xref: /linux/drivers/net/ethernet/qlogic/qede/qede_main.c (revision 6331b8765cd0634a4e4cdcc1a6f1a74196616b94)
1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause)
2 /* QLogic qede NIC Driver
3  * Copyright (c) 2015-2017  QLogic Corporation
4  * Copyright (c) 2019-2020 Marvell International Ltd.
5  */
6 
7 #include <linux/crash_dump.h>
8 #include <linux/module.h>
9 #include <linux/pci.h>
10 #include <linux/device.h>
11 #include <linux/netdevice.h>
12 #include <linux/etherdevice.h>
13 #include <linux/skbuff.h>
14 #include <linux/errno.h>
15 #include <linux/list.h>
16 #include <linux/string.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/interrupt.h>
19 #include <asm/byteorder.h>
20 #include <asm/param.h>
21 #include <linux/io.h>
22 #include <linux/netdev_features.h>
23 #include <linux/udp.h>
24 #include <linux/tcp.h>
25 #include <net/udp_tunnel.h>
26 #include <linux/ip.h>
27 #include <net/ipv6.h>
28 #include <net/tcp.h>
29 #include <linux/if_ether.h>
30 #include <linux/if_vlan.h>
31 #include <linux/pkt_sched.h>
32 #include <linux/ethtool.h>
33 #include <linux/in.h>
34 #include <linux/random.h>
35 #include <net/ip6_checksum.h>
36 #include <linux/bitops.h>
37 #include <linux/vmalloc.h>
38 #include <linux/aer.h>
39 #include "qede.h"
40 #include "qede_ptp.h"
41 
42 MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver");
43 MODULE_LICENSE("GPL");
44 
45 static uint debug;
46 module_param(debug, uint, 0);
47 MODULE_PARM_DESC(debug, " Default debug msglevel");
48 
49 static const struct qed_eth_ops *qed_ops;
50 
51 #define CHIP_NUM_57980S_40		0x1634
52 #define CHIP_NUM_57980S_10		0x1666
53 #define CHIP_NUM_57980S_MF		0x1636
54 #define CHIP_NUM_57980S_100		0x1644
55 #define CHIP_NUM_57980S_50		0x1654
56 #define CHIP_NUM_57980S_25		0x1656
57 #define CHIP_NUM_57980S_IOV		0x1664
58 #define CHIP_NUM_AH			0x8070
59 #define CHIP_NUM_AH_IOV			0x8090
60 
61 #ifndef PCI_DEVICE_ID_NX2_57980E
62 #define PCI_DEVICE_ID_57980S_40		CHIP_NUM_57980S_40
63 #define PCI_DEVICE_ID_57980S_10		CHIP_NUM_57980S_10
64 #define PCI_DEVICE_ID_57980S_MF		CHIP_NUM_57980S_MF
65 #define PCI_DEVICE_ID_57980S_100	CHIP_NUM_57980S_100
66 #define PCI_DEVICE_ID_57980S_50		CHIP_NUM_57980S_50
67 #define PCI_DEVICE_ID_57980S_25		CHIP_NUM_57980S_25
68 #define PCI_DEVICE_ID_57980S_IOV	CHIP_NUM_57980S_IOV
69 #define PCI_DEVICE_ID_AH		CHIP_NUM_AH
70 #define PCI_DEVICE_ID_AH_IOV		CHIP_NUM_AH_IOV
71 
72 #endif
73 
74 enum qede_pci_private {
75 	QEDE_PRIVATE_PF,
76 	QEDE_PRIVATE_VF
77 };
78 
79 static const struct pci_device_id qede_pci_tbl[] = {
80 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF},
81 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF},
82 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF},
83 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF},
84 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF},
85 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF},
86 #ifdef CONFIG_QED_SRIOV
87 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF},
88 #endif
89 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH), QEDE_PRIVATE_PF},
90 #ifdef CONFIG_QED_SRIOV
91 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH_IOV), QEDE_PRIVATE_VF},
92 #endif
93 	{ 0 }
94 };
95 
96 MODULE_DEVICE_TABLE(pci, qede_pci_tbl);
97 
98 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id);
99 static pci_ers_result_t
100 qede_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state);
101 
102 #define TX_TIMEOUT		(5 * HZ)
103 
104 /* Utilize last protocol index for XDP */
105 #define XDP_PI	11
106 
107 static void qede_remove(struct pci_dev *pdev);
108 static void qede_shutdown(struct pci_dev *pdev);
109 static void qede_link_update(void *dev, struct qed_link_output *link);
110 static void qede_schedule_recovery_handler(void *dev);
111 static void qede_recovery_handler(struct qede_dev *edev);
112 static void qede_schedule_hw_err_handler(void *dev,
113 					 enum qed_hw_err_type err_type);
114 static void qede_get_eth_tlv_data(void *edev, void *data);
115 static void qede_get_generic_tlv_data(void *edev,
116 				      struct qed_generic_tlvs *data);
117 static void qede_generic_hw_err_handler(struct qede_dev *edev);
118 #ifdef CONFIG_QED_SRIOV
119 static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos,
120 			    __be16 vlan_proto)
121 {
122 	struct qede_dev *edev = netdev_priv(ndev);
123 
124 	if (vlan > 4095) {
125 		DP_NOTICE(edev, "Illegal vlan value %d\n", vlan);
126 		return -EINVAL;
127 	}
128 
129 	if (vlan_proto != htons(ETH_P_8021Q))
130 		return -EPROTONOSUPPORT;
131 
132 	DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n",
133 		   vlan, vf);
134 
135 	return edev->ops->iov->set_vlan(edev->cdev, vlan, vf);
136 }
137 
138 static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac)
139 {
140 	struct qede_dev *edev = netdev_priv(ndev);
141 
142 	DP_VERBOSE(edev, QED_MSG_IOV, "Setting MAC %pM to VF [%d]\n", mac, vfidx);
143 
144 	if (!is_valid_ether_addr(mac)) {
145 		DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n");
146 		return -EINVAL;
147 	}
148 
149 	return edev->ops->iov->set_mac(edev->cdev, mac, vfidx);
150 }
151 
152 static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param)
153 {
154 	struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev));
155 	struct qed_dev_info *qed_info = &edev->dev_info.common;
156 	struct qed_update_vport_params *vport_params;
157 	int rc;
158 
159 	vport_params = vzalloc(sizeof(*vport_params));
160 	if (!vport_params)
161 		return -ENOMEM;
162 	DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param);
163 
164 	rc = edev->ops->iov->configure(edev->cdev, num_vfs_param);
165 
166 	/* Enable/Disable Tx switching for PF */
167 	if ((rc == num_vfs_param) && netif_running(edev->ndev) &&
168 	    !qed_info->b_inter_pf_switch && qed_info->tx_switching) {
169 		vport_params->vport_id = 0;
170 		vport_params->update_tx_switching_flg = 1;
171 		vport_params->tx_switching_flg = num_vfs_param ? 1 : 0;
172 		edev->ops->vport_update(edev->cdev, vport_params);
173 	}
174 
175 	vfree(vport_params);
176 	return rc;
177 }
178 #endif
179 
180 static const struct pci_error_handlers qede_err_handler = {
181 	.error_detected = qede_io_error_detected,
182 };
183 
184 static struct pci_driver qede_pci_driver = {
185 	.name = "qede",
186 	.id_table = qede_pci_tbl,
187 	.probe = qede_probe,
188 	.remove = qede_remove,
189 	.shutdown = qede_shutdown,
190 #ifdef CONFIG_QED_SRIOV
191 	.sriov_configure = qede_sriov_configure,
192 #endif
193 	.err_handler = &qede_err_handler,
194 };
195 
196 static struct qed_eth_cb_ops qede_ll_ops = {
197 	{
198 #ifdef CONFIG_RFS_ACCEL
199 		.arfs_filter_op = qede_arfs_filter_op,
200 #endif
201 		.link_update = qede_link_update,
202 		.schedule_recovery_handler = qede_schedule_recovery_handler,
203 		.schedule_hw_err_handler = qede_schedule_hw_err_handler,
204 		.get_generic_tlv_data = qede_get_generic_tlv_data,
205 		.get_protocol_tlv_data = qede_get_eth_tlv_data,
206 	},
207 	.force_mac = qede_force_mac,
208 	.ports_update = qede_udp_ports_update,
209 };
210 
211 static int qede_netdev_event(struct notifier_block *this, unsigned long event,
212 			     void *ptr)
213 {
214 	struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
215 	struct ethtool_drvinfo drvinfo;
216 	struct qede_dev *edev;
217 
218 	if (event != NETDEV_CHANGENAME && event != NETDEV_CHANGEADDR)
219 		goto done;
220 
221 	/* Check whether this is a qede device */
222 	if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo)
223 		goto done;
224 
225 	memset(&drvinfo, 0, sizeof(drvinfo));
226 	ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo);
227 	if (strcmp(drvinfo.driver, "qede"))
228 		goto done;
229 	edev = netdev_priv(ndev);
230 
231 	switch (event) {
232 	case NETDEV_CHANGENAME:
233 		/* Notify qed of the name change */
234 		if (!edev->ops || !edev->ops->common)
235 			goto done;
236 		edev->ops->common->set_name(edev->cdev, edev->ndev->name);
237 		break;
238 	case NETDEV_CHANGEADDR:
239 		edev = netdev_priv(ndev);
240 		qede_rdma_event_changeaddr(edev);
241 		break;
242 	}
243 
244 done:
245 	return NOTIFY_DONE;
246 }
247 
248 static struct notifier_block qede_netdev_notifier = {
249 	.notifier_call = qede_netdev_event,
250 };
251 
252 static
253 int __init qede_init(void)
254 {
255 	int ret;
256 
257 	pr_info("qede init: QLogic FastLinQ 4xxxx Ethernet Driver qede\n");
258 
259 	qede_forced_speed_maps_init();
260 
261 	qed_ops = qed_get_eth_ops();
262 	if (!qed_ops) {
263 		pr_notice("Failed to get qed ethtool operations\n");
264 		return -EINVAL;
265 	}
266 
267 	/* Must register notifier before pci ops, since we might miss
268 	 * interface rename after pci probe and netdev registration.
