1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause) 2 /* QLogic qede NIC Driver 3 * Copyright (c) 2015-2017 QLogic Corporation 4 * Copyright (c) 2019-2020 Marvell International Ltd. 5 */ 6 7 #include <linux/crash_dump.h> 8 #include <linux/module.h> 9 #include <linux/pci.h> 10 #include <linux/device.h> 11 #include <linux/netdevice.h> 12 #include <linux/etherdevice.h> 13 #include <linux/skbuff.h> 14 #include <linux/errno.h> 15 #include <linux/list.h> 16 #include <linux/string.h> 17 #include <linux/dma-mapping.h> 18 #include <linux/interrupt.h> 19 #include <asm/byteorder.h> 20 #include <asm/param.h> 21 #include <linux/io.h> 22 #include <linux/netdev_features.h> 23 #include <linux/udp.h> 24 #include <linux/tcp.h> 25 #include <net/udp_tunnel.h> 26 #include <linux/ip.h> 27 #include <net/ipv6.h> 28 #include <net/tcp.h> 29 #include <linux/if_ether.h> 30 #include <linux/if_vlan.h> 31 #include <linux/pkt_sched.h> 32 #include <linux/ethtool.h> 33 #include <linux/in.h> 34 #include <linux/random.h> 35 #include <net/ip6_checksum.h> 36 #include <linux/bitops.h> 37 #include <linux/vmalloc.h> 38 #include "qede.h" 39 #include "qede_ptp.h" 40 41 MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver"); 42 MODULE_LICENSE("GPL"); 43 44 static uint debug; 45 module_param(debug, uint, 0); 46 MODULE_PARM_DESC(debug, " Default debug msglevel"); 47 48 static const struct qed_eth_ops *qed_ops; 49 50 #define CHIP_NUM_57980S_40 0x1634 51 #define CHIP_NUM_57980S_10 0x1666 52 #define CHIP_NUM_57980S_MF 0x1636 53 #define CHIP_NUM_57980S_100 0x1644 54 #define CHIP_NUM_57980S_50 0x1654 55 #define CHIP_NUM_57980S_25 0x1656 56 #define CHIP_NUM_57980S_IOV 0x1664 57 #define CHIP_NUM_AH 0x8070 58 #define CHIP_NUM_AH_IOV 0x8090 59 60 #ifndef PCI_DEVICE_ID_NX2_57980E 61 #define PCI_DEVICE_ID_57980S_40 CHIP_NUM_57980S_40 62 #define PCI_DEVICE_ID_57980S_10 CHIP_NUM_57980S_10 63 #define PCI_DEVICE_ID_57980S_MF CHIP_NUM_57980S_MF 64 #define PCI_DEVICE_ID_57980S_100 CHIP_NUM_57980S_100 65 #define PCI_DEVICE_ID_57980S_50 CHIP_NUM_57980S_50 66 #define PCI_DEVICE_ID_57980S_25 CHIP_NUM_57980S_25 67 #define PCI_DEVICE_ID_57980S_IOV CHIP_NUM_57980S_IOV 68 #define PCI_DEVICE_ID_AH CHIP_NUM_AH 69 #define PCI_DEVICE_ID_AH_IOV CHIP_NUM_AH_IOV 70 71 #endif 72 73 enum qede_pci_private { 74 QEDE_PRIVATE_PF, 75 QEDE_PRIVATE_VF 76 }; 77 78 static const struct pci_device_id qede_pci_tbl[] = { 79 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF}, 80 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF}, 81 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF}, 82 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF}, 83 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF}, 84 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF}, 85 #ifdef CONFIG_QED_SRIOV 86 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF}, 87 #endif 88 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH), QEDE_PRIVATE_PF}, 89 #ifdef CONFIG_QED_SRIOV 90 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH_IOV), QEDE_PRIVATE_VF}, 91 #endif 92 { 0 } 93 }; 94 95 MODULE_DEVICE_TABLE(pci, qede_pci_tbl); 96 97 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id); 98 static pci_ers_result_t 99 qede_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state); 100 101 #define TX_TIMEOUT (5 * HZ) 102 103 /* Utilize last protocol index for XDP */ 104 #define XDP_PI 11 105 106 static void qede_remove(struct pci_dev *pdev); 107 static void qede_shutdown(struct pci_dev *pdev); 108 static void qede_link_update(void *dev, struct qed_link_output *link); 109 static void qede_schedule_recovery_handler(void *dev); 110 static void qede_recovery_handler(struct qede_dev *edev); 111 static void qede_schedule_hw_err_handler(void *dev, 112 enum qed_hw_err_type err_type); 113 static void qede_get_eth_tlv_data(void *edev, void *data); 114 static void qede_get_generic_tlv_data(void *edev, 115 struct qed_generic_tlvs *data); 116 static void qede_generic_hw_err_handler(struct qede_dev *edev); 117 #ifdef CONFIG_QED_SRIOV 118 static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos, 119 __be16 vlan_proto) 120 { 121 struct qede_dev *edev = netdev_priv(ndev); 122 123 if (vlan > 4095) { 124 DP_NOTICE(edev, "Illegal vlan value %d\n", vlan); 125 return -EINVAL; 126 } 127 128 if (vlan_proto != htons(ETH_P_8021Q)) 129 return -EPROTONOSUPPORT; 130 131 DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n", 132 vlan, vf); 133 134 return edev->ops->iov->set_vlan(edev->cdev, vlan, vf); 135 } 136 137 static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac) 138 { 139 struct qede_dev *edev = netdev_priv(ndev); 140 141 DP_VERBOSE(edev, QED_MSG_IOV, "Setting MAC %pM to VF [%d]\n", mac, vfidx); 142 143 if (!is_valid_ether_addr(mac)) { 144 DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n"); 145 return -EINVAL; 146 } 147 148 return edev->ops->iov->set_mac(edev->cdev, mac, vfidx); 149 } 150 151 static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param) 152 { 153 struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev)); 154 struct qed_dev_info *qed_info = &edev->dev_info.common; 155 struct qed_update_vport_params *vport_params; 156 int rc; 157 158 vport_params = vzalloc(sizeof(*vport_params)); 159 if (!vport_params) 160 return -ENOMEM; 161 DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param); 162 163 rc = edev->ops->iov->configure(edev->cdev, num_vfs_param); 164 165 /* Enable/Disable Tx switching for PF */ 166 if ((rc == num_vfs_param) && netif_running(edev->ndev) && 167 !qed_info->b_inter_pf_switch && qed_info->tx_switching) { 168 vport_params->vport_id = 0; 169 vport_params->update_tx_switching_flg = 1; 170 vport_params->tx_switching_flg = num_vfs_param ? 1 : 0; 171 edev->ops->vport_update(edev->cdev, vport_params); 172 } 173 174 vfree(vport_params); 175 return rc; 176 } 177 #endif 178 179 static int __maybe_unused qede_suspend(struct device *dev) 180 { 181 dev_info(dev, "Device does not support suspend operation\n"); 182 183 return -EOPNOTSUPP; 184 } 185 186 static DEFINE_SIMPLE_DEV_PM_OPS(qede_pm_ops, qede_suspend, NULL); 187 188 static const struct pci_error_handlers qede_err_handler = { 189 .error_detected = qede_io_error_detected, 190 }; 191 192 static struct pci_driver qede_pci_driver = { 193 .name = "qede", 194 .id_table = qede_pci_tbl, 195 .probe = qede_probe, 196 .remove = qede_remove, 197 .shutdown = qede_shutdown, 198 #ifdef CONFIG_QED_SRIOV 199 .sriov_configure = qede_sriov_configure, 200 #endif 201 .err_handler = &qede_err_handler, 202 .driver.pm = &qede_pm_ops, 203 }; 204 205 static struct qed_eth_cb_ops qede_ll_ops = { 206 { 207 #ifdef CONFIG_RFS_ACCEL 208 .arfs_filter_op = qede_arfs_filter_op, 209 #endif 210 .link_update = qede_link_update, 211 .schedule_recovery_handler = qede_schedule_recovery_handler, 212 .schedule_hw_err_handler = qede_schedule_hw_err_handler, 213 .get_generic_tlv_data = qede_get_generic_tlv_data, 214 .get_protocol_tlv_data = qede_get_eth_tlv_data, 215 }, 216 .force_mac = qede_force_mac, 217 .ports_update = qede_udp_ports_update, 218 }; 219 220 static int qede_netdev_event(struct notifier_block *this, unsigned long event, 221 void *ptr) 222 { 223 struct net_device *ndev = netdev_notifier_info_to_dev(ptr); 224 struct ethtool_drvinfo drvinfo; 225 struct qede_dev *edev; 226 227 if (event != NETDEV_CHANGENAME && event != NETDEV_CHANGEADDR) 228 goto done; 229 230 /* Check whether this is a qede device */ 231 if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo) 232 goto done; 233 234 memset(&drvinfo, 0, sizeof(drvinfo)); 235 ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo); 236 if (strcmp(drvinfo.driver, "qede")) 237 goto done; 238 edev = netdev_priv(ndev); 239 240 switch (event) { 241 case NETDEV_CHANGENAME: 242 /* Notify qed of the name change */ 243 if (!edev->ops || !edev->ops->common) 244 goto done; 245 edev->ops->common->set_name(edev->cdev, edev->ndev->name); 246 break; 247 case NETDEV_CHANGEADDR: 248 edev = netdev_priv(ndev); 249 qede_rdma_event_changeaddr(edev); 250 break; 251 } 252 253 done: 254 return NOTIFY_DONE; 255 } 256 257 static struct notifier_block qede_netdev_notifier = { 258 .notifier_call = qede_netdev_event, 259 }; 260 261 static 262 int __init qede_init(void) 263 { 264 int ret; 265 266 pr_info("qede init: QLogic FastLinQ 4xxxx Ethernet Driver qede\n"); 267 268 qede_forced_speed_maps_init(); 269 270 qed_ops = qed_get_eth_ops(); 271 if (!qed_ops) { 272 pr_notice("Failed to get qed ethtool operations\n"); 273 return -EINVAL; 274 } 275 276 /* Must register notifier before pci ops, since we might miss 277 * interface rename after pci probe and netdev registration. 