xref: /linux/drivers/net/ethernet/qlogic/qede/qede_main.c (revision 6ebe6dbd6886af07b102aca42e44edbee94a22d9)
1 /* QLogic qede NIC Driver
2  * Copyright (c) 2015-2017  QLogic Corporation
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and /or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 #include <linux/module.h>
33 #include <linux/pci.h>
34 #include <linux/version.h>
35 #include <linux/device.h>
36 #include <linux/netdevice.h>
37 #include <linux/etherdevice.h>
38 #include <linux/skbuff.h>
39 #include <linux/errno.h>
40 #include <linux/list.h>
41 #include <linux/string.h>
42 #include <linux/dma-mapping.h>
43 #include <linux/interrupt.h>
44 #include <asm/byteorder.h>
45 #include <asm/param.h>
46 #include <linux/io.h>
47 #include <linux/netdev_features.h>
48 #include <linux/udp.h>
49 #include <linux/tcp.h>
50 #include <net/udp_tunnel.h>
51 #include <linux/ip.h>
52 #include <net/ipv6.h>
53 #include <net/tcp.h>
54 #include <linux/if_ether.h>
55 #include <linux/if_vlan.h>
56 #include <linux/pkt_sched.h>
57 #include <linux/ethtool.h>
58 #include <linux/in.h>
59 #include <linux/random.h>
60 #include <net/ip6_checksum.h>
61 #include <linux/bitops.h>
62 #include <linux/vmalloc.h>
63 #include "qede.h"
64 #include "qede_ptp.h"
65 
66 static char version[] =
67 	"QLogic FastLinQ 4xxxx Ethernet Driver qede " DRV_MODULE_VERSION "\n";
68 
69 MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver");
70 MODULE_LICENSE("GPL");
71 MODULE_VERSION(DRV_MODULE_VERSION);
72 
73 static uint debug;
74 module_param(debug, uint, 0);
75 MODULE_PARM_DESC(debug, " Default debug msglevel");
76 
77 static const struct qed_eth_ops *qed_ops;
78 
79 #define CHIP_NUM_57980S_40		0x1634
80 #define CHIP_NUM_57980S_10		0x1666
81 #define CHIP_NUM_57980S_MF		0x1636
82 #define CHIP_NUM_57980S_100		0x1644
83 #define CHIP_NUM_57980S_50		0x1654
84 #define CHIP_NUM_57980S_25		0x1656
85 #define CHIP_NUM_57980S_IOV		0x1664
86 #define CHIP_NUM_AH			0x8070
87 #define CHIP_NUM_AH_IOV			0x8090
88 
89 #ifndef PCI_DEVICE_ID_NX2_57980E
90 #define PCI_DEVICE_ID_57980S_40		CHIP_NUM_57980S_40
91 #define PCI_DEVICE_ID_57980S_10		CHIP_NUM_57980S_10
92 #define PCI_DEVICE_ID_57980S_MF		CHIP_NUM_57980S_MF
93 #define PCI_DEVICE_ID_57980S_100	CHIP_NUM_57980S_100
94 #define PCI_DEVICE_ID_57980S_50		CHIP_NUM_57980S_50
95 #define PCI_DEVICE_ID_57980S_25		CHIP_NUM_57980S_25
96 #define PCI_DEVICE_ID_57980S_IOV	CHIP_NUM_57980S_IOV
97 #define PCI_DEVICE_ID_AH		CHIP_NUM_AH
98 #define PCI_DEVICE_ID_AH_IOV		CHIP_NUM_AH_IOV
99 
100 #endif
101 
102 enum qede_pci_private {
103 	QEDE_PRIVATE_PF,
104 	QEDE_PRIVATE_VF
105 };
106 
107 static const struct pci_device_id qede_pci_tbl[] = {
108 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF},
109 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF},
110 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF},
111 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF},
112 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF},
113 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF},
114 #ifdef CONFIG_QED_SRIOV
115 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF},
116 #endif
117 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH), QEDE_PRIVATE_PF},
118 #ifdef CONFIG_QED_SRIOV
119 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH_IOV), QEDE_PRIVATE_VF},
120 #endif
121 	{ 0 }
122 };
123 
124 MODULE_DEVICE_TABLE(pci, qede_pci_tbl);
125 
126 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id);
127 
128 #define TX_TIMEOUT		(5 * HZ)
129 
130 /* Utilize last protocol index for XDP */
131 #define XDP_PI	11
132 
133 static void qede_remove(struct pci_dev *pdev);
134 static void qede_shutdown(struct pci_dev *pdev);
135 static void qede_link_update(void *dev, struct qed_link_output *link);
136 
137 /* The qede lock is used to protect driver state change and driver flows that
138  * are not reentrant.
139  */
140 void __qede_lock(struct qede_dev *edev)
141 {
142 	mutex_lock(&edev->qede_lock);
143 }
144 
145 void __qede_unlock(struct qede_dev *edev)
146 {
147 	mutex_unlock(&edev->qede_lock);
148 }
149 
150 #ifdef CONFIG_QED_SRIOV
151 static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos,
152 			    __be16 vlan_proto)
153 {
154 	struct qede_dev *edev = netdev_priv(ndev);
155 
156 	if (vlan > 4095) {
157 		DP_NOTICE(edev, "Illegal vlan value %d\n", vlan);
158 		return -EINVAL;
159 	}
160 
161 	if (vlan_proto != htons(ETH_P_8021Q))
162 		return -EPROTONOSUPPORT;
163 
164 	DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n",
165 		   vlan, vf);
166 
167 	return edev->ops->iov->set_vlan(edev->cdev, vlan, vf);
168 }
169 
170 static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac)
171 {
172 	struct qede_dev *edev = netdev_priv(ndev);
173 
174 	DP_VERBOSE(edev, QED_MSG_IOV,
175 		   "Setting MAC %02x:%02x:%02x:%02x:%02x:%02x to VF [%d]\n",
176 		   mac[0], mac[1], mac[2], mac[3], mac[4], mac[5], vfidx);
177 
178 	if (!is_valid_ether_addr(mac)) {
179 		DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n");
180 		return -EINVAL;
181 	}
182 
183 	return edev->ops->iov->set_mac(edev->cdev, mac, vfidx);
184 }
185 
186 static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param)
187 {
188 	struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev));
189 	struct qed_dev_info *qed_info = &edev->dev_info.common;
190 	struct qed_update_vport_params *vport_params;
191 	int rc;
192 
193 	vport_params = vzalloc(sizeof(*vport_params));
194 	if (!vport_params)
195 		return -ENOMEM;
196 	DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param);
197 
198 	rc = edev->ops->iov->configure(edev->cdev, num_vfs_param);
199 
200 	/* Enable/Disable Tx switching for PF */
201 	if ((rc == num_vfs_param) && netif_running(edev->ndev) &&
202 	    qed_info->mf_mode != QED_MF_NPAR && qed_info->tx_switching) {
203 		vport_params->vport_id = 0;
204 		vport_params->update_tx_switching_flg = 1;
205 		vport_params->tx_switching_flg = num_vfs_param ? 1 : 0;
206 		edev->ops->vport_update(edev->cdev, vport_params);
207 	}
208 
209 	vfree(vport_params);
210 	return rc;
211 }
212 #endif
213 
214 static struct pci_driver qede_pci_driver = {
215 	.name = "qede",
216 	.id_table = qede_pci_tbl,
217 	.probe = qede_probe,
218 	.remove = qede_remove,
219 	.shutdown = qede_shutdown,
220 #ifdef CONFIG_QED_SRIOV
221 	.sriov_configure = qede_sriov_configure,
222 #endif
223 };
224 
225 static struct qed_eth_cb_ops qede_ll_ops = {
226 	{
227 #ifdef CONFIG_RFS_ACCEL
228 		.arfs_filter_op = qede_arfs_filter_op,
229 #endif
230 		.link_update = qede_link_update,
231 	},
232 	.force_mac = qede_force_mac,
233 	.ports_update = qede_udp_ports_update,
234 };
235 
236 static int qede_netdev_event(struct notifier_block *this, unsigned long event,
237 			     void *ptr)
238 {
239 	struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
240 	struct ethtool_drvinfo drvinfo;
241 	struct qede_dev *edev;
242 
243 	if (event != NETDEV_CHANGENAME && event != NETDEV_CHANGEADDR)
244 		goto done;
245 
246 	/* Check whether this is a qede device */
247 	if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo)
248 		goto done;
249 
250 	memset(&drvinfo, 0, sizeof(drvinfo));
251 	ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo);
252 	if (strcmp(drvinfo.driver, "qede"))
253 		goto done;
254 	edev = netdev_priv(ndev);
255 
256 	switch (event) {
257 	case NETDEV_CHANGENAME:
258 		/* Notify qed of the name change */
259 		if (!edev->ops || !edev->ops->common)
260 			goto done;
261 		edev->ops->common->set_name(edev->cdev, edev->ndev->name);
262 		break;
263 	case NETDEV_CHANGEADDR:
264 		edev = netdev_priv(ndev);
265 		qede_rdma_event_changeaddr(edev);
266 		break;
267 	}
268 
269 done:
270 	return NOTIFY_DONE;
271 }
272 
273 static struct notifier_block qede_netdev_notifier = {
274 	.notifier_call = qede_netdev_event,
275 };
276 
277 static
278 int __init qede_init(void)
279 {
280 	int ret;
281 
282 	pr_info("qede_init: %s\n", version);
283 
284 	qed_ops = qed_get_eth_ops();
285 	if (!qed_ops) {
286 		pr_notice("Failed to get qed ethtool operations\n");
287 		return -EINVAL;
288 	}
289 
290 	/* Must register notifier before pci ops, since we might miss
291 	 * interface rename after pci probe and netdev registeration.