269 	 */
270 	ret = register_netdevice_notifier(&qede_netdev_notifier);
271 	if (ret) {
272 		pr_notice("Failed to register netdevice_notifier\n");
273 		qed_put_eth_ops();
274 		return -EINVAL;
275 	}
276 
277 	ret = pci_register_driver(&qede_pci_driver);
278 	if (ret) {
279 		pr_notice("Failed to register driver\n");
280 		unregister_netdevice_notifier(&qede_netdev_notifier);
281 		qed_put_eth_ops();
282 		return -EINVAL;
283 	}
284 
285 	return 0;
286 }
287 
288 static void __exit qede_cleanup(void)
289 {
290 	if (debug & QED_LOG_INFO_MASK)
291 		pr_info("qede_cleanup called\n");
292 
293 	unregister_netdevice_notifier(&qede_netdev_notifier);
294 	pci_unregister_driver(&qede_pci_driver);
295 	qed_put_eth_ops();
296 }
297 
298 module_init(qede_init);
299 module_exit(qede_cleanup);
300 
301 static int qede_open(struct net_device *ndev);
302 static int qede_close(struct net_device *ndev);
303 
304 void qede_fill_by_demand_stats(struct qede_dev *edev)
305 {
306 	struct qede_stats_common *p_common = &edev->stats.common;
307 	struct qed_eth_stats stats;
308 
309 	edev->ops->get_vport_stats(edev->cdev, &stats);
310 
311 	p_common->no_buff_discards = stats.common.no_buff_discards;
312 	p_common->packet_too_big_discard = stats.common.packet_too_big_discard;
313 	p_common->ttl0_discard = stats.common.ttl0_discard;
314 	p_common->rx_ucast_bytes = stats.common.rx_ucast_bytes;
315 	p_common->rx_mcast_bytes = stats.common.rx_mcast_bytes;
316 	p_common->rx_bcast_bytes = stats.common.rx_bcast_bytes;
317 	p_common->rx_ucast_pkts = stats.common.rx_ucast_pkts;
318 	p_common->rx_mcast_pkts = stats.common.rx_mcast_pkts;
319 	p_common->rx_bcast_pkts = stats.common.rx_bcast_pkts;
320 	p_common->mftag_filter_discards = stats.common.mftag_filter_discards;
321 	p_common->mac_filter_discards = stats.common.mac_filter_discards;
322 	p_common->gft_filter_drop = stats.common.gft_filter_drop;
323 
324 	p_common->tx_ucast_bytes = stats.common.tx_ucast_bytes;
325 	p_common->tx_mcast_bytes = stats.common.tx_mcast_bytes;
326 	p_common->tx_bcast_bytes = stats.common.tx_bcast_bytes;
327 	p_common->tx_ucast_pkts = stats.common.tx_ucast_pkts;
328 	p_common->tx_mcast_pkts = stats.common.tx_mcast_pkts;
329 	p_common->tx_bcast_pkts = stats.common.tx_bcast_pkts;
330 	p_common->tx_err_drop_pkts = stats.common.tx_err_drop_pkts;
331 	p_common->coalesced_pkts = stats.common.tpa_coalesced_pkts;
332 	p_common->coalesced_events = stats.common.tpa_coalesced_events;
333 	p_common->coalesced_aborts_num = stats.common.tpa_aborts_num;
334 	p_common->non_coalesced_pkts = stats.common.tpa_not_coalesced_pkts;
335 	p_common->coalesced_bytes = stats.common.tpa_coalesced_bytes;
336 
337 	p_common->rx_64_byte_packets = stats.common.rx_64_byte_packets;
338 	p_common->rx_65_to_127_byte_packets =
339 	    stats.common.rx_65_to_127_byte_packets;
340 	p_common->rx_128_to_255_byte_packets =
341 	    stats.common.rx_128_to_255_byte_packets;
342 	p_common->rx_256_to_511_byte_packets =
343 	    stats.common.rx_256_to_511_byte_packets;
344 	p_common->rx_512_to_1023_byte_packets =
345 	    stats.common.rx_512_to_1023_byte_packets;
346 	p_common->rx_1024_to_1518_byte_packets =
347 	    stats.common.rx_1024_to_1518_byte_packets;
348 	p_common->rx_crc_errors = stats.common.rx_crc_errors;
349 	p_common->rx_mac_crtl_frames = stats.common.rx_mac_crtl_frames;
350 	p_common->rx_pause_frames = stats.common.rx_pause_frames;
351 	p_common->rx_pfc_frames = stats.common.rx_pfc_frames;
352 	p_common->rx_align_errors = stats.common.rx_align_errors;
353 	p_common->rx_carrier_errors = stats.common.rx_carrier_errors;
354 	p_common->rx_oversize_packets = stats.common.rx_oversize_packets;
355 	p_common->rx_jabbers = stats.common.rx_jabbers;
356 	p_common->rx_undersize_packets = stats.common.rx_undersize_packets;
357 	p_common->rx_fragments = stats.common.rx_fragments;
358 	p_common->tx_64_byte_packets = stats.common.tx_64_byte_packets;
359 	p_common->tx_65_to_127_byte_packets =
360 	    stats.common.tx_65_to_127_byte_packets;
361 	p_common->tx_128_to_255_byte_packets =
362 	    stats.common.tx_128_to_255_byte_packets;
363 	p_common->tx_256_to_511_byte_packets =
364 	    stats.common.tx_256_to_511_byte_packets;
365 	p_common->tx_512_to_1023_byte_packets =
366 	    stats.common.tx_512_to_1023_byte_packets;
367 	p_common->tx_1024_to_1518_byte_packets =
368 	    stats.common.tx_1024_to_1518_byte_packets;
369 	p_common->tx_pause_frames = stats.common.tx_pause_frames;
370 	p_common->tx_pfc_frames = stats.common.tx_pfc_frames;
371 	p_common->brb_truncates = stats.common.brb_truncates;
372 	p_common->brb_discards = stats.common.brb_discards;
373 	p_common->tx_mac_ctrl_frames = stats.common.tx_mac_ctrl_frames;
374 	p_common->link_change_count = stats.common.link_change_count;
375 	p_common->ptp_skip_txts = edev->ptp_skip_txts;
376 
377 	if (QEDE_IS_BB(edev)) {
378 		struct qede_stats_bb *p_bb = &edev->stats.bb;
379 
380 		p_bb->rx_1519_to_1522_byte_packets =
381 		    stats.bb.rx_1519_to_1522_byte_packets;
382 		p_bb->rx_1519_to_2047_byte_packets =
383 		    stats.bb.rx_1519_to_2047_byte_packets;
384 		p_bb->rx_2048_to_4095_byte_packets =
385 		    stats.bb.rx_2048_to_4095_byte_packets;
386 		p_bb->rx_4096_to_9216_byte_packets =
387 		    stats.bb.rx_4096_to_9216_byte_packets;
388 		p_bb->rx_9217_to_16383_byte_packets =
389 		    stats.bb.rx_9217_to_16383_byte_packets;
390 		p_bb->tx_1519_to_2047_byte_packets =
391 		    stats.bb.tx_1519_to_2047_byte_packets;
392 		p_bb->tx_2048_to_4095_byte_packets =
393 		    stats.bb.tx_2048_to_4095_byte_packets;
394 		p_bb->tx_4096_to_9216_byte_packets =
395 		    stats.bb.tx_4096_to_9216_byte_packets;
396 		p_bb->tx_9217_to_16383_byte_packets =
397 		    stats.bb.tx_9217_to_16383_byte_packets;
398 		p_bb->tx_lpi_entry_count = stats.bb.tx_lpi_entry_count;
399 		p_bb->tx_total_collisions = stats.bb.tx_total_collisions;
400 	} else {
401 		struct qede_stats_ah *p_ah = &edev->stats.ah;
402 
403 		p_ah->rx_1519_to_max_byte_packets =
404 		    stats.ah.rx_1519_to_max_byte_packets;
405 		p_ah->tx_1519_to_max_byte_packets =
406 		    stats.ah.tx_1519_to_max_byte_packets;
407 	}
408 }
409 
410 static void qede_get_stats64(struct net_device *dev,
411 			     struct rtnl_link_stats64 *stats)
412 {
413 	struct qede_dev *edev = netdev_priv(dev);
414 	struct qede_stats_common *p_common;
415 
416 	qede_fill_by_demand_stats(edev);
417 	p_common = &edev->stats.common;
418 
419 	stats->rx_packets = p_common->rx_ucast_pkts + p_common->rx_mcast_pkts +
420 			    p_common->rx_bcast_pkts;
421 	stats->tx_packets = p_common->tx_ucast_pkts + p_common->tx_mcast_pkts +
422 			    p_common->tx_bcast_pkts;
423 
424 	stats->rx_bytes = p_common->rx_ucast_bytes + p_common->rx_mcast_bytes +
425 			  p_common->rx_bcast_bytes;
426 	stats->tx_bytes = p_common->tx_ucast_bytes + p_common->tx_mcast_bytes +
427 			  p_common->tx_bcast_bytes;
428 
429 	stats->tx_errors = p_common->tx_err_drop_pkts;
430 	stats->multicast = p_common->rx_mcast_pkts + p_common->rx_bcast_pkts;
431 
432 	stats->rx_fifo_errors = p_common->no_buff_discards;
433 
434 	if (QEDE_IS_BB(edev))
435 		stats->collisions = edev->stats.bb.tx_total_collisions;
436 	stats->rx_crc_errors = p_common->rx_crc_errors;
437 	stats->rx_frame_errors = p_common->rx_align_errors;
438 }
439 
440 #ifdef CONFIG_QED_SRIOV
441 static int qede_get_vf_config(struct net_device *dev, int vfidx,
442 			      struct ifla_vf_info *ivi)
443 {
444 	struct qede_dev *edev = netdev_priv(dev);
445 
446 	if (!edev->ops)
447 		return -EINVAL;
448 
449 	return edev->ops->iov->get_config(edev->cdev, vfidx, ivi);
450 }
451 
452 static int qede_set_vf_rate(struct net_device *dev, int vfidx,
453 			    int min_tx_rate, int max_tx_rate)
454 {
455 	struct qede_dev *edev = netdev_priv(dev);
456 
457 	return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate,
458 					max_tx_rate);
459 }
460 
461 static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val)
462 {
463 	struct qede_dev *edev = netdev_priv(dev);
464 
465 	if (!edev->ops)
466 		return -EINVAL;
467 
468 	return edev->ops->iov->set_spoof(edev->cdev, vfidx, val);
469 }
470 
471 static int qede_set_vf_link_state(struct net_device *dev, int vfidx,
472 				  int link_state)
473 {
474 	struct qede_dev *edev = netdev_priv(dev);
475 
476 	if (!edev->ops)
477 		return -EINVAL;
478 
479 	return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state);
480 }
481 
482 static int qede_set_vf_trust(struct net_device *dev, int vfidx, bool setting)
483 {
484 	struct qede_dev *edev = netdev_priv(dev);
485 
486 	if (!edev->ops)
487 		return -EINVAL;
488 
489 	return edev->ops->iov->set_trust(edev->cdev, vfidx, setting);
490 }
491 #endif
492 
493 static int qede_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
494 {
495 	struct qede_dev *edev = netdev_priv(dev);
496 
497 	if (!netif_running(dev))
498 		return -EAGAIN;
499 
500 	switch (cmd) {
501 	case SIOCSHWTSTAMP:
502 		return qede_ptp_hw_ts(edev, ifr);
503 	default:
504 		DP_VERBOSE(edev, QED_MSG_DEBUG,
505 			   "default IOCTL cmd 0x%x\n", cmd);
506 		return -EOPNOTSUPP;
507 	}
508 
509 	return 0;
510 }
511 
512 static void qede_tx_log_print(struct qede_dev *edev, struct qede_tx_queue *txq)
513 {
514 	DP_NOTICE(edev,
515 		  "Txq[%d]: FW cons [host] %04x, SW cons %04x, SW prod %04x [Jiffies %lu]\n",
516 		  txq->index, le16_to_cpu(*txq->hw_cons_ptr),
517 		  qed_chain_get_cons_idx(&txq->tx_pbl),
518 		  qed_chain_get_prod_idx(&txq->tx_pbl),
519 		  jiffies);
520 }
521 
522 static void qede_tx_timeout(struct net_device *dev, unsigned int txqueue)
523 {
524 	struct qede_dev *edev = netdev_priv(dev);
525 	struct qede_tx_queue *txq;
526 	int cos;
527 
528 	netif_carrier_off(dev);
529 	DP_NOTICE(edev, "TX timeout on queue %u!\n", txqueue);
530 
531 	if (!(edev->fp_array[txqueue].type & QEDE_FASTPATH_TX))
532 		return;
533 
534 	for_each_cos_in_txq(edev, cos) {
535 		txq = &edev->fp_array[txqueue].txq[cos];
536 
537 		if (qed_chain_get_cons_idx(&txq->tx_pbl) !=
538 		    qed_chain_get_prod_idx(&txq->tx_pbl))
539 			qede_tx_log_print(edev, txq);
540 	}
541 
542 	if (IS_VF(edev))
543 		return;
544 
545 	if (test_and_set_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags) ||
546 	    edev->state == QEDE_STATE_RECOVERY) {
547 		DP_INFO(edev,
548 			"Avoid handling a Tx timeout while another HW error is being handled\n");
549 		return;
550 	}
551 
552 	set_bit(QEDE_ERR_GET_DBG_INFO, &edev->err_flags);
553 	set_bit(QEDE_SP_HW_ERR, &edev->sp_flags);
554 	schedule_delayed_work(&edev->sp_task, 0);
555 }
556 
557 static int qede_setup_tc(struct net_device *ndev, u8 num_tc)
558 {
559 	struct qede_dev *edev = netdev_priv(ndev);
560 	int cos, count, offset;
561 
562 	if (num_tc > edev->dev_info.num_tc)
563 		return -EINVAL;
564 
565 	netdev_reset_tc(ndev);
566 	netdev_set_num_tc(ndev, num_tc);
567 
568 	for_each_cos_in_txq(edev, cos) {
569 		count = QEDE_TSS_COUNT(edev);
570 		offset = cos * QEDE_TSS_COUNT(edev);
571 		netdev_set_tc_queue(ndev, cos, count, offset);
572 	}
573 
574 	return 0;
575 }
576 
577 static int
578 qede_set_flower(struct qede_dev *edev, struct flow_cls_offload *f,
579 		__be16 proto)
580 {
581 	switch (f->command) {
582 	case FLOW_CLS_REPLACE:
583 		return qede_add_tc_flower_fltr(edev, proto, f);
584 	case FLOW_CLS_DESTROY:
585 		return qede_delete_flow_filter(edev, f->cookie);
586 	default:
587 		return -EOPNOTSUPP;
588 	}
589 }
590 
591 static int qede_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
592 				  void *cb_priv)
593 {
594 	struct flow_cls_offload *f;
595 	struct qede_dev *edev = cb_priv;
596 
597 	if (!tc_cls_can_offload_and_chain0(edev->ndev, type_data))
598 		return -EOPNOTSUPP;
599 
600 	switch (type) {
601 	case TC_SETUP_CLSFLOWER:
602 		f = type_data;
603 		return qede_set_flower(edev, f, f->common.protocol);
604 	default:
605 		return -EOPNOTSUPP;
606 	}
607 }
608 
609 static LIST_HEAD(qede_block_cb_list);
610 
611 static int
612 qede_setup_tc_offload(struct net_device *dev, enum tc_setup_type type,
613 		      void *type_data)
614 {
615 	struct qede_dev *edev = netdev_priv(dev);
616 	struct tc_mqprio_qopt *mqprio;
617 
618 	switch (type) {
619 	case TC_SETUP_BLOCK:
620 		return flow_block_cb_setup_simple(type_data,
621 						  &qede_block_cb_list,
622 						  qede_setup_tc_block_cb,
623 						  edev, edev, true);
624 	case TC_SETUP_QDISC_MQPRIO:
625 		mqprio = type_data;
626 
627 		mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
628 		return qede_setup_tc(dev, mqprio->num_tc);
629 	default:
630 		return -EOPNOTSUPP;
631 	}
632 }
633 
634 static const struct net_device_ops qede_netdev_ops = {
635 	.ndo_open		= qede_open,
636 	.ndo_stop		= qede_close,
637 	.ndo_start_xmit		= qede_start_xmit,
638 	.ndo_select_queue	= qede_select_queue,
639 	.ndo_set_rx_mode	= qede_set_rx_mode,
640 	.ndo_set_mac_address	= qede_set_mac_addr,
641 	.ndo_validate_addr	= eth_validate_addr,
642 	.ndo_change_mtu		= qede_change_mtu,
643 	.ndo_eth_ioctl		= qede_ioctl,
644 	.ndo_tx_timeout		= qede_tx_timeout,
645 #ifdef CONFIG_QED_SRIOV
646 	.ndo_set_vf_mac		= qede_set_vf_mac,
647 	.ndo_set_vf_vlan	= qede_set_vf_vlan,
648 	.ndo_set_vf_trust	= qede_set_vf_trust,
649 #endif
650 	.ndo_vlan_rx_add_vid	= qede_vlan_rx_add_vid,
651 	.ndo_vlan_rx_kill_vid	= qede_vlan_rx_kill_vid,
652 	.ndo_fix_features	= qede_fix_features,
653 	.ndo_set_features	= qede_set_features,
654 	.ndo_get_stats64	= qede_get_stats64,
655 #ifdef CONFIG_QED_SRIOV
656 	.ndo_set_vf_link_state	= qede_set_vf_link_state,
657 	.ndo_set_vf_spoofchk	= qede_set_vf_spoofchk,
658 	.ndo_get_vf_config	= qede_get_vf_config,
659 	.ndo_set_vf_rate	= qede_set_vf_rate,
660 #endif
661 	.ndo_features_check	= qede_features_check,
662 	.ndo_bpf		= qede_xdp,
663 #ifdef CONFIG_RFS_ACCEL
664 	.ndo_rx_flow_steer	= qede_rx_flow_steer,
665 #endif
666 	.ndo_xdp_xmit		= qede_xdp_transmit,
667 	.ndo_setup_tc		= qede_setup_tc_offload,
668 };
669 
670 static const struct net_device_ops qede_netdev_vf_ops = {
671 	.ndo_open		= qede_open,
672 	.ndo_stop		= qede_close,
673 	.ndo_start_xmit		= qede_start_xmit,
674 	.ndo_select_queue	= qede_select_queue,
675 	.ndo_set_rx_mode	= qede_set_rx_mode,
676 	.ndo_set_mac_address	= qede_set_mac_addr,
677 	.ndo_validate_addr	= eth_validate_addr,
678 	.ndo_change_mtu		= qede_change_mtu,
679 	.ndo_vlan_rx_add_vid	= qede_vlan_rx_add_vid,
680 	.ndo_vlan_rx_kill_vid	= qede_vlan_rx_kill_vid,
681 	.ndo_fix_features	= qede_fix_features,
682 	.ndo_set_features	= qede_set_features,
683 	.ndo_get_stats64	= qede_get_stats64,
684 	.ndo_features_check	= qede_features_check,
685 };
686 
687 static const struct net_device_ops qede_netdev_vf_xdp_ops = {
688 	.ndo_open		= qede_open,
689 	.ndo_stop		= qede_close,
690 	.ndo_start_xmit		= qede_start_xmit,
691 	.ndo_select_queue	= qede_select_queue,
692 	.ndo_set_rx_mode	= qede_set_rx_mode,
693 	.ndo_set_mac_address	= qede_set_mac_addr,
694 	.ndo_validate_addr	= eth_validate_addr,
695 	.ndo_change_mtu		= qede_change_mtu,
696 	.ndo_vlan_rx_add_vid	= qede_vlan_rx_add_vid,
697 	.ndo_vlan_rx_kill_vid	= qede_vlan_rx_kill_vid,
698 	.ndo_fix_features	= qede_fix_features,
699 	.ndo_set_features	= qede_set_features,
700 	.ndo_get_stats64	= qede_get_stats64,
701 	.ndo_features_check	= qede_features_check,
702 	.ndo_bpf		= qede_xdp,
703 	.ndo_xdp_xmit		= qede_xdp_transmit,
704 };
705 
706 /* -------------------------------------------------------------------------
707  * START OF PROBE / REMOVE
708  * -------------------------------------------------------------------------
709  */
710 
711 static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev,
712 					    struct pci_dev *pdev,
713 					    struct qed_dev_eth_info *info,
714 					    u32 dp_module, u8 dp_level)
715 {
716 	struct net_device *ndev;
717 	struct qede_dev *edev;
718 
719 	ndev = alloc_etherdev_mqs(sizeof(*edev),
720 				  info->num_queues * info->num_tc,
721 				  info->num_queues);
722 	if (!ndev) {
723 		pr_err("etherdev allocation failed\n");
724 		return NULL;
725 	}
726 
727 	edev = netdev_priv(ndev);
728 	edev->ndev = ndev;
729 	edev->cdev = cdev;
730 	edev->pdev = pdev;
731 	edev->dp_module = dp_module;
732 	edev->dp_level = dp_level;
733 	edev->ops = qed_ops;
734 
735 	if (is_kdump_kernel()) {
736 		edev->q_num_rx_buffers = NUM_RX_BDS_KDUMP_MIN;
737 		edev->q_num_tx_buffers = NUM_TX_BDS_KDUMP_MIN;
738 	} else {
739 		edev->q_num_rx_buffers = NUM_RX_BDS_DEF;
740 		edev->q_num_tx_buffers = NUM_TX_BDS_DEF;
741 	}
742 
743 	DP_INFO(edev, "Allocated netdev with %d tx queues and %d rx queues\n",
744 		info->num_queues, info->num_queues);
745 
746 	SET_NETDEV_DEV(ndev, &pdev->dev);
747 
748 	memset(&edev->stats, 0, sizeof(edev->stats));
749 	memcpy(&edev->dev_info, info, sizeof(*info));
750 
751 	/* As ethtool doesn't have the ability to show WoL behavior as
752 	 * 'default', if device supports it declare it's enabled.
