xref: /linux/drivers/net/ethernet/qlogic/qede/qede_main.c (revision 4b132aacb0768ac1e652cf517097ea6f237214b9)
1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause)
2 /* QLogic qede NIC Driver
3  * Copyright (c) 2015-2017  QLogic Corporation
4  * Copyright (c) 2019-2020 Marvell International Ltd.
5  */
6 
7 #include <linux/crash_dump.h>
8 #include <linux/module.h>
9 #include <linux/pci.h>
10 #include <linux/device.h>
11 #include <linux/netdevice.h>
12 #include <linux/etherdevice.h>
13 #include <linux/skbuff.h>
14 #include <linux/errno.h>
15 #include <linux/list.h>
16 #include <linux/string.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/interrupt.h>
19 #include <asm/byteorder.h>
20 #include <asm/param.h>
21 #include <linux/io.h>
22 #include <linux/netdev_features.h>
23 #include <linux/udp.h>
24 #include <linux/tcp.h>
25 #include <net/udp_tunnel.h>
26 #include <linux/ip.h>
27 #include <net/ipv6.h>
28 #include <net/tcp.h>
29 #include <linux/if_ether.h>
30 #include <linux/if_vlan.h>
31 #include <linux/pkt_sched.h>
32 #include <linux/ethtool.h>
33 #include <linux/in.h>
34 #include <linux/random.h>
35 #include <net/ip6_checksum.h>
36 #include <linux/bitops.h>
37 #include <linux/vmalloc.h>
38 #include "qede.h"
39 #include "qede_ptp.h"
40 
41 MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver");
42 MODULE_LICENSE("GPL");
43 
44 static uint debug;
45 module_param(debug, uint, 0);
46 MODULE_PARM_DESC(debug, " Default debug msglevel");
47 
48 static const struct qed_eth_ops *qed_ops;
49 
50 #define CHIP_NUM_57980S_40		0x1634
51 #define CHIP_NUM_57980S_10		0x1666
52 #define CHIP_NUM_57980S_MF		0x1636
53 #define CHIP_NUM_57980S_100		0x1644
54 #define CHIP_NUM_57980S_50		0x1654
55 #define CHIP_NUM_57980S_25		0x1656
56 #define CHIP_NUM_57980S_IOV		0x1664
57 #define CHIP_NUM_AH			0x8070
58 #define CHIP_NUM_AH_IOV			0x8090
59 
60 #ifndef PCI_DEVICE_ID_NX2_57980E
61 #define PCI_DEVICE_ID_57980S_40		CHIP_NUM_57980S_40
62 #define PCI_DEVICE_ID_57980S_10		CHIP_NUM_57980S_10
63 #define PCI_DEVICE_ID_57980S_MF		CHIP_NUM_57980S_MF
64 #define PCI_DEVICE_ID_57980S_100	CHIP_NUM_57980S_100
65 #define PCI_DEVICE_ID_57980S_50		CHIP_NUM_57980S_50
66 #define PCI_DEVICE_ID_57980S_25		CHIP_NUM_57980S_25
67 #define PCI_DEVICE_ID_57980S_IOV	CHIP_NUM_57980S_IOV
68 #define PCI_DEVICE_ID_AH		CHIP_NUM_AH
69 #define PCI_DEVICE_ID_AH_IOV		CHIP_NUM_AH_IOV
70 
71 #endif
72 
73 enum qede_pci_private {
74 	QEDE_PRIVATE_PF,
75 	QEDE_PRIVATE_VF
76 };
77 
78 static const struct pci_device_id qede_pci_tbl[] = {
79 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF},
80 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF},
81 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF},
82 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF},
83 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF},
84 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF},
85 #ifdef CONFIG_QED_SRIOV
86 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF},
87 #endif
88 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH), QEDE_PRIVATE_PF},
89 #ifdef CONFIG_QED_SRIOV
90 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH_IOV), QEDE_PRIVATE_VF},
91 #endif
92 	{ 0 }
93 };
94 
95 MODULE_DEVICE_TABLE(pci, qede_pci_tbl);
96 
97 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id);
98 static pci_ers_result_t
99 qede_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state);
100 
101 #define TX_TIMEOUT		(5 * HZ)
102 
103 /* Utilize last protocol index for XDP */
104 #define XDP_PI	11
105 
106 static void qede_remove(struct pci_dev *pdev);
107 static void qede_shutdown(struct pci_dev *pdev);
108 static void qede_link_update(void *dev, struct qed_link_output *link);
109 static void qede_schedule_recovery_handler(void *dev);
110 static void qede_recovery_handler(struct qede_dev *edev);
111 static void qede_schedule_hw_err_handler(void *dev,
112 					 enum qed_hw_err_type err_type);
113 static void qede_get_eth_tlv_data(void *edev, void *data);
114 static void qede_get_generic_tlv_data(void *edev,
115 				      struct qed_generic_tlvs *data);
116 static void qede_generic_hw_err_handler(struct qede_dev *edev);
117 #ifdef CONFIG_QED_SRIOV
118 static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos,
119 			    __be16 vlan_proto)
120 {
121 	struct qede_dev *edev = netdev_priv(ndev);
122 
123 	if (vlan > 4095) {
124 		DP_NOTICE(edev, "Illegal vlan value %d\n", vlan);
125 		return -EINVAL;
126 	}
127 
128 	if (vlan_proto != htons(ETH_P_8021Q))
129 		return -EPROTONOSUPPORT;
130 
131 	DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n",
132 		   vlan, vf);
133 
134 	return edev->ops->iov->set_vlan(edev->cdev, vlan, vf);
135 }
136 
137 static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac)
138 {
139 	struct qede_dev *edev = netdev_priv(ndev);
140 
141 	DP_VERBOSE(edev, QED_MSG_IOV, "Setting MAC %pM to VF [%d]\n", mac, vfidx);
142 
143 	if (!is_valid_ether_addr(mac)) {
144 		DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n");
145 		return -EINVAL;
146 	}
147 
148 	return edev->ops->iov->set_mac(edev->cdev, mac, vfidx);
149 }
150 
151 static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param)
152 {
153 	struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev));
154 	struct qed_dev_info *qed_info = &edev->dev_info.common;
155 	struct qed_update_vport_params *vport_params;
156 	int rc;
157 
158 	vport_params = vzalloc(sizeof(*vport_params));
159 	if (!vport_params)
160 		return -ENOMEM;
161 	DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param);
162 
163 	rc = edev->ops->iov->configure(edev->cdev, num_vfs_param);
164 
165 	/* Enable/Disable Tx switching for PF */
166 	if ((rc == num_vfs_param) && netif_running(edev->ndev) &&
167 	    !qed_info->b_inter_pf_switch && qed_info->tx_switching) {
168 		vport_params->vport_id = 0;
169 		vport_params->update_tx_switching_flg = 1;
170 		vport_params->tx_switching_flg = num_vfs_param ? 1 : 0;
171 		edev->ops->vport_update(edev->cdev, vport_params);
172 	}
173 
174 	vfree(vport_params);
175 	return rc;
176 }
177 #endif
178 
179 static int __maybe_unused qede_suspend(struct device *dev)
180 {
181 	dev_info(dev, "Device does not support suspend operation\n");
182 
183 	return -EOPNOTSUPP;
184 }
185 
186 static DEFINE_SIMPLE_DEV_PM_OPS(qede_pm_ops, qede_suspend, NULL);
187 
188 static const struct pci_error_handlers qede_err_handler = {
189 	.error_detected = qede_io_error_detected,
190 };
191 
192 static struct pci_driver qede_pci_driver = {
193 	.name = "qede",
194 	.id_table = qede_pci_tbl,
195 	.probe = qede_probe,
196 	.remove = qede_remove,
197 	.shutdown = qede_shutdown,
198 #ifdef CONFIG_QED_SRIOV
199 	.sriov_configure = qede_sriov_configure,
200 #endif
201 	.err_handler = &qede_err_handler,
202 	.driver.pm = &qede_pm_ops,
203 };
204 
205 static struct qed_eth_cb_ops qede_ll_ops = {
206 	{
207 #ifdef CONFIG_RFS_ACCEL
208 		.arfs_filter_op = qede_arfs_filter_op,
209 #endif
210 		.link_update = qede_link_update,
211 		.schedule_recovery_handler = qede_schedule_recovery_handler,
212 		.schedule_hw_err_handler = qede_schedule_hw_err_handler,
213 		.get_generic_tlv_data = qede_get_generic_tlv_data,
214 		.get_protocol_tlv_data = qede_get_eth_tlv_data,
215 	},
216 	.force_mac = qede_force_mac,
217 	.ports_update = qede_udp_ports_update,
218 };
219 
220 static int qede_netdev_event(struct notifier_block *this, unsigned long event,
221 			     void *ptr)
222 {
223 	struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
224 	struct ethtool_drvinfo drvinfo;
225 	struct qede_dev *edev;
226 
227 	if (event != NETDEV_CHANGENAME && event != NETDEV_CHANGEADDR)
228 		goto done;
229 
230 	/* Check whether this is a qede device */
231 	if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo)
232 		goto done;
233 
234 	memset(&drvinfo, 0, sizeof(drvinfo));
235 	ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo);
236 	if (strcmp(drvinfo.driver, "qede"))
237 		goto done;
238 	edev = netdev_priv(ndev);
239 
240 	switch (event) {
241 	case NETDEV_CHANGENAME:
242 		/* Notify qed of the name change */
243 		if (!edev->ops || !edev->ops->common)
244 			goto done;
245 		edev->ops->common->set_name(edev->cdev, edev->ndev->name);
246 		break;
247 	case NETDEV_CHANGEADDR:
248 		edev = netdev_priv(ndev);
249 		qede_rdma_event_changeaddr(edev);
250 		break;
251 	}
252 
253 done:
254 	return NOTIFY_DONE;
255 }
256 
257 static struct notifier_block qede_netdev_notifier = {
258 	.notifier_call = qede_netdev_event,
259 };
260 
261 static
262 int __init qede_init(void)
263 {
264 	int ret;
265 
266 	pr_info("qede init: QLogic FastLinQ 4xxxx Ethernet Driver qede\n");
267 
268 	qede_forced_speed_maps_init();
269 
270 	qed_ops = qed_get_eth_ops();
271 	if (!qed_ops) {
272 		pr_notice("Failed to get qed ethtool operations\n");
273 		return -EINVAL;
274 	}
275 
276 	/* Must register notifier before pci ops, since we might miss
277 	 * interface rename after pci probe and netdev registration.
278 	 */
279 	ret = register_netdevice_notifier(&qede_netdev_notifier);
280 	if (ret) {
281 		pr_notice("Failed to register netdevice_notifier\n");
282 		qed_put_eth_ops();
283 		return -EINVAL;
284 	}
285 
286 	ret = pci_register_driver(&qede_pci_driver);
287 	if (ret) {
288 		pr_notice("Failed to register driver\n");
289 		unregister_netdevice_notifier(&qede_netdev_notifier);
290 		qed_put_eth_ops();
291 		return -EINVAL;
292 	}
293 
294 	return 0;
295 }
296 
297 static void __exit qede_cleanup(void)
298 {
299 	if (debug & QED_LOG_INFO_MASK)
300 		pr_info("qede_cleanup called\n");
301 
302 	unregister_netdevice_notifier(&qede_netdev_notifier);
303 	pci_unregister_driver(&qede_pci_driver);
304 	qed_put_eth_ops();
305 }
306 
307 module_init(qede_init);
308 module_exit(qede_cleanup);
309 
310 static int qede_open(struct net_device *ndev);
311 static int qede_close(struct net_device *ndev);
312 
313 void qede_fill_by_demand_stats(struct qede_dev *edev)
314 {
315 	struct qede_stats_common *p_common = &edev->stats.common;
316 	struct qed_eth_stats stats;
317 
318 	edev->ops->get_vport_stats(edev->cdev, &stats);
319 
320 	spin_lock(&edev->stats_lock);
321 
322 	p_common->no_buff_discards = stats.common.no_buff_discards;
323 	p_common->packet_too_big_discard = stats.common.packet_too_big_discard;
324 	p_common->ttl0_discard = stats.common.ttl0_discard;
325 	p_common->rx_ucast_bytes = stats.common.rx_ucast_bytes;
326 	p_common->rx_mcast_bytes = stats.common.rx_mcast_bytes;
327 	p_common->rx_bcast_bytes = stats.common.rx_bcast_bytes;
328 	p_common->rx_ucast_pkts = stats.common.rx_ucast_pkts;
329 	p_common->rx_mcast_pkts = stats.common.rx_mcast_pkts;
330 	p_common->rx_bcast_pkts = stats.common.rx_bcast_pkts;
331 	p_common->mftag_filter_discards = stats.common.mftag_filter_discards;
332 	p_common->mac_filter_discards = stats.common.mac_filter_discards;
333 	p_common->gft_filter_drop = stats.common.gft_filter_drop;
334 
335 	p_common->tx_ucast_bytes = stats.common.tx_ucast_bytes;
336 	p_common->tx_mcast_bytes = stats.common.tx_mcast_bytes;
337 	p_common->tx_bcast_bytes = stats.common.tx_bcast_bytes;
338 	p_common->tx_ucast_pkts = stats.common.tx_ucast_pkts;
339 	p_common->tx_mcast_pkts = stats.common.tx_mcast_pkts;
340 	p_common->tx_bcast_pkts = stats.common.tx_bcast_pkts;
341 	p_common->tx_err_drop_pkts = stats.common.tx_err_drop_pkts;
342 	p_common->coalesced_pkts = stats.common.tpa_coalesced_pkts;
343 	p_common->coalesced_events = stats.common.tpa_coalesced_events;
344 	p_common->coalesced_aborts_num = stats.common.tpa_aborts_num;
345 	p_common->non_coalesced_pkts = stats.common.tpa_not_coalesced_pkts;
346 	p_common->coalesced_bytes = stats.common.tpa_coalesced_bytes;
347 
348 	p_common->rx_64_byte_packets = stats.common.rx_64_byte_packets;
