1 /* QLogic qede NIC Driver 2 * Copyright (c) 2015-2017 QLogic Corporation 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and /or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 */ 32 #include <linux/module.h> 33 #include <linux/pci.h> 34 #include <linux/version.h> 35 #include <linux/device.h> 36 #include <linux/netdevice.h> 37 #include <linux/etherdevice.h> 38 #include <linux/skbuff.h> 39 #include <linux/errno.h> 40 #include <linux/list.h> 41 #include <linux/string.h> 42 #include <linux/dma-mapping.h> 43 #include <linux/interrupt.h> 44 #include <asm/byteorder.h> 45 #include <asm/param.h> 46 #include <linux/io.h> 47 #include <linux/netdev_features.h> 48 #include <linux/udp.h> 49 #include <linux/tcp.h> 50 #include <net/udp_tunnel.h> 51 #include <linux/ip.h> 52 #include <net/ipv6.h> 53 #include <net/tcp.h> 54 #include <linux/if_ether.h> 55 #include <linux/if_vlan.h> 56 #include <linux/pkt_sched.h> 57 #include <linux/ethtool.h> 58 #include <linux/in.h> 59 #include <linux/random.h> 60 #include <net/ip6_checksum.h> 61 #include <linux/bitops.h> 62 #include <linux/vmalloc.h> 63 #include "qede.h" 64 #include "qede_ptp.h" 65 66 static char version[] = 67 "QLogic FastLinQ 4xxxx Ethernet Driver qede " DRV_MODULE_VERSION "\n"; 68 69 MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver"); 70 MODULE_LICENSE("GPL"); 71 MODULE_VERSION(DRV_MODULE_VERSION); 72 73 static uint debug; 74 module_param(debug, uint, 0); 75 MODULE_PARM_DESC(debug, " Default debug msglevel"); 76 77 static const struct qed_eth_ops *qed_ops; 78 79 #define CHIP_NUM_57980S_40 0x1634 80 #define CHIP_NUM_57980S_10 0x1666 81 #define CHIP_NUM_57980S_MF 0x1636 82 #define CHIP_NUM_57980S_100 0x1644 83 #define CHIP_NUM_57980S_50 0x1654 84 #define CHIP_NUM_57980S_25 0x1656 85 #define CHIP_NUM_57980S_IOV 0x1664 86 #define CHIP_NUM_AH 0x8070 87 #define CHIP_NUM_AH_IOV 0x8090 88 89 #ifndef PCI_DEVICE_ID_NX2_57980E 90 #define PCI_DEVICE_ID_57980S_40 CHIP_NUM_57980S_40 91 #define PCI_DEVICE_ID_57980S_10 CHIP_NUM_57980S_10 92 #define PCI_DEVICE_ID_57980S_MF CHIP_NUM_57980S_MF 93 #define PCI_DEVICE_ID_57980S_100 CHIP_NUM_57980S_100 94 #define PCI_DEVICE_ID_57980S_50 CHIP_NUM_57980S_50 95 #define PCI_DEVICE_ID_57980S_25 CHIP_NUM_57980S_25 96 #define PCI_DEVICE_ID_57980S_IOV CHIP_NUM_57980S_IOV 97 #define PCI_DEVICE_ID_AH CHIP_NUM_AH 98 #define PCI_DEVICE_ID_AH_IOV CHIP_NUM_AH_IOV 99 100 #endif 101 102 enum qede_pci_private { 103 QEDE_PRIVATE_PF, 104 QEDE_PRIVATE_VF 105 }; 106 107 static const struct pci_device_id qede_pci_tbl[] = { 108 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF}, 109 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF}, 110 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF}, 111 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF}, 112 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF}, 113 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF}, 114 #ifdef CONFIG_QED_SRIOV 115 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF}, 116 #endif 117 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH), QEDE_PRIVATE_PF}, 118 #ifdef CONFIG_QED_SRIOV 119 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH_IOV), QEDE_PRIVATE_VF}, 120 #endif 121 { 0 } 122 }; 123 124 MODULE_DEVICE_TABLE(pci, qede_pci_tbl); 125 126 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id); 127 128 #define TX_TIMEOUT (5 * HZ) 129 130 /* Utilize last protocol index for XDP */ 131 #define XDP_PI 11 132 133 static void qede_remove(struct pci_dev *pdev); 134 static void qede_shutdown(struct pci_dev *pdev); 135 static void qede_link_update(void *dev, struct qed_link_output *link); 136 static void qede_schedule_recovery_handler(void *dev); 137 static void qede_recovery_handler(struct qede_dev *edev); 138 static void qede_get_eth_tlv_data(void *edev, void *data); 139 static void qede_get_generic_tlv_data(void *edev, 140 struct qed_generic_tlvs *data); 141 142 #ifdef CONFIG_QED_SRIOV 143 static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos, 144 __be16 vlan_proto) 145 { 146 struct qede_dev *edev = netdev_priv(ndev); 147 148 if (vlan > 4095) { 149 DP_NOTICE(edev, "Illegal vlan value %d\n", vlan); 150 return -EINVAL; 151 } 152 153 if (vlan_proto != htons(ETH_P_8021Q)) 154 return -EPROTONOSUPPORT; 155 156 DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n", 157 vlan, vf); 158 159 return edev->ops->iov->set_vlan(edev->cdev, vlan, vf); 160 } 161 162 static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac) 163 { 164 struct qede_dev *edev = netdev_priv(ndev); 165 166 DP_VERBOSE(edev, QED_MSG_IOV, 167 "Setting MAC %02x:%02x:%02x:%02x:%02x:%02x to VF [%d]\n", 168 mac[0], mac[1], mac[2], mac[3], mac[4], mac[5], vfidx); 169 170 if (!is_valid_ether_addr(mac)) { 171 DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n"); 172 return -EINVAL; 173 } 174 175 return edev->ops->iov->set_mac(edev->cdev, mac, vfidx); 176 } 177 178 static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param) 179 { 180 struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev)); 181 struct qed_dev_info *qed_info = &edev->dev_info.common; 182 struct qed_update_vport_params *vport_params; 183 int rc; 184 185 vport_params = vzalloc(sizeof(*vport_params)); 186 if (!vport_params) 187 return -ENOMEM; 188 DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param); 189 190 rc = edev->ops->iov->configure(edev->cdev, num_vfs_param); 191 192 /* Enable/Disable Tx switching for PF */ 193 if ((rc == num_vfs_param) && netif_running(edev->ndev) && 194 !qed_info->b_inter_pf_switch && qed_info->tx_switching) { 195 vport_params->vport_id = 0; 196 vport_params->update_tx_switching_flg = 1; 197 vport_params->tx_switching_flg = num_vfs_param ? 1 : 0; 198 edev->ops->vport_update(edev->cdev, vport_params); 199 } 200 201 vfree(vport_params); 202 return rc; 203 } 204 #endif 205 206 static struct pci_driver qede_pci_driver = { 207 .name = "qede", 208 .id_table = qede_pci_tbl, 209 .probe = qede_probe, 210 .remove = qede_remove, 211 .shutdown = qede_shutdown, 212 #ifdef CONFIG_QED_SRIOV 213 .sriov_configure = qede_sriov_configure, 214 #endif 215 }; 216 217 static struct qed_eth_cb_ops qede_ll_ops = { 218 { 219 #ifdef CONFIG_RFS_ACCEL 220 .arfs_filter_op = qede_arfs_filter_op, 221 #endif 222 .link_update = qede_link_update, 223 .schedule_recovery_handler = qede_schedule_recovery_handler, 224 .get_generic_tlv_data = qede_get_generic_tlv_data, 225 .get_protocol_tlv_data = qede_get_eth_tlv_data, 226 }, 227 .force_mac = qede_force_mac, 228 .ports_update = qede_udp_ports_update, 229 }; 230 231 static int qede_netdev_event(struct notifier_block *this, unsigned long event, 232 void *ptr) 233 { 234 struct net_device *ndev = netdev_notifier_info_to_dev(ptr); 235 struct ethtool_drvinfo drvinfo; 236 struct qede_dev *edev; 237 238 if (event != NETDEV_CHANGENAME && event != NETDEV_CHANGEADDR) 239 goto done; 240 241 /* Check whether this is a qede device */ 242 if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo) 243 goto done; 244 245 memset(&drvinfo, 0, sizeof(drvinfo)); 246 ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo); 247 if (strcmp(drvinfo.driver, "qede")) 248 goto done; 249 edev = netdev_priv(ndev); 250 251 switch (event) { 252 case NETDEV_CHANGENAME: 253 /* Notify qed of the name change */ 254 if (!edev->ops || !edev->ops->common) 255 goto done; 256 edev->ops->common->set_name(edev->cdev, edev->ndev->name); 257 break; 258 case NETDEV_CHANGEADDR: 259 edev = netdev_priv(ndev); 260 qede_rdma_event_changeaddr(edev); 261 break; 262 } 263 264 done: 265 return NOTIFY_DONE; 266 } 267 268 static struct notifier_block qede_netdev_notifier = { 269 .notifier_call = qede_netdev_event, 270 }; 271 272 static 273 int __init qede_init(void) 274 { 275 int ret; 276 277 pr_info("qede_init: %s\n", version); 278 279 qed_ops = qed_get_eth_ops(); 280 if (!qed_ops) { 281 pr_notice("Failed to get qed ethtool operations\n"); 282 return -EINVAL; 283 } 284 285 /* Must register notifier before pci ops, since we might miss 286 * interface rename after pci probe and netdev registration. 