753 	 */
754 	if (edev->dev_info.common.wol_support)
755 		edev->wol_enabled = true;
756 
757 	INIT_LIST_HEAD(&edev->vlan_list);
758 
759 	return edev;
760 }
761 
762 static void qede_init_ndev(struct qede_dev *edev)
763 {
764 	struct net_device *ndev = edev->ndev;
765 	struct pci_dev *pdev = edev->pdev;
766 	bool udp_tunnel_enable = false;
767 	netdev_features_t hw_features;
768 
769 	pci_set_drvdata(pdev, ndev);
770 
771 	ndev->mem_start = edev->dev_info.common.pci_mem_start;
772 	ndev->base_addr = ndev->mem_start;
773 	ndev->mem_end = edev->dev_info.common.pci_mem_end;
774 	ndev->irq = edev->dev_info.common.pci_irq;
775 
776 	ndev->watchdog_timeo = TX_TIMEOUT;
777 
778 	if (IS_VF(edev)) {
779 		if (edev->dev_info.xdp_supported)
780 			ndev->netdev_ops = &qede_netdev_vf_xdp_ops;
781 		else
782 			ndev->netdev_ops = &qede_netdev_vf_ops;
783 	} else {
784 		ndev->netdev_ops = &qede_netdev_ops;
785 	}
786 
787 	qede_set_ethtool_ops(ndev);
788 
789 	ndev->priv_flags |= IFF_UNICAST_FLT;
790 
791 	/* user-changeble features */
792 	hw_features = NETIF_F_GRO | NETIF_F_GRO_HW | NETIF_F_SG |
793 		      NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
794 		      NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_HW_TC;
795 
796 	if (edev->dev_info.common.b_arfs_capable)
797 		hw_features |= NETIF_F_NTUPLE;
798 
799 	if (edev->dev_info.common.vxlan_enable ||
800 	    edev->dev_info.common.geneve_enable)
801 		udp_tunnel_enable = true;
802 
803 	if (udp_tunnel_enable || edev->dev_info.common.gre_enable) {
804 		hw_features |= NETIF_F_TSO_ECN;
805 		ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
806 					NETIF_F_SG | NETIF_F_TSO |
807 					NETIF_F_TSO_ECN | NETIF_F_TSO6 |
808 					NETIF_F_RXCSUM;
809 	}
810 
811 	if (udp_tunnel_enable) {
812 		hw_features |= (NETIF_F_GSO_UDP_TUNNEL |
813 				NETIF_F_GSO_UDP_TUNNEL_CSUM);
814 		ndev->hw_enc_features |= (NETIF_F_GSO_UDP_TUNNEL |
815 					  NETIF_F_GSO_UDP_TUNNEL_CSUM);
816 
817 		qede_set_udp_tunnels(edev);
818 	}
819 
820 	if (edev->dev_info.common.gre_enable) {
821 		hw_features |= (NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM);
822 		ndev->hw_enc_features |= (NETIF_F_GSO_GRE |
823 					  NETIF_F_GSO_GRE_CSUM);
824 	}
825 
826 	ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
827 			      NETIF_F_HIGHDMA;
828 	ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
829 			 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA |
830 			 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX;
831 
832 	ndev->hw_features = hw_features;
833 
834 	/* MTU range: 46 - 9600 */
835 	ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
836 	ndev->max_mtu = QEDE_MAX_JUMBO_PACKET_SIZE;
837 
838 	/* Set network device HW mac */
839 	eth_hw_addr_set(edev->ndev, edev->dev_info.common.hw_mac);
840 
841 	ndev->mtu = edev->dev_info.common.mtu;
842 }
843 
844 /* This function converts from 32b param to two params of level and module
845  * Input 32b decoding:
846  * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the
847  * 'happy' flow, e.g. memory allocation failed.
848  * b30 - enable all INFO prints. INFO prints are for major steps in the flow
849  * and provide important parameters.
850  * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that
851  * module. VERBOSE prints are for tracking the specific flow in low level.
852  *
853  * Notice that the level should be that of the lowest required logs.
854  */
855 void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level)
856 {
857 	*p_dp_level = QED_LEVEL_NOTICE;
858 	*p_dp_module = 0;
859 
860 	if (debug & QED_LOG_VERBOSE_MASK) {
861 		*p_dp_level = QED_LEVEL_VERBOSE;
862 		*p_dp_module = (debug & 0x3FFFFFFF);
863 	} else if (debug & QED_LOG_INFO_MASK) {
864 		*p_dp_level = QED_LEVEL_INFO;
865 	} else if (debug & QED_LOG_NOTICE_MASK) {
866 		*p_dp_level = QED_LEVEL_NOTICE;
867 	}
868 }
869 
870 static void qede_free_fp_array(struct qede_dev *edev)
871 {
872 	if (edev->fp_array) {
873 		struct qede_fastpath *fp;
874 		int i;
875 
876 		for_each_queue(i) {
877 			fp = &edev->fp_array[i];
878 
879 			kfree(fp->sb_info);
880 			/* Handle mem alloc failure case where qede_init_fp
881 			 * didn't register xdp_rxq_info yet.
882 			 * Implicit only (fp->type & QEDE_FASTPATH_RX)
883 			 */
884 			if (fp->rxq && xdp_rxq_info_is_reg(&fp->rxq->xdp_rxq))
885 				xdp_rxq_info_unreg(&fp->rxq->xdp_rxq);
886 			kfree(fp->rxq);
887 			kfree(fp->xdp_tx);
888 			kfree(fp->txq);
889 		}
890 		kfree(edev->fp_array);
891 	}
892 
893 	edev->num_queues = 0;
894 	edev->fp_num_tx = 0;
895 	edev->fp_num_rx = 0;
896 }
897 
898 static int qede_alloc_fp_array(struct qede_dev *edev)
899 {
900 	u8 fp_combined, fp_rx = edev->fp_num_rx;
901 	struct qede_fastpath *fp;
902 	void *mem;
903 	int i;
904 
905 	edev->fp_array = kcalloc(QEDE_QUEUE_CNT(edev),
906 				 sizeof(*edev->fp_array), GFP_KERNEL);
907 	if (!edev->fp_array) {
908 		DP_NOTICE(edev, "fp array allocation failed\n");
909 		goto err;
910 	}
911 
912 	mem = krealloc(edev->coal_entry, QEDE_QUEUE_CNT(edev) *
913 		       sizeof(*edev->coal_entry), GFP_KERNEL);
914 	if (!mem) {
915 		DP_ERR(edev, "coalesce entry allocation failed\n");
916 		kfree(edev->coal_entry);
917 		goto err;
918 	}
919 	edev->coal_entry = mem;
920 
921 	fp_combined = QEDE_QUEUE_CNT(edev) - fp_rx - edev->fp_num_tx;
922 
923 	/* Allocate the FP elements for Rx queues followed by combined and then
924 	 * the Tx. This ordering should be maintained so that the respective
925 	 * queues (Rx or Tx) will be together in the fastpath array and the
926 	 * associated ids will be sequential.
927 	 */
928 	for_each_queue(i) {
929 		fp = &edev->fp_array[i];
930 
931 		fp->sb_info = kzalloc(sizeof(*fp->sb_info), GFP_KERNEL);
932 		if (!fp->sb_info) {
933 			DP_NOTICE(edev, "sb info struct allocation failed\n");
934 			goto err;
935 		}
936 
937 		if (fp_rx) {
938 			fp->type = QEDE_FASTPATH_RX;
939 			fp_rx--;
940 		} else if (fp_combined) {
941 			fp->type = QEDE_FASTPATH_COMBINED;
942 			fp_combined--;
943 		} else {
944 			fp->type = QEDE_FASTPATH_TX;
945 		}
946 
947 		if (fp->type & QEDE_FASTPATH_TX) {
948 			fp->txq = kcalloc(edev->dev_info.num_tc,
949 					  sizeof(*fp->txq), GFP_KERNEL);
950 			if (!fp->txq)
951 				goto err;
952 		}
953 
954 		if (fp->type & QEDE_FASTPATH_RX) {
955 			fp->rxq = kzalloc(sizeof(*fp->rxq), GFP_KERNEL);
956 			if (!fp->rxq)
957 				goto err;
958 
959 			if (edev->xdp_prog) {
960 				fp->xdp_tx = kzalloc(sizeof(*fp->xdp_tx),
961 						     GFP_KERNEL);
962 				if (!fp->xdp_tx)
963 					goto err;
964 				fp->type |= QEDE_FASTPATH_XDP;
965 			}
966 		}
967 	}
968 
969 	return 0;
970 err:
971 	qede_free_fp_array(edev);
972 	return -ENOMEM;
973 }
974 
975 /* The qede lock is used to protect driver state change and driver flows that
976  * are not reentrant.
977  */
978 void __qede_lock(struct qede_dev *edev)
979 {
980 	mutex_lock(&edev->qede_lock);
981 }
982 
983 void __qede_unlock(struct qede_dev *edev)
984 {
985 	mutex_unlock(&edev->qede_lock);
986 }
987 
988 /* This version of the lock should be used when acquiring the RTNL lock is also
989  * needed in addition to the internal qede lock.
990  */
991 static void qede_lock(struct qede_dev *edev)
992 {
993 	rtnl_lock();
994 	__qede_lock(edev);
995 }
996 
997 static void qede_unlock(struct qede_dev *edev)
998 {
999 	__qede_unlock(edev);
1000 	rtnl_unlock();
1001 }
1002 
1003 static void qede_sp_task(struct work_struct *work)
1004 {
1005 	struct qede_dev *edev = container_of(work, struct qede_dev,
1006 					     sp_task.work);
1007 
1008 	/* Disable execution of this deferred work once
1009 	 * qede removal is in progress, this stop any future
1010 	 * scheduling of sp_task.
1011 	 */
1012 	if (test_bit(QEDE_SP_DISABLE, &edev->sp_flags))
1013 		return;
1014 
1015 	/* The locking scheme depends on the specific flag:
1016 	 * In case of QEDE_SP_RECOVERY, acquiring the RTNL lock is required to
1017 	 * ensure that ongoing flows are ended and new ones are not started.
1018 	 * In other cases - only the internal qede lock should be acquired.
1019 	 */
1020 
1021 	if (test_and_clear_bit(QEDE_SP_RECOVERY, &edev->sp_flags)) {
1022 #ifdef CONFIG_QED_SRIOV
1023 		/* SRIOV must be disabled outside the lock to avoid a deadlock.
1024 		 * The recovery of the active VFs is currently not supported.
