.common.rx_ucast_bytes; 333 p_common->rx_mcast_bytes = stats.common.rx_mcast_bytes; 334 p_common->rx_bcast_bytes = stats.common.rx_bcast_bytes; 335 p_common->rx_ucast_pkts = stats.common.rx_ucast_pkts; 336 p_common->rx_mcast_pkts = stats.common.rx_mcast_pkts; 337 p_common->rx_bcast_pkts = stats.common.rx_bcast_pkts; 338 p_common->mftag_filter_discards = stats.common.mftag_filter_discards; 339 p_common->mac_filter_discards = stats.common.mac_filter_discards; 340 p_common->gft_filter_drop = stats.common.gft_filter_drop; 341 342 p_common->tx_ucast_bytes = stats.common.tx_ucast_bytes; 343 p_common->tx_mcast_bytes = stats.common.tx_mcast_bytes; 344 p_common->tx_bcast_bytes = stats.common.tx_bcast_bytes; 345 p_common->tx_ucast_pkts = stats.common.tx_ucast_pkts; 346 p_common->tx_mcast_pkts = stats.common.tx_mcast_pkts; 347 p_common->tx_bcast_pkts = stats.common.tx_bcast_pkts; 348 p_common->tx_err_drop_pkts = stats.common.tx_err_drop_pkts; 349 p_common->coalesced_pkts = stats.common.tpa_coalesced_pkts; 350 p_common->coalesced_events = stats.common.tpa_coalesced_events; 351 p_common->coalesced_aborts_num = stats.common.tpa_aborts_num; 352 p_common->non_coalesced_pkts = stats.common.tpa_not_coalesced_pkts; 353 p_common->coalesced_bytes = stats.common.tpa_coalesced_bytes; 354 355 p_common->rx_64_byte_packets = stats.common.rx_64_byte_packets; 356 p_common->rx_65_to_127_byte_packets = 357 stats.common.rx_65_to_127_byte_packets; 358 p_common->rx_128_to_255_byte_packets = 359 stats.common.rx_128_to_255_byte_packets; 360 p_common->rx_256_to_511_byte_packets = 361 stats.common.rx_256_to_511_byte_packets; 362 p_common->rx_512_to_1023_byte_packets = 363 stats.common.rx_512_to_1023_byte_packets; 364 p_common->rx_1024_to_1518_byte_packets = 365 stats.common.rx_1024_to_1518_byte_packets; 366 p_common->rx_crc_errors = stats.common.rx_crc_errors; 367 p_common->rx_mac_crtl_frames = stats.common.rx_mac_crtl_frames; 368 p_common->rx_pause_frames = stats.common.rx_pause_frames; 369 p_common->rx_pfc_frames = stats.common.rx_pfc_frames; 370 p_common->rx_align_errors = stats.common.rx_align_errors; 371 p_common->rx_carrier_errors = stats.common.rx_carrier_errors; 372 p_common->rx_oversize_packets = stats.common.rx_oversize_packets; 373 p_common->rx_jabbers = stats.common.rx_jabbers; 374 p_common->rx_undersize_packets = stats.common.rx_undersize_packets; 375 p_common->rx_fragments = stats.common.rx_fragments; 376 p_common->tx_64_byte_packets = stats.common.tx_64_byte_packets; 377 p_common->tx_65_to_127_byte_packets = 378 stats.common.tx_65_to_127_byte_packets; 379 p_common->tx_128_to_255_byte_packets = 380 stats.common.tx_128_to_255_byte_packets; 381 p_common->tx_256_to_511_byte_packets = 382 stats.common.tx_256_to_511_byte_packets; 383 p_common->tx_512_to_1023_byte_packets = 384 stats.common.tx_512_to_1023_byte_packets; 385 p_common->tx_1024_to_1518_byte_packets = 386 stats.common.tx_1024_to_1518_byte_packets; 387 p_common->tx_pause_frames = stats.common.tx_pause_frames; 388 p_common->tx_pfc_frames = stats.common.tx_pfc_frames; 389 p_common->brb_truncates = stats.common.brb_truncates; 390 p_common->brb_discards = stats.common.brb_discards; 391 p_common->tx_mac_ctrl_frames = stats.common.tx_mac_ctrl_frames; 392 p_common->link_change_count = stats.common.link_change_count; 393 p_common->ptp_skip_txts = edev->ptp_skip_txts; 394 395 if (QEDE_IS_BB(edev)) { 396 struct qede_stats_bb *p_bb = &edev->stats.bb; 397 398 p_bb->rx_1519_to_1522_byte_packets = 399 stats.bb.rx_1519_to_1522_byte_packets; 400 p_bb->rx_1519_to_2047_byte_packets = 401 stats.bb.rx_1519_to_2047_byte_packets; 402 p_bb->rx_2048_to_4095_byte_packets = 403 stats.bb.rx_2048_to_4095_byte_packets; 404 p_bb->rx_4096_to_9216_byte_packets = 405 stats.bb.rx_4096_to_9216_byte_packets; 406 p_bb->rx_9217_to_16383_byte_packets = 407 stats.bb.rx_9217_to_16383_byte_packets; 408 p_bb->tx_1519_to_2047_byte_packets = 409 stats.bb.tx_1519_to_2047_byte_packets; 410 p_bb->tx_2048_to_4095_byte_packets = 411 stats.bb.tx_2048_to_4095_byte_packets; 412 p_bb->tx_4096_to_9216_byte_packets = 413 stats.bb.tx_4096_to_9216_byte_packets; 414 p_bb->tx_9217_to_16383_byte_packets = 415 stats.bb.tx_9217_to_16383_byte_packets; 416 p_bb->tx_lpi_entry_count = stats.bb.tx_lpi_entry_count; 417 p_bb->tx_total_collisions = stats.bb.tx_total_collisions; 418 } else { 419 struct qede_stats_ah *p_ah = &edev->stats.ah; 420 421 p_ah->rx_1519_to_max_byte_packets = 422 stats.ah.rx_1519_to_max_byte_packets; 423 p_ah->tx_1519_to_max_byte_packets = 424 stats.ah.tx_1519_to_max_byte_packets; 425 } 426 } 427 428 static void qede_get_stats64(struct net_device *dev, 429 struct rtnl_link_stats64 *stats) 430 { 431 struct qede_dev *edev = netdev_priv(dev); 432 struct qede_stats_common *p_common; 433 434 qede_fill_by_demand_stats(edev); 435 p_common = &edev->stats.common; 436 437 stats->rx_packets = p_common->rx_ucast_pkts + p_common->rx_mcast_pkts + 438 p_common->rx_bcast_pkts; 439 stats->tx_packets = p_common->tx_ucast_pkts + p_common->tx_mcast_pkts + 440 p_common->tx_bcast_pkts; 441 442 stats->rx_bytes = p_common->rx_ucast_bytes + p_common->rx_mcast_bytes + 443 p_common->rx_bcast_bytes; 444 stats->tx_bytes = p_common->tx_ucast_bytes + p_common->tx_mcast_bytes + 445 p_common->tx_bcast_bytes; 446 447 stats->tx_errors = p_common->tx_err_drop_pkts; 448 stats->multicast = p_common->rx_mcast_pkts + p_common->rx_bcast_pkts; 449 450 stats->rx_fifo_errors = p_common->no_buff_discards; 451 452 if (QEDE_IS_BB(edev)) 453 stats->collisions = edev->stats.bb.tx_total_collisions; 454 stats->rx_crc_errors = p_common->rx_crc_errors; 455 stats->rx_frame_errors = p_common->rx_align_errors; 456 } 457 458 #ifdef CONFIG_QED_SRIOV 459 static int qede_get_vf_config(struct net_device *dev, int vfidx, 460 struct ifla_vf_info *ivi) 461 { 462 struct qede_dev *edev = netdev_priv(dev); 463 464 if (!edev->ops) 465 return -EINVAL; 466 467 return edev->ops->iov->get_config(edev->cdev, vfidx, ivi); 468 } 469 470 static int qede_set_vf_rate(struct net_device *dev, int vfidx, 471 int min_tx_rate, int max_tx_rate) 472 { 473 struct qede_dev *edev = netdev_priv(dev); 474 475 return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate, 476 max_tx_rate); 477 } 478 479 static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val) 480 { 481 struct qede_dev *edev = netdev_priv(dev); 482 483 if (!edev->ops) 484 return -EINVAL; 485 486 return edev->ops->iov->set_spoof(edev->cdev, vfidx, val); 487 } 488 489 static int qede_set_vf_link_state(struct net_device *dev, int vfidx, 490 int link_state) 491 { 492 struct qede_dev *edev = netdev_priv(dev); 493 494 if (!edev->ops) 495 return -EINVAL; 496 497 return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state); 498 } 499 500 static int qede_set_vf_trust(struct net_device *dev, int vfidx, bool setting) 501 { 502 struct qede_dev *edev = netdev_priv(dev); 503 504 if (!edev->ops) 505 return -EINVAL; 506 507 return edev->ops->iov->set_trust(edev->cdev, vfidx, setting); 508 } 509 #endif 510 511 static int qede_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 512 { 513 struct qede_dev *edev = netdev_priv(dev); 514 515 if (!netif_running(dev)) 516 return -EAGAIN; 517 518 switch (cmd) { 519 case SIOCSHWTSTAMP: 520 return qede_ptp_hw_ts(edev, ifr); 521 default: 522 DP_VERBOSE(edev, QED_MSG_DEBUG, 523 "default IOCTL cmd 0x%x\n", cmd); 524 return -EOPNOTSUPP; 525 } 526 527 return 0; 528 } 529 530 static int qede_setup_tc(struct net_device *ndev, u8 num_tc) 531 { 532 struct qede_dev *edev = netdev_priv(ndev); 533 int cos, count, offset; 534 535 if (num_tc > edev->dev_info.num_tc) 536 return -EINVAL; 537 538 netdev_reset_tc(ndev); 539 netdev_set_num_tc(ndev, num_tc); 540 541 for_each_cos_in_txq(edev, cos) { 542 count = QEDE_TSS_COUNT(edev); 543 offset = cos * QEDE_TSS_COUNT(edev); 544 netdev_set_tc_queue(ndev, cos, count, offset); 545 } 546 547 return 0; 548 } 549 550 static int 551 qede_set_flower(struct qede_dev *edev, struct flow_cls_offload *f, 552 __be16 proto) 553 { 554 switch (f->command) { 555 case FLOW_CLS_REPLACE: 556 return qede_add_tc_flower_fltr(edev, proto, f); 557 case FLOW_CLS_DESTROY: 558 return qede_delete_flow_filter(edev, f->cookie); 559 default: 560 return -EOPNOTSUPP; 