292 	 */
293 	ret = register_netdevice_notifier(&qede_netdev_notifier);
294 	if (ret) {
295 		pr_notice("Failed to register netdevice_notifier\n");
296 		qed_put_eth_ops();
297 		return -EINVAL;
298 	}
299 
300 	ret = pci_register_driver(&qede_pci_driver);
301 	if (ret) {
302 		pr_notice("Failed to register driver\n");
303 		unregister_netdevice_notifier(&qede_netdev_notifier);
304 		qed_put_eth_ops();
305 		return -EINVAL;
306 	}
307 
308 	return 0;
309 }
310 
311 static void __exit qede_cleanup(void)
312 {
313 	if (debug & QED_LOG_INFO_MASK)
314 		pr_info("qede_cleanup called\n");
315 
316 	unregister_netdevice_notifier(&qede_netdev_notifier);
317 	pci_unregister_driver(&qede_pci_driver);
318 	qed_put_eth_ops();
319 }
320 
321 module_init(qede_init);
322 module_exit(qede_cleanup);
323 
324 static int qede_open(struct net_device *ndev);
325 static int qede_close(struct net_device *ndev);
326 
327 void qede_fill_by_demand_stats(struct qede_dev *edev)
328 {
329 	struct qede_stats_common *p_common = &edev->stats.common;
330 	struct qed_eth_stats stats;
331 
332 	edev->ops->get_vport_stats(edev->cdev, &stats);
333 
334 	p_common->no_buff_discards = stats.common.no_buff_discards;
335 	p_common->packet_too_big_discard = stats.common.packet_too_big_discard;
336 	p_common->ttl0_discard = stats.common.ttl0_discard;
337 	p_common->rx_ucast_bytes = stats.common.rx_ucast_bytes;
338 	p_common->rx_mcast_bytes = stats.common.rx_mcast_bytes;
339 	p_common->rx_bcast_bytes = stats.common.rx_bcast_bytes;
340 	p_common->rx_ucast_pkts = stats.common.rx_ucast_pkts;
341 	p_common->rx_mcast_pkts = stats.common.rx_mcast_pkts;
342 	p_common->rx_bcast_pkts = stats.common.rx_bcast_pkts;
343 	p_common->mftag_filter_discards = stats.common.mftag_filter_discards;
344 	p_common->mac_filter_discards = stats.common.mac_filter_discards;
345 
346 	p_common->tx_ucast_bytes = stats.common.tx_ucast_bytes;
347 	p_common->tx_mcast_bytes = stats.common.tx_mcast_bytes;
348 	p_common->tx_bcast_bytes = stats.common.tx_bcast_bytes;
349 	p_common->tx_ucast_pkts = stats.common.tx_ucast_pkts;
350 	p_common->tx_mcast_pkts = stats.common.tx_mcast_pkts;
351 	p_common->tx_bcast_pkts = stats.common.tx_bcast_pkts;
352 	p_common->tx_err_drop_pkts = stats.common.tx_err_drop_pkts;
353 	p_common->coalesced_pkts = stats.common.tpa_coalesced_pkts;
354 	p_common->coalesced_events = stats.common.tpa_coalesced_events;
355 	p_common->coalesced_aborts_num = stats.common.tpa_aborts_num;
356 	p_common->non_coalesced_pkts = stats.common.tpa_not_coalesced_pkts;
357 	p_common->coalesced_bytes = stats.common.tpa_coalesced_bytes;
358 
359 	p_common->rx_64_byte_packets = stats.common.rx_64_byte_packets;
360 	p_common->rx_65_to_127_byte_packets =
361 	    stats.common.rx_65_to_127_byte_packets;
362 	p_common->rx_128_to_255_byte_packets =
363 	    stats.common.rx_128_to_255_byte_packets;
364 	p_common->rx_256_to_511_byte_packets =
365 	    stats.common.rx_256_to_511_byte_packets;
366 	p_common->rx_512_to_1023_byte_packets =
367 	    stats.common.rx_512_to_1023_byte_packets;
368 	p_common->rx_1024_to_1518_byte_packets =
369 	    stats.common.rx_1024_to_1518_byte_packets;
370 	p_common->rx_crc_errors = stats.common.rx_crc_errors;
371 	p_common->rx_mac_crtl_frames = stats.common.rx_mac_crtl_frames;
372 	p_common->rx_pause_frames = stats.common.rx_pause_frames;
373 	p_common->rx_pfc_frames = stats.common.rx_pfc_frames;
374 	p_common->rx_align_errors = stats.common.rx_align_errors;
375 	p_common->rx_carrier_errors = stats.common.rx_carrier_errors;
376 	p_common->rx_oversize_packets = stats.common.rx_oversize_packets;
377 	p_common->rx_jabbers = stats.common.rx_jabbers;
378 	p_common->rx_undersize_packets = stats.common.rx_undersize_packets;
379 	p_common->rx_fragments = stats.common.rx_fragments;
380 	p_common->tx_64_byte_packets = stats.common.tx_64_byte_packets;
381 	p_common->tx_65_to_127_byte_packets =
382 	    stats.common.tx_65_to_127_byte_packets;
383 	p_common->tx_128_to_255_byte_packets =
384 	    stats.common.tx_128_to_255_byte_packets;
385 	p_common->tx_256_to_511_byte_packets =
386 	    stats.common.tx_256_to_511_byte_packets;
387 	p_common->tx_512_to_1023_byte_packets =
388 	    stats.common.tx_512_to_1023_byte_packets;
389 	p_common->tx_1024_to_1518_byte_packets =
390 	    stats.common.tx_1024_to_1518_byte_packets;
391 	p_common->tx_pause_frames = stats.common.tx_pause_frames;
392 	p_common->tx_pfc_frames = stats.common.tx_pfc_frames;
393 	p_common->brb_truncates = stats.common.brb_truncates;
394 	p_common->brb_discards = stats.common.brb_discards;
395 	p_common->tx_mac_ctrl_frames = stats.common.tx_mac_ctrl_frames;
396 
397 	if (QEDE_IS_BB(edev)) {
398 		struct qede_stats_bb *p_bb = &edev->stats.bb;
399 
400 		p_bb->rx_1519_to_1522_byte_packets =
401 		    stats.bb.rx_1519_to_1522_byte_packets;
402 		p_bb->rx_1519_to_2047_byte_packets =
403 		    stats.bb.rx_1519_to_2047_byte_packets;
404 		p_bb->rx_2048_to_4095_byte_packets =
405 		    stats.bb.rx_2048_to_4095_byte_packets;
406 		p_bb->rx_4096_to_9216_byte_packets =
407 		    stats.bb.rx_4096_to_9216_byte_packets;
408 		p_bb->rx_9217_to_16383_byte_packets =
409 		    stats.bb.rx_9217_to_16383_byte_packets;
410 		p_bb->tx_1519_to_2047_byte_packets =
411 		    stats.bb.tx_1519_to_2047_byte_packets;
412 		p_bb->tx_2048_to_4095_byte_packets =
413 		    stats.bb.tx_2048_to_4095_byte_packets;
414 		p_bb->tx_4096_to_9216_byte_packets =
415 		    stats.bb.tx_4096_to_9216_byte_packets;
416 		p_bb->tx_9217_to_16383_byte_packets =
417 		    stats.bb.tx_9217_to_16383_byte_packets;
418 		p_bb->tx_lpi_entry_count = stats.bb.tx_lpi_entry_count;
419 		p_bb->tx_total_collisions = stats.bb.tx_total_collisions;
420 	} else {
421 		struct qede_stats_ah *p_ah = &edev->stats.ah;
422 
423 		p_ah->rx_1519_to_max_byte_packets =
424 		    stats.ah.rx_1519_to_max_byte_packets;
425 		p_ah->tx_1519_to_max_byte_packets =
426 		    stats.ah.tx_1519_to_max_byte_packets;
427 	}
428 }
429 
430 static void qede_get_stats64(struct net_device *dev,
431 			     struct rtnl_link_stats64 *stats)
432 {
433 	struct qede_dev *edev = netdev_priv(dev);
434 	struct qede_stats_common *p_common;
435 
436 	qede_fill_by_demand_stats(edev);
437 	p_common = &edev->stats.common;
438 
439 	stats->rx_packets = p_common->rx_ucast_pkts + p_common->rx_mcast_pkts +
440 			    p_common->rx_bcast_pkts;
441 	stats->tx_packets = p_common->tx_ucast_pkts + p_common->tx_mcast_pkts +
442 			    p_common->tx_bcast_pkts;
443 
444 	stats->rx_bytes = p_common->rx_ucast_bytes + p_common->rx_mcast_bytes +
445 			  p_common->rx_bcast_bytes;
446 	stats->tx_bytes = p_common->tx_ucast_bytes + p_common->tx_mcast_bytes +
447 			  p_common->tx_bcast_bytes;
448 
449 	stats->tx_errors = p_common->tx_err_drop_pkts;
450 	stats->multicast = p_common->rx_mcast_pkts + p_common->rx_bcast_pkts;
451 
452 	stats->rx_fifo_errors = p_common->no_buff_discards;
453 
454 	if (QEDE_IS_BB(edev))
455 		stats->collisions = edev->stats.bb.tx_total_collisions;
456 	stats->rx_crc_errors = p_common->rx_crc_errors;
457 	stats->rx_frame_errors = p_common->rx_align_errors;
458 }
459 
460 #ifdef CONFIG_QED_SRIOV
461 static int qede_get_vf_config(struct net_device *dev, int vfidx,
462 			      struct ifla_vf_info *ivi)
463 {
464 	struct qede_dev *edev = netdev_priv(dev);
465 
466 	if (!edev->ops)
467 		return -EINVAL;
468 
469 	return edev->ops->iov->get_config(edev->cdev, vfidx, ivi);
470 }
471 
472 static int qede_set_vf_rate(struct net_device *dev, int vfidx,
473 			    int min_tx_rate, int max_tx_rate)
474 {
475 	struct qede_dev *edev = netdev_priv(dev);
476 
477 	return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate,
478 					max_tx_rate);
479 }
480 
481 static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val)
482 {
483 	struct qede_dev *edev = netdev_priv(dev);
484 
485 	if (!edev->ops)
486 		return -EINVAL;
487 
488 	return edev->ops->iov->set_spoof(edev->cdev, vfidx, val);
489 }
490 
491 static int qede_set_vf_link_state(struct net_device *dev, int vfidx,
492 				  int link_state)
493 {
494 	struct qede_dev *edev = netdev_priv(dev);
495 
496 	if (!edev->ops)
497 		return -EINVAL;
498 
499 	return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state);
500 }
501 
502 static int qede_set_vf_trust(struct net_device *dev, int vfidx, bool setting)
503 {
504 	struct qede_dev *edev = netdev_priv(dev);
505 
506 	if (!edev->ops)
507 		return -EINVAL;
508 
509 	return edev->ops->iov->set_trust(edev->cdev, vfidx, setting);
510 }
511 #endif
512 
513 static int qede_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
514 {
515 	struct qede_dev *edev = netdev_priv(dev);
516 
517 	if (!netif_running(dev))
518 		return -EAGAIN;
519 
520 	switch (cmd) {
521 	case SIOCSHWTSTAMP:
522 		return qede_ptp_hw_ts(edev, ifr);
523 	default:
524 		DP_VERBOSE(edev, QED_MSG_DEBUG,
525 			   "default IOCTL cmd 0x%x\n", cmd);
526 		return -EOPNOTSUPP;
527 	}
528 
529 	return 0;
530 }
531 
532 static const struct net_device_ops qede_netdev_ops = {
533 	.ndo_open = qede_open,