1025 		 */
1026 		if (pci_num_vf(edev->pdev))
1027 			qede_sriov_configure(edev->pdev, 0);
1028 #endif
1029 		qede_lock(edev);
1030 		qede_recovery_handler(edev);
1031 		qede_unlock(edev);
1032 	}
1033 
1034 	__qede_lock(edev);
1035 
1036 	if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags))
1037 		if (edev->state == QEDE_STATE_OPEN)
1038 			qede_config_rx_mode(edev->ndev);
1039 
1040 #ifdef CONFIG_RFS_ACCEL
1041 	if (test_and_clear_bit(QEDE_SP_ARFS_CONFIG, &edev->sp_flags)) {
1042 		if (edev->state == QEDE_STATE_OPEN)
1043 			qede_process_arfs_filters(edev, false);
1044 	}
1045 #endif
1046 	if (test_and_clear_bit(QEDE_SP_HW_ERR, &edev->sp_flags))
1047 		qede_generic_hw_err_handler(edev);
1048 	__qede_unlock(edev);
1049 
1050 	if (test_and_clear_bit(QEDE_SP_AER, &edev->sp_flags)) {
1051 #ifdef CONFIG_QED_SRIOV
1052 		/* SRIOV must be disabled outside the lock to avoid a deadlock.
1053 		 * The recovery of the active VFs is currently not supported.
1054 		 */
1055 		if (pci_num_vf(edev->pdev))
1056 			qede_sriov_configure(edev->pdev, 0);
1057 #endif
1058 		edev->ops->common->recovery_process(edev->cdev);
1059 	}
1060 }
1061 
1062 static void qede_update_pf_params(struct qed_dev *cdev)
1063 {
1064 	struct qed_pf_params pf_params;
1065 	u16 num_cons;
1066 
1067 	/* 64 rx + 64 tx + 64 XDP */
1068 	memset(&pf_params, 0, sizeof(struct qed_pf_params));
1069 
1070 	/* 1 rx + 1 xdp + max tx cos */
1071 	num_cons = QED_MIN_L2_CONS;
1072 
1073 	pf_params.eth_pf_params.num_cons = (MAX_SB_PER_PF_MIMD - 1) * num_cons;
1074 
1075 	/* Same for VFs - make sure they'll have sufficient connections
1076 	 * to support XDP Tx queues.
1077 	 */
1078 	pf_params.eth_pf_params.num_vf_cons = 48;
1079 
1080 	pf_params.eth_pf_params.num_arfs_filters = QEDE_RFS_MAX_FLTR;
1081 	qed_ops->common->update_pf_params(cdev, &pf_params);
1082 }
1083 
1084 #define QEDE_FW_VER_STR_SIZE	80
1085 
1086 static void qede_log_probe(struct qede_dev *edev)
1087 {
1088 	struct qed_dev_info *p_dev_info = &edev->dev_info.common;
1089 	u8 buf[QEDE_FW_VER_STR_SIZE];
1090 	size_t left_size;
1091 
1092 	snprintf(buf, QEDE_FW_VER_STR_SIZE,
1093 		 "Storm FW %d.%d.%d.%d, Management FW %d.%d.%d.%d",
1094 		 p_dev_info->fw_major, p_dev_info->fw_minor, p_dev_info->fw_rev,
1095 		 p_dev_info->fw_eng,
1096 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_3_MASK) >>
1097 		 QED_MFW_VERSION_3_OFFSET,
1098 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_2_MASK) >>
1099 		 QED_MFW_VERSION_2_OFFSET,
1100 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_1_MASK) >>
1101 		 QED_MFW_VERSION_1_OFFSET,
1102 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_0_MASK) >>
1103 		 QED_MFW_VERSION_0_OFFSET);
1104 
1105 	left_size = QEDE_FW_VER_STR_SIZE - strlen(buf);
1106 	if (p_dev_info->mbi_version && left_size)
1107 		snprintf(buf + strlen(buf), left_size,
1108 			 " [MBI %d.%d.%d]",
1109 			 (p_dev_info->mbi_version & QED_MBI_VERSION_2_MASK) >>
1110 			 QED_MBI_VERSION_2_OFFSET,
1111 			 (p_dev_info->mbi_version & QED_MBI_VERSION_1_MASK) >>
1112 			 QED_MBI_VERSION_1_OFFSET,
1113 			 (p_dev_info->mbi_version & QED_MBI_VERSION_0_MASK) >>
1114 			 QED_MBI_VERSION_0_OFFSET);
1115 
1116 	pr_info("qede %02x:%02x.%02x: %s [%s]\n", edev->pdev->bus->number,
1117 		PCI_SLOT(edev->pdev->devfn), PCI_FUNC(edev->pdev->devfn),
1118 		buf, edev->ndev->name);
1119 }
1120 
1121 enum qede_probe_mode {
1122 	QEDE_PROBE_NORMAL,
1123 	QEDE_PROBE_RECOVERY,
1124 };
1125 
1126 static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level,
1127 			bool is_vf, enum qede_probe_mode mode)
1128 {
1129 	struct qed_probe_params probe_params;
1130 	struct qed_slowpath_params sp_params;
1131 	struct qed_dev_eth_info dev_info;
1132 	struct qede_dev *edev;
1133 	struct qed_dev *cdev;
1134 	int rc;
1135 
1136 	if (unlikely(dp_level & QED_LEVEL_INFO))
1137 		pr_notice("Starting qede probe\n");
1138 
1139 	memset(&probe_params, 0, sizeof(probe_params));
1140 	probe_params.protocol = QED_PROTOCOL_ETH;
1141 	probe_params.dp_module = dp_module;
1142 	probe_params.dp_level = dp_level;
1143 	probe_params.is_vf = is_vf;
1144 	probe_params.recov_in_prog = (mode == QEDE_PROBE_RECOVERY);
1145 	cdev = qed_ops->common->probe(pdev, &probe_params);
1146 	if (!cdev) {
1147 		rc = -ENODEV;
1148 		goto err0;
1149 	}
1150 
1151 	qede_update_pf_params(cdev);
1152 
1153 	/* Start the Slowpath-process */
1154 	memset(&sp_params, 0, sizeof(sp_params));
1155 	sp_params.int_mode = QED_INT_MODE_MSIX;
1156 	strlcpy(sp_params.name, "qede LAN", QED_DRV_VER_STR_SIZE);
1157 	rc = qed_ops->common->slowpath_start(cdev, &sp_params);
1158 	if (rc) {
1159 		pr_notice("Cannot start slowpath\n");
1160 		goto err1;
1161 	}
1162 
1163 	/* Learn information crucial for qede to progress */
1164 	rc = qed_ops->fill_dev_info(cdev, &dev_info);
1165 	if (rc)
1166 		goto err2;
1167 
1168 	if (mode != QEDE_PROBE_RECOVERY) {
1169 		edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module,
1170 					   dp_level);
1171 		if (!edev) {
1172 			rc = -ENOMEM;
1173 			goto err2;
1174 		}
1175 
1176 		edev->devlink = qed_ops->common->devlink_register(cdev);
1177 		if (IS_ERR(edev->devlink)) {
1178 			DP_NOTICE(edev, "Cannot register devlink\n");
1179 			rc = PTR_ERR(edev->devlink);
1180 			edev->devlink = NULL;
1181 			goto err3;
1182 		}
1183 	} else {
1184 		struct net_device *ndev = pci_get_drvdata(pdev);
1185 		struct qed_devlink *qdl;
1186 
1187 		edev = netdev_priv(ndev);
1188 		qdl = devlink_priv(edev->devlink);
1189 		qdl->cdev = cdev;
1190 		edev->cdev = cdev;
1191 		memset(&edev->stats, 0, sizeof(edev->stats));
1192 		memcpy(&edev->dev_info, &dev_info, sizeof(dev_info));
1193 	}
1194 
1195 	if (is_vf)
1196 		set_bit(QEDE_FLAGS_IS_VF, &edev->flags);
1197 
1198 	qede_init_ndev(edev);
1199 
1200 	rc = qede_rdma_dev_add(edev, (mode == QEDE_PROBE_RECOVERY));
1201 	if (rc)
1202 		goto err3;
1203 
1204 	if (mode != QEDE_PROBE_RECOVERY) {
1205 		/* Prepare the lock prior to the registration of the netdev,
1206 		 * as once it's registered we might reach flows requiring it
1207 		 * [it's even possible to reach a flow needing it directly
1208 		 * from there, although it's unlikely].
1209 		 */
1210 		INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task);
1211 		mutex_init(&edev->qede_lock);
1212 
1213 		rc = register_netdev(edev->ndev);
1214 		if (rc) {
1215 			DP_NOTICE(edev, "Cannot register net-device\n");
1216 			goto err4;
1217 		}
1218 	}
1219 
1220 	edev->ops->common->set_name(cdev, edev->ndev->name);
1221 
1222 	/* PTP not supported on VFs */
1223 	if (!is_vf)
1224 		qede_ptp_enable(edev);
1225 
1226 	edev->ops->register_ops(cdev, &qede_ll_ops, edev);
1227 
1228 #ifdef CONFIG_DCB
1229 	if (!IS_VF(edev))
1230 		qede_set_dcbnl_ops(edev->ndev);
1231 #endif
1232 
1233 	edev->rx_copybreak = QEDE_RX_HDR_SIZE;
1234 
1235 	qede_log_probe(edev);
1236 	return 0;
1237 
1238 err4:
1239 	qede_rdma_dev_remove(edev, (mode == QEDE_PROBE_RECOVERY));
1240 err3:
1241 	if (mode != QEDE_PROBE_RECOVERY)
1242 		free_netdev(edev->ndev);
1243 	else
1244 		edev->cdev = NULL;
1245 err2:
1246 	qed_ops->common->slowpath_stop(cdev);
1247 err1:
1248 	qed_ops->common->remove(cdev);
1249 err0:
1250 	return rc;
1251 }
1252 
1253 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1254 {
1255 	bool is_vf = false;
1256 	u32 dp_module = 0;
1257 	u8 dp_level = 0;
1258 
1259 	switch ((enum qede_pci_private)id->driver_data) {
1260 	case QEDE_PRIVATE_VF:
1261 		if (debug & QED_LOG_VERBOSE_MASK)
1262 			dev_err(&pdev->dev, "Probing a VF\n");
1263 		is_vf = true;
1264 		break;
1265 	default:
1266 		if (debug & QED_LOG_VERBOSE_MASK)
1267 			dev_err(&pdev->dev, "Probing a PF\n");
1268 	}
1269 
1270 	qede_config_debug(debug, &dp_module, &dp_level);
1271 
1272 	return __qede_probe(pdev, dp_module, dp_level, is_vf,
1273 			    QEDE_PROBE_NORMAL);
1274 }
1275 
1276 enum qede_remove_mode {
1277 	QEDE_REMOVE_NORMAL,
1278 	QEDE_REMOVE_RECOVERY,
1279 };
1280 
1281 static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode)
1282 {
1283 	struct net_device *ndev = pci_get_drvdata(pdev);
1284 	struct qede_dev *edev;
1285 	struct qed_dev *cdev;
1286 
1287 	if (!ndev) {
1288 		dev_info(&pdev->dev, "Device has already been removed\n");
1289 		return;
1290 	}
1291 
1292 	edev = netdev_priv(ndev);
1293 	cdev = edev->cdev;
1294 
1295 	DP_INFO(edev, "Starting qede_remove\n");
1296 
1297 	qede_rdma_dev_remove(edev, (mode == QEDE_REMOVE_RECOVERY));
1298 
1299 	if (mode != QEDE_REMOVE_RECOVERY) {
1300 		set_bit(QEDE_SP_DISABLE, &edev->sp_flags);
1301 		unregister_netdev(ndev);
1302 
1303 		cancel_delayed_work_sync(&edev->sp_task);
1304 
1305 		edev->ops->common->set_power_state(cdev, PCI_D0);
1306 
1307 		pci_set_drvdata(pdev, NULL);
1308 	}
1309 
1310 	qede_ptp_disable(edev);
1311 
1312 	/* Use global ops since we've freed edev */
1313 	qed_ops->common->slowpath_stop(cdev);
1314 	if (system_state == SYSTEM_POWER_OFF)
1315 		return;
1316 
1317 	if (mode != QEDE_REMOVE_RECOVERY && edev->devlink) {
1318 		qed_ops->common->devlink_unregister(edev->devlink);
1319 		edev->devlink = NULL;
1320 	}
1321 	qed_ops->common->remove(cdev);
1322 	edev->cdev = NULL;
1323 
1324 	/* Since this can happen out-of-sync with other flows,
1325 	 * don't release the netdevice until after slowpath stop
1326 	 * has been called to guarantee various other contexts
1327 	 * [e.g., QED register callbacks] won't break anything when
1328 	 * accessing the netdevice.