561 } 562 } 563 564 static int qede_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 565 void *cb_priv) 566 { 567 struct flow_cls_offload *f; 568 struct qede_dev *edev = cb_priv; 569 570 if (!tc_cls_can_offload_and_chain0(edev->ndev, type_data)) 571 return -EOPNOTSUPP; 572 573 switch (type) { 574 case TC_SETUP_CLSFLOWER: 575 f = type_data; 576 return qede_set_flower(edev, f, f->common.protocol); 577 default: 578 return -EOPNOTSUPP; 579 } 580 } 581 582 static LIST_HEAD(qede_block_cb_list); 583 584 static int 585 qede_setup_tc_offload(struct net_device *dev, enum tc_setup_type type, 586 void *type_data) 587 { 588 struct qede_dev *edev = netdev_priv(dev); 589 struct tc_mqprio_qopt *mqprio; 590 591 switch (type) { 592 case TC_SETUP_BLOCK: 593 return flow_block_cb_setup_simple(type_data, 594 &qede_block_cb_list, 595 qede_setup_tc_block_cb, 596 edev, edev, true); 597 case TC_SETUP_QDISC_MQPRIO: 598 mqprio = type_data; 599 600 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; 601 return qede_setup_tc(dev, mqprio->num_tc); 602 default: 603 return -EOPNOTSUPP; 604 } 605 } 606 607 static const struct net_device_ops qede_netdev_ops = { 608 .ndo_open = qede_open, 609 .ndo_stop = qede_close, 610 .ndo_start_xmit = qede_start_xmit, 611 .ndo_select_queue = qede_select_queue, 612 .ndo_set_rx_mode = qede_set_rx_mode, 613 .ndo_set_mac_address = qede_set_mac_addr, 614 .ndo_validate_addr = eth_validate_addr, 615 .ndo_change_mtu = qede_change_mtu, 616 .ndo_do_ioctl = qede_ioctl, 617 #ifdef CONFIG_QED_SRIOV 618 .ndo_set_vf_mac = qede_set_vf_mac, 619 .ndo_set_vf_vlan = qede_set_vf_vlan, 620 .ndo_set_vf_trust = qede_set_vf_trust, 621 #endif 622 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid, 623 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid, 624 .ndo_fix_features = qede_fix_features, 625 .ndo_set_features = qede_set_features, 626 .ndo_get_stats64 = qede_get_stats64, 627 #ifdef CONFIG_QED_SRIOV 628 .ndo_set_vf_link_state = qede_set_vf_link_state, 629 .ndo_set_vf_spoofchk = qede_set_vf_spoofchk, 630 .ndo_get_vf_config = qede_get_vf_config, 631 .ndo_set_vf_rate = qede_set_vf_rate, 632 #endif 633 .ndo_udp_tunnel_add = qede_udp_tunnel_add, 634 .ndo_udp_tunnel_del = qede_udp_tunnel_del, 635 .ndo_features_check = qede_features_check, 636 .ndo_bpf = qede_xdp, 637 #ifdef CONFIG_RFS_ACCEL 638 .ndo_rx_flow_steer = qede_rx_flow_steer, 639 #endif 640 .ndo_setup_tc = qede_setup_tc_offload, 641 }; 642 643 static const struct net_device_ops qede_netdev_vf_ops = { 644 .ndo_open = qede_open, 645 .ndo_stop = qede_close, 646 .ndo_start_xmit = qede_start_xmit, 647 .ndo_select_queue = qede_select_queue, 648 .ndo_set_rx_mode = qede_set_rx_mode, 649 .ndo_set_mac_address = qede_set_mac_addr, 650 .ndo_validate_addr = eth_validate_addr, 651 .ndo_change_mtu = qede_change_mtu, 652 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid, 653 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid, 654 .ndo_fix_features = qede_fix_features, 655 .ndo_set_features = qede_set_features, 656 .ndo_get_stats64 = qede_get_stats64, 657 .ndo_udp_tunnel_add = qede_udp_tunnel_add, 658 .ndo_udp_tunnel_del = qede_udp_tunnel_del, 659 .ndo_features_check = qede_features_check, 660 }; 661 662 static const struct net_device_ops qede_netdev_vf_xdp_ops = { 663 .ndo_open = qede_open, 664 .ndo_stop = qede_close, 665 .ndo_start_xmit = qede_start_xmit, 666 .ndo_select_queue = qede_select_queue, 667 .ndo_set_rx_mode = qede_set_rx_mode, 668 .ndo_set_mac_address = qede_set_mac_addr, 669 .ndo_validate_addr = eth_validate_addr, 670 .ndo_change_mtu = qede_change_mtu, 671 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid, 672 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid, 673 .ndo_fix_features = qede_fix_features, 674 .ndo_set_features = qede_set_features, 675 .ndo_get_stats64 = qede_get_stats64, 676 .ndo_udp_tunnel_add = qede_udp_tunnel_add, 677 .ndo_udp_tunnel_del = qede_udp_tunnel_del, 678 .ndo_features_check = qede_features_check, 679 .ndo_bpf = qede_xdp, 680 }; 681 682 /* ------------------------------------------------------------------------- 683 * START OF PROBE / REMOVE 684 * ------------------------------------------------------------------------- 685 */ 686 687 static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev, 688 struct pci_dev *pdev, 689 struct qed_dev_eth_info *info, 690 u32 dp_module, u8 dp_level) 691 { 692 struct net_device *ndev; 693 struct qede_dev *edev; 694 695 ndev = alloc_etherdev_mqs(sizeof(*edev), 696 info->num_queues * info->num_tc, 697 info->num_queues); 698 if (!ndev) { 699 pr_err("etherdev allocation failed\n"); 700 return NULL; 701 } 702 703 edev = netdev_priv(ndev); 704 edev->ndev = ndev; 705 edev->cdev = cdev; 706 edev->pdev = pdev; 707 edev->dp_module = dp_module; 708 edev->dp_level = dp_level; 709 edev->ops = qed_ops; 710 edev->q_num_rx_buffers = NUM_RX_BDS_DEF; 711 edev->q_num_tx_buffers = NUM_TX_BDS_DEF; 712 713 DP_INFO(edev, "Allocated netdev with %d tx queues and %d rx queues\n", 714 info->num_queues, info->num_queues); 715 716 SET_NETDEV_DEV(ndev, &pdev->dev); 717 718 memset(&edev->stats, 0, sizeof(edev->stats)); 719 memcpy(&edev->dev_info, info, sizeof(*info)); 720 721 /* As ethtool doesn't have the ability to show WoL behavior as 722 * 'default', if device supports it declare it's enabled. 723 */ 724 if (edev->dev_info.common.wol_support) 725 edev->wol_enabled = true; 726 727 INIT_LIST_HEAD(&edev->vlan_list); 728 729 return edev; 730 } 731 732 static void qede_init_ndev(struct qede_dev *edev) 733 { 734 struct net_device *ndev = edev->ndev; 735 struct pci_dev *pdev = edev->pdev; 736 bool udp_tunnel_enable = false; 737 netdev_features_t hw_features; 738 739 pci_set_drvdata(pdev, ndev); 740 741 ndev->mem_start = edev->dev_info.common.pci_mem_start; 742 ndev->base_addr = ndev->mem_start; 743 ndev->mem_end = edev->dev_info.common.pci_mem_end; 744 ndev->irq = edev->dev_info.common.pci_irq; 745 746 ndev->watchdog_timeo = TX_TIMEOUT; 747 748 if (IS_VF(edev)) { 749 if (edev->dev_info.xdp_supported) 750 ndev->netdev_ops = &qede_netdev_vf_xdp_ops; 751 else 752 ndev->netdev_ops = &qede_netdev_vf_ops; 753 } else { 754 ndev->netdev_ops = &qede_netdev_ops; 755 } 756 757 qede_set_ethtool_ops(ndev); 758 759 ndev->priv_flags |= IFF_UNICAST_FLT; 760 761 /* user-changeble features */ 762 hw_features = NETIF_F_GRO | NETIF_F_GRO_HW | NETIF_F_SG | 763 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 764 NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_HW_TC; 765 766 if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) 767 hw_features |= NETIF_F_NTUPLE; 768 769 if (edev->dev_info.common.vxlan_enable || 770 edev->dev_info.common.geneve_enable) 771 udp_tunnel_enable = true; 772 773 if (udp_tunnel_enable || edev->dev_info.common.gre_enable) { 774 hw_features |= NETIF_F_TSO_ECN; 775 ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 776 NETIF_F_SG | NETIF_F_TSO | 777 NETIF_F_TSO_ECN | NETIF_F_TSO6 | 778 NETIF_F_RXCSUM; 779 } 780 781 if (udp_tunnel_enable) { 782 hw_features |= (NETIF_F_GSO_UDP_TUNNEL | 783 NETIF_F_GSO_UDP_TUNNEL_CSUM); 784 ndev->hw_enc_features |= (NETIF_F_GSO_UDP_TUNNEL | 785 NETIF_F_GSO_UDP_TUNNEL_CSUM); 786 } 787 788 if (edev->dev_info.common.gre_enable) { 789 hw_features |= (NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM); 790 ndev->hw_enc_features |= (NETIF_F_GSO_GRE | 791 NETIF_F_GSO_GRE_CSUM); 792 } 793 794 ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM | 795 NETIF_F_HIGHDMA; 796 ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM | 797 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA | 798 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX; 799 800 ndev->hw_features = hw_features; 801 802 /* MTU range: 46 - 9600 */ 803 ndev->min_mtu = ETH_ZLEN - ETH_HLEN; 804 ndev->max_mtu = QEDE_MAX_JUMBO_PACKET_SIZE; 805 806 /* Set network device HW mac */ 807 ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac); 808 809 ndev->mtu = edev->dev_info.common.mtu; 810 } 811 812 /* This function converts from 32b param to two params of level and module 813 * Input 32b decoding: 814 * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the 815 * 'happy' flow, e.g. memory allocation failed. 