534 	.ndo_stop = qede_close,
535 	.ndo_start_xmit = qede_start_xmit,
536 	.ndo_set_rx_mode = qede_set_rx_mode,
537 	.ndo_set_mac_address = qede_set_mac_addr,
538 	.ndo_validate_addr = eth_validate_addr,
539 	.ndo_change_mtu = qede_change_mtu,
540 	.ndo_do_ioctl = qede_ioctl,
541 #ifdef CONFIG_QED_SRIOV
542 	.ndo_set_vf_mac = qede_set_vf_mac,
543 	.ndo_set_vf_vlan = qede_set_vf_vlan,
544 	.ndo_set_vf_trust = qede_set_vf_trust,
545 #endif
546 	.ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
547 	.ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
548 	.ndo_fix_features = qede_fix_features,
549 	.ndo_set_features = qede_set_features,
550 	.ndo_get_stats64 = qede_get_stats64,
551 #ifdef CONFIG_QED_SRIOV
552 	.ndo_set_vf_link_state = qede_set_vf_link_state,
553 	.ndo_set_vf_spoofchk = qede_set_vf_spoofchk,
554 	.ndo_get_vf_config = qede_get_vf_config,
555 	.ndo_set_vf_rate = qede_set_vf_rate,
556 #endif
557 	.ndo_udp_tunnel_add = qede_udp_tunnel_add,
558 	.ndo_udp_tunnel_del = qede_udp_tunnel_del,
559 	.ndo_features_check = qede_features_check,
560 	.ndo_bpf = qede_xdp,
561 #ifdef CONFIG_RFS_ACCEL
562 	.ndo_rx_flow_steer = qede_rx_flow_steer,
563 #endif
564 };
565 
566 static const struct net_device_ops qede_netdev_vf_ops = {
567 	.ndo_open = qede_open,
568 	.ndo_stop = qede_close,
569 	.ndo_start_xmit = qede_start_xmit,
570 	.ndo_set_rx_mode = qede_set_rx_mode,
571 	.ndo_set_mac_address = qede_set_mac_addr,
572 	.ndo_validate_addr = eth_validate_addr,
573 	.ndo_change_mtu = qede_change_mtu,
574 	.ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
575 	.ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
576 	.ndo_fix_features = qede_fix_features,
577 	.ndo_set_features = qede_set_features,
578 	.ndo_get_stats64 = qede_get_stats64,
579 	.ndo_udp_tunnel_add = qede_udp_tunnel_add,
580 	.ndo_udp_tunnel_del = qede_udp_tunnel_del,
581 	.ndo_features_check = qede_features_check,
582 };
583 
584 static const struct net_device_ops qede_netdev_vf_xdp_ops = {
585 	.ndo_open = qede_open,
586 	.ndo_stop = qede_close,
587 	.ndo_start_xmit = qede_start_xmit,
588 	.ndo_set_rx_mode = qede_set_rx_mode,
589 	.ndo_set_mac_address = qede_set_mac_addr,
590 	.ndo_validate_addr = eth_validate_addr,
591 	.ndo_change_mtu = qede_change_mtu,
592 	.ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
593 	.ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
594 	.ndo_fix_features = qede_fix_features,
595 	.ndo_set_features = qede_set_features,
596 	.ndo_get_stats64 = qede_get_stats64,
597 	.ndo_udp_tunnel_add = qede_udp_tunnel_add,
598 	.ndo_udp_tunnel_del = qede_udp_tunnel_del,
599 	.ndo_features_check = qede_features_check,
600 	.ndo_bpf = qede_xdp,
601 };
602 
603 /* -------------------------------------------------------------------------
604  * START OF PROBE / REMOVE
605  * -------------------------------------------------------------------------
606  */
607 
608 static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev,
609 					    struct pci_dev *pdev,
610 					    struct qed_dev_eth_info *info,
611 					    u32 dp_module, u8 dp_level)
612 {
613 	struct net_device *ndev;
614 	struct qede_dev *edev;
615 
616 	ndev = alloc_etherdev_mqs(sizeof(*edev),
617 				  info->num_queues, info->num_queues);
618 	if (!ndev) {
619 		pr_err("etherdev allocation failed\n");
620 		return NULL;
621 	}
622 
623 	edev = netdev_priv(ndev);
624 	edev->ndev = ndev;
625 	edev->cdev = cdev;
626 	edev->pdev = pdev;
627 	edev->dp_module = dp_module;
628 	edev->dp_level = dp_level;
629 	edev->ops = qed_ops;
630 	edev->q_num_rx_buffers = NUM_RX_BDS_DEF;
631 	edev->q_num_tx_buffers = NUM_TX_BDS_DEF;
632 
633 	DP_INFO(edev, "Allocated netdev with %d tx queues and %d rx queues\n",
634 		info->num_queues, info->num_queues);
635 
636 	SET_NETDEV_DEV(ndev, &pdev->dev);
637 
638 	memset(&edev->stats, 0, sizeof(edev->stats));
639 	memcpy(&edev->dev_info, info, sizeof(*info));
640 
641 	/* As ethtool doesn't have the ability to show WoL behavior as
642 	 * 'default', if device supports it declare it's enabled.
643 	 */
644 	if (edev->dev_info.common.wol_support)
645 		edev->wol_enabled = true;
646 
647 	INIT_LIST_HEAD(&edev->vlan_list);
648 
649 	return edev;
650 }
651 
652 static void qede_init_ndev(struct qede_dev *edev)
653 {
654 	struct net_device *ndev = edev->ndev;
655 	struct pci_dev *pdev = edev->pdev;
656 	bool udp_tunnel_enable = false;
657 	netdev_features_t hw_features;
658 
659 	pci_set_drvdata(pdev, ndev);
660 
661 	ndev->mem_start = edev->dev_info.common.pci_mem_start;
662 	ndev->base_addr = ndev->mem_start;
663 	ndev->mem_end = edev->dev_info.common.pci_mem_end;
664 	ndev->irq = edev->dev_info.common.pci_irq;
665 
666 	ndev->watchdog_timeo = TX_TIMEOUT;
667 
668 	if (IS_VF(edev)) {
669 		if (edev->dev_info.xdp_supported)
670 			ndev->netdev_ops = &qede_netdev_vf_xdp_ops;
671 		else
672 			ndev->netdev_ops = &qede_netdev_vf_ops;
673 	} else {
674 		ndev->netdev_ops = &qede_netdev_ops;
675 	}
676 
677 	qede_set_ethtool_ops(ndev);
678 
679 	ndev->priv_flags |= IFF_UNICAST_FLT;
680 
681 	/* user-changeble features */
682 	hw_features = NETIF_F_GRO | NETIF_F_GRO_HW | NETIF_F_SG |
683 		      NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
684 		      NETIF_F_TSO | NETIF_F_TSO6;
685 
686 	if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1)
687 		hw_features |= NETIF_F_NTUPLE;
688 
689 	if (edev->dev_info.common.vxlan_enable ||
690 	    edev->dev_info.common.geneve_enable)
691 		udp_tunnel_enable = true;
692 
693 	if (udp_tunnel_enable || edev->dev_info.common.gre_enable) {
694 		hw_features |= NETIF_F_TSO_ECN;
695 		ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
696 					NETIF_F_SG | NETIF_F_TSO |
697 					NETIF_F_TSO_ECN | NETIF_F_TSO6 |
698 					NETIF_F_RXCSUM;
699 	}
700 
701 	if (udp_tunnel_enable) {
702 		hw_features |= (NETIF_F_GSO_UDP_TUNNEL |
703 				NETIF_F_GSO_UDP_TUNNEL_CSUM);
704 		ndev->hw_enc_features |= (NETIF_F_GSO_UDP_TUNNEL |
705 					  NETIF_F_GSO_UDP_TUNNEL_CSUM);
706 	}
707 
708 	if (edev->dev_info.common.gre_enable) {
709 		hw_features |= (NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM);
710 		ndev->hw_enc_features |= (NETIF_F_GSO_GRE |
711 					  NETIF_F_GSO_GRE_CSUM);
712 	}
713 
714 	ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
715 			      NETIF_F_HIGHDMA;
716 	ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
717 			 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA |
718 			 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX;
719 
720 	ndev->hw_features = hw_features;
721 
722 	/* MTU range: 46 - 9600 */
723 	ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
724 	ndev->max_mtu = QEDE_MAX_JUMBO_PACKET_SIZE;
725 
726 	/* Set network device HW mac */
727 	ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac);
728 
729 	ndev->mtu = edev->dev_info.common.mtu;
730 }
731 
732 /* This function converts from 32b param to two params of level and module
733  * Input 32b decoding:
734  * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the
735  * 'happy' flow, e.g. memory allocation failed.
736  * b30 - enable all INFO prints. INFO prints are for major steps in the flow
737  * and provide important parameters.
738  * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that
739  * module. VERBOSE prints are for tracking the specific flow in low level.
740  *
741  * Notice that the level should be that of the lowest required logs.
742  */
743 void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level)
744 {
745 	*p_dp_level = QED_LEVEL_NOTICE;
746 	*p_dp_module = 0;
747 
748 	if (debug & QED_LOG_VERBOSE_MASK) {
749 		*p_dp_level = QED_LEVEL_VERBOSE;
750 		*p_dp_module = (debug & 0x3FFFFFFF);
751 	} else if (debug & QED_LOG_INFO_MASK) {
752 		*p_dp_level = QED_LEVEL_INFO;
753 	} else if (debug & QED_LOG_NOTICE_MASK) {
754 		*p_dp_level = QED_LEVEL_NOTICE;
755 	}
756 }
757 
758 static void qede_free_fp_array(struct qede_dev *edev)
759 {
760 	if (edev->fp_array) {
761 		struct qede_fastpath *fp;
762 		int i;
763 
764 		for_each_queue(i) {
765 			fp = &edev->fp_array[i];
766 
767 			kfree(fp->sb_info);
768 			kfree(fp->rxq);
769 			kfree(fp->xdp_tx);
770 			kfree(fp->txq);
771 		}
772 		kfree(edev->fp_array);
773 	}
774 
775 	edev->num_queues = 0;
776 	edev->fp_num_tx = 0;
777 	edev->fp_num_rx = 0;
778 }
779 
780 static int qede_alloc_fp_array(struct qede_dev *edev)
781 {
782 	u8 fp_combined, fp_rx = edev->fp_num_rx;
783 	struct qede_fastpath *fp;
784 	int i;
785 
786 	edev->fp_array = kcalloc(QEDE_QUEUE_CNT(edev),
787 				 sizeof(*edev->fp_array), GFP_KERNEL);
788 	if (!edev->fp_array) {
789 		DP_NOTICE(edev, "fp array allocation failed\n");
790 		goto err;
791 	}
792 
793 	fp_combined = QEDE_QUEUE_CNT(edev) - fp_rx - edev->fp_num_tx;
794 
795 	/* Allocate the FP elements for Rx queues followed by combined and then
796 	 * the Tx. This ordering should be maintained so that the respective
797 	 * queues (Rx or Tx) will be together in the fastpath array and the
798 	 * associated ids will be sequential.