1329 	 */
1330 	if (mode != QEDE_REMOVE_RECOVERY) {
1331 		kfree(edev->coal_entry);
1332 		free_netdev(ndev);
1333 	}
1334 
1335 	dev_info(&pdev->dev, "Ending qede_remove successfully\n");
1336 }
1337 
1338 static void qede_remove(struct pci_dev *pdev)
1339 {
1340 	__qede_remove(pdev, QEDE_REMOVE_NORMAL);
1341 }
1342 
1343 static void qede_shutdown(struct pci_dev *pdev)
1344 {
1345 	__qede_remove(pdev, QEDE_REMOVE_NORMAL);
1346 }
1347 
1348 /* -------------------------------------------------------------------------
1349  * START OF LOAD / UNLOAD
1350  * -------------------------------------------------------------------------
1351  */
1352 
1353 static int qede_set_num_queues(struct qede_dev *edev)
1354 {
1355 	int rc;
1356 	u16 rss_num;
1357 
1358 	/* Setup queues according to possible resources*/
1359 	if (edev->req_queues)
1360 		rss_num = edev->req_queues;
1361 	else
1362 		rss_num = netif_get_num_default_rss_queues() *
1363 			  edev->dev_info.common.num_hwfns;
1364 
1365 	rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num);
1366 
1367 	rc = edev->ops->common->set_fp_int(edev->cdev, rss_num);
1368 	if (rc > 0) {
1369 		/* Managed to request interrupts for our queues */
1370 		edev->num_queues = rc;
1371 		DP_INFO(edev, "Managed %d [of %d] RSS queues\n",
1372 			QEDE_QUEUE_CNT(edev), rss_num);
1373 		rc = 0;
1374 	}
1375 
1376 	edev->fp_num_tx = edev->req_num_tx;
1377 	edev->fp_num_rx = edev->req_num_rx;
1378 
1379 	return rc;
1380 }
1381 
1382 static void qede_free_mem_sb(struct qede_dev *edev, struct qed_sb_info *sb_info,
1383 			     u16 sb_id)
1384 {
1385 	if (sb_info->sb_virt) {
1386 		edev->ops->common->sb_release(edev->cdev, sb_info, sb_id,
1387 					      QED_SB_TYPE_L2_QUEUE);
1388 		dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt),
1389 				  (void *)sb_info->sb_virt, sb_info->sb_phys);
1390 		memset(sb_info, 0, sizeof(*sb_info));
1391 	}
1392 }
1393 
1394 /* This function allocates fast-path status block memory */
1395 static int qede_alloc_mem_sb(struct qede_dev *edev,
1396 			     struct qed_sb_info *sb_info, u16 sb_id)
1397 {
1398 	struct status_block *sb_virt;
1399 	dma_addr_t sb_phys;
1400 	int rc;
1401 
1402 	sb_virt = dma_alloc_coherent(&edev->pdev->dev,
1403 				     sizeof(*sb_virt), &sb_phys, GFP_KERNEL);
1404 	if (!sb_virt) {
1405 		DP_ERR(edev, "Status block allocation failed\n");
1406 		return -ENOMEM;
1407 	}
1408 
1409 	rc = edev->ops->common->sb_init(edev->cdev, sb_info,
1410 					sb_virt, sb_phys, sb_id,
1411 					QED_SB_TYPE_L2_QUEUE);
1412 	if (rc) {
1413 		DP_ERR(edev, "Status block initialization failed\n");
1414 		dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt),
1415 				  sb_virt, sb_phys);
1416 		return rc;
1417 	}
1418 
1419 	return 0;
1420 }
1421 
1422 static void qede_free_rx_buffers(struct qede_dev *edev,
1423 				 struct qede_rx_queue *rxq)
1424 {
1425 	u16 i;
1426 
1427 	for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) {
1428 		struct sw_rx_data *rx_buf;
1429 		struct page *data;
1430 
1431 		rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX];
1432 		data = rx_buf->data;
1433 
1434 		dma_unmap_page(&edev->pdev->dev,
1435 			       rx_buf->mapping, PAGE_SIZE, rxq->data_direction);
1436 
1437 		rx_buf->data = NULL;
1438 		__free_page(data);
1439 	}
1440 }
1441 
1442 static void qede_free_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1443 {
1444 	/* Free rx buffers */
1445 	qede_free_rx_buffers(edev, rxq);
1446 
1447 	/* Free the parallel SW ring */
1448 	kfree(rxq->sw_rx_ring);
1449 
1450 	/* Free the real RQ ring used by FW */
1451 	edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring);
1452 	edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring);
1453 }
1454 
1455 static void qede_set_tpa_param(struct qede_rx_queue *rxq)
1456 {
1457 	int i;
1458 
1459 	for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
1460 		struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
1461 
1462 		tpa_info->state = QEDE_AGG_STATE_NONE;
1463 	}
1464 }
1465 
1466 /* This function allocates all memory needed per Rx queue */
1467 static int qede_alloc_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1468 {
1469 	struct qed_chain_init_params params = {
1470 		.cnt_type	= QED_CHAIN_CNT_TYPE_U16,
1471 		.num_elems	= RX_RING_SIZE,
1472 	};
1473 	struct qed_dev *cdev = edev->cdev;
1474 	int i, rc, size;
1475 
1476 	rxq->num_rx_buffers = edev->q_num_rx_buffers;
1477 
1478 	rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD + edev->ndev->mtu;
1479 
1480 	rxq->rx_headroom = edev->xdp_prog ? XDP_PACKET_HEADROOM : NET_SKB_PAD;
1481 	size = rxq->rx_headroom +
1482 	       SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1483 
1484 	/* Make sure that the headroom and  payload fit in a single page */
1485 	if (rxq->rx_buf_size + size > PAGE_SIZE)
1486 		rxq->rx_buf_size = PAGE_SIZE - size;
1487 
1488 	/* Segment size to split a page in multiple equal parts,
1489 	 * unless XDP is used in which case we'd use the entire page.
1490 	 */
1491 	if (!edev->xdp_prog) {
1492 		size = size + rxq->rx_buf_size;
1493 		rxq->rx_buf_seg_size = roundup_pow_of_two(size);
1494 	} else {
1495 		rxq->rx_buf_seg_size = PAGE_SIZE;
1496 		edev->ndev->features &= ~NETIF_F_GRO_HW;
1497 	}
1498 
1499 	/* Allocate the parallel driver ring for Rx buffers */
1500 	size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE;
1501 	rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL);
1502 	if (!rxq->sw_rx_ring) {
1503 		DP_ERR(edev, "Rx buffers ring allocation failed\n");
1504 		rc = -ENOMEM;
1505 		goto err;
1506 	}
1507 
1508 	/* Allocate FW Rx ring  */
1509 	params.mode = QED_CHAIN_MODE_NEXT_PTR;
1510 	params.intended_use = QED_CHAIN_USE_TO_CONSUME_PRODUCE;
1511 	params.elem_size = sizeof(struct eth_rx_bd);
1512 
1513 	rc = edev->ops->common->chain_alloc(cdev, &rxq->rx_bd_ring, &params);
1514 	if (rc)
1515 		goto err;
1516 
1517 	/* Allocate FW completion ring */
1518 	params.mode = QED_CHAIN_MODE_PBL;
1519 	params.intended_use = QED_CHAIN_USE_TO_CONSUME;
1520 	params.elem_size = sizeof(union eth_rx_cqe);
1521 
1522 	rc = edev->ops->common->chain_alloc(cdev, &rxq->rx_comp_ring, &params);
1523 	if (rc)
1524 		goto err;
1525 
1526 	/* Allocate buffers for the Rx ring */
1527 	rxq->filled_buffers = 0;
1528 	for (i = 0; i < rxq->num_rx_buffers; i++) {
1529 		rc = qede_alloc_rx_buffer(rxq, false);
1530 		if (rc) {
1531 			DP_ERR(edev,
1532 			       "Rx buffers allocation failed at index %d\n", i);
1533 			goto err;
1534 		}
1535 	}
1536 
1537 	edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO_HW);
1538 	if (!edev->gro_disable)
1539 		qede_set_tpa_param(rxq);
1540 err:
1541 	return rc;
1542 }
1543 
1544 static void qede_free_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1545 {
1546 	/* Free the parallel SW ring */
1547 	if (txq->is_xdp)
1548 		kfree(txq->sw_tx_ring.xdp);
1549 	else
1550 		kfree(txq->sw_tx_ring.skbs);
1551 
1552 	/* Free the real RQ ring used by FW */
1553 	edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl);
1554 }
1555 
1556 /* This function allocates all memory needed per Tx queue */
1557 static int qede_alloc_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1558 {
1559 	struct qed_chain_init_params params = {
1560 		.mode		= QED_CHAIN_MODE_PBL,
1561 		.intended_use	= QED_CHAIN_USE_TO_CONSUME_PRODUCE,
1562 		.cnt_type	= QED_CHAIN_CNT_TYPE_U16,
1563 		.num_elems	= edev->q_num_tx_buffers,
1564 		.elem_size	= sizeof(union eth_tx_bd_types),
1565 	};
1566 	int size, rc;
1567 
1568 	txq->num_tx_buffers = edev->q_num_tx_buffers;
1569 
1570 	/* Allocate the parallel driver ring for Tx buffers */
1571 	if (txq->is_xdp) {
1572 		size = sizeof(*txq->sw_tx_ring.xdp) * txq->num_tx_buffers;
1573 		txq->sw_tx_ring.xdp = kzalloc(size, GFP_KERNEL);
1574 		if (!txq->sw_tx_ring.xdp)
1575 			goto err;
1576 	} else {
1577 		size = sizeof(*txq->sw_tx_ring.skbs) * txq->num_tx_buffers;
1578 		txq->sw_tx_ring.skbs = kzalloc(size, GFP_KERNEL);
1579 		if (!txq->sw_tx_ring.skbs)
1580 			goto err;
1581 	}
1582 
1583 	rc = edev->ops->common->chain_alloc(edev->cdev, &txq->tx_pbl, &params);
1584 	if (rc)
1585 		goto err;
1586 
1587 	return 0;
1588 
1589 err:
1590 	qede_free_mem_txq(edev, txq);
1591 	return -ENOMEM;
1592 }
1593 
1594 /* This function frees all memory of a single fp */
1595 static void qede_free_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1596 {
1597 	qede_free_mem_sb(edev, fp->sb_info, fp->id);
1598 
1599 	if (fp->type & QEDE_FASTPATH_RX)
1600 		qede_free_mem_rxq(edev, fp->rxq);
1601 
1602 	if (fp->type & QEDE_FASTPATH_XDP)
1603 		qede_free_mem_txq(edev, fp->xdp_tx);
1604 
1605 	if (fp->type & QEDE_FASTPATH_TX) {
1606 		int cos;
1607 
1608 		for_each_cos_in_txq(edev, cos)
1609 			qede_free_mem_txq(edev, &fp->txq[cos]);
1610 	}
1611 }
1612 
1613 /* This function allocates all memory needed for a single fp (i.e. an entity
1614  * which contains status block, one rx queue and/or multiple per-TC tx queues.
1615  */
1616 static int qede_alloc_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1617 {
1618 	int rc = 0;
1619 
1620 	rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->id);
1621 	if (rc)
1622 		goto out;
1623 
1624 	if (fp->type & QEDE_FASTPATH_RX) {
1625 		rc = qede_alloc_mem_rxq(edev, fp->rxq);
1626 		if (rc)
1627 			goto out;
1628 	}
1629 
1630 	if (fp->type & QEDE_FASTPATH_XDP) {
1631 		rc = qede_alloc_mem_txq(edev, fp->xdp_tx);
1632 		if (rc)
1633 			goto out;
1634 	}
1635 
1636 	if (fp->type & QEDE_FASTPATH_TX) {
1637 		int cos;
1638 
1639 		for_each_cos_in_txq(edev, cos) {
1640 			rc = qede_alloc_mem_txq(edev, &fp->txq[cos]);
1641 			if (rc)
1642 				goto out;
1643 		}
1644 	}
1645 
1646 out:
1647 	return rc;
1648 }
1649 
1650 static void qede_free_mem_load(struct qede_dev *edev)
1651 {
1652 	int i;
1653 
1654 	for_each_queue(i) {
1655 		struct qede_fastpath *fp = &edev->fp_array[i];
1656 
1657 		qede_free_mem_fp(edev, fp);
1658 	}
1659 }
1660 
1661 /* This function allocates all qede memory at NIC load. */
1662 static int qede_alloc_mem_load(struct qede_dev *edev)
1663 {
1664 	int rc = 0, queue_id;
1665 
1666 	for (queue_id = 0; queue_id < QEDE_QUEUE_CNT(edev); queue_id++) {
1667 		struct qede_fastpath *fp = &edev->fp_array[queue_id];
1668 
1669 		rc = qede_alloc_mem_fp(edev, fp);
1670 		if (rc) {
1671 			DP_ERR(edev,
1672 			       "Failed to allocate memory for fastpath - rss id = %d\n",
1673 			       queue_id);
1674 			qede_free_mem_load(edev);
1675 			return rc;
1676 		}
1677 	}
1678 
1679 	return 0;
1680 }
1681 
1682 static void qede_empty_tx_queue(struct qede_dev *edev,
1683 				struct qede_tx_queue *txq)
1684 {
1685 	unsigned int pkts_compl = 0, bytes_compl = 0;
1686 	struct netdev_queue *netdev_txq;
1687 	int rc, len = 0;
1688 
1689 	netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id);
1690 
1691 	while (qed_chain_get_cons_idx(&txq->tx_pbl) !=
1692 	       qed_chain_get_prod_idx(&txq->tx_pbl)) {
1693 		DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
1694 			   "Freeing a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n",
1695 			   txq->index, qed_chain_get_cons_idx(&txq->tx_pbl),
1696 			   qed_chain_get_prod_idx(&txq->tx_pbl));
1697 
1698 		rc = qede_free_tx_pkt(edev, txq, &len);
1699 		if (rc) {
1700 			DP_NOTICE(edev,
1701 				  "Failed to free a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n",
