xref: /linux/drivers/net/ethernet/qlogic/qede/qede_main.c (revision 7bb377107c72a40ab7505341f8626c8eb79a0cb7)
1 /* QLogic qede NIC Driver
2  * Copyright (c) 2015-2017  QLogic Corporation
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and /or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 #include <linux/module.h>
33 #include <linux/pci.h>
34 #include <linux/version.h>
35 #include <linux/device.h>
36 #include <linux/netdevice.h>
37 #include <linux/etherdevice.h>
38 #include <linux/skbuff.h>
39 #include <linux/errno.h>
40 #include <linux/list.h>
41 #include <linux/string.h>
42 #include <linux/dma-mapping.h>
43 #include <linux/interrupt.h>
44 #include <asm/byteorder.h>
45 #include <asm/param.h>
46 #include <linux/io.h>
47 #include <linux/netdev_features.h>
48 #include <linux/udp.h>
49 #include <linux/tcp.h>
50 #include <net/udp_tunnel.h>
51 #include <linux/ip.h>
52 #include <net/ipv6.h>
53 #include <net/tcp.h>
54 #include <linux/if_ether.h>
55 #include <linux/if_vlan.h>
56 #include <linux/pkt_sched.h>
57 #include <linux/ethtool.h>
58 #include <linux/in.h>
59 #include <linux/random.h>
60 #include <net/ip6_checksum.h>
61 #include <linux/bitops.h>
62 #include <linux/vmalloc.h>
63 #include <linux/aer.h>
64 #include "qede.h"
65 #include "qede_ptp.h"
66 
67 static char version[] =
68 	"QLogic FastLinQ 4xxxx Ethernet Driver qede " DRV_MODULE_VERSION "\n";
69 
70 MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver");
71 MODULE_LICENSE("GPL");
72 MODULE_VERSION(DRV_MODULE_VERSION);
73 
74 static uint debug;
75 module_param(debug, uint, 0);
76 MODULE_PARM_DESC(debug, " Default debug msglevel");
77 
78 static const struct qed_eth_ops *qed_ops;
79 
80 #define CHIP_NUM_57980S_40		0x1634
81 #define CHIP_NUM_57980S_10		0x1666
82 #define CHIP_NUM_57980S_MF		0x1636
83 #define CHIP_NUM_57980S_100		0x1644
84 #define CHIP_NUM_57980S_50		0x1654
85 #define CHIP_NUM_57980S_25		0x1656
86 #define CHIP_NUM_57980S_IOV		0x1664
87 #define CHIP_NUM_AH			0x8070
88 #define CHIP_NUM_AH_IOV			0x8090
89 
90 #ifndef PCI_DEVICE_ID_NX2_57980E
91 #define PCI_DEVICE_ID_57980S_40		CHIP_NUM_57980S_40
92 #define PCI_DEVICE_ID_57980S_10		CHIP_NUM_57980S_10
93 #define PCI_DEVICE_ID_57980S_MF		CHIP_NUM_57980S_MF
94 #define PCI_DEVICE_ID_57980S_100	CHIP_NUM_57980S_100
95 #define PCI_DEVICE_ID_57980S_50		CHIP_NUM_57980S_50
96 #define PCI_DEVICE_ID_57980S_25		CHIP_NUM_57980S_25
97 #define PCI_DEVICE_ID_57980S_IOV	CHIP_NUM_57980S_IOV
98 #define PCI_DEVICE_ID_AH		CHIP_NUM_AH
99 #define PCI_DEVICE_ID_AH_IOV		CHIP_NUM_AH_IOV
100 
101 #endif
102 
103 enum qede_pci_private {
104 	QEDE_PRIVATE_PF,
105 	QEDE_PRIVATE_VF
106 };
107 
108 static const struct pci_device_id qede_pci_tbl[] = {
109 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF},
110 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF},
111 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF},
112 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF},
113 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF},
114 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF},
115 #ifdef CONFIG_QED_SRIOV
116 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF},
117 #endif
118 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH), QEDE_PRIVATE_PF},
119 #ifdef CONFIG_QED_SRIOV
120 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH_IOV), QEDE_PRIVATE_VF},
121 #endif
122 	{ 0 }
123 };
124 
125 MODULE_DEVICE_TABLE(pci, qede_pci_tbl);
126 
127 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id);
128 static pci_ers_result_t
129 qede_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state);
130 
131 #define TX_TIMEOUT		(5 * HZ)
132 
133 /* Utilize last protocol index for XDP */
134 #define XDP_PI	11
135 
136 static void qede_remove(struct pci_dev *pdev);
137 static void qede_shutdown(struct pci_dev *pdev);
138 static void qede_link_update(void *dev, struct qed_link_output *link);
139 static void qede_schedule_recovery_handler(void *dev);
140 static void qede_recovery_handler(struct qede_dev *edev);
141 static void qede_get_eth_tlv_data(void *edev, void *data);
142 static void qede_get_generic_tlv_data(void *edev,
143 				      struct qed_generic_tlvs *data);
144 
145 #ifdef CONFIG_QED_SRIOV
146 static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos,
147 			    __be16 vlan_proto)
148 {
149 	struct qede_dev *edev = netdev_priv(ndev);
150 
151 	if (vlan > 4095) {
152 		DP_NOTICE(edev, "Illegal vlan value %d\n", vlan);
153 		return -EINVAL;
154 	}
155 
156 	if (vlan_proto != htons(ETH_P_8021Q))
157 		return -EPROTONOSUPPORT;
158 
159 	DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n",
160 		   vlan, vf);
161 
162 	return edev->ops->iov->set_vlan(edev->cdev, vlan, vf);
163 }
164 
165 static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac)
166 {
167 	struct qede_dev *edev = netdev_priv(ndev);
168 
169 	DP_VERBOSE(edev, QED_MSG_IOV,
170 		   "Setting MAC %02x:%02x:%02x:%02x:%02x:%02x to VF [%d]\n",
171 		   mac[0], mac[1], mac[2], mac[3], mac[4], mac[5], vfidx);
172 
173 	if (!is_valid_ether_addr(mac)) {
174 		DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n");
175 		return -EINVAL;
176 	}
177 
178 	return edev->ops->iov->set_mac(edev->cdev, mac, vfidx);
179 }
180 
181 static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param)
182 {
183 	struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev));
184 	struct qed_dev_info *qed_info = &edev->dev_info.common;
185 	struct qed_update_vport_params *vport_params;
186 	int rc;
187 
188 	vport_params = vzalloc(sizeof(*vport_params));
189 	if (!vport_params)
190 		return -ENOMEM;
191 	DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param);
192 
193 	rc = edev->ops->iov->configure(edev->cdev, num_vfs_param);
194 
195 	/* Enable/Disable Tx switching for PF */
196 	if ((rc == num_vfs_param) && netif_running(edev->ndev) &&
197 	    !qed_info->b_inter_pf_switch && qed_info->tx_switching) {
198 		vport_params->vport_id = 0;
199 		vport_params->update_tx_switching_flg = 1;
200 		vport_params->tx_switching_flg = num_vfs_param ? 1 : 0;
201 		edev->ops->vport_update(edev->cdev, vport_params);
202 	}
203 
204 	vfree(vport_params);
205 	return rc;
206 }
207 #endif
208 
209 static const struct pci_error_handlers qede_err_handler = {
210 	.error_detected = qede_io_error_detected,
211 };
212 
213 static struct pci_driver qede_pci_driver = {
214 	.name = "qede",
215 	.id_table = qede_pci_tbl,
216 	.probe = qede_probe,
217 	.remove = qede_remove,
218 	.shutdown = qede_shutdown,
219 #ifdef CONFIG_QED_SRIOV
220 	.sriov_configure = qede_sriov_configure,
221 #endif
222 	.err_handler = &qede_err_handler,
223 };
224 
225 static struct qed_eth_cb_ops qede_ll_ops = {
226 	{
227 #ifdef CONFIG_RFS_ACCEL
228 		.arfs_filter_op = qede_arfs_filter_op,
229 #endif
230 		.link_update = qede_link_update,
231 		.schedule_recovery_handler = qede_schedule_recovery_handler,
232 		.get_generic_tlv_data = qede_get_generic_tlv_data,
233 		.get_protocol_tlv_data = qede_get_eth_tlv_data,
234 	},
235 	.force_mac = qede_force_mac,
236 	.ports_update = qede_udp_ports_update,
237 };
238 
239 static int qede_netdev_event(struct notifier_block *this, unsigned long event,
240 			     void *ptr)
241 {
242 	struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
243 	struct ethtool_drvinfo drvinfo;
244 	struct qede_dev *edev;
245 
246 	if (event != NETDEV_CHANGENAME && event != NETDEV_CHANGEADDR)
247 		goto done;
248 
249 	/* Check whether this is a qede device */
250 	if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo)
251 		goto done;
252 
253 	memset(&drvinfo, 0, sizeof(drvinfo));
254 	ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo);
255 	if (strcmp(drvinfo.driver, "qede"))
256 		goto done;
257 	edev = netdev_priv(ndev);
258 
259 	switch (event) {
260 	case NETDEV_CHANGENAME:
261 		/* Notify qed of the name change */
262 		if (!edev->ops || !edev->ops->common)
263 			goto done;
264 		edev->ops->common->set_name(edev->cdev, edev->ndev->name);
265 		break;
266 	case NETDEV_CHANGEADDR:
267 		edev = netdev_priv(ndev);
268 		qede_rdma_event_changeaddr(edev);
269 		break;
270 	}
271 
272 done:
273 	return NOTIFY_DONE;
274 }
275 
276 static struct notifier_block qede_netdev_notifier = {
277 	.notifier_call = qede_netdev_event,
278 };
279 
280 static
281 int __init qede_init(void)
282 {
283 	int ret;
284 
285 	pr_info("qede_init: %s\n", version);
286 
287 	qed_ops = qed_get_eth_ops();
288 	if (!qed_ops) {
289 		pr_notice("Failed to get qed ethtool operations\n");
290 		return -EINVAL;
291 	}
292 
293 	/* Must register notifier before pci ops, since we might miss
294 	 * interface rename after pci probe and netdev registration.
