1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause) 2 /* QLogic qede NIC Driver 3 * Copyright (c) 2015-2017 QLogic Corporation 4 * Copyright (c) 2019-2020 Marvell International Ltd. 5 */ 6 7 #include <linux/crash_dump.h> 8 #include <linux/module.h> 9 #include <linux/pci.h> 10 #include <linux/version.h> 11 #include <linux/device.h> 12 #include <linux/netdevice.h> 13 #include <linux/etherdevice.h> 14 #include <linux/skbuff.h> 15 #include <linux/errno.h> 16 #include <linux/list.h> 17 #include <linux/string.h> 18 #include <linux/dma-mapping.h> 19 #include <linux/interrupt.h> 20 #include <asm/byteorder.h> 21 #include <asm/param.h> 22 #include <linux/io.h> 23 #include <linux/netdev_features.h> 24 #include <linux/udp.h> 25 #include <linux/tcp.h> 26 #include <net/udp_tunnel.h> 27 #include <linux/ip.h> 28 #include <net/ipv6.h> 29 #include <net/tcp.h> 30 #include <linux/if_ether.h> 31 #include <linux/if_vlan.h> 32 #include <linux/pkt_sched.h> 33 #include <linux/ethtool.h> 34 #include <linux/in.h> 35 #include <linux/random.h> 36 #include <net/ip6_checksum.h> 37 #include <linux/bitops.h> 38 #include <linux/vmalloc.h> 39 #include <linux/aer.h> 40 #include "qede.h" 41 #include "qede_ptp.h" 42 43 static char version[] = 44 "QLogic FastLinQ 4xxxx Ethernet Driver qede " DRV_MODULE_VERSION "\n"; 45 46 MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver"); 47 MODULE_LICENSE("GPL"); 48 MODULE_VERSION(DRV_MODULE_VERSION); 49 50 static uint debug; 51 module_param(debug, uint, 0); 52 MODULE_PARM_DESC(debug, " Default debug msglevel"); 53 54 static const struct qed_eth_ops *qed_ops; 55 56 #define CHIP_NUM_57980S_40 0x1634 57 #define CHIP_NUM_57980S_10 0x1666 58 #define CHIP_NUM_57980S_MF 0x1636 59 #define CHIP_NUM_57980S_100 0x1644 60 #define CHIP_NUM_57980S_50 0x1654 61 #define CHIP_NUM_57980S_25 0x1656 62 #define CHIP_NUM_57980S_IOV 0x1664 63 #define CHIP_NUM_AH 0x8070 64 #define CHIP_NUM_AH_IOV 0x8090 65 66 #ifndef PCI_DEVICE_ID_NX2_57980E 67 #define PCI_DEVICE_ID_57980S_40 CHIP_NUM_57980S_40 68 #define PCI_DEVICE_ID_57980S_10 CHIP_NUM_57980S_10 69 #define PCI_DEVICE_ID_57980S_MF CHIP_NUM_57980S_MF 70 #define PCI_DEVICE_ID_57980S_100 CHIP_NUM_57980S_100 71 #define PCI_DEVICE_ID_57980S_50 CHIP_NUM_57980S_50 72 #define PCI_DEVICE_ID_57980S_25 CHIP_NUM_57980S_25 73 #define PCI_DEVICE_ID_57980S_IOV CHIP_NUM_57980S_IOV 74 #define PCI_DEVICE_ID_AH CHIP_NUM_AH 75 #define PCI_DEVICE_ID_AH_IOV CHIP_NUM_AH_IOV 76 77 #endif 78 79 enum qede_pci_private { 80 QEDE_PRIVATE_PF, 81 QEDE_PRIVATE_VF 82 }; 83 84 static const struct pci_device_id qede_pci_tbl[] = { 85 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF}, 86 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF}, 87 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF}, 88 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF}, 89 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF}, 90 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF}, 91 #ifdef CONFIG_QED_SRIOV 92 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF}, 93 #endif 94 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH), QEDE_PRIVATE_PF}, 95 #ifdef CONFIG_QED_SRIOV 96 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH_IOV), QEDE_PRIVATE_VF}, 97 #endif 98 { 0 } 99 }; 100 101 MODULE_DEVICE_TABLE(pci, qede_pci_tbl); 102 103 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id); 104 static pci_ers_result_t 105 qede_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state); 106 107 #define TX_TIMEOUT (5 * HZ) 108 109 /* Utilize last protocol index for XDP */ 110 #define XDP_PI 11 111 112 static void qede_remove(struct pci_dev *pdev); 113 static void qede_shutdown(struct pci_dev *pdev); 114 static void qede_link_update(void *dev, struct qed_link_output *link); 115 static void qede_schedule_recovery_handler(void *dev); 116 static void qede_recovery_handler(struct qede_dev *edev); 117 static void qede_schedule_hw_err_handler(void *dev, 118 enum qed_hw_err_type err_type); 119 static void qede_get_eth_tlv_data(void *edev, void *data); 120 static void qede_get_generic_tlv_data(void *edev, 121 struct qed_generic_tlvs *data); 122 static void qede_generic_hw_err_handler(struct qede_dev *edev); 123 #ifdef CONFIG_QED_SRIOV 124 static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos, 125 __be16 vlan_proto) 126 { 127 struct qede_dev *edev = netdev_priv(ndev); 128 129 if (vlan > 4095) { 130 DP_NOTICE(edev, "Illegal vlan value %d\n", vlan); 131 return -EINVAL; 132 } 133 134 if (vlan_proto != htons(ETH_P_8021Q)) 135 return -EPROTONOSUPPORT; 136 137 DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n", 138 vlan, vf); 139 140 return edev->ops->iov->set_vlan(edev->cdev, vlan, vf); 141 } 142 143 static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac) 144 { 145 struct qede_dev *edev = netdev_priv(ndev); 146 147 DP_VERBOSE(edev, QED_MSG_IOV, 148 "Setting MAC %02x:%02x:%02x:%02x:%02x:%02x to VF [%d]\n", 149 mac[0], mac[1], mac[2], mac[3], mac[4], mac[5], vfidx); 150 151 if (!is_valid_ether_addr(mac)) { 152 DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n"); 153 return -EINVAL; 154 } 155 156 return edev->ops->iov->set_mac(edev->cdev, mac, vfidx); 157 } 158 159 static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param) 160 { 161 struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev)); 162 struct qed_dev_info *qed_info = &edev->dev_info.common; 163 struct qed_update_vport_params *vport_params; 164 int rc; 165 166 vport_params = vzalloc(sizeof(*vport_params)); 167 if (!vport_params) 168 return -ENOMEM; 169 DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param); 170 171 rc = edev->ops->iov->configure(edev->cdev, num_vfs_param); 172 173 /* Enable/Disable Tx switching for PF */ 174 if ((rc == num_vfs_param) && netif_running(edev->ndev) && 175 !qed_info->b_inter_pf_switch && qed_info->tx_switching) { 176 vport_params->vport_id = 0; 177 vport_params->update_tx_switching_flg = 1; 178 vport_params->tx_switching_flg = num_vfs_param ? 1 : 0; 179 edev->ops->vport_update(edev->cdev, vport_params); 180 } 181 182 vfree(vport_params); 183 return rc; 184 } 185 #endif 186 187 static const struct pci_error_handlers qede_err_handler = { 188 .error_detected = qede_io_error_detected, 189 }; 190 191 static struct pci_driver qede_pci_driver = { 192 .name = "qede", 193 .id_table = qede_pci_tbl, 194 .probe = qede_probe, 195 .remove = qede_remove, 196 .shutdown = qede_shutdown, 197 #ifdef CONFIG_QED_SRIOV 198 .sriov_configure = qede_sriov_configure, 199 #endif 200 .err_handler = &qede_err_handler, 201 }; 202 203 static struct qed_eth_cb_ops qede_ll_ops = { 204 { 205 #ifdef CONFIG_RFS_ACCEL 206 .arfs_filter_op = qede_arfs_filter_op, 207 #endif 208 .link_update = qede_link_update, 209 .schedule_recovery_handler = qede_schedule_recovery_handler, 210 .schedule_hw_err_handler = qede_schedule_hw_err_handler, 211 .get_generic_tlv_data = qede_get_generic_tlv_data, 212 .get_protocol_tlv_data = qede_get_eth_tlv_data, 213 }, 214 .force_mac = qede_force_mac, 215 .ports_update = qede_udp_ports_update, 216 }; 217 218 static int qede_netdev_event(struct notifier_block *this, unsigned long event, 219 void *ptr) 220 { 221 struct net_device *ndev = netdev_notifier_info_to_dev(ptr); 222 struct ethtool_drvinfo drvinfo; 223 struct qede_dev *edev; 224 225 if (event != NETDEV_CHANGENAME && event != NETDEV_CHANGEADDR) 226 goto done; 227 228 /* Check whether this is a qede device */ 229 if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo) 230 goto done; 231 232 memset(&drvinfo, 0, sizeof(drvinfo)); 233 ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo); 234 if (strcmp(drvinfo.driver, "qede")) 235 goto done; 236 edev = netdev_priv(ndev); 237 238 switch (event) { 239 case NETDEV_CHANGENAME: 240 /* Notify qed of the name change */ 241 if (!edev->ops || !edev->ops->common) 242 goto done; 243 edev->ops->common->set_name(edev->cdev, edev->ndev->name); 244 break; 245 case NETDEV_CHANGEADDR: 246 edev = netdev_priv(ndev); 247 qede_rdma_event_changeaddr(edev); 248 break; 249 } 250 251 done: 252 return NOTIFY_DONE; 253 } 254 255 static struct notifier_block qede_netdev_notifier = { 256 .notifier_call = qede_netdev_event, 257 }; 258 259 static 260 int __init qede_init(void) 261 { 262 int ret; 263 264 pr_info("qede_init: %s\n", version); 265 266 qed_ops = qed_get_eth_ops(); 267 if (!qed_ops) { 268 pr_notice("Failed to get qed ethtool operations\n"); 269 return -EINVAL; 270 } 271 272 /* Must register notifier before pci ops, since we might miss 273 * interface rename after pci probe and netdev registration. 274 */ 275 ret = register_netdevice_notifier(&qede_netdev_notifier); 276 if (ret) { 277 pr_notice("Failed to register netdevice_notifier\n"); 278 qed_put_eth_ops(); 279 return -EINVAL; 280 } 281 282 ret = pci_register_driver(&qede_pci_driver); 283 if (ret) { 284 pr_notice("Failed to register driver\n"); 285 unregister_netdevice_notifier(&qede_netdev_notifier); 286 qed_put_eth_ops(); 287 return -EINVAL; 288 } 289 290 return 0; 291 } 292 293 static void __exit qede_cleanup(void) 294 { 295 if (debug & QED_LOG_INFO_MASK) 296 pr_info("qede_cleanup called\n"); 297 298 unregister_netdevice_notifier(&qede_netdev_notifier); 299 pci_unregister_driver(&qede_pci_driver); 300 qed_put_eth_ops(); 301 } 302 303 module_init(qede_init); 304 module_exit(qede_cleanup); 305 306 static int qede_open(struct net_device *ndev); 307 static int qede_close(struct net_device *ndev); 308 309 void qede_fill_by_demand_stats(struct qede_dev *edev) 310 { 311 struct qede_stats_common *p_common = &edev->stats.common; 312 struct qed_eth_stats stats; 313 314 edev->ops->get_vport_stats(edev->cdev, &stats); 315 316 p_common->no_buff_discards = stats.common.no_buff_discards; 317 p_common->packet_too_big_discard = stats.common.packet_too_big_discard; 318 p_common->ttl0_discard = stats.common.ttl0_discard; 319 p_common->rx_ucast_bytes = stats.common.rx_ucast_bytes; 320 p_common->rx_mcast_bytes = stats.common.rx_mcast_bytes; 321 p_common->rx_bcast_bytes = stats.common.rx_bcast_bytes; 322 p_common->rx_ucast_pkts = stats.common.rx_ucast_pkts; 323 p_common->rx_mcast_pkts = stats.common.rx_mcast_pkts; 324 p_common->rx_bcast_pkts = stats.common.rx_bcast_pkts; 325 p_common->mftag_filter_discards = stats.common.mftag_filter_discards; 326 p_common->mac_filter_discards = stats.common.mac_filter_discards; 327 p_common->gft_filter_drop = stats.common.gft_filter_drop; 328 329 p_common->tx_ucast_bytes = stats.common.tx_ucast_bytes; 330 p_common->tx_mcast_bytes = stats.common.tx_mcast_bytes; 331 p_common->tx_bcast_bytes = stats.common.tx_bcast_bytes; 332 p_common->tx_ucast_pkts = stats.common.tx_ucast_pkts; 333 p_common->tx_mcast_pkts = stats.common.tx_mcast_pkts; 334 p_common->tx_bcast_pkts = stats.common.tx_bcast_pkts; 335 p_common->tx_err_drop_pkts = stats.common.tx_err_drop_pkts; 336 p_common->coalesced_pkts = stats.common.tpa_coalesced_pkts; 337 p_common->coalesced_events = stats.common.tpa_coalesced_events; 338 p_common->coalesced_aborts_num = stats.common.tpa_aborts_num; 339 p_common->non_coalesced_pkts = stats.common.tpa_not_coalesced_pkts; 340 p_common->coalesced_bytes = stats.common.tpa_coalesced_bytes; 341 342 p_common->rx_64_byte_packets = stats.common.rx_64_byte_packets; 343 p_common->rx_65_to_127_byte_packets = 344 stats.common.rx_65_to_127_byte_packets; 345 p_common->rx_128_to_255_byte_packets = 346 stats.common.rx_128_to_255_byte_packets; 347 p_common->rx_256_to_511_byte_packets = 348 stats.common.rx_256_to_511_byte_packets; 349 p_common->rx_512_to_1023_byte_packets = 350 stats.common.rx_512_to_1023_byte_packets; 351 p_common->rx_1024_to_1518_byte_packets = 352 stats.common.rx_1024_to_1518_byte_packets; 353 p_common->rx_crc_errors = stats.common.rx_crc_errors; 354 p_common->rx_mac_crtl_frames = stats.common.rx_mac_crtl_frames; 355 p_common->rx_pause_frames = stats.common.rx_pause_frames; 356 p_common->rx_pfc_frames = stats.common.rx_pfc_frames; 357 p_common->rx_align_errors = stats.common.rx_align_errors; 358 p_common->rx_carrier_errors = stats.common.rx_carrier_errors; 359 p_common->rx_oversize_packets = stats.common.rx_oversize_packets; 360 p_common->rx_jabbers = stats.common.rx_jabbers; 361 p_common->rx_undersize_packets = stats.common.rx_undersize_packets; 362 p_common->rx_fragments = stats.common.rx_fragments; 363 p_common->tx_64_byte_packets = stats.common.tx_64_byte_packets; 364 p_common->tx_65_to_127_byte_packets = 365 stats.common.tx_65_to_127_byte_packets; 366 p_common->tx_128_to_255_byte_packets = 367 stats.common.tx_128_to_255_byte_packets; 368 p_common->tx_256_to_511_byte_packets = 369 stats.common.tx_256_to_511_byte_packets; 370 p_common->tx_512_to_1023_byte_packets = 371 stats.common.tx_512_to_1023_byte_packets; 372 p_common->tx_1024_to_1518_byte_packets = 373 stats.common.tx_1024_to_1518_byte_packets; 374 p_common->tx_pause_frames = stats.common.tx_pause_frames; 375 p_common->tx_pfc_frames = stats.common.tx_pfc_frames; 376 p_common->brb_truncates = stats.common.brb_truncates; 377 p_common->brb_discards = stats.common.brb_discards; 378 p_common->tx_mac_ctrl_frames = stats.common.tx_mac_ctrl_frames; 379 p_common->link_change_count = stats.common.link_change_count; 380 p_common->ptp_skip_txts = edev->ptp_skip_txts; 381 382 if (QEDE_IS_BB(edev)) { 383 struct qede_stats_bb *p_bb = &edev->stats.bb; 384 385 p_bb->rx_1519_to_1522_byte_packets = 386 stats.bb.rx_1519_to_1522_byte_packets; 387 p_bb->rx_1519_to_2047_byte_packets = 388 stats.bb.rx_1519_to_2047_byte_packets; 389 p_bb->rx_2048_to_4095_byte_packets = 390 stats.bb.rx_2048_to_4095_byte_packets; 391 p_bb->rx_4096_to_9216_byte_packets = 392 stats.bb.rx_4096_to_9216_byte_packets; 393 p_bb->rx_9217_to_16383_byte_packets = 394 stats.bb.rx_9217_to_16383_byte_packets; 395 p_bb->tx_1519_to_2047_byte_packets = 396 stats.bb.tx_1519_to_2047_byte_packets; 397 p_bb->tx_2048_to_4095_byte_packets = 398 stats.bb.tx_2048_to_4095_byte_packets; 399 p_bb->tx_4096_to_9216_byte_packets = 400 stats.bb.tx_4096_to_9216_byte_packets; 401 p_bb->tx_9217_to_16383_byte_packets = 402 stats.bb.tx_9217_to_16383_byte_packets; 403 p_bb->tx_lpi_entry_count = stats.bb.tx_lpi_entry_count; 404 p_bb->tx_total_collisions = stats.bb.tx_total_collisions; 405 } else { 406 struct qede_stats_ah *p_ah = &edev->stats.ah; 407 408 p_ah->rx_1519_to_max_byte_packets = 409 stats.ah.rx_1519_to_max_byte_packets; 410 p_ah->tx_1519_to_max_byte_packets = 411 stats.ah.tx_1519_to_max_byte_packets; 412 } 413 } 414 415 static void qede_get_stats64(struct net_device *dev, 416 struct rtnl_link_stats64 *stats) 417 { 418 struct qede_dev *edev = netdev_priv(dev); 419 struct qede_stats_common *p_common; 420 421 qede_fill_by_demand_stats(edev); 422 p_common = &edev->stats.common; 423 424 stats->rx_packets = p_common->rx_ucast_pkts + p_common->rx_mcast_pkts + 425 p_common->rx_bcast_pkts; 426 stats->tx_packets = p_common->tx_ucast_pkts + p_common->tx_mcast_pkts + 427 p_common->tx_bcast_pkts; 428 429 stats->rx_bytes = p_common->rx_ucast_bytes + p_common->rx_mcast_bytes + 430 p_common->rx_bcast_bytes; 431 stats->tx_bytes = p_common->tx_ucast_bytes + p_common->tx_mcast_bytes + 432 p_common->tx_bcast_bytes; 433 434 stats->tx_errors = p_common->tx_err_drop_pkts; 435 stats->multicast = p_common->rx_mcast_pkts + p_common->rx_bcast_pkts; 436 437 stats->rx_fifo_errors = p_common->no_buff_discards; 438 439 if (QEDE_IS_BB(edev)) 440 stats->collisions = edev->stats.bb.tx_total_collisions; 441 stats->rx_crc_errors = p_common->rx_crc_errors; 442 stats->rx_frame_errors = p_common->rx_align_errors; 443 } 444 445 #ifdef CONFIG_QED_SRIOV 446 static int qede_get_vf_config(struct net_device *dev, int vfidx, 447 struct ifla_vf_info *ivi) 448 { 449 struct qede_dev *edev = netdev_priv(dev); 450 451 if (!edev->ops) 452 return -EINVAL; 453 454 return edev->ops->iov->get_config(edev->cdev, vfidx, ivi); 455 } 456 457 static int qede_set_vf_rate(struct net_device *dev, int vfidx, 458 int min_tx_rate, int max_tx_rate) 459 { 460 struct qede_dev *edev = netdev_priv(dev); 461 462 return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate, 463 max_tx_rate); 464 } 465 466 static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val) 467 { 468 struct qede_dev *edev = netdev_priv(dev); 469 470 if (!edev->ops) 471 return -EINVAL; 472 473 return edev->ops->iov->set_spoof(edev->cdev, vfidx, val); 474 } 475 476 static int qede_set_vf_link_state(struct net_device *dev, int vfidx, 477 int link_state) 478 { 479 struct qede_dev *edev = netdev_priv(dev); 480 481 if (!edev->ops) 482 return -EINVAL; 483 484 return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state); 485 } 486 487 static int qede_set_vf_trust(struct net_device *dev, int vfidx, bool setting) 488 { 489 struct qede_dev *edev = netdev_priv(dev); 490 491 if (!edev->ops) 492 return -EINVAL; 493 494 return edev->ops->iov->set_trust(edev->cdev, vfidx, setting); 495 } 496 #endif 497 498 static int qede_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 499 { 500 struct qede_dev *edev = netdev_priv(dev); 501 502 if (!netif_running(dev)) 503 return -EAGAIN; 504 505 switch (cmd) { 506 case SIOCSHWTSTAMP: 507 return qede_ptp_hw_ts(edev, ifr); 508 default: 509 DP_VERBOSE(edev, QED_MSG_DEBUG, 510 "default IOCTL cmd 0x%x\n", cmd); 511 return -EOPNOTSUPP; 512 } 513 514 return 0; 515 } 516 517 static void qede_tx_log_print(struct qede_dev *edev, struct qede_tx_queue *txq) 518 { 519 DP_NOTICE(edev, 520 "Txq[%d]: FW cons [host] %04x, SW cons %04x, SW prod %04x [Jiffies %lu]\n", 521 txq->index, le16_to_cpu(*txq->hw_cons_ptr), 522 qed_chain_get_cons_idx(&txq->tx_pbl), 523 qed_chain_get_prod_idx(&txq->tx_pbl), 524 jiffies); 525 } 526 527 static void qede_tx_timeout(struct net_device *dev, unsigned int txqueue) 528 { 529 struct qede_dev *edev = netdev_priv(dev); 530 struct qede_tx_queue *txq; 531 int cos; 532 533 netif_carrier_off(dev); 534 DP_NOTICE(edev, "TX timeout on queue %u!\n", txqueue); 535 536 if (!(edev->fp_array[txqueue].type & QEDE_FASTPATH_TX)) 537 return; 538 539 for_each_cos_in_txq(edev, cos) { 540 txq = &edev->fp_array[txqueue].txq[cos]; 541 542 if (qed_chain_get_cons_idx(&txq->tx_pbl) != 543 qed_chain_get_prod_idx(&txq->tx_pbl)) 544 qede_tx_log_print(edev, txq); 545 } 546 547 if (IS_VF(edev)) 548 return; 549 550 if (test_and_set_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags) || 551 edev->state == QEDE_STATE_RECOVERY) { 552 DP_INFO(edev, 553 "Avoid handling a Tx timeout while another HW error is being handled\n"); 554 return; 555 } 556 557 set_bit(QEDE_ERR_GET_DBG_INFO, &edev->err_flags); 558 set_bit(QEDE_SP_HW_ERR, &edev->sp_flags); 559 schedule_delayed_work(&edev->sp_task, 0); 560 } 561 562 static int qede_setup_tc(struct net_device *ndev, u8 num_tc) 563 { 564 struct qede_dev *edev = netdev_priv(ndev); 565 int cos, count, offset; 566 567 if (num_tc > edev->dev_info.num_tc) 568 return -EINVAL; 569 570 netdev_reset_tc(ndev); 571 netdev_set_num_tc(ndev, num_tc); 572 573 for_each_cos_in_txq(edev, cos) { 574 count = QEDE_TSS_COUNT(edev); 575 offset = cos * QEDE_TSS_COUNT(edev); 576 netdev_set_tc_queue(ndev, cos, count, offset); 577 } 578 579 return 0; 580 } 581 582 static int 583 qede_set_flower(struct qede_dev *edev, struct flow_cls_offload *f, 584 __be16 proto) 585 { 586 switch (f->command) { 587 case FLOW_CLS_REPLACE: 588 return qede_add_tc_flower_fltr(edev, proto, f); 589 case FLOW_CLS_DESTROY: 590 return qede_delete_flow_filter(edev, f->cookie); 591 default: 592 return -EOPNOTSUPP; 593 } 594 } 595 596 static int qede_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 597 void *cb_priv) 598 { 599 struct flow_cls_offload *f; 600 struct qede_dev *edev = cb_priv; 601 602 if (!tc_cls_can_offload_and_chain0(edev->ndev, type_data)) 603 return -EOPNOTSUPP; 604 605 switch (type) { 606 case TC_SETUP_CLSFLOWER: 607 f = type_data; 608 return qede_set_flower(edev, f, f->common.protocol); 609 default: 610 return -EOPNOTSUPP; 611 } 612 } 613 614 static LIST_HEAD(qede_block_cb_list); 615 616 static int 617 qede_setup_tc_offload(struct net_device *dev, enum tc_setup_type type, 618 void *type_data) 619 { 620 struct qede_dev *edev = netdev_priv(dev); 621 struct tc_mqprio_qopt *mqprio; 622 623 switch (type) { 624 case TC_SETUP_BLOCK: 625 return flow_block_cb_setup_simple(type_data, 626 &qede_block_cb_list, 627 qede_setup_tc_block_cb, 628 edev, edev, true); 629 case TC_SETUP_QDISC_MQPRIO: 630 mqprio = type_data; 631 632 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; 633 return qede_setup_tc(dev, mqprio->num_tc); 634 default: 