349 	p_common->rx_65_to_127_byte_packets =
350 	    stats.common.rx_65_to_127_byte_packets;
351 	p_common->rx_128_to_255_byte_packets =
352 	    stats.common.rx_128_to_255_byte_packets;
353 	p_common->rx_256_to_511_byte_packets =
354 	    stats.common.rx_256_to_511_byte_packets;
355 	p_common->rx_512_to_1023_byte_packets =
356 	    stats.common.rx_512_to_1023_byte_packets;
357 	p_common->rx_1024_to_1518_byte_packets =
358 	    stats.common.rx_1024_to_1518_byte_packets;
359 	p_common->rx_crc_errors = stats.common.rx_crc_errors;
360 	p_common->rx_mac_crtl_frames = stats.common.rx_mac_crtl_frames;
361 	p_common->rx_pause_frames = stats.common.rx_pause_frames;
362 	p_common->rx_pfc_frames = stats.common.rx_pfc_frames;
363 	p_common->rx_align_errors = stats.common.rx_align_errors;
364 	p_common->rx_carrier_errors = stats.common.rx_carrier_errors;
365 	p_common->rx_oversize_packets = stats.common.rx_oversize_packets;
366 	p_common->rx_jabbers = stats.common.rx_jabbers;
367 	p_common->rx_undersize_packets = stats.common.rx_undersize_packets;
368 	p_common->rx_fragments = stats.common.rx_fragments;
369 	p_common->tx_64_byte_packets = stats.common.tx_64_byte_packets;
370 	p_common->tx_65_to_127_byte_packets =
371 	    stats.common.tx_65_to_127_byte_packets;
372 	p_common->tx_128_to_255_byte_packets =
373 	    stats.common.tx_128_to_255_byte_packets;
374 	p_common->tx_256_to_511_byte_packets =
375 	    stats.common.tx_256_to_511_byte_packets;
376 	p_common->tx_512_to_1023_byte_packets =
377 	    stats.common.tx_512_to_1023_byte_packets;
378 	p_common->tx_1024_to_1518_byte_packets =
379 	    stats.common.tx_1024_to_1518_byte_packets;
380 	p_common->tx_pause_frames = stats.common.tx_pause_frames;
381 	p_common->tx_pfc_frames = stats.common.tx_pfc_frames;
382 	p_common->brb_truncates = stats.common.brb_truncates;
383 	p_common->brb_discards = stats.common.brb_discards;
384 	p_common->tx_mac_ctrl_frames = stats.common.tx_mac_ctrl_frames;
385 	p_common->link_change_count = stats.common.link_change_count;
386 	p_common->ptp_skip_txts = edev->ptp_skip_txts;
387 
388 	if (QEDE_IS_BB(edev)) {
389 		struct qede_stats_bb *p_bb = &edev->stats.bb;
390 
391 		p_bb->rx_1519_to_1522_byte_packets =
392 		    stats.bb.rx_1519_to_1522_byte_packets;
393 		p_bb->rx_1519_to_2047_byte_packets =
394 		    stats.bb.rx_1519_to_2047_byte_packets;
395 		p_bb->rx_2048_to_4095_byte_packets =
396 		    stats.bb.rx_2048_to_4095_byte_packets;
397 		p_bb->rx_4096_to_9216_byte_packets =
398 		    stats.bb.rx_4096_to_9216_byte_packets;
399 		p_bb->rx_9217_to_16383_byte_packets =
400 		    stats.bb.rx_9217_to_16383_byte_packets;
401 		p_bb->tx_1519_to_2047_byte_packets =
402 		    stats.bb.tx_1519_to_2047_byte_packets;
403 		p_bb->tx_2048_to_4095_byte_packets =
404 		    stats.bb.tx_2048_to_4095_byte_packets;
405 		p_bb->tx_4096_to_9216_byte_packets =
406 		    stats.bb.tx_4096_to_9216_byte_packets;
407 		p_bb->tx_9217_to_16383_byte_packets =
408 		    stats.bb.tx_9217_to_16383_byte_packets;
409 		p_bb->tx_lpi_entry_count = stats.bb.tx_lpi_entry_count;
410 		p_bb->tx_total_collisions = stats.bb.tx_total_collisions;
411 	} else {
412 		struct qede_stats_ah *p_ah = &edev->stats.ah;
413 
414 		p_ah->rx_1519_to_max_byte_packets =
415 		    stats.ah.rx_1519_to_max_byte_packets;
416 		p_ah->tx_1519_to_max_byte_packets =
417 		    stats.ah.tx_1519_to_max_byte_packets;
418 	}
419 
420 	spin_unlock(&edev->stats_lock);
421 }
422 
423 static void qede_get_stats64(struct net_device *dev,
424 			     struct rtnl_link_stats64 *stats)
425 {
426 	struct qede_dev *edev = netdev_priv(dev);
427 	struct qede_stats_common *p_common;
428 
429 	p_common = &edev->stats.common;
430 
431 	spin_lock(&edev->stats_lock);
432 
433 	stats->rx_packets = p_common->rx_ucast_pkts + p_common->rx_mcast_pkts +
434 			    p_common->rx_bcast_pkts;
435 	stats->tx_packets = p_common->tx_ucast_pkts + p_common->tx_mcast_pkts +
436 			    p_common->tx_bcast_pkts;
437 
438 	stats->rx_bytes = p_common->rx_ucast_bytes + p_common->rx_mcast_bytes +
439 			  p_common->rx_bcast_bytes;
440 	stats->tx_bytes = p_common->tx_ucast_bytes + p_common->tx_mcast_bytes +
441 			  p_common->tx_bcast_bytes;
442 
443 	stats->tx_errors = p_common->tx_err_drop_pkts;
444 	stats->multicast = p_common->rx_mcast_pkts + p_common->rx_bcast_pkts;
445 
446 	stats->rx_fifo_errors = p_common->no_buff_discards;
447 
448 	if (QEDE_IS_BB(edev))
449 		stats->collisions = edev->stats.bb.tx_total_collisions;
450 	stats->rx_crc_errors = p_common->rx_crc_errors;
451 	stats->rx_frame_errors = p_common->rx_align_errors;
452 
453 	spin_unlock(&edev->stats_lock);
454 }
455 
456 #ifdef CONFIG_QED_SRIOV
457 static int qede_get_vf_config(struct net_device *dev, int vfidx,
458 			      struct ifla_vf_info *ivi)
459 {
460 	struct qede_dev *edev = netdev_priv(dev);
461 
462 	if (!edev->ops)
463 		return -EINVAL;
464 
465 	return edev->ops->iov->get_config(edev->cdev, vfidx, ivi);
466 }
467 
468 static int qede_set_vf_rate(struct net_device *dev, int vfidx,
469 			    int min_tx_rate, int max_tx_rate)
470 {
471 	struct qede_dev *edev = netdev_priv(dev);
472 
473 	return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate,
474 					max_tx_rate);
475 }
476 
477 static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val)
478 {
479 	struct qede_dev *edev = netdev_priv(dev);
480 
481 	if (!edev->ops)
482 		return -EINVAL;
483 
484 	return edev->ops->iov->set_spoof(edev->cdev, vfidx, val);
485 }
486 
487 static int qede_set_vf_link_state(struct net_device *dev, int vfidx,
488 				  int link_state)
489 {
490 	struct qede_dev *edev = netdev_priv(dev);
491 
492 	if (!edev->ops)
493 		return -EINVAL;
494 
495 	return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state);
496 }
497 
498 static int qede_set_vf_trust(struct net_device *dev, int vfidx, bool setting)
499 {
500 	struct qede_dev *edev = netdev_priv(dev);
501 
502 	if (!edev->ops)
503 		return -EINVAL;
504 
505 	return edev->ops->iov->set_trust(edev->cdev, vfidx, setting);
506 }
507 #endif
508 
509 static int qede_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
510 {
511 	struct qede_dev *edev = netdev_priv(dev);
512 
513 	if (!netif_running(dev))
514 		return -EAGAIN;
515 
516 	switch (cmd) {
517 	case SIOCSHWTSTAMP:
518 		return qede_ptp_hw_ts(edev, ifr);
519 	default:
520 		DP_VERBOSE(edev, QED_MSG_DEBUG,
521 			   "default IOCTL cmd 0x%x\n", cmd);
522 		return -EOPNOTSUPP;
523 	}
524 
525 	return 0;
526 }
527 
528 static void qede_fp_sb_dump(struct qede_dev *edev, struct qede_fastpath *fp)
529 {
530 	char *p_sb = (char *)fp->sb_info->sb_virt;
531 	u32 sb_size, i;
532 
533 	sb_size = sizeof(struct status_block);
534 
535 	for (i = 0; i < sb_size; i += 8)
536 		DP_NOTICE(edev,
537 			  "%02hhX %02hhX %02hhX %02hhX  %02hhX %02hhX %02hhX %02hhX\n",
538 			  p_sb[i], p_sb[i + 1], p_sb[i + 2], p_sb[i + 3],
539 			  p_sb[i + 4], p_sb[i + 5], p_sb[i + 6], p_sb[i + 7]);
540 }
541 
542 static void
543 qede_txq_fp_log_metadata(struct qede_dev *edev,
544 			 struct qede_fastpath *fp, struct qede_tx_queue *txq)
545 {
546 	struct qed_chain *p_chain = &txq->tx_pbl;
547 
548 	/* Dump txq/fp/sb ids etc. other metadata */
549 	DP_NOTICE(edev,
550 		  "fpid 0x%x sbid 0x%x txqid [0x%x] ndev_qid [0x%x] cos [0x%x] p_chain %p cap %d size %d jiffies %lu HZ 0x%x\n",
551 		  fp->id, fp->sb_info->igu_sb_id, txq->index, txq->ndev_txq_id, txq->cos,
552 		  p_chain, p_chain->capacity, p_chain->size, jiffies, HZ);
553 
554 	/* Dump all the relevant prod/cons indexes */
555 	DP_NOTICE(edev,
556 		  "hw cons %04x sw_tx_prod=0x%x, sw_tx_cons=0x%x, bd_prod 0x%x bd_cons 0x%x\n",
557 		  le16_to_cpu(*txq->hw_cons_ptr), txq->sw_tx_prod, txq->sw_tx_cons,
558 		  qed_chain_get_prod_idx(p_chain), qed_chain_get_cons_idx(p_chain));
559 }
560 
561 static void
562 qede_tx_log_print(struct qede_dev *edev, struct qede_fastpath *fp, struct qede_tx_queue *txq)
563 {
564 	struct qed_sb_info_dbg sb_dbg;
565 	int rc;
566 
567 	/* sb info */
568 	qede_fp_sb_dump(edev, fp);
569 
570 	memset(&sb_dbg, 0, sizeof(sb_dbg));
571 	rc = edev->ops->common->get_sb_info(edev->cdev, fp->sb_info, (u16)fp->id, &sb_dbg);
572 
573 	DP_NOTICE(edev, "IGU: prod %08x cons %08x CAU Tx %04x\n",
574 		  sb_dbg.igu_prod, sb_dbg.igu_cons, sb_dbg.pi[TX_PI(txq->cos)]);
575 
576 	/* report to mfw */
577 	edev->ops->common->mfw_report(edev->cdev,
578 				      "Txq[%d]: FW cons [host] %04x, SW cons %04x, SW prod %04x [Jiffies %lu]\n",
579 				      txq->index, le16_to_cpu(*txq->hw_cons_ptr),
580 				      qed_chain_get_cons_idx(&txq->tx_pbl),
581 				      qed_chain_get_prod_idx(&txq->tx_pbl), jiffies);
582 	if (!rc)
583 		edev->ops->common->mfw_report(edev->cdev,
584 					      "Txq[%d]: SB[0x%04x] - IGU: prod %08x cons %08x CAU Tx %04x\n",
585 					      txq->index, fp->sb_info->igu_sb_id,
586 					      sb_dbg.igu_prod, sb_dbg.igu_cons,
587 					      sb_dbg.pi[TX_PI(txq->cos)]);
588 }
589 
590 static void qede_tx_timeout(struct net_device *dev, unsigned int txqueue)
591 {
592 	struct qede_dev *edev = netdev_priv(dev);
593 	int i;
594 
595 	netif_carrier_off(dev);
596 	DP_NOTICE(edev, "TX timeout on queue %u!\n", txqueue);
597 
598 	for_each_queue(i) {
599 		struct qede_tx_queue *txq;
600 		struct qede_fastpath *fp;
601 		int cos;
602 
603 		fp = &edev->fp_array[i];
604 		if (!(fp->type & QEDE_FASTPATH_TX))
605 			continue;
606 
607 		for_each_cos_in_txq(edev, cos) {
608 			txq = &fp->txq[cos];
609 
610 			/* Dump basic metadata for all queues */
611 			qede_txq_fp_log_metadata(edev, fp, txq);
612 
613 			if (qed_chain_get_cons_idx(&txq->tx_pbl) !=
614 			    qed_chain_get_prod_idx(&txq->tx_pbl))
615 				qede_tx_log_print(edev, fp, txq);
616 		}
617 	}
618 
619 	if (IS_VF(edev))
620 		return;
621 
622 	if (test_and_set_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags) ||
623 	    edev->state == QEDE_STATE_RECOVERY) {
624 		DP_INFO(edev,
625 			"Avoid handling a Tx timeout while another HW error is being handled\n");
626 		return;
627 	}
628 
629 	set_bit(QEDE_ERR_GET_DBG_INFO, &edev->err_flags);
630 	set_bit(QEDE_SP_HW_ERR, &edev->sp_flags);
631 	schedule_delayed_work(&edev->sp_task, 0);
632 }
633 
634 static int qede_setup_tc(struct net_device *ndev, u8 num_tc)
635 {
636 	struct qede_dev *edev = netdev_priv(ndev);
637 	int cos, count, offset;
638 
639 	if (num_tc > edev->dev_info.num_tc)
640 		return -EINVAL;
641 
642 	netdev_reset_tc(ndev);
643 	netdev_set_num_tc(ndev, num_tc);
644 
645 	for_each_cos_in_txq(edev, cos) {
646 		count = QEDE_TSS_COUNT(edev);
647 		offset = cos * QEDE_TSS_COUNT(edev);
648 		netdev_set_tc_queue(ndev, cos, count, offset);
649 	}
650 
651 	return 0;
652 }
653 
654 static int
655 qede_set_flower(struct qede_dev *edev, struct flow_cls_offload *f,
656 		__be16 proto)
657 {
658 	switch (f->command) {
659 	case FLOW_CLS_REPLACE:
660 		return qede_add_tc_flower_fltr(edev, proto, f);
661 	case FLOW_CLS_DESTROY:
662 		return qede_delete_flow_filter(edev, f->cookie);
663 	default:
664 		return -EOPNOTSUPP;
665 	}
666 }
667 
668 static int qede_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
669 				  void *cb_priv)
670 {
671 	struct flow_cls_offload *f;
672 	struct qede_dev *edev = cb_priv;
673 
674 	if (!tc_cls_can_offload_and_chain0(edev->ndev, type_data))
675 		return -EOPNOTSUPP;
676 
677 	switch (type) {
678 	case TC_SETUP_CLSFLOWER:
679 		f = type_data;
680 		return qede_set_flower(edev, f, f->common.protocol);
681 	default:
682 		return -EOPNOTSUPP;
683 	}
684 }
685 
686 static LIST_HEAD(qede_block_cb_list);
687 
688 static int
689 qede_setup_tc_offload(struct net_device *dev, enum tc_setup_type type,
690 		      void *type_data)
691 {
692 	struct qede_dev *edev = netdev_priv(dev);