295 	 */
296 	ret = register_netdevice_notifier(&qede_netdev_notifier);
297 	if (ret) {
298 		pr_notice("Failed to register netdevice_notifier\n");
299 		qed_put_eth_ops();
300 		return -EINVAL;
301 	}
302 
303 	ret = pci_register_driver(&qede_pci_driver);
304 	if (ret) {
305 		pr_notice("Failed to register driver\n");
306 		unregister_netdevice_notifier(&qede_netdev_notifier);
307 		qed_put_eth_ops();
308 		return -EINVAL;
309 	}
310 
311 	return 0;
312 }
313 
314 static void __exit qede_cleanup(void)
315 {
316 	if (debug & QED_LOG_INFO_MASK)
317 		pr_info("qede_cleanup called\n");
318 
319 	unregister_netdevice_notifier(&qede_netdev_notifier);
320 	pci_unregister_driver(&qede_pci_driver);
321 	qed_put_eth_ops();
322 }
323 
324 module_init(qede_init);
325 module_exit(qede_cleanup);
326 
327 static int qede_open(struct net_device *ndev);
328 static int qede_close(struct net_device *ndev);
329 
330 void qede_fill_by_demand_stats(struct qede_dev *edev)
331 {
332 	struct qede_stats_common *p_common = &edev->stats.common;
333 	struct qed_eth_stats stats;
334 
335 	edev->ops->get_vport_stats(edev->cdev, &stats);
336 
337 	p_common->no_buff_discards = stats.common.no_buff_discards;
338 	p_common->packet_too_big_discard = stats.common.packet_too_big_discard;
339 	p_common->ttl0_discard = stats.common.ttl0_discard;
340 	p_common->rx_ucast_bytes = stats.common.rx_ucast_bytes;
341 	p_common->rx_mcast_bytes = stats.common.rx_mcast_bytes;
342 	p_common->rx_bcast_bytes = stats.common.rx_bcast_bytes;
343 	p_common->rx_ucast_pkts = stats.common.rx_ucast_pkts;
344 	p_common->rx_mcast_pkts = stats.common.rx_mcast_pkts;
345 	p_common->rx_bcast_pkts = stats.common.rx_bcast_pkts;
346 	p_common->mftag_filter_discards = stats.common.mftag_filter_discards;
347 	p_common->mac_filter_discards = stats.common.mac_filter_discards;
348 	p_common->gft_filter_drop = stats.common.gft_filter_drop;
349 
350 	p_common->tx_ucast_bytes = stats.common.tx_ucast_bytes;
351 	p_common->tx_mcast_bytes = stats.common.tx_mcast_bytes;
352 	p_common->tx_bcast_bytes = stats.common.tx_bcast_bytes;
353 	p_common->tx_ucast_pkts = stats.common.tx_ucast_pkts;
354 	p_common->tx_mcast_pkts = stats.common.tx_mcast_pkts;
355 	p_common->tx_bcast_pkts = stats.common.tx_bcast_pkts;
356 	p_common->tx_err_drop_pkts = stats.common.tx_err_drop_pkts;
357 	p_common->coalesced_pkts = stats.common.tpa_coalesced_pkts;
358 	p_common->coalesced_events = stats.common.tpa_coalesced_events;
359 	p_common->coalesced_aborts_num = stats.common.tpa_aborts_num;
360 	p_common->non_coalesced_pkts = stats.common.tpa_not_coalesced_pkts;
361 	p_common->coalesced_bytes = stats.common.tpa_coalesced_bytes;
362 
363 	p_common->rx_64_byte_packets = stats.common.rx_64_byte_packets;
364 	p_common->rx_65_to_127_byte_packets =
365 	    stats.common.rx_65_to_127_byte_packets;
366 	p_common->rx_128_to_255_byte_packets =
367 	    stats.common.rx_128_to_255_byte_packets;
368 	p_common->rx_256_to_511_byte_packets =
369 	    stats.common.rx_256_to_511_byte_packets;
370 	p_common->rx_512_to_1023_byte_packets =
371 	    stats.common.rx_512_to_1023_byte_packets;
372 	p_common->rx_1024_to_1518_byte_packets =
373 	    stats.common.rx_1024_to_1518_byte_packets;
374 	p_common->rx_crc_errors = stats.common.rx_crc_errors;
375 	p_common->rx_mac_crtl_frames = stats.common.rx_mac_crtl_frames;
376 	p_common->rx_pause_frames = stats.common.rx_pause_frames;
377 	p_common->rx_pfc_frames = stats.common.rx_pfc_frames;
378 	p_common->rx_align_errors = stats.common.rx_align_errors;
379 	p_common->rx_carrier_errors = stats.common.rx_carrier_errors;
380 	p_common->rx_oversize_packets = stats.common.rx_oversize_packets;
381 	p_common->rx_jabbers = stats.common.rx_jabbers;
382 	p_common->rx_undersize_packets = stats.common.rx_undersize_packets;
383 	p_common->rx_fragments = stats.common.rx_fragments;
384 	p_common->tx_64_byte_packets = stats.common.tx_64_byte_packets;
385 	p_common->tx_65_to_127_byte_packets =
386 	    stats.common.tx_65_to_127_byte_packets;
387 	p_common->tx_128_to_255_byte_packets =
388 	    stats.common.tx_128_to_255_byte_packets;
389 	p_common->tx_256_to_511_byte_packets =
390 	    stats.common.tx_256_to_511_byte_packets;
391 	p_common->tx_512_to_1023_byte_packets =
392 	    stats.common.tx_512_to_1023_byte_packets;
393 	p_common->tx_1024_to_1518_byte_packets =
394 	    stats.common.tx_1024_to_1518_byte_packets;
395 	p_common->tx_pause_frames = stats.common.tx_pause_frames;
396 	p_common->tx_pfc_frames = stats.common.tx_pfc_frames;
397 	p_common->brb_truncates = stats.common.brb_truncates;
398 	p_common->brb_discards = stats.common.brb_discards;
399 	p_common->tx_mac_ctrl_frames = stats.common.tx_mac_ctrl_frames;
400 	p_common->link_change_count = stats.common.link_change_count;
401 	p_common->ptp_skip_txts = edev->ptp_skip_txts;
402 
403 	if (QEDE_IS_BB(edev)) {
404 		struct qede_stats_bb *p_bb = &edev->stats.bb;
405 
406 		p_bb->rx_1519_to_1522_byte_packets =
407 		    stats.bb.rx_1519_to_1522_byte_packets;
408 		p_bb->rx_1519_to_2047_byte_packets =
409 		    stats.bb.rx_1519_to_2047_byte_packets;
410 		p_bb->rx_2048_to_4095_byte_packets =
411 		    stats.bb.rx_2048_to_4095_byte_packets;
412 		p_bb->rx_4096_to_9216_byte_packets =
413 		    stats.bb.rx_4096_to_9216_byte_packets;
414 		p_bb->rx_9217_to_16383_byte_packets =
415 		    stats.bb.rx_9217_to_16383_byte_packets;
416 		p_bb->tx_1519_to_2047_byte_packets =
417 		    stats.bb.tx_1519_to_2047_byte_packets;
418 		p_bb->tx_2048_to_4095_byte_packets =
419 		    stats.bb.tx_2048_to_4095_byte_packets;
420 		p_bb->tx_4096_to_9216_byte_packets =
421 		    stats.bb.tx_4096_to_9216_byte_packets;
422 		p_bb->tx_9217_to_16383_byte_packets =
423 		    stats.bb.tx_9217_to_16383_byte_packets;
424 		p_bb->tx_lpi_entry_count = stats.bb.tx_lpi_entry_count;
425 		p_bb->tx_total_collisions = stats.bb.tx_total_collisions;
426 	} else {
427 		struct qede_stats_ah *p_ah = &edev->stats.ah;
428 
429 		p_ah->rx_1519_to_max_byte_packets =
430 		    stats.ah.rx_1519_to_max_byte_packets;
431 		p_ah->tx_1519_to_max_byte_packets =
432 		    stats.ah.tx_1519_to_max_byte_packets;
433 	}
434 }
435 
436 static void qede_get_stats64(struct net_device *dev,
437 			     struct rtnl_link_stats64 *stats)
438 {
439 	struct qede_dev *edev = netdev_priv(dev);
440 	struct qede_stats_common *p_common;
441 
442 	qede_fill_by_demand_stats(edev);
443 	p_common = &edev->stats.common;
444 
445 	stats->rx_packets = p_common->rx_ucast_pkts + p_common->rx_mcast_pkts +
446 			    p_common->rx_bcast_pkts;
447 	stats->tx_packets = p_common->tx_ucast_pkts + p_common->tx_mcast_pkts +
448 			    p_common->tx_bcast_pkts;
449 
450 	stats->rx_bytes = p_common->rx_ucast_bytes + p_common->rx_mcast_bytes +
451 			  p_common->rx_bcast_bytes;
452 	stats->tx_bytes = p_common->tx_ucast_bytes + p_common->tx_mcast_bytes +
453 			  p_common->tx_bcast_bytes;
454 
455 	stats->tx_errors = p_common->tx_err_drop_pkts;
456 	stats->multicast = p_common->rx_mcast_pkts + p_common->rx_bcast_pkts;
457 
458 	stats->rx_fifo_errors = p_common->no_buff_discards;
459 
460 	if (QEDE_IS_BB(edev))
461 		stats->collisions = edev->stats.bb.tx_total_collisions;
462 	stats->rx_crc_errors = p_common->rx_crc_errors;
463 	stats->rx_frame_errors = p_common->rx_align_errors;
464 }
465 
466 #ifdef CONFIG_QED_SRIOV
467 static int qede_get_vf_config(struct net_device *dev, int vfidx,
468 			      struct ifla_vf_info *ivi)
469 {
470 	struct qede_dev *edev = netdev_priv(dev);
471 
472 	if (!edev->ops)
473 		return -EINVAL;
474 
475 	return edev->ops->iov->get_config(edev->cdev, vfidx, ivi);
476 }
477 
478 static int qede_set_vf_rate(struct net_device *dev, int vfidx,
479 			    int min_tx_rate, int max_tx_rate)
480 {
481 	struct qede_dev *edev = netdev_priv(dev);
482 
483 	return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate,
484 					max_tx_rate);
485 }
486 
487 static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val)
488 {
489 	struct qede_dev *edev = netdev_priv(dev);
490 
491 	if (!edev->ops)
492 		return -EINVAL;
493 
494 	return edev->ops->iov->set_spoof(edev->cdev, vfidx, val);
495 }
496 
497 static int qede_set_vf_link_state(struct net_device *dev, int vfidx,
498 				  int link_state)
499 {
500 	struct qede_dev *edev = netdev_priv(dev);
501 
502 	if (!edev->ops)
503 		return -EINVAL;
504 
505 	return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state);
506 }
507 
508 static int qede_set_vf_trust(struct net_device *dev, int vfidx, bool setting)
509 {
510 	struct qede_dev *edev = netdev_priv(dev);
511 
512 	if (!edev->ops)
513 		return -EINVAL;
514 
515 	return edev->ops->iov->set_trust(edev->cdev, vfidx, setting);
516 }
517 #endif
518 
519 static int qede_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
520 {
521 	struct qede_dev *edev = netdev_priv(dev);
522 
523 	if (!netif_running(dev))
524 		return -EAGAIN;
525 
526 	switch (cmd) {
527 	case SIOCSHWTSTAMP:
528 		return qede_ptp_hw_ts(edev, ifr);
529 	default:
530 		DP_VERBOSE(edev, QED_MSG_DEBUG,
531 			   "default IOCTL cmd 0x%x\n", cmd);
532 		return -EOPNOTSUPP;
533 	}
534 
535 	return 0;
536 }
537 
538 static int qede_setup_tc(struct net_device *ndev, u8 num_tc)
539 {
540 	struct qede_dev *edev = netdev_priv(ndev);
541 	int cos, count, offset;
542 
543 	if (num_tc > edev->dev_info.num_tc)
544 		return -EINVAL;
545 
546 	netdev_reset_tc(ndev);
547 	netdev_set_num_tc(ndev, num_tc);
548 
549 	for_each_cos_in_txq(edev, cos) {
550 		count = QEDE_TSS_COUNT(edev);
551 		offset = cos * QEDE_TSS_COUNT(edev);
552 		netdev_set_tc_queue(ndev, cos, count, offset);
553 	}
554 
555 	return 0;
556 }
557 
558 static int
559 qede_set_flower(struct qede_dev *edev, struct flow_cls_offload *f,
560 		__be16 proto)
561 {
562 	switch (f->command) {
563 	case FLOW_CLS_REPLACE:
564 		return qede_add_tc_flower_fltr(edev, proto, f);
565 	case FLOW_CLS_DESTROY:
566 		return qede_delete_flow_filter(edev, f->cookie);
567 	default:
568 		return -EOPNOTSUPP;
569 	}
570 }
571 
572 static int qede_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
573 				  void *cb_priv)
574 {
575 	struct flow_cls_offload *f;
576 	struct qede_dev *edev = cb_priv;
577 
578 	if (!tc_cls_can_offload_and_chain0(edev->ndev, type_data))
579 		return -EOPNOTSUPP;
580 
581 	switch (type) {
582 	case TC_SETUP_CLSFLOWER:
583 		f = type_data;
584 		return qede_set_flower(edev, f, f->common.protocol);
585 	default:
586 		return -EOPNOTSUPP;
587 	}
588 }
589 
590 static LIST_HEAD(qede_block_cb_list);
591 
592 static int
593 qede_setup_tc_offload(struct net_device *dev, enum tc_setup_type type,
594 		      void *type_data)
595 {
596 	struct qede_dev *edev = netdev_priv(dev);
597 	struct tc_mqprio_qopt *mqprio;
598 
599 	switch (type) {
600 	case TC_SETUP_BLOCK:
601 		return flow_block_cb_setup_simple(type_data,
602 						  &qede_block_cb_list,
603 						  qede_setup_tc_block_cb,
604 						  edev, edev, true);
605 	case TC_SETUP_QDISC_MQPRIO:
606 		mqprio = type_data;
607 
608 		mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
609 		return qede_setup_tc(dev, mqprio->num_tc);
610 	default:
611 		return -EOPNOTSUPP;
612 	}
613 }
614 
615 static const struct net_device_ops qede_netdev_ops = {
616 	.ndo_open = qede_open,
617 	.ndo_stop = qede_close,
618 	.ndo_start_xmit = qede_start_xmit,
619 	.ndo_select_queue = qede_select_queue,
620 	.ndo_set_rx_mode = qede_set_rx_mode,
621 	.ndo_set_mac_address = qede_set_mac_addr,
622 	.ndo_validate_addr = eth_validate_addr,
623 	.ndo_change_mtu = qede_change_mtu,
624 	.ndo_do_ioctl = qede_ioctl,
625 #ifdef CONFIG_QED_SRIOV
626 	.ndo_set_vf_mac = qede_set_vf_mac,
627 	.ndo_set_vf_vlan = qede_set_vf_vlan,
628 	.ndo_set_vf_trust = qede_set_vf_trust,
629 #endif
630 	.ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
631 	.ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
632 	.ndo_fix_features = qede_fix_features,
633 	.ndo_set_features = qede_set_features,
634 	.ndo_get_stats64 = qede_get_stats64,
635 #ifdef CONFIG_QED_SRIOV
636 	.ndo_set_vf_link_state = qede_set_vf_link_state,
637 	.ndo_set_vf_spoofchk = qede_set_vf_spoofchk,
638 	.ndo_get_vf_config = qede_get_vf_config,
639 	.ndo_set_vf_rate = qede_set_vf_rate,
640 #endif
641 	.ndo_udp_tunnel_add = qede_udp_tunnel_add,
642 	.ndo_udp_tunnel_del = qede_udp_tunnel_del,
643 	.ndo_features_check = qede_features_check,
644 	.ndo_bpf = qede_xdp,
645 #ifdef CONFIG_RFS_ACCEL
646 	.ndo_rx_flow_steer = qede_rx_flow_steer,
647 #endif
648 	.ndo_setup_tc = qede_setup_tc_offload,
649 };
650 
651 static const struct net_device_ops qede_netdev_vf_ops = {
652 	.ndo_open = qede_open,
653 	.ndo_stop = qede_close,
654 	.ndo_start_xmit = qede_start_xmit,
655 	.ndo_select_queue = qede_select_queue,
656 	.ndo_set_rx_mode = qede_set_rx_mode,
657 	.ndo_set_mac_address = qede_set_mac_addr,
658 	.ndo_validate_addr = eth_validate_addr,
659 	.ndo_change_mtu = qede_change_mtu,
660 	.ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
661 	.ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
662 	.ndo_fix_features = qede_fix_features,
663 	.ndo_set_features = qede_set_features,
664 	.ndo_get_stats64 = qede_get_stats64,
665 	.ndo_udp_tunnel_add = qede_udp_tunnel_add,
666 	.ndo_udp_tunnel_del = qede_udp_tunnel_del,
667 	.ndo_features_check = qede_features_check,
668 };
669 
670 static const struct net_device_ops qede_netdev_vf_xdp_ops = {
671 	.ndo_open = qede_open,
672 	.ndo_stop = qede_close,
673 	.ndo_start_xmit = qede_start_xmit,
674 	.ndo_select_queue = qede_select_queue,
675 	.ndo_set_rx_mode = qede_set_rx_mode,
676 	.ndo_set_mac_address = qede_set_mac_addr,
677 	.ndo_validate_addr = eth_validate_addr,
678 	.ndo_change_mtu = qede_change_mtu,
679 	.ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
680 	.ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
681 	.ndo_fix_features = qede_fix_features,
682 	.ndo_set_features = qede_set_features,
683 	.ndo_get_stats64 = qede_get_stats64,
684 	.ndo_udp_tunnel_add = qede_udp_tunnel_add,
685 	.ndo_udp_tunnel_del = qede_udp_tunnel_del,
686 	.ndo_features_check = qede_features_check,
687 	.ndo_bpf = qede_xdp,
688 };
689 
690 /* -------------------------------------------------------------------------
691  * START OF PROBE / REMOVE
692  * -------------------------------------------------------------------------
693  */
694 
695 static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev,
696 					    struct pci_dev *pdev,
697 					    struct qed_dev_eth_info *info,
698 					    u32 dp_module, u8 dp_level)
699 {
700 	struct net_device *ndev;
701 	struct qede_dev *edev;
702 
703 	ndev = alloc_etherdev_mqs(sizeof(*edev),
704 				  info->num_queues * info->num_tc,
705 				  info->num_queues);
706 	if (!ndev) {
707 		pr_err("etherdev allocation failed\n");
708 		return NULL;
709 	}
710 
711 	edev = netdev_priv(ndev);
712 	edev->ndev = ndev;
713 	edev->cdev = cdev;
714 	edev->pdev = pdev;
715 	edev->dp_module = dp_module;
716 	edev->dp_level = dp_level;
717 	edev->ops = qed_ops;
718 	edev->q_num_rx_buffers = NUM_RX_BDS_DEF;
719 	edev->q_num_tx_buffers = NUM_TX_BDS_DEF;
720 
721 	DP_INFO(edev, "Allocated netdev with %d tx queues and %d rx queues\n",
722 		info->num_queues, info->num_queues);
723 
724 	SET_NETDEV_DEV(ndev, &pdev->dev);
725 
726 	memset(&edev->stats, 0, sizeof(edev->stats));
727 	memcpy(&edev->dev_info, info, sizeof(*info));
728 
729 	/* As ethtool doesn't have the ability to show WoL behavior as
730 	 * 'default', if device supports it declare it's enabled.