816 * b30 - enable all INFO prints. INFO prints are for major steps in the flow 817 * and provide important parameters. 818 * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that 819 * module. VERBOSE prints are for tracking the specific flow in low level. 820 * 821 * Notice that the level should be that of the lowest required logs. 822 */ 823 void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level) 824 { 825 *p_dp_level = QED_LEVEL_NOTICE; 826 *p_dp_module = 0; 827 828 if (debug & QED_LOG_VERBOSE_MASK) { 829 *p_dp_level = QED_LEVEL_VERBOSE; 830 *p_dp_module = (debug & 0x3FFFFFFF); 831 } else if (debug & QED_LOG_INFO_MASK) { 832 *p_dp_level = QED_LEVEL_INFO; 833 } else if (debug & QED_LOG_NOTICE_MASK) { 834 *p_dp_level = QED_LEVEL_NOTICE; 835 } 836 } 837 838 static void qede_free_fp_array(struct qede_dev *edev) 839 { 840 if (edev->fp_array) { 841 struct qede_fastpath *fp; 842 int i; 843 844 for_each_queue(i) { 845 fp = &edev->fp_array[i]; 846 847 kfree(fp->sb_info); 848 /* Handle mem alloc failure case where qede_init_fp 849 * didn't register xdp_rxq_info yet. 850 * Implicit only (fp->type & QEDE_FASTPATH_RX) 851 */ 852 if (fp->rxq && xdp_rxq_info_is_reg(&fp->rxq->xdp_rxq)) 853 xdp_rxq_info_unreg(&fp->rxq->xdp_rxq); 854 kfree(fp->rxq); 855 kfree(fp->xdp_tx); 856 kfree(fp->txq); 857 } 858 kfree(edev->fp_array); 859 } 860 861 edev->num_queues = 0; 862 edev->fp_num_tx = 0; 863 edev->fp_num_rx = 0; 864 } 865 866 static int qede_alloc_fp_array(struct qede_dev *edev) 867 { 868 u8 fp_combined, fp_rx = edev->fp_num_rx; 869 struct qede_fastpath *fp; 870 int i; 871 872 edev->fp_array = kcalloc(QEDE_QUEUE_CNT(edev), 873 sizeof(*edev->fp_array), GFP_KERNEL); 874 if (!edev->fp_array) { 875 DP_NOTICE(edev, "fp array allocation failed\n"); 876 goto err; 877 } 878 879 fp_combined = QEDE_QUEUE_CNT(edev) - fp_rx - edev->fp_num_tx; 880 881 /* Allocate the FP elements for Rx queues followed by combined and then 882 * the Tx. This ordering should be maintained so that the respective 883 * queues (Rx or Tx) will be together in the fastpath array and the 884 * associated ids will be sequential. 885 */ 886 for_each_queue(i) { 887 fp = &edev->fp_array[i]; 888 889 fp->sb_info = kzalloc(sizeof(*fp->sb_info), GFP_KERNEL); 890 if (!fp->sb_info) { 891 DP_NOTICE(edev, "sb info struct allocation failed\n"); 892 goto err; 893 } 894 895 if (fp_rx) { 896 fp->type = QEDE_FASTPATH_RX; 897 fp_rx--; 898 } else if (fp_combined) { 899 fp->type = QEDE_FASTPATH_COMBINED; 900 fp_combined--; 901 } else { 902 fp->type = QEDE_FASTPATH_TX; 903 } 904 905 if (fp->type & QEDE_FASTPATH_TX) { 906 fp->txq = kcalloc(edev->dev_info.num_tc, 907 sizeof(*fp->txq), GFP_KERNEL); 908 if (!fp->txq) 909 goto err; 910 } 911 912 if (fp->type & QEDE_FASTPATH_RX) { 913 fp->rxq = kzalloc(sizeof(*fp->rxq), GFP_KERNEL); 914 if (!fp->rxq) 915 goto err; 916 917 if (edev->xdp_prog) { 918 fp->xdp_tx = kzalloc(sizeof(*fp->xdp_tx), 919 GFP_KERNEL); 920 if (!fp->xdp_tx) 921 goto err; 922 fp->type |= QEDE_FASTPATH_XDP; 923 } 924 } 925 } 926 927 return 0; 928 err: 929 qede_free_fp_array(edev); 930 return -ENOMEM; 931 } 932 933 /* The qede lock is used to protect driver state change and driver flows that 934 * are not reentrant. 935 */ 936 void __qede_lock(struct qede_dev *edev) 937 { 938 mutex_lock(&edev->qede_lock); 939 } 940 941 void __qede_unlock(struct qede_dev *edev) 942 { 943 mutex_unlock(&edev->qede_lock); 944 } 945 946 /* This version of the lock should be used when acquiring the RTNL lock is also 947 * needed in addition to the internal qede lock. 948 */ 949 static void qede_lock(struct qede_dev *edev) 950 { 951 rtnl_lock(); 952 __qede_lock(edev); 953 } 954 955 static void qede_unlock(struct qede_dev *edev) 956 { 957 __qede_unlock(edev); 958 rtnl_unlock(); 959 } 960 961 static void qede_sp_task(struct work_struct *work) 962 { 963 struct qede_dev *edev = container_of(work, struct qede_dev, 964 sp_task.work); 965 966 /* The locking scheme depends on the specific flag: 967 * In case of QEDE_SP_RECOVERY, acquiring the RTNL lock is required to 968 * ensure that ongoing flows are ended and new ones are not started. 969 * In other cases - only the internal qede lock should be acquired. 970 */ 971 972 if (test_and_clear_bit(QEDE_SP_RECOVERY, &edev->sp_flags)) { 973 #ifdef CONFIG_QED_SRIOV 974 /* SRIOV must be disabled outside the lock to avoid a deadlock. 975 * The recovery of the active VFs is currently not supported. 976 */ 977 qede_sriov_configure(edev->pdev, 0); 978 #endif 979 qede_lock(edev); 980 qede_recovery_handler(edev); 981 qede_unlock(edev); 982 } 983 984 __qede_lock(edev); 985 986 if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags)) 987 if (edev->state == QEDE_STATE_OPEN) 988 qede_config_rx_mode(edev->ndev); 989 990 #ifdef CONFIG_RFS_ACCEL 991 if (test_and_clear_bit(QEDE_SP_ARFS_CONFIG, &edev->sp_flags)) { 992 if (edev->state == QEDE_STATE_OPEN) 993 qede_process_arfs_filters(edev, false); 994 } 995 #endif 996 __qede_unlock(edev); 997 } 998 999 static void qede_update_pf_params(struct qed_dev *cdev) 1000 { 1001 struct qed_pf_params pf_params; 1002 u16 num_cons; 1003 1004 /* 64 rx + 64 tx + 64 XDP */ 1005 memset(&pf_params, 0, sizeof(struct qed_pf_params)); 1006 1007 /* 1 rx + 1 xdp + max tx cos */ 1008 num_cons = QED_MIN_L2_CONS; 1009 1010 pf_params.eth_pf_params.num_cons = (MAX_SB_PER_PF_MIMD - 1) * num_cons; 1011 1012 /* Same for VFs - make sure they'll have sufficient connections 1013 * to support XDP Tx queues. 1014 */ 1015 pf_params.eth_pf_params.num_vf_cons = 48; 1016 1017 pf_params.eth_pf_params.num_arfs_filters = QEDE_RFS_MAX_FLTR; 1018 qed_ops->common->update_pf_params(cdev, &pf_params); 1019 } 1020 1021 #define QEDE_FW_VER_STR_SIZE 80 1022 1023 static void qede_log_probe(struct qede_dev *edev) 1024 { 1025 struct qed_dev_info *p_dev_info = &edev->dev_info.common; 1026 u8 buf[QEDE_FW_VER_STR_SIZE]; 1027 size_t left_size; 1028 1029 snprintf(buf, QEDE_FW_VER_STR_SIZE, 1030 "Storm FW %d.%d.%d.%d, Management FW %d.%d.%d.%d", 1031 p_dev_info->fw_major, p_dev_info->fw_minor, p_dev_info->fw_rev, 1032 p_dev_info->fw_eng, 1033 (p_dev_info->mfw_rev & QED_MFW_VERSION_3_MASK) >> 1034 QED_MFW_VERSION_3_OFFSET, 1035 (p_dev_info->mfw_rev & QED_MFW_VERSION_2_MASK) >> 1036 QED_MFW_VERSION_2_OFFSET, 1037 (p_dev_info->mfw_rev & QED_MFW_VERSION_1_MASK) >> 1038 QED_MFW_VERSION_1_OFFSET, 1039 (p_dev_info->mfw_rev & QED_MFW_VERSION_0_MASK) >> 1040 QED_MFW_VERSION_0_OFFSET); 1041 1042 left_size = QEDE_FW_VER_STR_SIZE - strlen(buf); 1043 if (p_dev_info->mbi_version && left_size) 1044 snprintf(buf + strlen(buf), left_size, 1045 " [MBI %d.%d.%d]", 1046 (p_dev_info->mbi_version & QED_MBI_VERSION_2_MASK) >> 1047 QED_MBI_VERSION_2_OFFSET, 1048 (p_dev_info->mbi_version & QED_MBI_VERSION_1_MASK) >> 1049 QED_MBI_VERSION_1_OFFSET, 1050 (p_dev_info->mbi_version & QED_MBI_VERSION_0_MASK) >> 1051 QED_MBI_VERSION_0_OFFSET); 1052 1053 pr_info("qede %02x:%02x.%02x: %s [%s]\n", edev->pdev->bus->number, 1054 PCI_SLOT(edev->pdev->devfn), PCI_FUNC(edev->pdev->devfn), 1055 buf, edev->ndev->name); 1056 } 1057 1058 enum qede_probe_mode { 1059 QEDE_PROBE_NORMAL, 1060 QEDE_PROBE_RECOVERY, 1061 }; 1062 1063 static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level, 1064 bool is_vf, enum qede_probe_mode mode) 1065 { 1066 struct qed_probe_params probe_params; 1067 struct qed_slowpath_params sp_params; 1068 struct qed_dev_eth_info dev_info; 1069 struct qede_dev *edev; 1070 struct qed_dev *cdev; 1071 int rc; 1072 1073 if (unlikely(dp_level & QED_LEVEL_INFO)) 1074 pr_notice("Starting qede probe\n"); 1075 1076 memset(&probe_params, 0, sizeof(probe_params)); 1077 probe_params.protocol = QED_PROTOCOL_ETH; 1078 probe_params.dp_module = dp_module; 1079 probe_params.dp_level = dp_level; 1080 probe_params.is_vf = is_vf; 1081 probe_params.recov_in_prog = (mode == QEDE_PROBE_RECOVERY); 1082 cdev = qed_ops->common->probe(pdev, &probe_params); 1083 if (!cdev) { 1084 rc = -ENODEV; 1085 goto err0; 1086 } 1087 1088 qede_update_pf_params(cdev); 1089 1090 /* Start the Slowpath-process */ 1091 memset(&sp_params, 0, sizeof(sp_params)); 1092 sp_params.int_mode = QED_INT_MODE_MSIX; 1093 sp_params.drv_major = QEDE_MAJOR_VERSION; 1094 sp_params.drv_minor = QEDE_MINOR_VERSION; 1095 