635 return -EOPNOTSUPP; 636 } 637 } 638 639 static const struct net_device_ops qede_netdev_ops = { 640 .ndo_open = qede_open, 641 .ndo_stop = qede_close, 642 .ndo_start_xmit = qede_start_xmit, 643 .ndo_select_queue = qede_select_queue, 644 .ndo_set_rx_mode = qede_set_rx_mode, 645 .ndo_set_mac_address = qede_set_mac_addr, 646 .ndo_validate_addr = eth_validate_addr, 647 .ndo_change_mtu = qede_change_mtu, 648 .ndo_do_ioctl = qede_ioctl, 649 .ndo_tx_timeout = qede_tx_timeout, 650 #ifdef CONFIG_QED_SRIOV 651 .ndo_set_vf_mac = qede_set_vf_mac, 652 .ndo_set_vf_vlan = qede_set_vf_vlan, 653 .ndo_set_vf_trust = qede_set_vf_trust, 654 #endif 655 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid, 656 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid, 657 .ndo_fix_features = qede_fix_features, 658 .ndo_set_features = qede_set_features, 659 .ndo_get_stats64 = qede_get_stats64, 660 #ifdef CONFIG_QED_SRIOV 661 .ndo_set_vf_link_state = qede_set_vf_link_state, 662 .ndo_set_vf_spoofchk = qede_set_vf_spoofchk, 663 .ndo_get_vf_config = qede_get_vf_config, 664 .ndo_set_vf_rate = qede_set_vf_rate, 665 #endif 666 .ndo_udp_tunnel_add = udp_tunnel_nic_add_port, 667 .ndo_udp_tunnel_del = udp_tunnel_nic_del_port, 668 .ndo_features_check = qede_features_check, 669 .ndo_bpf = qede_xdp, 670 #ifdef CONFIG_RFS_ACCEL 671 .ndo_rx_flow_steer = qede_rx_flow_steer, 672 #endif 673 .ndo_setup_tc = qede_setup_tc_offload, 674 }; 675 676 static const struct net_device_ops qede_netdev_vf_ops = { 677 .ndo_open = qede_open, 678 .ndo_stop = qede_close, 679 .ndo_start_xmit = qede_start_xmit, 680 .ndo_select_queue = qede_select_queue, 681 .ndo_set_rx_mode = qede_set_rx_mode, 682 .ndo_set_mac_address = qede_set_mac_addr, 683 .ndo_validate_addr = eth_validate_addr, 684 .ndo_change_mtu = qede_change_mtu, 685 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid, 686 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid, 687 .ndo_fix_features = qede_fix_features, 688 .ndo_set_features = qede_set_features, 689 .ndo_get_stats64 = qede_get_stats64, 690 .ndo_udp_tunnel_add = udp_tunnel_nic_add_port, 691 .ndo_udp_tunnel_del = udp_tunnel_nic_del_port, 692 .ndo_features_check = qede_features_check, 693 }; 694 695 static const struct net_device_ops qede_netdev_vf_xdp_ops = { 696 .ndo_open = qede_open, 697 .ndo_stop = qede_close, 698 .ndo_start_xmit = qede_start_xmit, 699 .ndo_select_queue = qede_select_queue, 700 .ndo_set_rx_mode = qede_set_rx_mode, 701 .ndo_set_mac_address = qede_set_mac_addr, 702 .ndo_validate_addr = eth_validate_addr, 703 .ndo_change_mtu = qede_change_mtu, 704 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid, 705 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid, 706 .ndo_fix_features = qede_fix_features, 707 .ndo_set_features = qede_set_features, 708 .ndo_get_stats64 = qede_get_stats64, 709 .ndo_udp_tunnel_add = udp_tunnel_nic_add_port, 710 .ndo_udp_tunnel_del = udp_tunnel_nic_del_port, 711 .ndo_features_check = qede_features_check, 712 .ndo_bpf = qede_xdp, 713 }; 714 715 /* ------------------------------------------------------------------------- 716 * START OF PROBE / REMOVE 717 * ------------------------------------------------------------------------- 718 */ 719 720 static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev, 721 struct pci_dev *pdev, 722 struct qed_dev_eth_info *info, 723 u32 dp_module, u8 dp_level) 724 { 725 struct net_device *ndev; 726 struct qede_dev *edev; 727 728 ndev = alloc_etherdev_mqs(sizeof(*edev), 729 info->num_queues * info->num_tc, 730 info->num_queues); 731 if (!ndev) { 732 pr_err("etherdev allocation failed\n"); 733 return NULL; 734 } 735 736 edev = netdev_priv(ndev); 737 edev->ndev = ndev; 738 edev->cdev = cdev; 739 edev->pdev = pdev; 740 edev->dp_module = dp_module; 741 edev->dp_level = dp_level; 742 edev->ops = qed_ops; 743 744 if (is_kdump_kernel()) { 745 edev->q_num_rx_buffers = NUM_RX_BDS_KDUMP_MIN; 746 edev->q_num_tx_buffers = NUM_TX_BDS_KDUMP_MIN; 747 } else { 748 edev->q_num_rx_buffers = NUM_RX_BDS_DEF; 749 edev->q_num_tx_buffers = NUM_TX_BDS_DEF; 750 } 751 752 DP_INFO(edev, "Allocated netdev with %d tx queues and %d rx queues\n", 753 info->num_queues, info->num_queues); 754 755 SET_NETDEV_DEV(ndev, &pdev->dev); 756 757 memset(&edev->stats, 0, sizeof(edev->stats)); 758 memcpy(&edev->dev_info, info, sizeof(*info)); 759 760 /* As ethtool doesn't have the ability to show WoL behavior as 761 * 'default', if device supports it declare it's enabled. 762 */ 763 if (edev->dev_info.common.wol_support) 764 edev->wol_enabled = true; 765 766 INIT_LIST_HEAD(&edev->vlan_list); 767 768 return edev; 769 } 770 771 static void qede_init_ndev(struct qede_dev *edev) 772 { 773 struct net_device *ndev = edev->ndev; 774 struct pci_dev *pdev = edev->pdev; 775 bool udp_tunnel_enable = false; 776 netdev_features_t hw_features; 777 778 pci_set_drvdata(pdev, ndev); 779 780 ndev->mem_start = edev->dev_info.common.pci_mem_start; 781 ndev->base_addr = ndev->mem_start; 782 ndev->mem_end = edev->dev_info.common.pci_mem_end; 783 ndev->irq = edev->dev_info.common.pci_irq; 784 785 ndev->watchdog_timeo = TX_TIMEOUT; 786 787 if (IS_VF(edev)) { 788 if (edev->dev_info.xdp_supported) 789 ndev->netdev_ops = &qede_netdev_vf_xdp_ops; 790 else 791 ndev->netdev_ops = &qede_netdev_vf_ops; 792 } else { 793 ndev->netdev_ops = &qede_netdev_ops; 794 } 795 796 qede_set_ethtool_ops(ndev); 797 798 ndev->priv_flags |= IFF_UNICAST_FLT; 799 800 /* user-changeble features */ 801 hw_features = NETIF_F_GRO | NETIF_F_GRO_HW | NETIF_F_SG | 802 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 803 NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_HW_TC; 804 805 if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) 806 hw_features |= NETIF_F_NTUPLE; 807 808 if (edev->dev_info.common.vxlan_enable || 809 edev->dev_info.common.geneve_enable) 810 udp_tunnel_enable = true; 811 812 if (udp_tunnel_enable || edev->dev_info.common.gre_enable) { 813 hw_features |= NETIF_F_TSO_ECN; 814 ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 815 NETIF_F_SG | NETIF_F_TSO | 816 NETIF_F_TSO_ECN | NETIF_F_TSO6 | 817 NETIF_F_RXCSUM; 818 } 819 820 if (udp_tunnel_enable) { 821 hw_features |= (NETIF_F_GSO_UDP_TUNNEL | 822 NETIF_F_GSO_UDP_TUNNEL_CSUM); 823 ndev->hw_enc_features |= (NETIF_F_GSO_UDP_TUNNEL | 824 NETIF_F_GSO_UDP_TUNNEL_CSUM); 825 826 qede_set_udp_tunnels(edev); 827 } 828 829 if (edev->dev_info.common.gre_enable) { 830 hw_features |= (NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM); 831 ndev->hw_enc_features |= (NETIF_F_GSO_GRE | 832 NETIF_F_GSO_GRE_CSUM); 833 } 834 835 ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM | 836 NETIF_F_HIGHDMA; 837 ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM | 838 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA | 839 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX; 840 841 ndev->hw_features = hw_features; 842 843 /* MTU range: 46 - 9600 */ 844 ndev->min_mtu = ETH_ZLEN - ETH_HLEN; 845 ndev->max_mtu = QEDE_MAX_JUMBO_PACKET_SIZE; 846 847 /* Set network device HW mac */ 848 ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac); 849 850 ndev->mtu = edev->dev_info.common.mtu; 851 } 852 853 /* This function converts from 32b param to two params of level and module 854 * Input 32b decoding: 855 * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the 856 * 'happy' flow, e.g. memory allocation failed. 857 * b30 - enable all INFO prints. INFO prints are for major steps in the flow 858 * and provide important parameters. 859 * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that 860 * module. VERBOSE prints are for tracking the specific flow in low level. 861 * 862 * Notice that the level should be that of the lowest required logs. 863 */ 864 void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level) 865 { 866 *p_dp_level = QED_LEVEL_NOTICE; 867 *p_dp_module = 0; 868 869 if (debug & QED_LOG_VERBOSE_MASK) { 870 *p_dp_level = QED_LEVEL_VERBOSE; 871 *p_dp_module = (debug & 0x3FFFFFFF); 872 } else if (debug & QED_LOG_INFO_MASK) { 873 *p_dp_level = QED_LEVEL_INFO; 874 } else if (debug & QED_LOG_NOTICE_MASK) { 875 *p_dp_level = QED_LEVEL_NOTICE; 876 } 877 } 878 879 static void qede_free_fp_array(struct qede_dev *edev) 880 { 881 if (edev->fp_array) { 882 struct qede_fastpath *fp; 883 int i; 884 885 for_each_queue(i) { 886 fp = &edev->fp_array[i]; 887 888 kfree(fp->sb_info); 889 /* Handle mem alloc failure case where qede_init_fp 890 * didn't register xdp_rxq_info yet. 891 * Implicit only (fp->type & QEDE_FASTPATH_RX) 892 */ 893 if (fp->rxq && xdp_rxq_info_is_reg(&fp->rxq->xdp_rxq)) 894 xdp_rxq_info_unreg(&fp->rxq->xdp_rxq); 895 kfree(fp->rxq); 896 kfree(fp->xdp_tx); 897 kfree(fp->txq); 898 } 899 kfree(edev->fp_array); 900 } 901 902 edev->num_queues = 0; 903 edev->fp_num_tx = 0; 904 edev->fp_num_rx = 0; 905 } 906 907 static int qede_alloc_fp_array(struct qede_dev *edev) 908 { 909 u8 fp_combined, fp_rx = edev->fp_num_rx; 910 struct qede_fastpath *fp; 911 int i; 912 913 edev->fp_array = kcalloc(QEDE_QUEUE_CNT(edev), 914 sizeof(*edev->fp_array), GFP_KERNEL); 915 if (!edev->fp_array) { 916 DP_NOTICE(edev, "fp array allocation failed\n"); 917 goto err; 918 } 919 920 fp_combined = QEDE_QUEUE_CNT(edev) - fp_rx - edev->fp_num_tx; 921 922 /* Allocate the FP elements for Rx queues followed by combined and then 923 * the Tx. This ordering should be maintained so that the respective 924 * queues (Rx or Tx) will be together in the fastpath array and the 925 * associated ids will be sequential. 926 */ 927 for_each_queue(i) { 928 fp = &edev->fp_array[i]; 929 930 fp->sb_info = kzalloc(sizeof(*fp->sb_info), GFP_KERNEL); 931 if (!fp->sb_info) { 932 DP_NOTICE(edev, "sb info struct allocation failed\n"); 933 goto err; 934 } 935 936 if (fp_rx) { 937 fp->type = QEDE_FASTPATH_RX; 938 fp_rx--; 939 } else if (fp_combined) { 940 fp->type = QEDE_FASTPATH_COMBINED; 941 fp_combined--; 942 } else { 943 fp->type = QEDE_FASTPATH_TX; 944 } 945 946 if (fp->type & QEDE_FASTPATH_TX) { 947 fp->txq = kcalloc(edev->dev_info.num_tc, 948 sizeof(*fp->txq), GFP_KERNEL); 949 if (!fp->txq) 950 goto err; 951 } 952 953 if (fp->type & QEDE_FASTPATH_RX) { 954 fp->rxq = kzalloc(sizeof(*fp->rxq), GFP_KERNEL); 955 if (!fp->rxq) 956 goto err; 957 958 if (edev->xdp_prog) { 959 fp->xdp_tx = kzalloc(sizeof(*fp->xdp_tx), 960 GFP_KERNEL); 961 if (!fp->xdp_tx) 962 goto err; 963 fp->type |= QEDE_FASTPATH_XDP; 964 } 965 } 966 } 967 968 return 0; 969 err: 970 qede_free_fp_array(edev); 971 return -ENOMEM; 972 } 973 974 /* The qede lock is used to protect driver state change and driver flows that 975 * are not reentrant. 