731 	 */
732 	if (edev->dev_info.common.wol_support)
733 		edev->wol_enabled = true;
734 
735 	INIT_LIST_HEAD(&edev->vlan_list);
736 
737 	return edev;
738 }
739 
740 static void qede_init_ndev(struct qede_dev *edev)
741 {
742 	struct net_device *ndev = edev->ndev;
743 	struct pci_dev *pdev = edev->pdev;
744 	bool udp_tunnel_enable = false;
745 	netdev_features_t hw_features;
746 
747 	pci_set_drvdata(pdev, ndev);
748 
749 	ndev->mem_start = edev->dev_info.common.pci_mem_start;
750 	ndev->base_addr = ndev->mem_start;
751 	ndev->mem_end = edev->dev_info.common.pci_mem_end;
752 	ndev->irq = edev->dev_info.common.pci_irq;
753 
754 	ndev->watchdog_timeo = TX_TIMEOUT;
755 
756 	if (IS_VF(edev)) {
757 		if (edev->dev_info.xdp_supported)
758 			ndev->netdev_ops = &qede_netdev_vf_xdp_ops;
759 		else
760 			ndev->netdev_ops = &qede_netdev_vf_ops;
761 	} else {
762 		ndev->netdev_ops = &qede_netdev_ops;
763 	}
764 
765 	qede_set_ethtool_ops(ndev);
766 
767 	ndev->priv_flags |= IFF_UNICAST_FLT;
768 
769 	/* user-changeble features */
770 	hw_features = NETIF_F_GRO | NETIF_F_GRO_HW | NETIF_F_SG |
771 		      NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
772 		      NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_HW_TC;
773 
774 	if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1)
775 		hw_features |= NETIF_F_NTUPLE;
776 
777 	if (edev->dev_info.common.vxlan_enable ||
778 	    edev->dev_info.common.geneve_enable)
779 		udp_tunnel_enable = true;
780 
781 	if (udp_tunnel_enable || edev->dev_info.common.gre_enable) {
782 		hw_features |= NETIF_F_TSO_ECN;
783 		ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
784 					NETIF_F_SG | NETIF_F_TSO |
785 					NETIF_F_TSO_ECN | NETIF_F_TSO6 |
786 					NETIF_F_RXCSUM;
787 	}
788 
789 	if (udp_tunnel_enable) {
790 		hw_features |= (NETIF_F_GSO_UDP_TUNNEL |
791 				NETIF_F_GSO_UDP_TUNNEL_CSUM);
792 		ndev->hw_enc_features |= (NETIF_F_GSO_UDP_TUNNEL |
793 					  NETIF_F_GSO_UDP_TUNNEL_CSUM);
794 	}
795 
796 	if (edev->dev_info.common.gre_enable) {
797 		hw_features |= (NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM);
798 		ndev->hw_enc_features |= (NETIF_F_GSO_GRE |
799 					  NETIF_F_GSO_GRE_CSUM);
800 	}
801 
802 	ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
803 			      NETIF_F_HIGHDMA;
804 	ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
805 			 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA |
806 			 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX;
807 
808 	ndev->hw_features = hw_features;
809 
810 	/* MTU range: 46 - 9600 */
811 	ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
812 	ndev->max_mtu = QEDE_MAX_JUMBO_PACKET_SIZE;
813 
814 	/* Set network device HW mac */
815 	ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac);
816 
817 	ndev->mtu = edev->dev_info.common.mtu;
818 }
819 
820 /* This function converts from 32b param to two params of level and module
821  * Input 32b decoding:
822  * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the
823  * 'happy' flow, e.g. memory allocation failed.
824  * b30 - enable all INFO prints. INFO prints are for major steps in the flow
825  * and provide important parameters.
826  * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that
827  * module. VERBOSE prints are for tracking the specific flow in low level.
828  *
829  * Notice that the level should be that of the lowest required logs.
830  */
831 void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level)
832 {
833 	*p_dp_level = QED_LEVEL_NOTICE;
834 	*p_dp_module = 0;
835 
836 	if (debug & QED_LOG_VERBOSE_MASK) {
837 		*p_dp_level = QED_LEVEL_VERBOSE;
838 		*p_dp_module = (debug & 0x3FFFFFFF);
839 	} else if (debug & QED_LOG_INFO_MASK) {
840 		*p_dp_level = QED_LEVEL_INFO;
841 	} else if (debug & QED_LOG_NOTICE_MASK) {
842 		*p_dp_level = QED_LEVEL_NOTICE;
843 	}
844 }
845 
846 static void qede_free_fp_array(struct qede_dev *edev)
847 {
848 	if (edev->fp_array) {
849 		struct qede_fastpath *fp;
850 		int i;
851 
852 		for_each_queue(i) {
853 			fp = &edev->fp_array[i];
854 
855 			kfree(fp->sb_info);
856 			/* Handle mem alloc failure case where qede_init_fp
857 			 * didn't register xdp_rxq_info yet.
858 			 * Implicit only (fp->type & QEDE_FASTPATH_RX)
859 			 */
860 			if (fp->rxq && xdp_rxq_info_is_reg(&fp->rxq->xdp_rxq))
861 				xdp_rxq_info_unreg(&fp->rxq->xdp_rxq);
862 			kfree(fp->rxq);
863 			kfree(fp->xdp_tx);
864 			kfree(fp->txq);
865 		}
866 		kfree(edev->fp_array);
867 	}
868 
869 	edev->num_queues = 0;
870 	edev->fp_num_tx = 0;
871 	edev->fp_num_rx = 0;
872 }
873 
874 static int qede_alloc_fp_array(struct qede_dev *edev)
875 {
876 	u8 fp_combined, fp_rx = edev->fp_num_rx;
877 	struct qede_fastpath *fp;
878 	int i;
879 
880 	edev->fp_array = kcalloc(QEDE_QUEUE_CNT(edev),
881 				 sizeof(*edev->fp_array), GFP_KERNEL);
882 	if (!edev->fp_array) {
883 		DP_NOTICE(edev, "fp array allocation failed\n");
884 		goto err;
885 	}
886 
887 	fp_combined = QEDE_QUEUE_CNT(edev) - fp_rx - edev->fp_num_tx;
888 
889 	/* Allocate the FP elements for Rx queues followed by combined and then
890 	 * the Tx. This ordering should be maintained so that the respective
891 	 * queues (Rx or Tx) will be together in the fastpath array and the
892 	 * associated ids will be sequential.
893 	 */
894 	for_each_queue(i) {
895 		fp = &edev->fp_array[i];
896 
897 		fp->sb_info = kzalloc(sizeof(*fp->sb_info), GFP_KERNEL);
898 		if (!fp->sb_info) {
899 			DP_NOTICE(edev, "sb info struct allocation failed\n");
900 			goto err;
901 		}
902 
903 		if (fp_rx) {
904 			fp->type = QEDE_FASTPATH_RX;
905 			fp_rx--;
906 		} else if (fp_combined) {
907 			fp->type = QEDE_FASTPATH_COMBINED;
908 			fp_combined--;
909 		} else {
910 			fp->type = QEDE_FASTPATH_TX;
911 		}
912 
913 		if (fp->type & QEDE_FASTPATH_TX) {
914 			fp->txq = kcalloc(edev->dev_info.num_tc,
915 					  sizeof(*fp->txq), GFP_KERNEL);
916 			if (!fp->txq)
917 				goto err;
918 		}
919 
920 		if (fp->type & QEDE_FASTPATH_RX) {
921 			fp->rxq = kzalloc(sizeof(*fp->rxq), GFP_KERNEL);
922 			if (!fp->rxq)
923 				goto err;
924 
925 			if (edev->xdp_prog) {
926 				fp->xdp_tx = kzalloc(sizeof(*fp->xdp_tx),
927 						     GFP_KERNEL);
928 				if (!fp->xdp_tx)
929 					goto err;
930 				fp->type |= QEDE_FASTPATH_XDP;
931 			}
932 		}
933 	}
934 
935 	return 0;
936 err:
937 	qede_free_fp_array(edev);
938 	return -ENOMEM;
939 }
940 
941 /* The qede lock is used to protect driver state change and driver flows that
942  * are not reentrant.
943  */
944 void __qede_lock(struct qede_dev *edev)
945 {
946 	mutex_lock(&edev->qede_lock);
947 }
948 
949 void __qede_unlock(struct qede_dev *edev)
950 {
951 	mutex_unlock(&edev->qede_lock);
952 }
953 
954 /* This version of the lock should be used when acquiring the RTNL lock is also
955  * needed in addition to the internal qede lock.
956  */
957 static void qede_lock(struct qede_dev *edev)
958 {
959 	rtnl_lock();
960 	__qede_lock(edev);
961 }
962 
963 static void qede_unlock(struct qede_dev *edev)
964 {
965 	__qede_unlock(edev);
966 	rtnl_unlock();
967 }
968 
969 static void qede_sp_task(struct work_struct *work)
970 {
971 	struct qede_dev *edev = container_of(work, struct qede_dev,
972 					     sp_task.work);
973 
974 	/* The locking scheme depends on the specific flag:
975 	 * In case of QEDE_SP_RECOVERY, acquiring the RTNL lock is required to
976 	 * ensure that ongoing flows are ended and new ones are not started.
977 	 * In other cases - only the internal qede lock should be acquired.