287 */ 288 ret = register_netdevice_notifier(&qede_netdev_notifier); 289 if (ret) { 290 pr_notice("Failed to register netdevice_notifier\n"); 291 qed_put_eth_ops(); 292 return -EINVAL; 293 } 294 295 ret = pci_register_driver(&qede_pci_driver); 296 if (ret) { 297 pr_notice("Failed to register driver\n"); 298 unregister_netdevice_notifier(&qede_netdev_notifier); 299 qed_put_eth_ops(); 300 return -EINVAL; 301 } 302 303 return 0; 304 } 305 306 static void __exit qede_cleanup(void) 307 { 308 if (debug & QED_LOG_INFO_MASK) 309 pr_info("qede_cleanup called\n"); 310 311 unregister_netdevice_notifier(&qede_netdev_notifier); 312 pci_unregister_driver(&qede_pci_driver); 313 qed_put_eth_ops(); 314 } 315 316 module_init(qede_init); 317 module_exit(qede_cleanup); 318 319 static int qede_open(struct net_device *ndev); 320 static int qede_close(struct net_device *ndev); 321 322 void qede_fill_by_demand_stats(struct qede_dev *edev) 323 { 324 struct qede_stats_common *p_common = &edev->stats.common; 325 struct qed_eth_stats stats; 326 327 edev->ops->get_vport_stats(edev->cdev, &stats); 328 329 p_common->no_buff_discards = stats.common.no_buff_discards; 330 p_common->packet_too_big_discard = stats.common.packet_too_big_discard; 331 p_common->ttl0_discard = stats.common.ttl0_discard; 332 p_common->rx_ucast_bytes = stats.common.rx_ucast_bytes; 333 p_common->rx_mcast_bytes = stats.common.rx_mcast_bytes; 334 p_common->rx_bcast_bytes = stats.common.rx_bcast_bytes; 335 p_common->rx_ucast_pkts = stats.common.rx_ucast_pkts; 336 p_common->rx_mcast_pkts = stats.common.rx_mcast_pkts; 337 p_common->rx_bcast_pkts = stats.common.rx_bcast_pkts; 338 p_common->mftag_filter_discards = stats.common.mftag_filter_discards; 339 p_common->mac_filter_discards = stats.common.mac_filter_discards; 340 p_common->gft_filter_drop = stats.common.gft_filter_drop; 341 342 p_common->tx_ucast_bytes = stats.common.tx_ucast_bytes; 343 p_common->tx_mcast_bytes = stats.common.tx_mcast_bytes; 344 p_common->tx_bcast_bytes = stats.common.tx_bcast_bytes; 345 p_common->tx_ucast_pkts = stats.common.tx_ucast_pkts; 346 p_common->tx_mcast_pkts = stats.common.tx_mcast_pkts; 347 p_common->tx_bcast_pkts = stats.common.tx_bcast_pkts; 348 p_common->tx_err_drop_pkts = stats.common.tx_err_drop_pkts; 349 p_common->coalesced_pkts = stats.common.tpa_coalesced_pkts; 350 p_common->coalesced_events = stats.common.tpa_coalesced_events; 351 p_common->coalesced_aborts_num = stats.common.tpa_aborts_num; 352 p_common->non_coalesced_pkts = stats.common.tpa_not_coalesced_pkts; 353 p_common->coalesced_bytes = stats.common.tpa_coalesced_bytes; 354 355 p_common->rx_64_byte_packets = stats.common.rx_64_byte_packets; 356 p_common->rx_65_to_127_byte_packets = 357 stats.common.rx_65_to_127_byte_packets; 358 p_common->rx_128_to_255_byte_packets = 359 stats.common.rx_128_to_255_byte_packets; 360 p_common->rx_256_to_511_byte_packets = 361 stats.common.rx_256_to_511_byte_packets; 362 p_common->rx_512_to_1023_byte_packets = 363 stats.common.rx_512_to_1023_byte_packets; 364 p_common->rx_1024_to_1518_byte_packets = 365 stats.common.rx_1024_to_1518_byte_packets; 366 p_common->rx_crc_errors = stats.common.rx_crc_errors; 367 p_common->rx_mac_crtl_frames = stats.common.rx_mac_crtl_frames; 368 p_common->rx_pause_frames = stats.common.rx_pause_frames; 369 p_common->rx_pfc_frames = stats.common.rx_pfc_frames; 370 p_common->rx_align_errors = stats.common.rx_align_errors; 371 p_common->rx_carrier_errors = stats.common.rx_carrier_errors; 372 p_common->rx_oversize_packets = stats.common.rx_oversize_packets; 373 p_common->rx_jabbers = stats.common.rx_jabbers; 374 p_common->rx_undersize_packets = stats.common.rx_undersize_packets; 375 p_common->rx_fragments = stats.common.rx_fragments; 376 p_common->tx_64_byte_packets = stats.common.tx_64_byte_packets; 377 p_common->tx_65_to_127_byte_packets = 378 stats.common.tx_65_to_127_byte_packets; 379 p_common->tx_128_to_255_byte_packets = 380 stats.common.tx_128_to_255_byte_packets; 381 p_common->tx_256_to_511_byte_packets = 382 stats.common.tx_256_to_511_byte_packets; 383 p_common->tx_512_to_1023_byte_packets = 384 stats.common.tx_512_to_1023_byte_packets; 385 p_common->tx_1024_to_1518_byte_packets = 386 stats.common.tx_1024_to_1518_byte_packets; 387 p_common->tx_pause_frames = stats.common.tx_pause_frames; 388 p_common->tx_pfc_frames = stats.common.tx_pfc_frames; 389 p_common->brb_truncates = stats.common.brb_truncates; 390 p_common->brb_discards = stats.common.brb_discards; 391 p_common->tx_mac_ctrl_frames = stats.common.tx_mac_ctrl_frames; 392 p_common->link_change_count = stats.common.link_change_count; 393 394 if (QEDE_IS_BB(edev)) { 395 struct qede_stats_bb *p_bb = &edev->stats.bb; 396 397 p_bb->rx_1519_to_1522_byte_packets = 398 stats.bb.rx_1519_to_1522_byte_packets; 399 p_bb->rx_1519_to_2047_byte_packets = 400 stats.bb.rx_1519_to_2047_byte_packets; 401 p_bb->rx_2048_to_4095_byte_packets = 402 stats.bb.rx_2048_to_4095_byte_packets; 403 p_bb->rx_4096_to_9216_byte_packets = 404 stats.bb.rx_4096_to_9216_byte_packets; 405 p_bb->rx_9217_to_16383_byte_packets = 406 stats.bb.rx_9217_to_16383_byte_packets; 407 p_bb->tx_1519_to_2047_byte_packets = 408 stats.bb.tx_1519_to_2047_byte_packets; 409 p_bb->tx_2048_to_4095_byte_packets = 410 stats.bb.tx_2048_to_4095_byte_packets; 411 p_bb->tx_4096_to_9216_byte_packets = 412 stats.bb.tx_4096_to_9216_byte_packets; 413 p_bb->tx_9217_to_16383_byte_packets = 414 stats.bb.tx_9217_to_16383_byte_packets; 415 p_bb->tx_lpi_entry_count = stats.bb.tx_lpi_entry_count; 416 p_bb->tx_total_collisions = stats.bb.tx_total_collisions; 417 } else { 418 struct qede_stats_ah *p_ah = &edev->stats.ah; 419 420 p_ah->rx_1519_to_max_byte_packets = 421 stats.ah.rx_1519_to_max_byte_packets; 422 p_ah->tx_1519_to_max_byte_packets = 423 stats.ah.tx_1519_to_max_byte_packets; 424 } 425 } 426 427 static void qede_get_stats64(struct net_device *dev, 428 struct rtnl_link_stats64 *stats) 429 { 430 struct qede_dev *edev = netdev_priv(dev); 431 struct qede_stats_common *p_common; 432 433 qede_fill_by_demand_stats(edev); 434 p_common = &edev->stats.common; 435 436 stats->rx_packets = p_common->rx_ucast_pkts + p_common->rx_mcast_pkts + 437 p_common->rx_bcast_pkts; 438 stats->tx_packets = p_common->tx_ucast_pkts + p_common->tx_mcast_pkts + 439 p_common->tx_bcast_pkts; 440 441 stats->rx_bytes = p_common->rx_ucast_bytes + p_common->rx_mcast_bytes + 442 p_common->rx_bcast_bytes; 443 stats->tx_bytes = p_common->tx_ucast_bytes + p_common->tx_mcast_bytes + 444 p_common->tx_bcast_bytes; 445 446 stats->tx_errors = p_common->tx_err_drop_pkts; 447 stats->multicast = p_common->rx_mcast_pkts + p_common->rx_bcast_pkts; 448 449 stats->rx_fifo_errors = p_common->no_buff_discards; 450 451 if (QEDE_IS_BB(edev)) 452 stats->collisions = edev->stats.bb.tx_total_collisions; 453 stats->rx_crc_errors = p_common->rx_crc_errors; 454 stats->rx_frame_errors = p_common->rx_align_errors; 455 } 456 457 #ifdef CONFIG_QED_SRIOV 458 static int qede_get_vf_config(struct net_device *dev, int vfidx, 459 struct ifla_vf_info *ivi) 460 { 461 struct qede_dev *edev = netdev_priv(dev); 462 463 if (!edev->ops) 464 return -EINVAL; 465 466 return edev->ops->iov->get_config(edev->cdev, vfidx, ivi); 467 } 468 469 static int qede_set_vf_rate(struct net_device *dev, int vfidx, 470 int min_tx_rate, int max_tx_rate) 471 { 472 struct qede_dev *edev = netdev_priv(dev); 473 474 return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate, 475 max_tx_rate); 476 } 477 478 static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val) 479 { 480 struct qede_dev *edev = netdev_priv(dev); 481 482 if (!edev->ops) 483 return -EINVAL; 484 485 return edev->ops->iov->set_spoof(edev->cdev, vfidx, val); 486 } 487 488 static int qede_set_vf_link_state(struct net_device *dev, int vfidx, 489 int link_state) 490 { 491 struct qede_dev *edev = netdev_priv(dev); 492 493 if (!edev->ops) 494 return -EINVAL; 495 496 return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state); 497 } 498 499 static int qede_set_vf_trust(struct net_device *dev, int vfidx, bool setting) 500 { 501 struct qede_dev *edev = netdev_priv(dev); 502 503 if (!edev->ops) 504 return -EINVAL; 505 506 return edev->ops->iov->set_trust(edev->cdev, vfidx, setting); 507 } 508 #endif 509 510 static int qede_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 511 { 512 struct qede_dev *edev = netdev_priv(dev); 513 514 if (!netif_running(dev)) 515 return -EAGAIN; 516 517 switch (cmd) { 518 case SIOCSHWTSTAMP: 519 return qede_ptp_hw_ts(edev, ifr); 520 default: 521 DP_VERBOSE(edev, QED_MSG_DEBUG, 522 "default IOCTL cmd 0x%x\n", cmd); 523 return -EOPNOTSUPP; 524 } 525 526 return 0; 527 } 528 529 static int qede_setup_tc(struct net_device *ndev, u8 num_tc) 530 { 531 struct qede_dev *edev = netdev_priv(ndev); 532 int cos, count, offset; 533 534 if (num_tc > edev->dev_info.num_tc) 535 return -EINVAL; 536 537 netdev_reset_tc(ndev); 538 netdev_set_num_tc(ndev, num_tc); 539 540 for_each_cos_in_txq(edev, cos) { 541 count = QEDE_TSS_COUNT(edev); 542 offset = cos * QEDE_TSS_COUNT(edev); 543 netdev_set_tc_queue(ndev, cos, count, offset); 544 } 545 546 return 0; 547 } 548 549 static int 550 qede_set_flower(struct qede_dev *edev, struct tc_cls_flower_offload *f, 551 __be16 proto) 552 { 553 switch (f->command) { 554 case TC_CLSFLOWER_REPLACE: 555 return qede_add_tc_flower_fltr(edev, proto, f); 556 case TC_CLSFLOWER_DESTROY: 557 return qede_delete_flow_filter(edev, f->cookie); 558 default: 559 return -EOPNOTSUPP; 560 } 561 } 562 563 static int qede_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 564 void *cb_priv) 565 { 566 struct tc_cls_flower_offload *f; 567 struct qede_dev *edev = cb_priv; 568 569 if (!tc_cls_can_offload_and_chain0(edev->ndev, type_data)) 570 return -EOPNOTSUPP; 571 572 switch (type) { 573 case TC_SETUP_CLSFLOWER: 574 f = type_data; 575 return qede_set_flower(edev, f, f->common.protocol); 576 default: 577 return -EOPNOTSUPP; 578 } 579 } 580 581 static int qede_setup_tc_block(struct qede_dev *edev, 582 struct tc_block_offload *f) 583 { 584 if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 585 return -EOPNOTSUPP; 586 587 switch (f->command) { 588 case TC_BLOCK_BIND: 589 return tcf_block_cb_register(f->block, 590 qede_setup_tc_block_cb, 591 edev, edev, f->extack); 592 case TC_BLOCK_UNBIND: 593 tcf_block_cb_unregister(f->block, qede_setup_tc_block_cb, edev); 594 return 0; 595 default: 596 return -EOPNOTSUPP; 597 } 598 } 599 600 static int 601 qede_setup_tc_offload(struct net_device *dev, enum tc_setup_type type, 602 void *type_data) 603 { 604 struct qede_dev *edev = netdev_priv(dev); 605 struct tc_mqprio_qopt *mqprio; 606 607 switch (type) { 608 case TC_SETUP_BLOCK: 609 return qede_setup_tc_block(edev, type_data); 