sp_params.drv_rev = QEDE_REVISION_VERSION; 1096 sp_params.drv_eng = QEDE_ENGINEERING_VERSION; 1097 strlcpy(sp_params.name, "qede LAN", QED_DRV_VER_STR_SIZE); 1098 rc = qed_ops->common->slowpath_start(cdev, &sp_params); 1099 if (rc) { 1100 pr_notice("Cannot start slowpath\n"); 1101 goto err1; 1102 } 1103 1104 /* Learn information crucial for qede to progress */ 1105 rc = qed_ops->fill_dev_info(cdev, &dev_info); 1106 if (rc) 1107 goto err2; 1108 1109 if (mode != QEDE_PROBE_RECOVERY) { 1110 edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module, 1111 dp_level); 1112 if (!edev) { 1113 rc = -ENOMEM; 1114 goto err2; 1115 } 1116 } else { 1117 struct net_device *ndev = pci_get_drvdata(pdev); 1118 1119 edev = netdev_priv(ndev); 1120 edev->cdev = cdev; 1121 memset(&edev->stats, 0, sizeof(edev->stats)); 1122 memcpy(&edev->dev_info, &dev_info, sizeof(dev_info)); 1123 } 1124 1125 if (is_vf) 1126 set_bit(QEDE_FLAGS_IS_VF, &edev->flags); 1127 1128 qede_init_ndev(edev); 1129 1130 rc = qede_rdma_dev_add(edev, (mode == QEDE_PROBE_RECOVERY)); 1131 if (rc) 1132 goto err3; 1133 1134 if (mode != QEDE_PROBE_RECOVERY) { 1135 /* Prepare the lock prior to the registration of the netdev, 1136 * as once it's registered we might reach flows requiring it 1137 * [it's even possible to reach a flow needing it directly 1138 * from there, although it's unlikely]. 1139 */ 1140 INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task); 1141 mutex_init(&edev->qede_lock); 1142 1143 rc = register_netdev(edev->ndev); 1144 if (rc) { 1145 DP_NOTICE(edev, "Cannot register net-device\n"); 1146 goto err4; 1147 } 1148 } 1149 1150 edev->ops->common->set_name(cdev, edev->ndev->name); 1151 1152 /* PTP not supported on VFs */ 1153 if (!is_vf) 1154 qede_ptp_enable(edev, (mode == QEDE_PROBE_NORMAL)); 1155 1156 edev->ops->register_ops(cdev, &qede_ll_ops, edev); 1157 1158 #ifdef CONFIG_DCB 1159 if (!IS_VF(edev)) 1160 qede_set_dcbnl_ops(edev->ndev); 1161 #endif 1162 1163 edev->rx_copybreak = QEDE_RX_HDR_SIZE; 1164 1165 qede_log_probe(edev); 1166 return 0; 1167 1168 err4: 1169 qede_rdma_dev_remove(edev, (mode == QEDE_PROBE_RECOVERY)); 1170 err3: 1171 free_netdev(edev->ndev); 1172 err2: 1173 qed_ops->common->slowpath_stop(cdev); 1174 err1: 1175 qed_ops->common->remove(cdev); 1176 err0: 1177 return rc; 1178 } 1179 1180 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id) 1181 { 1182 bool is_vf = false; 1183 u32 dp_module = 0; 1184 u8 dp_level = 0; 1185 1186 switch ((enum qede_pci_private)id->driver_data) { 1187 case QEDE_PRIVATE_VF: 1188 if (debug & QED_LOG_VERBOSE_MASK) 1189 dev_err(&pdev->dev, "Probing a VF\n"); 1190 is_vf = true; 1191 break; 1192 default: 1193 if (debug & QED_LOG_VERBOSE_MASK) 1194 dev_err(&pdev->dev, "Probing a PF\n"); 1195 } 1196 1197 qede_config_debug(debug, &dp_module, &dp_level); 1198 1199 return __qede_probe(pdev, dp_module, dp_level, is_vf, 1200 QEDE_PROBE_NORMAL); 1201 } 1202 1203 enum qede_remove_mode { 1204 QEDE_REMOVE_NORMAL, 1205 QEDE_REMOVE_RECOVERY, 1206 }; 1207 1208 static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode) 1209 { 1210 struct net_device *ndev = pci_get_drvdata(pdev); 1211 struct qede_dev *edev; 1212 struct qed_dev *cdev; 1213 1214 if (!ndev) { 1215 dev_info(&pdev->dev, "Device has already been removed\n"); 1216 return; 1217 } 1218 1219 edev = netdev_priv(ndev); 1220 cdev = edev->cdev; 1221 1222 DP_INFO(edev, "Starting qede_remove\n"); 1223 1224 qede_rdma_dev_remove(edev, (mode == QEDE_REMOVE_RECOVERY)); 1225 1226 if (mode != QEDE_REMOVE_RECOVERY) { 1227 unregister_netdev(ndev); 1228 1229 cancel_delayed_work_sync(&edev->sp_task); 1230 1231 edev->ops->common->set_power_state(cdev, PCI_D0); 1232 1233 pci_set_drvdata(pdev, NULL); 1234 } 1235 1236 qede_ptp_disable(edev); 1237 1238 /* Use global ops since we've freed edev */ 1239 qed_ops->common->slowpath_stop(cdev); 1240 if (system_state == SYSTEM_POWER_OFF) 1241 return; 1242 qed_ops->common->remove(cdev); 1243 1244 /* Since this can happen out-of-sync with other flows, 1245 * don't release the netdevice until after slowpath stop 1246 * has been called to guarantee various other contexts 1247 * [e.g., QED register callbacks] won't break anything when 1248 * accessing the netdevice. 1249 */ 1250 if (mode != QEDE_REMOVE_RECOVERY) 1251 free_netdev(ndev); 1252 1253 dev_info(&pdev->dev, "Ending qede_remove successfully\n"); 1254 } 1255 1256 static void qede_remove(struct pci_dev *pdev) 1257 { 1258 __qede_remove(pdev, QEDE_REMOVE_NORMAL); 1259 } 1260 1261 static void qede_shutdown(struct pci_dev *pdev) 1262 { 1263 __qede_remove(pdev, QEDE_REMOVE_NORMAL); 1264 } 1265 1266 /* ------------------------------------------------------------------------- 1267 * START OF LOAD / UNLOAD 1268 * ------------------------------------------------------------------------- 1269 */ 1270 1271 static int qede_set_num_queues(struct qede_dev *edev) 1272 { 1273 int rc; 1274 u16 rss_num; 1275 1276 /* Setup queues according to possible resources*/ 1277 if (edev->req_queues) 1278 rss_num = edev->req_queues; 1279 else 1280 rss_num = netif_get_num_default_rss_queues() * 1281 edev->dev_info.common.num_hwfns; 1282 1283 rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num); 1284 1285 rc = edev->ops->common->set_fp_int(edev->cdev, rss_num); 1286 if (rc > 0) { 1287 /* Managed to request interrupts for our queues */ 1288 edev->num_queues = rc; 1289 DP_INFO(edev, "Managed %d [of %d] RSS queues\n", 1290 QEDE_QUEUE_CNT(edev), rss_num); 1291 rc = 0; 1292 } 1293 1294 edev->fp_num_tx = edev->req_num_tx; 1295 edev->fp_num_rx = edev->req_num_rx; 1296 1297 return rc; 1298 } 1299 1300 static void qede_free_mem_sb(struct qede_dev *edev, struct qed_sb_info *sb_info, 1301 u16 sb_id) 1302 { 1303 if (sb_info->sb_virt) { 1304 edev->ops->common->sb_release(edev->cdev, sb_info, sb_id, 1305 QED_SB_TYPE_L2_QUEUE); 1306 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt), 1307 (void *)sb_info->sb_virt, sb_info->sb_phys); 1308 memset(sb_info, 0, sizeof(*sb_info)); 1309 } 1310 } 1311 1312 /* This function allocates fast-path status block memory */ 1313 static int qede_alloc_mem_sb(struct qede_dev *edev, 1314 struct qed_sb_info *sb_info, u16 sb_id) 1315 { 1316 struct status_block_e4 *sb_virt; 1317 dma_addr_t sb_phys; 1318 int rc; 1319 1320 sb_virt = dma_alloc_coherent(&edev->pdev->dev, 1321 sizeof(*sb_virt), &sb_phys, GFP_KERNEL); 1322 if (!sb_virt) { 1323 DP_ERR(edev, "Status block allocation failed\n"); 1324 return -ENOMEM; 1325 } 1326 1327 rc = edev->ops->common->sb_init(edev->cdev, sb_info, 1328 sb_virt, sb_phys, sb_id, 1329 QED_SB_TYPE_L2_QUEUE); 1330 if (rc) { 1331 DP_ERR(edev, "Status block initialization failed\n"); 1332 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt), 1333 sb_virt, sb_phys); 1334 return rc; 1335 } 1336 1337 return 0; 1338 } 1339 1340 static void qede_free_rx_buffers(struct qede_dev *edev, 1341 struct qede_rx_queue *rxq) 1342 { 1343 u16 i; 1344 1345 for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) { 1346 struct sw_rx_data *rx_buf; 1347 struct page *data; 1348 1349 rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX]; 1350 data = rx_buf->data; 1351 1352 dma_unmap_page(&edev->pdev->dev, 1353 rx_buf->mapping, PAGE_SIZE, rxq->data_direction); 1354 1355 rx_buf->data = NULL; 1356 __free_page(data); 1357 } 1358 } 1359 1360 static void qede_free_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq) 1361 { 1362 /* Free rx buffers */ 1363 qede_free_rx_buffers(edev, rxq); 1364 1365 /* Free the parallel SW ring */ 1366 kfree(rxq->sw_rx_ring); 1367 1368 /* Free the real RQ ring used by FW */ 1369 edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring); 1370 edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring); 1371 } 1372 1373 static void qede_set_tpa_param(struct qede_rx_queue *rxq) 1374 { 1375 int i; 1376 1377 for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) { 1378 struct qede_agg_info *tpa_info = &rxq->tpa_info[i]; 1379 1380 tpa_info->state = QEDE_AGG_STATE_NONE; 1381 } 1382 } 1383 1384 /* This function allocates all memory needed per Rx queue */ 1385 static int qede_alloc_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq) 1386 { 1387 int i, rc, size; 1388 1389 rxq->num_rx_buffers = edev->q_num_rx_buffers; 