693 	struct tc_mqprio_qopt *mqprio;
694 
695 	switch (type) {
696 	case TC_SETUP_BLOCK:
697 		return flow_block_cb_setup_simple(type_data,
698 						  &qede_block_cb_list,
699 						  qede_setup_tc_block_cb,
700 						  edev, edev, true);
701 	case TC_SETUP_QDISC_MQPRIO:
702 		mqprio = type_data;
703 
704 		mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
705 		return qede_setup_tc(dev, mqprio->num_tc);
706 	default:
707 		return -EOPNOTSUPP;
708 	}
709 }
710 
711 static const struct net_device_ops qede_netdev_ops = {
712 	.ndo_open		= qede_open,
713 	.ndo_stop		= qede_close,
714 	.ndo_start_xmit		= qede_start_xmit,
715 	.ndo_select_queue	= qede_select_queue,
716 	.ndo_set_rx_mode	= qede_set_rx_mode,
717 	.ndo_set_mac_address	= qede_set_mac_addr,
718 	.ndo_validate_addr	= eth_validate_addr,
719 	.ndo_change_mtu		= qede_change_mtu,
720 	.ndo_eth_ioctl		= qede_ioctl,
721 	.ndo_tx_timeout		= qede_tx_timeout,
722 #ifdef CONFIG_QED_SRIOV
723 	.ndo_set_vf_mac		= qede_set_vf_mac,
724 	.ndo_set_vf_vlan	= qede_set_vf_vlan,
725 	.ndo_set_vf_trust	= qede_set_vf_trust,
726 #endif
727 	.ndo_vlan_rx_add_vid	= qede_vlan_rx_add_vid,
728 	.ndo_vlan_rx_kill_vid	= qede_vlan_rx_kill_vid,
729 	.ndo_fix_features	= qede_fix_features,
730 	.ndo_set_features	= qede_set_features,
731 	.ndo_get_stats64	= qede_get_stats64,
732 #ifdef CONFIG_QED_SRIOV
733 	.ndo_set_vf_link_state	= qede_set_vf_link_state,
734 	.ndo_set_vf_spoofchk	= qede_set_vf_spoofchk,
735 	.ndo_get_vf_config	= qede_get_vf_config,
736 	.ndo_set_vf_rate	= qede_set_vf_rate,
737 #endif
738 	.ndo_features_check	= qede_features_check,
739 	.ndo_bpf		= qede_xdp,
740 #ifdef CONFIG_RFS_ACCEL
741 	.ndo_rx_flow_steer	= qede_rx_flow_steer,
742 #endif
743 	.ndo_xdp_xmit		= qede_xdp_transmit,
744 	.ndo_setup_tc		= qede_setup_tc_offload,
745 };
746 
747 static const struct net_device_ops qede_netdev_vf_ops = {
748 	.ndo_open		= qede_open,
749 	.ndo_stop		= qede_close,
750 	.ndo_start_xmit		= qede_start_xmit,
751 	.ndo_select_queue	= qede_select_queue,
752 	.ndo_set_rx_mode	= qede_set_rx_mode,
753 	.ndo_set_mac_address	= qede_set_mac_addr,
754 	.ndo_validate_addr	= eth_validate_addr,
755 	.ndo_change_mtu		= qede_change_mtu,
756 	.ndo_vlan_rx_add_vid	= qede_vlan_rx_add_vid,
757 	.ndo_vlan_rx_kill_vid	= qede_vlan_rx_kill_vid,
758 	.ndo_fix_features	= qede_fix_features,
759 	.ndo_set_features	= qede_set_features,
760 	.ndo_get_stats64	= qede_get_stats64,
761 	.ndo_features_check	= qede_features_check,
762 };
763 
764 static const struct net_device_ops qede_netdev_vf_xdp_ops = {
765 	.ndo_open		= qede_open,
766 	.ndo_stop		= qede_close,
767 	.ndo_start_xmit		= qede_start_xmit,
768 	.ndo_select_queue	= qede_select_queue,
769 	.ndo_set_rx_mode	= qede_set_rx_mode,
770 	.ndo_set_mac_address	= qede_set_mac_addr,
771 	.ndo_validate_addr	= eth_validate_addr,
772 	.ndo_change_mtu		= qede_change_mtu,
773 	.ndo_vlan_rx_add_vid	= qede_vlan_rx_add_vid,
774 	.ndo_vlan_rx_kill_vid	= qede_vlan_rx_kill_vid,
775 	.ndo_fix_features	= qede_fix_features,
776 	.ndo_set_features	= qede_set_features,
777 	.ndo_get_stats64	= qede_get_stats64,
778 	.ndo_features_check	= qede_features_check,
779 	.ndo_bpf		= qede_xdp,
780 	.ndo_xdp_xmit		= qede_xdp_transmit,
781 };
782 
783 /* -------------------------------------------------------------------------
784  * START OF PROBE / REMOVE
785  * -------------------------------------------------------------------------
786  */
787 
788 static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev,
789 					    struct pci_dev *pdev,
790 					    struct qed_dev_eth_info *info,
791 					    u32 dp_module, u8 dp_level)
792 {
793 	struct net_device *ndev;
794 	struct qede_dev *edev;
795 
796 	ndev = alloc_etherdev_mqs(sizeof(*edev),
797 				  info->num_queues * info->num_tc,
798 				  info->num_queues);
799 	if (!ndev) {
800 		pr_err("etherdev allocation failed\n");
801 		return NULL;
802 	}
803 
804 	edev = netdev_priv(ndev);
805 	edev->ndev = ndev;
806 	edev->cdev = cdev;
807 	edev->pdev = pdev;
808 	edev->dp_module = dp_module;
809 	edev->dp_level = dp_level;
810 	edev->ops = qed_ops;
811 
812 	if (is_kdump_kernel()) {
813 		edev->q_num_rx_buffers = NUM_RX_BDS_KDUMP_MIN;
814 		edev->q_num_tx_buffers = NUM_TX_BDS_KDUMP_MIN;
815 	} else {
816 		edev->q_num_rx_buffers = NUM_RX_BDS_DEF;
817 		edev->q_num_tx_buffers = NUM_TX_BDS_DEF;
818 	}
819 
820 	DP_INFO(edev, "Allocated netdev with %d tx queues and %d rx queues\n",
821 		info->num_queues, info->num_queues);
822 
823 	SET_NETDEV_DEV(ndev, &pdev->dev);
824 
825 	memset(&edev->stats, 0, sizeof(edev->stats));
826 	memcpy(&edev->dev_info, info, sizeof(*info));
827 
828 	/* As ethtool doesn't have the ability to show WoL behavior as
829 	 * 'default', if device supports it declare it's enabled.
830 	 */
831 	if (edev->dev_info.common.wol_support)
832 		edev->wol_enabled = true;
833 
834 	INIT_LIST_HEAD(&edev->vlan_list);
835 
836 	return edev;
837 }
838 
839 static void qede_init_ndev(struct qede_dev *edev)
840 {
841 	struct net_device *ndev = edev->ndev;
842 	struct pci_dev *pdev = edev->pdev;
843 	bool udp_tunnel_enable = false;
844 	netdev_features_t hw_features;
845 
846 	pci_set_drvdata(pdev, ndev);
847 
848 	ndev->mem_start = edev->dev_info.common.pci_mem_start;
849 	ndev->base_addr = ndev->mem_start;
850 	ndev->mem_end = edev->dev_info.common.pci_mem_end;
851 	ndev->irq = edev->dev_info.common.pci_irq;
852 
853 	ndev->watchdog_timeo = TX_TIMEOUT;
854 
855 	if (IS_VF(edev)) {
856 		if (edev->dev_info.xdp_supported)
857 			ndev->netdev_ops = &qede_netdev_vf_xdp_ops;
858 		else
859 			ndev->netdev_ops = &qede_netdev_vf_ops;
860 	} else {
861 		ndev->netdev_ops = &qede_netdev_ops;
862 	}
863 
864 	qede_set_ethtool_ops(ndev);
865 
866 	ndev->priv_flags |= IFF_UNICAST_FLT;
867 
868 	/* user-changeble features */
869 	hw_features = NETIF_F_GRO | NETIF_F_GRO_HW | NETIF_F_SG |
870 		      NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
871 		      NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_HW_TC;
872 
873 	if (edev->dev_info.common.b_arfs_capable)
874 		hw_features |= NETIF_F_NTUPLE;
875 
876 	if (edev->dev_info.common.vxlan_enable ||
877 	    edev->dev_info.common.geneve_enable)
878 		udp_tunnel_enable = true;
879 
880 	if (udp_tunnel_enable || edev->dev_info.common.gre_enable) {
881 		hw_features |= NETIF_F_TSO_ECN;
882 		ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
883 					NETIF_F_SG | NETIF_F_TSO |
884 					NETIF_F_TSO_ECN | NETIF_F_TSO6 |
885 					NETIF_F_RXCSUM;
886 	}
887 
888 	if (udp_tunnel_enable) {
889 		hw_features |= (NETIF_F_GSO_UDP_TUNNEL |
890 				NETIF_F_GSO_UDP_TUNNEL_CSUM);
891 		ndev->hw_enc_features |= (NETIF_F_GSO_UDP_TUNNEL |
892 					  NETIF_F_GSO_UDP_TUNNEL_CSUM);
893 
894 		qede_set_udp_tunnels(edev);
895 	}
896 
897 	if (edev->dev_info.common.gre_enable) {
898 		hw_features |= (NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM);
899 		ndev->hw_enc_features |= (NETIF_F_GSO_GRE |
900 					  NETIF_F_GSO_GRE_CSUM);
901 	}
902 
903 	ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
904 			      NETIF_F_HIGHDMA;
905 	ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
906 			 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA |
907 			 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX;
908 
909 	ndev->hw_features = hw_features;
910 
911 	ndev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
912 			     NETDEV_XDP_ACT_NDO_XMIT;
913 
914 	/* MTU range: 46 - 9600 */
915 	ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
916 	ndev->max_mtu = QEDE_MAX_JUMBO_PACKET_SIZE;
917 
918 	/* Set network device HW mac */
919 	eth_hw_addr_set(edev->ndev, edev->dev_info.common.hw_mac);
920 
921 	ndev->mtu = edev->dev_info.common.mtu;
922 }
923 
924 /* This function converts from 32b param to two params of level and module
925  * Input 32b decoding:
926  * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the
927  * 'happy' flow, e.g. memory allocation failed.
928  * b30 - enable all INFO prints. INFO prints are for major steps in the flow
929  * and provide important parameters.
930  * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that
931  * module. VERBOSE prints are for tracking the specific flow in low level.
932  *
933  * Notice that the level should be that of the lowest required logs.
934  */
935 void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level)
936 {
937 	*p_dp_level = QED_LEVEL_NOTICE;
938 	*p_dp_module = 0;
939 
940 	if (debug & QED_LOG_VERBOSE_MASK) {
941 		*p_dp_level = QED_LEVEL_VERBOSE;
942 		*p_dp_module = (debug & 0x3FFFFFFF);
943 	} else if (debug & QED_LOG_INFO_MASK) {
944 		*p_dp_level = QED_LEVEL_INFO;
945 	} else if (debug & QED_LOG_NOTICE_MASK) {
946 		*p_dp_level = QED_LEVEL_NOTICE;
947 	}
948 }
949 
950 static void qede_free_fp_array(struct qede_dev *edev)
951 {
952 	if (edev->fp_array) {
953 		struct qede_fastpath *fp;
954 		int i;
955 
956 		for_each_queue(i) {
957 			fp = &edev->fp_array[i];
958 
959 			kfree(fp->sb_info);
960 			/* Handle mem alloc failure case where qede_init_fp
961 			 * didn't register xdp_rxq_info yet.
962 			 * Implicit only (fp->type & QEDE_FASTPATH_RX)
963 			 */
964 			if (fp->rxq && xdp_rxq_info_is_reg(&fp->rxq->xdp_rxq))
965 				xdp_rxq_info_unreg(&fp->rxq->xdp_rxq);
966 			kfree(fp->rxq);
967 			kfree(fp->xdp_tx);
968 			kfree(fp->txq);
969 		}
970 		kfree(edev->fp_array);
971 	}
972 
973 	edev->num_queues = 0;
974 	edev->fp_num_tx = 0;
975 	edev->fp_num_rx = 0;
976 }
977 
978 static int qede_alloc_fp_array(struct qede_dev *edev)
979 {
980 	u8 fp_combined, fp_rx = edev->fp_num_rx;
981 	struct qede_fastpath *fp;
982 	int i;
983 
984 	edev->fp_array = kcalloc(QEDE_QUEUE_CNT(edev),
985 				 sizeof(*edev->fp_array), GFP_KERNEL);
986 	if (!edev->fp_array) {
987 		DP_NOTICE(edev, "fp array allocation failed\n");
988 		goto err;
989 	}
990 
991 	if (!edev->coal_entry) {
992 		edev->coal_entry = kcalloc(QEDE_MAX_RSS_CNT(edev),
993 					   sizeof(*edev->coal_entry),
994 					   GFP_KERNEL);
995 		if (!edev->coal_entry) {
996 			DP_ERR(edev, "coalesce entry allocation failed\n");
997 			goto err;
998 		}
999 	}
1000 
1001 	fp_combined = QEDE_QUEUE_CNT(edev) - fp_rx - edev->fp_num_tx;
1002 
1003 	/* Allocate the FP elements for Rx queues followed by combined and then
1004 	 * the Tx. This ordering should be maintained so that the respective
1005 	 * queues (Rx or Tx) will be together in the fastpath array and the
1006 	 * associated ids will be sequential.
1007 	 */
1008 	for_each_queue(i) {
1009 		fp = &edev->fp_array[i];
1010 
1011 		fp->sb_info = kzalloc(sizeof(*fp->sb_info), GFP_KERNEL);
1012 		if (!fp->sb_info) {
1013 			DP_NOTICE(edev, "sb info struct allocation failed\n");
1014 			goto err;
1015 		}
1016 
1017 		if (fp_rx) {
1018 			fp->type = QEDE_FASTPATH_RX;
1019 			fp_rx--;
1020 		} else if (fp_combined) {
1021 			fp->type = QEDE_FASTPATH_COMBINED;
1022 			fp_combined--;
1023 		} else {
1024 			fp->type = QEDE_FASTPATH_TX;
1025 		}
1026 
1027 		if (fp->type & QEDE_FASTPATH_TX) {
1028 			fp->txq = kcalloc(edev->dev_info.num_tc,
1029 					  sizeof(*fp->txq), GFP_KERNEL);
1030 			if (!fp->txq)
1031 				goto err;
1032 		}
1033 
1034 		if (fp->type & QEDE_FASTPATH_RX) {
1035 			fp->rxq = kzalloc(sizeof(*fp->rxq), GFP_KERNEL);
1036 			if (!fp->rxq)
1037 				goto err;
1038 
1039 			if (edev->xdp_prog) {
1040 				fp->xdp_tx = kzalloc(sizeof(*fp->xdp_tx),
1041 						     GFP_KERNEL);
1042 				if (!fp->xdp_tx)
1043 					goto err;
1044 				fp->type |= QEDE_FASTPATH_XDP;
1045 			}
1046 		}
1047 	}
1048 
1049 	return 0;
1050 err:
1051 	qede_free_fp_array(edev);
1052 	return -ENOMEM;
1053 }
1054 
1055 /* The qede lock is used to protect driver state change and driver flows that
1056  * are not reentrant.