610 case TC_SETUP_QDISC_MQPRIO: 611 mqprio = type_data; 612 613 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; 614 return qede_setup_tc(dev, mqprio->num_tc); 615 default: 616 return -EOPNOTSUPP; 617 } 618 } 619 620 static const struct net_device_ops qede_netdev_ops = { 621 .ndo_open = qede_open, 622 .ndo_stop = qede_close, 623 .ndo_start_xmit = qede_start_xmit, 624 .ndo_select_queue = qede_select_queue, 625 .ndo_set_rx_mode = qede_set_rx_mode, 626 .ndo_set_mac_address = qede_set_mac_addr, 627 .ndo_validate_addr = eth_validate_addr, 628 .ndo_change_mtu = qede_change_mtu, 629 .ndo_do_ioctl = qede_ioctl, 630 #ifdef CONFIG_QED_SRIOV 631 .ndo_set_vf_mac = qede_set_vf_mac, 632 .ndo_set_vf_vlan = qede_set_vf_vlan, 633 .ndo_set_vf_trust = qede_set_vf_trust, 634 #endif 635 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid, 636 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid, 637 .ndo_fix_features = qede_fix_features, 638 .ndo_set_features = qede_set_features, 639 .ndo_get_stats64 = qede_get_stats64, 640 #ifdef CONFIG_QED_SRIOV 641 .ndo_set_vf_link_state = qede_set_vf_link_state, 642 .ndo_set_vf_spoofchk = qede_set_vf_spoofchk, 643 .ndo_get_vf_config = qede_get_vf_config, 644 .ndo_set_vf_rate = qede_set_vf_rate, 645 #endif 646 .ndo_udp_tunnel_add = qede_udp_tunnel_add, 647 .ndo_udp_tunnel_del = qede_udp_tunnel_del, 648 .ndo_features_check = qede_features_check, 649 .ndo_bpf = qede_xdp, 650 #ifdef CONFIG_RFS_ACCEL 651 .ndo_rx_flow_steer = qede_rx_flow_steer, 652 #endif 653 .ndo_setup_tc = qede_setup_tc_offload, 654 }; 655 656 static const struct net_device_ops qede_netdev_vf_ops = { 657 .ndo_open = qede_open, 658 .ndo_stop = qede_close, 659 .ndo_start_xmit = qede_start_xmit, 660 .ndo_select_queue = qede_select_queue, 661 .ndo_set_rx_mode = qede_set_rx_mode, 662 .ndo_set_mac_address = qede_set_mac_addr, 663 .ndo_validate_addr = eth_validate_addr, 664 .ndo_change_mtu = qede_change_mtu, 665 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid, 666 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid, 667 .ndo_fix_features = qede_fix_features, 668 .ndo_set_features = qede_set_features, 669 .ndo_get_stats64 = qede_get_stats64, 670 .ndo_udp_tunnel_add = qede_udp_tunnel_add, 671 .ndo_udp_tunnel_del = qede_udp_tunnel_del, 672 .ndo_features_check = qede_features_check, 673 }; 674 675 static const struct net_device_ops qede_netdev_vf_xdp_ops = { 676 .ndo_open = qede_open, 677 .ndo_stop = qede_close, 678 .ndo_start_xmit = qede_start_xmit, 679 .ndo_select_queue = qede_select_queue, 680 .ndo_set_rx_mode = qede_set_rx_mode, 681 .ndo_set_mac_address = qede_set_mac_addr, 682 .ndo_validate_addr = eth_validate_addr, 683 .ndo_change_mtu = qede_change_mtu, 684 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid, 685 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid, 686 .ndo_fix_features = qede_fix_features, 687 .ndo_set_features = qede_set_features, 688 .ndo_get_stats64 = qede_get_stats64, 689 .ndo_udp_tunnel_add = qede_udp_tunnel_add, 690 .ndo_udp_tunnel_del = qede_udp_tunnel_del, 691 .ndo_features_check = qede_features_check, 692 .ndo_bpf = qede_xdp, 693 }; 694 695 /* ------------------------------------------------------------------------- 696 * START OF PROBE / REMOVE 697 * ------------------------------------------------------------------------- 698 */ 699 700 static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev, 701 struct pci_dev *pdev, 702 struct qed_dev_eth_info *info, 703 u32 dp_module, u8 dp_level) 704 { 705 struct net_device *ndev; 706 struct qede_dev *edev; 707 708 ndev = alloc_etherdev_mqs(sizeof(*edev), 709 info->num_queues * info->num_tc, 710 info->num_queues); 711 if (!ndev) { 712 pr_err("etherdev allocation failed\n"); 713 return NULL; 714 } 715 716 edev = netdev_priv(ndev); 717 edev->ndev = ndev; 718 edev->cdev = cdev; 719 edev->pdev = pdev; 720 edev->dp_module = dp_module; 721 edev->dp_level = dp_level; 722 edev->ops = qed_ops; 723 edev->q_num_rx_buffers = NUM_RX_BDS_DEF; 724 edev->q_num_tx_buffers = NUM_TX_BDS_DEF; 725 726 DP_INFO(edev, "Allocated netdev with %d tx queues and %d rx queues\n", 727 info->num_queues, info->num_queues); 728 729 SET_NETDEV_DEV(ndev, &pdev->dev); 730 731 memset(&edev->stats, 0, sizeof(edev->stats)); 732 memcpy(&edev->dev_info, info, sizeof(*info)); 733 734 /* As ethtool doesn't have the ability to show WoL behavior as 735 * 'default', if device supports it declare it's enabled. 736 */ 737 if (edev->dev_info.common.wol_support) 738 edev->wol_enabled = true; 739 740 INIT_LIST_HEAD(&edev->vlan_list); 741 742 return edev; 743 } 744 745 static void qede_init_ndev(struct qede_dev *edev) 746 { 747 struct net_device *ndev = edev->ndev; 748 struct pci_dev *pdev = edev->pdev; 749 bool udp_tunnel_enable = false; 750 netdev_features_t hw_features; 751 752 pci_set_drvdata(pdev, ndev); 753 754 ndev->mem_start = edev->dev_info.common.pci_mem_start; 755 ndev->base_addr = ndev->mem_start; 756 ndev->mem_end = edev->dev_info.common.pci_mem_end; 757 ndev->irq = edev->dev_info.common.pci_irq; 758 759 ndev->watchdog_timeo = TX_TIMEOUT; 760 761 if (IS_VF(edev)) { 762 if (edev->dev_info.xdp_supported) 763 ndev->netdev_ops = &qede_netdev_vf_xdp_ops; 764 else 765 ndev->netdev_ops = &qede_netdev_vf_ops; 766 } else { 767 ndev->netdev_ops = &qede_netdev_ops; 768 } 769 770 qede_set_ethtool_ops(ndev); 771 772 ndev->priv_flags |= IFF_UNICAST_FLT; 773 774 /* user-changeble features */ 775 hw_features = NETIF_F_GRO | NETIF_F_GRO_HW | NETIF_F_SG | 776 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 777 NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_HW_TC; 778 779 if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) 780 hw_features |= NETIF_F_NTUPLE; 781 782 if (edev->dev_info.common.vxlan_enable || 783 edev->dev_info.common.geneve_enable) 784 udp_tunnel_enable = true; 785 786 if (udp_tunnel_enable || edev->dev_info.common.gre_enable) { 787 hw_features |= NETIF_F_TSO_ECN; 788 ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 789 NETIF_F_SG | NETIF_F_TSO | 790 NETIF_F_TSO_ECN | NETIF_F_TSO6 | 791 NETIF_F_RXCSUM; 792 } 793 794 if (udp_tunnel_enable) { 795 hw_features |= (NETIF_F_GSO_UDP_TUNNEL | 796 NETIF_F_GSO_UDP_TUNNEL_CSUM); 797 ndev->hw_enc_features |= (NETIF_F_GSO_UDP_TUNNEL | 798 NETIF_F_GSO_UDP_TUNNEL_CSUM); 799 } 800 801 if (edev->dev_info.common.gre_enable) { 802 hw_features |= (NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM); 803 ndev->hw_enc_features |= (NETIF_F_GSO_GRE | 804 NETIF_F_GSO_GRE_CSUM); 805 } 806 807 ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM | 808 NETIF_F_HIGHDMA; 809 ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM | 810 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA | 811 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX; 812 813 ndev->hw_features = hw_features; 814 815 /* MTU range: 46 - 9600 */ 816 ndev->min_mtu = ETH_ZLEN - ETH_HLEN; 817 ndev->max_mtu = QEDE_MAX_JUMBO_PACKET_SIZE; 818 819 /* Set network device HW mac */ 820 ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac); 821 822 ndev->mtu = edev->dev_info.common.mtu; 823 } 824 825 /* This function converts from 32b param to two params of level and module 826 * Input 32b decoding: 827 * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the 828 * 'happy' flow, e.g. memory allocation failed. 829 * b30 - enable all INFO prints. INFO prints are for major steps in the flow 830 * and provide important parameters. 831 * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that 832 * module. VERBOSE prints are for tracking the specific flow in low level. 833 * 834 * Notice that the level should be that of the lowest required logs. 835 */ 836 void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level) 837 { 838 *p_dp_level = QED_LEVEL_NOTICE; 839 *p_dp_module = 0; 840 841 if (debug & QED_LOG_VERBOSE_MASK) { 842 *p_dp_level = QED_LEVEL_VERBOSE; 843 *p_dp_module = (debug & 0x3FFFFFFF); 844 } else if (debug & QED_LOG_INFO_MASK) { 845 *p_dp_level = QED_LEVEL_INFO; 846 } else if (debug & QED_LOG_NOTICE_MASK) { 847 *p_dp_level = QED_LEVEL_NOTICE; 848 } 849 } 850 851 static void qede_free_fp_array(struct qede_dev *edev) 852 { 853 if (edev->fp_array) { 854 struct qede_fastpath *fp; 855 int i; 856 857 for_each_queue(i) { 858 fp = &edev->fp_array[i]; 859 860 kfree(fp->sb_info); 861 /* Handle mem alloc failure case where qede_init_fp 862 * didn't register xdp_rxq_info yet. 863 * Implicit only (fp->type & QEDE_FASTPATH_RX) 864 */ 865 if (fp->rxq && xdp_rxq_info_is_reg(&fp->rxq->xdp_rxq)) 866 xdp_rxq_info_unreg(&fp->rxq->xdp_rxq); 867 kfree(fp->rxq); 868 kfree(fp->xdp_tx); 869 kfree(fp->txq); 870 } 871 kfree(edev->fp_array); 872 } 873 874 edev->num_queues = 0; 875 edev->fp_num_tx = 0; 876 edev->fp_num_rx = 0; 877 } 878 879 static int qede_alloc_fp_array(struct qede_dev *edev) 880 { 881 u8 fp_combined, fp_rx = edev->fp_num_rx; 882 struct qede_fastpath *fp; 883 int i; 884 885 edev->fp_array = kcalloc(QEDE_QUEUE_CNT(edev), 886 sizeof(*edev->fp_array), GFP_KERNEL); 887 if (!edev->fp_array) { 888 DP_NOTICE(edev, "fp array allocation failed\n"); 889 goto err; 890 } 891 892 fp_combined = QEDE_QUEUE_CNT(edev) - fp_rx - edev->fp_num_tx; 893 894 /* Allocate the FP elements for Rx queues followed by combined and then 895 * the Tx. This ordering should be maintained so that the respective 896 * queues (Rx or Tx) will be together in the fastpath array and the 897 * associated ids will be sequential. 