1390 1391 rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD + edev->ndev->mtu; 1392 1393 rxq->rx_headroom = edev->xdp_prog ? XDP_PACKET_HEADROOM : NET_SKB_PAD; 1394 size = rxq->rx_headroom + 1395 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 1396 1397 /* Make sure that the headroom and payload fit in a single page */ 1398 if (rxq->rx_buf_size + size > PAGE_SIZE) 1399 rxq->rx_buf_size = PAGE_SIZE - size; 1400 1401 /* Segment size to spilt a page in multiple equal parts , 1402 * unless XDP is used in which case we'd use the entire page. 1403 */ 1404 if (!edev->xdp_prog) { 1405 size = size + rxq->rx_buf_size; 1406 rxq->rx_buf_seg_size = roundup_pow_of_two(size); 1407 } else { 1408 rxq->rx_buf_seg_size = PAGE_SIZE; 1409 } 1410 1411 /* Allocate the parallel driver ring for Rx buffers */ 1412 size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE; 1413 rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL); 1414 if (!rxq->sw_rx_ring) { 1415 DP_ERR(edev, "Rx buffers ring allocation failed\n"); 1416 rc = -ENOMEM; 1417 goto err; 1418 } 1419 1420 /* Allocate FW Rx ring */ 1421 rc = edev->ops->common->chain_alloc(edev->cdev, 1422 QED_CHAIN_USE_TO_CONSUME_PRODUCE, 1423 QED_CHAIN_MODE_NEXT_PTR, 1424 QED_CHAIN_CNT_TYPE_U16, 1425 RX_RING_SIZE, 1426 sizeof(struct eth_rx_bd), 1427 &rxq->rx_bd_ring, NULL); 1428 if (rc) 1429 goto err; 1430 1431 /* Allocate FW completion ring */ 1432 rc = edev->ops->common->chain_alloc(edev->cdev, 1433 QED_CHAIN_USE_TO_CONSUME, 1434 QED_CHAIN_MODE_PBL, 1435 QED_CHAIN_CNT_TYPE_U16, 1436 RX_RING_SIZE, 1437 sizeof(union eth_rx_cqe), 1438 &rxq->rx_comp_ring, NULL); 1439 if (rc) 1440 goto err; 1441 1442 /* Allocate buffers for the Rx ring */ 1443 rxq->filled_buffers = 0; 1444 for (i = 0; i < rxq->num_rx_buffers; i++) { 1445 rc = qede_alloc_rx_buffer(rxq, false); 1446 if (rc) { 1447 DP_ERR(edev, 1448 "Rx buffers allocation failed at index %d\n", i); 1449 goto err; 1450 } 1451 } 1452 1453 if (!edev->gro_disable) 1454 qede_set_tpa_param(rxq); 1455 err: 1456 return rc; 1457 } 1458 1459 static void qede_free_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq) 1460 { 1461 /* Free the parallel SW ring */ 1462 if (txq->is_xdp) 1463 kfree(txq->sw_tx_ring.xdp); 1464 else 1465 kfree(txq->sw_tx_ring.skbs); 1466 1467 /* Free the real RQ ring used by FW */ 1468 edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl); 1469 } 1470 1471 /* This function allocates all memory needed per Tx queue */ 1472 static int qede_alloc_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq) 1473 { 1474 union eth_tx_bd_types *p_virt; 1475 int size, rc; 1476 1477 txq->num_tx_buffers = edev->q_num_tx_buffers; 1478 1479 /* Allocate the parallel driver ring for Tx buffers */ 1480 if (txq->is_xdp) { 1481 size = sizeof(*txq->sw_tx_ring.xdp) * txq->num_tx_buffers; 1482 txq->sw_tx_ring.xdp = kzalloc(size, GFP_KERNEL); 1483 if (!txq->sw_tx_ring.xdp) 1484 goto err; 1485 } else { 1486 size = sizeof(*txq->sw_tx_ring.skbs) * txq->num_tx_buffers; 1487 txq->sw_tx_ring.skbs = kzalloc(size, GFP_KERNEL); 1488 if (!txq->sw_tx_ring.skbs) 1489 goto err; 1490 } 1491 1492 rc = edev->ops->common->chain_alloc(edev->cdev, 1493 QED_CHAIN_USE_TO_CONSUME_PRODUCE, 1494 QED_CHAIN_MODE_PBL, 1495 QED_CHAIN_CNT_TYPE_U16, 1496 txq->num_tx_buffers, 1497 sizeof(*p_virt), 1498 &txq->tx_pbl, NULL); 1499 if (rc) 1500 goto err; 1501 1502 return 0; 1503 1504 err: 1505 qede_free_mem_txq(edev, txq); 1506 return -ENOMEM; 1507 } 1508 1509 /* This function frees all memory of a single fp */ 1510 static void qede_free_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp) 1511 { 1512 qede_free_mem_sb(edev, fp->sb_info, fp->id); 1513 1514 if (fp->type & QEDE_FASTPATH_RX) 1515 qede_free_mem_rxq(edev, fp->rxq); 1516 1517 if (fp->type & QEDE_FASTPATH_XDP) 1518 qede_free_mem_txq(edev, fp->xdp_tx); 1519 1520 if (fp->type & QEDE_FASTPATH_TX) { 1521 int cos; 1522 1523 for_each_cos_in_txq(edev, cos) 1524 qede_free_mem_txq(edev, &fp->txq[cos]); 1525 } 1526 } 1527 1528 /* This function allocates all memory needed for a single fp (i.e. an entity 1529 * which contains status block, one rx queue and/or multiple per-TC tx queues. 1530 */ 1531 static int qede_alloc_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp) 1532 { 1533 int rc = 0; 1534 1535 rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->id); 1536 if (rc) 1537 goto out; 1538 1539 if (fp->type & QEDE_FASTPATH_RX) { 1540 rc = qede_alloc_mem_rxq(edev, fp->rxq); 1541 if (rc) 1542 goto out; 1543 } 1544 1545 if (fp->type & QEDE_FASTPATH_XDP) { 1546 rc = qede_alloc_mem_txq(edev, fp->xdp_tx); 1547 if (rc) 1548 goto out; 1549 } 1550 1551 if (fp->type & QEDE_FASTPATH_TX) { 1552 int cos; 1553 1554 for_each_cos_in_txq(edev, cos) { 1555 rc = qede_alloc_mem_txq(edev, &fp->txq[cos]); 1556 if (rc) 1557 goto out; 1558 } 1559 } 1560 1561 out: 1562 return rc; 1563 } 1564 1565 static void qede_free_mem_load(struct qede_dev *edev) 1566 { 1567 int i; 1568 1569 for_each_queue(i) { 1570 struct qede_fastpath *fp = &edev->fp_array[i]; 1571 1572 qede_free_mem_fp(edev, fp); 1573 } 1574 } 1575 1576 /* This function allocates all qede memory at NIC load. */ 1577 static int qede_alloc_mem_load(struct qede_dev *edev) 1578 { 1579 int rc = 0, queue_id; 1580 1581 for (queue_id = 0; queue_id < QEDE_QUEUE_CNT(edev); queue_id++) { 1582 struct qede_fastpath *fp = &edev->fp_array[queue_id]; 1583 1584 rc = qede_alloc_mem_fp(edev, fp); 1585 if (rc) { 1586 DP_ERR(edev, 1587 "Failed to allocate memory for fastpath - rss id = %d\n", 1588 queue_id); 1589 qede_free_mem_load(edev); 1590 return rc; 1591 } 1592 } 1593 1594 return 0; 1595 } 1596 1597 static void qede_empty_tx_queue(struct qede_dev *edev, 1598 struct qede_tx_queue *txq) 1599 { 1600 unsigned int pkts_compl = 0, bytes_compl = 0; 1601 struct netdev_queue *netdev_txq; 1602 int rc, len = 0; 1603 1604 netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id); 1605 1606 while (qed_chain_get_cons_idx(&txq->tx_pbl) != 1607 qed_chain_get_prod_idx(&txq->tx_pbl)) { 1608 DP_VERBOSE(edev, NETIF_MSG_IFDOWN, 1609 "Freeing a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n", 1610 txq->index, qed_chain_get_cons_idx(&txq->tx_pbl), 1611 qed_chain_get_prod_idx(&txq->tx_pbl)); 1612 1613 rc = qede_free_tx_pkt(edev, txq, &len); 1614 if (rc) { 1615 DP_NOTICE(edev, 1616 "Failed to free a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n", 1617 txq->index, 1618 qed_chain_get_cons_idx(&txq->tx_pbl), 1619 qed_chain_get_prod_idx(&txq->tx_pbl)); 1620 break; 1621 } 1622 1623 bytes_compl += len; 1624 pkts_compl++; 1625 txq->sw_tx_cons++; 1626 } 1627 1628 netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl); 1629 } 1630 1631 static void qede_empty_tx_queues(struct qede_dev *edev) 1632 { 1633 int i; 1634 1635 for_each_queue(i) 1636 if (edev->fp_array[i].type & QEDE_FASTPATH_TX) { 1637 int cos; 1638 1639 for_each_cos_in_txq(edev, cos) { 1640 struct qede_fastpath *fp; 1641 1642 fp = &edev->fp_array[i]; 1643 qede_empty_tx_queue(edev, 1644 &fp->txq[cos]); 1645 } 1646 } 1647 } 1648 1649 /* This function inits fp content and resets the SB, RXQ and TXQ structures */ 1650 static void qede_init_fp(struct qede_dev *edev) 1651 { 1652 int queue_id, rxq_index = 0, txq_index = 0; 1653 struct qede_fastpath *fp; 1654 1655 for_each_queue(queue_id) { 1656 fp = &edev->fp_array[queue_id]; 1657 1658 fp->edev = edev; 1659 fp->id = queue_id; 1660 1661 if (fp->type & QEDE_FASTPATH_XDP) { 1662 fp->xdp_tx->index = QEDE_TXQ_IDX_TO_XDP(edev, 1663 rxq_index); 1664 fp->xdp_tx->is_xdp = 1; 1665 } 1666 1667 if (fp->type & QEDE_FASTPATH_RX) { 1668 fp->rxq->rxq_id = rxq_index++; 1669 1670 /* Determine how to map buffers for this queue */ 1671 if (fp->type & QEDE_FASTPATH_XDP) 1672 fp->rxq->data_direction = DMA_BIDIRECTIONAL; 1673 else 1674 fp->rxq->data_direction = DMA_FROM_DEVICE; 1675 fp->rxq->dev = &edev->pdev->dev; 1676 1677 /* Driver have no error path from here */ 1678 WARN_ON(xdp_rxq_info_reg(&fp->rxq->xdp_rxq, edev->ndev, 1679 fp->rxq->rxq_id) < 0); 1680 } 1681 1682 if (fp->type & QEDE_FASTPATH_TX) { 1683 int cos; 1684 1685 for_each_cos_in_txq(edev, cos) { 1686 struct qede_tx_queue *txq = &fp->txq[cos]; 1687 u16 ndev_tx_id; 1688 1689 txq->cos = cos; 1690 