1057  */
1058 void __qede_lock(struct qede_dev *edev)
1059 {
1060 	mutex_lock(&edev->qede_lock);
1061 }
1062 
1063 void __qede_unlock(struct qede_dev *edev)
1064 {
1065 	mutex_unlock(&edev->qede_lock);
1066 }
1067 
1068 /* This version of the lock should be used when acquiring the RTNL lock is also
1069  * needed in addition to the internal qede lock.
1070  */
1071 static void qede_lock(struct qede_dev *edev)
1072 {
1073 	rtnl_lock();
1074 	__qede_lock(edev);
1075 }
1076 
1077 static void qede_unlock(struct qede_dev *edev)
1078 {
1079 	__qede_unlock(edev);
1080 	rtnl_unlock();
1081 }
1082 
1083 static void qede_periodic_task(struct work_struct *work)
1084 {
1085 	struct qede_dev *edev = container_of(work, struct qede_dev,
1086 					     periodic_task.work);
1087 
1088 	qede_fill_by_demand_stats(edev);
1089 	schedule_delayed_work(&edev->periodic_task, edev->stats_coal_ticks);
1090 }
1091 
1092 static void qede_init_periodic_task(struct qede_dev *edev)
1093 {
1094 	INIT_DELAYED_WORK(&edev->periodic_task, qede_periodic_task);
1095 	spin_lock_init(&edev->stats_lock);
1096 	edev->stats_coal_usecs = USEC_PER_SEC;
1097 	edev->stats_coal_ticks = usecs_to_jiffies(USEC_PER_SEC);
1098 }
1099 
1100 static void qede_sp_task(struct work_struct *work)
1101 {
1102 	struct qede_dev *edev = container_of(work, struct qede_dev,
1103 					     sp_task.work);
1104 
1105 	/* Disable execution of this deferred work once
1106 	 * qede removal is in progress, this stop any future
1107 	 * scheduling of sp_task.
1108 	 */
1109 	if (test_bit(QEDE_SP_DISABLE, &edev->sp_flags))
1110 		return;
1111 
1112 	/* The locking scheme depends on the specific flag:
1113 	 * In case of QEDE_SP_RECOVERY, acquiring the RTNL lock is required to
1114 	 * ensure that ongoing flows are ended and new ones are not started.
1115 	 * In other cases - only the internal qede lock should be acquired.
1116 	 */
1117 
1118 	if (test_and_clear_bit(QEDE_SP_RECOVERY, &edev->sp_flags)) {
1119 		cancel_delayed_work_sync(&edev->periodic_task);
1120 #ifdef CONFIG_QED_SRIOV
1121 		/* SRIOV must be disabled outside the lock to avoid a deadlock.
1122 		 * The recovery of the active VFs is currently not supported.
1123 		 */
1124 		if (pci_num_vf(edev->pdev))
1125 			qede_sriov_configure(edev->pdev, 0);
1126 #endif
1127 		qede_lock(edev);
1128 		qede_recovery_handler(edev);
1129 		qede_unlock(edev);
1130 	}
1131 
1132 	__qede_lock(edev);
1133 
1134 	if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags))
1135 		if (edev->state == QEDE_STATE_OPEN)
1136 			qede_config_rx_mode(edev->ndev);
1137 
1138 #ifdef CONFIG_RFS_ACCEL
1139 	if (test_and_clear_bit(QEDE_SP_ARFS_CONFIG, &edev->sp_flags)) {
1140 		if (edev->state == QEDE_STATE_OPEN)
1141 			qede_process_arfs_filters(edev, false);
1142 	}
1143 #endif
1144 	if (test_and_clear_bit(QEDE_SP_HW_ERR, &edev->sp_flags))
1145 		qede_generic_hw_err_handler(edev);
1146 	__qede_unlock(edev);
1147 
1148 	if (test_and_clear_bit(QEDE_SP_AER, &edev->sp_flags)) {
1149 #ifdef CONFIG_QED_SRIOV
1150 		/* SRIOV must be disabled outside the lock to avoid a deadlock.
1151 		 * The recovery of the active VFs is currently not supported.
1152 		 */
1153 		if (pci_num_vf(edev->pdev))
1154 			qede_sriov_configure(edev->pdev, 0);
1155 #endif
1156 		edev->ops->common->recovery_process(edev->cdev);
1157 	}
1158 }
1159 
1160 static void qede_update_pf_params(struct qed_dev *cdev)
1161 {
1162 	struct qed_pf_params pf_params;
1163 	u16 num_cons;
1164 
1165 	/* 64 rx + 64 tx + 64 XDP */
1166 	memset(&pf_params, 0, sizeof(struct qed_pf_params));
1167 
1168 	/* 1 rx + 1 xdp + max tx cos */
1169 	num_cons = QED_MIN_L2_CONS;
1170 
1171 	pf_params.eth_pf_params.num_cons = (MAX_SB_PER_PF_MIMD - 1) * num_cons;
1172 
1173 	/* Same for VFs - make sure they'll have sufficient connections
1174 	 * to support XDP Tx queues.
1175 	 */
1176 	pf_params.eth_pf_params.num_vf_cons = 48;
1177 
1178 	pf_params.eth_pf_params.num_arfs_filters = QEDE_RFS_MAX_FLTR;
1179 	qed_ops->common->update_pf_params(cdev, &pf_params);
1180 }
1181 
1182 #define QEDE_FW_VER_STR_SIZE	80
1183 
1184 static void qede_log_probe(struct qede_dev *edev)
1185 {
1186 	struct qed_dev_info *p_dev_info = &edev->dev_info.common;
1187 	u8 buf[QEDE_FW_VER_STR_SIZE];
1188 	size_t left_size;
1189 
1190 	snprintf(buf, QEDE_FW_VER_STR_SIZE,
1191 		 "Storm FW %d.%d.%d.%d, Management FW %d.%d.%d.%d",
1192 		 p_dev_info->fw_major, p_dev_info->fw_minor, p_dev_info->fw_rev,
1193 		 p_dev_info->fw_eng,
1194 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_3_MASK) >>
1195 		 QED_MFW_VERSION_3_OFFSET,
1196 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_2_MASK) >>
1197 		 QED_MFW_VERSION_2_OFFSET,
1198 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_1_MASK) >>
1199 		 QED_MFW_VERSION_1_OFFSET,
1200 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_0_MASK) >>
1201 		 QED_MFW_VERSION_0_OFFSET);
1202 
1203 	left_size = QEDE_FW_VER_STR_SIZE - strlen(buf);
1204 	if (p_dev_info->mbi_version && left_size)
1205 		snprintf(buf + strlen(buf), left_size,
1206 			 " [MBI %d.%d.%d]",
1207 			 (p_dev_info->mbi_version & QED_MBI_VERSION_2_MASK) >>
1208 			 QED_MBI_VERSION_2_OFFSET,
1209 			 (p_dev_info->mbi_version & QED_MBI_VERSION_1_MASK) >>
1210 			 QED_MBI_VERSION_1_OFFSET,
1211 			 (p_dev_info->mbi_version & QED_MBI_VERSION_0_MASK) >>
1212 			 QED_MBI_VERSION_0_OFFSET);
1213 
1214 	pr_info("qede %02x:%02x.%02x: %s [%s]\n", edev->pdev->bus->number,
1215 		PCI_SLOT(edev->pdev->devfn), PCI_FUNC(edev->pdev->devfn),
1216 		buf, edev->ndev->name);
1217 }
1218 
1219 enum qede_probe_mode {
1220 	QEDE_PROBE_NORMAL,
1221 	QEDE_PROBE_RECOVERY,
1222 };
1223 
1224 static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level,
1225 			bool is_vf, enum qede_probe_mode mode)
1226 {
1227 	struct qed_probe_params probe_params;
1228 	struct qed_slowpath_params sp_params;
1229 	struct qed_dev_eth_info dev_info;
1230 	struct qede_dev *edev;
1231 	struct qed_dev *cdev;
1232 	int rc;
1233 
1234 	if (unlikely(dp_level & QED_LEVEL_INFO))
1235 		pr_notice("Starting qede probe\n");
1236 
1237 	memset(&probe_params, 0, sizeof(probe_params));
1238 	probe_params.protocol = QED_PROTOCOL_ETH;
1239 	probe_params.dp_module = dp_module;
1240 	probe_params.dp_level = dp_level;
1241 	probe_params.is_vf = is_vf;
1242 	probe_params.recov_in_prog = (mode == QEDE_PROBE_RECOVERY);
1243 	cdev = qed_ops->common->probe(pdev, &probe_params);
1244 	if (!cdev) {
1245 		rc = -ENODEV;
1246 		goto err0;
1247 	}
1248 
1249 	qede_update_pf_params(cdev);
1250 
1251 	/* Start the Slowpath-process */
1252 	memset(&sp_params, 0, sizeof(sp_params));
1253 	sp_params.int_mode = QED_INT_MODE_MSIX;
1254 	strscpy(sp_params.name, "qede LAN", QED_DRV_VER_STR_SIZE);
1255 	rc = qed_ops->common->slowpath_start(cdev, &sp_params);
1256 	if (rc) {
1257 		pr_notice("Cannot start slowpath\n");
1258 		goto err1;
1259 	}
1260 
1261 	/* Learn information crucial for qede to progress */
1262 	rc = qed_ops->fill_dev_info(cdev, &dev_info);
1263 	if (rc)
1264 		goto err2;
1265 
1266 	if (mode != QEDE_PROBE_RECOVERY) {
1267 		edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module,
1268 					   dp_level);
1269 		if (!edev) {
1270 			rc = -ENOMEM;
1271 			goto err2;
1272 		}
1273 
1274 		edev->devlink = qed_ops->common->devlink_register(cdev);
1275 		if (IS_ERR(edev->devlink)) {
1276 			DP_NOTICE(edev, "Cannot register devlink\n");
1277 			rc = PTR_ERR(edev->devlink);
1278 			edev->devlink = NULL;
1279 			goto err3;
1280 		}
1281 	} else {
1282 		struct net_device *ndev = pci_get_drvdata(pdev);
1283 		struct qed_devlink *qdl;
1284 
1285 		edev = netdev_priv(ndev);
1286 		qdl = devlink_priv(edev->devlink);
1287 		qdl->cdev = cdev;
1288 		edev->cdev = cdev;
1289 		memset(&edev->stats, 0, sizeof(edev->stats));
1290 		memcpy(&edev->dev_info, &dev_info, sizeof(dev_info));
1291 	}
1292 
1293 	if (is_vf)
1294 		set_bit(QEDE_FLAGS_IS_VF, &edev->flags);
1295 
1296 	qede_init_ndev(edev);
1297 
1298 	rc = qede_rdma_dev_add(edev, (mode == QEDE_PROBE_RECOVERY));
1299 	if (rc)
1300 		goto err3;
1301 
1302 	if (mode != QEDE_PROBE_RECOVERY) {
1303 		/* Prepare the lock prior to the registration of the netdev,
1304 		 * as once it's registered we might reach flows requiring it
1305 		 * [it's even possible to reach a flow needing it directly
1306 		 * from there, although it's unlikely].
1307 		 */
1308 		INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task);
1309 		mutex_init(&edev->qede_lock);
1310 		qede_init_periodic_task(edev);
1311 
1312 		rc = register_netdev(edev->ndev);
1313 		if (rc) {
1314 			DP_NOTICE(edev, "Cannot register net-device\n");
1315 			goto err4;
1316 		}
1317 	}
1318 
1319 	edev->ops->common->set_name(cdev, edev->ndev->name);
1320 
1321 	/* PTP not supported on VFs */
1322 	if (!is_vf)
1323 		qede_ptp_enable(edev);
1324 
1325 	edev->ops->register_ops(cdev, &qede_ll_ops, edev);
1326 
1327 #ifdef CONFIG_DCB
1328 	if (!IS_VF(edev))
1329 		qede_set_dcbnl_ops(edev->ndev);
1330 #endif
1331 
1332 	edev->rx_copybreak = QEDE_RX_HDR_SIZE;
1333 
1334 	qede_log_probe(edev);
1335 
1336 	/* retain user config (for example - after recovery) */
1337 	if (edev->stats_coal_usecs)
1338 		schedule_delayed_work(&edev->periodic_task, 0);
1339 
1340 	return 0;
1341 
1342 err4:
1343 	qede_rdma_dev_remove(edev, (mode == QEDE_PROBE_RECOVERY));
1344 err3:
1345 	if (mode != QEDE_PROBE_RECOVERY)
1346 		free_netdev(edev->ndev);
1347 	else
1348 		edev->cdev = NULL;
1349 err2:
1350 	qed_ops->common->slowpath_stop(cdev);
1351 err1:
1352 	qed_ops->common->remove(cdev);
1353 err0:
1354 	return rc;
1355 }
1356 
1357 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1358 {
1359 	bool is_vf = false;
1360 	u32 dp_module = 0;
1361 	u8 dp_level = 0;
1362 
1363 	switch ((enum qede_pci_private)id->driver_data) {
1364 	case QEDE_PRIVATE_VF:
1365 		if (debug & QED_LOG_VERBOSE_MASK)
1366 			dev_err(&pdev->dev, "Probing a VF\n");
1367 		is_vf = true;
1368 		break;
1369 	default:
1370 		if (debug & QED_LOG_VERBOSE_MASK)
1371 			dev_err(&pdev->dev, "Probing a PF\n");
1372 	}
1373 
1374 	qede_config_debug(debug, &dp_module, &dp_level);
1375 
1376 	return __qede_probe(pdev, dp_module, dp_level, is_vf,
1377 			    QEDE_PROBE_NORMAL);
1378 }
1379 
1380 enum qede_remove_mode {
1381 	QEDE_REMOVE_NORMAL,
1382 	QEDE_REMOVE_RECOVERY,
1383 };
1384 
1385 static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode)
1386 {
1387 	struct net_device *ndev = pci_get_drvdata(pdev);
1388 	struct qede_dev *edev;
1389 	struct qed_dev *cdev;
1390 
1391 	if (!ndev) {
1392 		dev_info(&pdev->dev, "Device has already been removed\n");
1393 		return;
1394 	}
1395 
1396 	edev = netdev_priv(ndev);
1397 	cdev = edev->cdev;
1398 
1399 	DP_INFO(edev, "Starting qede_remove\n");
1400 
1401 	qede_rdma_dev_remove(edev, (mode == QEDE_REMOVE_RECOVERY));
1402 
1403 	if (mode != QEDE_REMOVE_RECOVERY) {
1404 		set_bit(QEDE_SP_DISABLE, &edev->sp_flags);
1405 		unregister_netdev(ndev);
1406 
1407 		cancel_delayed_work_sync(&edev->sp_task);
1408 		cancel_delayed_work_sync(&edev->periodic_task);
1409 
1410 		edev->ops->common->set_power_state(cdev, PCI_D0);
1411 
1412 		pci_set_drvdata(pdev, NULL);
1413 	}
1414 
1415 	qede_ptp_disable(edev);
1416 
1417 	/* Use global ops since we've freed edev */
1418 	qed_ops->common->slowpath_stop(cdev);
1419 	if (system_state == SYSTEM_POWER_OFF)
1420 		return;
1421 
1422 	if (mode != QEDE_REMOVE_RECOVERY && edev->devlink) {
1423 		qed_ops->common->devlink_unregister(edev->devlink);
1424 		edev->devlink = NULL;
1425 	}
1426 	qed_ops->common->remove(cdev);
1427 	edev->cdev = NULL;
1428 
1429 	/* Since this can happen out-of-sync with other flows,
1430 	 * don't release the netdevice until after slowpath stop
1431 	 * has been called to guarantee various other contexts
1432 	 * [e.g., QED register callbacks] won't break anything when
1433 	 * accessing the netdevice.