976 */ 977 void __qede_lock(struct qede_dev *edev) 978 { 979 mutex_lock(&edev->qede_lock); 980 } 981 982 void __qede_unlock(struct qede_dev *edev) 983 { 984 mutex_unlock(&edev->qede_lock); 985 } 986 987 /* This version of the lock should be used when acquiring the RTNL lock is also 988 * needed in addition to the internal qede lock. 989 */ 990 static void qede_lock(struct qede_dev *edev) 991 { 992 rtnl_lock(); 993 __qede_lock(edev); 994 } 995 996 static void qede_unlock(struct qede_dev *edev) 997 { 998 __qede_unlock(edev); 999 rtnl_unlock(); 1000 } 1001 1002 static void qede_sp_task(struct work_struct *work) 1003 { 1004 struct qede_dev *edev = container_of(work, struct qede_dev, 1005 sp_task.work); 1006 1007 /* The locking scheme depends on the specific flag: 1008 * In case of QEDE_SP_RECOVERY, acquiring the RTNL lock is required to 1009 * ensure that ongoing flows are ended and new ones are not started. 1010 * In other cases - only the internal qede lock should be acquired. 1011 */ 1012 1013 if (test_and_clear_bit(QEDE_SP_RECOVERY, &edev->sp_flags)) { 1014 #ifdef CONFIG_QED_SRIOV 1015 /* SRIOV must be disabled outside the lock to avoid a deadlock. 1016 * The recovery of the active VFs is currently not supported. 1017 */ 1018 if (pci_num_vf(edev->pdev)) 1019 qede_sriov_configure(edev->pdev, 0); 1020 #endif 1021 qede_lock(edev); 1022 qede_recovery_handler(edev); 1023 qede_unlock(edev); 1024 } 1025 1026 __qede_lock(edev); 1027 1028 if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags)) 1029 if (edev->state == QEDE_STATE_OPEN) 1030 qede_config_rx_mode(edev->ndev); 1031 1032 #ifdef CONFIG_RFS_ACCEL 1033 if (test_and_clear_bit(QEDE_SP_ARFS_CONFIG, &edev->sp_flags)) { 1034 if (edev->state == QEDE_STATE_OPEN) 1035 qede_process_arfs_filters(edev, false); 1036 } 1037 #endif 1038 if (test_and_clear_bit(QEDE_SP_HW_ERR, &edev->sp_flags)) 1039 qede_generic_hw_err_handler(edev); 1040 __qede_unlock(edev); 1041 1042 if (test_and_clear_bit(QEDE_SP_AER, &edev->sp_flags)) { 1043 #ifdef CONFIG_QED_SRIOV 1044 /* SRIOV must be disabled outside the lock to avoid a deadlock. 1045 * The recovery of the active VFs is currently not supported. 1046 */ 1047 if (pci_num_vf(edev->pdev)) 1048 qede_sriov_configure(edev->pdev, 0); 1049 #endif 1050 edev->ops->common->recovery_process(edev->cdev); 1051 } 1052 } 1053 1054 static void qede_update_pf_params(struct qed_dev *cdev) 1055 { 1056 struct qed_pf_params pf_params; 1057 u16 num_cons; 1058 1059 /* 64 rx + 64 tx + 64 XDP */ 1060 memset(&pf_params, 0, sizeof(struct qed_pf_params)); 1061 1062 /* 1 rx + 1 xdp + max tx cos */ 1063 num_cons = QED_MIN_L2_CONS; 1064 1065 pf_params.eth_pf_params.num_cons = (MAX_SB_PER_PF_MIMD - 1) * num_cons; 1066 1067 /* Same for VFs - make sure they'll have sufficient connections 1068 * to support XDP Tx queues. 1069 */ 1070 pf_params.eth_pf_params.num_vf_cons = 48; 1071 1072 pf_params.eth_pf_params.num_arfs_filters = QEDE_RFS_MAX_FLTR; 1073 qed_ops->common->update_pf_params(cdev, &pf_params); 1074 } 1075 1076 #define QEDE_FW_VER_STR_SIZE 80 1077 1078 static void qede_log_probe(struct qede_dev *edev) 1079 { 1080 struct qed_dev_info *p_dev_info = &edev->dev_info.common; 1081 u8 buf[QEDE_FW_VER_STR_SIZE]; 1082 size_t left_size; 1083 1084 snprintf(buf, QEDE_FW_VER_STR_SIZE, 1085 "Storm FW %d.%d.%d.%d, Management FW %d.%d.%d.%d", 1086 p_dev_info->fw_major, p_dev_info->fw_minor, p_dev_info->fw_rev, 1087 p_dev_info->fw_eng, 1088 (p_dev_info->mfw_rev & QED_MFW_VERSION_3_MASK) >> 1089 QED_MFW_VERSION_3_OFFSET, 1090 (p_dev_info->mfw_rev & QED_MFW_VERSION_2_MASK) >> 1091 QED_MFW_VERSION_2_OFFSET, 1092 (p_dev_info->mfw_rev & QED_MFW_VERSION_1_MASK) >> 1093 QED_MFW_VERSION_1_OFFSET, 1094 (p_dev_info->mfw_rev & QED_MFW_VERSION_0_MASK) >> 1095 QED_MFW_VERSION_0_OFFSET); 1096 1097 left_size = QEDE_FW_VER_STR_SIZE - strlen(buf); 1098 if (p_dev_info->mbi_version && left_size) 1099 snprintf(buf + strlen(buf), left_size, 1100 " [MBI %d.%d.%d]", 1101 (p_dev_info->mbi_version & QED_MBI_VERSION_2_MASK) >> 1102 QED_MBI_VERSION_2_OFFSET, 1103 (p_dev_info->mbi_version & QED_MBI_VERSION_1_MASK) >> 1104 QED_MBI_VERSION_1_OFFSET, 1105 (p_dev_info->mbi_version & QED_MBI_VERSION_0_MASK) >> 1106 QED_MBI_VERSION_0_OFFSET); 1107 1108 pr_info("qede %02x:%02x.%02x: %s [%s]\n", edev->pdev->bus->number, 1109 PCI_SLOT(edev->pdev->devfn), PCI_FUNC(edev->pdev->devfn), 1110 buf, edev->ndev->name); 1111 } 1112 1113 enum qede_probe_mode { 1114 QEDE_PROBE_NORMAL, 1115 QEDE_PROBE_RECOVERY, 1116 }; 1117 1118 static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level, 1119 bool is_vf, enum qede_probe_mode mode) 1120 { 1121 struct qed_probe_params probe_params; 1122 struct qed_slowpath_params sp_params; 1123 struct qed_dev_eth_info dev_info; 1124 struct qede_dev *edev; 1125 struct qed_dev *cdev; 1126 int rc; 1127 1128 if (unlikely(dp_level & QED_LEVEL_INFO)) 1129 pr_notice("Starting qede probe\n"); 1130 1131 memset(&probe_params, 0, sizeof(probe_params)); 1132 probe_params.protocol = QED_PROTOCOL_ETH; 1133 probe_params.dp_module = dp_module; 1134 probe_params.dp_level = dp_level; 1135 probe_params.is_vf = is_vf; 1136 probe_params.recov_in_prog = (mode == QEDE_PROBE_RECOVERY); 1137 cdev = qed_ops->common->probe(pdev, &probe_params); 1138 if (!cdev) { 1139 rc = -ENODEV; 1140 goto err0; 1141 } 1142 1143 qede_update_pf_params(cdev); 1144 1145 /* Start the Slowpath-process */ 1146 memset(&sp_params, 0, sizeof(sp_params)); 1147 sp_params.int_mode = QED_INT_MODE_MSIX; 1148 sp_params.drv_major = QEDE_MAJOR_VERSION; 1149 sp_params.drv_minor = QEDE_MINOR_VERSION; 1150 sp_params.drv_rev = QEDE_REVISION_VERSION; 1151 sp_params.drv_eng = QEDE_ENGINEERING_VERSION; 1152 strlcpy(sp_params.name, "qede LAN", QED_DRV_VER_STR_SIZE); 1153 rc = qed_ops->common->slowpath_start(cdev, &sp_params); 1154 if (rc) { 1155 pr_notice("Cannot start slowpath\n"); 1156 goto err1; 1157 } 1158 1159 /* Learn information crucial for qede to progress */ 1160 rc = qed_ops->fill_dev_info(cdev, &dev_info); 1161 if (rc) 1162 goto err2; 1163 1164 if (mode != QEDE_PROBE_RECOVERY) { 1165 edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module, 1166 dp_level); 1167 if (!edev) { 1168 rc = -ENOMEM; 1169 goto err2; 1170 } 1171 } else { 1172 struct net_device *ndev = pci_get_drvdata(pdev); 1173 1174 edev = netdev_priv(ndev); 1175 edev->cdev = cdev; 1176 memset(&edev->stats, 0, sizeof(edev->stats)); 1177 memcpy(&edev->dev_info, &dev_info, sizeof(dev_info)); 1178 } 1179 1180 if (is_vf) 1181 set_bit(QEDE_FLAGS_IS_VF, &edev->flags); 1182 1183 qede_init_ndev(edev); 1184 1185 rc = qede_rdma_dev_add(edev, (mode == QEDE_PROBE_RECOVERY)); 1186 if (rc) 1187 goto err3; 1188 1189 if (mode != QEDE_PROBE_RECOVERY) { 1190 /* Prepare the lock prior to the registration of the netdev, 1191 * as once it's registered we might reach flows requiring it 1192 * [it's even possible to reach a flow needing it directly 1193 * from there, although it's unlikely]. 1194 */ 1195 INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task); 1196 mutex_init(&edev->qede_lock); 1197 1198 rc = register_netdev(edev->ndev); 1199 if (rc) { 1200 DP_NOTICE(edev, "Cannot register net-device\n"); 1201 goto err4; 1202 } 1203 } 1204 1205 edev->ops->common->set_name(cdev, edev->ndev->name); 1206 1207 /* PTP not supported on VFs */ 1208 if (!is_vf) 1209 qede_ptp_enable(edev); 1210 1211 edev->ops->register_ops(cdev, &qede_ll_ops, edev); 1212 1213 #ifdef CONFIG_DCB 1214 if (!IS_VF(edev)) 1215 qede_set_dcbnl_ops(edev->ndev); 1216 #endif 1217 1218 edev->rx_copybreak = QEDE_RX_HDR_SIZE; 1219 1220 qede_log_probe(edev); 1221 return 0; 1222 1223 err4: 1224 qede_rdma_dev_remove(edev, (mode == QEDE_PROBE_RECOVERY)); 1225 err3: 1226 free_netdev(edev->ndev); 1227 err2: 1228 qed_ops->common->slowpath_stop(cdev); 1229 err1: 1230 qed_ops->common->remove(cdev); 1231 err0: 1232 return rc; 1233 } 1234 1235 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id) 1236 { 1237 bool is_vf = false; 1238 u32 dp_module = 0; 1239 u8 dp_level = 0; 1240 1241 switch ((enum qede_pci_private)id->driver_data) { 1242 case QEDE_PRIVATE_VF: 1243 if (debug & QED_LOG_VERBOSE_MASK) 1244 dev_err(&pdev->dev, "Probing a VF\n"); 1245 is_vf = true; 1246 break; 1247 default: 1248 if (debug & QED_LOG_VERBOSE_MASK) 1249 dev_err(&pdev->dev, "Probing a PF\n"); 1250 } 1251 1252 qede_config_debug(debug, &dp_module, &dp_level); 1253 1254 return __qede_probe(pdev, dp_module, dp_level, is_vf, 1255 QEDE_PROBE_NORMAL); 1256 } 1257 1258 enum qede_remove_mode { 1259 QEDE_REMOVE_NORMAL, 1260 QEDE_REMOVE_RECOVERY, 1261 }; 1262 1263 static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode) 1264 { 1265 struct net_device *ndev = pci_get_drvdata(pdev); 1266 struct qede_dev *edev; 1267 struct qed_dev *cdev; 1268 1269 if (!ndev) { 1270 dev_info(&pdev->dev, "Device has already been removed\n"); 1271 return; 1272 } 1273 1274 edev = netdev_priv(ndev); 1275 cdev = edev->cdev; 1276 1277 DP_INFO(edev, "Starting qede_remove\n"); 1278 1279 qede_rdma_dev_remove(edev, (mode == QEDE_REMOVE_RECOVERY)); 1280 1281 if (mode != QEDE_REMOVE_RECOVERY) { 1282 unregister_netdev(ndev); 1283 1284 cancel_delayed_work_sync(&edev->sp_task); 1285 1286 edev->ops->common->set_power_state(cdev, PCI_D0); 1287 1288 pci_set_drvdata(pdev, NULL); 1289 } 1290 1291 qede_ptp_disable(edev); 1292 1293 /* Use global ops since we've freed edev */ 1294 qed_ops->common->slowpath_stop(cdev); 1295 if (system_state == SYSTEM_POWER_OFF) 1296 return; 1297 qed_ops->common->remove(cdev); 1298 edev->cdev = NULL; 1299 1300 /* Since this can happen out-of-sync with other flows, 1301 * don't release the netdevice until after slowpath stop 1302 * has been called to guarantee various other contexts 1303 * [e.g., QED register callbacks] won't break anything when 1304 * accessing the netdevice. 