1702 				  txq->index,
1703 				  qed_chain_get_cons_idx(&txq->tx_pbl),
1704 				  qed_chain_get_prod_idx(&txq->tx_pbl));
1705 			break;
1706 		}
1707 
1708 		bytes_compl += len;
1709 		pkts_compl++;
1710 		txq->sw_tx_cons++;
1711 	}
1712 
1713 	netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl);
1714 }
1715 
1716 static void qede_empty_tx_queues(struct qede_dev *edev)
1717 {
1718 	int i;
1719 
1720 	for_each_queue(i)
1721 		if (edev->fp_array[i].type & QEDE_FASTPATH_TX) {
1722 			int cos;
1723 
1724 			for_each_cos_in_txq(edev, cos) {
1725 				struct qede_fastpath *fp;
1726 
1727 				fp = &edev->fp_array[i];
1728 				qede_empty_tx_queue(edev,
1729 						    &fp->txq[cos]);
1730 			}
1731 		}
1732 }
1733 
1734 /* This function inits fp content and resets the SB, RXQ and TXQ structures */
1735 static void qede_init_fp(struct qede_dev *edev)
1736 {
1737 	int queue_id, rxq_index = 0, txq_index = 0;
1738 	struct qede_fastpath *fp;
1739 	bool init_xdp = false;
1740 
1741 	for_each_queue(queue_id) {
1742 		fp = &edev->fp_array[queue_id];
1743 
1744 		fp->edev = edev;
1745 		fp->id = queue_id;
1746 
1747 		if (fp->type & QEDE_FASTPATH_XDP) {
1748 			fp->xdp_tx->index = QEDE_TXQ_IDX_TO_XDP(edev,
1749 								rxq_index);
1750 			fp->xdp_tx->is_xdp = 1;
1751 
1752 			spin_lock_init(&fp->xdp_tx->xdp_tx_lock);
1753 			init_xdp = true;
1754 		}
1755 
1756 		if (fp->type & QEDE_FASTPATH_RX) {
1757 			fp->rxq->rxq_id = rxq_index++;
1758 
1759 			/* Determine how to map buffers for this queue */
1760 			if (fp->type & QEDE_FASTPATH_XDP)
1761 				fp->rxq->data_direction = DMA_BIDIRECTIONAL;
1762 			else
1763 				fp->rxq->data_direction = DMA_FROM_DEVICE;
1764 			fp->rxq->dev = &edev->pdev->dev;
1765 
1766 			/* Driver have no error path from here */
1767 			WARN_ON(xdp_rxq_info_reg(&fp->rxq->xdp_rxq, edev->ndev,
1768 						 fp->rxq->rxq_id, 0) < 0);
1769 
1770 			if (xdp_rxq_info_reg_mem_model(&fp->rxq->xdp_rxq,
1771 						       MEM_TYPE_PAGE_ORDER0,
1772 						       NULL)) {
1773 				DP_NOTICE(edev,
1774 					  "Failed to register XDP memory model\n");
1775 			}
1776 		}
1777 
1778 		if (fp->type & QEDE_FASTPATH_TX) {
1779 			int cos;
1780 
1781 			for_each_cos_in_txq(edev, cos) {
1782 				struct qede_tx_queue *txq = &fp->txq[cos];
1783 				u16 ndev_tx_id;
1784 
1785 				txq->cos = cos;
1786 				txq->index = txq_index;
1787 				ndev_tx_id = QEDE_TXQ_TO_NDEV_TXQ_ID(edev, txq);
1788 				txq->ndev_txq_id = ndev_tx_id;
1789 
1790 				if (edev->dev_info.is_legacy)
1791 					txq->is_legacy = true;
1792 				txq->dev = &edev->pdev->dev;
1793 			}
1794 
1795 			txq_index++;
1796 		}
1797 
1798 		snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
1799 			 edev->ndev->name, queue_id);
1800 	}
1801 
1802 	if (init_xdp) {
1803 		edev->total_xdp_queues = QEDE_RSS_COUNT(edev);
1804 		DP_INFO(edev, "Total XDP queues: %u\n", edev->total_xdp_queues);
1805 	}
1806 }
1807 
1808 static int qede_set_real_num_queues(struct qede_dev *edev)
1809 {
1810 	int rc = 0;
1811 
1812 	rc = netif_set_real_num_tx_queues(edev->ndev,
1813 					  QEDE_TSS_COUNT(edev) *
1814 					  edev->dev_info.num_tc);
1815 	if (rc) {
1816 		DP_NOTICE(edev, "Failed to set real number of Tx queues\n");
1817 		return rc;
1818 	}
1819 
1820 	rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_COUNT(edev));
1821 	if (rc) {
1822 		DP_NOTICE(edev, "Failed to set real number of Rx queues\n");
1823 		return rc;
1824 	}
1825 
1826 	return 0;
1827 }
1828 
1829 static void qede_napi_disable_remove(struct qede_dev *edev)
1830 {
1831 	int i;
1832 
1833 	for_each_queue(i) {
1834 		napi_disable(&edev->fp_array[i].napi);
1835 
1836 		netif_napi_del(&edev->fp_array[i].napi);
1837 	}
1838 }
1839 
1840 static void qede_napi_add_enable(struct qede_dev *edev)
1841 {
1842 	int i;
1843 
1844 	/* Add NAPI objects */
1845 	for_each_queue(i) {
1846 		netif_napi_add(edev->ndev, &edev->fp_array[i].napi,
1847 			       qede_poll, NAPI_POLL_WEIGHT);
1848 		napi_enable(&edev->fp_array[i].napi);
1849 	}
1850 }
1851 
1852 static void qede_sync_free_irqs(struct qede_dev *edev)
1853 {
1854 	int i;
1855 
1856 	for (i = 0; i < edev->int_info.used_cnt; i++) {
1857 		if (edev->int_info.msix_cnt) {
1858 			synchronize_irq(edev->int_info.msix[i].vector);
1859 			free_irq(edev->int_info.msix[i].vector,
1860 				 &edev->fp_array[i]);
1861 		} else {
1862 			edev->ops->common->simd_handler_clean(edev->cdev, i);
1863 		}
1864 	}
1865 
1866 	edev->int_info.used_cnt = 0;
1867 	edev->int_info.msix_cnt = 0;
1868 }
1869 
1870 static int qede_req_msix_irqs(struct qede_dev *edev)
1871 {
1872 	int i, rc;
1873 
1874 	/* Sanitize number of interrupts == number of prepared RSS queues */
1875 	if (QEDE_QUEUE_CNT(edev) > edev->int_info.msix_cnt) {
1876 		DP_ERR(edev,
1877 		       "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n",
1878 		       QEDE_QUEUE_CNT(edev), edev->int_info.msix_cnt);
1879 		return -EINVAL;
1880 	}
1881 
1882 	for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) {
1883 #ifdef CONFIG_RFS_ACCEL
1884 		struct qede_fastpath *fp = &edev->fp_array[i];
1885 
1886 		if (edev->ndev->rx_cpu_rmap && (fp->type & QEDE_FASTPATH_RX)) {
1887 			rc = irq_cpu_rmap_add(edev->ndev->rx_cpu_rmap,
1888 					      edev->int_info.msix[i].vector);
1889 			if (rc) {
1890 				DP_ERR(edev, "Failed to add CPU rmap\n");
1891 				qede_free_arfs(edev);
1892 			}
1893 		}
1894 #endif
1895 		rc = request_irq(edev->int_info.msix[i].vector,
1896 				 qede_msix_fp_int, 0, edev->fp_array[i].name,
1897 				 &edev->fp_array[i]);
1898 		if (rc) {
1899 			DP_ERR(edev, "Request fp %d irq failed\n", i);
1900 #ifdef CONFIG_RFS_ACCEL
1901 			if (edev->ndev->rx_cpu_rmap)
1902 				free_irq_cpu_rmap(edev->ndev->rx_cpu_rmap);
1903 
1904 			edev->ndev->rx_cpu_rmap = NULL;
1905 #endif
1906 			qede_sync_free_irqs(edev);
1907 			return rc;
1908 		}
1909 		DP_VERBOSE(edev, NETIF_MSG_INTR,
1910 			   "Requested fp irq for %s [entry %d]. Cookie is at %p\n",
1911 			   edev->fp_array[i].name, i,
1912 			   &edev->fp_array[i]);
1913 		edev->int_info.used_cnt++;
1914 	}
1915 
1916 	return 0;
1917 }
1918 
1919 static void qede_simd_fp_handler(void *cookie)
1920 {
1921 	struct qede_fastpath *fp = (struct qede_fastpath *)cookie;
1922 
1923 	napi_schedule_irqoff(&fp->napi);
1924 }
1925 
1926 static int qede_setup_irqs(struct qede_dev *edev)
1927 {
1928 	int i, rc = 0;
1929 
1930 	/* Learn Interrupt configuration */
1931 	rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info);
1932 	if (rc)
1933 		return rc;
1934 
1935 	if (edev->int_info.msix_cnt) {
1936 		rc = qede_req_msix_irqs(edev);
1937 		if (rc)
1938 			return rc;
1939 		edev->ndev->irq = edev->int_info.msix[0].vector;
1940 	} else {
1941 		const struct qed_common_ops *ops;
1942 
1943 		/* qed should learn receive the RSS ids and callbacks */
1944 		ops = edev->ops->common;
1945 		for (i = 0; i < QEDE_QUEUE_CNT(edev); i++)
1946 			ops->simd_handler_config(edev->cdev,
1947 						 &edev->fp_array[i], i,
1948 						 qede_simd_fp_handler);
1949 		edev->int_info.used_cnt = QEDE_QUEUE_CNT(edev);
1950 	}
1951 	return 0;
1952 }
1953 
1954 static int qede_drain_txq(struct qede_dev *edev,
1955 			  struct qede_tx_queue *txq, bool allow_drain)
1956 {
1957 	int rc, cnt = 1000;
1958 
1959 	while (txq->sw_tx_cons != txq->sw_tx_prod) {
1960 		if (!cnt) {
1961 			if (allow_drain) {
1962 				DP_NOTICE(edev,
1963 					  "Tx queue[%d] is stuck, requesting MCP to drain\n",
1964 					  txq->index);
1965 				rc = edev->ops->common->drain(edev->cdev);
1966 				if (rc)
1967 					return rc;
1968 				return qede_drain_txq(edev, txq, false);
1969 			}
1970 			DP_NOTICE(edev,
1971 				  "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n",
1972 				  txq->index, txq->sw_tx_prod,
1973 				  txq->sw_tx_cons);
1974 			return -ENODEV;
1975 		}
1976 		cnt--;
1977 		usleep_range(1000, 2000);
1978 		barrier();
1979 	}
1980 
1981 	/* FW finished processing, wait for HW to transmit all tx packets */
1982 	usleep_range(1000, 2000);
1983 
1984 	return 0;
1985 }
1986 
1987 static int qede_stop_txq(struct qede_dev *edev,
1988 			 struct qede_tx_queue *txq, int rss_id)
1989 {
1990 	/* delete doorbell from doorbell recovery mechanism */
1991 	edev->ops->common->db_recovery_del(edev->cdev, txq->doorbell_addr,
1992 					   &txq->tx_db);
1993 
1994 	return edev->ops->q_tx_stop(edev->cdev, rss_id, txq->handle);
1995 }
1996 
1997 static int qede_stop_queues(struct qede_dev *edev)
1998 {
1999 	struct qed_update_vport_params *vport_update_params;
2000 	struct qed_dev *cdev = edev->cdev;
2001 	struct qede_fastpath *fp;
2002 	int rc, i;
2003 
2004 	/* Disable the vport */
2005 	vport_update_params = vzalloc(sizeof(*vport_update_params));
2006 	if (!vport_update_params)
2007 		return -ENOMEM;
2008 
2009 	vport_update_params->vport_id = 0;
2010 	vport_update_params->update_vport_active_flg = 1;
2011 	vport_update_params->vport_active_flg = 0;
2012 	vport_update_params->update_rss_flg = 0;
2013 
2014 	rc = edev->ops->vport_update(cdev, vport_update_params);
2015 	vfree(vport_update_params);
2016 
2017 	if (rc) {
2018 		DP_ERR(edev, "Failed to update vport\n");
2019 		return rc;
2020 	}
2021 
2022 	/* Flush Tx queues. If needed, request drain from MCP */
2023 	for_each_queue(i) {
2024 		fp = &edev->fp_array[i];
2025 
2026 		if (fp->type & QEDE_FASTPATH_TX) {
2027 			int cos;
2028 
2029 			for_each_cos_in_txq(edev, cos) {
2030 				rc = qede_drain_txq(edev, &fp->txq[cos], true);
2031 				if (rc)
2032 					return rc;
2033 			}
2034 		}
2035 
2036 		if (fp->type & QEDE_FASTPATH_XDP) {
2037 			rc = qede_drain_txq(edev, fp->xdp_tx, true);
2038 			if (rc)
2039 				return rc;
2040 		}
2041 	}
2042 
2043 	/* Stop all Queues in reverse order */
2044 	for (i = QEDE_QUEUE_CNT(edev) - 1; i >= 0; i--) {
2045 		fp = &edev->fp_array[i];
2046 
2047 		/* Stop the Tx Queue(s) */
2048 		if (fp->type & QEDE_FASTPATH_TX) {
2049 			int cos;
2050 
2051 			for_each_cos_in_txq(edev, cos) {
2052 				rc = qede_stop_txq(edev, &fp->txq[cos], i);
2053 				if (rc)
2054 					return rc;
2055 			}
2056 		}
2057 
2058 		/* Stop the Rx Queue */
2059 		if (fp->type & QEDE_FASTPATH_RX) {
2060 			rc = edev->ops->q_rx_stop(cdev, i, fp->rxq->handle);
2061 			if (rc) {
2062 				DP_ERR(edev, "Failed to stop RXQ #%d\n", i);
2063 				return rc;
2064 			}
2065 		}
2066 
2067 		/* Stop the XDP forwarding queue */
2068 		if (fp->type & QEDE_FASTPATH_XDP) {
2069 			rc = qede_stop_txq(edev, fp->xdp_tx, i);
2070 			if (rc)
2071 				return rc;
2072 
2073 			bpf_prog_put(fp->rxq->xdp_prog);
2074 		}
2075 	}
2076 
2077 	/* Stop the vport */
2078 	rc = edev->ops->vport_stop(cdev, 0);
2079 	if (rc)
2080 		DP_ERR(edev, "Failed to stop VPORT\n");
2081 
2082 	return rc;
2083 }
2084 
2085 static int qede_start_txq(struct qede_dev *edev,
2086 			  struct qede_fastpath *fp,
2087 			  struct qede_tx_queue *txq, u8 rss_id, u16 sb_idx)
2088 {
2089 	dma_addr_t phys_table = qed_chain_get_pbl_phys(&txq->tx_pbl);
2090 	u32 page_cnt = qed_chain_get_page_cnt(&txq->tx_pbl);
2091 	struct qed_queue_start_common_params params;
2092 	struct qed_txq_start_ret_params ret_params;
2093 	int rc;
2094 
2095 	memset(&params, 0, sizeof(params));
2096 	memset(&ret_params, 0, sizeof(ret_params));
2097 
2098 	/* Let the XDP queue share the queue-zone with one of the regular txq.
2099 	 * We don't really care about its coalescing.