1434 	 */
1435 	if (mode != QEDE_REMOVE_RECOVERY) {
1436 		kfree(edev->coal_entry);
1437 		free_netdev(ndev);
1438 	}
1439 
1440 	dev_info(&pdev->dev, "Ending qede_remove successfully\n");
1441 }
1442 
1443 static void qede_remove(struct pci_dev *pdev)
1444 {
1445 	__qede_remove(pdev, QEDE_REMOVE_NORMAL);
1446 }
1447 
1448 static void qede_shutdown(struct pci_dev *pdev)
1449 {
1450 	__qede_remove(pdev, QEDE_REMOVE_NORMAL);
1451 }
1452 
1453 /* -------------------------------------------------------------------------
1454  * START OF LOAD / UNLOAD
1455  * -------------------------------------------------------------------------
1456  */
1457 
1458 static int qede_set_num_queues(struct qede_dev *edev)
1459 {
1460 	int rc;
1461 	u16 rss_num;
1462 
1463 	/* Setup queues according to possible resources*/
1464 	if (edev->req_queues)
1465 		rss_num = edev->req_queues;
1466 	else
1467 		rss_num = netif_get_num_default_rss_queues() *
1468 			  edev->dev_info.common.num_hwfns;
1469 
1470 	rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num);
1471 
1472 	rc = edev->ops->common->set_fp_int(edev->cdev, rss_num);
1473 	if (rc > 0) {
1474 		/* Managed to request interrupts for our queues */
1475 		edev->num_queues = rc;
1476 		DP_INFO(edev, "Managed %d [of %d] RSS queues\n",
1477 			QEDE_QUEUE_CNT(edev), rss_num);
1478 		rc = 0;
1479 	}
1480 
1481 	edev->fp_num_tx = edev->req_num_tx;
1482 	edev->fp_num_rx = edev->req_num_rx;
1483 
1484 	return rc;
1485 }
1486 
1487 static void qede_free_mem_sb(struct qede_dev *edev, struct qed_sb_info *sb_info,
1488 			     u16 sb_id)
1489 {
1490 	if (sb_info->sb_virt) {
1491 		edev->ops->common->sb_release(edev->cdev, sb_info, sb_id,
1492 					      QED_SB_TYPE_L2_QUEUE);
1493 		dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt),
1494 				  (void *)sb_info->sb_virt, sb_info->sb_phys);
1495 		memset(sb_info, 0, sizeof(*sb_info));
1496 	}
1497 }
1498 
1499 /* This function allocates fast-path status block memory */
1500 static int qede_alloc_mem_sb(struct qede_dev *edev,
1501 			     struct qed_sb_info *sb_info, u16 sb_id)
1502 {
1503 	struct status_block *sb_virt;
1504 	dma_addr_t sb_phys;
1505 	int rc;
1506 
1507 	sb_virt = dma_alloc_coherent(&edev->pdev->dev,
1508 				     sizeof(*sb_virt), &sb_phys, GFP_KERNEL);
1509 	if (!sb_virt) {
1510 		DP_ERR(edev, "Status block allocation failed\n");
1511 		return -ENOMEM;
1512 	}
1513 
1514 	rc = edev->ops->common->sb_init(edev->cdev, sb_info,
1515 					sb_virt, sb_phys, sb_id,
1516 					QED_SB_TYPE_L2_QUEUE);
1517 	if (rc) {
1518 		DP_ERR(edev, "Status block initialization failed\n");
1519 		dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt),
1520 				  sb_virt, sb_phys);
1521 		return rc;
1522 	}
1523 
1524 	return 0;
1525 }
1526 
1527 static void qede_free_rx_buffers(struct qede_dev *edev,
1528 				 struct qede_rx_queue *rxq)
1529 {
1530 	u16 i;
1531 
1532 	for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) {
1533 		struct sw_rx_data *rx_buf;
1534 		struct page *data;
1535 
1536 		rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX];
1537 		data = rx_buf->data;
1538 
1539 		dma_unmap_page(&edev->pdev->dev,
1540 			       rx_buf->mapping, PAGE_SIZE, rxq->data_direction);
1541 
1542 		rx_buf->data = NULL;
1543 		__free_page(data);
1544 	}
1545 }
1546 
1547 static void qede_free_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1548 {
1549 	/* Free rx buffers */
1550 	qede_free_rx_buffers(edev, rxq);
1551 
1552 	/* Free the parallel SW ring */
1553 	kfree(rxq->sw_rx_ring);
1554 
1555 	/* Free the real RQ ring used by FW */
1556 	edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring);
1557 	edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring);
1558 }
1559 
1560 static void qede_set_tpa_param(struct qede_rx_queue *rxq)
1561 {
1562 	int i;
1563 
1564 	for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
1565 		struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
1566 
1567 		tpa_info->state = QEDE_AGG_STATE_NONE;
1568 	}
1569 }
1570 
1571 /* This function allocates all memory needed per Rx queue */
1572 static int qede_alloc_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1573 {
1574 	struct qed_chain_init_params params = {
1575 		.cnt_type	= QED_CHAIN_CNT_TYPE_U16,
1576 		.num_elems	= RX_RING_SIZE,
1577 	};
1578 	struct qed_dev *cdev = edev->cdev;
1579 	int i, rc, size;
1580 
1581 	rxq->num_rx_buffers = edev->q_num_rx_buffers;
1582 
1583 	rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD + edev->ndev->mtu;
1584 
1585 	rxq->rx_headroom = edev->xdp_prog ? XDP_PACKET_HEADROOM : NET_SKB_PAD;
1586 	size = rxq->rx_headroom +
1587 	       SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1588 
1589 	/* Make sure that the headroom and  payload fit in a single page */
1590 	if (rxq->rx_buf_size + size > PAGE_SIZE)
1591 		rxq->rx_buf_size = PAGE_SIZE - size;
1592 
1593 	/* Segment size to split a page in multiple equal parts,
1594 	 * unless XDP is used in which case we'd use the entire page.
1595 	 */
1596 	if (!edev->xdp_prog) {
1597 		size = size + rxq->rx_buf_size;
1598 		rxq->rx_buf_seg_size = roundup_pow_of_two(size);
1599 	} else {
1600 		rxq->rx_buf_seg_size = PAGE_SIZE;
1601 		edev->ndev->features &= ~NETIF_F_GRO_HW;
1602 	}
1603 
1604 	/* Allocate the parallel driver ring for Rx buffers */
1605 	size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE;
1606 	rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL);
1607 	if (!rxq->sw_rx_ring) {
1608 		DP_ERR(edev, "Rx buffers ring allocation failed\n");
1609 		rc = -ENOMEM;
1610 		goto err;
1611 	}
1612 
1613 	/* Allocate FW Rx ring  */
1614 	params.mode = QED_CHAIN_MODE_NEXT_PTR;
1615 	params.intended_use = QED_CHAIN_USE_TO_CONSUME_PRODUCE;
1616 	params.elem_size = sizeof(struct eth_rx_bd);
1617 
1618 	rc = edev->ops->common->chain_alloc(cdev, &rxq->rx_bd_ring, &params);
1619 	if (rc)
1620 		goto err;
1621 
1622 	/* Allocate FW completion ring */
1623 	params.mode = QED_CHAIN_MODE_PBL;
1624 	params.intended_use = QED_CHAIN_USE_TO_CONSUME;
1625 	params.elem_size = sizeof(union eth_rx_cqe);
1626 
1627 	rc = edev->ops->common->chain_alloc(cdev, &rxq->rx_comp_ring, &params);
1628 	if (rc)
1629 		goto err;
1630 
1631 	/* Allocate buffers for the Rx ring */
1632 	rxq->filled_buffers = 0;
1633 	for (i = 0; i < rxq->num_rx_buffers; i++) {
1634 		rc = qede_alloc_rx_buffer(rxq, false);
1635 		if (rc) {
1636 			DP_ERR(edev,
1637 			       "Rx buffers allocation failed at index %d\n", i);
1638 			goto err;
1639 		}
1640 	}
1641 
1642 	edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO_HW);
1643 	if (!edev->gro_disable)
1644 		qede_set_tpa_param(rxq);
1645 err:
1646 	return rc;
1647 }
1648 
1649 static void qede_free_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1650 {
1651 	/* Free the parallel SW ring */
1652 	if (txq->is_xdp)
1653 		kfree(txq->sw_tx_ring.xdp);
1654 	else
1655 		kfree(txq->sw_tx_ring.skbs);
1656 
1657 	/* Free the real RQ ring used by FW */
1658 	edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl);
1659 }
1660 
1661 /* This function allocates all memory needed per Tx queue */
1662 static int qede_alloc_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1663 {
1664 	struct qed_chain_init_params params = {
1665 		.mode		= QED_CHAIN_MODE_PBL,
1666 		.intended_use	= QED_CHAIN_USE_TO_CONSUME_PRODUCE,
1667 		.cnt_type	= QED_CHAIN_CNT_TYPE_U16,
1668 		.num_elems	= edev->q_num_tx_buffers,
1669 		.elem_size	= sizeof(union eth_tx_bd_types),
1670 	};
1671 	int size, rc;
1672 
1673 	txq->num_tx_buffers = edev->q_num_tx_buffers;
1674 
1675 	/* Allocate the parallel driver ring for Tx buffers */
1676 	if (txq->is_xdp) {
1677 		size = sizeof(*txq->sw_tx_ring.xdp) * txq->num_tx_buffers;
1678 		txq->sw_tx_ring.xdp = kzalloc(size, GFP_KERNEL);
1679 		if (!txq->sw_tx_ring.xdp)
1680 			goto err;
1681 	} else {
1682 		size = sizeof(*txq->sw_tx_ring.skbs) * txq->num_tx_buffers;
1683 		txq->sw_tx_ring.skbs = kzalloc(size, GFP_KERNEL);
1684 		if (!txq->sw_tx_ring.skbs)
1685 			goto err;
1686 	}
1687 
1688 	rc = edev->ops->common->chain_alloc(edev->cdev, &txq->tx_pbl, &params);
1689 	if (rc)
1690 		goto err;
1691 
1692 	return 0;
1693 
1694 err:
1695 	qede_free_mem_txq(edev, txq);
1696 	return -ENOMEM;
1697 }
1698 
1699 /* This function frees all memory of a single fp */
1700 static void qede_free_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1701 {
1702 	qede_free_mem_sb(edev, fp->sb_info, fp->id);
1703 
1704 	if (fp->type & QEDE_FASTPATH_RX)
1705 		qede_free_mem_rxq(edev, fp->rxq);
1706 
1707 	if (fp->type & QEDE_FASTPATH_XDP)
1708 		qede_free_mem_txq(edev, fp->xdp_tx);
1709 
1710 	if (fp->type & QEDE_FASTPATH_TX) {
1711 		int cos;
1712 
1713 		for_each_cos_in_txq(edev, cos)
1714 			qede_free_mem_txq(edev, &fp->txq[cos]);
1715 	}
1716 }
1717 
1718 /* This function allocates all memory needed for a single fp (i.e. an entity
1719  * which contains status block, one rx queue and/or multiple per-TC tx queues.