txq->index = txq_index; 1691 ndev_tx_id = QEDE_TXQ_TO_NDEV_TXQ_ID(edev, txq); 1692 txq->ndev_txq_id = ndev_tx_id; 1693 1694 if (edev->dev_info.is_legacy) 1695 txq->is_legacy = 1; 1696 txq->dev = &edev->pdev->dev; 1697 } 1698 1699 txq_index++; 1700 } 1701 1702 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d", 1703 edev->ndev->name, queue_id); 1704 } 1705 1706 edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO_HW); 1707 } 1708 1709 static int qede_set_real_num_queues(struct qede_dev *edev) 1710 { 1711 int rc = 0; 1712 1713 rc = netif_set_real_num_tx_queues(edev->ndev, 1714 QEDE_TSS_COUNT(edev) * 1715 edev->dev_info.num_tc); 1716 if (rc) { 1717 DP_NOTICE(edev, "Failed to set real number of Tx queues\n"); 1718 return rc; 1719 } 1720 1721 rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_COUNT(edev)); 1722 if (rc) { 1723 DP_NOTICE(edev, "Failed to set real number of Rx queues\n"); 1724 return rc; 1725 } 1726 1727 return 0; 1728 } 1729 1730 static void qede_napi_disable_remove(struct qede_dev *edev) 1731 { 1732 int i; 1733 1734 for_each_queue(i) { 1735 napi_disable(&edev->fp_array[i].napi); 1736 1737 netif_napi_del(&edev->fp_array[i].napi); 1738 } 1739 } 1740 1741 static void qede_napi_add_enable(struct qede_dev *edev) 1742 { 1743 int i; 1744 1745 /* Add NAPI objects */ 1746 for_each_queue(i) { 1747 netif_napi_add(edev->ndev, &edev->fp_array[i].napi, 1748 qede_poll, NAPI_POLL_WEIGHT); 1749 napi_enable(&edev->fp_array[i].napi); 1750 } 1751 } 1752 1753 static void qede_sync_free_irqs(struct qede_dev *edev) 1754 { 1755 int i; 1756 1757 for (i = 0; i < edev->int_info.used_cnt; i++) { 1758 if (edev->int_info.msix_cnt) { 1759 synchronize_irq(edev->int_info.msix[i].vector); 1760 free_irq(edev->int_info.msix[i].vector, 1761 &edev->fp_array[i]); 1762 } else { 1763 edev->ops->common->simd_handler_clean(edev->cdev, i); 1764 } 1765 } 1766 1767 edev->int_info.used_cnt = 0; 1768 } 1769 1770 static int qede_req_msix_irqs(struct qede_dev *edev) 1771 { 1772 int i, rc; 1773 1774 /* Sanitize number of interrupts == number of prepared RSS queues */ 1775 if (QEDE_QUEUE_CNT(edev) > edev->int_info.msix_cnt) { 1776 DP_ERR(edev, 1777 "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n", 1778 QEDE_QUEUE_CNT(edev), edev->int_info.msix_cnt); 1779 return -EINVAL; 1780 } 1781 1782 for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) { 1783 #ifdef CONFIG_RFS_ACCEL 1784 struct qede_fastpath *fp = &edev->fp_array[i]; 1785 1786 if (edev->ndev->rx_cpu_rmap && (fp->type & QEDE_FASTPATH_RX)) { 1787 rc = irq_cpu_rmap_add(edev->ndev->rx_cpu_rmap, 1788 edev->int_info.msix[i].vector); 1789 if (rc) { 1790 DP_ERR(edev, "Failed to add CPU rmap\n"); 1791 qede_free_arfs(edev); 1792 } 1793 } 1794 #endif 1795 rc = request_irq(edev->int_info.msix[i].vector, 1796 qede_msix_fp_int, 0, edev->fp_array[i].name, 1797 &edev->fp_array[i]); 1798 if (rc) { 1799 DP_ERR(edev, "Request fp %d irq failed\n", i); 1800 qede_sync_free_irqs(edev); 1801 return rc; 1802 } 1803 DP_VERBOSE(edev, NETIF_MSG_INTR, 1804 "Requested fp irq for %s [entry %d]. Cookie is at %p\n", 1805 edev->fp_array[i].name, i, 1806 &edev->fp_array[i]); 1807 edev->int_info.used_cnt++; 1808 } 1809 1810 return 0; 1811 } 1812 1813 static void qede_simd_fp_handler(void *cookie) 1814 { 1815 struct qede_fastpath *fp = (struct qede_fastpath *)cookie; 1816 1817 napi_schedule_irqoff(&fp->napi); 1818 } 1819 1820 static int qede_setup_irqs(struct qede_dev *edev) 1821 { 1822 int i, rc = 0; 1823 1824 /* Learn Interrupt configuration */ 1825 rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info); 1826 if (rc) 1827 return rc; 1828 1829 if (edev->int_info.msix_cnt) { 1830 rc = qede_req_msix_irqs(edev); 1831 if (rc) 1832 return rc; 1833 edev->ndev->irq = edev->int_info.msix[0].vector; 1834 } else { 1835 const struct qed_common_ops *ops; 1836 1837 /* qed should learn receive the RSS ids and callbacks */ 1838 ops = edev->ops->common; 1839 for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) 1840 ops->simd_handler_config(edev->cdev, 1841 &edev->fp_array[i], i, 1842 qede_simd_fp_handler); 1843 edev->int_info.used_cnt = QEDE_QUEUE_CNT(edev); 1844 } 1845 return 0; 1846 } 1847 1848 static int qede_drain_txq(struct qede_dev *edev, 1849 struct qede_tx_queue *txq, bool allow_drain) 1850 { 1851 int rc, cnt = 1000; 1852 1853 while (txq->sw_tx_cons != txq->sw_tx_prod) { 1854 if (!cnt) { 1855 if (allow_drain) { 1856 DP_NOTICE(edev, 1857 "Tx queue[%d] is stuck, requesting MCP to drain\n", 1858 txq->index); 1859 rc = edev->ops->common->drain(edev->cdev); 1860 if (rc) 1861 return rc; 1862 return qede_drain_txq(edev, txq, false); 1863 } 1864 DP_NOTICE(edev, 1865 "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n", 1866 txq->index, txq->sw_tx_prod, 1867 txq->sw_tx_cons); 1868 return -ENODEV; 1869 } 1870 cnt--; 1871 usleep_range(1000, 2000); 1872 barrier(); 1873 } 1874 1875 /* FW finished processing, wait for HW to transmit all tx packets */ 1876 usleep_range(1000, 2000); 1877 1878 return 0; 1879 } 1880 1881 static int qede_stop_txq(struct qede_dev *edev, 1882 struct qede_tx_queue *txq, int rss_id) 1883 { 1884 /* delete doorbell from doorbell recovery mechanism */ 1885 edev->ops->common->db_recovery_del(edev->cdev, txq->doorbell_addr, 1886 &txq->tx_db); 1887 1888 return edev->ops->q_tx_stop(edev->cdev, rss_id, txq->handle); 1889 } 1890 1891 static int qede_stop_queues(struct qede_dev *edev) 1892 { 1893 struct qed_update_vport_params *vport_update_params; 1894 struct qed_dev *cdev = edev->cdev; 1895 struct qede_fastpath *fp; 1896 int rc, i; 1897 1898 /* Disable the vport */ 1899 vport_update_params = vzalloc(sizeof(*vport_update_params)); 1900 if (!vport_update_params) 1901 return -ENOMEM; 1902 1903 vport_update_params->vport_id = 0; 1904 vport_update_params->update_vport_active_flg = 1; 1905 vport_update_params->vport_active_flg = 0; 1906 vport_update_params->update_rss_flg = 0; 1907 1908 rc = edev->ops->vport_update(cdev, vport_update_params); 1909 vfree(vport_update_params); 1910 1911 if (rc) { 1912 DP_ERR(edev, "Failed to update vport\n"); 1913 return rc; 1914 } 1915 1916 /* Flush Tx queues. If needed, request drain from MCP */ 1917 for_each_queue(i) { 1918 fp = &edev->fp_array[i]; 1919 1920 if (fp->type & QEDE_FASTPATH_TX) { 1921 int cos; 1922 1923 for_each_cos_in_txq(edev, cos) { 1924 rc = qede_drain_txq(edev, &fp->txq[cos], true); 1925 if (rc) 1926 return rc; 1927 } 1928 } 1929 1930 if (fp->type & QEDE_FASTPATH_XDP) { 1931 rc = qede_drain_txq(edev, fp->xdp_tx, true); 1932 if (rc) 1933 return rc; 1934 } 1935 } 1936 1937 /* Stop all Queues in reverse order */ 1938 for (i = QEDE_QUEUE_CNT(edev) - 1; i >= 0; i--) { 1939 fp = &edev->fp_array[i]; 1940 1941 /* Stop the Tx Queue(s) */ 1942 if (fp->type & QEDE_FASTPATH_TX) { 1943 int cos; 1944 1945 for_each_cos_in_txq(edev, cos) { 1946 rc = qede_stop_txq(edev, &fp->txq[cos], i); 1947 if (rc) 1948 return rc; 1949 } 1950 } 1951 1952 /* Stop the Rx Queue */ 1953 if (fp->type & QEDE_FASTPATH_RX) { 1954 rc = edev->ops->q_rx_stop(cdev, i, fp->rxq->handle); 1955 if (rc) { 1956 DP_ERR(edev, "Failed to stop RXQ #%d\n", i); 1957 return rc; 1958 } 1959 } 1960 1961 /* Stop the XDP forwarding queue */ 1962 if (fp->type & QEDE_FASTPATH_XDP) { 1963 rc = qede_stop_txq(edev, fp->xdp_tx, i); 1964 if (rc) 1965 return rc; 1966 1967 bpf_prog_put(fp->rxq->xdp_prog); 1968 } 1969 } 1970 1971 /* Stop the vport */ 1972 rc = edev->ops->vport_stop(cdev, 0); 1973 if (rc) 1974 DP_ERR(edev, "Failed to stop VPORT\n"); 1975 1976 return rc; 1977 } 1978 1979 static int qede_start_txq(struct qede_dev *edev, 1980 struct qede_fastpath *fp, 1981 struct qede_tx_queue *txq, u8 rss_id, u16 sb_idx) 1982 { 1983 dma_addr_t phys_table = qed_chain_get_pbl_phys(&txq->tx_pbl); 1984 u32 page_cnt = qed_chain_get_page_cnt(&txq->tx_pbl); 1985 struct qed_queue_start_common_params params; 1986 struct qed_txq_start_ret_params ret_params; 1987 int rc; 1988 1989 memset(¶ms, 0, sizeof(params)); 1990 memset(&ret_params, 0, sizeof(ret_params)); 1991 1992 /* Let the XDP queue share the queue-zone with one of the regular txq. 1993 * We don't really care about its coalescing. 