799 	 */
800 	for_each_queue(i) {
801 		fp = &edev->fp_array[i];
802 
803 		fp->sb_info = kzalloc(sizeof(*fp->sb_info), GFP_KERNEL);
804 		if (!fp->sb_info) {
805 			DP_NOTICE(edev, "sb info struct allocation failed\n");
806 			goto err;
807 		}
808 
809 		if (fp_rx) {
810 			fp->type = QEDE_FASTPATH_RX;
811 			fp_rx--;
812 		} else if (fp_combined) {
813 			fp->type = QEDE_FASTPATH_COMBINED;
814 			fp_combined--;
815 		} else {
816 			fp->type = QEDE_FASTPATH_TX;
817 		}
818 
819 		if (fp->type & QEDE_FASTPATH_TX) {
820 			fp->txq = kzalloc(sizeof(*fp->txq), GFP_KERNEL);
821 			if (!fp->txq)
822 				goto err;
823 		}
824 
825 		if (fp->type & QEDE_FASTPATH_RX) {
826 			fp->rxq = kzalloc(sizeof(*fp->rxq), GFP_KERNEL);
827 			if (!fp->rxq)
828 				goto err;
829 
830 			if (edev->xdp_prog) {
831 				fp->xdp_tx = kzalloc(sizeof(*fp->xdp_tx),
832 						     GFP_KERNEL);
833 				if (!fp->xdp_tx)
834 					goto err;
835 				fp->type |= QEDE_FASTPATH_XDP;
836 			}
837 		}
838 	}
839 
840 	return 0;
841 err:
842 	qede_free_fp_array(edev);
843 	return -ENOMEM;
844 }
845 
846 static void qede_sp_task(struct work_struct *work)
847 {
848 	struct qede_dev *edev = container_of(work, struct qede_dev,
849 					     sp_task.work);
850 
851 	__qede_lock(edev);
852 
853 	if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags))
854 		if (edev->state == QEDE_STATE_OPEN)
855 			qede_config_rx_mode(edev->ndev);
856 
857 #ifdef CONFIG_RFS_ACCEL
858 	if (test_and_clear_bit(QEDE_SP_ARFS_CONFIG, &edev->sp_flags)) {
859 		if (edev->state == QEDE_STATE_OPEN)
860 			qede_process_arfs_filters(edev, false);
861 	}
862 #endif
863 	__qede_unlock(edev);
864 }
865 
866 static void qede_update_pf_params(struct qed_dev *cdev)
867 {
868 	struct qed_pf_params pf_params;
869 
870 	/* 64 rx + 64 tx + 64 XDP */
871 	memset(&pf_params, 0, sizeof(struct qed_pf_params));
872 	pf_params.eth_pf_params.num_cons = (MAX_SB_PER_PF_MIMD - 1) * 3;
873 
874 	/* Same for VFs - make sure they'll have sufficient connections
875 	 * to support XDP Tx queues.
876 	 */
877 	pf_params.eth_pf_params.num_vf_cons = 48;
878 
879 	pf_params.eth_pf_params.num_arfs_filters = QEDE_RFS_MAX_FLTR;
880 	qed_ops->common->update_pf_params(cdev, &pf_params);
881 }
882 
883 #define QEDE_FW_VER_STR_SIZE	80
884 
885 static void qede_log_probe(struct qede_dev *edev)
886 {
887 	struct qed_dev_info *p_dev_info = &edev->dev_info.common;
888 	u8 buf[QEDE_FW_VER_STR_SIZE];
889 	size_t left_size;
890 
891 	snprintf(buf, QEDE_FW_VER_STR_SIZE,
892 		 "Storm FW %d.%d.%d.%d, Management FW %d.%d.%d.%d",
893 		 p_dev_info->fw_major, p_dev_info->fw_minor, p_dev_info->fw_rev,
894 		 p_dev_info->fw_eng,
895 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_3_MASK) >>
896 		 QED_MFW_VERSION_3_OFFSET,
897 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_2_MASK) >>
898 		 QED_MFW_VERSION_2_OFFSET,
899 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_1_MASK) >>
900 		 QED_MFW_VERSION_1_OFFSET,
901 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_0_MASK) >>
902 		 QED_MFW_VERSION_0_OFFSET);
903 
904 	left_size = QEDE_FW_VER_STR_SIZE - strlen(buf);
905 	if (p_dev_info->mbi_version && left_size)
906 		snprintf(buf + strlen(buf), left_size,
907 			 " [MBI %d.%d.%d]",
908 			 (p_dev_info->mbi_version & QED_MBI_VERSION_2_MASK) >>
909 			 QED_MBI_VERSION_2_OFFSET,
910 			 (p_dev_info->mbi_version & QED_MBI_VERSION_1_MASK) >>
911 			 QED_MBI_VERSION_1_OFFSET,
912 			 (p_dev_info->mbi_version & QED_MBI_VERSION_0_MASK) >>
913 			 QED_MBI_VERSION_0_OFFSET);
914 
915 	pr_info("qede %02x:%02x.%02x: %s [%s]\n", edev->pdev->bus->number,
916 		PCI_SLOT(edev->pdev->devfn), PCI_FUNC(edev->pdev->devfn),
917 		buf, edev->ndev->name);
918 }
919 
920 enum qede_probe_mode {
921 	QEDE_PROBE_NORMAL,
922 };
923 
924 static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level,
925 			bool is_vf, enum qede_probe_mode mode)
926 {
927 	struct qed_probe_params probe_params;
928 	struct qed_slowpath_params sp_params;
929 	struct qed_dev_eth_info dev_info;
930 	struct qede_dev *edev;
931 	struct qed_dev *cdev;
932 	int rc;
933 
934 	if (unlikely(dp_level & QED_LEVEL_INFO))
935 		pr_notice("Starting qede probe\n");
936 
937 	memset(&probe_params, 0, sizeof(probe_params));
938 	probe_params.protocol = QED_PROTOCOL_ETH;
939 	probe_params.dp_module = dp_module;
940 	probe_params.dp_level = dp_level;
941 	probe_params.is_vf = is_vf;
942 	cdev = qed_ops->common->probe(pdev, &probe_params);
943 	if (!cdev) {
944 		rc = -ENODEV;
945 		goto err0;
946 	}
947 
948 	qede_update_pf_params(cdev);
949 
950 	/* Start the Slowpath-process */
951 	memset(&sp_params, 0, sizeof(sp_params));
952 	sp_params.int_mode = QED_INT_MODE_MSIX;
953 	sp_params.drv_major = QEDE_MAJOR_VERSION;
954 	sp_params.drv_minor = QEDE_MINOR_VERSION;
955 	sp_params.drv_rev = QEDE_REVISION_VERSION;
956 	sp_params.drv_eng = QEDE_ENGINEERING_VERSION;
957 	strlcpy(sp_params.name, "qede LAN", QED_DRV_VER_STR_SIZE);
958 	rc = qed_ops->common->slowpath_start(cdev, &sp_params);
959 	if (rc) {
960 		pr_notice("Cannot start slowpath\n");
961 		goto err1;
962 	}
963 
964 	/* Learn information crucial for qede to progress */
965 	rc = qed_ops->fill_dev_info(cdev, &dev_info);
966 	if (rc)
967 		goto err2;
968 
969 	edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module,
970 				   dp_level);
971 	if (!edev) {
972 		rc = -ENOMEM;
973 		goto err2;
974 	}
975 
976 	if (is_vf)
977 		edev->flags |= QEDE_FLAG_IS_VF;
978 
979 	qede_init_ndev(edev);
980 
981 	rc = qede_rdma_dev_add(edev);
982 	if (rc)
983 		goto err3;
984 
985 	/* Prepare the lock prior to the registeration of the netdev,
986 	 * as once it's registered we might reach flows requiring it
987 	 * [it's even possible to reach a flow needing it directly
988 	 * from there, although it's unlikely].
989 	 */
990 	INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task);
991 	mutex_init(&edev->qede_lock);
992 	rc = register_netdev(edev->ndev);
993 	if (rc) {
994 		DP_NOTICE(edev, "Cannot register net-device\n");
995 		goto err4;
996 	}
997 
998 	edev->ops->common->set_name(cdev, edev->ndev->name);
999 
1000 	/* PTP not supported on VFs */
1001 	if (!is_vf)
1002 		qede_ptp_enable(edev, true);
1003 
1004 	edev->ops->register_ops(cdev, &qede_ll_ops, edev);
1005 
1006 #ifdef CONFIG_DCB
1007 	if (!IS_VF(edev))
1008 		qede_set_dcbnl_ops(edev->ndev);
1009 #endif
1010 
1011 	edev->rx_copybreak = QEDE_RX_HDR_SIZE;
1012 
1013 	qede_log_probe(edev);
1014 	return 0;
1015 
1016 err4:
1017 	qede_rdma_dev_remove(edev);
1018 err3:
1019 	free_netdev(edev->ndev);
1020 err2:
1021 	qed_ops->common->slowpath_stop(cdev);
1022 err1:
1023 	qed_ops->common->remove(cdev);
1024 err0:
1025 	return rc;
1026 }
1027 
1028 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1029 {
1030 	bool is_vf = false;
1031 	u32 dp_module = 0;
1032 	u8 dp_level = 0;
1033 
1034 	switch ((enum qede_pci_private)id->driver_data) {
1035 	case QEDE_PRIVATE_VF:
1036 		if (debug & QED_LOG_VERBOSE_MASK)
1037 			dev_err(&pdev->dev, "Probing a VF\n");
1038 		is_vf = true;
1039 		break;
1040 	default:
1041 		if (debug & QED_LOG_VERBOSE_MASK)
1042 			dev_err(&pdev->dev, "Probing a PF\n");
1043 	}
1044 
1045 	qede_config_debug(debug, &dp_module, &dp_level);
1046 
1047 	return __qede_probe(pdev, dp_module, dp_level, is_vf,
1048 			    QEDE_PROBE_NORMAL);
1049 }
1050 
1051 enum qede_remove_mode {
1052 	QEDE_REMOVE_NORMAL,
1053 };
1054 
1055 static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode)
1056 {
1057 	struct net_device *ndev = pci_get_drvdata(pdev);
1058 	struct qede_dev *edev = netdev_priv(ndev);
1059 	struct qed_dev *cdev = edev->cdev;
1060 
1061 	DP_INFO(edev, "Starting qede_remove\n");
1062 
1063 	unregister_netdev(ndev);
1064 	cancel_delayed_work_sync(&edev->sp_task);
1065 
1066 	qede_ptp_disable(edev);
1067 
1068 	qede_rdma_dev_remove(edev);
1069 
1070 	edev->ops->common->set_power_state(cdev, PCI_D0);
1071 
1072 	pci_set_drvdata(pdev, NULL);
1073 
1074 	/* Use global ops since we've freed edev */
1075 	qed_ops->common->slowpath_stop(cdev);
1076 	if (system_state == SYSTEM_POWER_OFF)
1077 		return;
1078 	qed_ops->common->remove(cdev);
1079 
1080 	/* Since this can happen out-of-sync with other flows,
1081 	 * don't release the netdevice until after slowpath stop
1082 	 * has been called to guarantee various other contexts
1083 	 * [e.g., QED register callbacks] won't break anything when
1084 	 * accessing the netdevice.