2100 	 */
2101 	if (txq->is_xdp)
2102 		params.queue_id = QEDE_TXQ_XDP_TO_IDX(edev, txq);
2103 	else
2104 		params.queue_id = txq->index;
2105 
2106 	params.p_sb = fp->sb_info;
2107 	params.sb_idx = sb_idx;
2108 	params.tc = txq->cos;
2109 
2110 	rc = edev->ops->q_tx_start(edev->cdev, rss_id, &params, phys_table,
2111 				   page_cnt, &ret_params);
2112 	if (rc) {
2113 		DP_ERR(edev, "Start TXQ #%d failed %d\n", txq->index, rc);
2114 		return rc;
2115 	}
2116 
2117 	txq->doorbell_addr = ret_params.p_doorbell;
2118 	txq->handle = ret_params.p_handle;
2119 
2120 	/* Determine the FW consumer address associated */
2121 	txq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[sb_idx];
2122 
2123 	/* Prepare the doorbell parameters */
2124 	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST, DB_DEST_XCM);
2125 	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD, DB_AGG_CMD_SET);
2126 	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_VAL_SEL,
2127 		  DQ_XCM_ETH_TX_BD_PROD_CMD);
2128 	txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
2129 
2130 	/* register doorbell with doorbell recovery mechanism */
2131 	rc = edev->ops->common->db_recovery_add(edev->cdev, txq->doorbell_addr,
2132 						&txq->tx_db, DB_REC_WIDTH_32B,
2133 						DB_REC_KERNEL);
2134 
2135 	return rc;
2136 }
2137 
2138 static int qede_start_queues(struct qede_dev *edev, bool clear_stats)
2139 {
2140 	int vlan_removal_en = 1;
2141 	struct qed_dev *cdev = edev->cdev;
2142 	struct qed_dev_info *qed_info = &edev->dev_info.common;
2143 	struct qed_update_vport_params *vport_update_params;
2144 	struct qed_queue_start_common_params q_params;
2145 	struct qed_start_vport_params start = {0};
2146 	int rc, i;
2147 
2148 	if (!edev->num_queues) {
2149 		DP_ERR(edev,
2150 		       "Cannot update V-VPORT as active as there are no Rx queues\n");
2151 		return -EINVAL;
2152 	}
2153 
2154 	vport_update_params = vzalloc(sizeof(*vport_update_params));
2155 	if (!vport_update_params)
2156 		return -ENOMEM;
2157 
2158 	start.handle_ptp_pkts = !!(edev->ptp);
2159 	start.gro_enable = !edev->gro_disable;
2160 	start.mtu = edev->ndev->mtu;
2161 	start.vport_id = 0;
2162 	start.drop_ttl0 = true;
2163 	start.remove_inner_vlan = vlan_removal_en;
2164 	start.clear_stats = clear_stats;
2165 
2166 	rc = edev->ops->vport_start(cdev, &start);
2167 
2168 	if (rc) {
2169 		DP_ERR(edev, "Start V-PORT failed %d\n", rc);
2170 		goto out;
2171 	}
2172 
2173 	DP_VERBOSE(edev, NETIF_MSG_IFUP,
2174 		   "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n",
2175 		   start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en);
2176 
2177 	for_each_queue(i) {
2178 		struct qede_fastpath *fp = &edev->fp_array[i];
2179 		dma_addr_t p_phys_table;
2180 		u32 page_cnt;
2181 
2182 		if (fp->type & QEDE_FASTPATH_RX) {
2183 			struct qed_rxq_start_ret_params ret_params;
2184 			struct qede_rx_queue *rxq = fp->rxq;
2185 			__le16 *val;
2186 
2187 			memset(&ret_params, 0, sizeof(ret_params));
2188 			memset(&q_params, 0, sizeof(q_params));
2189 			q_params.queue_id = rxq->rxq_id;
2190 			q_params.vport_id = 0;
2191 			q_params.p_sb = fp->sb_info;
2192 			q_params.sb_idx = RX_PI;
2193 
2194 			p_phys_table =
2195 			    qed_chain_get_pbl_phys(&rxq->rx_comp_ring);
2196 			page_cnt = qed_chain_get_page_cnt(&rxq->rx_comp_ring);
2197 
2198 			rc = edev->ops->q_rx_start(cdev, i, &q_params,
2199 						   rxq->rx_buf_size,
2200 						   rxq->rx_bd_ring.p_phys_addr,
2201 						   p_phys_table,
2202 						   page_cnt, &ret_params);
2203 			if (rc) {
2204 				DP_ERR(edev, "Start RXQ #%d failed %d\n", i,
2205 				       rc);
2206 				goto out;
2207 			}
2208 
2209 			/* Use the return parameters */
2210 			rxq->hw_rxq_prod_addr = ret_params.p_prod;
2211 			rxq->handle = ret_params.p_handle;
2212 
2213 			val = &fp->sb_info->sb_virt->pi_array[RX_PI];
2214 			rxq->hw_cons_ptr = val;
2215 
2216 			qede_update_rx_prod(edev, rxq);
2217 		}
2218 
2219 		if (fp->type & QEDE_FASTPATH_XDP) {
2220 			rc = qede_start_txq(edev, fp, fp->xdp_tx, i, XDP_PI);
2221 			if (rc)
2222 				goto out;
2223 
2224 			bpf_prog_add(edev->xdp_prog, 1);
2225 			fp->rxq->xdp_prog = edev->xdp_prog;
2226 		}
2227 
2228 		if (fp->type & QEDE_FASTPATH_TX) {
2229 			int cos;
2230 
2231 			for_each_cos_in_txq(edev, cos) {
2232 				rc = qede_start_txq(edev, fp, &fp->txq[cos], i,
2233 						    TX_PI(cos));
2234 				if (rc)
2235 					goto out;
2236 			}
2237 		}
2238 	}
2239 
2240 	/* Prepare and send the vport enable */
2241 	vport_update_params->vport_id = start.vport_id;
2242 	vport_update_params->update_vport_active_flg = 1;
2243 	vport_update_params->vport_active_flg = 1;
2244 
2245 	if ((qed_info->b_inter_pf_switch || pci_num_vf(edev->pdev)) &&
2246 	    qed_info->tx_switching) {
2247 		vport_update_params->update_tx_switching_flg = 1;
2248 		vport_update_params->tx_switching_flg = 1;
2249 	}
2250 
2251 	qede_fill_rss_params(edev, &vport_update_params->rss_params,
2252 			     &vport_update_params->update_rss_flg);
2253 
2254 	rc = edev->ops->vport_update(cdev, vport_update_params);
2255 	if (rc)
2256 		DP_ERR(edev, "Update V-PORT failed %d\n", rc);
2257 
2258 out:
2259 	vfree(vport_update_params);
2260 	return rc;
2261 }
2262 
2263 enum qede_unload_mode {
2264 	QEDE_UNLOAD_NORMAL,
2265 	QEDE_UNLOAD_RECOVERY,
2266 };
2267 
2268 static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode,
2269 			bool is_locked)
2270 {
2271 	struct qed_link_params link_params;
2272 	int rc;
2273 
2274 	DP_INFO(edev, "Starting qede unload\n");
2275 
2276 	if (!is_locked)
2277 		__qede_lock(edev);
2278 
2279 	clear_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags);
2280 
2281 	if (mode != QEDE_UNLOAD_RECOVERY)
2282 		edev->state = QEDE_STATE_CLOSED;
2283 
2284 	qede_rdma_dev_event_close(edev);
2285 
2286 	/* Close OS Tx */
2287 	netif_tx_disable(edev->ndev);
2288 	netif_carrier_off(edev->ndev);
2289 
2290 	if (mode != QEDE_UNLOAD_RECOVERY) {
2291 		/* Reset the link */
2292 		memset(&link_params, 0, sizeof(link_params));
2293 		link_params.link_up = false;
2294 		edev->ops->common->set_link(edev->cdev, &link_params);
2295 
2296 		rc = qede_stop_queues(edev);
2297 		if (rc) {
2298 #ifdef CONFIG_RFS_ACCEL
2299 			if (edev->dev_info.common.b_arfs_capable) {
2300 				qede_poll_for_freeing_arfs_filters(edev);
2301 				if (edev->ndev->rx_cpu_rmap)
2302 					free_irq_cpu_rmap(edev->ndev->rx_cpu_rmap);
2303 
2304 				edev->ndev->rx_cpu_rmap = NULL;
2305 			}
2306 #endif
2307 			qede_sync_free_irqs(edev);
2308 			goto out;
2309 		}
2310 
2311 		DP_INFO(edev, "Stopped Queues\n");
2312 	}
2313 
2314 	qede_vlan_mark_nonconfigured(edev);
2315 	edev->ops->fastpath_stop(edev->cdev);
2316 
2317 	if (edev->dev_info.common.b_arfs_capable) {
2318 		qede_poll_for_freeing_arfs_filters(edev);
2319 		qede_free_arfs(edev);
2320 	}
2321 
2322 	/* Release the interrupts */
2323 	qede_sync_free_irqs(edev);
2324 	edev->ops->common->set_fp_int(edev->cdev, 0);
2325 
2326 	qede_napi_disable_remove(edev);
2327 
2328 	if (mode == QEDE_UNLOAD_RECOVERY)
2329 		qede_empty_tx_queues(edev);
2330 
2331 	qede_free_mem_load(edev);
2332 	qede_free_fp_array(edev);
2333 
2334 out:
2335 	if (!is_locked)
2336 		__qede_unlock(edev);
2337 
2338 	if (mode != QEDE_UNLOAD_RECOVERY)
2339 		DP_NOTICE(edev, "Link is down\n");
2340 
2341 	edev->ptp_skip_txts = 0;
2342 
2343 	DP_INFO(edev, "Ending qede unload\n");
2344 }
2345 
2346 enum qede_load_mode {
2347 	QEDE_LOAD_NORMAL,
2348 	QEDE_LOAD_RELOAD,
2349 	QEDE_LOAD_RECOVERY,
2350 };
2351 
2352 static int qede_load(struct qede_dev *edev, enum qede_load_mode mode,
2353 		     bool is_locked)
2354 {
2355 	struct qed_link_params link_params;
2356 	struct ethtool_coalesce coal = {};
2357 	u8 num_tc;
2358 	int rc, i;
2359 
2360 	DP_INFO(edev, "Starting qede load\n");
2361 
2362 	if (!is_locked)
2363 		__qede_lock(edev);
2364 
2365 	rc = qede_set_num_queues(edev);
2366 	if (rc)
2367 		goto out;
2368 
2369 	rc = qede_alloc_fp_array(edev);
2370 	if (rc)
2371 		goto out;
2372 
2373 	qede_init_fp(edev);
2374 
2375 	rc = qede_alloc_mem_load(edev);
2376 	if (rc)
2377 		goto err1;
2378 	DP_INFO(edev, "Allocated %d Rx, %d Tx queues\n",
2379 		QEDE_RSS_COUNT(edev), QEDE_TSS_COUNT(edev));
2380 
2381 	rc = qede_set_real_num_queues(edev);
2382 	if (rc)
2383 		goto err2;
2384 
2385 	if (qede_alloc_arfs(edev)) {
2386 		edev->ndev->features &= ~NETIF_F_NTUPLE;
2387 		edev->dev_info.common.b_arfs_capable = false;
2388 	}
2389 
2390 	qede_napi_add_enable(edev);
2391 	DP_INFO(edev, "Napi added and enabled\n");
2392 
2393 	rc = qede_setup_irqs(edev);
2394 	if (rc)
2395 		goto err3;
2396 	DP_INFO(edev, "Setup IRQs succeeded\n");
2397 
2398 	rc = qede_start_queues(edev, mode != QEDE_LOAD_RELOAD);
2399 	if (rc)
2400 		goto err4;
2401 	DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n");
2402 
2403 	num_tc = netdev_get_num_tc(edev->ndev);
2404 	num_tc = num_tc ? num_tc : edev->dev_info.num_tc;
2405 	qede_setup_tc(edev->ndev, num_tc);
2406 
2407 	/* Program un-configured VLANs */
2408 	qede_configure_vlan_filters(edev);
2409 
2410 	set_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags);
2411 
2412 	/* Ask for link-up using current configuration */
2413 	memset(&link_params, 0, sizeof(link_params));
2414 	link_params.link_up = true;
2415 	edev->ops->common->set_link(edev->cdev, &link_params);
2416 
2417 	edev->state = QEDE_STATE_OPEN;
2418 
2419 	coal.rx_coalesce_usecs = QED_DEFAULT_RX_USECS;
2420 	coal.tx_coalesce_usecs = QED_DEFAULT_TX_USECS;
2421 
2422 	for_each_queue(i) {
2423 		if (edev->coal_entry[i].isvalid) {
2424 			coal.rx_coalesce_usecs = edev->coal_entry[i].rxc;
2425 			coal.tx_coalesce_usecs = edev->coal_entry[i].txc;
2426 		}
2427 		__qede_unlock(edev);
2428 		qede_set_per_coalesce(edev->ndev, i, &coal);
2429 		__qede_lock(edev);
2430 	}
2431 	DP_INFO(edev, "Ending successfully qede load\n");
2432 
2433 	goto out;
2434 err4:
2435 	qede_sync_free_irqs(edev);
2436 err3:
2437 	qede_napi_disable_remove(edev);
2438 err2:
2439 	qede_free_mem_load(edev);
2440 err1:
2441 	edev->ops->common->set_fp_int(edev->cdev, 0);
2442 	qede_free_fp_array(edev);
2443 	edev->num_queues = 0;
2444 	edev->fp_num_tx = 0;
2445 	edev->fp_num_rx = 0;
2446 out:
2447 	if (!is_locked)
2448 		__qede_unlock(edev);
2449 
2450 	return rc;
2451 }
2452 
2453 /* 'func' should be able to run between unload and reload assuming interface
2454  * is actually running, or afterwards in case it's currently DOWN.
2455  */
2456 void qede_reload(struct qede_dev *edev,
2457 		 struct qede_reload_args *args, bool is_locked)
2458 {
2459 	if (!is_locked)
2460 		__qede_lock(edev);
2461 
2462 	/* Since qede_lock is held, internal state wouldn't change even
2463 	 * if netdev state would start transitioning. Check whether current
2464 	 * internal configuration indicates device is up, then reload.