1994 */ 1995 if (txq->is_xdp) 1996 params.queue_id = QEDE_TXQ_XDP_TO_IDX(edev, txq); 1997 else 1998 params.queue_id = txq->index; 1999 2000 params.p_sb = fp->sb_info; 2001 params.sb_idx = sb_idx; 2002 params.tc = txq->cos; 2003 2004 rc = edev->ops->q_tx_start(edev->cdev, rss_id, ¶ms, phys_table, 2005 page_cnt, &ret_params); 2006 if (rc) { 2007 DP_ERR(edev, "Start TXQ #%d failed %d\n", txq->index, rc); 2008 return rc; 2009 } 2010 2011 txq->doorbell_addr = ret_params.p_doorbell; 2012 txq->handle = ret_params.p_handle; 2013 2014 /* Determine the FW consumer address associated */ 2015 txq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[sb_idx]; 2016 2017 /* Prepare the doorbell parameters */ 2018 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST, DB_DEST_XCM); 2019 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD, DB_AGG_CMD_SET); 2020 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_VAL_SEL, 2021 DQ_XCM_ETH_TX_BD_PROD_CMD); 2022 txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD; 2023 2024 /* register doorbell with doorbell recovery mechanism */ 2025 rc = edev->ops->common->db_recovery_add(edev->cdev, txq->doorbell_addr, 2026 &txq->tx_db, DB_REC_WIDTH_32B, 2027 DB_REC_KERNEL); 2028 2029 return rc; 2030 } 2031 2032 static int qede_start_queues(struct qede_dev *edev, bool clear_stats) 2033 { 2034 int vlan_removal_en = 1; 2035 struct qed_dev *cdev = edev->cdev; 2036 struct qed_dev_info *qed_info = &edev->dev_info.common; 2037 struct qed_update_vport_params *vport_update_params; 2038 struct qed_queue_start_common_params q_params; 2039 struct qed_start_vport_params start = {0}; 2040 int rc, i; 2041 2042 if (!edev->num_queues) { 2043 DP_ERR(edev, 2044 "Cannot update V-VPORT as active as there are no Rx queues\n"); 2045 return -EINVAL; 2046 } 2047 2048 vport_update_params = vzalloc(sizeof(*vport_update_params)); 2049 if (!vport_update_params) 2050 return -ENOMEM; 2051 2052 start.handle_ptp_pkts = !!(edev->ptp); 2053 start.gro_enable = !edev->gro_disable; 2054 start.mtu = edev->ndev->mtu; 2055 start.vport_id = 0; 2056 start.drop_ttl0 = true; 2057 start.remove_inner_vlan = vlan_removal_en; 2058 start.clear_stats = clear_stats; 2059 2060 rc = edev->ops->vport_start(cdev, &start); 2061 2062 if (rc) { 2063 DP_ERR(edev, "Start V-PORT failed %d\n", rc); 2064 goto out; 2065 } 2066 2067 DP_VERBOSE(edev, NETIF_MSG_IFUP, 2068 "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n", 2069 start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en); 2070 2071 for_each_queue(i) { 2072 struct qede_fastpath *fp = &edev->fp_array[i]; 2073 dma_addr_t p_phys_table; 2074 u32 page_cnt; 2075 2076 if (fp->type & QEDE_FASTPATH_RX) { 2077 struct qed_rxq_start_ret_params ret_params; 2078 struct qede_rx_queue *rxq = fp->rxq; 2079 __le16 *val; 2080 2081 memset(&ret_params, 0, sizeof(ret_params)); 2082 memset(&q_params, 0, sizeof(q_params)); 2083 q_params.queue_id = rxq->rxq_id; 2084 q_params.vport_id = 0; 2085 q_params.p_sb = fp->sb_info; 2086 q_params.sb_idx = RX_PI; 2087 2088 p_phys_table = 2089 qed_chain_get_pbl_phys(&rxq->rx_comp_ring); 2090 page_cnt = qed_chain_get_page_cnt(&rxq->rx_comp_ring); 2091 2092 rc = edev->ops->q_rx_start(cdev, i, &q_params, 2093 rxq->rx_buf_size, 2094 rxq->rx_bd_ring.p_phys_addr, 2095 p_phys_table, 2096 page_cnt, &ret_params); 2097 if (rc) { 2098 DP_ERR(edev, "Start RXQ #%d failed %d\n", i, 2099 rc); 2100 goto out; 2101 } 2102 2103 /* Use the return parameters */ 2104 rxq->hw_rxq_prod_addr = ret_params.p_prod; 2105 rxq->handle = ret_params.p_handle; 2106 2107 val = &fp->sb_info->sb_virt->pi_array[RX_PI]; 2108 rxq->hw_cons_ptr = val; 2109 2110 qede_update_rx_prod(edev, rxq); 2111 } 2112 2113 if (fp->type & QEDE_FASTPATH_XDP) { 2114 rc = qede_start_txq(edev, fp, fp->xdp_tx, i, XDP_PI); 2115 if (rc) 2116 goto out; 2117 2118 fp->rxq->xdp_prog = bpf_prog_add(edev->xdp_prog, 1); 2119 if (IS_ERR(fp->rxq->xdp_prog)) { 2120 rc = PTR_ERR(fp->rxq->xdp_prog); 2121 fp->rxq->xdp_prog = NULL; 2122 goto out; 2123 } 2124 } 2125 2126 if (fp->type & QEDE_FASTPATH_TX) { 2127 int cos; 2128 2129 for_each_cos_in_txq(edev, cos) { 2130 rc = qede_start_txq(edev, fp, &fp->txq[cos], i, 2131 TX_PI(cos)); 2132 if (rc) 2133 goto out; 2134 } 2135 } 2136 } 2137 2138 /* Prepare and send the vport enable */ 2139 vport_update_params->vport_id = start.vport_id; 2140 vport_update_params->update_vport_active_flg = 1; 2141 vport_update_params->vport_active_flg = 1; 2142 2143 if ((qed_info->b_inter_pf_switch || pci_num_vf(edev->pdev)) && 2144 qed_info->tx_switching) { 2145 vport_update_params->update_tx_switching_flg = 1; 2146 vport_update_params->tx_switching_flg = 1; 2147 } 2148 2149 qede_fill_rss_params(edev, &vport_update_params->rss_params, 2150 &vport_update_params->update_rss_flg); 2151 2152 rc = edev->ops->vport_update(cdev, vport_update_params); 2153 if (rc) 2154 DP_ERR(edev, "Update V-PORT failed %d\n", rc); 2155 2156 out: 2157 vfree(vport_update_params); 2158 return rc; 2159 } 2160 2161 enum qede_unload_mode { 2162 QEDE_UNLOAD_NORMAL, 2163 QEDE_UNLOAD_RECOVERY, 2164 }; 2165 2166 static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode, 2167 bool is_locked) 2168 { 2169 struct qed_link_params link_params; 2170 int rc; 2171 2172 DP_INFO(edev, "Starting qede unload\n"); 2173 2174 if (!is_locked) 2175 __qede_lock(edev); 2176 2177 clear_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags); 2178 2179 if (mode != QEDE_UNLOAD_RECOVERY) 2180 edev->state = QEDE_STATE_CLOSED; 2181 2182 qede_rdma_dev_event_close(edev); 2183 2184 /* Close OS Tx */ 2185 netif_tx_disable(edev->ndev); 2186 netif_carrier_off(edev->ndev); 2187 2188 if (mode != QEDE_UNLOAD_RECOVERY) { 2189 /* Reset the link */ 2190 memset(&link_params, 0, sizeof(link_params)); 2191 link_params.link_up = false; 2192 edev->ops->common->set_link(edev->cdev, &link_params); 2193 2194 rc = qede_stop_queues(edev); 2195 if (rc) { 2196 qede_sync_free_irqs(edev); 2197 goto out; 2198 } 2199 2200 DP_INFO(edev, "Stopped Queues\n"); 2201 } 2202 2203 qede_vlan_mark_nonconfigured(edev); 2204 edev->ops->fastpath_stop(edev->cdev); 2205 2206 if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) { 2207 qede_poll_for_freeing_arfs_filters(edev); 2208 qede_free_arfs(edev); 2209 } 2210 2211 /* Release the interrupts */ 2212 qede_sync_free_irqs(edev); 2213 edev->ops->common->set_fp_int(edev->cdev, 0); 2214 2215 qede_napi_disable_remove(edev); 2216 2217 if (mode == QEDE_UNLOAD_RECOVERY) 2218 qede_empty_tx_queues(edev); 2219 2220 qede_free_mem_load(edev); 2221 qede_free_fp_array(edev); 2222 2223 out: 2224 if (!is_locked) 2225 __qede_unlock(edev); 2226 2227 if (mode != QEDE_UNLOAD_RECOVERY) 2228 DP_NOTICE(edev, "Link is down\n"); 2229 2230 edev->ptp_skip_txts = 0; 2231 2232 DP_INFO(edev, "Ending qede unload\n"); 2233 } 2234 2235 enum qede_load_mode { 2236 QEDE_LOAD_NORMAL, 2237 QEDE_LOAD_RELOAD, 2238 QEDE_LOAD_RECOVERY, 2239 }; 2240 2241 static int qede_load(struct qede_dev *edev, enum qede_load_mode mode, 2242 bool is_locked) 2243 { 2244 struct qed_link_params link_params; 2245 u8 num_tc; 2246 int rc; 2247 2248 DP_INFO(edev, "Starting qede load\n"); 2249 2250 if (!is_locked) 2251 __qede_lock(edev); 2252 2253 rc = qede_set_num_queues(edev); 2254 if (rc) 2255 goto out; 2256 2257 rc = qede_alloc_fp_array(edev); 2258 if (rc) 2259 goto out; 2260 2261 qede_init_fp(edev); 2262 2263 rc = qede_alloc_mem_load(edev); 2264 if (rc) 2265 goto err1; 2266 DP_INFO(edev, "Allocated %d Rx, %d Tx queues\n", 2267 QEDE_RSS_COUNT(edev), QEDE_TSS_COUNT(edev)); 2268 2269 rc = qede_set_real_num_queues(edev); 2270 if (rc) 2271 goto err2; 2272 2273 if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) { 2274 rc = qede_alloc_arfs(edev); 2275 if (rc) 2276 DP_NOTICE(edev, "aRFS memory allocation failed\n"); 2277 } 2278 2279 qede_napi_add_enable(edev); 2280 DP_INFO(edev, "Napi added and enabled\n"); 2281 2282 rc = qede_setup_irqs(edev); 2283 if (rc) 2284 goto err3; 2285 DP_INFO(edev, "Setup IRQs succeeded\n"); 2286 2287 rc = qede_start_queues(edev, mode != QEDE_LOAD_RELOAD); 2288 if (rc) 2289 goto err4; 2290 DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n"); 2291 2292 num_tc = netdev_get_num_tc(edev->ndev); 2293 num_tc = num_tc ? num_tc : edev->dev_info.num_tc; 2294 qede_setup_tc(edev->ndev, num_tc); 2295 2296 /* Program un-configured VLANs */ 