278 */ 279 ret = register_netdevice_notifier(&qede_netdev_notifier); 280 if (ret) { 281 pr_notice("Failed to register netdevice_notifier\n"); 282 qed_put_eth_ops(); 283 return -EINVAL; 284 } 285 286 ret = pci_register_driver(&qede_pci_driver); 287 if (ret) { 288 pr_notice("Failed to register driver\n"); 289 unregister_netdevice_notifier(&qede_netdev_notifier); 290 qed_put_eth_ops(); 291 return -EINVAL; 292 } 293 294 return 0; 295 } 296 297 static void __exit qede_cleanup(void) 298 { 299 if (debug & QED_LOG_INFO_MASK) 300 pr_info("qede_cleanup called\n"); 301 302 unregister_netdevice_notifier(&qede_netdev_notifier); 303 pci_unregister_driver(&qede_pci_driver); 304 qed_put_eth_ops(); 305 } 306 307 module_init(qede_init); 308 module_exit(qede_cleanup); 309 310 static int qede_open(struct net_device *ndev); 311 static int qede_close(struct net_device *ndev); 312 313 void qede_fill_by_demand_stats(struct qede_dev *edev) 314 { 315 struct qede_stats_common *p_common = &edev->stats.common; 316 struct qed_eth_stats stats; 317 318 edev->ops->get_vport_stats(edev->cdev, &stats); 319 320 spin_lock(&edev->stats_lock); 321 322 p_common->no_buff_discards = stats.common.no_buff_discards; 323 p_common->packet_too_big_discard = stats.common.packet_too_big_discard; 324 p_common->ttl0_discard = stats.common.ttl0_discard; 325 p_common->rx_ucast_bytes = stats.common.rx_ucast_bytes; 326 p_common->rx_mcast_bytes = stats.common.rx_mcast_bytes; 327 p_common->rx_bcast_bytes = stats.common.rx_bcast_bytes; 328 p_common->rx_ucast_pkts = stats.common.rx_ucast_pkts; 329 p_common->rx_mcast_pkts = stats.common.rx_mcast_pkts; 330 p_common->rx_bcast_pkts = stats.common.rx_bcast_pkts; 331 p_common->mftag_filter_discards = stats.common.mftag_filter_discards; 332 p_common->mac_filter_discards = stats.common.mac_filter_discards; 333 p_common->gft_filter_drop = stats.common.gft_filter_drop; 334 335 p_common->tx_ucast_bytes = stats.common.tx_ucast_bytes; 336 p_common->tx_mcast_bytes = stats.common.tx_mcast_bytes; 337 p_common->tx_bcast_bytes = stats.common.tx_bcast_bytes; 338 p_common->tx_ucast_pkts = stats.common.tx_ucast_pkts; 339 p_common->tx_mcast_pkts = stats.common.tx_mcast_pkts; 340 p_common->tx_bcast_pkts = stats.common.tx_bcast_pkts; 341 p_common->tx_err_drop_pkts = stats.common.tx_err_drop_pkts; 342 p_common->coalesced_pkts = stats.common.tpa_coalesced_pkts; 343 p_common->coalesced_events = stats.common.tpa_coalesced_events; 344 p_common->coalesced_aborts_num = stats.common.tpa_aborts_num; 345 p_common->non_coalesced_pkts = stats.common.tpa_not_coalesced_pkts; 346 p_common->coalesced_bytes = stats.common.tpa_coalesced_bytes; 347 348 p_common->rx_64_byte_packets = stats.common.rx_64_byte_packets; 349 p_common->rx_65_to_127_byte_packets = 350 stats.common.rx_65_to_127_byte_packets; 351 p_common->rx_128_to_255_byte_packets = 352 stats.common.rx_128_to_255_byte_packets; 353 p_common->rx_256_to_511_byte_packets = 354 stats.common.rx_256_to_511_byte_packets; 355 p_common->rx_512_to_1023_byte_packets = 356 stats.common.rx_512_to_1023_byte_packets; 357 p_common->rx_1024_to_1518_byte_packets = 358 stats.common.rx_1024_to_1518_byte_packets; 359 p_common->rx_crc_errors = stats.common.rx_crc_errors; 360 p_common->rx_mac_crtl_frames = stats.common.rx_mac_crtl_frames; 361 p_common->rx_pause_frames = stats.common.rx_pause_frames; 362 p_common->rx_pfc_frames = stats.common.rx_pfc_frames; 363 p_common->rx_align_errors = stats.common.rx_align_errors; 364 p_common->rx_carrier_errors = stats.common.rx_carrier_errors; 365 p_common->rx_oversize_packets = stats.common.rx_oversize_packets; 366 p_common->rx_jabbers = stats.common.rx_jabbers; 367 p_common->rx_undersize_packets = stats.common.rx_undersize_packets; 368 p_common->rx_fragments = stats.common.rx_fragments; 369 p_common->tx_64_byte_packets = stats.common.tx_64_byte_packets; 370 p_common->tx_65_to_127_byte_packets = 371 stats.common.tx_65_to_127_byte_packets; 372 p_common->tx_128_to_255_byte_packets = 373 stats.common.tx_128_to_255_byte_packets; 374 p_common->tx_256_to_511_byte_packets = 375 stats.common.tx_256_to_511_byte_packets; 376 p_common->tx_512_to_1023_byte_packets = 377 stats.common.tx_512_to_1023_byte_packets; 378 p_common->tx_1024_to_1518_byte_packets = 379 