978 	 */
979 
980 	if (test_and_clear_bit(QEDE_SP_RECOVERY, &edev->sp_flags)) {
981 #ifdef CONFIG_QED_SRIOV
982 		/* SRIOV must be disabled outside the lock to avoid a deadlock.
983 		 * The recovery of the active VFs is currently not supported.
984 		 */
985 		if (pci_num_vf(edev->pdev))
986 			qede_sriov_configure(edev->pdev, 0);
987 #endif
988 		qede_lock(edev);
989 		qede_recovery_handler(edev);
990 		qede_unlock(edev);
991 	}
992 
993 	__qede_lock(edev);
994 
995 	if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags))
996 		if (edev->state == QEDE_STATE_OPEN)
997 			qede_config_rx_mode(edev->ndev);
998 
999 #ifdef CONFIG_RFS_ACCEL
1000 	if (test_and_clear_bit(QEDE_SP_ARFS_CONFIG, &edev->sp_flags)) {
1001 		if (edev->state == QEDE_STATE_OPEN)
1002 			qede_process_arfs_filters(edev, false);
1003 	}
1004 #endif
1005 	__qede_unlock(edev);
1006 
1007 	if (test_and_clear_bit(QEDE_SP_AER, &edev->sp_flags)) {
1008 #ifdef CONFIG_QED_SRIOV
1009 		/* SRIOV must be disabled outside the lock to avoid a deadlock.
1010 		 * The recovery of the active VFs is currently not supported.
1011 		 */
1012 		if (pci_num_vf(edev->pdev))
1013 			qede_sriov_configure(edev->pdev, 0);
1014 #endif
1015 		edev->ops->common->recovery_process(edev->cdev);
1016 	}
1017 }
1018 
1019 static void qede_update_pf_params(struct qed_dev *cdev)
1020 {
1021 	struct qed_pf_params pf_params;
1022 	u16 num_cons;
1023 
1024 	/* 64 rx + 64 tx + 64 XDP */
1025 	memset(&pf_params, 0, sizeof(struct qed_pf_params));
1026 
1027 	/* 1 rx + 1 xdp + max tx cos */
1028 	num_cons = QED_MIN_L2_CONS;
1029 
1030 	pf_params.eth_pf_params.num_cons = (MAX_SB_PER_PF_MIMD - 1) * num_cons;
1031 
1032 	/* Same for VFs - make sure they'll have sufficient connections
1033 	 * to support XDP Tx queues.
1034 	 */
1035 	pf_params.eth_pf_params.num_vf_cons = 48;
1036 
1037 	pf_params.eth_pf_params.num_arfs_filters = QEDE_RFS_MAX_FLTR;
1038 	qed_ops->common->update_pf_params(cdev, &pf_params);
1039 }
1040 
1041 #define QEDE_FW_VER_STR_SIZE	80
1042 
1043 static void qede_log_probe(struct qede_dev *edev)
1044 {
1045 	struct qed_dev_info *p_dev_info = &edev->dev_info.common;
1046 	u8 buf[QEDE_FW_VER_STR_SIZE];
1047 	size_t left_size;
1048 
1049 	snprintf(buf, QEDE_FW_VER_STR_SIZE,
1050 		 "Storm FW %d.%d.%d.%d, Management FW %d.%d.%d.%d",
1051 		 p_dev_info->fw_major, p_dev_info->fw_minor, p_dev_info->fw_rev,
1052 		 p_dev_info->fw_eng,
1053 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_3_MASK) >>
1054 		 QED_MFW_VERSION_3_OFFSET,
1055 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_2_MASK) >>
1056 		 QED_MFW_VERSION_2_OFFSET,
1057 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_1_MASK) >>
1058 		 QED_MFW_VERSION_1_OFFSET,
1059 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_0_MASK) >>
1060 		 QED_MFW_VERSION_0_OFFSET);
1061 
1062 	left_size = QEDE_FW_VER_STR_SIZE - strlen(buf);
1063 	if (p_dev_info->mbi_version && left_size)
1064 		snprintf(buf + strlen(buf), left_size,
1065 			 " [MBI %d.%d.%d]",
1066 			 (p_dev_info->mbi_version & QED_MBI_VERSION_2_MASK) >>
1067 			 QED_MBI_VERSION_2_OFFSET,
1068 			 (p_dev_info->mbi_version & QED_MBI_VERSION_1_MASK) >>
1069 			 QED_MBI_VERSION_1_OFFSET,
1070 			 (p_dev_info->mbi_version & QED_MBI_VERSION_0_MASK) >>
1071 			 QED_MBI_VERSION_0_OFFSET);
1072 
1073 	pr_info("qede %02x:%02x.%02x: %s [%s]\n", edev->pdev->bus->number,
1074 		PCI_SLOT(edev->pdev->devfn), PCI_FUNC(edev->pdev->devfn),
1075 		buf, edev->ndev->name);
1076 }
1077 
1078 enum qede_probe_mode {
1079 	QEDE_PROBE_NORMAL,
1080 	QEDE_PROBE_RECOVERY,
1081 };
1082 
1083 static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level,
1084 			bool is_vf, enum qede_probe_mode mode)
1085 {
1086 	struct qed_probe_params probe_params;
1087 	struct qed_slowpath_params sp_params;
1088 	struct qed_dev_eth_info dev_info;
1089 	struct qede_dev *edev;
1090 	struct qed_dev *cdev;
1091 	int rc;
1092 
1093 	if (unlikely(dp_level & QED_LEVEL_INFO))
1094 		pr_notice("Starting qede probe\n");
1095 
1096 	memset(&probe_params, 0, sizeof(probe_params));
1097 	probe_params.protocol = QED_PROTOCOL_ETH;
1098 	probe_params.dp_module = dp_module;
1099 	probe_params.dp_level = dp_level;
1100 	probe_params.is_vf = is_vf;
1101 	probe_params.recov_in_prog = (mode == QEDE_PROBE_RECOVERY);
1102 	cdev = qed_ops->common->probe(pdev, &probe_params);
1103 	if (!cdev) {
1104 		rc = -ENODEV;
1105 		goto err0;
1106 	}
1107 
1108 	qede_update_pf_params(cdev);
1109 
1110 	/* Start the Slowpath-process */
1111 	memset(&sp_params, 0, sizeof(sp_params));
1112 	sp_params.int_mode = QED_INT_MODE_MSIX;
1113 	sp_params.drv_major = QEDE_MAJOR_VERSION;
1114 	sp_params.drv_minor = QEDE_MINOR_VERSION;
1115 	sp_params.drv_rev = QEDE_REVISION_VERSION;
1116 	sp_params.drv_eng = QEDE_ENGINEERING_VERSION;
1117 	strlcpy(sp_params.name, "qede LAN", QED_DRV_VER_STR_SIZE);
1118 	rc = qed_ops->common->slowpath_start(cdev, &sp_params);
1119 	if (rc) {
1120 		pr_notice("Cannot start slowpath\n");
1121 		goto err1;
1122 	}
1123 
1124 	/* Learn information crucial for qede to progress */
1125 	rc = qed_ops->fill_dev_info(cdev, &dev_info);
1126 	if (rc)
1127 		goto err2;
1128 
1129 	if (mode != QEDE_PROBE_RECOVERY) {
1130 		edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module,
1131 					   dp_level);
1132 		if (!edev) {
1133 			rc = -ENOMEM;
1134 			goto err2;
1135 		}
1136 	} else {
1137 		struct net_device *ndev = pci_get_drvdata(pdev);
1138 
1139 		edev = netdev_priv(ndev);
1140 		edev->cdev = cdev;
1141 		memset(&edev->stats, 0, sizeof(edev->stats));
1142 		memcpy(&edev->dev_info, &dev_info, sizeof(dev_info));
1143 	}
1144 
1145 	if (is_vf)
1146 		set_bit(QEDE_FLAGS_IS_VF, &edev->flags);
1147 
1148 	qede_init_ndev(edev);
1149 
1150 	rc = qede_rdma_dev_add(edev, (mode == QEDE_PROBE_RECOVERY));
1151 	if (rc)
1152 		goto err3;
1153 
1154 	if (mode != QEDE_PROBE_RECOVERY) {
1155 		/* Prepare the lock prior to the registration of the netdev,
1156 		 * as once it's registered we might reach flows requiring it
1157 		 * [it's even possible to reach a flow needing it directly
1158 		 * from there, although it's unlikely].
1159 		 */
1160 		INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task);
1161 		mutex_init(&edev->qede_lock);
1162 
1163 		rc = register_netdev(edev->ndev);
1164 		if (rc) {
1165 			DP_NOTICE(edev, "Cannot register net-device\n");
1166 			goto err4;
1167 		}
1168 	}
1169 
1170 	edev->ops->common->set_name(cdev, edev->ndev->name);
1171 
1172 	/* PTP not supported on VFs */
1173 	if (!is_vf)
1174 		qede_ptp_enable(edev, (mode == QEDE_PROBE_NORMAL));
1175 
1176 	edev->ops->register_ops(cdev, &qede_ll_ops, edev);
1177 
1178 #ifdef CONFIG_DCB
1179 	if (!IS_VF(edev))
1180 		qede_set_dcbnl_ops(edev->ndev);
1181 #endif
1182 
1183 	edev->rx_copybreak = QEDE_RX_HDR_SIZE;
1184 
1185 	qede_log_probe(edev);
1186 	return 0;
1187 
1188 err4:
1189 	qede_rdma_dev_remove(edev, (mode == QEDE_PROBE_RECOVERY));
1190 err3:
1191 	free_netdev(edev->ndev);
1192 err2:
1193 	qed_ops->common->slowpath_stop(cdev);
1194 err1:
1195 	qed_ops->common->remove(cdev);
1196 err0:
1197 	return rc;
1198 }
1199 
1200 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1201 {
1202 	bool is_vf = false;
1203 	u32 dp_module = 0;
1204 	u8 dp_level = 0;
1205 
1206 	switch ((enum qede_pci_private)id->driver_data) {
1207 	case QEDE_PRIVATE_VF:
1208 		if (debug & QED_LOG_VERBOSE_MASK)
1209 			dev_err(&pdev->dev, "Probing a VF\n");
1210 		is_vf = true;
1211 		break;
1212 	default:
1213 		if (debug & QED_LOG_VERBOSE_MASK)
1214 			dev_err(&pdev->dev, "Probing a PF\n");
1215 	}
1216 
1217 	qede_config_debug(debug, &dp_module, &dp_level);
1218 
1219 	return __qede_probe(pdev, dp_module, dp_level, is_vf,
1220 			    QEDE_PROBE_NORMAL);
1221 }
1222 
1223 enum qede_remove_mode {
1224 	QEDE_REMOVE_NORMAL,
1225 	QEDE_REMOVE_RECOVERY,
1226 };
1227 
1228 static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode)
1229 {
1230 	struct net_device *ndev = pci_get_drvdata(pdev);
1231 	struct qede_dev *edev;
1232 	struct qed_dev *cdev;
1233 
1234 	if (!ndev) {
1235 		dev_info(&pdev->dev, "Device has already been removed\n");
1236 		return;
1237 	}
1238 
1239 	edev = netdev_priv(ndev);
1240 	cdev = edev->cdev;
1241 
1242 	DP_INFO(edev, "Starting qede_remove\n");
1243 
1244 	qede_rdma_dev_remove(edev, (mode == QEDE_REMOVE_RECOVERY));
1245 
1246 	if (mode != QEDE_REMOVE_RECOVERY) {
1247 		unregister_netdev(ndev);
1248 
1249 		cancel_delayed_work_sync(&edev->sp_task);
1250 
1251 		edev->ops->common->set_power_state(cdev, PCI_D0);
1252 
1253 		pci_set_drvdata(pdev, NULL);
1254 	}
1255 
1256 	qede_ptp_disable(edev);
1257 
1258 	/* Use global ops since we've freed edev */
1259 	qed_ops->common->slowpath_stop(cdev);
1260 	if (system_state == SYSTEM_POWER_OFF)
1261 		return;
1262 	qed_ops->common->remove(cdev);
1263 
1264 	/* Since this can happen out-of-sync with other flows,
1265 	 * don't release the netdevice until after slowpath stop
1266 	 * has been called to guarantee various other contexts
1267 	 * [e.g., QED register callbacks] won't break anything when
1268 	 * accessing the netdevice.