898 */ 899 for_each_queue(i) { 900 fp = &edev->fp_array[i]; 901 902 fp->sb_info = kzalloc(sizeof(*fp->sb_info), GFP_KERNEL); 903 if (!fp->sb_info) { 904 DP_NOTICE(edev, "sb info struct allocation failed\n"); 905 goto err; 906 } 907 908 if (fp_rx) { 909 fp->type = QEDE_FASTPATH_RX; 910 fp_rx--; 911 } else if (fp_combined) { 912 fp->type = QEDE_FASTPATH_COMBINED; 913 fp_combined--; 914 } else { 915 fp->type = QEDE_FASTPATH_TX; 916 } 917 918 if (fp->type & QEDE_FASTPATH_TX) { 919 fp->txq = kcalloc(edev->dev_info.num_tc, 920 sizeof(*fp->txq), GFP_KERNEL); 921 if (!fp->txq) 922 goto err; 923 } 924 925 if (fp->type & QEDE_FASTPATH_RX) { 926 fp->rxq = kzalloc(sizeof(*fp->rxq), GFP_KERNEL); 927 if (!fp->rxq) 928 goto err; 929 930 if (edev->xdp_prog) { 931 fp->xdp_tx = kzalloc(sizeof(*fp->xdp_tx), 932 GFP_KERNEL); 933 if (!fp->xdp_tx) 934 goto err; 935 fp->type |= QEDE_FASTPATH_XDP; 936 } 937 } 938 } 939 940 return 0; 941 err: 942 qede_free_fp_array(edev); 943 return -ENOMEM; 944 } 945 946 /* The qede lock is used to protect driver state change and driver flows that 947 * are not reentrant. 948 */ 949 void __qede_lock(struct qede_dev *edev) 950 { 951 mutex_lock(&edev->qede_lock); 952 } 953 954 void __qede_unlock(struct qede_dev *edev) 955 { 956 mutex_unlock(&edev->qede_lock); 957 } 958 959 /* This version of the lock should be used when acquiring the RTNL lock is also 960 * needed in addition to the internal qede lock. 961 */ 962 void qede_lock(struct qede_dev *edev) 963 { 964 rtnl_lock(); 965 __qede_lock(edev); 966 } 967 968 void qede_unlock(struct qede_dev *edev) 969 { 970 __qede_unlock(edev); 971 rtnl_unlock(); 972 } 973 974 static void qede_sp_task(struct work_struct *work) 975 { 976 struct qede_dev *edev = container_of(work, struct qede_dev, 977 sp_task.work); 978 979 /* The locking scheme depends on the specific flag: 980 * In case of QEDE_SP_RECOVERY, acquiring the RTNL lock is required to 981 * ensure that ongoing flows are ended and new ones are not started. 982 * In other cases - only the internal qede lock should be acquired. 983 */ 984 985 if (test_and_clear_bit(QEDE_SP_RECOVERY, &edev->sp_flags)) { 986 #ifdef CONFIG_QED_SRIOV 987 /* SRIOV must be disabled outside the lock to avoid a deadlock. 988 * The recovery of the active VFs is currently not supported. 989 */ 990 qede_sriov_configure(edev->pdev, 0); 991 #endif 992 qede_lock(edev); 993 qede_recovery_handler(edev); 994 qede_unlock(edev); 995 } 996 997 __qede_lock(edev); 998 999 if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags)) 1000 if (edev->state == QEDE_STATE_OPEN) 1001 qede_config_rx_mode(edev->ndev); 1002 1003 #ifdef CONFIG_RFS_ACCEL 1004 if (test_and_clear_bit(QEDE_SP_ARFS_CONFIG, &edev->sp_flags)) { 1005 if (edev->state == QEDE_STATE_OPEN) 1006 qede_process_arfs_filters(edev, false); 1007 } 1008 #endif 1009 __qede_unlock(edev); 1010 } 1011 1012 static void qede_update_pf_params(struct qed_dev *cdev) 1013 { 1014 struct qed_pf_params pf_params; 1015 u16 num_cons; 1016 1017 /* 64 rx + 64 tx + 64 XDP */ 1018 memset(&pf_params, 0, sizeof(struct qed_pf_params)); 1019 1020 /* 1 rx + 1 xdp + max tx cos */ 1021 num_cons = QED_MIN_L2_CONS; 1022 1023 pf_params.eth_pf_params.num_cons = (MAX_SB_PER_PF_MIMD - 1) * num_cons; 1024 1025 /* Same for VFs - make sure they'll have sufficient connections 1026 * to support XDP Tx queues. 1027 */ 1028 pf_params.eth_pf_params.num_vf_cons = 48; 1029 1030 pf_params.eth_pf_params.num_arfs_filters = QEDE_RFS_MAX_FLTR; 1031 qed_ops->common->update_pf_params(cdev, &pf_params); 1032 } 1033 1034 #define QEDE_FW_VER_STR_SIZE 80 1035 1036 static void qede_log_probe(struct qede_dev *edev) 1037 { 1038 struct qed_dev_info *p_dev_info = &edev->dev_info.common; 1039 u8 buf[QEDE_FW_VER_STR_SIZE]; 1040 size_t left_size; 1041 1042 snprintf(buf, QEDE_FW_VER_STR_SIZE, 1043 "Storm FW %d.%d.%d.%d, Management FW %d.%d.%d.%d", 1044 p_dev_info->fw_major, p_dev_info->fw_minor, p_dev_info->fw_rev, 1045 p_dev_info->fw_eng, 1046 (p_dev_info->mfw_rev & QED_MFW_VERSION_3_MASK) >> 1047 QED_MFW_VERSION_3_OFFSET, 1048 (p_dev_info->mfw_rev & QED_MFW_VERSION_2_MASK) >> 1049 QED_MFW_VERSION_2_OFFSET, 1050 (p_dev_info->mfw_rev & QED_MFW_VERSION_1_MASK) >> 1051 QED_MFW_VERSION_1_OFFSET, 1052 (p_dev_info->mfw_rev & QED_MFW_VERSION_0_MASK) >> 1053 QED_MFW_VERSION_0_OFFSET); 1054 1055 left_size = QEDE_FW_VER_STR_SIZE - strlen(buf); 1056 if (p_dev_info->mbi_version && left_size) 1057 snprintf(buf + strlen(buf), left_size, 1058 " [MBI %d.%d.%d]", 1059 (p_dev_info->mbi_version & QED_MBI_VERSION_2_MASK) >> 1060 QED_MBI_VERSION_2_OFFSET, 1061 (p_dev_info->mbi_version & QED_MBI_VERSION_1_MASK) >> 1062 QED_MBI_VERSION_1_OFFSET, 1063 (p_dev_info->mbi_version & QED_MBI_VERSION_0_MASK) >> 1064 QED_MBI_VERSION_0_OFFSET); 1065 1066 pr_info("qede %02x:%02x.%02x: %s [%s]\n", edev->pdev->bus->number, 1067 PCI_SLOT(edev->pdev->devfn), PCI_FUNC(edev->pdev->devfn), 1068 buf, edev->ndev->name); 1069 } 1070 1071 enum qede_probe_mode { 1072 QEDE_PROBE_NORMAL, 1073 QEDE_PROBE_RECOVERY, 1074 }; 1075 1076 static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level, 1077 bool is_vf, enum qede_probe_mode mode) 1078 { 1079 struct qed_probe_params probe_params; 1080 struct qed_slowpath_params sp_params; 1081 struct qed_dev_eth_info dev_info; 1082 struct qede_dev *edev; 1083 struct qed_dev *cdev; 1084 int rc; 1085 1086 if (unlikely(dp_level & QED_LEVEL_INFO)) 1087 pr_notice("Starting qede probe\n"); 1088 1089 memset(&probe_params, 0, sizeof(probe_params)); 1090 probe_params.protocol = QED_PROTOCOL_ETH; 1091 probe_params.dp_module = dp_module; 1092 probe_params.dp_level = dp_level; 1093 probe_params.is_vf = is_vf; 1094 probe_params.recov_in_prog = (mode == QEDE_PROBE_RECOVERY); 1095 cdev = qed_ops->common->probe(pdev, &probe_params); 1096 if (!cdev) { 1097 rc = -ENODEV; 1098 goto err0; 1099 } 1100 1101 qede_update_pf_params(cdev); 1102 1103 /* Start the Slowpath-process */ 1104 memset(&sp_params, 0, sizeof(sp_params)); 1105 sp_params.int_mode = QED_INT_MODE_MSIX; 1106 sp_params.drv_major = QEDE_MAJOR_VERSION; 1107 sp_params.drv_minor = QEDE_MINOR_VERSION; 1108 sp_params.drv_rev = QEDE_REVISION_VERSION; 1109 sp_params.drv_eng = QEDE_ENGINEERING_VERSION; 1110 strlcpy(sp_params.name, "qede LAN", QED_DRV_VER_STR_SIZE); 1111 rc = qed_ops->common->slowpath_start(cdev, &sp_params); 1112 if (rc) { 1113 pr_notice("Cannot start slowpath\n"); 1114 goto err1; 1115 } 1116 1117 /* Learn information crucial for qede to progress */ 1118 rc = qed_ops->fill_dev_info(cdev, &dev_info); 1119 if (rc) 1120 goto err2; 1121 1122 if (mode != QEDE_PROBE_RECOVERY) { 1123 edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module, 1124 dp_level); 1125 if (!edev) { 1126 rc = -ENOMEM; 1127 goto err2; 1128 } 1129 } else { 1130 struct net_device *ndev = pci_get_drvdata(pdev); 1131 1132 edev = netdev_priv(ndev); 1133 edev->cdev = cdev; 1134 memset(&edev->stats, 0, sizeof(edev->stats)); 1135 memcpy(&edev->dev_info, &dev_info, sizeof(dev_info)); 1136 } 1137 1138 if (is_vf) 1139 set_bit(QEDE_FLAGS_IS_VF, &edev->flags); 1140 1141 qede_init_ndev(edev); 1142 1143 rc = qede_rdma_dev_add(edev, (mode == QEDE_PROBE_RECOVERY)); 1144 if (rc) 1145 goto err3; 1146 1147 if (mode != QEDE_PROBE_RECOVERY) { 1148 /* Prepare the lock prior to the registration of the netdev, 1149 * as once it's registered we might reach flows requiring it 1150 * [it's even possible to reach a flow needing it directly 1151 * from there, although it's unlikely]. 1152 */ 1153 INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task); 1154 mutex_init(&edev->qede_lock); 1155 1156 rc = register_netdev(edev->ndev); 1157 if (rc) { 1158 DP_NOTICE(edev, "Cannot register net-device\n"); 1159 goto err4; 1160 } 1161 } 1162 1163 edev->ops->common->set_name(cdev, edev->ndev->name); 1164 1165 /* PTP not supported on VFs */ 1166 if (!is_vf) 1167 qede_ptp_enable(edev, (mode == QEDE_PROBE_NORMAL)); 1168 1169 edev->ops->register_ops(cdev, &qede_ll_ops, edev); 1170 1171 #ifdef CONFIG_DCB 1172 if (!IS_VF(edev)) 1173 qede_set_dcbnl_ops(edev->ndev); 1174 #endif 1175 1176 edev->rx_copybreak = QEDE_RX_HDR_SIZE; 1177 1178 qede_log_probe(edev); 1179 return 0; 1180 1181 err4: 1182 qede_rdma_dev_remove(edev, (mode == QEDE_PROBE_RECOVERY)); 1183 err3: 1184 free_netdev(edev->ndev); 1185 err2: 1186 qed_ops->common->slowpath_stop(cdev); 1187 err1: 1188 qed_ops->common->remove(cdev); 1189 err0: 1190 return rc; 1191 } 1192 1193 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id) 1194 { 1195 bool is_vf = false; 1196 u32 dp_module = 0; 1197 u8 dp_level = 0; 1198 1199 switch ((enum qede_pci_private)id->driver_data) { 1200 case QEDE_PRIVATE_VF: 1201 if (debug & QED_LOG_VERBOSE_MASK) 1202 dev_err(&pdev->dev, "Probing a VF\n"); 1203 is_vf = true; 1204 break; 1205 default: 1206 if (debug & QED_LOG_VERBOSE_MASK) 1207 dev_err(&pdev->dev, "Probing a PF\n"); 1208 } 1209 1210 qede_config_debug(debug, &dp_module, &dp_level); 1211 1212 return __qede_probe(pdev, dp_module, dp_level, is_vf, 1213 QEDE_PROBE_NORMAL); 1214 } 1215 1216 enum qede_remove_mode { 1217 QEDE_REMOVE_NORMAL, 1218 QEDE_REMOVE_RECOVERY, 1219 }; 1220 1221 static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode) 1222 { 1223 struct net_device *ndev = pci_get_drvdata(pdev); 1224 struct qede_dev *edev = netdev_priv(ndev); 1225 struct qed_dev *cdev = edev->cdev; 1226 1227 DP_INFO(edev, "Starting qede_remove\n"); 1228 1229 qede_rdma_dev_remove(edev, (mode == QEDE_REMOVE_RECOVERY)); 1230 1231 if (mode != QEDE_REMOVE_RECOVERY) { 1232 unregister_netdev(ndev); 1233 1234 cancel_delayed_work_sync(&edev->sp_task); 1235 1236 edev->ops->common->set_power_state(cdev, PCI_D0); 1237 1238 pci_set_drvdata(pdev, NULL); 1239 } 1240 1241 qede_ptp_disable(edev); 1242 1243 /* Use global ops since we've freed edev */ 1244 qed_ops->common->slowpath_stop(cdev); 1245 if (system_state == SYSTEM_POWER_OFF) 1246 return; 1247 qed_ops->common->remove(cdev); 1248 1249 /* Since this can happen out-of-sync with other flows, 1250 * don't release the netdevice until after slowpath stop 1251 * has been called to guarantee various other contexts 1252 * [e.g., QED register callbacks] won't break anything when 1253 * accessing the netdevice. 