2297 qede_configure_vlan_filters(edev); 2298 2299 set_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags); 2300 2301 /* Ask for link-up using current configuration */ 2302 memset(&link_params, 0, sizeof(link_params)); 2303 link_params.link_up = true; 2304 edev->ops->common->set_link(edev->cdev, &link_params); 2305 2306 edev->state = QEDE_STATE_OPEN; 2307 2308 DP_INFO(edev, "Ending successfully qede load\n"); 2309 2310 goto out; 2311 err4: 2312 qede_sync_free_irqs(edev); 2313 memset(&edev->int_info.msix_cnt, 0, sizeof(struct qed_int_info)); 2314 err3: 2315 qede_napi_disable_remove(edev); 2316 err2: 2317 qede_free_mem_load(edev); 2318 err1: 2319 edev->ops->common->set_fp_int(edev->cdev, 0); 2320 qede_free_fp_array(edev); 2321 edev->num_queues = 0; 2322 edev->fp_num_tx = 0; 2323 edev->fp_num_rx = 0; 2324 out: 2325 if (!is_locked) 2326 __qede_unlock(edev); 2327 2328 return rc; 2329 } 2330 2331 /* 'func' should be able to run between unload and reload assuming interface 2332 * is actually running, or afterwards in case it's currently DOWN. 2333 */ 2334 void qede_reload(struct qede_dev *edev, 2335 struct qede_reload_args *args, bool is_locked) 2336 { 2337 if (!is_locked) 2338 __qede_lock(edev); 2339 2340 /* Since qede_lock is held, internal state wouldn't change even 2341 * if netdev state would start transitioning. Check whether current 2342 * internal configuration indicates device is up, then reload. 2343 */ 2344 if (edev->state == QEDE_STATE_OPEN) { 2345 qede_unload(edev, QEDE_UNLOAD_NORMAL, true); 2346 if (args) 2347 args->func(edev, args); 2348 qede_load(edev, QEDE_LOAD_RELOAD, true); 2349 2350 /* Since no one is going to do it for us, re-configure */ 2351 qede_config_rx_mode(edev->ndev); 2352 } else if (args) { 2353 args->func(edev, args); 2354 } 2355 2356 if (!is_locked) 2357 __qede_unlock(edev); 2358 } 2359 2360 /* called with rtnl_lock */ 2361 static int qede_open(struct net_device *ndev) 2362 { 2363 struct qede_dev *edev = netdev_priv(ndev); 2364 int rc; 2365 2366 netif_carrier_off(ndev); 2367 2368 edev->ops->common->set_power_state(edev->cdev, PCI_D0); 2369 2370 rc = qede_load(edev, QEDE_LOAD_NORMAL, false); 2371 if (rc) 2372 return rc; 2373 2374 udp_tunnel_get_rx_info(ndev); 2375 2376 edev->ops->common->update_drv_state(edev->cdev, true); 2377 2378 return 0; 2379 } 2380 2381 static int qede_close(struct net_device *ndev) 2382 { 2383 struct qede_dev *edev = netdev_priv(ndev); 2384 2385 qede_unload(edev, QEDE_UNLOAD_NORMAL, false); 2386 2387 edev->ops->common->update_drv_state(edev->cdev, false); 2388 2389 return 0; 2390 } 2391 2392 static void qede_link_update(void *dev, struct qed_link_output *link) 2393 { 2394 struct qede_dev *edev = dev; 2395 2396 if (!test_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags)) { 2397 DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not ready\n"); 2398 return; 2399 } 2400 2401 if (link->link_up) { 2402 if (!netif_carrier_ok(edev->ndev)) { 2403 DP_NOTICE(edev, "Link is up\n"); 2404 netif_tx_start_all_queues(edev->ndev); 2405 netif_carrier_on(edev->ndev); 2406 qede_rdma_dev_event_open(edev); 2407 } 2408 } else { 2409 if (netif_carrier_ok(edev->ndev)) { 2410 DP_NOTICE(edev, "Link is down\n"); 2411 netif_tx_disable(edev->ndev); 2412 netif_carrier_off(edev->ndev); 2413 qede_rdma_dev_event_close(edev); 2414 } 2415 } 2416 } 2417 2418 static void qede_schedule_recovery_handler(void *dev) 2419 { 2420 struct qede_dev *edev = dev; 2421 2422 if (edev->state == QEDE_STATE_RECOVERY) { 2423 DP_NOTICE(edev, 2424 "Avoid scheduling a recovery handling since already in recovery state\n"); 2425 return; 2426 } 2427 2428 set_bit(QEDE_SP_RECOVERY, &edev->sp_flags); 2429 schedule_delayed_work(&edev->sp_task, 0); 2430 2431 DP_INFO(edev, "Scheduled a recovery handler\n"); 2432 } 2433 2434 static void qede_recovery_failed(struct qede_dev *edev) 2435 { 2436 netdev_err(edev->ndev, "Recovery handling has failed. Power cycle is needed.\n"); 2437 2438 netif_device_detach(edev->ndev); 2439 2440 if (edev->cdev) 2441 edev->ops->common->set_power_state(edev->cdev, PCI_D3hot); 2442 } 2443 2444 static void qede_recovery_handler(struct qede_dev *edev) 2445 { 2446 u32 curr_state = edev->state; 2447 int rc; 2448 2449 DP_NOTICE(edev, "Starting a recovery process\n"); 2450 2451 /* No need to acquire first the qede_lock since is done by qede_sp_task 2452 * before calling this function. 2453 */ 2454 edev->state = QEDE_STATE_RECOVERY; 2455 2456 edev->ops->common->recovery_prolog(edev->cdev); 2457 2458 if (curr_state == QEDE_STATE_OPEN) 2459 qede_unload(edev, QEDE_UNLOAD_RECOVERY, true); 2460 2461 __qede_remove(edev->pdev, QEDE_REMOVE_RECOVERY); 2462 2463 rc = __qede_probe(edev->pdev, edev->dp_module, edev->dp_level, 2464 IS_VF(edev), QEDE_PROBE_RECOVERY); 2465 if (rc) { 2466 edev->cdev = NULL; 2467 goto err; 2468 } 2469 2470 if (curr_state == QEDE_STATE_OPEN) { 2471 rc = qede_load(edev, QEDE_LOAD_RECOVERY, true); 2472 if (rc) 2473 goto err; 2474 2475 qede_config_rx_mode(edev->ndev); 2476 udp_tunnel_get_rx_info(edev->ndev); 2477 } 2478 2479 edev->state = curr_state; 2480 2481 DP_NOTICE(edev, "Recovery handling is done\n"); 2482 2483 return; 2484 2485 err: 2486 qede_recovery_failed(edev); 2487 } 2488 2489 static bool qede_is_txq_full(struct qede_dev *edev, struct qede_tx_queue *txq) 2490 { 2491 struct netdev_queue *netdev_txq; 2492 2493 netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id); 2494 if (netif_xmit_stopped(netdev_txq)) 2495 return true; 2496 2497 return false; 2498 } 2499 2500 static void qede_get_generic_tlv_data(void *dev, struct qed_generic_tlvs *data) 2501 { 2502 struct qede_dev *edev = dev; 2503 struct netdev_hw_addr *ha; 2504 int i; 2505 2506 if (edev->ndev->features & NETIF_F_IP_CSUM) 2507 data->feat_flags |= QED_TLV_IP_CSUM; 2508 if (edev->ndev->features & NETIF_F_TSO) 2509 data->feat_flags |= QED_TLV_LSO; 2510 2511 ether_addr_copy(data->mac[0], edev->ndev->dev_addr); 2512 memset(data->mac[1], 0, ETH_ALEN); 2513 memset(data->mac[2], 0, ETH_ALEN); 2514 /* Copy the first two UC macs */ 2515 netif_addr_lock_bh(edev->ndev); 2516 i = 1; 2517 netdev_for_each_uc_addr(ha, edev->ndev) { 2518 ether_addr_copy(data->mac[i++], ha->addr); 2519 if (i == QED_TLV_MAC_COUNT) 2520 break; 2521 } 2522 2523 netif_addr_unlock_bh(edev->ndev); 2524 } 2525 2526 static void qede_get_eth_tlv_data(void *dev, void *data) 2527 { 2528 struct qed_mfw_tlv_eth *etlv = data; 2529 struct qede_dev *edev = dev; 2530 struct qede_fastpath *fp; 2531 int i; 2532 2533 etlv->lso_maxoff_size = 0XFFFF; 2534 etlv->lso_maxoff_size_set = true; 2535 etlv->lso_minseg_size = (u16)ETH_TX_LSO_WINDOW_MIN_LEN; 2536 etlv->lso_minseg_size_set = true; 2537 etlv->prom_mode = !!(edev->ndev->flags & IFF_PROMISC); 2538 etlv->prom_mode_set = true; 2539 etlv->tx_descr_size = QEDE_TSS_COUNT(edev); 2540 etlv->tx_descr_size_set = true; 2541 etlv->rx_descr_size = QEDE_RSS_COUNT(edev); 2542 etlv->rx_descr_size_set = true; 2543 etlv->iov_offload = QED_MFW_TLV_IOV_OFFLOAD_VEB; 2544 etlv->iov_offload_set = true; 2545 2546 /* Fill information regarding queues; Should be done under the qede 2547 * lock to guarantee those don't change beneath our feet. 2548 */ 2549 etlv->txqs_empty = true; 2550 etlv->rxqs_empty = true; 2551 etlv->num_txqs_full = 0; 2552 etlv->num_rxqs_full = 0; 2553 2554 __qede_lock(edev); 2555 for_each_queue(i) { 2556 fp = &edev->fp_array[i]; 2557 if (fp->type & QEDE_FASTPATH_TX) { 2558 struct qede_tx_queue *txq = QEDE_FP_TC0_TXQ(fp); 2559 2560 if (txq->sw_tx_cons != txq->sw_tx_prod) 2561 etlv->txqs_empty = false; 2562 if (qede_is_txq_full(edev, txq)) 2563 etlv->num_txqs_full++; 2564 } 2565 if (fp->type & QEDE_FASTPATH_RX) { 2566 if (qede_has_rx_work(fp->rxq)) 2567 etlv->rxqs_empty = false; 2568 2569 /* This one is a bit tricky; Firmware might stop 2570 * placing packets if ring is not yet full. 2571 * Give an approximation. 2572 */ 2573 if (le16_to_cpu(*fp->rxq->hw_cons_ptr) - 2574 qed_chain_get_cons_idx(&fp->rxq->rx_comp_ring) > 2575 RX_RING_SIZE - 100) 2576 etlv->num_rxqs_full++; 2577 } 2578 } 2579 __qede_unlock(edev); 2580 2581 etlv->txqs_empty_set = true; 2582 etlv->rxqs_empty_set = true; 2583 etlv->num_txqs_full_set = true; 2584 etlv->num_rxqs_full_set = true; 2585 } 2586