stats.common.tx_1024_to_1518_byte_packets; 380 p_common->tx_pause_frames = stats.common.tx_pause_frames; 381 p_common->tx_pfc_frames = stats.common.tx_pfc_frames; 382 p_common->brb_truncates = stats.common.brb_truncates; 383 p_common->brb_discards = stats.common.brb_discards; 384 p_common->tx_mac_ctrl_frames = stats.common.tx_mac_ctrl_frames; 385 p_common->link_change_count = stats.common.link_change_count; 386 p_common->ptp_skip_txts = edev->ptp_skip_txts; 387 388 if (QEDE_IS_BB(edev)) { 389 struct qede_stats_bb *p_bb = &edev->stats.bb; 390 391 p_bb->rx_1519_to_1522_byte_packets = 392 stats.bb.rx_1519_to_1522_byte_packets; 393 p_bb->rx_1519_to_2047_byte_packets = 394 stats.bb.rx_1519_to_2047_byte_packets; 395 p_bb->rx_2048_to_4095_byte_packets = 396 stats.bb.rx_2048_to_4095_byte_packets; 397 p_bb->rx_4096_to_9216_byte_packets = 398 stats.bb.rx_4096_to_9216_byte_packets; 399 p_bb->rx_9217_to_16383_byte_packets = 400 stats.bb.rx_9217_to_16383_byte_packets; 401 p_bb->tx_1519_to_2047_byte_packets = 402 stats.bb.tx_1519_to_2047_byte_packets; 403 p_bb->tx_2048_to_4095_byte_packets = 404 stats.bb.tx_2048_to_4095_byte_packets; 405 p_bb->tx_4096_to_9216_byte_packets = 406 stats.bb.tx_4096_to_9216_byte_packets; 407 p_bb->tx_9217_to_16383_byte_packets = 408 stats.bb.tx_9217_to_16383_byte_packets; 409 p_bb->tx_lpi_entry_count = stats.bb.tx_lpi_entry_count; 410 p_bb->tx_total_collisions = stats.bb.tx_total_collisions; 411 } else { 412 struct qede_stats_ah *p_ah = &edev->stats.ah; 413 414 p_ah->rx_1519_to_max_byte_packets = 415 stats.ah.rx_1519_to_max_byte_packets; 416 p_ah->tx_1519_to_max_byte_packets = 417 stats.ah.tx_1519_to_max_byte_packets; 418 } 419 420 spin_unlock(&edev->stats_lock); 421 } 422 423 static void qede_get_stats64(struct net_device *dev, 424 struct rtnl_link_stats64 *stats) 425 { 426 struct qede_dev *edev = netdev_priv(dev); 427 struct qede_stats_common *p_common; 428 429 p_common = &edev->stats.common; 430 431 spin_lock(&edev->stats_lock); 432 433 stats->rx_packets = p_common->rx_ucast_pkts + p_common->rx_mcast_pkts + 434 p_common->rx_bcast_pkts; 435 stats->tx_packets = p_common->tx_ucast_pkts + p_common->tx_mcast_pkts + 436 p_common->tx_bcast_pkts; 437 438 stats->rx_bytes = p_common->rx_ucast_bytes + p_common->rx_mcast_bytes + 439 p_common->rx_bcast_bytes; 440 stats->tx_bytes = p_common->tx_ucast_bytes + p_common->tx_mcast_bytes + 441 p_common->tx_bcast_bytes; 442 443 stats->tx_errors = p_common->tx_err_drop_pkts; 444 stats->multicast = p_common->rx_mcast_pkts + p_common->rx_bcast_pkts; 445 446 stats->rx_fifo_errors = p_common->no_buff_discards; 447 448 if (QEDE_IS_BB(edev)) 449 stats->collisions = edev->stats.bb.tx_total_collisions; 450 stats->rx_crc_errors = p_common->rx_crc_errors; 451 stats->rx_frame_errors = p_common->rx_align_errors; 452 453 spin_unlock(&edev->stats_lock); 454 } 455 456 #ifdef CONFIG_QED_SRIOV 457 static int qede_get_vf_config(struct net_device *dev, int vfidx, 458 struct ifla_vf_info *ivi) 459 { 460 struct qede_dev *edev = netdev_priv(dev); 461 462 if (!edev->ops) 463 return -EINVAL; 464 465 return edev->ops->iov->get_config(edev->cdev, vfidx, ivi); 466 } 467 468 static int qede_set_vf_rate(struct net_device *dev, int vfidx, 469 int min_tx_rate, int max_tx_rate) 470 { 471 struct qede_dev *edev = netdev_priv(dev); 472 473 return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate, 474 max_tx_rate); 475 } 476 477 static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val) 478 { 479 struct qede_dev *edev = netdev_priv(dev); 480 481 if (!edev->ops) 482 return -EINVAL; 483 484 return edev->ops->iov->set_spoof(edev->cdev, vfidx, val); 485 } 486 487 static int qede_set_vf_link_state(struct net_device *dev, int vfidx, 488 int link_state) 489 { 490 struct qede_dev *edev = netdev_priv(dev); 491 492 if (!edev->ops) 493 return -EINVAL; 494 495 return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state); 496 } 497 498 static int qede_set_vf_trust(struct net_device *dev, int vfidx, bool setting) 499 { 500 struct qede_dev *edev = netdev_priv(dev); 501 502 if (!edev->ops) 503 return -EINVAL; 504 505 return edev->ops->iov->set_trust(edev->cdev, vfidx, setting); 506 } 507 #endif 508 509 static int qede_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 510 { 511 struct qede_dev *edev = netdev_priv(dev); 512 513 if (!netif_running(dev)) 514 return -EAGAIN; 515 516 switch (cmd) { 517 case SIOCSHWTSTAMP: 518 return qede_ptp_hw_ts(edev, ifr); 519 default: 520 DP_VERBOSE(edev, QED_MSG_DEBUG, 521 "default IOCTL cmd 0x%x\n", cmd); 522 return -EOPNOTSUPP; 523 } 524 525 return 0; 526 } 527 528 static void qede_fp_sb_dump(struct qede_dev *edev, struct qede_fastpath *fp) 529 { 530 char *p_sb = (char *)fp->sb_info->sb_virt; 531 u32 sb_size, i; 532 533 sb_size = sizeof(struct status_block); 534 535 for (i = 0; i < sb_size; i += 8) 536 DP_NOTICE(edev, 537 "%02hhX %02hhX %02hhX %02hhX %02hhX %02hhX %02hhX %02hhX\n", 538 p_sb[i], p_sb[i + 1], p_sb[i + 2], p_sb[i + 3], 539 p_sb[i + 4], p_sb[i + 5], p_sb[i + 6], p_sb[i + 7]); 540 } 541 542 static void 543 qede_txq_fp_log_metadata(struct qede_dev *edev, 544 struct qede_fastpath *fp, struct qede_tx_queue *txq) 545 { 546 struct qed_chain *p_chain = &txq->tx_pbl; 547 548 /* Dump txq/fp/sb ids etc. other metadata */ 549 DP_NOTICE(edev, 550 "fpid 0x%x sbid 0x%x txqid [0x%x] ndev_qid [0x%x] cos [0x%x] p_chain %p cap %d size %d jiffies %lu HZ 0x%x\n", 551 fp->id, fp->sb_info->igu_sb_id, txq->index, txq->ndev_txq_id, txq->cos, 552 p_chain, p_chain->capacity, p_chain->size, jiffies, HZ); 553 554 /* Dump all the relevant prod/cons indexes */ 555 DP_NOTICE(edev, 556 "hw cons %04x sw_tx_prod=0x%x, sw_tx_cons=0x%x, bd_prod 0x%x bd_cons 0x%x\n", 557 le16_to_cpu(*txq->hw_cons_ptr), txq->sw_tx_prod, txq->sw_tx_cons, 558 qed_chain_get_prod_idx(p_chain), qed_chain_get_cons_idx(p_chain)); 559 } 560 561 static void 562 qede_tx_log_print(struct qede_dev *edev, struct qede_fastpath *fp, struct qede_tx_queue *txq) 563 { 564 struct qed_sb_info_dbg sb_dbg; 565 int rc; 566 567 /* sb info */ 568 qede_fp_sb_dump(edev, fp); 569 570 memset(&sb_dbg, 0, sizeof(sb_dbg)); 571 rc = edev->ops->common->get_sb_info(edev->cdev, fp->sb_info, (u16)fp->id, &sb_dbg); 572 573 DP_NOTICE(edev, "IGU: prod %08x cons %08x CAU Tx %04x\n", 574 sb_dbg.igu_prod, sb_dbg.igu_cons, sb_dbg.pi[TX_PI(txq->cos)]); 575 576 /* report to mfw */ 577 edev->ops->common->mfw_report(edev->cdev, 578 "Txq[%d]: FW cons [host] %04x, SW cons %04x, SW prod %04x [Jiffies %lu]\n", 579 txq->index, le16_to_cpu(*txq->hw_cons_ptr), 580 qed_chain_get_cons_idx(&txq->tx_pbl), 581 qed_chain_get_prod_idx(&txq->tx_pbl), jiffies); 582 if (!rc) 583 edev->ops->common->mfw_report(edev->cdev, 584 "Txq[%d]: SB[0x%04x] - IGU: prod %08x cons %08x CAU Tx %04x\n", 585 txq->index, fp->sb_info->igu_sb_id, 586 sb_dbg.igu_prod, sb_dbg.igu_cons, 587 sb_dbg.pi[TX_PI(txq->cos)]); 588 } 589 590 static void qede_tx_timeout(struct net_device *dev, unsigned int txqueue) 591 { 592 struct qede_dev *edev = netdev_priv(dev); 593 int i; 594 595 netif_carrier_off(dev); 596 DP_NOTICE(edev, "TX timeout on queue %u!\n", txqueue); 597 598 for_each_queue(i) { 599 struct qede_tx_queue *txq; 600 struct qede_fastpath *fp; 601 int cos; 602 603 fp = &edev->fp_array[i]; 604 if (!(fp->type & QEDE_FASTPATH_TX)) 605 continue; 606 607 for_each_cos_in_txq(edev, cos) { 608 txq = &fp->txq[cos]; 609 610 /* Dump basic metadata for all queues */ 611 qede_txq_fp_log_metadata(edev, fp, txq); 612 613 if (qed_chain_get_cons_idx(&txq->tx_pbl) != 614 qed_chain_get_prod_idx(&txq->tx_pbl)) 615 qede_tx_log_print(edev, fp, txq); 616 } 617 } 618 619 if (IS_VF(edev)) 620 return; 621 622 if (test_and_set_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags) || 623 edev->state == QEDE_STATE_RECOVERY) { 624 DP_INFO(edev, 625 "Avoid handling a Tx timeout while another HW error is being handled\n"); 626 return; 627 } 628 629 set_bit(QEDE_ERR_GET_DBG_INFO, &edev->err_flags); 630 set_bit(QEDE_SP_HW_ERR, &edev->sp_flags); 631 schedule_delayed_work(&edev->sp_task, 0); 632 } 633 634 static int qede_setup_tc(struct net_device *ndev, u8 num_tc) 635 { 636 struct qede_dev *edev = netdev_priv(ndev); 637 int cos, count, offset; 638 639 if (num_tc > edev->dev_info.num_tc) 640 return -EINVAL; 641 642 netdev_reset_tc(ndev); 643 netdev_set_num_tc(ndev, num_tc); 644 645 for_each_cos_in_txq(edev, cos) { 646 count = QEDE_TSS_COUNT(edev); 647 offset = cos * QEDE_TSS_COUNT(edev); 648 netdev_set_tc_queue(ndev, cos, count, offset); 649 } 650 651 return 0; 652 } 653 654 static int 655 qede_set_flower(struct qede_dev *edev, struct