1254 */ 1255 if (mode != QEDE_REMOVE_RECOVERY) 1256 free_netdev(ndev); 1257 1258 dev_info(&pdev->dev, "Ending qede_remove successfully\n"); 1259 } 1260 1261 static void qede_remove(struct pci_dev *pdev) 1262 { 1263 __qede_remove(pdev, QEDE_REMOVE_NORMAL); 1264 } 1265 1266 static void qede_shutdown(struct pci_dev *pdev) 1267 { 1268 __qede_remove(pdev, QEDE_REMOVE_NORMAL); 1269 } 1270 1271 /* ------------------------------------------------------------------------- 1272 * START OF LOAD / UNLOAD 1273 * ------------------------------------------------------------------------- 1274 */ 1275 1276 static int qede_set_num_queues(struct qede_dev *edev) 1277 { 1278 int rc; 1279 u16 rss_num; 1280 1281 /* Setup queues according to possible resources*/ 1282 if (edev->req_queues) 1283 rss_num = edev->req_queues; 1284 else 1285 rss_num = netif_get_num_default_rss_queues() * 1286 edev->dev_info.common.num_hwfns; 1287 1288 rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num); 1289 1290 rc = edev->ops->common->set_fp_int(edev->cdev, rss_num); 1291 if (rc > 0) { 1292 /* Managed to request interrupts for our queues */ 1293 edev->num_queues = rc; 1294 DP_INFO(edev, "Managed %d [of %d] RSS queues\n", 1295 QEDE_QUEUE_CNT(edev), rss_num); 1296 rc = 0; 1297 } 1298 1299 edev->fp_num_tx = edev->req_num_tx; 1300 edev->fp_num_rx = edev->req_num_rx; 1301 1302 return rc; 1303 } 1304 1305 static void qede_free_mem_sb(struct qede_dev *edev, struct qed_sb_info *sb_info, 1306 u16 sb_id) 1307 { 1308 if (sb_info->sb_virt) { 1309 edev->ops->common->sb_release(edev->cdev, sb_info, sb_id); 1310 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt), 1311 (void *)sb_info->sb_virt, sb_info->sb_phys); 1312 memset(sb_info, 0, sizeof(*sb_info)); 1313 } 1314 } 1315 1316 /* This function allocates fast-path status block memory */ 1317 static int qede_alloc_mem_sb(struct qede_dev *edev, 1318 struct qed_sb_info *sb_info, u16 sb_id) 1319 { 1320 struct status_block_e4 *sb_virt; 1321 dma_addr_t sb_phys; 1322 int rc; 1323 1324 sb_virt = dma_alloc_coherent(&edev->pdev->dev, 1325 sizeof(*sb_virt), &sb_phys, GFP_KERNEL); 1326 if (!sb_virt) { 1327 DP_ERR(edev, "Status block allocation failed\n"); 1328 return -ENOMEM; 1329 } 1330 1331 rc = edev->ops->common->sb_init(edev->cdev, sb_info, 1332 sb_virt, sb_phys, sb_id, 1333 QED_SB_TYPE_L2_QUEUE); 1334 if (rc) { 1335 DP_ERR(edev, "Status block initialization failed\n"); 1336 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt), 1337 sb_virt, sb_phys); 1338 return rc; 1339 } 1340 1341 return 0; 1342 } 1343 1344 static void qede_free_rx_buffers(struct qede_dev *edev, 1345 struct qede_rx_queue *rxq) 1346 { 1347 u16 i; 1348 1349 for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) { 1350 struct sw_rx_data *rx_buf; 1351 struct page *data; 1352 1353 rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX]; 1354 data = rx_buf->data; 1355 1356 dma_unmap_page(&edev->pdev->dev, 1357 rx_buf->mapping, PAGE_SIZE, rxq->data_direction); 1358 1359 rx_buf->data = NULL; 1360 __free_page(data); 1361 } 1362 } 1363 1364 static void qede_free_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq) 1365 { 1366 /* Free rx buffers */ 1367 qede_free_rx_buffers(edev, rxq); 1368 1369 /* Free the parallel SW ring */ 1370 kfree(rxq->sw_rx_ring); 1371 1372 /* Free the real RQ ring used by FW */ 1373 edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring); 1374 edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring); 1375 } 1376 1377 static void qede_set_tpa_param(struct qede_rx_queue *rxq) 1378 { 1379 int i; 1380 1381 for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) { 1382 struct qede_agg_info *tpa_info = &rxq->tpa_info[i]; 1383 1384 tpa_info->state = QEDE_AGG_STATE_NONE; 1385 } 1386 } 1387 1388 /* This function allocates all memory needed per Rx queue */ 1389 static int qede_alloc_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq) 1390 { 1391 int i, rc, size; 1392 1393 rxq->num_rx_buffers = edev->q_num_rx_buffers; 1394 1395 rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD + edev->ndev->mtu; 1396 1397 rxq->rx_headroom = edev->xdp_prog ? XDP_PACKET_HEADROOM : NET_SKB_PAD; 1398 size = rxq->rx_headroom + 1399 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 1400 1401 /* Make sure that the headroom and payload fit in a single page */ 1402 if (rxq->rx_buf_size + size > PAGE_SIZE) 1403 rxq->rx_buf_size = PAGE_SIZE - size; 1404 1405 /* Segment size to spilt a page in multiple equal parts , 1406 * unless XDP is used in which case we'd use the entire page. 1407 */ 1408 if (!edev->xdp_prog) { 1409 size = size + rxq->rx_buf_size; 1410 rxq->rx_buf_seg_size = roundup_pow_of_two(size); 1411 } else { 1412 rxq->rx_buf_seg_size = PAGE_SIZE; 1413 } 1414 1415 /* Allocate the parallel driver ring for Rx buffers */ 1416 size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE; 1417 rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL); 1418 if (!rxq->sw_rx_ring) { 1419 DP_ERR(edev, "Rx buffers ring allocation failed\n"); 1420 rc = -ENOMEM; 1421 goto err; 1422 } 1423 1424 /* Allocate FW Rx ring */ 1425 rc = edev->ops->common->chain_alloc(edev->cdev, 1426 QED_CHAIN_USE_TO_CONSUME_PRODUCE, 1427 QED_CHAIN_MODE_NEXT_PTR, 1428 QED_CHAIN_CNT_TYPE_U16, 1429 RX_RING_SIZE, 1430 sizeof(struct eth_rx_bd), 1431 &rxq->rx_bd_ring, NULL); 1432 if (rc) 1433 goto err; 1434 1435 /* Allocate FW completion ring */ 1436 rc = edev->ops->common->chain_alloc(edev->cdev, 1437 QED_CHAIN_USE_TO_CONSUME, 1438 QED_CHAIN_MODE_PBL, 1439 QED_CHAIN_CNT_TYPE_U16, 1440 RX_RING_SIZE, 1441 sizeof(union eth_rx_cqe), 1442 &rxq->rx_comp_ring, NULL); 1443 if (rc) 1444 goto err; 1445 1446 /* Allocate buffers for the Rx ring */ 1447 rxq->filled_buffers = 0; 1448 for (i = 0; i < rxq->num_rx_buffers; i++) { 1449 rc = qede_alloc_rx_buffer(rxq, false); 1450 if (rc) { 1451 DP_ERR(edev, 1452 "Rx buffers allocation failed at index %d\n", i); 1453 goto err; 1454 } 1455 } 1456 1457 if (!edev->gro_disable) 1458 qede_set_tpa_param(rxq); 1459 err: 1460 return rc; 1461 } 1462 1463 static void qede_free_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq) 1464 { 1465 /* Free the parallel SW ring */ 1466 if (txq->is_xdp) 1467 kfree(txq->sw_tx_ring.xdp); 1468 else 1469 kfree(txq->sw_tx_ring.skbs); 1470 1471 /* Free the real RQ ring used by FW */ 1472 edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl); 1473 } 1474 1475 /* This function allocates all memory needed per Tx queue */ 1476 static int qede_alloc_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq) 1477 { 1478 union eth_tx_bd_types *p_virt; 1479 int size, rc; 1480 1481 txq->num_tx_buffers = edev->q_num_tx_buffers; 1482 1483 /* Allocate the parallel driver ring for Tx buffers */ 1484 if (txq->is_xdp) { 1485 size = sizeof(*txq->sw_tx_ring.xdp) * txq->num_tx_buffers; 1486 txq->sw_tx_ring.xdp = kzalloc(size, GFP_KERNEL); 1487 if (!txq->sw_tx_ring.xdp) 1488 goto err; 1489 } else { 1490 size = sizeof(*txq->sw_tx_ring.skbs) * txq->num_tx_buffers; 1491 txq->sw_tx_ring.skbs = kzalloc(size, GFP_KERNEL); 1492 if (!txq->sw_tx_ring.skbs) 1493 goto err; 1494 } 1495 1496 rc = edev->ops->common->chain_alloc(edev->cdev, 1497 QED_CHAIN_USE_TO_CONSUME_PRODUCE, 1498 QED_CHAIN_MODE_PBL, 1499 QED_CHAIN_CNT_TYPE_U16, 1500 txq->num_tx_buffers, 1501 sizeof(*p_virt), 1502 &txq->tx_pbl, NULL); 1503 if (rc) 1504 goto err; 1505 1506 return 0; 1507 1508 err: 1509 qede_free_mem_txq(edev, txq); 1510 return -ENOMEM; 1511 } 1512 1513 /* This function frees all memory of a single fp */ 1514 static void qede_free_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp) 1515 { 1516 qede_free_mem_sb(edev, fp->sb_info, fp->id); 1517 1518 if (fp->type & QEDE_FASTPATH_RX) 1519 qede_free_mem_rxq(edev, fp->rxq); 1520 1521 if (fp->type & QEDE_FASTPATH_XDP) 1522 qede_free_mem_txq(edev, fp->xdp_tx); 1523 1524 if (fp->type & QEDE_FASTPATH_TX) { 1525 int cos; 1526 1527 for_each_cos_in_txq(edev, cos) 1528 qede_free_mem_txq(edev, &fp->txq[cos]); 1529 } 1530 } 1531 1532 /* This function allocates all memory needed for a single fp (i.e. an entity 1533 * which contains status block, one rx queue and/or multiple per-TC tx queues. 