1305 */ 1306 if (mode != QEDE_REMOVE_RECOVERY) 1307 free_netdev(ndev); 1308 1309 dev_info(&pdev->dev, "Ending qede_remove successfully\n"); 1310 } 1311 1312 static void qede_remove(struct pci_dev *pdev) 1313 { 1314 __qede_remove(pdev, QEDE_REMOVE_NORMAL); 1315 } 1316 1317 static void qede_shutdown(struct pci_dev *pdev) 1318 { 1319 __qede_remove(pdev, QEDE_REMOVE_NORMAL); 1320 } 1321 1322 /* ------------------------------------------------------------------------- 1323 * START OF LOAD / UNLOAD 1324 * ------------------------------------------------------------------------- 1325 */ 1326 1327 static int qede_set_num_queues(struct qede_dev *edev) 1328 { 1329 int rc; 1330 u16 rss_num; 1331 1332 /* Setup queues according to possible resources*/ 1333 if (edev->req_queues) 1334 rss_num = edev->req_queues; 1335 else 1336 rss_num = netif_get_num_default_rss_queues() * 1337 edev->dev_info.common.num_hwfns; 1338 1339 rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num); 1340 1341 rc = edev->ops->common->set_fp_int(edev->cdev, rss_num); 1342 if (rc > 0) { 1343 /* Managed to request interrupts for our queues */ 1344 edev->num_queues = rc; 1345 DP_INFO(edev, "Managed %d [of %d] RSS queues\n", 1346 QEDE_QUEUE_CNT(edev), rss_num); 1347 rc = 0; 1348 } 1349 1350 edev->fp_num_tx = edev->req_num_tx; 1351 edev->fp_num_rx = edev->req_num_rx; 1352 1353 return rc; 1354 } 1355 1356 static void qede_free_mem_sb(struct qede_dev *edev, struct qed_sb_info *sb_info, 1357 u16 sb_id) 1358 { 1359 if (sb_info->sb_virt) { 1360 edev->ops->common->sb_release(edev->cdev, sb_info, sb_id, 1361 QED_SB_TYPE_L2_QUEUE); 1362 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt), 1363 (void *)sb_info->sb_virt, sb_info->sb_phys); 1364 memset(sb_info, 0, sizeof(*sb_info)); 1365 } 1366 } 1367 1368 /* This function allocates fast-path status block memory */ 1369 static int qede_alloc_mem_sb(struct qede_dev *edev, 1370 struct qed_sb_info *sb_info, u16 sb_id) 1371 { 1372 struct status_block_e4 *sb_virt; 1373 dma_addr_t sb_phys; 1374 int rc; 1375 1376 sb_virt = dma_alloc_coherent(&edev->pdev->dev, 1377 sizeof(*sb_virt), &sb_phys, GFP_KERNEL); 1378 if (!sb_virt) { 1379 DP_ERR(edev, "Status block allocation failed\n"); 1380 return -ENOMEM; 1381 } 1382 1383 rc = edev->ops->common->sb_init(edev->cdev, sb_info, 1384 sb_virt, sb_phys, sb_id, 1385 QED_SB_TYPE_L2_QUEUE); 1386 if (rc) { 1387 DP_ERR(edev, "Status block initialization failed\n"); 1388 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt), 1389 sb_virt, sb_phys); 1390 return rc; 1391 } 1392 1393 return 0; 1394 } 1395 1396 static void qede_free_rx_buffers(struct qede_dev *edev, 1397 struct qede_rx_queue *rxq) 1398 { 1399 u16 i; 1400 1401 for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) { 1402 struct sw_rx_data *rx_buf; 1403 struct page *data; 1404 1405 rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX]; 1406 data = rx_buf->data; 1407 1408 dma_unmap_page(&edev->pdev->dev, 1409 rx_buf->mapping, PAGE_SIZE, rxq->data_direction); 1410 1411 rx_buf->data = NULL; 1412 __free_page(data); 1413 } 1414 } 1415 1416 static void qede_free_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq) 1417 { 1418 /* Free rx buffers */ 1419 qede_free_rx_buffers(edev, rxq); 1420 1421 /* Free the parallel SW ring */ 1422 kfree(rxq->sw_rx_ring); 1423 1424 /* Free the real RQ ring used by FW */ 1425 edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring); 1426 edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring); 1427 } 1428 1429 static void qede_set_tpa_param(struct qede_rx_queue *rxq) 1430 { 1431 int i; 1432 1433 for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) { 1434 struct qede_agg_info *tpa_info = &rxq->tpa_info[i]; 1435 1436 tpa_info->state = QEDE_AGG_STATE_NONE; 1437 } 1438 } 1439 1440 /* This function allocates all memory needed per Rx queue */ 1441 static int qede_alloc_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq) 1442 { 1443 int i, rc, size; 1444 1445 rxq->num_rx_buffers = edev->q_num_rx_buffers; 1446 1447 rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD + edev->ndev->mtu; 1448 1449 rxq->rx_headroom = edev->xdp_prog ? XDP_PACKET_HEADROOM : NET_SKB_PAD; 1450 size = rxq->rx_headroom + 1451 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 1452 1453 /* Make sure that the headroom and payload fit in a single page */ 1454 if (rxq->rx_buf_size + size > PAGE_SIZE) 1455 rxq->rx_buf_size = PAGE_SIZE - size; 1456 1457 /* Segment size to split a page in multiple equal parts, 1458 * unless XDP is used in which case we'd use the entire page. 1459 */ 1460 if (!edev->xdp_prog) { 1461 size = size + rxq->rx_buf_size; 1462 rxq->rx_buf_seg_size = roundup_pow_of_two(size); 1463 } else { 1464 rxq->rx_buf_seg_size = PAGE_SIZE; 1465 edev->ndev->features &= ~NETIF_F_GRO_HW; 1466 } 1467 1468 /* Allocate the parallel driver ring for Rx buffers */ 1469 size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE; 1470 rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL); 1471 if (!rxq->sw_rx_ring) { 1472 DP_ERR(edev, "Rx buffers ring allocation failed\n"); 1473 rc = -ENOMEM; 1474 goto err; 1475 } 1476 1477 /* Allocate FW Rx ring */ 1478 rc = edev->ops->common->chain_alloc(edev->cdev, 1479 QED_CHAIN_USE_TO_CONSUME_PRODUCE, 1480 QED_CHAIN_MODE_NEXT_PTR, 1481 QED_CHAIN_CNT_TYPE_U16, 1482 RX_RING_SIZE, 1483 sizeof(struct eth_rx_bd), 1484 &rxq->rx_bd_ring, NULL); 1485 if (rc) 1486 goto err; 1487 1488 /* Allocate FW completion ring */ 1489 rc = edev->ops->common->chain_alloc(edev->cdev, 1490 QED_CHAIN_USE_TO_CONSUME, 1491 QED_CHAIN_MODE_PBL, 1492 QED_CHAIN_CNT_TYPE_U16, 1493 RX_RING_SIZE, 1494 sizeof(union eth_rx_cqe), 1495 &rxq->rx_comp_ring, NULL); 1496 if (rc) 1497 goto err; 1498 1499 /* Allocate buffers for the Rx ring */ 1500 rxq->filled_buffers = 0; 1501 for (i = 0; i < rxq->num_rx_buffers; i++) { 1502 rc = qede_alloc_rx_buffer(rxq, false); 1503 if (rc) { 1504 DP_ERR(edev, 1505 "Rx buffers allocation failed at index %d\n", i); 1506 goto err; 1507 } 1508 } 1509 1510 edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO_HW); 1511 if (!edev->gro_disable) 1512 qede_set_tpa_param(rxq); 1513 err: 1514 return rc; 1515 } 1516 1517 static void qede_free_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq) 1518 { 1519 /* Free the parallel SW ring */ 1520 if (txq->is_xdp) 1521 kfree(txq->sw_tx_ring.xdp); 1522 else 1523 kfree(txq->sw_tx_ring.skbs); 1524 1525 /* Free the real RQ ring used by FW */ 1526 edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl); 1527 } 1528 1529 /* This function allocates all memory needed per Tx queue */ 1530 static int qede_alloc_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq) 1531 { 1532 union eth_tx_bd_types *p_virt; 1533 int size, rc; 1534 1535 txq->num_tx_buffers = edev->q_num_tx_buffers; 1536 1537 /* Allocate the parallel driver ring for Tx buffers */ 1538 if (txq->is_xdp) { 1539 size = sizeof(*txq->sw_tx_ring.xdp) * txq->num_tx_buffers; 1540 txq->sw_tx_ring.xdp = kzalloc(size, GFP_KERNEL); 1541 if (!txq->sw_tx_ring.xdp) 1542 goto err; 1543 } else { 1544 size = sizeof(*txq->sw_tx_ring.skbs) * txq->num_tx_buffers; 1545 txq->sw_tx_ring.skbs = kzalloc(size, GFP_KERNEL); 1546 if (!txq->sw_tx_ring.skbs) 1547 goto err; 1548 } 1549 1550 rc = edev->ops->common->chain_alloc(edev->cdev, 1551 QED_CHAIN_USE_TO_CONSUME_PRODUCE, 1552 QED_CHAIN_MODE_PBL, 1553 QED_CHAIN_CNT_TYPE_U16, 1554 txq->num_tx_buffers, 1555 sizeof(*p_virt), 1556 &txq->tx_pbl, NULL); 1557 if (rc) 1558 goto err; 1559 1560 return 0; 1561 1562 err: 1563 qede_free_mem_txq(edev, txq); 1564 return -ENOMEM; 1565 } 1566 1567 /* This function frees all memory of a single fp */ 1568 static void qede_free_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp) 1569 { 1570 qede_free_mem_sb(edev, fp->sb_info, fp->id); 1571 1572 if (fp->type & QEDE_FASTPATH_RX) 1573 qede_free_mem_rxq(edev, fp->rxq); 1574 1575 if (fp->type & QEDE_FASTPATH_XDP) 1576 qede_free_mem_txq(edev, fp->xdp_tx); 1577 1578 if (fp->type & QEDE_FASTPATH_TX) { 1579 int cos; 1580 1581 for_each_cos_in_txq(edev, cos) 1582 qede_free_mem_txq(edev, &fp->txq[cos]); 1583 } 1584 } 1585 1586 /* This function allocates all memory needed for a single fp (i.e. an entity 1587 * which contains status block, one rx queue and/or multiple per-TC tx queues. 1588 */ 1589 static int qede_alloc_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp) 1590 { 1591 int rc = 0; 1592 1593 rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->id); 1594 if (rc) 1595 goto out; 1596 1597 if (fp->type & QEDE_FASTPATH_RX) { 1598 rc = qede_alloc_mem_rxq(edev, fp->rxq); 1599 if (rc) 1600 goto out; 1601 } 1602 1603 if (fp->type & QEDE_FASTPATH_XDP) { 1604 rc = qede_alloc_mem_txq(edev, fp->xdp_tx); 1605 if (rc) 1606 goto out; 1607 } 1608 1609 if (fp->type & QEDE_FASTPATH_TX) { 1610 int cos; 1611 1612 for_each_cos_in_txq(edev, cos) { 1613 rc = qede_alloc_mem_txq(edev, &fp->txq[cos]); 1614 if (rc) 1615 goto out; 1616 } 1617 } 1618 1619 out: 1620 return rc; 1621 } 1622 1623 static void qede_free_mem_load(struct qede_dev *edev) 1624 { 1625 int i; 1626 1627 for_each_queue(i) { 1628 struct qede_fastpath *fp = &edev->fp_array[i]; 1629 1630 qede_free_mem_fp(edev, fp); 1631 } 1632 } 1633 1634 /* This function allocates all qede memory at NIC load. */ 1635 static int qede_alloc_mem_load(struct qede_dev *edev) 1636 { 1637 int rc = 0, queue_id; 1638 1639 for (queue_id = 0; queue_id < QEDE_QUEUE_CNT(edev); queue_id++) { 1640 struct qede_fastpath *fp = &edev->fp_array[queue_id]; 1641 1642 rc = qede_alloc_mem_fp(edev, fp); 1643 if (rc) { 1644 DP_ERR(edev, 1645 "Failed to allocate memory for fastpath - rss id = %d\n", 1646 queue_id); 1647 qede_free_mem_load(edev); 1648 return rc; 1649 } 1650 } 1651 1652 return 0; 1653 } 1654 1655 static void qede_empty_tx_queue(struct qede_dev *edev, 1656 struct qede_tx_queue *txq) 1657 { 1658 unsigned int pkts_compl = 0, bytes_compl = 0; 1659 struct netdev_queue *netdev_txq; 1660 int rc, len = 0; 1661 1662 netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id); 1663 1664 while (qed_chain_get_cons_idx(&txq->tx_pbl) != 1665 qed_chain_get_prod_idx(&txq->tx_pbl)) { 1666 DP_VERBOSE(edev, NETIF_MSG_IFDOWN, 1667 "Freeing a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n", 1668 txq->index, qed_chain_get_cons_idx(&txq->tx_pbl), 1669 qed_chain_get_prod_idx(&txq->tx_pbl)); 1670 1671 rc = qede_free_tx_pkt(edev, txq, &len); 1672 if (rc) { 1673 DP_NOTICE(edev, 1674 "Failed to free a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n", 1675 txq->index, 1676 qed_chain_get_cons_idx(&txq->tx_pbl), 1677 qed_chain_get_prod_idx(&txq->tx_pbl)); 1678 break; 1679 } 1680 1681 bytes_compl += len; 1682 pkts_compl++; 1683 txq->sw_tx_cons++; 1684 } 1685 1686 netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl); 1687 } 1688 1689 static void qede_empty_tx_queues(struct qede_dev *edev) 1690 { 1691 int i; 1692 1693 for_each_queue(i) 1694 if (edev->fp_array[i].type & QEDE_FASTPATH_TX) { 1695 int cos; 1696 1697 for_each_cos_in_txq(edev, cos) { 1698 struct qede_fastpath *fp; 1699 1700 fp = &edev->fp_array[i]; 1701 qede_empty_tx_queue(edev, 1702 &fp->txq[cos]); 1703 } 1704 } 1705 } 1706 1707 /* This function inits fp content and resets the SB, RXQ and TXQ structures */ 1708 static void qede_init_fp(struct qede_dev *edev) 1709 { 1710 int queue_id, rxq_index = 0, txq_index = 0; 1711 struct qede_fastpath *fp; 1712 1713 for_each_queue(queue_id) { 1714 fp = &edev->fp_array[queue_id]; 1715 1716 fp->edev = edev; 1717 fp->id = queue_id; 1718 1719 if (fp->type & QEDE_FASTPATH_XDP) { 1720 fp->xdp_tx->index = QEDE_TXQ_IDX_TO_XDP(edev, 1721 rxq_index); 1722 fp->xdp_tx->is_xdp = 1; 1723 } 1724 1725 if (fp->type & QEDE_FASTPATH_RX) { 1726 fp->rxq->rxq_id = rxq_index++; 1727 1728 /* Determine how to map buffers for this queue */ 1729 if (fp->type & QEDE_FASTPATH_XDP) 1730 fp->rxq->data_direction = DMA_BIDIRECTIONAL; 1731 else 1732 fp->rxq->data_direction = DMA_FROM_DEVICE; 1733 fp->rxq->dev = &edev->pdev->dev; 1734 1735 /* Driver have no error path from here */ 1736 WARN_ON(xdp_rxq_info_reg(&fp->rxq->xdp_rxq, edev->ndev, 1737 fp->rxq->rxq_id) < 0); 1738 } 1739 1740 if (fp->type & QEDE_FASTPATH_TX) { 1741 int cos; 1742 1743 for_each_cos_in_txq(edev, cos) { 1744 struct qede_tx_queue *txq = &fp->txq[cos]; 1745 u16 ndev_tx_id; 1746 1747 txq->cos = cos; 1748 txq->index = txq_index; 1749 ndev_tx_id = QEDE_TXQ_TO_NDEV_TXQ_ID(edev, txq); 1750 txq->ndev_txq_id = ndev_tx_id; 1751 1752 if (edev->dev_info.is_legacy) 1753 txq->is_legacy = true; 1754 txq->dev = &edev->pdev->dev; 1755 } 1756 1757 txq_index++; 1758 } 1759 1760 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d", 1761 edev->ndev->name, queue_id); 1762 } 1763 } 1764 1765 static int qede_set_real_num_queues(struct qede_dev *edev) 1766 { 1767 int rc = 0; 1768 1769 rc = netif_set_real_num_tx_queues(edev->ndev, 1770 QEDE_TSS_COUNT(edev) * 1771 edev->dev_info.num_tc); 1772 if (rc) { 1773 DP_NOTICE(edev, "Failed to set real number of Tx queues\n"); 1774 return rc; 1775 } 1776 1777 rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_COUNT(edev)); 1778 if (rc) { 1779 DP_NOTICE(edev, "Failed to set real number of Rx queues\n"); 1780 return rc; 1781 } 1782 1783 return 0; 1784 } 1785 1786 static void qede_napi_disable_remove(struct qede_dev *edev) 1787 { 1788 int i; 1789 1790 for_each_queue(i) { 1791 napi_disable(&edev->fp_array[i].napi); 1792 1793 netif_napi_del(&edev->fp_array[i].napi); 1794 } 1795 } 1796 1797 static void qede_napi_add_enable(struct qede_dev *edev) 1798 { 1799 int i; 1800 1801 /* Add NAPI objects */ 1802 for_each_queue(i) { 1803 netif_napi_add(edev->ndev, &edev->fp_array[i].napi, 1804 qede_poll, NAPI_POLL_WEIGHT); 1805 napi_enable(&edev->fp_array[i].napi); 1806 } 1807 } 1808 1809 static void qede_sync_free_irqs(struct qede_dev *edev) 1810 { 1811 int i; 1812 1813 for (i = 0; i < edev->int_info.used_cnt; i++) { 1814 if (edev->int_info.msix_cnt) { 1815 synchronize_irq(edev->int_info.msix[i].vector); 1816 free_irq(edev->int_info.msix[i].vector, 1817 &edev->fp_array[i]); 1818 } else { 1819 edev->ops->common->simd_handler_clean(edev->cdev, i); 1820 } 1821 } 1822 1823 edev->int_info.used_cnt = 0; 1824 } 1825 1826 static int qede_req_msix_irqs(struct qede_dev *edev) 1827 { 1828 int i, rc; 1829 1830 /* Sanitize number of interrupts == number of prepared RSS queues */ 1831 if (QEDE_QUEUE_CNT(edev) > edev->int_info.msix_cnt) { 1832 DP_ERR(edev, 1833 "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n", 1834 QEDE_QUEUE_CNT(edev), edev->int_info.msix_cnt); 1835 return -EINVAL; 1836 } 1837 1838 for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) { 1839 #ifdef CONFIG_RFS_ACCEL 1840 struct qede_fastpath *fp = &edev->fp_array[i]; 1841 1842 if (edev->ndev->rx_cpu_rmap && (fp->type & QEDE_FASTPATH_RX)) { 1843 rc = irq_cpu_rmap_add(edev->ndev->rx_cpu_rmap, 1844 edev->int_info.msix[i].vector); 1845 if (rc) { 1846 DP_ERR(edev, "Failed to add CPU rmap\n"); 1847 qede_free_arfs(edev); 1848 } 1849 } 1850 #endif 1851 rc = request_irq(edev->int_info.msix[i].vector, 1852 qede_msix_fp_int, 0, edev->fp_array[i].name, 1853 &edev->fp_array[i]); 1854 if (rc) { 1855 DP_ERR(edev, "Request fp %d irq failed\n", i); 1856 qede_sync_free_irqs(edev); 1857 return rc; 1858 } 1859 DP_VERBOSE(edev, NETIF_MSG_INTR, 1860 "Requested fp irq for %s [entry %d]. Cookie is at %p\n", 1861 edev->fp_array[i].name, i, 1862 &edev->fp_array[i]); 1863 edev->int_info.used_cnt++; 1864 } 1865 1866 return 0; 1867 } 1868 1869 static void qede_simd_fp_handler(void *cookie) 1870 { 1871 struct qede_fastpath *fp = (struct qede_fastpath *)cookie; 1872 1873 napi_schedule_irqoff(&fp->napi); 1874 } 1875 1876 static int qede_setup_irqs(struct qede_dev *edev) 1877 { 1878 int i, rc = 0; 1879 1880 /* Learn Interrupt configuration */ 1881 rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info); 1882 if (rc) 1883 return rc; 1884 1885 if (edev->int_info.msix_cnt) { 1886 rc = qede_req_msix_irqs(edev); 1887 if (rc) 1888 return rc; 1889 edev->ndev->irq = edev->int_info.msix[0].vector; 1890 } else { 1891 const struct qed_common_ops *ops; 1892 1893 /* qed should learn receive the RSS ids and callbacks */ 1894 ops = edev->ops->common; 1895 for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) 1896 ops->simd_handler_config(edev->cdev, 1897 &edev->fp_array[i], i, 1898 qede_simd_fp_handler); 1899 edev->int_info.used_cnt = QEDE_QUEUE_CNT(edev); 1900 } 1901 return 0; 1902 } 1903 1904 static int qede_drain_txq(struct qede_dev *edev, 1905 struct qede_tx_queue *txq, bool allow_drain) 1906 { 1907 int rc, cnt = 1000; 1908 1909 while (txq->sw_tx_cons != txq->sw_tx_prod) { 1910 if (!cnt) { 1911 if (allow_drain) { 1912 DP_NOTICE(edev, 1913 "Tx queue[%d] is stuck, requesting MCP to drain\n", 1914 txq->index); 1915 rc = edev->ops->common->drain(edev->cdev); 1916 if (rc) 1917 return rc; 1918 return qede_drain_txq(edev, txq, false); 1919 } 1920 DP_NOTICE(edev, 1921 "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n", 1922 txq->index, txq->sw_tx_prod, 1923 txq->sw_tx_cons); 1924 return -ENODEV; 1925 } 1926 cnt--; 1927 usleep_range(1000, 2000); 1928 barrier(); 1929 } 1930 1931 /* FW finished processing, wait for HW to transmit all tx packets */ 1932 usleep_range(1000, 2000); 1933 1934 return 0; 1935 } 1936 1937 static int qede_stop_txq(struct qede_dev *edev, 1938 struct qede_tx_queue *txq, int rss_id) 1939 { 1940 /* delete doorbell from doorbell recovery mechanism */ 1941 edev->ops->common->db_recovery_del(edev->cdev, txq->doorbell_addr, 1942 &txq->tx_db); 1943 1944 return edev->ops->q_tx_stop(edev->cdev, rss_id, txq->handle); 1945 } 1946 1947 static int qede_stop_queues(struct qede_dev *edev) 1948 { 1949 struct qed_update_vport_params *vport_update_params; 1950 struct qed_dev *cdev = edev->cdev; 1951 struct qede_fastpath *fp; 1952 int rc, i; 1953 1954 /* Disable the vport */ 1955 vport_update_params = vzalloc(sizeof(*vport_update_params)); 1956 if (!vport_update_params) 1957 return -ENOMEM; 1958 1959 vport_update_params->vport_id = 0; 1960 vport_update_params->update_vport_active_flg = 1; 1961 vport_update_params->vport_active_flg = 0; 1962 vport_update_params->update_rss_flg = 0; 1963 1964 rc = edev->ops->vport_update(cdev, vport_update_params); 1965 vfree(vport_update_params); 1966 1967 if (rc) { 1968 DP_ERR(edev, "Failed to update vport\n"); 1969 return rc; 1970 } 1971 1972 /* Flush Tx queues. If needed, request drain from MCP */ 1973 for_each_queue(i) { 1974 fp = &edev->fp_array[i]; 1975 1976 if (fp->type & QEDE_FASTPATH_TX) { 1977 int cos; 1978 1979 for_each_cos_in_txq(edev, cos) { 1980 rc = qede_drain_txq(edev, &fp->txq[cos], true); 1981 if (rc) 1982 return rc; 1983 } 1984 } 1985 1986 if (fp->type & QEDE_FASTPATH_XDP) { 1987 rc = qede_drain_txq(edev, fp->xdp_tx, true); 1988 if (rc) 1989 return rc; 1990 } 1991 } 1992 1993 /* Stop all Queues in reverse order */ 1994 for (i = QEDE_QUEUE_CNT(edev) - 1; i >= 0; i--) { 1995 fp = &edev->fp_array[i]; 1996 1997 /* Stop the Tx Queue(s) */ 1998 if (fp->type & QEDE_FASTPATH_TX) { 1999 int cos; 2000 2001 for_each_cos_in_txq(edev, cos) { 2002 rc = qede_stop_txq(edev, &fp->txq[cos], i); 2003 if (rc) 2004 return rc; 2005 } 2006 } 2007 2008 /* Stop the Rx Queue */ 2009 if (fp->type & QEDE_FASTPATH_RX) { 2010 rc = edev->ops->q_rx_stop(cdev, i, fp->rxq->handle); 2011 if (rc) { 2012 DP_ERR(edev, "Failed to stop RXQ #%d\n", i); 2013 return rc; 2014 } 2015 } 2016 2017 /* Stop the XDP forwarding queue */ 2018 if (fp->type & QEDE_FASTPATH_XDP) { 2019 rc = qede_stop_txq(edev, fp->xdp_tx, i); 2020 if (rc) 2021 return rc; 2022 2023 bpf_prog_put(fp->rxq->xdp_prog); 2024 } 2025 } 2026 2027 /* Stop the vport */ 2028 rc = edev->ops->vport_stop(cdev, 0); 2029 if (rc) 2030 DP_ERR(edev, "Failed to stop VPORT\n"); 2031 2032 return rc; 2033 } 2034 2035 static int qede_start_txq(struct qede_dev *edev, 2036 struct qede_fastpath *fp, 2037 struct qede_tx_queue *txq, u8 rss_id, u16 sb_idx) 2038 { 2039 dma_addr_t phys_table = qed_chain_get_pbl_phys(&txq->tx_pbl); 2040 u32 page_cnt = qed_chain_get_page_cnt(&txq->tx_pbl); 2041 struct qed_queue_start_common_params params; 2042 struct qed_txq_start_ret_params ret_params; 2043 int rc; 2044 2045 memset(¶ms, 0, sizeof(params)); 2046 memset(&ret_params, 0, sizeof(ret_params)); 2047 2048 /* Let the XDP queue share the queue-zone with one of the regular txq. 2049 * We don't really care about its coalescing. 