flow_cls_offload *f, 656 __be16 proto) 657 { 658 switch (f->command) { 659 case FLOW_CLS_REPLACE: 660 return qede_add_tc_flower_fltr(edev, proto, f); 661 case FLOW_CLS_DESTROY: 662 return qede_delete_flow_filter(edev, f->cookie); 663 default: 664 return -EOPNOTSUPP; 665 } 666 } 667 668 static int qede_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 669 void *cb_priv) 670 { 671 struct flow_cls_offload *f; 672 struct qede_dev *edev = cb_priv; 673 674 if (!tc_cls_can_offload_and_chain0(edev->ndev, type_data)) 675 return -EOPNOTSUPP; 676 677 switch (type) { 678 case TC_SETUP_CLSFLOWER: 679 f = type_data; 680 return qede_set_flower(edev, f, f->common.protocol); 681 default: 682 return -EOPNOTSUPP; 683 } 684 } 685 686 static LIST_HEAD(qede_block_cb_list); 687 688 static int 689 qede_setup_tc_offload(struct net_device *dev, enum tc_setup_type type, 690 void *type_data) 691 { 692 struct qede_dev *edev = netdev_priv(dev); 693 struct tc_mqprio_qopt *mqprio; 694 695 switch (type) { 696 case TC_SETUP_BLOCK: 697 return flow_block_cb_setup_simple(type_data, 698 &qede_block_cb_list, 699 qede_setup_tc_block_cb, 700 edev, edev, true); 701 case TC_SETUP_QDISC_MQPRIO: 702 mqprio = type_data; 703 704 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; 705 return qede_setup_tc(dev, mqprio->num_tc); 706 default: 707 return -EOPNOTSUPP; 708 } 709 } 710 711 static const struct net_device_ops qede_netdev_ops = { 712 .ndo_open = qede_open, 713 .ndo_stop = qede_close, 714 .ndo_start_xmit = qede_start_xmit, 715 .ndo_select_queue = qede_select_queue, 716 .ndo_set_rx_mode = qede_set_rx_mode, 717 .ndo_set_mac_address = qede_set_mac_addr, 718 .ndo_validate_addr = eth_validate_addr, 719 .ndo_change_mtu = qede_change_mtu, 720 .ndo_eth_ioctl = qede_ioctl, 721 .ndo_tx_timeout = qede_tx_timeout, 722 #ifdef CONFIG_QED_SRIOV 723 .ndo_set_vf_mac = qede_set_vf_mac, 724 .ndo_set_vf_vlan = qede_set_vf_vlan, 725 .ndo_set_vf_trust = qede_set_vf_trust, 726 #endif 727 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid, 728 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid, 729 .ndo_fix_features = qede_fix_features, 730 .ndo_set_features = qede_set_features, 731 .ndo_get_stats64 = qede_get_stats64, 732 #ifdef CONFIG_QED_SRIOV 733 .ndo_set_vf_link_state = qede_set_vf_link_state, 734 .ndo_set_vf_spoofchk = qede_set_vf_spoofchk, 735 .ndo_get_vf_config = qede_get_vf_config, 736 .ndo_set_vf_rate = qede_set_vf_rate, 737 #endif 738 .ndo_features_check = qede_features_check, 739 .ndo_bpf = qede_xdp, 740 #ifdef CONFIG_RFS_ACCEL 741 .ndo_rx_flow_steer = qede_rx_flow_steer, 742 #endif 743 .ndo_xdp_xmit = qede_xdp_transmit, 744 .ndo_setup_tc = qede_setup_tc_offload, 745 }; 746 747 static const struct net_device_ops qede_netdev_vf_ops = { 748 .ndo_open = qede_open, 749 .ndo_stop = qede_close, 750 .ndo_start_xmit = qede_start_xmit, 751 .ndo_select_queue = qede_select_queue, 752 .ndo_set_rx_mode = qede_set_rx_mode, 753 .ndo_set_mac_address = qede_set_mac_addr, 754 .ndo_validate_addr = eth_validate_addr, 755 .ndo_change_mtu = qede_change_mtu, 756 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid, 757 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid, 758 .ndo_fix_features = qede_fix_features, 759 .ndo_set_features = qede_set_features, 760 .ndo_get_stats64 = qede_get_stats64, 761 .ndo_features_check = qede_features_check, 762 }; 763 764 static const struct net_device_ops qede_netdev_vf_xdp_ops = { 765 .ndo_open = qede_open, 766 .ndo_stop = qede_close, 767 .ndo_start_xmit = qede_start_xmit, 768 .ndo_select_queue = qede_select_queue, 769 .ndo_set_rx_mode = qede_set_rx_mode, 770 .ndo_set_mac_address = qede_set_mac_addr, 771 .ndo_validate_addr = eth_validate_addr, 772 .ndo_change_mtu = qede_change_mtu, 773 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid, 774 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid, 775 .ndo_fix_features = qede_fix_features, 776 .ndo_set_features = qede_set_features, 777 .ndo_get_stats64 = qede_get_stats64, 778 .ndo_features_check = qede_features_check, 779 .ndo_bpf = qede_xdp, 780 .ndo_xdp_xmit = qede_xdp_transmit, 781 }; 782 783 /* ------------------------------------------------------------------------- 784 * START OF PROBE / REMOVE 785 * ------------------------------------------------------------------------- 786 */ 787 788 static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev, 789 struct pci_dev *pdev, 790 struct qed_dev_eth_info *info, 791 u32 dp_module, u8 dp_level) 792 { 793 struct net_device *ndev; 794 struct qede_dev *edev; 795 796 ndev = alloc_etherdev_mqs(sizeof(*edev), 797 info->num_queues * info->num_tc, 798 info->num_queues); 799 if (!ndev) { 800 pr_err("etherdev allocation failed\n"); 801 return NULL; 802 } 803 804 edev = netdev_priv(ndev); 805 edev->ndev = ndev; 806 edev->cdev = cdev; 807 edev->pdev = pdev; 808 edev->dp_module = dp_module; 809 edev->dp_level = dp_level; 810 edev->ops = qed_ops; 811 812 if (is_kdump_kernel()) { 813 edev->q_num_rx_buffers = NUM_RX_BDS_KDUMP_MIN; 814 edev->q_num_tx_buffers = NUM_TX_BDS_KDUMP_MIN; 815 } else { 816 edev->q_num_rx_buffers = NUM_RX_BDS_DEF; 817 edev->q_num_tx_buffers = NUM_TX_BDS_DEF; 818 } 819 820 DP_INFO(edev, "Allocated netdev with %d tx queues and %d rx queues\n", 821 info->num_queues, info->num_queues); 822 823 SET_NETDEV_DEV(ndev, &pdev->dev); 824 825 memset(&edev->stats, 0, sizeof(edev->stats)); 826 memcpy(&edev->dev_info, info, sizeof(*info)); 827 828 /* As ethtool doesn't have the ability to show WoL behavior as 829 * 'default', if device supports it declare it's enabled. 830 */ 831 if (edev->dev_info.common.wol_support) 832 edev->wol_enabled = true; 833 834 INIT_LIST_HEAD(&edev->vlan_list); 835 836 return edev; 837 } 838 839 static void qede_init_ndev(struct qede_dev *edev) 840 { 841 struct net_device *ndev = edev->ndev; 842 struct pci_dev *pdev = edev->pdev; 843 bool udp_tunnel_enable = false; 844 netdev_features_t hw_features; 845 846 pci_set_drvdata(pdev, ndev); 847 848 ndev->mem_start = edev->dev_info.common.pci_mem_start; 849 ndev->base_addr = ndev->mem_start; 850 ndev->mem_end = edev->dev_info.common.pci_mem_end; 851 ndev->irq = edev->dev_info.common.pci_irq; 852 853 ndev->watchdog_timeo = TX_TIMEOUT; 854 855 if (IS_VF(edev)) { 856 if (edev->dev_info.xdp_supported) 857 ndev->netdev_ops = &qede_netdev_vf_xdp_ops; 858 else 859 ndev->netdev_ops = &qede_netdev_vf_ops; 860 } else { 861 ndev->netdev_ops = &qede_netdev_ops; 862 } 863 864 qede_set_ethtool_ops(ndev); 865 866 ndev->priv_flags |= IFF_UNICAST_FLT; 867 868 /* user-changeble features */ 869 hw_features = NETIF_F_GRO | NETIF_F_GRO_HW | NETIF_F_SG | 870 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 871 NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_HW_TC; 872 873 if (edev->dev_info.common.b_arfs_capable) 874 hw_features |= NETIF_F_NTUPLE; 875 876 if (edev->dev_info.common.vxlan_enable || 877 edev->dev_info.common.geneve_enable) 878 udp_tunnel_enable = true; 879 880 if (udp_tunnel_enable || edev->dev_info.common.gre_enable) { 881 hw_features |= NETIF_F_TSO_ECN; 882 ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 883 NETIF_F_SG | NETIF_F_TSO | 884 NETIF_F_TSO_ECN | NETIF_F_TSO6 | 885 NETIF_F_RXCSUM; 886 } 887 888 if (udp_tunnel_enable) { 889 hw_features |= (NETIF_F_GSO_UDP_TUNNEL | 890 NETIF_F_GSO_UDP_TUNNEL_CSUM); 891 ndev->hw_enc_features |= (NETIF_F_GSO_UDP_TUNNEL | 892 NETIF_F_GSO_UDP_TUNNEL_CSUM); 893 894 qede_set_udp_tunnels(edev); 895 } 896 897 if (edev->dev_info.common.gre_enable) { 898 hw_features |= (NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM); 899 ndev->hw_enc_features |= (NETIF_F_GSO_GRE | 900 NETIF_F_GSO_GRE_CSUM); 901 } 902 903 ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM | 904 NETIF_F_HIGHDMA; 905 ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM | 906 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA | 907 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX; 908 909 ndev->hw_features = hw_features; 910 911 ndev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT | 912 NETDEV_XDP_ACT_NDO_XMIT; 913 914 /* MTU range: 46 - 9600 */ 915 ndev->min_mtu = ETH_ZLEN - ETH_HLEN; 916 ndev->max_mtu = QEDE_MAX_JUMBO_PACKET_SIZE; 917 918 /* Set network device HW mac */ 919 eth_hw_addr_set(edev->ndev, edev->dev_info.common.hw_mac); 920 921 ndev->mtu = edev->dev_info.common.mtu; 922 } 923 924 /* This function converts from 32b param to two params of level and module 925 * Input 32b decoding: 926 * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the 927 * 'happy' flow, e.g. memory allocation failed. 