1720  */
1721 static int qede_alloc_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1722 {
1723 	int rc = 0;
1724 
1725 	rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->id);
1726 	if (rc)
1727 		goto out;
1728 
1729 	if (fp->type & QEDE_FASTPATH_RX) {
1730 		rc = qede_alloc_mem_rxq(edev, fp->rxq);
1731 		if (rc)
1732 			goto out;
1733 	}
1734 
1735 	if (fp->type & QEDE_FASTPATH_XDP) {
1736 		rc = qede_alloc_mem_txq(edev, fp->xdp_tx);
1737 		if (rc)
1738 			goto out;
1739 	}
1740 
1741 	if (fp->type & QEDE_FASTPATH_TX) {
1742 		int cos;
1743 
1744 		for_each_cos_in_txq(edev, cos) {
1745 			rc = qede_alloc_mem_txq(edev, &fp->txq[cos]);
1746 			if (rc)
1747 				goto out;
1748 		}
1749 	}
1750 
1751 out:
1752 	return rc;
1753 }
1754 
1755 static void qede_free_mem_load(struct qede_dev *edev)
1756 {
1757 	int i;
1758 
1759 	for_each_queue(i) {
1760 		struct qede_fastpath *fp = &edev->fp_array[i];
1761 
1762 		qede_free_mem_fp(edev, fp);
1763 	}
1764 }
1765 
1766 /* This function allocates all qede memory at NIC load. */
1767 static int qede_alloc_mem_load(struct qede_dev *edev)
1768 {
1769 	int rc = 0, queue_id;
1770 
1771 	for (queue_id = 0; queue_id < QEDE_QUEUE_CNT(edev); queue_id++) {
1772 		struct qede_fastpath *fp = &edev->fp_array[queue_id];
1773 
1774 		rc = qede_alloc_mem_fp(edev, fp);
1775 		if (rc) {
1776 			DP_ERR(edev,
1777 			       "Failed to allocate memory for fastpath - rss id = %d\n",
1778 			       queue_id);
1779 			qede_free_mem_load(edev);
1780 			return rc;
1781 		}
1782 	}
1783 
1784 	return 0;
1785 }
1786 
1787 static void qede_empty_tx_queue(struct qede_dev *edev,
1788 				struct qede_tx_queue *txq)
1789 {
1790 	unsigned int pkts_compl = 0, bytes_compl = 0;
1791 	struct netdev_queue *netdev_txq;
1792 	int rc, len = 0;
1793 
1794 	netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id);
1795 
1796 	while (qed_chain_get_cons_idx(&txq->tx_pbl) !=
1797 	       qed_chain_get_prod_idx(&txq->tx_pbl)) {
1798 		DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
1799 			   "Freeing a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n",
1800 			   txq->index, qed_chain_get_cons_idx(&txq->tx_pbl),
1801 			   qed_chain_get_prod_idx(&txq->tx_pbl));
1802 
1803 		rc = qede_free_tx_pkt(edev, txq, &len);
1804 		if (rc) {
1805 			DP_NOTICE(edev,
1806 				  "Failed to free a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n",
1807 				  txq->index,
1808 				  qed_chain_get_cons_idx(&txq->tx_pbl),
1809 				  qed_chain_get_prod_idx(&txq->tx_pbl));
1810 			break;
1811 		}
1812 
1813 		bytes_compl += len;
1814 		pkts_compl++;
1815 		txq->sw_tx_cons++;
1816 	}
1817 
1818 	netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl);
1819 }
1820 
1821 static void qede_empty_tx_queues(struct qede_dev *edev)
1822 {
1823 	int i;
1824 
1825 	for_each_queue(i)
1826 		if (edev->fp_array[i].type & QEDE_FASTPATH_TX) {
1827 			int cos;
1828 
1829 			for_each_cos_in_txq(edev, cos) {
1830 				struct qede_fastpath *fp;
1831 
1832 				fp = &edev->fp_array[i];
1833 				qede_empty_tx_queue(edev,
1834 						    &fp->txq[cos]);
1835 			}
1836 		}
1837 }
1838 
1839 /* This function inits fp content and resets the SB, RXQ and TXQ structures */
1840 static void qede_init_fp(struct qede_dev *edev)
1841 {
1842 	int queue_id, rxq_index = 0, txq_index = 0;
1843 	struct qede_fastpath *fp;
1844 	bool init_xdp = false;
1845 
1846 	for_each_queue(queue_id) {
1847 		fp = &edev->fp_array[queue_id];
1848 
1849 		fp->edev = edev;
1850 		fp->id = queue_id;
1851 
1852 		if (fp->type & QEDE_FASTPATH_XDP) {
1853 			fp->xdp_tx->index = QEDE_TXQ_IDX_TO_XDP(edev,
1854 								rxq_index);
1855 			fp->xdp_tx->is_xdp = 1;
1856 
1857 			spin_lock_init(&fp->xdp_tx->xdp_tx_lock);
1858 			init_xdp = true;
1859 		}
1860 
1861 		if (fp->type & QEDE_FASTPATH_RX) {
1862 			fp->rxq->rxq_id = rxq_index++;
1863 
1864 			/* Determine how to map buffers for this queue */
1865 			if (fp->type & QEDE_FASTPATH_XDP)
1866 				fp->rxq->data_direction = DMA_BIDIRECTIONAL;
1867 			else
1868 				fp->rxq->data_direction = DMA_FROM_DEVICE;
1869 			fp->rxq->dev = &edev->pdev->dev;
1870 
1871 			/* Driver have no error path from here */
1872 			WARN_ON(xdp_rxq_info_reg(&fp->rxq->xdp_rxq, edev->ndev,
1873 						 fp->rxq->rxq_id, 0) < 0);
1874 
1875 			if (xdp_rxq_info_reg_mem_model(&fp->rxq->xdp_rxq,
1876 						       MEM_TYPE_PAGE_ORDER0,
1877 						       NULL)) {
1878 				DP_NOTICE(edev,
1879 					  "Failed to register XDP memory model\n");
1880 			}
1881 		}
1882 
1883 		if (fp->type & QEDE_FASTPATH_TX) {
1884 			int cos;
1885 
1886 			for_each_cos_in_txq(edev, cos) {
1887 				struct qede_tx_queue *txq = &fp->txq[cos];
1888 				u16 ndev_tx_id;
1889 
1890 				txq->cos = cos;
1891 				txq->index = txq_index;
1892 				ndev_tx_id = QEDE_TXQ_TO_NDEV_TXQ_ID(edev, txq);
1893 				txq->ndev_txq_id = ndev_tx_id;
1894 
1895 				if (edev->dev_info.is_legacy)
1896 					txq->is_legacy = true;
1897 				txq->dev = &edev->pdev->dev;
1898 			}
1899 
1900 			txq_index++;
1901 		}
1902 
1903 		snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
1904 			 edev->ndev->name, queue_id);
1905 	}
1906 
1907 	if (init_xdp) {
1908 		edev->total_xdp_queues = QEDE_RSS_COUNT(edev);
1909 		DP_INFO(edev, "Total XDP queues: %u\n", edev->total_xdp_queues);
1910 	}
1911 }
1912 
1913 static int qede_set_real_num_queues(struct qede_dev *edev)
1914 {
1915 	int rc = 0;
1916 
1917 	rc = netif_set_real_num_tx_queues(edev->ndev,
1918 					  QEDE_TSS_COUNT(edev) *
1919 					  edev->dev_info.num_tc);
1920 	if (rc) {
1921 		DP_NOTICE(edev, "Failed to set real number of Tx queues\n");
1922 		return rc;
1923 	}
1924 
1925 	rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_COUNT(edev));
1926 	if (rc) {
1927 		DP_NOTICE(edev, "Failed to set real number of Rx queues\n");
1928 		return rc;
1929 	}
1930 
1931 	return 0;
1932 }
1933 
1934 static void qede_napi_disable_remove(struct qede_dev *edev)
1935 {
1936 	int i;
1937 
1938 	for_each_queue(i) {
1939 		napi_disable(&edev->fp_array[i].napi);
1940 
1941 		netif_napi_del(&edev->fp_array[i].napi);
1942 	}
1943 }
1944 
1945 static void qede_napi_add_enable(struct qede_dev *edev)
1946 {
1947 	int i;
1948 
1949 	/* Add NAPI objects */
1950 	for_each_queue(i) {
1951 		netif_napi_add(edev->ndev, &edev->fp_array[i].napi, qede_poll);
1952 		napi_enable(&edev->fp_array[i].napi);
1953 	}
1954 }
1955 
1956 static void qede_sync_free_irqs(struct qede_dev *edev)
1957 {
1958 	int i;
1959 
1960 	for (i = 0; i < edev->int_info.used_cnt; i++) {
1961 		if (edev->int_info.msix_cnt) {
1962 			free_irq(edev->int_info.msix[i].vector,
1963 				 &edev->fp_array[i]);
1964 		} else {
1965 			edev->ops->common->simd_handler_clean(edev->cdev, i);
1966 		}
1967 	}
1968 
1969 	edev->int_info.used_cnt = 0;
1970 	edev->int_info.msix_cnt = 0;
1971 }
1972 
1973 static int qede_req_msix_irqs(struct qede_dev *edev)
1974 {
1975 	int i, rc;
1976 
1977 	/* Sanitize number of interrupts == number of prepared RSS queues */
1978 	if (QEDE_QUEUE_CNT(edev) > edev->int_info.msix_cnt) {
1979 		DP_ERR(edev,
1980 		       "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n",
1981 		       QEDE_QUEUE_CNT(edev), edev->int_info.msix_cnt);
1982 		return -EINVAL;
1983 	}
1984 
1985 	for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) {
1986 #ifdef CONFIG_RFS_ACCEL
1987 		struct qede_fastpath *fp = &edev->fp_array[i];
1988 
1989 		if (edev->ndev->rx_cpu_rmap && (fp->type & QEDE_FASTPATH_RX)) {
1990 			rc = irq_cpu_rmap_add(edev->ndev->rx_cpu_rmap,
1991 					      edev->int_info.msix[i].vector);
1992 			if (rc) {
1993 				DP_ERR(edev, "Failed to add CPU rmap\n");
1994 				qede_free_arfs(edev);
1995 			}
1996 		}
1997 #endif
1998 		rc = request_irq(edev->int_info.msix[i].vector,
1999 				 qede_msix_fp_int, 0, edev->fp_array[i].name,
2000 				 &edev->fp_array[i]);
2001 		if (rc) {
2002 			DP_ERR(edev, "Request fp %d irq failed\n", i);
2003 #ifdef CONFIG_RFS_ACCEL
2004 			if (edev->ndev->rx_cpu_rmap)
2005 				free_irq_cpu_rmap(edev->ndev->rx_cpu_rmap);
2006 
2007 			edev->ndev->rx_cpu_rmap = NULL;
2008 #endif
2009 			qede_sync_free_irqs(edev);
2010 			return rc;
2011 		}
2012 		DP_VERBOSE(edev, NETIF_MSG_INTR,
2013 			   "Requested fp irq for %s [entry %d]. Cookie is at %p\n",
2014 			   edev->fp_array[i].name, i,
2015 			   &edev->fp_array[i]);
2016 		edev->int_info.used_cnt++;
2017 	}
2018 
2019 	return 0;
2020 }
2021 
2022 static void qede_simd_fp_handler(void *cookie)
2023 {
2024 	struct qede_fastpath *fp = (struct qede_fastpath *)cookie;
2025 
2026 	napi_schedule_irqoff(&fp->napi);
2027 }
2028 
2029 static int qede_setup_irqs(struct qede_dev *edev)
2030 {
2031 	int i, rc = 0;
2032 
2033 	/* Learn Interrupt configuration */
2034 	rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info);
2035 	if (rc)
2036 		return rc;
2037 
2038 	if (edev->int_info.msix_cnt) {
2039 		rc = qede_req_msix_irqs(edev);
2040 		if (rc)
2041 			return rc;
2042 		edev->ndev->irq = edev->int_info.msix[0].vector;
2043 	} else {
2044 		const struct qed_common_ops *ops;
2045 
2046 		/* qed should learn receive the RSS ids and callbacks */
2047 		ops = edev->ops->common;
2048 		for (i = 0; i < QEDE_QUEUE_CNT(edev); i++)
2049 			ops->simd_handler_config(edev->cdev,
2050 						 &edev->fp_array[i], i,
2051 						 qede_simd_fp_handler);
2052 		edev->int_info.used_cnt = QEDE_QUEUE_CNT(edev);
2053 	}
2054 	return 0;
2055 }
2056 
2057 static int qede_drain_txq(struct qede_dev *edev,
2058 			  struct qede_tx_queue *txq, bool allow_drain)
2059 {
2060 	int rc, cnt = 1000;
2061 
2062 	while (txq->sw_tx_cons != txq->sw_tx_prod) {
2063 		if (!cnt) {
2064 			if (allow_drain) {
2065 				DP_NOTICE(edev,
2066 					  "Tx queue[%d] is stuck, requesting MCP to drain\n",
2067 					  txq->index);
2068 				rc = edev->ops->common->drain(edev->cdev);
2069 				if (rc)
2070 					return rc;
2071 				return qede_drain_txq(edev, txq, false);
2072 			}
2073 			DP_NOTICE(edev,
2074 				  "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n",
2075 				  txq->index, txq->sw_tx_prod,
2076 				  txq->sw_tx_cons);
2077 			return -ENODEV;
2078 		}
2079 		cnt--;
2080 		usleep_range(1000, 2000);
2081 		barrier();
2082 	}
2083 
2084 	/* FW finished processing, wait for HW to transmit all tx packets */
2085 	usleep_range(1000, 2000);
2086 
2087 	return 0;
2088 }
2089 
2090 static int qede_stop_txq(struct qede_dev *edev,
2091 			 struct qede_tx_queue *txq, int rss_id)
2092 {
2093 	/* delete doorbell from doorbell recovery mechanism */
2094 	edev->ops->common->db_recovery_del(edev->cdev, txq->doorbell_addr,
2095 					   &txq->tx_db);
2096 
2097 	return edev->ops->q_tx_stop(edev->cdev, rss_id, txq->handle);
2098 }
2099 
2100 static int qede_stop_queues(struct qede_dev *edev)
2101 {
2102 	struct qed_update_vport_params *vport_update_params;
2103 	struct qed_dev *cdev = edev->cdev;
2104 	struct qede_fastpath *fp;
2105 	int rc, i;
2106 
2107 	/* Disable the vport */
2108 	vport_update_params = vzalloc(sizeof(*vport_update_params));
2109 	if (!vport_update_params)
2110 		return -ENOMEM;
2111 
2112 	vport_update_params->vport_id = 0;
2113 	vport_update_params->update_vport_active_flg = 1;
2114 	vport_update_params->vport_active_flg = 0;
2115 	vport_update_params->update_rss_flg = 0;
2116 
2117 	rc = edev->ops->vport_update(cdev, vport_update_params);
2118 	vfree(vport_update_params);
2119 
2120 	if (rc) {
2121 		DP_ERR(edev, "Failed to update vport\n");
2122 		return rc;
2123 	}
2124 
2125 	/* Flush Tx queues. If needed, request drain from MCP */
2126 	for_each_queue(i) {
2127 		fp = &edev->fp_array[i];
2128 
2129 		if (fp->type & QEDE_FASTPATH_TX) {
2130 			int cos;
2131 
2132 			for_each_cos_in_txq(edev, cos) {
2133 				rc = qede_drain_txq(edev, &fp->txq[cos], true);
2134 				if (rc)
2135 					return rc;
2136 			}
2137 		}
2138 
2139 		if (fp->type & QEDE_FASTPATH_XDP) {
2140 			rc = qede_drain_txq(edev, fp->xdp_tx, true);
2141 			if (rc)
2142 				return rc;
2143 		}
2144 	}
2145 
2146 	/* Stop all Queues in reverse order */
2147 	for (i = QEDE_QUEUE_CNT(edev) - 1; i >= 0; i--) {
2148 		fp = &edev->fp_array[i];
2149 
2150 		/* Stop the Tx Queue(s) */
2151 		if (fp->type & QEDE_FASTPATH_TX) {
2152 			int cos;
2153 
2154 			for_each_cos_in_txq(edev, cos) {
2155 				rc = qede_stop_txq(edev, &fp->txq[cos], i);
2156 				if (rc)
2157 					return rc;
2158 			}
2159 		}
2160 
2161 		/* Stop the Rx Queue */
2162 		if (fp->type & QEDE_FASTPATH_RX) {
2163 			rc = edev->ops->q_rx_stop(cdev, i, fp->rxq->handle);
2164 			if (rc) {
2165 				DP_ERR(edev, "Failed to stop RXQ #%d\n", i);
2166 				return rc;
2167 			}
2168 		}
2169 
2170 		/* Stop the XDP forwarding queue */
2171 		if (fp->type & QEDE_FASTPATH_XDP) {
2172 			rc = qede_stop_txq(edev, fp->xdp_tx, i);
2173 			if (rc)
2174 				return rc;
2175 
2176 			bpf_prog_put(fp->rxq->xdp_prog);
2177 		}
2178 	}
2179 
2180 	/* Stop the vport */
2181 	rc = edev->ops->vport_stop(cdev, 0);
2182 	if (rc)
2183 		DP_ERR(edev, "Failed to stop VPORT\n");
2184 
2185 	return rc;
2186 }
2187 
2188 static int qede_start_txq(struct qede_dev *edev,
2189 			  struct qede_fastpath *fp,
2190 			  struct qede_tx_queue *txq, u8 rss_id, u16 sb_idx)
2191 {
2192 	dma_addr_t phys_table = qed_chain_get_pbl_phys(&txq->tx_pbl);
2193 	u32 page_cnt = qed_chain_get_page_cnt(&txq->tx_pbl);
2194 	struct qed_queue_start_common_params params;
2195 	struct qed_txq_start_ret_params ret_params;
2196 	int rc;
2197 
2198 	memset(&params, 0, sizeof(params));
2199 	memset(&ret_params, 0, sizeof(ret_params));
2200 
2201 	/* Let the XDP queue share the queue-zone with one of the regular txq.