1269 	 */
1270 	if (mode != QEDE_REMOVE_RECOVERY)
1271 		free_netdev(ndev);
1272 
1273 	dev_info(&pdev->dev, "Ending qede_remove successfully\n");
1274 }
1275 
1276 static void qede_remove(struct pci_dev *pdev)
1277 {
1278 	__qede_remove(pdev, QEDE_REMOVE_NORMAL);
1279 }
1280 
1281 static void qede_shutdown(struct pci_dev *pdev)
1282 {
1283 	__qede_remove(pdev, QEDE_REMOVE_NORMAL);
1284 }
1285 
1286 /* -------------------------------------------------------------------------
1287  * START OF LOAD / UNLOAD
1288  * -------------------------------------------------------------------------
1289  */
1290 
1291 static int qede_set_num_queues(struct qede_dev *edev)
1292 {
1293 	int rc;
1294 	u16 rss_num;
1295 
1296 	/* Setup queues according to possible resources*/
1297 	if (edev->req_queues)
1298 		rss_num = edev->req_queues;
1299 	else
1300 		rss_num = netif_get_num_default_rss_queues() *
1301 			  edev->dev_info.common.num_hwfns;
1302 
1303 	rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num);
1304 
1305 	rc = edev->ops->common->set_fp_int(edev->cdev, rss_num);
1306 	if (rc > 0) {
1307 		/* Managed to request interrupts for our queues */
1308 		edev->num_queues = rc;
1309 		DP_INFO(edev, "Managed %d [of %d] RSS queues\n",
1310 			QEDE_QUEUE_CNT(edev), rss_num);
1311 		rc = 0;
1312 	}
1313 
1314 	edev->fp_num_tx = edev->req_num_tx;
1315 	edev->fp_num_rx = edev->req_num_rx;
1316 
1317 	return rc;
1318 }
1319 
1320 static void qede_free_mem_sb(struct qede_dev *edev, struct qed_sb_info *sb_info,
1321 			     u16 sb_id)
1322 {
1323 	if (sb_info->sb_virt) {
1324 		edev->ops->common->sb_release(edev->cdev, sb_info, sb_id,
1325 					      QED_SB_TYPE_L2_QUEUE);
1326 		dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt),
1327 				  (void *)sb_info->sb_virt, sb_info->sb_phys);
1328 		memset(sb_info, 0, sizeof(*sb_info));
1329 	}
1330 }
1331 
1332 /* This function allocates fast-path status block memory */
1333 static int qede_alloc_mem_sb(struct qede_dev *edev,
1334 			     struct qed_sb_info *sb_info, u16 sb_id)
1335 {
1336 	struct status_block_e4 *sb_virt;
1337 	dma_addr_t sb_phys;
1338 	int rc;
1339 
1340 	sb_virt = dma_alloc_coherent(&edev->pdev->dev,
1341 				     sizeof(*sb_virt), &sb_phys, GFP_KERNEL);
1342 	if (!sb_virt) {
1343 		DP_ERR(edev, "Status block allocation failed\n");
1344 		return -ENOMEM;
1345 	}
1346 
1347 	rc = edev->ops->common->sb_init(edev->cdev, sb_info,
1348 					sb_virt, sb_phys, sb_id,
1349 					QED_SB_TYPE_L2_QUEUE);
1350 	if (rc) {
1351 		DP_ERR(edev, "Status block initialization failed\n");
1352 		dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt),
1353 				  sb_virt, sb_phys);
1354 		return rc;
1355 	}
1356 
1357 	return 0;
1358 }
1359 
1360 static void qede_free_rx_buffers(struct qede_dev *edev,
1361 				 struct qede_rx_queue *rxq)
1362 {
1363 	u16 i;
1364 
1365 	for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) {
1366 		struct sw_rx_data *rx_buf;
1367 		struct page *data;
1368 
1369 		rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX];
1370 		data = rx_buf->data;
1371 
1372 		dma_unmap_page(&edev->pdev->dev,
1373 			       rx_buf->mapping, PAGE_SIZE, rxq->data_direction);
1374 
1375 		rx_buf->data = NULL;
1376 		__free_page(data);
1377 	}
1378 }
1379 
1380 static void qede_free_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1381 {
1382 	/* Free rx buffers */
1383 	qede_free_rx_buffers(edev, rxq);
1384 
1385 	/* Free the parallel SW ring */
1386 	kfree(rxq->sw_rx_ring);
1387 
1388 	/* Free the real RQ ring used by FW */
1389 	edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring);
1390 	edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring);
1391 }
1392 
1393 static void qede_set_tpa_param(struct qede_rx_queue *rxq)
1394 {
1395 	int i;
1396 
1397 	for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
1398 		struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
1399 
1400 		tpa_info->state = QEDE_AGG_STATE_NONE;
1401 	}
1402 }
1403 
1404 /* This function allocates all memory needed per Rx queue */
1405 static int qede_alloc_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1406 {
1407 	int i, rc, size;
1408 
1409 	rxq->num_rx_buffers = edev->q_num_rx_buffers;
1410 
1411 	rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD + edev->ndev->mtu;
1412 
1413 	rxq->rx_headroom = edev->xdp_prog ? XDP_PACKET_HEADROOM : NET_SKB_PAD;
1414 	size = rxq->rx_headroom +
1415 	       SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1416 
1417 	/* Make sure that the headroom and  payload fit in a single page */
1418 	if (rxq->rx_buf_size + size > PAGE_SIZE)
1419 		rxq->rx_buf_size = PAGE_SIZE - size;
1420 
1421 	/* Segment size to spilt a page in multiple equal parts ,
1422 	 * unless XDP is used in which case we'd use the entire page.
1423 	 */
1424 	if (!edev->xdp_prog) {
1425 		size = size + rxq->rx_buf_size;
1426 		rxq->rx_buf_seg_size = roundup_pow_of_two(size);
1427 	} else {
1428 		rxq->rx_buf_seg_size = PAGE_SIZE;
1429 		edev->ndev->features &= ~NETIF_F_GRO_HW;
1430 	}
1431 
1432 	/* Allocate the parallel driver ring for Rx buffers */
1433 	size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE;
1434 	rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL);
1435 	if (!rxq->sw_rx_ring) {
1436 		DP_ERR(edev, "Rx buffers ring allocation failed\n");
1437 		rc = -ENOMEM;
1438 		goto err;
1439 	}
1440 
1441 	/* Allocate FW Rx ring  */
1442 	rc = edev->ops->common->chain_alloc(edev->cdev,
1443 					    QED_CHAIN_USE_TO_CONSUME_PRODUCE,
1444 					    QED_CHAIN_MODE_NEXT_PTR,
1445 					    QED_CHAIN_CNT_TYPE_U16,
1446 					    RX_RING_SIZE,
1447 					    sizeof(struct eth_rx_bd),
1448 					    &rxq->rx_bd_ring, NULL);
1449 	if (rc)
1450 		goto err;
1451 
1452 	/* Allocate FW completion ring */
1453 	rc = edev->ops->common->chain_alloc(edev->cdev,
1454 					    QED_CHAIN_USE_TO_CONSUME,
1455 					    QED_CHAIN_MODE_PBL,
1456 					    QED_CHAIN_CNT_TYPE_U16,
1457 					    RX_RING_SIZE,
1458 					    sizeof(union eth_rx_cqe),
1459 					    &rxq->rx_comp_ring, NULL);
1460 	if (rc)
1461 		goto err;
1462 
1463 	/* Allocate buffers for the Rx ring */
1464 	rxq->filled_buffers = 0;
1465 	for (i = 0; i < rxq->num_rx_buffers; i++) {
1466 		rc = qede_alloc_rx_buffer(rxq, false);
1467 		if (rc) {
1468 			DP_ERR(edev,
1469 			       "Rx buffers allocation failed at index %d\n", i);
1470 			goto err;
1471 		}
1472 	}
1473 
1474 	edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO_HW);
1475 	if (!edev->gro_disable)
1476 		qede_set_tpa_param(rxq);
1477 err:
1478 	return rc;
1479 }
1480 
1481 static void qede_free_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1482 {
1483 	/* Free the parallel SW ring */
1484 	if (txq->is_xdp)
1485 		kfree(txq->sw_tx_ring.xdp);
1486 	else
1487 		kfree(txq->sw_tx_ring.skbs);
1488 
1489 	/* Free the real RQ ring used by FW */
1490 	edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl);
1491 }
1492 
1493 /* This function allocates all memory needed per Tx queue */
1494 static int qede_alloc_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1495 {
1496 	union eth_tx_bd_types *p_virt;
1497 	int size, rc;
1498 
1499 	txq->num_tx_buffers = edev->q_num_tx_buffers;
1500 
1501 	/* Allocate the parallel driver ring for Tx buffers */
1502 	if (txq->is_xdp) {
1503 		size = sizeof(*txq->sw_tx_ring.xdp) * txq->num_tx_buffers;
1504 		txq->sw_tx_ring.xdp = kzalloc(size, GFP_KERNEL);
1505 		if (!txq->sw_tx_ring.xdp)
1506 			goto err;
1507 	} else {
1508 		size = sizeof(*txq->sw_tx_ring.skbs) * txq->num_tx_buffers;
1509 		txq->sw_tx_ring.skbs = kzalloc(size, GFP_KERNEL);
1510 		if (!txq->sw_tx_ring.skbs)
1511 			goto err;
1512 	}
1513 
1514 	rc = edev->ops->common->chain_alloc(edev->cdev,
1515 					    QED_CHAIN_USE_TO_CONSUME_PRODUCE,
1516 					    QED_CHAIN_MODE_PBL,
1517 					    QED_CHAIN_CNT_TYPE_U16,
1518 					    txq->num_tx_buffers,
1519 					    sizeof(*p_virt),
1520 					    &txq->tx_pbl, NULL);
1521 	if (rc)
1522 		goto err;
1523 
1524 	return 0;
1525 
1526 err:
1527 	qede_free_mem_txq(edev, txq);
1528 	return -ENOMEM;
1529 }
1530 
1531 /* This function frees all memory of a single fp */
1532 static void qede_free_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1533 {
1534 	qede_free_mem_sb(edev, fp->sb_info, fp->id);
1535 
1536 	if (fp->type & QEDE_FASTPATH_RX)
1537 		qede_free_mem_rxq(edev, fp->rxq);
1538 
1539 	if (fp->type & QEDE_FASTPATH_XDP)
1540 		qede_free_mem_txq(edev, fp->xdp_tx);
1541 
1542 	if (fp->type & QEDE_FASTPATH_TX) {
1543 		int cos;
1544 
1545 		for_each_cos_in_txq(edev, cos)
1546 			qede_free_mem_txq(edev, &fp->txq[cos]);
1547 	}
1548 }
1549 
1550 /* This function allocates all memory needed for a single fp (i.e. an entity
1551  * which contains status block, one rx queue and/or multiple per-TC tx queues.