2050 */ 2051 if (txq->is_xdp) 2052 params.queue_id = QEDE_TXQ_XDP_TO_IDX(edev, txq); 2053 else 2054 params.queue_id = txq->index; 2055 2056 params.p_sb = fp->sb_info; 2057 params.sb_idx = sb_idx; 2058 params.tc = txq->cos; 2059 2060 rc = edev->ops->q_tx_start(edev->cdev, rss_id, ¶ms, phys_table, 2061 page_cnt, &ret_params); 2062 if (rc) { 2063 DP_ERR(edev, "Start TXQ #%d failed %d\n", txq->index, rc); 2064 return rc; 2065 } 2066 2067 txq->doorbell_addr = ret_params.p_doorbell; 2068 txq->handle = ret_params.p_handle; 2069 2070 /* Determine the FW consumer address associated */ 2071 txq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[sb_idx]; 2072 2073 /* Prepare the doorbell parameters */ 2074 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST, DB_DEST_XCM); 2075 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD, DB_AGG_CMD_SET); 2076 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_VAL_SEL, 2077 DQ_XCM_ETH_TX_BD_PROD_CMD); 2078 txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD; 2079 2080 /* register doorbell with doorbell recovery mechanism */ 2081 rc = edev->ops->common->db_recovery_add(edev->cdev, txq->doorbell_addr, 2082 &txq->tx_db, DB_REC_WIDTH_32B, 2083 DB_REC_KERNEL); 2084 2085 return rc; 2086 } 2087 2088 static int qede_start_queues(struct qede_dev *edev, bool clear_stats) 2089 { 2090 int vlan_removal_en = 1; 2091 struct qed_dev *cdev = edev->cdev; 2092 struct qed_dev_info *qed_info = &edev->dev_info.common; 2093 struct qed_update_vport_params *vport_update_params; 2094 struct qed_queue_start_common_params q_params; 2095 struct qed_start_vport_params start = {0}; 2096 int rc, i; 2097 2098 if (!edev->num_queues) { 2099 DP_ERR(edev, 2100 "Cannot update V-VPORT as active as there are no Rx queues\n"); 2101 return -EINVAL; 2102 } 2103 2104 vport_update_params = vzalloc(sizeof(*vport_update_params)); 2105 if (!vport_update_params) 2106 return -ENOMEM; 2107 2108 start.handle_ptp_pkts = !!(edev->ptp); 2109 start.gro_enable = !edev->gro_disable; 2110 start.mtu = edev->ndev->mtu; 2111 start.vport_id = 0; 2112 start.drop_ttl0 = true; 2113 start.remove_inner_vlan = vlan_removal_en; 2114 start.clear_stats = clear_stats; 2115 2116 rc = edev->ops->vport_start(cdev, &start); 2117 2118 if (rc) { 2119 DP_ERR(edev, "Start V-PORT failed %d\n", rc); 2120 goto out; 2121 } 2122 2123 DP_VERBOSE(edev, NETIF_MSG_IFUP, 2124 "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n", 2125 start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en); 2126 2127 for_each_queue(i) { 2128 struct qede_fastpath *fp = &edev->fp_array[i]; 2129 dma_addr_t p_phys_table; 2130 u32 page_cnt; 2131 2132 if (fp->type & QEDE_FASTPATH_RX) { 2133 struct qed_rxq_start_ret_params ret_params; 2134 struct qede_rx_queue *rxq = fp->rxq; 2135 __le16 *val; 2136 2137 memset(&ret_params, 0, sizeof(ret_params)); 2138 memset(&q_params, 0, sizeof(q_params)); 2139 q_params.queue_id = rxq->rxq_id; 2140 q_params.vport_id = 0; 2141 q_params.p_sb = fp->sb_info; 2142 q_params.sb_idx = RX_PI; 2143 2144 p_phys_table = 2145 qed_chain_get_pbl_phys(&rxq->rx_comp_ring); 2146 page_cnt = qed_chain_get_page_cnt(&rxq->rx_comp_ring); 2147 2148 rc = edev->ops->q_rx_start(cdev, i, &q_params, 2149 rxq->rx_buf_size, 2150 rxq->rx_bd_ring.p_phys_addr, 2151 p_phys_table, 2152 page_cnt, &ret_params); 2153 if (rc) { 2154 DP_ERR(edev, "Start RXQ #%d failed %d\n", i, 2155 rc); 2156 goto out; 2157 } 2158 2159 /* Use the return parameters */ 2160 rxq->hw_rxq_prod_addr = ret_params.p_prod; 2161 rxq->handle = ret_params.p_handle; 2162 2163 val = &fp->sb_info->sb_virt->pi_array[RX_PI]; 2164 rxq->hw_cons_ptr = val; 2165 2166 qede_update_rx_prod(edev, rxq); 2167 } 2168 2169 if (fp->type & QEDE_FASTPATH_XDP) { 2170 rc = qede_start_txq(edev, fp, fp->xdp_tx, i, XDP_PI); 2171 if (rc) 2172 goto out; 2173 2174 bpf_prog_add(edev->xdp_prog, 1); 2175 fp->rxq->xdp_prog = edev->xdp_prog; 2176 } 2177 2178 if (fp->type & QEDE_FASTPATH_TX) { 2179 int cos; 2180 2181 for_each_cos_in_txq(edev, cos) { 2182 rc = qede_start_txq(edev, fp, &fp->txq[cos], i, 2183 TX_PI(cos)); 2184 if (rc) 2185 goto out; 2186 } 2187 } 2188 } 2189 2190 /* Prepare and send the vport enable */ 2191 vport_update_params->vport_id = start.vport_id; 2192 vport_update_params->update_vport_active_flg = 1; 2193 vport_update_params->vport_active_flg = 1; 2194 2195 if ((qed_info->b_inter_pf_switch || pci_num_vf(edev->pdev)) && 2196 qed_info->tx_switching) { 2197 vport_update_params->update_tx_switching_flg = 1; 2198 vport_update_params->tx_switching_flg = 1; 2199 } 2200 2201 qede_fill_rss_params(edev, &vport_update_params->rss_params, 2202 &vport_update_params->update_rss_flg); 2203 2204 rc = edev->ops->vport_update(cdev, vport_update_params); 2205 if (rc) 2206 DP_ERR(edev, "Update V-PORT failed %d\n", rc); 2207 2208 out: 2209 vfree(vport_update_params); 2210 return rc; 2211 } 2212 2213 enum qede_unload_mode { 2214 QEDE_UNLOAD_NORMAL, 2215 QEDE_UNLOAD_RECOVERY, 2216 }; 2217 2218 static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode, 2219 bool is_locked) 2220 { 2221 struct qed_link_params link_params; 2222 int rc; 2223 2224 DP_INFO(edev, "Starting qede unload\n"); 2225 2226 if (!is_locked) 2227 __qede_lock(edev); 2228 2229 clear_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags); 2230 2231 if (mode != QEDE_UNLOAD_RECOVERY) 2232 edev->state = QEDE_STATE_CLOSED; 2233 2234 qede_rdma_dev_event_close(edev); 2235 2236 /* Close OS Tx */ 2237 netif_tx_disable(edev->ndev); 2238 netif_carrier_off(edev->ndev); 2239 2240 if (mode != QEDE_UNLOAD_RECOVERY) { 2241 /* Reset the link */ 2242 memset(&link_params, 0, sizeof(link_params)); 2243 link_params.link_up = false; 2244 edev->ops->common->set_link(edev->cdev, &link_params); 2245 2246 rc = qede_stop_queues(edev); 2247 if (rc) { 2248 qede_sync_free_irqs(edev); 2249 goto out; 2250 } 2251 2252 DP_INFO(edev, "Stopped Queues\n"); 2253 } 2254 2255 qede_vlan_mark_nonconfigured(edev); 2256 edev->ops->fastpath_stop(edev->cdev); 2257 2258 if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) { 2259 qede_poll_for_freeing_arfs_filters(edev); 2260 qede_free_arfs(edev); 2261 } 2262 2263 /* Release the interrupts */ 2264 qede_sync_free_irqs(edev); 2265 edev->ops->common->set_fp_int(edev->cdev, 0); 2266 2267 qede_napi_disable_remove(edev); 2268 2269 if (mode == QEDE_UNLOAD_RECOVERY) 2270 qede_empty_tx_queues(edev); 2271 2272 qede_free_mem_load(edev); 2273 qede_free_fp_array(edev); 2274 2275 out: 2276 if (!is_locked) 2277 __qede_unlock(edev); 2278 2279 if (mode != QEDE_UNLOAD_RECOVERY) 2280 DP_NOTICE(edev, "Link is down\n"); 2281 2282 edev->ptp_skip_txts = 0; 2283 2284 DP_INFO(edev, "Ending qede unload\n"); 2285 } 2286 2287 enum qede_load_mode { 2288 QEDE_LOAD_NORMAL, 2289 QEDE_LOAD_RELOAD, 2290 QEDE_LOAD_RECOVERY, 2291 }; 2292 2293 static int qede_load(struct qede_dev *edev, enum qede_load_mode mode, 2294 bool is_locked) 2295 { 2296 struct qed_link_params link_params; 2297 u8 num_tc; 2298 int rc; 2299 2300 DP_INFO(edev, "Starting qede load\n"); 2301 2302 if (!is_locked) 2303 __qede_lock(edev); 2304 2305 rc = qede_set_num_queues(edev); 2306 if (rc) 2307 goto out; 2308 2309 rc = qede_alloc_fp_array(edev); 2310 if (rc) 2311 goto out; 2312 2313 qede_init_fp(edev); 2314 2315 rc = qede_alloc_mem_load(edev); 2316 if (rc) 2317 goto err1; 2318 DP_INFO(edev, "Allocated %d Rx, %d Tx queues\n", 2319 QEDE_RSS_COUNT(edev), QEDE_TSS_COUNT(edev)); 2320 2321 rc = qede_set_real_num_queues(edev); 2322 if (rc) 2323 goto err2; 2324 2325 if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) { 2326 rc = qede_alloc_arfs(edev); 2327 if (rc) 2328 DP_NOTICE(edev, "aRFS memory allocation failed\n"); 2329 } 2330 2331 qede_napi_add_enable(edev); 2332 DP_INFO(edev, "Napi added and enabled\n"); 2333 2334 rc = qede_setup_irqs(edev); 2335 if (rc) 2336 goto err3; 2337 DP_INFO(edev, "Setup IRQs succeeded\n"); 2338 2339 rc = qede_start_queues(edev, mode != QEDE_LOAD_RELOAD); 2340 if (rc) 2341 goto err4; 2342 DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n"); 2343 2344 num_tc = netdev_get_num_tc(edev->ndev); 2345 num_tc = num_tc ? num_tc : edev->dev_info.num_tc; 2346 qede_setup_tc(edev->ndev, num_tc); 2347 2348 /* Program un-configured VLANs */ 2349 qede_configure_vlan_filters(edev); 2350 2351 set_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags); 2352 2353 /* Ask for link-up using current configuration */ 2354 memset(&link_params, 0, sizeof(link_params)); 2355 link_params.link_up = true; 2356 edev->ops->common->set_link(edev->cdev, &link_params); 2357 2358 edev->state = QEDE_STATE_OPEN; 2359 2360 DP_INFO(edev, "Ending successfully qede load\n"); 2361 2362 goto out; 2363 err4: 2364 qede_sync_free_irqs(edev); 2365 memset(&edev->int_info.msix_cnt, 0, sizeof(struct qed_int_info)); 2366 err3: 2367 qede_napi_disable_remove(edev); 2368 err2: 2369 qede_free_mem_load(edev); 2370 err1: 2371 edev->ops->common->set_fp_int(edev->cdev, 0); 2372 qede_free_fp_array(edev); 2373 edev->num_queues = 0; 2374 edev->fp_num_tx = 0; 2375 edev->fp_num_rx = 0; 2376 out: 2377 if (!is_locked) 2378 __qede_unlock(edev); 2379 2380 return rc; 2381 } 2382 2383 /* 'func' should be able to run between unload and reload assuming interface 2384 * is actually running, or afterwards in case it's currently DOWN. 2385 */ 2386 void qede_reload(struct qede_dev *edev, 2387 struct qede_reload_args *args, bool is_locked) 2388 { 2389 if (!is_locked) 2390 __qede_lock(edev); 2391 2392 /* Since qede_lock is held, internal state wouldn't change even 2393 * if netdev state would start transitioning. Check whether current 2394 * internal configuration indicates device is up, then reload. 