2202 	 * We don't really care about its coalescing.
2203 	 */
2204 	if (txq->is_xdp)
2205 		params.queue_id = QEDE_TXQ_XDP_TO_IDX(edev, txq);
2206 	else
2207 		params.queue_id = txq->index;
2208 
2209 	params.p_sb = fp->sb_info;
2210 	params.sb_idx = sb_idx;
2211 	params.tc = txq->cos;
2212 
2213 	rc = edev->ops->q_tx_start(edev->cdev, rss_id, &params, phys_table,
2214 				   page_cnt, &ret_params);
2215 	if (rc) {
2216 		DP_ERR(edev, "Start TXQ #%d failed %d\n", txq->index, rc);
2217 		return rc;
2218 	}
2219 
2220 	txq->doorbell_addr = ret_params.p_doorbell;
2221 	txq->handle = ret_params.p_handle;
2222 
2223 	/* Determine the FW consumer address associated */
2224 	txq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[sb_idx];
2225 
2226 	/* Prepare the doorbell parameters */
2227 	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST, DB_DEST_XCM);
2228 	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD, DB_AGG_CMD_SET);
2229 	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_VAL_SEL,
2230 		  DQ_XCM_ETH_TX_BD_PROD_CMD);
2231 	txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
2232 
2233 	/* register doorbell with doorbell recovery mechanism */
2234 	rc = edev->ops->common->db_recovery_add(edev->cdev, txq->doorbell_addr,
2235 						&txq->tx_db, DB_REC_WIDTH_32B,
2236 						DB_REC_KERNEL);
2237 
2238 	return rc;
2239 }
2240 
2241 static int qede_start_queues(struct qede_dev *edev, bool clear_stats)
2242 {
2243 	int vlan_removal_en = 1;
2244 	struct qed_dev *cdev = edev->cdev;
2245 	struct qed_dev_info *qed_info = &edev->dev_info.common;
2246 	struct qed_update_vport_params *vport_update_params;
2247 	struct qed_queue_start_common_params q_params;
2248 	struct qed_start_vport_params start = {0};
2249 	int rc, i;
2250 
2251 	if (!edev->num_queues) {
2252 		DP_ERR(edev,
2253 		       "Cannot update V-VPORT as active as there are no Rx queues\n");
2254 		return -EINVAL;
2255 	}
2256 
2257 	vport_update_params = vzalloc(sizeof(*vport_update_params));
2258 	if (!vport_update_params)
2259 		return -ENOMEM;
2260 
2261 	start.handle_ptp_pkts = !!(edev->ptp);
2262 	start.gro_enable = !edev->gro_disable;
2263 	start.mtu = edev->ndev->mtu;
2264 	start.vport_id = 0;
2265 	start.drop_ttl0 = true;
2266 	start.remove_inner_vlan = vlan_removal_en;
2267 	start.clear_stats = clear_stats;
2268 
2269 	rc = edev->ops->vport_start(cdev, &start);
2270 
2271 	if (rc) {
2272 		DP_ERR(edev, "Start V-PORT failed %d\n", rc);
2273 		goto out;
2274 	}
2275 
2276 	DP_VERBOSE(edev, NETIF_MSG_IFUP,
2277 		   "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n",
2278 		   start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en);
2279 
2280 	for_each_queue(i) {
2281 		struct qede_fastpath *fp = &edev->fp_array[i];
2282 		dma_addr_t p_phys_table;
2283 		u32 page_cnt;
2284 
2285 		if (fp->type & QEDE_FASTPATH_RX) {
2286 			struct qed_rxq_start_ret_params ret_params;
2287 			struct qede_rx_queue *rxq = fp->rxq;
2288 			__le16 *val;
2289 
2290 			memset(&ret_params, 0, sizeof(ret_params));
2291 			memset(&q_params, 0, sizeof(q_params));
2292 			q_params.queue_id = rxq->rxq_id;
2293 			q_params.vport_id = 0;
2294 			q_params.p_sb = fp->sb_info;
2295 			q_params.sb_idx = RX_PI;
2296 
2297 			p_phys_table =
2298 			    qed_chain_get_pbl_phys(&rxq->rx_comp_ring);
2299 			page_cnt = qed_chain_get_page_cnt(&rxq->rx_comp_ring);
2300 
2301 			rc = edev->ops->q_rx_start(cdev, i, &q_params,
2302 						   rxq->rx_buf_size,
2303 						   rxq->rx_bd_ring.p_phys_addr,
2304 						   p_phys_table,
2305 						   page_cnt, &ret_params);
2306 			if (rc) {
2307 				DP_ERR(edev, "Start RXQ #%d failed %d\n", i,
2308 				       rc);
2309 				goto out;
2310 			}
2311 
2312 			/* Use the return parameters */
2313 			rxq->hw_rxq_prod_addr = ret_params.p_prod;
2314 			rxq->handle = ret_params.p_handle;
2315 
2316 			val = &fp->sb_info->sb_virt->pi_array[RX_PI];
2317 			rxq->hw_cons_ptr = val;
2318 
2319 			qede_update_rx_prod(edev, rxq);
2320 		}
2321 
2322 		if (fp->type & QEDE_FASTPATH_XDP) {
2323 			rc = qede_start_txq(edev, fp, fp->xdp_tx, i, XDP_PI);
2324 			if (rc)
2325 				goto out;
2326 
2327 			bpf_prog_add(edev->xdp_prog, 1);
2328 			fp->rxq->xdp_prog = edev->xdp_prog;
2329 		}
2330 
2331 		if (fp->type & QEDE_FASTPATH_TX) {
2332 			int cos;
2333 
2334 			for_each_cos_in_txq(edev, cos) {
2335 				rc = qede_start_txq(edev, fp, &fp->txq[cos], i,
2336 						    TX_PI(cos));
2337 				if (rc)
2338 					goto out;
2339 			}
2340 		}
2341 	}
2342 
2343 	/* Prepare and send the vport enable */
2344 	vport_update_params->vport_id = start.vport_id;
2345 	vport_update_params->update_vport_active_flg = 1;
2346 	vport_update_params->vport_active_flg = 1;
2347 
2348 	if ((qed_info->b_inter_pf_switch || pci_num_vf(edev->pdev)) &&
2349 	    qed_info->tx_switching) {
2350 		vport_update_params->update_tx_switching_flg = 1;
2351 		vport_update_params->tx_switching_flg = 1;
2352 	}
2353 
2354 	qede_fill_rss_params(edev, &vport_update_params->rss_params,
2355 			     &vport_update_params->update_rss_flg);
2356 
2357 	rc = edev->ops->vport_update(cdev, vport_update_params);
2358 	if (rc)
2359 		DP_ERR(edev, "Update V-PORT failed %d\n", rc);
2360 
2361 out:
2362 	vfree(vport_update_params);
2363 	return rc;
2364 }
2365 
2366 enum qede_unload_mode {
2367 	QEDE_UNLOAD_NORMAL,
2368 	QEDE_UNLOAD_RECOVERY,
2369 };
2370 
2371 static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode,
2372 			bool is_locked)
2373 {
2374 	struct qed_link_params link_params;
2375 	int rc;
2376 
2377 	DP_INFO(edev, "Starting qede unload\n");
2378 
2379 	if (!is_locked)
2380 		__qede_lock(edev);
2381 
2382 	clear_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags);
2383 
2384 	if (mode != QEDE_UNLOAD_RECOVERY)
2385 		edev->state = QEDE_STATE_CLOSED;
2386 
2387 	qede_rdma_dev_event_close(edev);
2388 
2389 	/* Close OS Tx */
2390 	netif_tx_disable(edev->ndev);
2391 	netif_carrier_off(edev->ndev);
2392 
2393 	if (mode != QEDE_UNLOAD_RECOVERY) {
2394 		/* Reset the link */
2395 		memset(&link_params, 0, sizeof(link_params));
2396 		link_params.link_up = false;
2397 		edev->ops->common->set_link(edev->cdev, &link_params);
2398 
2399 		rc = qede_stop_queues(edev);
2400 		if (rc) {
2401 #ifdef CONFIG_RFS_ACCEL
2402 			if (edev->dev_info.common.b_arfs_capable) {
2403 				qede_poll_for_freeing_arfs_filters(edev);
2404 				if (edev->ndev->rx_cpu_rmap)
2405 					free_irq_cpu_rmap(edev->ndev->rx_cpu_rmap);
2406 
2407 				edev->ndev->rx_cpu_rmap = NULL;
2408 			}
2409 #endif
2410 			qede_sync_free_irqs(edev);
2411 			goto out;
2412 		}
2413 
2414 		DP_INFO(edev, "Stopped Queues\n");
2415 	}
2416 
2417 	qede_vlan_mark_nonconfigured(edev);
2418 	edev->ops->fastpath_stop(edev->cdev);
2419 
2420 	if (edev->dev_info.common.b_arfs_capable) {
2421 		qede_poll_for_freeing_arfs_filters(edev);
2422 		qede_free_arfs(edev);
2423 	}
2424 
2425 	/* Release the interrupts */
2426 	qede_sync_free_irqs(edev);
2427 	edev->ops->common->set_fp_int(edev->cdev, 0);
2428 
2429 	qede_napi_disable_remove(edev);
2430 
2431 	if (mode == QEDE_UNLOAD_RECOVERY)
2432 		qede_empty_tx_queues(edev);
2433 
2434 	qede_free_mem_load(edev);
2435 	qede_free_fp_array(edev);
2436 
2437 out:
2438 	if (!is_locked)
2439 		__qede_unlock(edev);
2440 
2441 	if (mode != QEDE_UNLOAD_RECOVERY)
2442 		DP_NOTICE(edev, "Link is down\n");
2443 
2444 	edev->ptp_skip_txts = 0;
2445 
2446 	DP_INFO(edev, "Ending qede unload\n");
2447 }
2448 
2449 enum qede_load_mode {
2450 	QEDE_LOAD_NORMAL,
2451 	QEDE_LOAD_RELOAD,
2452 	QEDE_LOAD_RECOVERY,
2453 };
2454 
2455 static int qede_load(struct qede_dev *edev, enum qede_load_mode mode,
2456 		     bool is_locked)
2457 {
2458 	struct qed_link_params link_params;
2459 	struct ethtool_coalesce coal = {};
2460 	u8 num_tc;
2461 	int rc, i;
2462 
2463 	DP_INFO(edev, "Starting qede load\n");
2464 
2465 	if (!is_locked)
2466 		__qede_lock(edev);
2467 
2468 	rc = qede_set_num_queues(edev);
2469 	if (rc)
2470 		goto out;
2471 
2472 	rc = qede_alloc_fp_array(edev);
2473 	if (rc)
2474 		goto out;
2475 
2476 	qede_init_fp(edev);
2477 
2478 	rc = qede_alloc_mem_load(edev);
2479 	if (rc)
2480 		goto err1;
2481 	DP_INFO(edev, "Allocated %d Rx, %d Tx queues\n",
2482 		QEDE_RSS_COUNT(edev), QEDE_TSS_COUNT(edev));
2483 
2484 	rc = qede_set_real_num_queues(edev);
2485 	if (rc)
2486 		goto err2;
2487 
2488 	if (qede_alloc_arfs(edev)) {
2489 		edev->ndev->features &= ~NETIF_F_NTUPLE;
2490 		edev->dev_info.common.b_arfs_capable = false;
2491 	}
2492 
2493 	qede_napi_add_enable(edev);
2494 	DP_INFO(edev, "Napi added and enabled\n");
2495 
2496 	rc = qede_setup_irqs(edev);
2497 	if (rc)
2498 		goto err3;
2499 	DP_INFO(edev, "Setup IRQs succeeded\n");
2500 
2501 	rc = qede_start_queues(edev, mode != QEDE_LOAD_RELOAD);
2502 	if (rc)
2503 		goto err4;
2504 	DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n");
2505 
2506 	num_tc = netdev_get_num_tc(edev->ndev);
2507 	num_tc = num_tc ? num_tc : edev->dev_info.num_tc;
2508 	qede_setup_tc(edev->ndev, num_tc);
2509 
2510 	/* Program un-configured VLANs */
2511 	qede_configure_vlan_filters(edev);
2512 
2513 	set_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags);
2514 
2515 	/* Ask for link-up using current configuration */
2516 	memset(&link_params, 0, sizeof(link_params));
2517 	link_params.link_up = true;
2518 	edev->ops->common->set_link(edev->cdev, &link_params);
2519 
2520 	edev->state = QEDE_STATE_OPEN;
2521 
2522 	coal.rx_coalesce_usecs = QED_DEFAULT_RX_USECS;
2523 	coal.tx_coalesce_usecs = QED_DEFAULT_TX_USECS;
2524 
2525 	for_each_queue(i) {
2526 		if (edev->coal_entry[i].isvalid) {
2527 			coal.rx_coalesce_usecs = edev->coal_entry[i].rxc;
2528 			coal.tx_coalesce_usecs = edev->coal_entry[i].txc;
2529 		}
2530 		__qede_unlock(edev);
2531 		qede_set_per_coalesce(edev->ndev, i, &coal);
2532 		__qede_lock(edev);
2533 	}
2534 	DP_INFO(edev, "Ending successfully qede load\n");
2535 
2536 	goto out;
2537 err4:
2538 	qede_sync_free_irqs(edev);
2539 err3:
2540 	qede_napi_disable_remove(edev);
2541 err2:
2542 	qede_free_mem_load(edev);
2543 err1:
2544 	edev->ops->common->set_fp_int(edev->cdev, 0);
2545 	qede_free_fp_array(edev);
2546 	edev->num_queues = 0;
2547 	edev->fp_num_tx = 0;
2548 	edev->fp_num_rx = 0;
2549 out:
2550 	if (!is_locked)
2551 		__qede_unlock(edev);
2552 
2553 	return rc;
2554 }
2555 
2556 /* 'func' should be able to run between unload and reload assuming interface
2557  * is actually running, or afterwards in case it's currently DOWN.
2558  */
2559 void qede_reload(struct qede_dev *edev,
2560 		 struct qede_reload_args *args, bool is_locked)
2561 {
2562 	if (!is_locked)
2563 		__qede_lock(edev);
2564 
2565 	/* Since qede_lock is held, internal state wouldn't change even
2566 	 * if netdev state would start transitioning. Check whether current
2567 	 * internal configuration indicates device is up, then reload.