1552  */
1553 static int qede_alloc_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1554 {
1555 	int rc = 0;
1556 
1557 	rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->id);
1558 	if (rc)
1559 		goto out;
1560 
1561 	if (fp->type & QEDE_FASTPATH_RX) {
1562 		rc = qede_alloc_mem_rxq(edev, fp->rxq);
1563 		if (rc)
1564 			goto out;
1565 	}
1566 
1567 	if (fp->type & QEDE_FASTPATH_XDP) {
1568 		rc = qede_alloc_mem_txq(edev, fp->xdp_tx);
1569 		if (rc)
1570 			goto out;
1571 	}
1572 
1573 	if (fp->type & QEDE_FASTPATH_TX) {
1574 		int cos;
1575 
1576 		for_each_cos_in_txq(edev, cos) {
1577 			rc = qede_alloc_mem_txq(edev, &fp->txq[cos]);
1578 			if (rc)
1579 				goto out;
1580 		}
1581 	}
1582 
1583 out:
1584 	return rc;
1585 }
1586 
1587 static void qede_free_mem_load(struct qede_dev *edev)
1588 {
1589 	int i;
1590 
1591 	for_each_queue(i) {
1592 		struct qede_fastpath *fp = &edev->fp_array[i];
1593 
1594 		qede_free_mem_fp(edev, fp);
1595 	}
1596 }
1597 
1598 /* This function allocates all qede memory at NIC load. */
1599 static int qede_alloc_mem_load(struct qede_dev *edev)
1600 {
1601 	int rc = 0, queue_id;
1602 
1603 	for (queue_id = 0; queue_id < QEDE_QUEUE_CNT(edev); queue_id++) {
1604 		struct qede_fastpath *fp = &edev->fp_array[queue_id];
1605 
1606 		rc = qede_alloc_mem_fp(edev, fp);
1607 		if (rc) {
1608 			DP_ERR(edev,
1609 			       "Failed to allocate memory for fastpath - rss id = %d\n",
1610 			       queue_id);
1611 			qede_free_mem_load(edev);
1612 			return rc;
1613 		}
1614 	}
1615 
1616 	return 0;
1617 }
1618 
1619 static void qede_empty_tx_queue(struct qede_dev *edev,
1620 				struct qede_tx_queue *txq)
1621 {
1622 	unsigned int pkts_compl = 0, bytes_compl = 0;
1623 	struct netdev_queue *netdev_txq;
1624 	int rc, len = 0;
1625 
1626 	netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id);
1627 
1628 	while (qed_chain_get_cons_idx(&txq->tx_pbl) !=
1629 	       qed_chain_get_prod_idx(&txq->tx_pbl)) {
1630 		DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
1631 			   "Freeing a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n",
1632 			   txq->index, qed_chain_get_cons_idx(&txq->tx_pbl),
1633 			   qed_chain_get_prod_idx(&txq->tx_pbl));
1634 
1635 		rc = qede_free_tx_pkt(edev, txq, &len);
1636 		if (rc) {
1637 			DP_NOTICE(edev,
1638 				  "Failed to free a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n",
1639 				  txq->index,
1640 				  qed_chain_get_cons_idx(&txq->tx_pbl),
1641 				  qed_chain_get_prod_idx(&txq->tx_pbl));
1642 			break;
1643 		}
1644 
1645 		bytes_compl += len;
1646 		pkts_compl++;
1647 		txq->sw_tx_cons++;
1648 	}
1649 
1650 	netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl);
1651 }
1652 
1653 static void qede_empty_tx_queues(struct qede_dev *edev)
1654 {
1655 	int i;
1656 
1657 	for_each_queue(i)
1658 		if (edev->fp_array[i].type & QEDE_FASTPATH_TX) {
1659 			int cos;
1660 
1661 			for_each_cos_in_txq(edev, cos) {
1662 				struct qede_fastpath *fp;
1663 
1664 				fp = &edev->fp_array[i];
1665 				qede_empty_tx_queue(edev,
1666 						    &fp->txq[cos]);
1667 			}
1668 		}
1669 }
1670 
1671 /* This function inits fp content and resets the SB, RXQ and TXQ structures */
1672 static void qede_init_fp(struct qede_dev *edev)
1673 {
1674 	int queue_id, rxq_index = 0, txq_index = 0;
1675 	struct qede_fastpath *fp;
1676 
1677 	for_each_queue(queue_id) {
1678 		fp = &edev->fp_array[queue_id];
1679 
1680 		fp->edev = edev;
1681 		fp->id = queue_id;
1682 
1683 		if (fp->type & QEDE_FASTPATH_XDP) {
1684 			fp->xdp_tx->index = QEDE_TXQ_IDX_TO_XDP(edev,
1685 								rxq_index);
1686 			fp->xdp_tx->is_xdp = 1;
1687 		}
1688 
1689 		if (fp->type & QEDE_FASTPATH_RX) {
1690 			fp->rxq->rxq_id = rxq_index++;
1691 
1692 			/* Determine how to map buffers for this queue */
1693 			if (fp->type & QEDE_FASTPATH_XDP)
1694 				fp->rxq->data_direction = DMA_BIDIRECTIONAL;
1695 			else
1696 				fp->rxq->data_direction = DMA_FROM_DEVICE;
1697 			fp->rxq->dev = &edev->pdev->dev;
1698 
1699 			/* Driver have no error path from here */
1700 			WARN_ON(xdp_rxq_info_reg(&fp->rxq->xdp_rxq, edev->ndev,
1701 						 fp->rxq->rxq_id) < 0);
1702 		}
1703 
1704 		if (fp->type & QEDE_FASTPATH_TX) {
1705 			int cos;
1706 
1707 			for_each_cos_in_txq(edev, cos) {
1708 				struct qede_tx_queue *txq = &fp->txq[cos];
1709 				u16 ndev_tx_id;
1710 
1711 				txq->cos = cos;
1712 				txq->index = txq_index;
1713 				ndev_tx_id = QEDE_TXQ_TO_NDEV_TXQ_ID(edev, txq);
1714 				txq->ndev_txq_id = ndev_tx_id;
1715 
1716 				if (edev->dev_info.is_legacy)
1717 					txq->is_legacy = true;
1718 				txq->dev = &edev->pdev->dev;
1719 			}
1720 
1721 			txq_index++;
1722 		}
1723 
1724 		snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
1725 			 edev->ndev->name, queue_id);
1726 	}
1727 }
1728 
1729 static int qede_set_real_num_queues(struct qede_dev *edev)
1730 {
1731 	int rc = 0;
1732 
1733 	rc = netif_set_real_num_tx_queues(edev->ndev,
1734 					  QEDE_TSS_COUNT(edev) *
1735 					  edev->dev_info.num_tc);
1736 	if (rc) {
1737 		DP_NOTICE(edev, "Failed to set real number of Tx queues\n");
1738 		return rc;
1739 	}
1740 
1741 	rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_COUNT(edev));
1742 	if (rc) {
1743 		DP_NOTICE(edev, "Failed to set real number of Rx queues\n");
1744 		return rc;
1745 	}
1746 
1747 	return 0;
1748 }
1749 
1750 static void qede_napi_disable_remove(struct qede_dev *edev)
1751 {
1752 	int i;
1753 
1754 	for_each_queue(i) {
1755 		napi_disable(&edev->fp_array[i].napi);
1756 
1757 		netif_napi_del(&edev->fp_array[i].napi);
1758 	}
1759 }
1760 
1761 static void qede_napi_add_enable(struct qede_dev *edev)
1762 {
1763 	int i;
1764 
1765 	/* Add NAPI objects */
1766 	for_each_queue(i) {
1767 		netif_napi_add(edev->ndev, &edev->fp_array[i].napi,
1768 			       qede_poll, NAPI_POLL_WEIGHT);
1769 		napi_enable(&edev->fp_array[i].napi);
1770 	}
1771 }
1772 
1773 static void qede_sync_free_irqs(struct qede_dev *edev)
1774 {
1775 	int i;
1776 
1777 	for (i = 0; i < edev->int_info.used_cnt; i++) {
1778 		if (edev->int_info.msix_cnt) {
1779 			synchronize_irq(edev->int_info.msix[i].vector);
1780 			free_irq(edev->int_info.msix[i].vector,
1781 				 &edev->fp_array[i]);
1782 		} else {
1783 			edev->ops->common->simd_handler_clean(edev->cdev, i);
1784 		}
1785 	}
1786 
1787 	edev->int_info.used_cnt = 0;
1788 }
1789 
1790 static int qede_req_msix_irqs(struct qede_dev *edev)
1791 {
1792 	int i, rc;
1793 
1794 	/* Sanitize number of interrupts == number of prepared RSS queues */
1795 	if (QEDE_QUEUE_CNT(edev) > edev->int_info.msix_cnt) {
1796 		DP_ERR(edev,
1797 		       "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n",
1798 		       QEDE_QUEUE_CNT(edev), edev->int_info.msix_cnt);
1799 		return -EINVAL;
1800 	}
1801 
1802 	for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) {
1803 #ifdef CONFIG_RFS_ACCEL
1804 		struct qede_fastpath *fp = &edev->fp_array[i];
1805 
1806 		if (edev->ndev->rx_cpu_rmap && (fp->type & QEDE_FASTPATH_RX)) {
1807 			rc = irq_cpu_rmap_add(edev->ndev->rx_cpu_rmap,
1808 					      edev->int_info.msix[i].vector);
1809 			if (rc) {
1810 				DP_ERR(edev, "Failed to add CPU rmap\n");
1811 				qede_free_arfs(edev);
1812 			}
1813 		}
1814 #endif
1815 		rc = request_irq(edev->int_info.msix[i].vector,
1816 				 qede_msix_fp_int, 0, edev->fp_array[i].name,
1817 				 &edev->fp_array[i]);
1818 		if (rc) {
1819 			DP_ERR(edev, "Request fp %d irq failed\n", i);
1820 			qede_sync_free_irqs(edev);
1821 			return rc;
1822 		}
1823 		DP_VERBOSE(edev, NETIF_MSG_INTR,
1824 			   "Requested fp irq for %s [entry %d]. Cookie is at %p\n",
1825 			   edev->fp_array[i].name, i,
1826 			   &edev->fp_array[i]);
1827 		edev->int_info.used_cnt++;
1828 	}
1829 
1830 	return 0;
1831 }
1832 
1833 static void qede_simd_fp_handler(void *cookie)
1834 {
1835 	struct qede_fastpath *fp = (struct qede_fastpath *)cookie;
1836 
1837 	napi_schedule_irqoff(&fp->napi);
1838 }
1839 
1840 static int qede_setup_irqs(struct qede_dev *edev)
1841 {
1842 	int i, rc = 0;
1843 
1844 	/* Learn Interrupt configuration */
1845 	rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info);
1846 	if (rc)
1847 		return rc;
1848 
1849 	if (edev->int_info.msix_cnt) {
1850 		rc = qede_req_msix_irqs(edev);
1851 		if (rc)
1852 			return rc;
1853 		edev->ndev->irq = edev->int_info.msix[0].vector;
1854 	} else {
1855 		const struct qed_common_ops *ops;
1856 
1857 		/* qed should learn receive the RSS ids and callbacks */
1858 		ops = edev->ops->common;
1859 		for (i = 0; i < QEDE_QUEUE_CNT(edev); i++)
1860 			ops->simd_handler_config(edev->cdev,
1861 						 &edev->fp_array[i], i,
1862 						 qede_simd_fp_handler);
1863 		edev->int_info.used_cnt = QEDE_QUEUE_CNT(edev);
1864 	}
1865 	return 0;
1866 }
1867 
1868 static int qede_drain_txq(struct qede_dev *edev,
1869 			  struct qede_tx_queue *txq, bool allow_drain)
1870 {
1871 	int rc, cnt = 1000;
1872 
1873 	while (txq->sw_tx_cons != txq->sw_tx_prod) {
1874 		if (!cnt) {
1875 			if (allow_drain) {
1876 				DP_NOTICE(edev,
1877 					  "Tx queue[%d] is stuck, requesting MCP to drain\n",
1878 					  txq->index);
1879 				rc = edev->ops->common->drain(edev->cdev);
1880 				if (rc)
1881 					return rc;
1882 				return qede_drain_txq(edev, txq, false);
1883 			}
1884 			DP_NOTICE(edev,
1885 				  "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n",
1886 				  txq->index, txq->sw_tx_prod,
1887 				  txq->sw_tx_cons);
1888 			return -ENODEV;
1889 		}
1890 		cnt--;
1891 		usleep_range(1000, 2000);
1892 		barrier();
1893 	}
1894 
1895 	/* FW finished processing, wait for HW to transmit all tx packets */
1896 	usleep_range(1000, 2000);
1897 
1898 	return 0;
1899 }
1900 
1901 static int qede_stop_txq(struct qede_dev *edev,
1902 			 struct qede_tx_queue *txq, int rss_id)
1903 {
1904 	/* delete doorbell from doorbell recovery mechanism */
1905 	edev->ops->common->db_recovery_del(edev->cdev, txq->doorbell_addr,
1906 					   &txq->tx_db);
1907 
1908 	return edev->ops->q_tx_stop(edev->cdev, rss_id, txq->handle);
1909 }
1910 
1911 static int qede_stop_queues(struct qede_dev *edev)
1912 {
1913 	struct qed_update_vport_params *vport_update_params;
1914 	struct qed_dev *cdev = edev->cdev;
1915 	struct qede_fastpath *fp;
1916 	int rc, i;
1917 
1918 	/* Disable the vport */
1919 	vport_update_params = vzalloc(sizeof(*vport_update_params));
1920 	if (!vport_update_params)
1921 		return -ENOMEM;
1922 
1923 	vport_update_params->vport_id = 0;
1924 	vport_update_params->update_vport_active_flg = 1;
1925 	vport_update_params->vport_active_flg = 0;
1926 	vport_update_params->update_rss_flg = 0;
1927 
1928 	rc = edev->ops->vport_update(cdev, vport_update_params);
1929 	vfree(vport_update_params);
1930 
1931 	if (rc) {
1932 		DP_ERR(edev, "Failed to update vport\n");
1933 		return rc;
1934 	}
1935 
1936 	/* Flush Tx queues. If needed, request drain from MCP */
1937 	for_each_queue(i) {
1938 		fp = &edev->fp_array[i];
1939 
1940 		if (fp->type & QEDE_FASTPATH_TX) {
1941 			int cos;
1942 
1943 			for_each_cos_in_txq(edev, cos) {
1944 				rc = qede_drain_txq(edev, &fp->txq[cos], true);
1945 				if (rc)
1946 					return rc;
1947 			}
1948 		}
1949 
1950 		if (fp->type & QEDE_FASTPATH_XDP) {
1951 			rc = qede_drain_txq(edev, fp->xdp_tx, true);
1952 			if (rc)
1953 				return rc;
1954 		}
1955 	}
1956 
1957 	/* Stop all Queues in reverse order */
1958 	for (i = QEDE_QUEUE_CNT(edev) - 1; i >= 0; i--) {
1959 		fp = &edev->fp_array[i];
1960 
1961 		/* Stop the Tx Queue(s) */
1962 		if (fp->type & QEDE_FASTPATH_TX) {
1963 			int cos;
1964 
1965 			for_each_cos_in_txq(edev, cos) {
1966 				rc = qede_stop_txq(edev, &fp->txq[cos], i);
1967 				if (rc)
1968 					return rc;
1969 			}
1970 		}
1971 
1972 		/* Stop the Rx Queue */
1973 		if (fp->type & QEDE_FASTPATH_RX) {
1974 			rc = edev->ops->q_rx_stop(cdev, i, fp->rxq->handle);
1975 			if (rc) {
1976 				DP_ERR(edev, "Failed to stop RXQ #%d\n", i);
1977 				return rc;
1978 			}
1979 		}
1980 
1981 		/* Stop the XDP forwarding queue */
1982 		if (fp->type & QEDE_FASTPATH_XDP) {
1983 			rc = qede_stop_txq(edev, fp->xdp_tx, i);
1984 			if (rc)
1985 				return rc;
1986 
1987 			bpf_prog_put(fp->rxq->xdp_prog);
1988 		}
1989 	}
1990 
1991 	/* Stop the vport */
1992 	rc = edev->ops->vport_stop(cdev, 0);
1993 	if (rc)
1994 		DP_ERR(edev, "Failed to stop VPORT\n");
1995 
1996 	return rc;
1997 }
1998 
1999 static int qede_start_txq(struct qede_dev *edev,
2000 			  struct qede_fastpath *fp,
2001 			  struct qede_tx_queue *txq, u8 rss_id, u16 sb_idx)
2002 {
2003 	dma_addr_t phys_table = qed_chain_get_pbl_phys(&txq->tx_pbl);
2004 	u32 page_cnt = qed_chain_get_page_cnt(&txq->tx_pbl);
2005 	struct qed_queue_start_common_params params;
2006 	struct qed_txq_start_ret_params ret_params;
2007 	int rc;
2008 
2009 	memset(&params, 0, sizeof(params));
2010 	memset(&ret_params, 0, sizeof(ret_params));
2011 
2012 	/* Let the XDP queue share the queue-zone with one of the regular txq.