2465 	 */
2466 	if (edev->state == QEDE_STATE_OPEN) {
2467 		qede_unload(edev, QEDE_UNLOAD_NORMAL, true);
2468 		if (args)
2469 			args->func(edev, args);
2470 		qede_load(edev, QEDE_LOAD_RELOAD, true);
2471 
2472 		/* Since no one is going to do it for us, re-configure */
2473 		qede_config_rx_mode(edev->ndev);
2474 	} else if (args) {
2475 		args->func(edev, args);
2476 	}
2477 
2478 	if (!is_locked)
2479 		__qede_unlock(edev);
2480 }
2481 
2482 /* called with rtnl_lock */
2483 static int qede_open(struct net_device *ndev)
2484 {
2485 	struct qede_dev *edev = netdev_priv(ndev);
2486 	int rc;
2487 
2488 	netif_carrier_off(ndev);
2489 
2490 	edev->ops->common->set_power_state(edev->cdev, PCI_D0);
2491 
2492 	rc = qede_load(edev, QEDE_LOAD_NORMAL, false);
2493 	if (rc)
2494 		return rc;
2495 
2496 	udp_tunnel_nic_reset_ntf(ndev);
2497 
2498 	edev->ops->common->update_drv_state(edev->cdev, true);
2499 
2500 	return 0;
2501 }
2502 
2503 static int qede_close(struct net_device *ndev)
2504 {
2505 	struct qede_dev *edev = netdev_priv(ndev);
2506 
2507 	qede_unload(edev, QEDE_UNLOAD_NORMAL, false);
2508 
2509 	if (edev->cdev)
2510 		edev->ops->common->update_drv_state(edev->cdev, false);
2511 
2512 	return 0;
2513 }
2514 
2515 static void qede_link_update(void *dev, struct qed_link_output *link)
2516 {
2517 	struct qede_dev *edev = dev;
2518 
2519 	if (!test_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags)) {
2520 		DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not ready\n");
2521 		return;
2522 	}
2523 
2524 	if (link->link_up) {
2525 		if (!netif_carrier_ok(edev->ndev)) {
2526 			DP_NOTICE(edev, "Link is up\n");
2527 			netif_tx_start_all_queues(edev->ndev);
2528 			netif_carrier_on(edev->ndev);
2529 			qede_rdma_dev_event_open(edev);
2530 		}
2531 	} else {
2532 		if (netif_carrier_ok(edev->ndev)) {
2533 			DP_NOTICE(edev, "Link is down\n");
2534 			netif_tx_disable(edev->ndev);
2535 			netif_carrier_off(edev->ndev);
2536 			qede_rdma_dev_event_close(edev);
2537 		}
2538 	}
2539 }
2540 
2541 static void qede_schedule_recovery_handler(void *dev)
2542 {
2543 	struct qede_dev *edev = dev;
2544 
2545 	if (edev->state == QEDE_STATE_RECOVERY) {
2546 		DP_NOTICE(edev,
2547 			  "Avoid scheduling a recovery handling since already in recovery state\n");
2548 		return;
2549 	}
2550 
2551 	set_bit(QEDE_SP_RECOVERY, &edev->sp_flags);
2552 	schedule_delayed_work(&edev->sp_task, 0);
2553 
2554 	DP_INFO(edev, "Scheduled a recovery handler\n");
2555 }
2556 
2557 static void qede_recovery_failed(struct qede_dev *edev)
2558 {
2559 	netdev_err(edev->ndev, "Recovery handling has failed. Power cycle is needed.\n");
2560 
2561 	netif_device_detach(edev->ndev);
2562 
2563 	if (edev->cdev)
2564 		edev->ops->common->set_power_state(edev->cdev, PCI_D3hot);
2565 }
2566 
2567 static void qede_recovery_handler(struct qede_dev *edev)
2568 {
2569 	u32 curr_state = edev->state;
2570 	int rc;
2571 
2572 	DP_NOTICE(edev, "Starting a recovery process\n");
2573 
2574 	/* No need to acquire first the qede_lock since is done by qede_sp_task
2575 	 * before calling this function.
2576 	 */
2577 	edev->state = QEDE_STATE_RECOVERY;
2578 
2579 	edev->ops->common->recovery_prolog(edev->cdev);
2580 
2581 	if (curr_state == QEDE_STATE_OPEN)
2582 		qede_unload(edev, QEDE_UNLOAD_RECOVERY, true);
2583 
2584 	__qede_remove(edev->pdev, QEDE_REMOVE_RECOVERY);
2585 
2586 	rc = __qede_probe(edev->pdev, edev->dp_module, edev->dp_level,
2587 			  IS_VF(edev), QEDE_PROBE_RECOVERY);
2588 	if (rc) {
2589 		edev->cdev = NULL;
2590 		goto err;
2591 	}
2592 
2593 	if (curr_state == QEDE_STATE_OPEN) {
2594 		rc = qede_load(edev, QEDE_LOAD_RECOVERY, true);
2595 		if (rc)
2596 			goto err;
2597 
2598 		qede_config_rx_mode(edev->ndev);
2599 		udp_tunnel_nic_reset_ntf(edev->ndev);
2600 	}
2601 
2602 	edev->state = curr_state;
2603 
2604 	DP_NOTICE(edev, "Recovery handling is done\n");
2605 
2606 	return;
2607 
2608 err:
2609 	qede_recovery_failed(edev);
2610 }
2611 
2612 static void qede_atomic_hw_err_handler(struct qede_dev *edev)
2613 {
2614 	struct qed_dev *cdev = edev->cdev;
2615 
2616 	DP_NOTICE(edev,
2617 		  "Generic non-sleepable HW error handling started - err_flags 0x%lx\n",
2618 		  edev->err_flags);
2619 
2620 	/* Get a call trace of the flow that led to the error */
2621 	WARN_ON(test_bit(QEDE_ERR_WARN, &edev->err_flags));
2622 
2623 	/* Prevent HW attentions from being reasserted */
2624 	if (test_bit(QEDE_ERR_ATTN_CLR_EN, &edev->err_flags))
2625 		edev->ops->common->attn_clr_enable(cdev, true);
2626 
2627 	DP_NOTICE(edev, "Generic non-sleepable HW error handling is done\n");
2628 }
2629 
2630 static void qede_generic_hw_err_handler(struct qede_dev *edev)
2631 {
2632 	DP_NOTICE(edev,
2633 		  "Generic sleepable HW error handling started - err_flags 0x%lx\n",
2634 		  edev->err_flags);
2635 
2636 	if (edev->devlink) {
2637 		DP_NOTICE(edev, "Reporting fatal error to devlink\n");
2638 		edev->ops->common->report_fatal_error(edev->devlink, edev->last_err_type);
2639 	}
2640 
2641 	clear_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags);
2642 
2643 	DP_NOTICE(edev, "Generic sleepable HW error handling is done\n");
2644 }
2645 
2646 static void qede_set_hw_err_flags(struct qede_dev *edev,
2647 				  enum qed_hw_err_type err_type)
2648 {
2649 	unsigned long err_flags = 0;
2650 
2651 	switch (err_type) {
2652 	case QED_HW_ERR_DMAE_FAIL:
2653 		set_bit(QEDE_ERR_WARN, &err_flags);
2654 		fallthrough;
2655 	case QED_HW_ERR_MFW_RESP_FAIL:
2656 	case QED_HW_ERR_HW_ATTN:
2657 	case QED_HW_ERR_RAMROD_FAIL:
2658 	case QED_HW_ERR_FW_ASSERT:
2659 		set_bit(QEDE_ERR_ATTN_CLR_EN, &err_flags);
2660 		set_bit(QEDE_ERR_GET_DBG_INFO, &err_flags);
2661 		/* make this error as recoverable and start recovery*/
2662 		set_bit(QEDE_ERR_IS_RECOVERABLE, &err_flags);
2663 		break;
2664 
2665 	default:
2666 		DP_NOTICE(edev, "Unexpected HW error [%d]\n", err_type);
2667 		break;
2668 	}
2669 
2670 	edev->err_flags |= err_flags;
2671 }
2672 
2673 static void qede_schedule_hw_err_handler(void *dev,
2674 					 enum qed_hw_err_type err_type)
2675 {
2676 	struct qede_dev *edev = dev;
2677 
2678 	/* Fan failure cannot be masked by handling of another HW error or by a
2679 	 * concurrent recovery process.
2680 	 */
2681 	if ((test_and_set_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags) ||
2682 	     edev->state == QEDE_STATE_RECOVERY) &&
2683 	     err_type != QED_HW_ERR_FAN_FAIL) {
2684 		DP_INFO(edev,
2685 			"Avoid scheduling an error handling while another HW error is being handled\n");
2686 		return;
2687 	}
2688 
2689 	if (err_type >= QED_HW_ERR_LAST) {
2690 		DP_NOTICE(edev, "Unknown HW error [%d]\n", err_type);
2691 		clear_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags);
2692 		return;
2693 	}
2694 
2695 	edev->last_err_type = err_type;
2696 	qede_set_hw_err_flags(edev, err_type);
2697 	qede_atomic_hw_err_handler(edev);
2698 	set_bit(QEDE_SP_HW_ERR, &edev->sp_flags);
2699 	schedule_delayed_work(&edev->sp_task, 0);
2700 
2701 	DP_INFO(edev, "Scheduled a error handler [err_type %d]\n", err_type);
2702 }
2703 
2704 static bool qede_is_txq_full(struct qede_dev *edev, struct qede_tx_queue *txq)
2705 {
2706 	struct netdev_queue *netdev_txq;
2707 
2708 	netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id);
2709 	if (netif_xmit_stopped(netdev_txq))
2710 		return true;
2711 
2712 	return false;
2713 }
2714 
2715 static void qede_get_generic_tlv_data(void *dev, struct qed_generic_tlvs *data)
2716 {
2717 	struct qede_dev *edev = dev;
2718 	struct netdev_hw_addr *ha;
2719 	int i;
2720 
2721 	if (edev->ndev->features & NETIF_F_IP_CSUM)
2722 		data->feat_flags |= QED_TLV_IP_CSUM;
2723 	if (edev->ndev->features & NETIF_F_TSO)
2724 		data->feat_flags |= QED_TLV_LSO;
2725 
2726 	ether_addr_copy(data->mac[0], edev->ndev->dev_addr);
2727 	eth_zero_addr(data->mac[1]);
2728 	eth_zero_addr(data->mac[2]);
2729 	/* Copy the first two UC macs */
2730 	netif_addr_lock_bh(edev->ndev);
2731 	i = 1;
2732 	netdev_for_each_uc_addr(ha, edev->ndev) {
2733 		ether_addr_copy(data->mac[i++], ha->addr);
2734 		if (i == QED_TLV_MAC_COUNT)
2735 			break;
2736 	}
2737 
2738 	netif_addr_unlock_bh(edev->ndev);
2739 }
2740 
2741 static void qede_get_eth_tlv_data(void *dev, void *data)
2742 {
2743 	struct qed_mfw_tlv_eth *etlv = data;
2744 	struct qede_dev *edev = dev;
2745 	struct qede_fastpath *fp;
2746 	int i;
2747 
2748 	etlv->lso_maxoff_size = 0XFFFF;
2749 	etlv->lso_maxoff_size_set = true;
2750 	etlv->lso_minseg_size = (u16)ETH_TX_LSO_WINDOW_MIN_LEN;
2751 	etlv->lso_minseg_size_set = true;
2752 	etlv->prom_mode = !!(edev->ndev->flags & IFF_PROMISC);
2753 	etlv->prom_mode_set = true;
2754 	etlv->tx_descr_size = QEDE_TSS_COUNT(edev);
2755 	etlv->tx_descr_size_set = true;
2756 	etlv->rx_descr_size = QEDE_RSS_COUNT(edev);
2757 	etlv->rx_descr_size_set = true;
2758 	etlv->iov_offload = QED_MFW_TLV_IOV_OFFLOAD_VEB;
2759 	etlv->iov_offload_set = true;
2760 
2761 	/* Fill information regarding queues; Should be done under the qede
2762 	 * lock to guarantee those don't change beneath our feet.
2763 	 */
2764 	etlv->txqs_empty = true;
2765 	etlv->rxqs_empty = true;
2766 	etlv->num_txqs_full = 0;
2767 	etlv->num_rxqs_full = 0;
2768 
2769 	__qede_lock(edev);
2770 	for_each_queue(i) {
2771 		fp = &edev->fp_array[i];
2772 		if (fp->type & QEDE_FASTPATH_TX) {
2773 			struct qede_tx_queue *txq = QEDE_FP_TC0_TXQ(fp);
2774 
2775 			if (txq->sw_tx_cons != txq->sw_tx_prod)
2776 				etlv->txqs_empty = false;
2777 			if (qede_is_txq_full(edev, txq))
2778 				etlv->num_txqs_full++;
2779 		}
2780 		if (fp->type & QEDE_FASTPATH_RX) {
2781 			if (qede_has_rx_work(fp->rxq))
2782 				etlv->rxqs_empty = false;
2783 
2784 			/* This one is a bit tricky; Firmware might stop
2785 			 * placing packets if ring is not yet full.
2786 			 * Give an approximation.
2787 			 */
2788 			if (le16_to_cpu(*fp->rxq->hw_cons_ptr) -
2789 			    qed_chain_get_cons_idx(&fp->rxq->rx_comp_ring) >
2790 			    RX_RING_SIZE - 100)
2791 				etlv->num_rxqs_full++;
2792 		}
2793 	}
2794 	__qede_unlock(edev);
2795 
2796 	etlv->txqs_empty_set = true;
2797 	etlv->rxqs_empty_set = true;
2798 	etlv->num_txqs_full_set = true;
2799 	etlv->num_rxqs_full_set = true;
2800 }
2801 
2802 /**
2803  * qede_io_error_detected(): Called when PCI error is detected
2804  *
2805  * @pdev: Pointer to PCI device
2806  * @state: The current pci connection state
2807  *
2808  *Return: pci_ers_result_t.
2809  *
2810  * This function is called after a PCI bus error affecting
2811  * this device has been detected.
2812  */
2813 static pci_ers_result_t
2814 qede_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
2815 {
2816 	struct net_device *dev = pci_get_drvdata(pdev);
2817 	struct qede_dev *edev = netdev_priv(dev);
2818 
2819 	if (!edev)
2820 		return PCI_ERS_RESULT_NONE;
2821 
2822 	DP_NOTICE(edev, "IO error detected [%d]\n", state);
2823 
2824 	__qede_lock(edev);
2825 	if (edev->state == QEDE_STATE_RECOVERY) {
2826 		DP_NOTICE(edev, "Device already in the recovery state\n");
2827 		__qede_unlock(edev);
2828 		return PCI_ERS_RESULT_NONE;
2829 	}
2830 
2831 	/* PF handles the recovery of its VFs */
2832 	if (IS_VF(edev)) {
2833 		DP_VERBOSE(edev, QED_MSG_IOV,
2834 			   "VF recovery is handled by its PF\n");
2835 		__qede_unlock(edev);
2836 		return PCI_ERS_RESULT_RECOVERED;
2837 	}
2838 
2839 	/* Close OS Tx */
2840 	netif_tx_disable(edev->ndev);
2841 	netif_carrier_off(edev->ndev);
2842 
2843 	set_bit(QEDE_SP_AER, &edev->sp_flags);
2844 	schedule_delayed_work(&edev->sp_task, 0);
2845 
2846 	__qede_unlock(edev);
2847 
2848 	return PCI_ERS_RESULT_CAN_RECOVER;
2849 }
2850