1085 	 */
1086 	 free_netdev(ndev);
1087 
1088 	dev_info(&pdev->dev, "Ending qede_remove successfully\n");
1089 }
1090 
1091 static void qede_remove(struct pci_dev *pdev)
1092 {
1093 	__qede_remove(pdev, QEDE_REMOVE_NORMAL);
1094 }
1095 
1096 static void qede_shutdown(struct pci_dev *pdev)
1097 {
1098 	__qede_remove(pdev, QEDE_REMOVE_NORMAL);
1099 }
1100 
1101 /* -------------------------------------------------------------------------
1102  * START OF LOAD / UNLOAD
1103  * -------------------------------------------------------------------------
1104  */
1105 
1106 static int qede_set_num_queues(struct qede_dev *edev)
1107 {
1108 	int rc;
1109 	u16 rss_num;
1110 
1111 	/* Setup queues according to possible resources*/
1112 	if (edev->req_queues)
1113 		rss_num = edev->req_queues;
1114 	else
1115 		rss_num = netif_get_num_default_rss_queues() *
1116 			  edev->dev_info.common.num_hwfns;
1117 
1118 	rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num);
1119 
1120 	rc = edev->ops->common->set_fp_int(edev->cdev, rss_num);
1121 	if (rc > 0) {
1122 		/* Managed to request interrupts for our queues */
1123 		edev->num_queues = rc;
1124 		DP_INFO(edev, "Managed %d [of %d] RSS queues\n",
1125 			QEDE_QUEUE_CNT(edev), rss_num);
1126 		rc = 0;
1127 	}
1128 
1129 	edev->fp_num_tx = edev->req_num_tx;
1130 	edev->fp_num_rx = edev->req_num_rx;
1131 
1132 	return rc;
1133 }
1134 
1135 static void qede_free_mem_sb(struct qede_dev *edev, struct qed_sb_info *sb_info,
1136 			     u16 sb_id)
1137 {
1138 	if (sb_info->sb_virt) {
1139 		edev->ops->common->sb_release(edev->cdev, sb_info, sb_id);
1140 		dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt),
1141 				  (void *)sb_info->sb_virt, sb_info->sb_phys);
1142 		memset(sb_info, 0, sizeof(*sb_info));
1143 	}
1144 }
1145 
1146 /* This function allocates fast-path status block memory */
1147 static int qede_alloc_mem_sb(struct qede_dev *edev,
1148 			     struct qed_sb_info *sb_info, u16 sb_id)
1149 {
1150 	struct status_block *sb_virt;
1151 	dma_addr_t sb_phys;
1152 	int rc;
1153 
1154 	sb_virt = dma_alloc_coherent(&edev->pdev->dev,
1155 				     sizeof(*sb_virt), &sb_phys, GFP_KERNEL);
1156 	if (!sb_virt) {
1157 		DP_ERR(edev, "Status block allocation failed\n");
1158 		return -ENOMEM;
1159 	}
1160 
1161 	rc = edev->ops->common->sb_init(edev->cdev, sb_info,
1162 					sb_virt, sb_phys, sb_id,
1163 					QED_SB_TYPE_L2_QUEUE);
1164 	if (rc) {
1165 		DP_ERR(edev, "Status block initialization failed\n");
1166 		dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt),
1167 				  sb_virt, sb_phys);
1168 		return rc;
1169 	}
1170 
1171 	return 0;
1172 }
1173 
1174 static void qede_free_rx_buffers(struct qede_dev *edev,
1175 				 struct qede_rx_queue *rxq)
1176 {
1177 	u16 i;
1178 
1179 	for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) {
1180 		struct sw_rx_data *rx_buf;
1181 		struct page *data;
1182 
1183 		rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX];
1184 		data = rx_buf->data;
1185 
1186 		dma_unmap_page(&edev->pdev->dev,
1187 			       rx_buf->mapping, PAGE_SIZE, rxq->data_direction);
1188 
1189 		rx_buf->data = NULL;
1190 		__free_page(data);
1191 	}
1192 }
1193 
1194 static void qede_free_sge_mem(struct qede_dev *edev, struct qede_rx_queue *rxq)
1195 {
1196 	int i;
1197 
1198 	if (edev->gro_disable)
1199 		return;
1200 
1201 	for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
1202 		struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
1203 		struct sw_rx_data *replace_buf = &tpa_info->buffer;
1204 
1205 		if (replace_buf->data) {
1206 			dma_unmap_page(&edev->pdev->dev,
1207 				       replace_buf->mapping,
1208 				       PAGE_SIZE, DMA_FROM_DEVICE);
1209 			__free_page(replace_buf->data);
1210 		}
1211 	}
1212 }
1213 
1214 static void qede_free_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1215 {
1216 	qede_free_sge_mem(edev, rxq);
1217 
1218 	/* Free rx buffers */
1219 	qede_free_rx_buffers(edev, rxq);
1220 
1221 	/* Free the parallel SW ring */
1222 	kfree(rxq->sw_rx_ring);
1223 
1224 	/* Free the real RQ ring used by FW */
1225 	edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring);
1226 	edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring);
1227 }
1228 
1229 static int qede_alloc_sge_mem(struct qede_dev *edev, struct qede_rx_queue *rxq)
1230 {
1231 	dma_addr_t mapping;
1232 	int i;
1233 
1234 	if (edev->gro_disable)
1235 		return 0;
1236 
1237 	for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
1238 		struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
1239 		struct sw_rx_data *replace_buf = &tpa_info->buffer;
1240 
1241 		replace_buf->data = alloc_pages(GFP_ATOMIC, 0);
1242 		if (unlikely(!replace_buf->data)) {
1243 			DP_NOTICE(edev,
1244 				  "Failed to allocate TPA skb pool [replacement buffer]\n");
1245 			goto err;
1246 		}
1247 
1248 		mapping = dma_map_page(&edev->pdev->dev, replace_buf->data, 0,
1249 				       PAGE_SIZE, DMA_FROM_DEVICE);
1250 		if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
1251 			DP_NOTICE(edev,
1252 				  "Failed to map TPA replacement buffer\n");
1253 			goto err;
1254 		}
1255 
1256 		replace_buf->mapping = mapping;
1257 		tpa_info->buffer.page_offset = 0;
1258 		tpa_info->buffer_mapping = mapping;
1259 		tpa_info->state = QEDE_AGG_STATE_NONE;
1260 	}
1261 
1262 	return 0;
1263 err:
1264 	qede_free_sge_mem(edev, rxq);
1265 	edev->gro_disable = 1;
1266 	edev->ndev->features &= ~NETIF_F_GRO_HW;
1267 	return -ENOMEM;
1268 }
1269 
1270 /* This function allocates all memory needed per Rx queue */
1271 static int qede_alloc_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1272 {
1273 	int i, rc, size;
1274 
1275 	rxq->num_rx_buffers = edev->q_num_rx_buffers;
1276 
1277 	rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD + edev->ndev->mtu;
1278 	rxq->rx_headroom = edev->xdp_prog ? XDP_PACKET_HEADROOM : 0;
1279 
1280 	/* Make sure that the headroom and  payload fit in a single page */
1281 	if (rxq->rx_buf_size + rxq->rx_headroom > PAGE_SIZE)
1282 		rxq->rx_buf_size = PAGE_SIZE - rxq->rx_headroom;
1283 
1284 	/* Segment size to spilt a page in multiple equal parts,
1285 	 * unless XDP is used in which case we'd use the entire page.