2013 	 * We don't really care about its coalescing.
2014 	 */
2015 	if (txq->is_xdp)
2016 		params.queue_id = QEDE_TXQ_XDP_TO_IDX(edev, txq);
2017 	else
2018 		params.queue_id = txq->index;
2019 
2020 	params.p_sb = fp->sb_info;
2021 	params.sb_idx = sb_idx;
2022 	params.tc = txq->cos;
2023 
2024 	rc = edev->ops->q_tx_start(edev->cdev, rss_id, &params, phys_table,
2025 				   page_cnt, &ret_params);
2026 	if (rc) {
2027 		DP_ERR(edev, "Start TXQ #%d failed %d\n", txq->index, rc);
2028 		return rc;
2029 	}
2030 
2031 	txq->doorbell_addr = ret_params.p_doorbell;
2032 	txq->handle = ret_params.p_handle;
2033 
2034 	/* Determine the FW consumer address associated */
2035 	txq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[sb_idx];
2036 
2037 	/* Prepare the doorbell parameters */
2038 	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST, DB_DEST_XCM);
2039 	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD, DB_AGG_CMD_SET);
2040 	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_VAL_SEL,
2041 		  DQ_XCM_ETH_TX_BD_PROD_CMD);
2042 	txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
2043 
2044 	/* register doorbell with doorbell recovery mechanism */
2045 	rc = edev->ops->common->db_recovery_add(edev->cdev, txq->doorbell_addr,
2046 						&txq->tx_db, DB_REC_WIDTH_32B,
2047 						DB_REC_KERNEL);
2048 
2049 	return rc;
2050 }
2051 
2052 static int qede_start_queues(struct qede_dev *edev, bool clear_stats)
2053 {
2054 	int vlan_removal_en = 1;
2055 	struct qed_dev *cdev = edev->cdev;
2056 	struct qed_dev_info *qed_info = &edev->dev_info.common;
2057 	struct qed_update_vport_params *vport_update_params;
2058 	struct qed_queue_start_common_params q_params;
2059 	struct qed_start_vport_params start = {0};
2060 	int rc, i;
2061 
2062 	if (!edev->num_queues) {
2063 		DP_ERR(edev,
2064 		       "Cannot update V-VPORT as active as there are no Rx queues\n");
2065 		return -EINVAL;
2066 	}
2067 
2068 	vport_update_params = vzalloc(sizeof(*vport_update_params));
2069 	if (!vport_update_params)
2070 		return -ENOMEM;
2071 
2072 	start.handle_ptp_pkts = !!(edev->ptp);
2073 	start.gro_enable = !edev->gro_disable;
2074 	start.mtu = edev->ndev->mtu;
2075 	start.vport_id = 0;
2076 	start.drop_ttl0 = true;
2077 	start.remove_inner_vlan = vlan_removal_en;
2078 	start.clear_stats = clear_stats;
2079 
2080 	rc = edev->ops->vport_start(cdev, &start);
2081 
2082 	if (rc) {
2083 		DP_ERR(edev, "Start V-PORT failed %d\n", rc);
2084 		goto out;
2085 	}
2086 
2087 	DP_VERBOSE(edev, NETIF_MSG_IFUP,
2088 		   "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n",
2089 		   start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en);
2090 
2091 	for_each_queue(i) {
2092 		struct qede_fastpath *fp = &edev->fp_array[i];
2093 		dma_addr_t p_phys_table;
2094 		u32 page_cnt;
2095 
2096 		if (fp->type & QEDE_FASTPATH_RX) {
2097 			struct qed_rxq_start_ret_params ret_params;
2098 			struct qede_rx_queue *rxq = fp->rxq;
2099 			__le16 *val;
2100 
2101 			memset(&ret_params, 0, sizeof(ret_params));
2102 			memset(&q_params, 0, sizeof(q_params));
2103 			q_params.queue_id = rxq->rxq_id;
2104 			q_params.vport_id = 0;
2105 			q_params.p_sb = fp->sb_info;
2106 			q_params.sb_idx = RX_PI;
2107 
2108 			p_phys_table =
2109 			    qed_chain_get_pbl_phys(&rxq->rx_comp_ring);
2110 			page_cnt = qed_chain_get_page_cnt(&rxq->rx_comp_ring);
2111 
2112 			rc = edev->ops->q_rx_start(cdev, i, &q_params,
2113 						   rxq->rx_buf_size,
2114 						   rxq->rx_bd_ring.p_phys_addr,
2115 						   p_phys_table,
2116 						   page_cnt, &ret_params);
2117 			if (rc) {
2118 				DP_ERR(edev, "Start RXQ #%d failed %d\n", i,
2119 				       rc);
2120 				goto out;
2121 			}
2122 
2123 			/* Use the return parameters */
2124 			rxq->hw_rxq_prod_addr = ret_params.p_prod;
2125 			rxq->handle = ret_params.p_handle;
2126 
2127 			val = &fp->sb_info->sb_virt->pi_array[RX_PI];
2128 			rxq->hw_cons_ptr = val;
2129 
2130 			qede_update_rx_prod(edev, rxq);
2131 		}
2132 
2133 		if (fp->type & QEDE_FASTPATH_XDP) {
2134 			rc = qede_start_txq(edev, fp, fp->xdp_tx, i, XDP_PI);
2135 			if (rc)
2136 				goto out;
2137 
2138 			bpf_prog_add(edev->xdp_prog, 1);
2139 			fp->rxq->xdp_prog = edev->xdp_prog;
2140 		}
2141 
2142 		if (fp->type & QEDE_FASTPATH_TX) {
2143 			int cos;
2144 
2145 			for_each_cos_in_txq(edev, cos) {
2146 				rc = qede_start_txq(edev, fp, &fp->txq[cos], i,
2147 						    TX_PI(cos));
2148 				if (rc)
2149 					goto out;
2150 			}
2151 		}
2152 	}
2153 
2154 	/* Prepare and send the vport enable */
2155 	vport_update_params->vport_id = start.vport_id;
2156 	vport_update_params->update_vport_active_flg = 1;
2157 	vport_update_params->vport_active_flg = 1;
2158 
2159 	if ((qed_info->b_inter_pf_switch || pci_num_vf(edev->pdev)) &&
2160 	    qed_info->tx_switching) {
2161 		vport_update_params->update_tx_switching_flg = 1;
2162 		vport_update_params->tx_switching_flg = 1;
2163 	}
2164 
2165 	qede_fill_rss_params(edev, &vport_update_params->rss_params,
2166 			     &vport_update_params->update_rss_flg);
2167 
2168 	rc = edev->ops->vport_update(cdev, vport_update_params);
2169 	if (rc)
2170 		DP_ERR(edev, "Update V-PORT failed %d\n", rc);
2171 
2172 out:
2173 	vfree(vport_update_params);
2174 	return rc;
2175 }
2176 
2177 enum qede_unload_mode {
2178 	QEDE_UNLOAD_NORMAL,
2179 	QEDE_UNLOAD_RECOVERY,
2180 };
2181 
2182 static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode,
2183 			bool is_locked)
2184 {
2185 	struct qed_link_params link_params;
2186 	int rc;
2187 
2188 	DP_INFO(edev, "Starting qede unload\n");
2189 
2190 	if (!is_locked)
2191 		__qede_lock(edev);
2192 
2193 	clear_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags);
2194 
2195 	if (mode != QEDE_UNLOAD_RECOVERY)
2196 		edev->state = QEDE_STATE_CLOSED;
2197 
2198 	qede_rdma_dev_event_close(edev);
2199 
2200 	/* Close OS Tx */
2201 	netif_tx_disable(edev->ndev);
2202 	netif_carrier_off(edev->ndev);
2203 
2204 	if (mode != QEDE_UNLOAD_RECOVERY) {
2205 		/* Reset the link */
2206 		memset(&link_params, 0, sizeof(link_params));
2207 		link_params.link_up = false;
2208 		edev->ops->common->set_link(edev->cdev, &link_params);
2209 
2210 		rc = qede_stop_queues(edev);
2211 		if (rc) {
2212 			qede_sync_free_irqs(edev);
2213 			goto out;
2214 		}
2215 
2216 		DP_INFO(edev, "Stopped Queues\n");
2217 	}
2218 
2219 	qede_vlan_mark_nonconfigured(edev);
2220 	edev->ops->fastpath_stop(edev->cdev);
2221 
2222 	if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) {
2223 		qede_poll_for_freeing_arfs_filters(edev);
2224 		qede_free_arfs(edev);
2225 	}
2226 
2227 	/* Release the interrupts */
2228 	qede_sync_free_irqs(edev);
2229 	edev->ops->common->set_fp_int(edev->cdev, 0);
2230 
2231 	qede_napi_disable_remove(edev);
2232 
2233 	if (mode == QEDE_UNLOAD_RECOVERY)
2234 		qede_empty_tx_queues(edev);
2235 
2236 	qede_free_mem_load(edev);
2237 	qede_free_fp_array(edev);
2238 
2239 out:
2240 	if (!is_locked)
2241 		__qede_unlock(edev);
2242 
2243 	if (mode != QEDE_UNLOAD_RECOVERY)
2244 		DP_NOTICE(edev, "Link is down\n");
2245 
2246 	edev->ptp_skip_txts = 0;
2247 
2248 	DP_INFO(edev, "Ending qede unload\n");
2249 }
2250 
2251 enum qede_load_mode {
2252 	QEDE_LOAD_NORMAL,
2253 	QEDE_LOAD_RELOAD,
2254 	QEDE_LOAD_RECOVERY,
2255 };
2256 
2257 static int qede_load(struct qede_dev *edev, enum qede_load_mode mode,
2258 		     bool is_locked)
2259 {
2260 	struct qed_link_params link_params;
2261 	u8 num_tc;
2262 	int rc;
2263 
2264 	DP_INFO(edev, "Starting qede load\n");
2265 
2266 	if (!is_locked)
2267 		__qede_lock(edev);
2268 
2269 	rc = qede_set_num_queues(edev);
2270 	if (rc)
2271 		goto out;
2272 
2273 	rc = qede_alloc_fp_array(edev);
2274 	if (rc)
2275 		goto out;
2276 
2277 	qede_init_fp(edev);
2278 
2279 	rc = qede_alloc_mem_load(edev);
2280 	if (rc)
2281 		goto err1;
2282 	DP_INFO(edev, "Allocated %d Rx, %d Tx queues\n",
2283 		QEDE_RSS_COUNT(edev), QEDE_TSS_COUNT(edev));
2284 
2285 	rc = qede_set_real_num_queues(edev);
2286 	if (rc)
2287 		goto err2;
2288 
2289 	if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) {
2290 		rc = qede_alloc_arfs(edev);
2291 		if (rc)
2292 			DP_NOTICE(edev, "aRFS memory allocation failed\n");
2293 	}
2294 
2295 	qede_napi_add_enable(edev);
2296 	DP_INFO(edev, "Napi added and enabled\n");
2297 
2298 	rc = qede_setup_irqs(edev);
2299 	if (rc)
2300 		goto err3;
2301 	DP_INFO(edev, "Setup IRQs succeeded\n");
2302 
2303 	rc = qede_start_queues(edev, mode != QEDE_LOAD_RELOAD);
2304 	if (rc)
2305 		goto err4;
2306 	DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n");
2307 
2308 	num_tc = netdev_get_num_tc(edev->ndev);
2309 	num_tc = num_tc ? num_tc : edev->dev_info.num_tc;
2310 	qede_setup_tc(edev->ndev, num_tc);
2311 
2312 	/* Program un-configured VLANs */
2313 	qede_configure_vlan_filters(edev);
2314 
2315 	set_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags);
2316 
2317 	/* Ask for link-up using current configuration */
2318 	memset(&link_params, 0, sizeof(link_params));
2319 	link_params.link_up = true;
2320 	edev->ops->common->set_link(edev->cdev, &link_params);
2321 
2322 	edev->state = QEDE_STATE_OPEN;
2323 
2324 	DP_INFO(edev, "Ending successfully qede load\n");
2325 
2326 	goto out;
2327 err4:
2328 	qede_sync_free_irqs(edev);
2329 	memset(&edev->int_info.msix_cnt, 0, sizeof(struct qed_int_info));
2330 err3:
2331 	qede_napi_disable_remove(edev);
2332 err2:
2333 	qede_free_mem_load(edev);
2334 err1:
2335 	edev->ops->common->set_fp_int(edev->cdev, 0);
2336 	qede_free_fp_array(edev);
2337 	edev->num_queues = 0;
2338 	edev->fp_num_tx = 0;
2339 	edev->fp_num_rx = 0;
2340 out:
2341 	if (!is_locked)
2342 		__qede_unlock(edev);
2343 
2344 	return rc;
2345 }
2346 
2347 /* 'func' should be able to run between unload and reload assuming interface
2348  * is actually running, or afterwards in case it's currently DOWN.