1534 */ 1535 static int qede_alloc_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp) 1536 { 1537 int rc = 0; 1538 1539 rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->id); 1540 if (rc) 1541 goto out; 1542 1543 if (fp->type & QEDE_FASTPATH_RX) { 1544 rc = qede_alloc_mem_rxq(edev, fp->rxq); 1545 if (rc) 1546 goto out; 1547 } 1548 1549 if (fp->type & QEDE_FASTPATH_XDP) { 1550 rc = qede_alloc_mem_txq(edev, fp->xdp_tx); 1551 if (rc) 1552 goto out; 1553 } 1554 1555 if (fp->type & QEDE_FASTPATH_TX) { 1556 int cos; 1557 1558 for_each_cos_in_txq(edev, cos) { 1559 rc = qede_alloc_mem_txq(edev, &fp->txq[cos]); 1560 if (rc) 1561 goto out; 1562 } 1563 } 1564 1565 out: 1566 return rc; 1567 } 1568 1569 static void qede_free_mem_load(struct qede_dev *edev) 1570 { 1571 int i; 1572 1573 for_each_queue(i) { 1574 struct qede_fastpath *fp = &edev->fp_array[i]; 1575 1576 qede_free_mem_fp(edev, fp); 1577 } 1578 } 1579 1580 /* This function allocates all qede memory at NIC load. */ 1581 static int qede_alloc_mem_load(struct qede_dev *edev) 1582 { 1583 int rc = 0, queue_id; 1584 1585 for (queue_id = 0; queue_id < QEDE_QUEUE_CNT(edev); queue_id++) { 1586 struct qede_fastpath *fp = &edev->fp_array[queue_id]; 1587 1588 rc = qede_alloc_mem_fp(edev, fp); 1589 if (rc) { 1590 DP_ERR(edev, 1591 "Failed to allocate memory for fastpath - rss id = %d\n", 1592 queue_id); 1593 qede_free_mem_load(edev); 1594 return rc; 1595 } 1596 } 1597 1598 return 0; 1599 } 1600 1601 static void qede_empty_tx_queue(struct qede_dev *edev, 1602 struct qede_tx_queue *txq) 1603 { 1604 unsigned int pkts_compl = 0, bytes_compl = 0; 1605 struct netdev_queue *netdev_txq; 1606 int rc, len = 0; 1607 1608 netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id); 1609 1610 while (qed_chain_get_cons_idx(&txq->tx_pbl) != 1611 qed_chain_get_prod_idx(&txq->tx_pbl)) { 1612 DP_VERBOSE(edev, NETIF_MSG_IFDOWN, 1613 "Freeing a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n", 1614 txq->index, qed_chain_get_cons_idx(&txq->tx_pbl), 1615 qed_chain_get_prod_idx(&txq->tx_pbl)); 1616 1617 rc = qede_free_tx_pkt(edev, txq, &len); 1618 if (rc) { 1619 DP_NOTICE(edev, 1620 "Failed to free a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n", 1621 txq->index, 1622 qed_chain_get_cons_idx(&txq->tx_pbl), 1623 qed_chain_get_prod_idx(&txq->tx_pbl)); 1624 break; 1625 } 1626 1627 bytes_compl += len; 1628 pkts_compl++; 1629 txq->sw_tx_cons++; 1630 } 1631 1632 netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl); 1633 } 1634 1635 static void qede_empty_tx_queues(struct qede_dev *edev) 1636 { 1637 int i; 1638 1639 for_each_queue(i) 1640 if (edev->fp_array[i].type & QEDE_FASTPATH_TX) { 1641 int cos; 1642 1643 for_each_cos_in_txq(edev, cos) { 1644 struct qede_fastpath *fp; 1645 1646 fp = &edev->fp_array[i]; 1647 qede_empty_tx_queue(edev, 1648 &fp->txq[cos]); 1649 } 1650 } 1651 } 1652 1653 /* This function inits fp content and resets the SB, RXQ and TXQ structures */ 1654 static void qede_init_fp(struct qede_dev *edev) 1655 { 1656 int queue_id, rxq_index = 0, txq_index = 0; 1657 struct qede_fastpath *fp; 1658 1659 for_each_queue(queue_id) { 1660 fp = &edev->fp_array[queue_id]; 1661 1662 fp->edev = edev; 1663 fp->id = queue_id; 1664 1665 if (fp->type & QEDE_FASTPATH_XDP) { 1666 fp->xdp_tx->index = QEDE_TXQ_IDX_TO_XDP(edev, 1667 rxq_index); 1668 fp->xdp_tx->is_xdp = 1; 1669 } 1670 1671 if (fp->type & QEDE_FASTPATH_RX) { 1672 fp->rxq->rxq_id = rxq_index++; 1673 1674 /* Determine how to map buffers for this queue */ 1675 if (fp->type & QEDE_FASTPATH_XDP) 1676 fp->rxq->data_direction = DMA_BIDIRECTIONAL; 1677 else 1678 fp->rxq->data_direction = DMA_FROM_DEVICE; 1679 fp->rxq->dev = &edev->pdev->dev; 1680 1681 /* Driver have no error path from here */ 1682 WARN_ON(xdp_rxq_info_reg(&fp->rxq->xdp_rxq, edev->ndev, 1683 fp->rxq->rxq_id) < 0); 1684 } 1685 1686 if (fp->type & QEDE_FASTPATH_TX) { 1687 int cos; 1688 1689 for_each_cos_in_txq(edev, cos) { 1690 struct qede_tx_queue *txq = &fp->txq[cos]; 1691 u16 ndev_tx_id; 1692 1693 txq->cos = cos; 1694 txq->index = txq_index; 1695 ndev_tx_id = QEDE_TXQ_TO_NDEV_TXQ_ID(edev, txq); 1696 txq->ndev_txq_id = ndev_tx_id; 1697 1698 if (edev->dev_info.is_legacy) 1699 txq->is_legacy = 1; 1700 txq->dev = &edev->pdev->dev; 1701 } 1702 1703 txq_index++; 1704 } 1705 1706 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d", 1707 edev->ndev->name, queue_id); 1708 } 1709 1710 edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO_HW); 1711 } 1712 1713 static int qede_set_real_num_queues(struct qede_dev *edev) 1714 { 1715 int rc = 0; 1716 1717 rc = netif_set_real_num_tx_queues(edev->ndev, 1718 QEDE_TSS_COUNT(edev) * 1719 edev->dev_info.num_tc); 1720 if (rc) { 1721 DP_NOTICE(edev, "Failed to set real number of Tx queues\n"); 1722 return rc; 1723 } 1724 1725 rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_COUNT(edev)); 1726 if (rc) { 1727 DP_NOTICE(edev, "Failed to set real number of Rx queues\n"); 1728 return rc; 1729 } 1730 1731 return 0; 1732 } 1733 1734 static void qede_napi_disable_remove(struct qede_dev *edev) 1735 { 1736 int i; 1737 1738 for_each_queue(i) { 1739 napi_disable(&edev->fp_array[i].napi); 1740 1741 netif_napi_del(&edev->fp_array[i].napi); 1742 } 1743 } 1744 1745 static void qede_napi_add_enable(struct qede_dev *edev) 1746 { 1747 int i; 1748 1749 /* Add NAPI objects */ 1750 for_each_queue(i) { 1751 netif_napi_add(edev->ndev, &edev->fp_array[i].napi, 1752 qede_poll, NAPI_POLL_WEIGHT); 1753 napi_enable(&edev->fp_array[i].napi); 1754 } 1755 } 1756 1757 static void qede_sync_free_irqs(struct qede_dev *edev) 1758 { 1759 int i; 1760 1761 for (i = 0; i < edev->int_info.used_cnt; i++) { 1762 if (edev->int_info.msix_cnt) { 1763 synchronize_irq(edev->int_info.msix[i].vector); 1764 free_irq(edev->int_info.msix[i].vector, 1765 &edev->fp_array[i]); 1766 } else { 1767 edev->ops->common->simd_handler_clean(edev->cdev, i); 1768 } 1769 } 1770 1771 edev->int_info.used_cnt = 0; 1772 } 1773 1774 static int qede_req_msix_irqs(struct qede_dev *edev) 1775 { 1776 int i, rc; 1777 1778 /* Sanitize number of interrupts == number of prepared RSS queues */ 1779 if (QEDE_QUEUE_CNT(edev) > edev->int_info.msix_cnt) { 1780 DP_ERR(edev, 1781 "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n", 1782 QEDE_QUEUE_CNT(edev), edev->int_info.msix_cnt); 1783 return -EINVAL; 1784 } 1785 1786 for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) { 1787 #ifdef CONFIG_RFS_ACCEL 1788 struct qede_fastpath *fp = &edev->fp_array[i]; 1789 1790 if (edev->ndev->rx_cpu_rmap && (fp->type & QEDE_FASTPATH_RX)) { 1791 rc = irq_cpu_rmap_add(edev->ndev->rx_cpu_rmap, 1792 edev->int_info.msix[i].vector); 1793 if (rc) { 1794 DP_ERR(edev, "Failed to add CPU rmap\n"); 1795 qede_free_arfs(edev); 1796 } 1797 } 1798 #endif 1799 rc = request_irq(edev->int_info.msix[i].vector, 1800 qede_msix_fp_int, 0, edev->fp_array[i].name, 1801 &edev->fp_array[i]); 1802 if (rc) { 1803 DP_ERR(edev, "Request fp %d irq failed\n", i); 1804 qede_sync_free_irqs(edev); 1805 return rc; 1806 } 1807 DP_VERBOSE(edev, NETIF_MSG_INTR, 1808 "Requested fp irq for %s [entry %d]. Cookie is at %p\n", 1809 edev->fp_array[i].name, i, 1810 &edev->fp_array[i]); 1811 edev->int_info.used_cnt++; 1812 } 1813 1814 return 0; 1815 } 1816 1817 static void qede_simd_fp_handler(void *cookie) 1818 { 1819 struct qede_fastpath *fp = (struct qede_fastpath *)cookie; 1820 1821 napi_schedule_irqoff(&fp->napi); 1822 } 1823 1824 static int qede_setup_irqs(struct qede_dev *edev) 1825 { 1826 int i, rc = 0; 1827 1828 /* Learn Interrupt configuration */ 1829 rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info); 1830 if (rc) 1831 return rc; 1832 1833 if (edev->int_info.msix_cnt) { 1834 rc = qede_req_msix_irqs(edev); 1835 if (rc) 1836 return rc; 1837 edev->ndev->irq = edev->int_info.msix[0].vector; 1838 } else { 1839 const struct qed_common_ops *ops; 1840 1841 /* qed should learn receive the RSS ids and callbacks */ 1842 ops = edev->ops->common; 1843 for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) 1844 ops->simd_handler_config(edev->cdev, 1845 &edev->fp_array[i], i, 1846 qede_simd_fp_handler); 1847 edev->int_info.used_cnt = QEDE_QUEUE_CNT(edev); 1848 } 1849 return 0; 1850 } 1851 1852 static int qede_drain_txq(struct qede_dev *edev, 1853 struct qede_tx_queue *txq, bool allow_drain) 1854 { 1855 int rc, cnt = 1000; 1856 1857 while (txq->sw_tx_cons != txq->sw_tx_prod) { 1858 if (!cnt) { 1859 if (allow_drain) { 1860 DP_NOTICE(edev, 1861 "Tx queue[%d] is stuck, requesting MCP to drain\n", 1862 txq->index); 1863 rc = edev->ops->common->drain(edev->cdev); 1864 if (rc) 1865 return rc; 1866 return qede_drain_txq(edev, txq, false); 1867 } 1868 DP_NOTICE(edev, 1869 "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n", 1870 txq->index, txq->sw_tx_prod, 1871 txq->sw_tx_cons); 1872 return -ENODEV; 1873 } 1874 cnt--; 1875 usleep_range(1000, 2000); 1876 barrier(); 1877 } 1878 1879 /* FW finished processing, wait for HW to transmit all tx packets */ 1880 usleep_range(1000, 2000); 1881 1882 return 0; 1883 } 1884 1885 static int qede_stop_txq(struct qede_dev *edev, 1886 struct qede_tx_queue *txq, int rss_id) 1887 { 1888 /* delete doorbell from doorbell recovery mechanism */ 1889 edev->ops->common->db_recovery_del(edev->cdev, txq->doorbell_addr, 1890 &txq->tx_db); 1891 1892 return edev->ops->q_tx_stop(edev->cdev, rss_id, txq->handle); 1893 } 1894 1895 static int qede_stop_queues(struct qede_dev *edev) 1896 { 1897 struct qed_update_vport_params *vport_update_params; 1898 struct qed_dev *cdev = edev->cdev; 1899 struct qede_fastpath *fp; 1900 int rc, i; 1901 1902 /* Disable the vport */ 1903 vport_update_params = vzalloc(sizeof(*vport_update_params)); 1904 if (!vport_update_params) 1905 return -ENOMEM; 1906 1907 vport_update_params->vport_id = 0; 1908 vport_update_params->update_vport_active_flg = 1; 1909 