1286 	 */
1287 	if (!edev->xdp_prog)
1288 		rxq->rx_buf_seg_size = roundup_pow_of_two(rxq->rx_buf_size);
1289 	else
1290 		rxq->rx_buf_seg_size = PAGE_SIZE;
1291 
1292 	/* Allocate the parallel driver ring for Rx buffers */
1293 	size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE;
1294 	rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL);
1295 	if (!rxq->sw_rx_ring) {
1296 		DP_ERR(edev, "Rx buffers ring allocation failed\n");
1297 		rc = -ENOMEM;
1298 		goto err;
1299 	}
1300 
1301 	/* Allocate FW Rx ring  */
1302 	rc = edev->ops->common->chain_alloc(edev->cdev,
1303 					    QED_CHAIN_USE_TO_CONSUME_PRODUCE,
1304 					    QED_CHAIN_MODE_NEXT_PTR,
1305 					    QED_CHAIN_CNT_TYPE_U16,
1306 					    RX_RING_SIZE,
1307 					    sizeof(struct eth_rx_bd),
1308 					    &rxq->rx_bd_ring, NULL);
1309 	if (rc)
1310 		goto err;
1311 
1312 	/* Allocate FW completion ring */
1313 	rc = edev->ops->common->chain_alloc(edev->cdev,
1314 					    QED_CHAIN_USE_TO_CONSUME,
1315 					    QED_CHAIN_MODE_PBL,
1316 					    QED_CHAIN_CNT_TYPE_U16,
1317 					    RX_RING_SIZE,
1318 					    sizeof(union eth_rx_cqe),
1319 					    &rxq->rx_comp_ring, NULL);
1320 	if (rc)
1321 		goto err;
1322 
1323 	/* Allocate buffers for the Rx ring */
1324 	rxq->filled_buffers = 0;
1325 	for (i = 0; i < rxq->num_rx_buffers; i++) {
1326 		rc = qede_alloc_rx_buffer(rxq, false);
1327 		if (rc) {
1328 			DP_ERR(edev,
1329 			       "Rx buffers allocation failed at index %d\n", i);
1330 			goto err;
1331 		}
1332 	}
1333 
1334 	rc = qede_alloc_sge_mem(edev, rxq);
1335 err:
1336 	return rc;
1337 }
1338 
1339 static void qede_free_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1340 {
1341 	/* Free the parallel SW ring */
1342 	if (txq->is_xdp)
1343 		kfree(txq->sw_tx_ring.xdp);
1344 	else
1345 		kfree(txq->sw_tx_ring.skbs);
1346 
1347 	/* Free the real RQ ring used by FW */
1348 	edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl);
1349 }
1350 
1351 /* This function allocates all memory needed per Tx queue */
1352 static int qede_alloc_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1353 {
1354 	union eth_tx_bd_types *p_virt;
1355 	int size, rc;
1356 
1357 	txq->num_tx_buffers = edev->q_num_tx_buffers;
1358 
1359 	/* Allocate the parallel driver ring for Tx buffers */
1360 	if (txq->is_xdp) {
1361 		size = sizeof(*txq->sw_tx_ring.xdp) * txq->num_tx_buffers;
1362 		txq->sw_tx_ring.xdp = kzalloc(size, GFP_KERNEL);
1363 		if (!txq->sw_tx_ring.xdp)
1364 			goto err;
1365 	} else {
1366 		size = sizeof(*txq->sw_tx_ring.skbs) * txq->num_tx_buffers;
1367 		txq->sw_tx_ring.skbs = kzalloc(size, GFP_KERNEL);
1368 		if (!txq->sw_tx_ring.skbs)
1369 			goto err;
1370 	}
1371 
1372 	rc = edev->ops->common->chain_alloc(edev->cdev,
1373 					    QED_CHAIN_USE_TO_CONSUME_PRODUCE,
1374 					    QED_CHAIN_MODE_PBL,
1375 					    QED_CHAIN_CNT_TYPE_U16,
1376 					    txq->num_tx_buffers,
1377 					    sizeof(*p_virt),
1378 					    &txq->tx_pbl, NULL);
1379 	if (rc)
1380 		goto err;
1381 
1382 	return 0;
1383 
1384 err:
1385 	qede_free_mem_txq(edev, txq);
1386 	return -ENOMEM;
1387 }
1388 
1389 /* This function frees all memory of a single fp */
1390 static void qede_free_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1391 {
1392 	qede_free_mem_sb(edev, fp->sb_info, fp->id);
1393 
1394 	if (fp->type & QEDE_FASTPATH_RX)
1395 		qede_free_mem_rxq(edev, fp->rxq);
1396 
1397 	if (fp->type & QEDE_FASTPATH_XDP)
1398 		qede_free_mem_txq(edev, fp->xdp_tx);
1399 
1400 	if (fp->type & QEDE_FASTPATH_TX)
1401 		qede_free_mem_txq(edev, fp->txq);
1402 }
1403 
1404 /* This function allocates all memory needed for a single fp (i.e. an entity
1405  * which contains status block, one rx queue and/or multiple per-TC tx queues.
1406  */
1407 static int qede_alloc_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1408 {
1409 	int rc = 0;
1410 
1411 	rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->id);
1412 	if (rc)
1413 		goto out;
1414 
1415 	if (fp->type & QEDE_FASTPATH_RX) {
1416 		rc = qede_alloc_mem_rxq(edev, fp->rxq);
1417 		if (rc)
1418 			goto out;
1419 	}
1420 
1421 	if (fp->type & QEDE_FASTPATH_XDP) {
1422 		rc = qede_alloc_mem_txq(edev, fp->xdp_tx);
1423 		if (rc)
1424 			goto out;
1425 	}
1426 
1427 	if (fp->type & QEDE_FASTPATH_TX) {
1428 		rc = qede_alloc_mem_txq(edev, fp->txq);
1429 		if (rc)
1430 			goto out;
1431 	}
1432 
1433 out:
1434 	return rc;
1435 }
1436 
1437 static void qede_free_mem_load(struct qede_dev *edev)
1438 {
1439 	int i;
1440 
1441 	for_each_queue(i) {
1442 		struct qede_fastpath *fp = &edev->fp_array[i];
1443 
1444 		qede_free_mem_fp(edev, fp);
1445 	}
1446 }
1447 
1448 /* This function allocates all qede memory at NIC load. */
1449 static int qede_alloc_mem_load(struct qede_dev *edev)
1450 {
1451 	int rc = 0, queue_id;
1452 
1453 	for (queue_id = 0; queue_id < QEDE_QUEUE_CNT(edev); queue_id++) {
1454 		struct qede_fastpath *fp = &edev->fp_array[queue_id];
1455 
1456 		rc = qede_alloc_mem_fp(edev, fp);
1457 		if (rc) {
1458 			DP_ERR(edev,
1459 			       "Failed to allocate memory for fastpath - rss id = %d\n",
1460 			       queue_id);
1461 			qede_free_mem_load(edev);
1462 			return rc;
1463 		}
1464 	}
1465 
1466 	return 0;
1467 }
1468 
1469 /* This function inits fp content and resets the SB, RXQ and TXQ structures */
1470 static void qede_init_fp(struct qede_dev *edev)
1471 {
1472 	int queue_id, rxq_index = 0, txq_index = 0;
1473 	struct qede_fastpath *fp;
1474 
1475 	for_each_queue(queue_id) {
1476 		fp = &edev->fp_array[queue_id];
1477 
1478 		fp->edev = edev;
1479 		fp->id = queue_id;
1480 
1481 		if (fp->type & QEDE_FASTPATH_XDP) {
1482 			fp->xdp_tx->index = QEDE_TXQ_IDX_TO_XDP(edev,
1483 								rxq_index);
1484 			fp->xdp_tx->is_xdp = 1;
1485 		}
1486 
1487 		if (fp->type & QEDE_FASTPATH_RX) {
1488 			fp->rxq->rxq_id = rxq_index++;
1489 
1490 			/* Determine how to map buffers for this queue */
1491 			if (fp->type & QEDE_FASTPATH_XDP)
1492 				fp->rxq->data_direction = DMA_BIDIRECTIONAL;
1493 			else
1494 				fp->rxq->data_direction = DMA_FROM_DEVICE;
1495 			fp->rxq->dev = &edev->pdev->dev;
1496 		}
1497 
1498 		if (fp->type & QEDE_FASTPATH_TX) {
1499 			fp->txq->index = txq_index++;
1500 			if (edev->dev_info.is_legacy)
1501 				fp->txq->is_legacy = 1;
1502 			fp->txq->dev = &edev->pdev->dev;
1503 		}
1504 
1505 		snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
1506 			 edev->ndev->name, queue_id);
1507 	}
1508 
1509 	edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO_HW);
1510 }
1511 
1512 static int qede_set_real_num_queues(struct qede_dev *edev)
1513 {
1514 	int rc = 0;
1515 
1516 	rc = netif_set_real_num_tx_queues(edev->ndev, QEDE_TSS_COUNT(edev));
1517 	if (rc) {
1518 		DP_NOTICE(edev, "Failed to set real number of Tx queues\n");
1519 		return rc;
1520 	}
1521 
1522 	rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_COUNT(edev));
1523 	if (rc) {
1524 		DP_NOTICE(edev, "Failed to set real number of Rx queues\n");
1525 		return rc;
1526 	}
1527 
1528 	return 0;
1529 }
1530 
1531 static void qede_napi_disable_remove(struct qede_dev *edev)
1532 {
1533 	int i;
1534 
1535 	for_each_queue(i) {
1536 		napi_disable(&edev->fp_array[i].napi);
1537 
1538 		netif_napi_del(&edev->fp_array[i].napi);
1539 	}
1540 }
1541 
1542 static void qede_napi_add_enable(struct qede_dev *edev)
1543 {
1544 	int i;
1545 
1546 	/* Add NAPI objects */
1547 	for_each_queue(i) {
1548 		netif_napi_add(edev->ndev, &edev->fp_array[i].napi,
1549 			       qede_poll, NAPI_POLL_WEIGHT);
1550 		napi_enable(&edev->fp_array[i].napi);
1551 	}
1552 }
1553 
1554 static void qede_sync_free_irqs(struct qede_dev *edev)
1555 {
1556 	int i;
1557 
1558 	for (i = 0; i < edev->int_info.used_cnt; i++) {
1559 		if (edev->int_info.msix_cnt) {
1560 			synchronize_irq(edev->int_info.msix[i].vector);
1561 			free_irq(edev->int_info.msix[i].vector,
1562 				 &edev->fp_array[i]);
1563 		} else {
1564 			edev->ops->common->simd_handler_clean(edev->cdev, i);
1565 		}
1566 	}
1567 
1568 	edev->int_info.used_cnt = 0;
1569 }
1570 
1571 static int qede_req_msix_irqs(struct qede_dev *edev)
1572 {
1573 	int i, rc;
1574 
1575 	/* Sanitize number of interrupts == number of prepared RSS queues */
1576 	if (QEDE_QUEUE_CNT(edev) > edev->int_info.msix_cnt) {
1577 		DP_ERR(edev,
1578 		       "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n",
1579 		       QEDE_QUEUE_CNT(edev), edev->int_info.msix_cnt);
1580 		return -EINVAL;
1581 	}
1582 
1583 	for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) {