2395 */ 2396 if (edev->state == QEDE_STATE_OPEN) { 2397 qede_unload(edev, QEDE_UNLOAD_NORMAL, true); 2398 if (args) 2399 args->func(edev, args); 2400 qede_load(edev, QEDE_LOAD_RELOAD, true); 2401 2402 /* Since no one is going to do it for us, re-configure */ 2403 qede_config_rx_mode(edev->ndev); 2404 } else if (args) { 2405 args->func(edev, args); 2406 } 2407 2408 if (!is_locked) 2409 __qede_unlock(edev); 2410 } 2411 2412 /* called with rtnl_lock */ 2413 static int qede_open(struct net_device *ndev) 2414 { 2415 struct qede_dev *edev = netdev_priv(ndev); 2416 int rc; 2417 2418 netif_carrier_off(ndev); 2419 2420 edev->ops->common->set_power_state(edev->cdev, PCI_D0); 2421 2422 rc = qede_load(edev, QEDE_LOAD_NORMAL, false); 2423 if (rc) 2424 return rc; 2425 2426 udp_tunnel_nic_reset_ntf(ndev); 2427 2428 edev->ops->common->update_drv_state(edev->cdev, true); 2429 2430 return 0; 2431 } 2432 2433 static int qede_close(struct net_device *ndev) 2434 { 2435 struct qede_dev *edev = netdev_priv(ndev); 2436 2437 qede_unload(edev, QEDE_UNLOAD_NORMAL, false); 2438 2439 edev->ops->common->update_drv_state(edev->cdev, false); 2440 2441 return 0; 2442 } 2443 2444 static void qede_link_update(void *dev, struct qed_link_output *link) 2445 { 2446 struct qede_dev *edev = dev; 2447 2448 if (!test_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags)) { 2449 DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not ready\n"); 2450 return; 2451 } 2452 2453 if (link->link_up) { 2454 if (!netif_carrier_ok(edev->ndev)) { 2455 DP_NOTICE(edev, "Link is up\n"); 2456 netif_tx_start_all_queues(edev->ndev); 2457 netif_carrier_on(edev->ndev); 2458 qede_rdma_dev_event_open(edev); 2459 } 2460 } else { 2461 if (netif_carrier_ok(edev->ndev)) { 2462 DP_NOTICE(edev, "Link is down\n"); 2463 netif_tx_disable(edev->ndev); 2464 netif_carrier_off(edev->ndev); 2465 qede_rdma_dev_event_close(edev); 2466 } 2467 } 2468 } 2469 2470 static void qede_schedule_recovery_handler(void *dev) 2471 { 2472 struct qede_dev *edev = dev; 2473 2474 if (edev->state == QEDE_STATE_RECOVERY) { 2475 DP_NOTICE(edev, 2476 "Avoid scheduling a recovery handling since already in recovery state\n"); 2477 return; 2478 } 2479 2480 set_bit(QEDE_SP_RECOVERY, &edev->sp_flags); 2481 schedule_delayed_work(&edev->sp_task, 0); 2482 2483 DP_INFO(edev, "Scheduled a recovery handler\n"); 2484 } 2485 2486 static void qede_recovery_failed(struct qede_dev *edev) 2487 { 2488 netdev_err(edev->ndev, "Recovery handling has failed. Power cycle is needed.\n"); 2489 2490 netif_device_detach(edev->ndev); 2491 2492 if (edev->cdev) 2493 edev->ops->common->set_power_state(edev->cdev, PCI_D3hot); 2494 } 2495 2496 static void qede_recovery_handler(struct qede_dev *edev) 2497 { 2498 u32 curr_state = edev->state; 2499 int rc; 2500 2501 DP_NOTICE(edev, "Starting a recovery process\n"); 2502 2503 /* No need to acquire first the qede_lock since is done by qede_sp_task 2504 * before calling this function. 2505 */ 2506 edev->state = QEDE_STATE_RECOVERY; 2507 2508 edev->ops->common->recovery_prolog(edev->cdev); 2509 2510 if (curr_state == QEDE_STATE_OPEN) 2511 qede_unload(edev, QEDE_UNLOAD_RECOVERY, true); 2512 2513 __qede_remove(edev->pdev, QEDE_REMOVE_RECOVERY); 2514 2515 rc = __qede_probe(edev->pdev, edev->dp_module, edev->dp_level, 2516 IS_VF(edev), QEDE_PROBE_RECOVERY); 2517 if (rc) { 2518 edev->cdev = NULL; 2519 goto err; 2520 } 2521 2522 if (curr_state == QEDE_STATE_OPEN) { 2523 rc = qede_load(edev, QEDE_LOAD_RECOVERY, true); 2524 if (rc) 2525 goto err; 2526 2527 qede_config_rx_mode(edev->ndev); 2528 udp_tunnel_nic_reset_ntf(edev->ndev); 2529 } 2530 2531 edev->state = curr_state; 2532 2533 DP_NOTICE(edev, "Recovery handling is done\n"); 2534 2535 return; 2536 2537 err: 2538 qede_recovery_failed(edev); 2539 } 2540 2541 static void qede_atomic_hw_err_handler(struct qede_dev *edev) 2542 { 2543 struct qed_dev *cdev = edev->cdev; 2544 2545 DP_NOTICE(edev, 2546 "Generic non-sleepable HW error handling started - err_flags 0x%lx\n", 2547 edev->err_flags); 2548 2549 /* Get a call trace of the flow that led to the error */ 2550 WARN_ON(test_bit(QEDE_ERR_WARN, &edev->err_flags)); 2551 2552 /* Prevent HW attentions from being reasserted */ 2553 if (test_bit(QEDE_ERR_ATTN_CLR_EN, &edev->err_flags)) 2554 edev->ops->common->attn_clr_enable(cdev, true); 2555 2556 DP_NOTICE(edev, "Generic non-sleepable HW error handling is done\n"); 2557 } 2558 2559 static void qede_generic_hw_err_handler(struct qede_dev *edev) 2560 { 2561 struct qed_dev *cdev = edev->cdev; 2562 2563 DP_NOTICE(edev, 2564 "Generic sleepable HW error handling started - err_flags 0x%lx\n", 2565 edev->err_flags); 2566 2567 /* Trigger a recovery process. 2568 * This is placed in the sleep requiring section just to make 2569 * sure it is the last one, and that all the other operations 2570 * were completed. 2571 */ 2572 if (test_bit(QEDE_ERR_IS_RECOVERABLE, &edev->err_flags)) 2573 edev->ops->common->recovery_process(cdev); 2574 2575 clear_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags); 2576 2577 DP_NOTICE(edev, "Generic sleepable HW error handling is done\n"); 2578 } 2579 2580 static void qede_set_hw_err_flags(struct qede_dev *edev, 2581 enum qed_hw_err_type err_type) 2582 { 2583 unsigned long err_flags = 0; 2584 2585 switch (err_type) { 2586 case QED_HW_ERR_DMAE_FAIL: 2587 set_bit(QEDE_ERR_WARN, &err_flags); 2588 fallthrough; 2589 case QED_HW_ERR_MFW_RESP_FAIL: 2590 case QED_HW_ERR_HW_ATTN: 2591 case QED_HW_ERR_RAMROD_FAIL: 2592 case QED_HW_ERR_FW_ASSERT: 2593 set_bit(QEDE_ERR_ATTN_CLR_EN, &err_flags); 2594 set_bit(QEDE_ERR_GET_DBG_INFO, &err_flags); 2595 break; 2596 2597 default: 2598 DP_NOTICE(edev, "Unexpected HW error [%d]\n", err_type); 2599 break; 2600 } 2601 2602 edev->err_flags |= err_flags; 2603 } 2604 2605 static void qede_schedule_hw_err_handler(void *dev, 2606 enum qed_hw_err_type err_type) 2607 { 2608 struct qede_dev *edev = dev; 2609 2610 /* Fan failure cannot be masked by handling of another HW error or by a 2611 * concurrent recovery process. 2612 */ 2613 if ((test_and_set_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags) || 2614 edev->state == QEDE_STATE_RECOVERY) && 2615 err_type != QED_HW_ERR_FAN_FAIL) { 2616 DP_INFO(edev, 2617 "Avoid scheduling an error handling while another HW error is being handled\n"); 2618 return; 2619 } 2620 2621 if (err_type >= QED_HW_ERR_LAST) { 2622 DP_NOTICE(edev, "Unknown HW error [%d]\n", err_type); 2623 clear_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags); 2624 return; 2625 } 2626 2627 qede_set_hw_err_flags(edev, err_type); 2628 qede_atomic_hw_err_handler(edev); 2629 set_bit(QEDE_SP_HW_ERR, &edev->sp_flags); 2630 schedule_delayed_work(&edev->sp_task, 0); 2631 2632 DP_INFO(edev, "Scheduled a error handler [err_type %d]\n", err_type); 2633 } 2634 2635 static bool qede_is_txq_full(struct qede_dev *edev, struct qede_tx_queue *txq) 2636 { 2637 struct netdev_queue *netdev_txq; 2638 2639 netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id); 2640 if (netif_xmit_stopped(netdev_txq)) 2641 return true; 2642 2643 return false; 2644 } 2645 2646 static void qede_get_generic_tlv_data(void *dev, struct qed_generic_tlvs *data) 2647 { 2648 struct qede_dev *edev = dev; 2649 struct netdev_hw_addr *ha; 2650 int i; 2651 2652 if (edev->ndev->features & NETIF_F_IP_CSUM) 2653 data->feat_flags |= QED_TLV_IP_CSUM; 2654 if (edev->ndev->features & NETIF_F_TSO) 2655 data->feat_flags |= QED_TLV_LSO; 2656 2657 ether_addr_copy(data->mac[0], edev->ndev->dev_addr); 2658 memset(data->mac[1], 0, ETH_ALEN); 2659 memset(data->mac[2], 0, ETH_ALEN); 2660 /* Copy the first two UC macs */ 2661 netif_addr_lock_bh(edev->ndev); 2662 i = 1; 2663 netdev_for_each_uc_addr(ha, edev->ndev) { 2664 ether_addr_copy(data->mac[i++], ha->addr); 2665 if (i == QED_TLV_MAC_COUNT) 2666 break; 2667 } 2668 2669 netif_addr_unlock_bh(edev->ndev); 2670 } 2671 2672 static void qede_get_eth_tlv_data(void *dev, void *data) 2673 { 2674 struct qed_mfw_tlv_eth *etlv = data; 2675 struct qede_dev *edev = dev; 2676 struct qede_fastpath *fp; 2677 int i; 2678 2679 etlv->lso_maxoff_size = 0XFFFF; 2680 etlv->lso_maxoff_size_set = true; 2681 etlv->lso_minseg_size = (u16)ETH_TX_LSO_WINDOW_MIN_LEN; 2682 etlv->lso_minseg_size_set = true; 2683 etlv->prom_mode = !!(edev->ndev->flags & IFF_PROMISC); 2684 etlv->prom_mode_set = true; 2685 etlv->tx_descr_size = QEDE_TSS_COUNT(edev); 2686 etlv->tx_descr_size_set = true; 2687 etlv->rx_descr_size = QEDE_RSS_COUNT(edev); 2688 etlv->rx_descr_size_set = true; 2689 etlv->iov_offload = QED_MFW_TLV_IOV_OFFLOAD_VEB; 2690 etlv->iov_offload_set = true; 2691 2692 /* Fill information regarding queues; Should be done under the qede 2693 * lock to guarantee those don't change beneath our feet. 2694 */ 2695 etlv->txqs_empty = true; 2696 etlv->rxqs_empty = true; 2697 etlv->num_txqs_full = 0; 2698 etlv->num_rxqs_full = 0; 2699 2700 __qede_lock(edev); 2701 for_each_queue(i) { 2702 fp = &edev->fp_array[i]; 2703 if (fp->type & QEDE_FASTPATH_TX) { 2704 struct qede_tx_queue *txq = QEDE_FP_TC0_TXQ(fp); 2705 2706 if (txq->sw_tx_cons != txq->sw_tx_prod) 2707 etlv->txqs_empty = false; 2708 if (qede_is_txq_full(edev, txq)) 2709 etlv->num_txqs_full++; 2710 } 2711 if (fp->type & QEDE_FASTPATH_RX) { 2712 if (qede_has_rx_work(fp->rxq)) 2713 etlv->rxqs_empty = false; 2714 2715 /* This one is a bit tricky; Firmware might stop 2716 * placing packets if ring is not yet full. 2717 * Give an approximation. 2718 */ 2719 if (le16_to_cpu(*fp->rxq->hw_cons_ptr) - 2720 qed_chain_get_cons_idx(&fp->rxq->rx_comp_ring) > 2721 RX_RING_SIZE - 100) 2722 etlv->num_rxqs_full++; 2723 } 2724 } 2725 __qede_unlock(edev); 2726 2727 etlv->txqs_empty_set = true; 2728 etlv->rxqs_empty_set = true; 2729 etlv->num_txqs_full_set = true; 2730 etlv->num_rxqs_full_set = true; 2731 } 2732 2733 /** 2734 * qede_io_error_detected - called when PCI error is detected 2735 * @pdev: Pointer to PCI device 2736 * @state: The current pci connection state 2737 * 2738 * This function is called after a PCI bus error affecting 2739 * this device has been detected. 2740 */ 2741 static pci_ers_result_t 2742 qede_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state) 2743 { 2744 struct net_device *dev = pci_get_drvdata(pdev); 2745 struct qede_dev *edev = netdev_priv(dev); 2746 2747 if (!edev) 2748 return PCI_ERS_RESULT_NONE; 2749 2750 DP_NOTICE(edev, "IO error detected [%d]\n", state); 2751 2752 __qede_lock(edev); 2753 if (edev->state == QEDE_STATE_RECOVERY) { 2754 DP_NOTICE(edev, "Device already in the recovery state\n"); 2755 __qede_unlock(edev); 2756 return PCI_ERS_RESULT_NONE; 2757 } 2758 2759 /* PF handles the recovery of its VFs */ 2760 if (IS_VF(edev)) { 2761 DP_VERBOSE(edev, QED_MSG_IOV, 2762 "VF recovery is handled by its PF\n"); 2763 __qede_unlock(edev); 2764 return PCI_ERS_RESULT_RECOVERED; 2765 } 2766 2767 /* Close OS Tx */ 2768 netif_tx_disable(edev->ndev); 2769 netif_carrier_off(edev->ndev); 2770 2771 set_bit(QEDE_SP_AER, &edev->sp_flags); 2772 schedule_delayed_work(&edev->sp_task, 0); 2773 2774 __qede_unlock(edev); 2775 2776 return PCI_ERS_RESULT_CAN_RECOVER; 2777 } 2778