2349  */
2350 void qede_reload(struct qede_dev *edev,
2351 		 struct qede_reload_args *args, bool is_locked)
2352 {
2353 	if (!is_locked)
2354 		__qede_lock(edev);
2355 
2356 	/* Since qede_lock is held, internal state wouldn't change even
2357 	 * if netdev state would start transitioning. Check whether current
2358 	 * internal configuration indicates device is up, then reload.
2359 	 */
2360 	if (edev->state == QEDE_STATE_OPEN) {
2361 		qede_unload(edev, QEDE_UNLOAD_NORMAL, true);
2362 		if (args)
2363 			args->func(edev, args);
2364 		qede_load(edev, QEDE_LOAD_RELOAD, true);
2365 
2366 		/* Since no one is going to do it for us, re-configure */
2367 		qede_config_rx_mode(edev->ndev);
2368 	} else if (args) {
2369 		args->func(edev, args);
2370 	}
2371 
2372 	if (!is_locked)
2373 		__qede_unlock(edev);
2374 }
2375 
2376 /* called with rtnl_lock */
2377 static int qede_open(struct net_device *ndev)
2378 {
2379 	struct qede_dev *edev = netdev_priv(ndev);
2380 	int rc;
2381 
2382 	netif_carrier_off(ndev);
2383 
2384 	edev->ops->common->set_power_state(edev->cdev, PCI_D0);
2385 
2386 	rc = qede_load(edev, QEDE_LOAD_NORMAL, false);
2387 	if (rc)
2388 		return rc;
2389 
2390 	udp_tunnel_get_rx_info(ndev);
2391 
2392 	edev->ops->common->update_drv_state(edev->cdev, true);
2393 
2394 	return 0;
2395 }
2396 
2397 static int qede_close(struct net_device *ndev)
2398 {
2399 	struct qede_dev *edev = netdev_priv(ndev);
2400 
2401 	qede_unload(edev, QEDE_UNLOAD_NORMAL, false);
2402 
2403 	edev->ops->common->update_drv_state(edev->cdev, false);
2404 
2405 	return 0;
2406 }
2407 
2408 static void qede_link_update(void *dev, struct qed_link_output *link)
2409 {
2410 	struct qede_dev *edev = dev;
2411 
2412 	if (!test_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags)) {
2413 		DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not ready\n");
2414 		return;
2415 	}
2416 
2417 	if (link->link_up) {
2418 		if (!netif_carrier_ok(edev->ndev)) {
2419 			DP_NOTICE(edev, "Link is up\n");
2420 			netif_tx_start_all_queues(edev->ndev);
2421 			netif_carrier_on(edev->ndev);
2422 			qede_rdma_dev_event_open(edev);
2423 		}
2424 	} else {
2425 		if (netif_carrier_ok(edev->ndev)) {
2426 			DP_NOTICE(edev, "Link is down\n");
2427 			netif_tx_disable(edev->ndev);
2428 			netif_carrier_off(edev->ndev);
2429 			qede_rdma_dev_event_close(edev);
2430 		}
2431 	}
2432 }
2433 
2434 static void qede_schedule_recovery_handler(void *dev)
2435 {
2436 	struct qede_dev *edev = dev;
2437 
2438 	if (edev->state == QEDE_STATE_RECOVERY) {
2439 		DP_NOTICE(edev,
2440 			  "Avoid scheduling a recovery handling since already in recovery state\n");
2441 		return;
2442 	}
2443 
2444 	set_bit(QEDE_SP_RECOVERY, &edev->sp_flags);
2445 	schedule_delayed_work(&edev->sp_task, 0);
2446 
2447 	DP_INFO(edev, "Scheduled a recovery handler\n");
2448 }
2449 
2450 static void qede_recovery_failed(struct qede_dev *edev)
2451 {
2452 	netdev_err(edev->ndev, "Recovery handling has failed. Power cycle is needed.\n");
2453 
2454 	netif_device_detach(edev->ndev);
2455 
2456 	if (edev->cdev)
2457 		edev->ops->common->set_power_state(edev->cdev, PCI_D3hot);
2458 }
2459 
2460 static void qede_recovery_handler(struct qede_dev *edev)
2461 {
2462 	u32 curr_state = edev->state;
2463 	int rc;
2464 
2465 	DP_NOTICE(edev, "Starting a recovery process\n");
2466 
2467 	/* No need to acquire first the qede_lock since is done by qede_sp_task
2468 	 * before calling this function.
2469 	 */
2470 	edev->state = QEDE_STATE_RECOVERY;
2471 
2472 	edev->ops->common->recovery_prolog(edev->cdev);
2473 
2474 	if (curr_state == QEDE_STATE_OPEN)
2475 		qede_unload(edev, QEDE_UNLOAD_RECOVERY, true);
2476 
2477 	__qede_remove(edev->pdev, QEDE_REMOVE_RECOVERY);
2478 
2479 	rc = __qede_probe(edev->pdev, edev->dp_module, edev->dp_level,
2480 			  IS_VF(edev), QEDE_PROBE_RECOVERY);
2481 	if (rc) {
2482 		edev->cdev = NULL;
2483 		goto err;
2484 	}
2485 
2486 	if (curr_state == QEDE_STATE_OPEN) {
2487 		rc = qede_load(edev, QEDE_LOAD_RECOVERY, true);
2488 		if (rc)
2489 			goto err;
2490 
2491 		qede_config_rx_mode(edev->ndev);
2492 		udp_tunnel_get_rx_info(edev->ndev);
2493 	}
2494 
2495 	edev->state = curr_state;
2496 
2497 	DP_NOTICE(edev, "Recovery handling is done\n");
2498 
2499 	return;
2500 
2501 err:
2502 	qede_recovery_failed(edev);
2503 }
2504 
2505 static bool qede_is_txq_full(struct qede_dev *edev, struct qede_tx_queue *txq)
2506 {
2507 	struct netdev_queue *netdev_txq;
2508 
2509 	netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id);
2510 	if (netif_xmit_stopped(netdev_txq))
2511 		return true;
2512 
2513 	return false;
2514 }
2515 
2516 static void qede_get_generic_tlv_data(void *dev, struct qed_generic_tlvs *data)
2517 {
2518 	struct qede_dev *edev = dev;
2519 	struct netdev_hw_addr *ha;
2520 	int i;
2521 
2522 	if (edev->ndev->features & NETIF_F_IP_CSUM)
2523 		data->feat_flags |= QED_TLV_IP_CSUM;
2524 	if (edev->ndev->features & NETIF_F_TSO)
2525 		data->feat_flags |= QED_TLV_LSO;
2526 
2527 	ether_addr_copy(data->mac[0], edev->ndev->dev_addr);
2528 	memset(data->mac[1], 0, ETH_ALEN);
2529 	memset(data->mac[2], 0, ETH_ALEN);
2530 	/* Copy the first two UC macs */
2531 	netif_addr_lock_bh(edev->ndev);
2532 	i = 1;
2533 	netdev_for_each_uc_addr(ha, edev->ndev) {
2534 		ether_addr_copy(data->mac[i++], ha->addr);
2535 		if (i == QED_TLV_MAC_COUNT)
2536 			break;
2537 	}
2538 
2539 	netif_addr_unlock_bh(edev->ndev);
2540 }
2541 
2542 static void qede_get_eth_tlv_data(void *dev, void *data)
2543 {
2544 	struct qed_mfw_tlv_eth *etlv = data;
2545 	struct qede_dev *edev = dev;
2546 	struct qede_fastpath *fp;
2547 	int i;
2548 
2549 	etlv->lso_maxoff_size = 0XFFFF;
2550 	etlv->lso_maxoff_size_set = true;
2551 	etlv->lso_minseg_size = (u16)ETH_TX_LSO_WINDOW_MIN_LEN;
2552 	etlv->lso_minseg_size_set = true;
2553 	etlv->prom_mode = !!(edev->ndev->flags & IFF_PROMISC);
2554 	etlv->prom_mode_set = true;
2555 	etlv->tx_descr_size = QEDE_TSS_COUNT(edev);
2556 	etlv->tx_descr_size_set = true;
2557 	etlv->rx_descr_size = QEDE_RSS_COUNT(edev);
2558 	etlv->rx_descr_size_set = true;
2559 	etlv->iov_offload = QED_MFW_TLV_IOV_OFFLOAD_VEB;
2560 	etlv->iov_offload_set = true;
2561 
2562 	/* Fill information regarding queues; Should be done under the qede
2563 	 * lock to guarantee those don't change beneath our feet.
2564 	 */
2565 	etlv->txqs_empty = true;
2566 	etlv->rxqs_empty = true;
2567 	etlv->num_txqs_full = 0;
2568 	etlv->num_rxqs_full = 0;
2569 
2570 	__qede_lock(edev);
2571 	for_each_queue(i) {
2572 		fp = &edev->fp_array[i];
2573 		if (fp->type & QEDE_FASTPATH_TX) {
2574 			struct qede_tx_queue *txq = QEDE_FP_TC0_TXQ(fp);
2575 
2576 			if (txq->sw_tx_cons != txq->sw_tx_prod)
2577 				etlv->txqs_empty = false;
2578 			if (qede_is_txq_full(edev, txq))
2579 				etlv->num_txqs_full++;
2580 		}
2581 		if (fp->type & QEDE_FASTPATH_RX) {
2582 			if (qede_has_rx_work(fp->rxq))
2583 				etlv->rxqs_empty = false;
2584 
2585 			/* This one is a bit tricky; Firmware might stop
2586 			 * placing packets if ring is not yet full.
2587 			 * Give an approximation.
2588 			 */
2589 			if (le16_to_cpu(*fp->rxq->hw_cons_ptr) -
2590 			    qed_chain_get_cons_idx(&fp->rxq->rx_comp_ring) >
2591 			    RX_RING_SIZE - 100)
2592 				etlv->num_rxqs_full++;
2593 		}
2594 	}
2595 	__qede_unlock(edev);
2596 
2597 	etlv->txqs_empty_set = true;
2598 	etlv->rxqs_empty_set = true;
2599 	etlv->num_txqs_full_set = true;
2600 	etlv->num_rxqs_full_set = true;
2601 }
2602 
2603 /**
2604  * qede_io_error_detected - called when PCI error is detected
2605  * @pdev: Pointer to PCI device
2606  * @state: The current pci connection state
2607  *
2608  * This function is called after a PCI bus error affecting
2609  * this device has been detected.
2610  */
2611 static pci_ers_result_t
2612 qede_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
2613 {
2614 	struct net_device *dev = pci_get_drvdata(pdev);
2615 	struct qede_dev *edev = netdev_priv(dev);
2616 
2617 	if (!edev)
2618 		return PCI_ERS_RESULT_NONE;
2619 
2620 	DP_NOTICE(edev, "IO error detected [%d]\n", state);
2621 
2622 	__qede_lock(edev);
2623 	if (edev->state == QEDE_STATE_RECOVERY) {
2624 		DP_NOTICE(edev, "Device already in the recovery state\n");
2625 		__qede_unlock(edev);
2626 		return PCI_ERS_RESULT_NONE;
2627 	}
2628 
2629 	/* PF handles the recovery of its VFs */
2630 	if (IS_VF(edev)) {
2631 		DP_VERBOSE(edev, QED_MSG_IOV,
2632 			   "VF recovery is handled by its PF\n");
2633 		__qede_unlock(edev);
2634 		return PCI_ERS_RESULT_RECOVERED;
2635 	}
2636 
2637 	/* Close OS Tx */
2638 	netif_tx_disable(edev->ndev);
2639 	netif_carrier_off(edev->ndev);
2640 
2641 	set_bit(QEDE_SP_AER, &edev->sp_flags);
2642 	schedule_delayed_work(&edev->sp_task, 0);
2643 
2644 	__qede_unlock(edev);
2645 
2646 	return PCI_ERS_RESULT_CAN_RECOVER;
2647 }
2648