2568 	 */
2569 	if (edev->state == QEDE_STATE_OPEN) {
2570 		qede_unload(edev, QEDE_UNLOAD_NORMAL, true);
2571 		if (args)
2572 			args->func(edev, args);
2573 		qede_load(edev, QEDE_LOAD_RELOAD, true);
2574 
2575 		/* Since no one is going to do it for us, re-configure */
2576 		qede_config_rx_mode(edev->ndev);
2577 	} else if (args) {
2578 		args->func(edev, args);
2579 	}
2580 
2581 	if (!is_locked)
2582 		__qede_unlock(edev);
2583 }
2584 
2585 /* called with rtnl_lock */
2586 static int qede_open(struct net_device *ndev)
2587 {
2588 	struct qede_dev *edev = netdev_priv(ndev);
2589 	int rc;
2590 
2591 	netif_carrier_off(ndev);
2592 
2593 	edev->ops->common->set_power_state(edev->cdev, PCI_D0);
2594 
2595 	rc = qede_load(edev, QEDE_LOAD_NORMAL, false);
2596 	if (rc)
2597 		return rc;
2598 
2599 	udp_tunnel_nic_reset_ntf(ndev);
2600 
2601 	edev->ops->common->update_drv_state(edev->cdev, true);
2602 
2603 	return 0;
2604 }
2605 
2606 static int qede_close(struct net_device *ndev)
2607 {
2608 	struct qede_dev *edev = netdev_priv(ndev);
2609 
2610 	qede_unload(edev, QEDE_UNLOAD_NORMAL, false);
2611 
2612 	if (edev->cdev)
2613 		edev->ops->common->update_drv_state(edev->cdev, false);
2614 
2615 	return 0;
2616 }
2617 
2618 static void qede_link_update(void *dev, struct qed_link_output *link)
2619 {
2620 	struct qede_dev *edev = dev;
2621 
2622 	if (!test_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags)) {
2623 		DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not ready\n");
2624 		return;
2625 	}
2626 
2627 	if (link->link_up) {
2628 		if (!netif_carrier_ok(edev->ndev)) {
2629 			DP_NOTICE(edev, "Link is up\n");
2630 			netif_tx_start_all_queues(edev->ndev);
2631 			netif_carrier_on(edev->ndev);
2632 			qede_rdma_dev_event_open(edev);
2633 		}
2634 	} else {
2635 		if (netif_carrier_ok(edev->ndev)) {
2636 			DP_NOTICE(edev, "Link is down\n");
2637 			netif_tx_disable(edev->ndev);
2638 			netif_carrier_off(edev->ndev);
2639 			qede_rdma_dev_event_close(edev);
2640 		}
2641 	}
2642 }
2643 
2644 static void qede_schedule_recovery_handler(void *dev)
2645 {
2646 	struct qede_dev *edev = dev;
2647 
2648 	if (edev->state == QEDE_STATE_RECOVERY) {
2649 		DP_NOTICE(edev,
2650 			  "Avoid scheduling a recovery handling since already in recovery state\n");
2651 		return;
2652 	}
2653 
2654 	set_bit(QEDE_SP_RECOVERY, &edev->sp_flags);
2655 	schedule_delayed_work(&edev->sp_task, 0);
2656 
2657 	DP_INFO(edev, "Scheduled a recovery handler\n");
2658 }
2659 
2660 static void qede_recovery_failed(struct qede_dev *edev)
2661 {
2662 	netdev_err(edev->ndev, "Recovery handling has failed. Power cycle is needed.\n");
2663 
2664 	netif_device_detach(edev->ndev);
2665 
2666 	if (edev->cdev)
2667 		edev->ops->common->set_power_state(edev->cdev, PCI_D3hot);
2668 }
2669 
2670 static void qede_recovery_handler(struct qede_dev *edev)
2671 {
2672 	u32 curr_state = edev->state;
2673 	int rc;
2674 
2675 	DP_NOTICE(edev, "Starting a recovery process\n");
2676 
2677 	/* No need to acquire first the qede_lock since is done by qede_sp_task
2678 	 * before calling this function.
2679 	 */
2680 	edev->state = QEDE_STATE_RECOVERY;
2681 
2682 	edev->ops->common->recovery_prolog(edev->cdev);
2683 
2684 	if (curr_state == QEDE_STATE_OPEN)
2685 		qede_unload(edev, QEDE_UNLOAD_RECOVERY, true);
2686 
2687 	__qede_remove(edev->pdev, QEDE_REMOVE_RECOVERY);
2688 
2689 	rc = __qede_probe(edev->pdev, edev->dp_module, edev->dp_level,
2690 			  IS_VF(edev), QEDE_PROBE_RECOVERY);
2691 	if (rc) {
2692 		edev->cdev = NULL;
2693 		goto err;
2694 	}
2695 
2696 	if (curr_state == QEDE_STATE_OPEN) {
2697 		rc = qede_load(edev, QEDE_LOAD_RECOVERY, true);
2698 		if (rc)
2699 			goto err;
2700 
2701 		qede_config_rx_mode(edev->ndev);
2702 		udp_tunnel_nic_reset_ntf(edev->ndev);
2703 	}
2704 
2705 	edev->state = curr_state;
2706 
2707 	DP_NOTICE(edev, "Recovery handling is done\n");
2708 
2709 	return;
2710 
2711 err:
2712 	qede_recovery_failed(edev);
2713 }
2714 
2715 static void qede_atomic_hw_err_handler(struct qede_dev *edev)
2716 {
2717 	struct qed_dev *cdev = edev->cdev;
2718 
2719 	DP_NOTICE(edev,
2720 		  "Generic non-sleepable HW error handling started - err_flags 0x%lx\n",
2721 		  edev->err_flags);
2722 
2723 	/* Get a call trace of the flow that led to the error */
2724 	WARN_ON(test_bit(QEDE_ERR_WARN, &edev->err_flags));
2725 
2726 	/* Prevent HW attentions from being reasserted */
2727 	if (test_bit(QEDE_ERR_ATTN_CLR_EN, &edev->err_flags))
2728 		edev->ops->common->attn_clr_enable(cdev, true);
2729 
2730 	DP_NOTICE(edev, "Generic non-sleepable HW error handling is done\n");
2731 }
2732 
2733 static void qede_generic_hw_err_handler(struct qede_dev *edev)
2734 {
2735 	DP_NOTICE(edev,
2736 		  "Generic sleepable HW error handling started - err_flags 0x%lx\n",
2737 		  edev->err_flags);
2738 
2739 	if (edev->devlink) {
2740 		DP_NOTICE(edev, "Reporting fatal error to devlink\n");
2741 		edev->ops->common->report_fatal_error(edev->devlink, edev->last_err_type);
2742 	}
2743 
2744 	clear_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags);
2745 
2746 	DP_NOTICE(edev, "Generic sleepable HW error handling is done\n");
2747 }
2748 
2749 static void qede_set_hw_err_flags(struct qede_dev *edev,
2750 				  enum qed_hw_err_type err_type)
2751 {
2752 	unsigned long err_flags = 0;
2753 
2754 	switch (err_type) {
2755 	case QED_HW_ERR_DMAE_FAIL:
2756 		set_bit(QEDE_ERR_WARN, &err_flags);
2757 		fallthrough;
2758 	case QED_HW_ERR_MFW_RESP_FAIL:
2759 	case QED_HW_ERR_HW_ATTN:
2760 	case QED_HW_ERR_RAMROD_FAIL:
2761 	case QED_HW_ERR_FW_ASSERT:
2762 		set_bit(QEDE_ERR_ATTN_CLR_EN, &err_flags);
2763 		set_bit(QEDE_ERR_GET_DBG_INFO, &err_flags);
2764 		/* make this error as recoverable and start recovery*/
2765 		set_bit(QEDE_ERR_IS_RECOVERABLE, &err_flags);
2766 		break;
2767 
2768 	default:
2769 		DP_NOTICE(edev, "Unexpected HW error [%d]\n", err_type);
2770 		break;
2771 	}
2772 
2773 	edev->err_flags |= err_flags;
2774 }
2775 
2776 static void qede_schedule_hw_err_handler(void *dev,
2777 					 enum qed_hw_err_type err_type)
2778 {
2779 	struct qede_dev *edev = dev;
2780 
2781 	/* Fan failure cannot be masked by handling of another HW error or by a
2782 	 * concurrent recovery process.
2783 	 */
2784 	if ((test_and_set_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags) ||
2785 	     edev->state == QEDE_STATE_RECOVERY) &&
2786 	     err_type != QED_HW_ERR_FAN_FAIL) {
2787 		DP_INFO(edev,
2788 			"Avoid scheduling an error handling while another HW error is being handled\n");
2789 		return;
2790 	}
2791 
2792 	if (err_type >= QED_HW_ERR_LAST) {
2793 		DP_NOTICE(edev, "Unknown HW error [%d]\n", err_type);
2794 		clear_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags);
2795 		return;
2796 	}
2797 
2798 	edev->last_err_type = err_type;
2799 	qede_set_hw_err_flags(edev, err_type);
2800 	qede_atomic_hw_err_handler(edev);
2801 	set_bit(QEDE_SP_HW_ERR, &edev->sp_flags);
2802 	schedule_delayed_work(&edev->sp_task, 0);
2803 
2804 	DP_INFO(edev, "Scheduled a error handler [err_type %d]\n", err_type);
2805 }
2806 
2807 static bool qede_is_txq_full(struct qede_dev *edev, struct qede_tx_queue *txq)
2808 {
2809 	struct netdev_queue *netdev_txq;
2810 
2811 	netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id);
2812 	if (netif_xmit_stopped(netdev_txq))
2813 		return true;
2814 
2815 	return false;
2816 }
2817 
2818 static void qede_get_generic_tlv_data(void *dev, struct qed_generic_tlvs *data)
2819 {
2820 	struct qede_dev *edev = dev;
2821 	struct netdev_hw_addr *ha;
2822 	int i;
2823 
2824 	if (edev->ndev->features & NETIF_F_IP_CSUM)
2825 		data->feat_flags |= QED_TLV_IP_CSUM;
2826 	if (edev->ndev->features & NETIF_F_TSO)
2827 		data->feat_flags |= QED_TLV_LSO;
2828 
2829 	ether_addr_copy(data->mac[0], edev->ndev->dev_addr);
2830 	eth_zero_addr(data->mac[1]);
2831 	eth_zero_addr(data->mac[2]);
2832 	/* Copy the first two UC macs */
2833 	netif_addr_lock_bh(edev->ndev);
2834 	i = 1;
2835 	netdev_for_each_uc_addr(ha, edev->ndev) {
2836 		ether_addr_copy(data->mac[i++], ha->addr);
2837 		if (i == QED_TLV_MAC_COUNT)
2838 			break;
2839 	}
2840 
2841 	netif_addr_unlock_bh(edev->ndev);
2842 }
2843 
2844 static void qede_get_eth_tlv_data(void *dev, void *data)
2845 {
2846 	struct qed_mfw_tlv_eth *etlv = data;
2847 	struct qede_dev *edev = dev;
2848 	struct qede_fastpath *fp;
2849 	int i;
2850 
2851 	etlv->lso_maxoff_size = 0XFFFF;
2852 	etlv->lso_maxoff_size_set = true;
2853 	etlv->lso_minseg_size = (u16)ETH_TX_LSO_WINDOW_MIN_LEN;
2854 	etlv->lso_minseg_size_set = true;
2855 	etlv->prom_mode = !!(edev->ndev->flags & IFF_PROMISC);
2856 	etlv->prom_mode_set = true;
2857 	etlv->tx_descr_size = QEDE_TSS_COUNT(edev);
2858 	etlv->tx_descr_size_set = true;
2859 	etlv->rx_descr_size = QEDE_RSS_COUNT(edev);
2860 	etlv->rx_descr_size_set = true;
2861 	etlv->iov_offload = QED_MFW_TLV_IOV_OFFLOAD_VEB;
2862 	etlv->iov_offload_set = true;
2863 
2864 	/* Fill information regarding queues; Should be done under the qede
2865 	 * lock to guarantee those don't change beneath our feet.
2866 	 */
2867 	etlv->txqs_empty = true;
2868 	etlv->rxqs_empty = true;
2869 	etlv->num_txqs_full = 0;
2870 	etlv->num_rxqs_full = 0;
2871 
2872 	__qede_lock(edev);
2873 	for_each_queue(i) {
2874 		fp = &edev->fp_array[i];
2875 		if (fp->type & QEDE_FASTPATH_TX) {
2876 			struct qede_tx_queue *txq = QEDE_FP_TC0_TXQ(fp);
2877 
2878 			if (txq->sw_tx_cons != txq->sw_tx_prod)
2879 				etlv->txqs_empty = false;
2880 			if (qede_is_txq_full(edev, txq))
2881 				etlv->num_txqs_full++;
2882 		}
2883 		if (fp->type & QEDE_FASTPATH_RX) {
2884 			if (qede_has_rx_work(fp->rxq))
2885 				etlv->rxqs_empty = false;
2886 
2887 			/* This one is a bit tricky; Firmware might stop
2888 			 * placing packets if ring is not yet full.
2889 			 * Give an approximation.
2890 			 */
2891 			if (le16_to_cpu(*fp->rxq->hw_cons_ptr) -
2892 			    qed_chain_get_cons_idx(&fp->rxq->rx_comp_ring) >
2893 			    RX_RING_SIZE - 100)
2894 				etlv->num_rxqs_full++;
2895 		}
2896 	}
2897 	__qede_unlock(edev);
2898 
2899 	etlv->txqs_empty_set = true;
2900 	etlv->rxqs_empty_set = true;
2901 	etlv->num_txqs_full_set = true;
2902 	etlv->num_rxqs_full_set = true;
2903 }
2904 
2905 /**
2906  * qede_io_error_detected(): Called when PCI error is detected
2907  *
2908  * @pdev: Pointer to PCI device
2909  * @state: The current pci connection state
2910  *
2911  *Return: pci_ers_result_t.
2912  *
2913  * This function is called after a PCI bus error affecting
2914  * this device has been detected.
2915  */
2916 static pci_ers_result_t
2917 qede_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
2918 {
2919 	struct net_device *dev = pci_get_drvdata(pdev);
2920 	struct qede_dev *edev = netdev_priv(dev);
2921 
2922 	if (!edev)
2923 		return PCI_ERS_RESULT_NONE;
2924 
2925 	DP_NOTICE(edev, "IO error detected [%d]\n", state);
2926 
2927 	__qede_lock(edev);
2928 	if (edev->state == QEDE_STATE_RECOVERY) {
2929 		DP_NOTICE(edev, "Device already in the recovery state\n");
2930 		__qede_unlock(edev);
2931 		return PCI_ERS_RESULT_NONE;
2932 	}
2933 
2934 	/* PF handles the recovery of its VFs */
2935 	if (IS_VF(edev)) {
2936 		DP_VERBOSE(edev, QED_MSG_IOV,
2937 			   "VF recovery is handled by its PF\n");
2938 		__qede_unlock(edev);
2939 		return PCI_ERS_RESULT_RECOVERED;
2940 	}
2941 
2942 	/* Close OS Tx */
2943 	netif_tx_disable(edev->ndev);
2944 	netif_carrier_off(edev->ndev);
2945 
2946 	set_bit(QEDE_SP_AER, &edev->sp_flags);
2947 	schedule_delayed_work(&edev->sp_task, 0);
2948 
2949 	__qede_unlock(edev);
2950 
2951 	return PCI_ERS_RESULT_CAN_RECOVER;
2952 }
2953