1584 #ifdef CONFIG_RFS_ACCEL
1585 		struct qede_fastpath *fp = &edev->fp_array[i];
1586 
1587 		if (edev->ndev->rx_cpu_rmap && (fp->type & QEDE_FASTPATH_RX)) {
1588 			rc = irq_cpu_rmap_add(edev->ndev->rx_cpu_rmap,
1589 					      edev->int_info.msix[i].vector);
1590 			if (rc) {
1591 				DP_ERR(edev, "Failed to add CPU rmap\n");
1592 				qede_free_arfs(edev);
1593 			}
1594 		}
1595 #endif
1596 		rc = request_irq(edev->int_info.msix[i].vector,
1597 				 qede_msix_fp_int, 0, edev->fp_array[i].name,
1598 				 &edev->fp_array[i]);
1599 		if (rc) {
1600 			DP_ERR(edev, "Request fp %d irq failed\n", i);
1601 			qede_sync_free_irqs(edev);
1602 			return rc;
1603 		}
1604 		DP_VERBOSE(edev, NETIF_MSG_INTR,
1605 			   "Requested fp irq for %s [entry %d]. Cookie is at %p\n",
1606 			   edev->fp_array[i].name, i,
1607 			   &edev->fp_array[i]);
1608 		edev->int_info.used_cnt++;
1609 	}
1610 
1611 	return 0;
1612 }
1613 
1614 static void qede_simd_fp_handler(void *cookie)
1615 {
1616 	struct qede_fastpath *fp = (struct qede_fastpath *)cookie;
1617 
1618 	napi_schedule_irqoff(&fp->napi);
1619 }
1620 
1621 static int qede_setup_irqs(struct qede_dev *edev)
1622 {
1623 	int i, rc = 0;
1624 
1625 	/* Learn Interrupt configuration */
1626 	rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info);
1627 	if (rc)
1628 		return rc;
1629 
1630 	if (edev->int_info.msix_cnt) {
1631 		rc = qede_req_msix_irqs(edev);
1632 		if (rc)
1633 			return rc;
1634 		edev->ndev->irq = edev->int_info.msix[0].vector;
1635 	} else {
1636 		const struct qed_common_ops *ops;
1637 
1638 		/* qed should learn receive the RSS ids and callbacks */
1639 		ops = edev->ops->common;
1640 		for (i = 0; i < QEDE_QUEUE_CNT(edev); i++)
1641 			ops->simd_handler_config(edev->cdev,
1642 						 &edev->fp_array[i], i,
1643 						 qede_simd_fp_handler);
1644 		edev->int_info.used_cnt = QEDE_QUEUE_CNT(edev);
1645 	}
1646 	return 0;
1647 }
1648 
1649 static int qede_drain_txq(struct qede_dev *edev,
1650 			  struct qede_tx_queue *txq, bool allow_drain)
1651 {
1652 	int rc, cnt = 1000;
1653 
1654 	while (txq->sw_tx_cons != txq->sw_tx_prod) {
1655 		if (!cnt) {
1656 			if (allow_drain) {
1657 				DP_NOTICE(edev,
1658 					  "Tx queue[%d] is stuck, requesting MCP to drain\n",
1659 					  txq->index);
1660 				rc = edev->ops->common->drain(edev->cdev);
1661 				if (rc)
1662 					return rc;
1663 				return qede_drain_txq(edev, txq, false);
1664 			}
1665 			DP_NOTICE(edev,
1666 				  "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n",
1667 				  txq->index, txq->sw_tx_prod,
1668 				  txq->sw_tx_cons);
1669 			return -ENODEV;
1670 		}
1671 		cnt--;
1672 		usleep_range(1000, 2000);
1673 		barrier();
1674 	}
1675 
1676 	/* FW finished processing, wait for HW to transmit all tx packets */
1677 	usleep_range(1000, 2000);
1678 
1679 	return 0;
1680 }
1681 
1682 static int qede_stop_txq(struct qede_dev *edev,
1683 			 struct qede_tx_queue *txq, int rss_id)
1684 {
1685 	return edev->ops->q_tx_stop(edev->cdev, rss_id, txq->handle);
1686 }
1687 
1688 static int qede_stop_queues(struct qede_dev *edev)
1689 {
1690 	struct qed_update_vport_params *vport_update_params;
1691 	struct qed_dev *cdev = edev->cdev;
1692 	struct qede_fastpath *fp;
1693 	int rc, i;
1694 
1695 	/* Disable the vport */
1696 	vport_update_params = vzalloc(sizeof(*vport_update_params));
1697 	if (!vport_update_params)
1698 		return -ENOMEM;
1699 
1700 	vport_update_params->vport_id = 0;
1701 	vport_update_params->update_vport_active_flg = 1;
1702 	vport_update_params->vport_active_flg = 0;
1703 	vport_update_params->update_rss_flg = 0;
1704 
1705 	rc = edev->ops->vport_update(cdev, vport_update_params);
1706 	vfree(vport_update_params);
1707 
1708 	if (rc) {
1709 		DP_ERR(edev, "Failed to update vport\n");
1710 		return rc;
1711 	}
1712 
1713 	/* Flush Tx queues. If needed, request drain from MCP */
1714 	for_each_queue(i) {
1715 		fp = &edev->fp_array[i];
1716 
1717 		if (fp->type & QEDE_FASTPATH_TX) {
1718 			rc = qede_drain_txq(edev, fp->txq, true);
1719 			if (rc)
1720 				return rc;
1721 		}
1722 
1723 		if (fp->type & QEDE_FASTPATH_XDP) {
1724 			rc = qede_drain_txq(edev, fp->xdp_tx, true);
1725 			if (rc)
1726 				return rc;
1727 		}
1728 	}
1729 
1730 	/* Stop all Queues in reverse order */
1731 	for (i = QEDE_QUEUE_CNT(edev) - 1; i >= 0; i--) {
1732 		fp = &edev->fp_array[i];
1733 
1734 		/* Stop the Tx Queue(s) */
1735 		if (fp->type & QEDE_FASTPATH_TX) {
1736 			rc = qede_stop_txq(edev, fp->txq, i);
1737 			if (rc)
1738 				return rc;
1739 		}
1740 
1741 		/* Stop the Rx Queue */
1742 		if (fp->type & QEDE_FASTPATH_RX) {
1743 			rc = edev->ops->q_rx_stop(cdev, i, fp->rxq->handle);
1744 			if (rc) {
1745 				DP_ERR(edev, "Failed to stop RXQ #%d\n", i);
1746 				return rc;
1747 			}
1748 		}
1749 
1750 		/* Stop the XDP forwarding queue */
1751 		if (fp->type & QEDE_FASTPATH_XDP) {
1752 			rc = qede_stop_txq(edev, fp->xdp_tx, i);
1753 			if (rc)
1754 				return rc;
1755 
1756 			bpf_prog_put(fp->rxq->xdp_prog);
1757 		}
1758 	}
1759 
1760 	/* Stop the vport */
1761 	rc = edev->ops->vport_stop(cdev, 0);
1762 	if (rc)
1763 		DP_ERR(edev, "Failed to stop VPORT\n");
1764 
1765 	return rc;
1766 }
1767 
1768 static int qede_start_txq(struct qede_dev *edev,
1769 			  struct qede_fastpath *fp,
1770 			  struct qede_tx_queue *txq, u8 rss_id, u16 sb_idx)
1771 {
1772 	dma_addr_t phys_table = qed_chain_get_pbl_phys(&txq->tx_pbl);
1773 	u32 page_cnt = qed_chain_get_page_cnt(&txq->tx_pbl);
1774 	struct qed_queue_start_common_params params;
1775 	struct qed_txq_start_ret_params ret_params;
1776 	int rc;
1777 
1778 	memset(&params, 0, sizeof(params));
1779 	memset(&ret_params, 0, sizeof(ret_params));
1780 
1781 	/* Let the XDP queue share the queue-zone with one of the regular txq.
1782 	 * We don't really care about its coalescing.
1783 	 */
1784 	if (txq->is_xdp)
1785 		params.queue_id = QEDE_TXQ_XDP_TO_IDX(edev, txq);
1786 	else
1787 		params.queue_id = txq->index;
1788 
1789 	params.p_sb = fp->sb_info;
1790 	params.sb_idx = sb_idx;
1791 
1792 	rc = edev->ops->q_tx_start(edev->cdev, rss_id, &params, phys_table,
1793 				   page_cnt, &ret_params);
1794 	if (rc) {
1795 		DP_ERR(edev, "Start TXQ #%d failed %d\n", txq->index, rc);
1796 		return rc;
1797 	}
1798 
1799 	txq->doorbell_addr = ret_params.p_doorbell;
1800 	txq->handle = ret_params.p_handle;
1801 
1802 	/* Determine the FW consumer address associated */
1803 	txq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[sb_idx];
1804 
1805 	/* Prepare the doorbell parameters */
1806 	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST, DB_DEST_XCM);
1807 	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD, DB_AGG_CMD_SET);
1808 	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_VAL_SEL,
1809 		  DQ_XCM_ETH_TX_BD_PROD_CMD);
1810 	txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
1811 
1812 	return rc;
1813 }
1814 
1815 static int qede_start_queues(struct qede_dev *edev, bool clear_stats)
1816 {
1817 	int vlan_removal_en = 1;
1818 	struct qed_dev *cdev = edev->cdev;
1819 	struct qed_dev_info *qed_info = &edev->dev_info.common;
1820 	struct qed_update_vport_params *vport_update_params;
1821 	struct qed_queue_start_common_params q_params;
1822 	struct qed_start_vport_params start = {0};
1823 	int rc, i;
1824 
1825 	if (!edev->num_queues) {
1826 		DP_ERR(edev,
1827 		       "Cannot update V-VPORT as active as there are no Rx queues\n");
1828 		return -EINVAL;
1829 	}
1830 
1831 	vport_update_params = vzalloc(sizeof(*vport_update_params));
1832 	if (!vport_update_params)
1833 		return -ENOMEM;
1834 
1835 	start.handle_ptp_pkts = !!(edev->ptp);
1836 	start.gro_enable = !edev->gro_disable;
1837 	start.mtu = edev->ndev->mtu;
1838 	start.vport_id = 0;
1839 	start.drop_ttl0 = true;
1840 	start.remove_inner_vlan = vlan_removal_en;
1841 	start.clear_stats = clear_stats;
1842 
1843 	rc = edev->ops->vport_start(cdev, &start);
1844 
1845 	if (rc) {
1846 		DP_ERR(edev, "Start V-PORT failed %d\n", rc);
1847 		goto out;
1848 	}
1849 
1850 	DP_VERBOSE(edev, NETIF_MSG_IFUP,
1851 		   "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n",
1852 		   start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en);
1853 
1854 	for_each_queue(i) {
1855 		struct qede_fastpath *fp = &edev->fp_array[i];
1856 		dma_addr_t p_phys_table;
1857 		u32 page_cnt;
1858 
1859 		if (fp->type & QEDE_FASTPATH_RX) {
1860 			struct qed_rxq_start_ret_params ret_params;
1861 			struct qede_rx_queue *rxq = fp->rxq;
1862 			__le16 *val;
1863 