vport_update_params->vport_active_flg = 0; 1910 vport_update_params->update_rss_flg = 0; 1911 1912 rc = edev->ops->vport_update(cdev, vport_update_params); 1913 vfree(vport_update_params); 1914 1915 if (rc) { 1916 DP_ERR(edev, "Failed to update vport\n"); 1917 return rc; 1918 } 1919 1920 /* Flush Tx queues. If needed, request drain from MCP */ 1921 for_each_queue(i) { 1922 fp = &edev->fp_array[i]; 1923 1924 if (fp->type & QEDE_FASTPATH_TX) { 1925 int cos; 1926 1927 for_each_cos_in_txq(edev, cos) { 1928 rc = qede_drain_txq(edev, &fp->txq[cos], true); 1929 if (rc) 1930 return rc; 1931 } 1932 } 1933 1934 if (fp->type & QEDE_FASTPATH_XDP) { 1935 rc = qede_drain_txq(edev, fp->xdp_tx, true); 1936 if (rc) 1937 return rc; 1938 } 1939 } 1940 1941 /* Stop all Queues in reverse order */ 1942 for (i = QEDE_QUEUE_CNT(edev) - 1; i >= 0; i--) { 1943 fp = &edev->fp_array[i]; 1944 1945 /* Stop the Tx Queue(s) */ 1946 if (fp->type & QEDE_FASTPATH_TX) { 1947 int cos; 1948 1949 for_each_cos_in_txq(edev, cos) { 1950 rc = qede_stop_txq(edev, &fp->txq[cos], i); 1951 if (rc) 1952 return rc; 1953 } 1954 } 1955 1956 /* Stop the Rx Queue */ 1957 if (fp->type & QEDE_FASTPATH_RX) { 1958 rc = edev->ops->q_rx_stop(cdev, i, fp->rxq->handle); 1959 if (rc) { 1960 DP_ERR(edev, "Failed to stop RXQ #%d\n", i); 1961 return rc; 1962 } 1963 } 1964 1965 /* Stop the XDP forwarding queue */ 1966 if (fp->type & QEDE_FASTPATH_XDP) { 1967 rc = qede_stop_txq(edev, fp->xdp_tx, i); 1968 if (rc) 1969 return rc; 1970 1971 bpf_prog_put(fp->rxq->xdp_prog); 1972 } 1973 } 1974 1975 /* Stop the vport */ 1976 rc = edev->ops->vport_stop(cdev, 0); 1977 if (rc) 1978 DP_ERR(edev, "Failed to stop VPORT\n"); 1979 1980 return rc; 1981 } 1982 1983 static int qede_start_txq(struct qede_dev *edev, 1984 struct qede_fastpath *fp, 1985 struct qede_tx_queue *txq, u8 rss_id, u16 sb_idx) 1986 { 1987 dma_addr_t phys_table = qed_chain_get_pbl_phys(&txq->tx_pbl); 1988 u32 page_cnt = qed_chain_get_page_cnt(&txq->tx_pbl); 1989 struct qed_queue_start_common_params params; 1990 struct qed_txq_start_ret_params ret_params; 1991 int rc; 1992 1993 memset(¶ms, 0, sizeof(params)); 1994 memset(&ret_params, 0, sizeof(ret_params)); 1995 1996 /* Let the XDP queue share the queue-zone with one of the regular txq. 1997 * We don't really care about its coalescing. 1998 */ 1999 if (txq->is_xdp) 2000 params.queue_id = QEDE_TXQ_XDP_TO_IDX(edev, txq); 2001 else 2002 params.queue_id = txq->index; 2003 2004 params.p_sb = fp->sb_info; 2005 params.sb_idx = sb_idx; 2006 params.tc = txq->cos; 2007 2008 rc = edev->ops->q_tx_start(edev->cdev, rss_id, ¶ms, phys_table, 2009 page_cnt, &ret_params); 2010 if (rc) { 2011 DP_ERR(edev, "Start TXQ #%d failed %d\n", txq->index, rc); 2012 return rc; 2013 } 2014 2015 txq->doorbell_addr = ret_params.p_doorbell; 2016 txq->handle = ret_params.p_handle; 2017 2018 /* Determine the FW consumer address associated */ 2019 txq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[sb_idx]; 2020 2021 /* Prepare the doorbell parameters */ 2022 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST, DB_DEST_XCM); 2023 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD, DB_AGG_CMD_SET); 2024 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_VAL_SEL, 2025 DQ_XCM_ETH_TX_BD_PROD_CMD); 2026 txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD; 2027 2028 /* register doorbell with doorbell recovery mechanism */ 2029 rc = edev->ops->common->db_recovery_add(edev->cdev, txq->doorbell_addr, 2030 &txq->tx_db, DB_REC_WIDTH_32B, 2031 DB_REC_KERNEL); 2032 2033 return rc; 2034 } 2035 2036 static int qede_start_queues(struct qede_dev *edev, bool clear_stats) 2037 { 2038 int vlan_removal_en = 1; 2039 struct qed_dev *cdev = edev->cdev; 2040 struct qed_dev_info *qed_info = &edev->dev_info.common; 2041 struct qed_update_vport_params *vport_update_params; 2042 struct qed_queue_start_common_params q_params; 2043 struct qed_start_vport_params start = {0}; 2044 int rc, i; 2045 2046 if (!edev->num_queues) { 2047 DP_ERR(edev, 2048 "Cannot update V-VPORT as active as there are no Rx queues\n"); 2049 return -EINVAL; 2050 } 2051 2052 vport_update_params = vzalloc(sizeof(*vport_update_params)); 2053 if (!vport_update_params) 2054 return -ENOMEM; 2055 2056 start.handle_ptp_pkts = !!(edev->ptp); 2057 start.gro_enable = !edev->gro_disable; 2058 start.mtu = edev->ndev->mtu; 2059 start.vport_id = 0; 2060 start.drop_ttl0 = true; 2061 start.remove_inner_vlan = vlan_removal_en; 2062 start.clear_stats = clear_stats; 2063 2064 rc = edev->ops->vport_start(cdev, &start); 2065 2066 if (rc) { 2067 DP_ERR(edev, "Start V-PORT failed %d\n", rc); 2068 goto out; 2069 } 2070 2071 DP_VERBOSE(edev, NETIF_MSG_IFUP, 2072 "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n", 2073 start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en); 2074 2075 for_each_queue(i) { 2076 struct qede_fastpath *fp = &edev->fp_array[i]; 2077 dma_addr_t p_phys_table; 2078 u32 page_cnt; 2079 2080 if (fp->type & QEDE_FASTPATH_RX) { 2081 struct qed_rxq_start_ret_params ret_params; 2082 struct qede_rx_queue *rxq = fp->rxq; 2083 __le16 *val; 2084 2085 memset(&ret_params, 0, sizeof(ret_params)); 2086 memset(&q_params, 0, sizeof(q_params)); 2087 q_params.queue_id = rxq->rxq_id; 2088 q_params.vport_id = 0; 2089 q_params.p_sb = fp->sb_info; 2090 q_params.sb_idx = RX_PI; 2091 2092 p_phys_table = 2093 qed_chain_get_pbl_phys(&rxq->rx_comp_ring); 2094 page_cnt = qed_chain_get_page_cnt(&rxq->rx_comp_ring); 2095 2096 rc = edev->ops->q_rx_start(cdev, i, &q_params, 2097 rxq->rx_buf_size, 2098 rxq->rx_bd_ring.p_phys_addr, 2099 p_phys_table, 2100 page_cnt, &ret_params); 2101 if (rc) { 2102 DP_ERR(edev, "Start RXQ #%d failed %d\n", i, 2103 rc); 2104 goto out; 2105 } 2106 2107 /* Use the return parameters */ 2108 rxq->hw_rxq_prod_addr = ret_params.p_prod; 2109 rxq->handle = ret_params.p_handle; 2110 2111 val = &fp->sb_info->sb_virt->pi_array[RX_PI]; 2112 rxq->hw_cons_ptr = val; 2113 2114 qede_update_rx_prod(edev, rxq); 2115 } 2116 2117 if (fp->type & QEDE_FASTPATH_XDP) { 2118 rc = qede_start_txq(edev, fp, fp->xdp_tx, i, XDP_PI); 2119 if (rc) 2120 goto out; 2121 2122 fp->rxq->xdp_prog = bpf_prog_add(edev->xdp_prog, 1); 2123 if (IS_ERR(fp->rxq->xdp_prog)) { 2124 rc = PTR_ERR(fp->rxq->xdp_prog); 2125 fp->rxq->xdp_prog = NULL; 2126 goto out; 2127 } 2128 } 2129 2130 if (fp->type & QEDE_FASTPATH_TX) { 2131 int cos; 2132 2133 for_each_cos_in_txq(edev, cos) { 2134 rc = qede_start_txq(edev, fp, &fp->txq[cos], i, 2135 TX_PI(cos)); 2136 if (rc) 2137 goto out; 2138 } 2139 } 2140 } 2141 2142 /* Prepare and send the vport enable */ 2143 vport_update_params->vport_id = start.vport_id; 2144 vport_update_params->update_vport_active_flg = 1; 2145 vport_update_params->vport_active_flg = 1; 2146 2147 if ((qed_info->b_inter_pf_switch || pci_num_vf(edev->pdev)) && 2148 qed_info->tx_switching) { 2149 vport_update_params->update_tx_switching_flg = 1; 2150 vport_update_params->tx_switching_flg = 1; 2151 } 2152 2153 qede_fill_rss_params(edev, &vport_update_params->rss_params, 2154 &vport_update_params->update_rss_flg); 2155 2156 rc = edev->ops->vport_update(cdev, vport_update_params); 2157 if (rc) 2158 DP_ERR(edev, "Update V-PORT failed %d\n", rc); 2159 2160 out: 2161 vfree(vport_update_params); 2162 return rc; 2163 } 2164 2165 enum qede_unload_mode { 2166 QEDE_UNLOAD_NORMAL, 2167 QEDE_UNLOAD_RECOVERY, 2168 }; 2169 2170 static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode, 2171 bool is_locked) 2172 { 2173 struct qed_link_params link_params; 2174 int rc; 2175 2176 DP_INFO(edev, "Starting qede unload\n"); 2177 2178 if (!is_locked) 2179 __qede_lock(edev); 2180 2181 clear_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags); 2182 2183 if (mode != QEDE_UNLOAD_RECOVERY) 2184 edev->state = QEDE_STATE_CLOSED; 2185 2186 qede_rdma_dev_event_close(edev); 2187 2188 /* Close OS Tx */ 2189 netif_tx_disable(edev->ndev); 2190 netif_carrier_off(edev->ndev); 2191 2192 if (mode != QEDE_UNLOAD_RECOVERY) { 2193 /* Reset the link */ 2194 memset(&link_params, 0, sizeof(link_params)); 2195 link_params.link_up = false; 2196 edev->ops->common->set_link(edev->cdev, &link_params); 2197 2198 rc = qede_stop_queues(edev); 2199 if (rc) { 2200 qede_sync_free_irqs(edev); 2201 goto out; 2202 } 2203 2204 DP_INFO(edev, "Stopped Queues\n"); 2205 } 2206 2207 qede_vlan_mark_nonconfigured(edev); 2208 edev->ops->fastpath_stop(edev->cdev); 2209 2210 if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) { 2211 qede_poll_for_freeing_arfs_filters(edev); 2212 qede_free_arfs(edev); 2213 } 2214 2215 /* Release the interrupts */ 2216 qede_sync_free_irqs(edev); 2217 edev->ops->common->set_fp_int(edev->cdev, 0); 2218 2219 qede_napi_disable_remove(edev); 2220 2221 if (mode == QEDE_UNLOAD_RECOVERY) 2222 qede_empty_tx_queues(edev); 2223 2224 qede_free_mem_load(edev); 2225 qede_free_fp_array(edev); 2226 2227 out: 2228 if (!is_locked) 2229 __qede_unlock(edev); 2230 2231 if (mode != QEDE_UNLOAD_RECOVERY) 2232 DP_NOTICE(edev, "Link is down\n"); 2233 2234 DP_INFO(edev, "Ending qede unload\n"); 2235 } 2236 2237 enum qede_load_mode { 2238 QEDE_LOAD_NORMAL, 2239 QEDE_LOAD_RELOAD, 2240 QEDE_LOAD_RECOVERY, 2241 }; 2242 2243 static int qede_load(struct qede_dev *edev, enum qede_load_mode mode, 2244 bool is_locked) 2245 { 2246 struct qed_link_params link_params; 2247 u8 num_tc; 2248 int rc; 2249 2250 DP_INFO(edev, "Starting qede load\n"); 2251 