1864 			memset(&ret_params, 0, sizeof(ret_params));
1865 			memset(&q_params, 0, sizeof(q_params));
1866 			q_params.queue_id = rxq->rxq_id;
1867 			q_params.vport_id = 0;
1868 			q_params.p_sb = fp->sb_info;
1869 			q_params.sb_idx = RX_PI;
1870 
1871 			p_phys_table =
1872 			    qed_chain_get_pbl_phys(&rxq->rx_comp_ring);
1873 			page_cnt = qed_chain_get_page_cnt(&rxq->rx_comp_ring);
1874 
1875 			rc = edev->ops->q_rx_start(cdev, i, &q_params,
1876 						   rxq->rx_buf_size,
1877 						   rxq->rx_bd_ring.p_phys_addr,
1878 						   p_phys_table,
1879 						   page_cnt, &ret_params);
1880 			if (rc) {
1881 				DP_ERR(edev, "Start RXQ #%d failed %d\n", i,
1882 				       rc);
1883 				goto out;
1884 			}
1885 
1886 			/* Use the return parameters */
1887 			rxq->hw_rxq_prod_addr = ret_params.p_prod;
1888 			rxq->handle = ret_params.p_handle;
1889 
1890 			val = &fp->sb_info->sb_virt->pi_array[RX_PI];
1891 			rxq->hw_cons_ptr = val;
1892 
1893 			qede_update_rx_prod(edev, rxq);
1894 		}
1895 
1896 		if (fp->type & QEDE_FASTPATH_XDP) {
1897 			rc = qede_start_txq(edev, fp, fp->xdp_tx, i, XDP_PI);
1898 			if (rc)
1899 				goto out;
1900 
1901 			fp->rxq->xdp_prog = bpf_prog_add(edev->xdp_prog, 1);
1902 			if (IS_ERR(fp->rxq->xdp_prog)) {
1903 				rc = PTR_ERR(fp->rxq->xdp_prog);
1904 				fp->rxq->xdp_prog = NULL;
1905 				goto out;
1906 			}
1907 		}
1908 
1909 		if (fp->type & QEDE_FASTPATH_TX) {
1910 			rc = qede_start_txq(edev, fp, fp->txq, i, TX_PI(0));
1911 			if (rc)
1912 				goto out;
1913 		}
1914 	}
1915 
1916 	/* Prepare and send the vport enable */
1917 	vport_update_params->vport_id = start.vport_id;
1918 	vport_update_params->update_vport_active_flg = 1;
1919 	vport_update_params->vport_active_flg = 1;
1920 
1921 	if ((qed_info->mf_mode == QED_MF_NPAR || pci_num_vf(edev->pdev)) &&
1922 	    qed_info->tx_switching) {
1923 		vport_update_params->update_tx_switching_flg = 1;
1924 		vport_update_params->tx_switching_flg = 1;
1925 	}
1926 
1927 	qede_fill_rss_params(edev, &vport_update_params->rss_params,
1928 			     &vport_update_params->update_rss_flg);
1929 
1930 	rc = edev->ops->vport_update(cdev, vport_update_params);
1931 	if (rc)
1932 		DP_ERR(edev, "Update V-PORT failed %d\n", rc);
1933 
1934 out:
1935 	vfree(vport_update_params);
1936 	return rc;
1937 }
1938 
1939 enum qede_unload_mode {
1940 	QEDE_UNLOAD_NORMAL,
1941 };
1942 
1943 static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode,
1944 			bool is_locked)
1945 {
1946 	struct qed_link_params link_params;
1947 	int rc;
1948 
1949 	DP_INFO(edev, "Starting qede unload\n");
1950 
1951 	if (!is_locked)
1952 		__qede_lock(edev);
1953 
1954 	edev->state = QEDE_STATE_CLOSED;
1955 
1956 	qede_rdma_dev_event_close(edev);
1957 
1958 	/* Close OS Tx */
1959 	netif_tx_disable(edev->ndev);
1960 	netif_carrier_off(edev->ndev);
1961 
1962 	/* Reset the link */
1963 	memset(&link_params, 0, sizeof(link_params));
1964 	link_params.link_up = false;
1965 	edev->ops->common->set_link(edev->cdev, &link_params);
1966 	rc = qede_stop_queues(edev);
1967 	if (rc) {
1968 		qede_sync_free_irqs(edev);
1969 		goto out;
1970 	}
1971 
1972 	DP_INFO(edev, "Stopped Queues\n");
1973 
1974 	qede_vlan_mark_nonconfigured(edev);
1975 	edev->ops->fastpath_stop(edev->cdev);
1976 
1977 	if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) {
1978 		qede_poll_for_freeing_arfs_filters(edev);
1979 		qede_free_arfs(edev);
1980 	}
1981 
1982 	/* Release the interrupts */
1983 	qede_sync_free_irqs(edev);
1984 	edev->ops->common->set_fp_int(edev->cdev, 0);
1985 
1986 	qede_napi_disable_remove(edev);
1987 
1988 	qede_free_mem_load(edev);
1989 	qede_free_fp_array(edev);
1990 
1991 out:
1992 	if (!is_locked)
1993 		__qede_unlock(edev);
1994 	DP_INFO(edev, "Ending qede unload\n");
1995 }
1996 
1997 enum qede_load_mode {
1998 	QEDE_LOAD_NORMAL,
1999 	QEDE_LOAD_RELOAD,
2000 };
2001 
2002 static int qede_load(struct qede_dev *edev, enum qede_load_mode mode,
2003 		     bool is_locked)
2004 {
2005 	struct qed_link_params link_params;
2006 	int rc;
2007 
2008 	DP_INFO(edev, "Starting qede load\n");
2009 
2010 	if (!is_locked)
2011 		__qede_lock(edev);
2012 
2013 	rc = qede_set_num_queues(edev);
2014 	if (rc)
2015 		goto out;
2016 
2017 	rc = qede_alloc_fp_array(edev);
2018 	if (rc)
2019 		goto out;
2020 
2021 	qede_init_fp(edev);
2022 
2023 	rc = qede_alloc_mem_load(edev);
2024 	if (rc)
2025 		goto err1;
2026 	DP_INFO(edev, "Allocated %d Rx, %d Tx queues\n",
2027 		QEDE_RSS_COUNT(edev), QEDE_TSS_COUNT(edev));
2028 
2029 	rc = qede_set_real_num_queues(edev);
2030 	if (rc)
2031 		goto err2;
2032 
2033 	if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) {
2034 		rc = qede_alloc_arfs(edev);
2035 		if (rc)
2036 			DP_NOTICE(edev, "aRFS memory allocation failed\n");
2037 	}
2038 
2039 	qede_napi_add_enable(edev);
2040 	DP_INFO(edev, "Napi added and enabled\n");
2041 
2042 	rc = qede_setup_irqs(edev);
2043 	if (rc)
2044 		goto err3;
2045 	DP_INFO(edev, "Setup IRQs succeeded\n");
2046 
2047 	rc = qede_start_queues(edev, mode != QEDE_LOAD_RELOAD);
2048 	if (rc)
2049 		goto err4;
2050 	DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n");
2051 
2052 	/* Program un-configured VLANs */
2053 	qede_configure_vlan_filters(edev);
2054 
2055 	/* Ask for link-up using current configuration */
2056 	memset(&link_params, 0, sizeof(link_params));
2057 	link_params.link_up = true;
2058 	edev->ops->common->set_link(edev->cdev, &link_params);
2059 
2060 	qede_rdma_dev_event_open(edev);
2061 
2062 	edev->state = QEDE_STATE_OPEN;
2063 
2064 	DP_INFO(edev, "Ending successfully qede load\n");
2065 
2066 	goto out;
2067 err4:
2068 	qede_sync_free_irqs(edev);
2069 	memset(&edev->int_info.msix_cnt, 0, sizeof(struct qed_int_info));
2070 err3:
2071 	qede_napi_disable_remove(edev);
2072 err2:
2073 	qede_free_mem_load(edev);
2074 err1:
2075 	edev->ops->common->set_fp_int(edev->cdev, 0);
2076 	qede_free_fp_array(edev);
2077 	edev->num_queues = 0;
2078 	edev->fp_num_tx = 0;
2079 	edev->fp_num_rx = 0;
2080 out:
2081 	if (!is_locked)
2082 		__qede_unlock(edev);
2083 
2084 	return rc;
2085 }
2086 
2087 /* 'func' should be able to run between unload and reload assuming interface
2088  * is actually running, or afterwards in case it's currently DOWN.
2089  */
2090 void qede_reload(struct qede_dev *edev,
2091 		 struct qede_reload_args *args, bool is_locked)
2092 {
2093 	if (!is_locked)
2094 		__qede_lock(edev);
2095 
2096 	/* Since qede_lock is held, internal state wouldn't change even
2097 	 * if netdev state would start transitioning. Check whether current
2098 	 * internal configuration indicates device is up, then reload.
2099 	 */
2100 	if (edev->state == QEDE_STATE_OPEN) {
2101 		qede_unload(edev, QEDE_UNLOAD_NORMAL, true);
2102 		if (args)
2103 			args->func(edev, args);
2104 		qede_load(edev, QEDE_LOAD_RELOAD, true);
2105 
2106 		/* Since no one is going to do it for us, re-configure */
2107 		qede_config_rx_mode(edev->ndev);
2108 	} else if (args) {
2109 		args->func(edev, args);
2110 	}
2111 
2112 	if (!is_locked)
2113 		__qede_unlock(edev);
2114 }
2115 
2116 /* called with rtnl_lock */
2117 static int qede_open(struct net_device *ndev)
2118 {
2119 	struct qede_dev *edev = netdev_priv(ndev);
2120 	int rc;
2121 
2122 	netif_carrier_off(ndev);
2123 
2124 	edev->ops->common->set_power_state(edev->cdev, PCI_D0);
2125 
2126 	rc = qede_load(edev, QEDE_LOAD_NORMAL, false);
2127 	if (rc)
2128 		return rc;
2129 
2130 	udp_tunnel_get_rx_info(ndev);
2131 
2132 	edev->ops->common->update_drv_state(edev->cdev, true);
2133 
2134 	return 0;
2135 }
2136 
2137 static int qede_close(struct net_device *ndev)
2138 {
2139 	struct qede_dev *edev = netdev_priv(ndev);
2140 
2141 	qede_unload(edev, QEDE_UNLOAD_NORMAL, false);
2142 
2143 	edev->ops->common->update_drv_state(edev->cdev, false);
2144 
2145 	return 0;
2146 }
2147 
2148 static void qede_link_update(void *dev, struct qed_link_output *link)
2149 {
2150 	struct qede_dev *edev = dev;
2151 
2152 	if (!netif_running(edev->ndev)) {
2153 		DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not running\n");
2154 		return;
2155 	}
2156 
2157 	if (link->link_up) {
2158 		if (!netif_carrier_ok(edev->ndev)) {
2159 			DP_NOTICE(edev, "Link is up\n");
2160 			netif_tx_start_all_queues(edev->ndev);
2161 			netif_carrier_on(edev->ndev);
2162 		}
2163 	} else {
2164 		if (netif_carrier_ok(edev->ndev)) {
2165 			DP_NOTICE(edev, "Link is down\n");
2166 			netif_tx_disable(edev->ndev);
2167 			netif_carrier_off(edev->ndev);
2168 		}
2169 	}
2170 }
2171