2252 if (!is_locked) 2253 __qede_lock(edev); 2254 2255 rc = qede_set_num_queues(edev); 2256 if (rc) 2257 goto out; 2258 2259 rc = qede_alloc_fp_array(edev); 2260 if (rc) 2261 goto out; 2262 2263 qede_init_fp(edev); 2264 2265 rc = qede_alloc_mem_load(edev); 2266 if (rc) 2267 goto err1; 2268 DP_INFO(edev, "Allocated %d Rx, %d Tx queues\n", 2269 QEDE_RSS_COUNT(edev), QEDE_TSS_COUNT(edev)); 2270 2271 rc = qede_set_real_num_queues(edev); 2272 if (rc) 2273 goto err2; 2274 2275 if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) { 2276 rc = qede_alloc_arfs(edev); 2277 if (rc) 2278 DP_NOTICE(edev, "aRFS memory allocation failed\n"); 2279 } 2280 2281 qede_napi_add_enable(edev); 2282 DP_INFO(edev, "Napi added and enabled\n"); 2283 2284 rc = qede_setup_irqs(edev); 2285 if (rc) 2286 goto err3; 2287 DP_INFO(edev, "Setup IRQs succeeded\n"); 2288 2289 rc = qede_start_queues(edev, mode != QEDE_LOAD_RELOAD); 2290 if (rc) 2291 goto err4; 2292 DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n"); 2293 2294 num_tc = netdev_get_num_tc(edev->ndev); 2295 num_tc = num_tc ? num_tc : edev->dev_info.num_tc; 2296 qede_setup_tc(edev->ndev, num_tc); 2297 2298 /* Program un-configured VLANs */ 2299 qede_configure_vlan_filters(edev); 2300 2301 set_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags); 2302 2303 /* Ask for link-up using current configuration */ 2304 memset(&link_params, 0, sizeof(link_params)); 2305 link_params.link_up = true; 2306 edev->ops->common->set_link(edev->cdev, &link_params); 2307 2308 edev->state = QEDE_STATE_OPEN; 2309 2310 DP_INFO(edev, "Ending successfully qede load\n"); 2311 2312 goto out; 2313 err4: 2314 qede_sync_free_irqs(edev); 2315 memset(&edev->int_info.msix_cnt, 0, sizeof(struct qed_int_info)); 2316 err3: 2317 qede_napi_disable_remove(edev); 2318 err2: 2319 qede_free_mem_load(edev); 2320 err1: 2321 edev->ops->common->set_fp_int(edev->cdev, 0); 2322 qede_free_fp_array(edev); 2323 edev->num_queues = 0; 2324 edev->fp_num_tx = 0; 2325 edev->fp_num_rx = 0; 2326 out: 2327 if (!is_locked) 2328 __qede_unlock(edev); 2329 2330 return rc; 2331 } 2332 2333 /* 'func' should be able to run between unload and reload assuming interface 2334 * is actually running, or afterwards in case it's currently DOWN. 2335 */ 2336 void qede_reload(struct qede_dev *edev, 2337 struct qede_reload_args *args, bool is_locked) 2338 { 2339 if (!is_locked) 2340 __qede_lock(edev); 2341 2342 /* Since qede_lock is held, internal state wouldn't change even 2343 * if netdev state would start transitioning. Check whether current 2344 * internal configuration indicates device is up, then reload. 2345 */ 2346 if (edev->state == QEDE_STATE_OPEN) { 2347 qede_unload(edev, QEDE_UNLOAD_NORMAL, true); 2348 if (args) 2349 args->func(edev, args); 2350 qede_load(edev, QEDE_LOAD_RELOAD, true); 2351 2352 /* Since no one is going to do it for us, re-configure */ 2353 qede_config_rx_mode(edev->ndev); 2354 } else if (args) { 2355 args->func(edev, args); 2356 } 2357 2358 if (!is_locked) 2359 __qede_unlock(edev); 2360 } 2361 2362 /* called with rtnl_lock */ 2363 static int qede_open(struct net_device *ndev) 2364 { 2365 struct qede_dev *edev = netdev_priv(ndev); 2366 int rc; 2367 2368 netif_carrier_off(ndev); 2369 2370 edev->ops->common->set_power_state(edev->cdev, PCI_D0); 2371 2372 rc = qede_load(edev, QEDE_LOAD_NORMAL, false); 2373 if (rc) 2374 return rc; 2375 2376 udp_tunnel_get_rx_info(ndev); 2377 2378 edev->ops->common->update_drv_state(edev->cdev, true); 2379 2380 return 0; 2381 } 2382 2383 static int qede_close(struct net_device *ndev) 2384 { 2385 struct qede_dev *edev = netdev_priv(ndev); 2386 2387 qede_unload(edev, QEDE_UNLOAD_NORMAL, false); 2388 2389 edev->ops->common->update_drv_state(edev->cdev, false); 2390 2391 return 0; 2392 } 2393 2394 static void qede_link_update(void *dev, struct qed_link_output *link) 2395 { 2396 struct qede_dev *edev = dev; 2397 2398 if (!test_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags)) { 2399 DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not ready\n"); 2400 return; 2401 } 2402 2403 if (link->link_up) { 2404 if (!netif_carrier_ok(edev->ndev)) { 2405 DP_NOTICE(edev, "Link is up\n"); 2406 netif_tx_start_all_queues(edev->ndev); 2407 netif_carrier_on(edev->ndev); 2408 qede_rdma_dev_event_open(edev); 2409 } 2410 } else { 2411 if (netif_carrier_ok(edev->ndev)) { 2412 DP_NOTICE(edev, "Link is down\n"); 2413 netif_tx_disable(edev->ndev); 2414 netif_carrier_off(edev->ndev); 2415 qede_rdma_dev_event_close(edev); 2416 } 2417 } 2418 } 2419 2420 static void qede_schedule_recovery_handler(void *dev) 2421 { 2422 struct qede_dev *edev = dev; 2423 2424 if (edev->state == QEDE_STATE_RECOVERY) { 2425 DP_NOTICE(edev, 2426 "Avoid scheduling a recovery handling since already in recovery state\n"); 2427 return; 2428 } 2429 2430 set_bit(QEDE_SP_RECOVERY, &edev->sp_flags); 2431 schedule_delayed_work(&edev->sp_task, 0); 2432 2433 DP_INFO(edev, "Scheduled a recovery handler\n"); 2434 } 2435 2436 static void qede_recovery_failed(struct qede_dev *edev) 2437 { 2438 netdev_err(edev->ndev, "Recovery handling has failed. Power cycle is needed.\n"); 2439 2440 netif_device_detach(edev->ndev); 2441 2442 if (edev->cdev) 2443 edev->ops->common->set_power_state(edev->cdev, PCI_D3hot); 2444 } 2445 2446 static void qede_recovery_handler(struct qede_dev *edev) 2447 { 2448 u32 curr_state = edev->state; 2449 int rc; 2450 2451 DP_NOTICE(edev, "Starting a recovery process\n"); 2452 2453 /* No need to acquire first the qede_lock since is done by qede_sp_task 2454 * before calling this function. 2455 */ 2456 edev->state = QEDE_STATE_RECOVERY; 2457 2458 edev->ops->common->recovery_prolog(edev->cdev); 2459 2460 if (curr_state == QEDE_STATE_OPEN) 2461 qede_unload(edev, QEDE_UNLOAD_RECOVERY, true); 2462 2463 __qede_remove(edev->pdev, QEDE_REMOVE_RECOVERY); 2464 2465 rc = __qede_probe(edev->pdev, edev->dp_module, edev->dp_level, 2466 IS_VF(edev), QEDE_PROBE_RECOVERY); 2467 if (rc) { 2468 edev->cdev = NULL; 2469 goto err; 2470 } 2471 2472 if (curr_state == QEDE_STATE_OPEN) { 2473 rc = qede_load(edev, QEDE_LOAD_RECOVERY, true); 2474 if (rc) 2475 goto err; 2476 2477 qede_config_rx_mode(edev->ndev); 2478 udp_tunnel_get_rx_info(edev->ndev); 2479 } 2480 2481 edev->state = curr_state; 2482 2483 DP_NOTICE(edev, "Recovery handling is done\n"); 2484 2485 return; 2486 2487 err: 2488 qede_recovery_failed(edev); 2489 } 2490 2491 static bool qede_is_txq_full(struct qede_dev *edev, struct qede_tx_queue *txq) 2492 { 2493 struct netdev_queue *netdev_txq; 2494 2495 netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id); 2496 if (netif_xmit_stopped(netdev_txq)) 2497 return true; 2498 2499 return false; 2500 } 2501 2502 static void qede_get_generic_tlv_data(void *dev, struct qed_generic_tlvs *data) 2503 { 2504 struct qede_dev *edev = dev; 2505 struct netdev_hw_addr *ha; 2506 int i; 2507 2508 if (edev->ndev->features & NETIF_F_IP_CSUM) 2509 data->feat_flags |= QED_TLV_IP_CSUM; 2510 if (edev->ndev->features & NETIF_F_TSO) 2511 data->feat_flags |= QED_TLV_LSO; 2512 2513 ether_addr_copy(data->mac[0], edev->ndev->dev_addr); 2514 memset(data->mac[1], 0, ETH_ALEN); 2515 memset(data->mac[2], 0, ETH_ALEN); 2516 /* Copy the first two UC macs */ 2517 netif_addr_lock_bh(edev->ndev); 2518 i = 1; 2519 netdev_for_each_uc_addr(ha, edev->ndev) { 2520 ether_addr_copy(data->mac[i++], ha->addr); 2521 if (i == QED_TLV_MAC_COUNT) 2522 break; 2523 } 2524 2525 netif_addr_unlock_bh(edev->ndev); 2526 } 2527 2528 static void qede_get_eth_tlv_data(void *dev, void *data) 2529 { 2530 struct qed_mfw_tlv_eth *etlv = data; 2531 struct qede_dev *edev = dev; 2532 struct qede_fastpath *fp; 2533 int i; 2534 2535 etlv->lso_maxoff_size = 0XFFFF; 2536 etlv->lso_maxoff_size_set = true; 2537 etlv->lso_minseg_size = (u16)ETH_TX_LSO_WINDOW_MIN_LEN; 2538 etlv->lso_minseg_size_set = true; 2539 etlv->prom_mode = !!(edev->ndev->flags & IFF_PROMISC); 2540 etlv->prom_mode_set = true; 2541 etlv->tx_descr_size = QEDE_TSS_COUNT(edev); 2542 etlv->tx_descr_size_set = true; 2543 etlv->rx_descr_size = QEDE_RSS_COUNT(edev); 2544 etlv->rx_descr_size_set = true; 2545 etlv->iov_offload = QED_MFW_TLV_IOV_OFFLOAD_VEB; 2546 etlv->iov_offload_set = true; 2547 2548 /* Fill information regarding queues; Should be done under the qede 2549 * lock to guarantee those don't change beneath our feet. 2550 */ 2551 etlv->txqs_empty = true; 2552 etlv->rxqs_empty = true; 2553 etlv->num_txqs_full = 0; 2554 etlv->num_rxqs_full = 0; 2555 2556 __qede_lock(edev); 2557 for_each_queue(i) { 2558 fp = &edev->fp_array[i]; 2559 if (fp->type & QEDE_FASTPATH_TX) { 2560 struct qede_tx_queue *txq = QEDE_FP_TC0_TXQ(fp); 2561 2562 if (txq->sw_tx_cons != txq->sw_tx_prod) 2563 etlv->txqs_empty = false; 2564 if (qede_is_txq_full(edev, txq)) 2565 etlv->num_txqs_full++; 2566 } 2567 if (fp->type & QEDE_FASTPATH_RX) { 2568 if (qede_has_rx_work(fp->rxq)) 2569 etlv->rxqs_empty = false; 2570 2571 /* This one is a bit tricky; Firmware might stop 2572 * placing packets if ring is not yet full. 2573 * Give an approximation. 2574 */ 2575 if (le16_to_cpu(*fp->rxq->hw_cons_ptr) - 2576 qed_chain_get_cons_idx(&fp->rxq->rx_comp_ring) > 2577 RX_RING_SIZE - 100) 2578 etlv->num_rxqs_full++; 2579 } 2580 } 2581 __qede_unlock(edev); 2582 2583 etlv->txqs_empty_set = true; 2584 etlv->rxqs_empty_set = true; 2585 etlv->num_txqs_full_set = true; 2586 etlv->num_rxqs_full_set = true; 2587 } 2588