928 * b30 - enable all INFO prints. INFO prints are for major steps in the flow 929 * and provide important parameters. 930 * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that 931 * module. VERBOSE prints are for tracking the specific flow in low level. 932 * 933 * Notice that the level should be that of the lowest required logs. 934 */ 935 void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level) 936 { 937 *p_dp_level = QED_LEVEL_NOTICE; 938 *p_dp_module = 0; 939 940 if (debug & QED_LOG_VERBOSE_MASK) { 941 *p_dp_level = QED_LEVEL_VERBOSE; 942 *p_dp_module = (debug & 0x3FFFFFFF); 943 } else if (debug & QED_LOG_INFO_MASK) { 944 *p_dp_level = QED_LEVEL_INFO; 945 } else if (debug & QED_LOG_NOTICE_MASK) { 946 *p_dp_level = QED_LEVEL_NOTICE; 947 } 948 } 949 950 static void qede_free_fp_array(struct qede_dev *edev) 951 { 952 if (edev->fp_array) { 953 struct qede_fastpath *fp; 954 int i; 955 956 for_each_queue(i) { 957 fp = &edev->fp_array[i]; 958 959 kfree(fp->sb_info); 960 /* Handle mem alloc failure case where qede_init_fp 961 * didn't register xdp_rxq_info yet. 962 * Implicit only (fp->type & QEDE_FASTPATH_RX) 963 */ 964 if (fp->rxq && xdp_rxq_info_is_reg(&fp->rxq->xdp_rxq)) 965 xdp_rxq_info_unreg(&fp->rxq->xdp_rxq); 966 kfree(fp->rxq); 967 kfree(fp->xdp_tx); 968 kfree(fp->txq); 969 } 970 kfree(edev->fp_array); 971 } 972 973 edev->num_queues = 0; 974 edev->fp_num_tx = 0; 975 edev->fp_num_rx = 0; 976 } 977 978 static int qede_alloc_fp_array(struct qede_dev *edev) 979 { 980 u8 fp_combined, fp_rx = edev->fp_num_rx; 981 struct qede_fastpath *fp; 982 int i; 983 984 edev->fp_array = kcalloc(QEDE_QUEUE_CNT(edev), 985 sizeof(*edev->fp_array), GFP_KERNEL); 986 if (!edev->fp_array) { 987 DP_NOTICE(edev, "fp array allocation failed\n"); 988 goto err; 989 } 990 991 if (!edev->coal_entry) { 992 edev->coal_entry = kcalloc(QEDE_MAX_RSS_CNT(edev), 993 sizeof(*edev->coal_entry), 994 GFP_KERNEL); 995 if (!edev->coal_entry) { 996 DP_ERR(edev, "coalesce entry allocation failed\n"); 997 goto err; 998 } 999 } 1000 1001 fp_combined = QEDE_QUEUE_CNT(edev) - fp_rx - edev->fp_num_tx; 1002 1003 /* Allocate the FP elements for Rx queues followed by combined and then 1004 * the Tx. This ordering should be maintained so that the respective 1005 * queues (Rx or Tx) will be together in the fastpath array and the 1006 * associated ids will be sequential. 1007 */ 1008 for_each_queue(i) { 1009 fp = &edev->fp_array[i]; 1010 1011 fp->sb_info = kzalloc(sizeof(*fp->sb_info), GFP_KERNEL); 1012 if (!fp->sb_info) { 1013 DP_NOTICE(edev, "sb info struct allocation failed\n"); 1014 goto err; 1015 } 1016 1017 if (fp_rx) { 1018 fp->type = QEDE_FASTPATH_RX; 1019 fp_rx--; 1020 } else if (fp_combined) { 1021 fp->type = QEDE_FASTPATH_COMBINED; 1022 fp_combined--; 1023 } else { 1024 fp->type = QEDE_FASTPATH_TX; 1025 } 1026 1027 if (fp->type & QEDE_FASTPATH_TX) { 1028 fp->txq = kcalloc(edev->dev_info.num_tc, 1029 sizeof(*fp->txq), GFP_KERNEL); 1030 if (!fp->txq) 1031 goto err; 1032 } 1033 1034 if (fp->type & QEDE_FASTPATH_RX) { 1035 fp->rxq = kzalloc(sizeof(*fp->rxq), GFP_KERNEL); 1036 if (!fp->rxq) 1037 goto err; 1038 1039 if (edev->xdp_prog) { 1040 fp->xdp_tx = kzalloc(sizeof(*fp->xdp_tx), 1041 GFP_KERNEL); 1042 if (!fp->xdp_tx) 1043 goto err; 1044 fp->type |= QEDE_FASTPATH_XDP; 1045 } 1046 } 1047 } 1048 1049 return 0; 1050 err: 1051 qede_free_fp_array(edev); 1052 return -ENOMEM; 1053 } 1054 1055 /* The qede lock is used to protect driver state change and driver flows that 1056 * are not reentrant. 1057 */ 1058 void __qede_lock(struct qede_dev *edev) 1059 { 1060 mutex_lock(&edev->qede_lock); 1061 } 1062 1063 void __qede_unlock(struct qede_dev *edev) 1064 { 1065 mutex_unlock(&edev->qede_lock); 1066 } 1067 1068 /* This version of the lock should be used when acquiring the RTNL lock is also 1069 * needed in addition to the internal qede lock. 1070 */ 1071 static void qede_lock(struct qede_dev *edev) 1072 { 1073 rtnl_lock(); 1074 __qede_lock(edev); 1075 } 1076 1077 static void qede_unlock(struct qede_dev *edev) 1078 { 1079 __qede_unlock(edev); 1080 rtnl_unlock(); 1081 } 1082 1083 static void qede_periodic_task(struct work_struct *work) 1084 { 1085 struct qede_dev *edev = container_of(work, struct qede_dev, 1086 periodic_task.work); 1087 1088 qede_fill_by_demand_stats(edev); 1089 schedule_delayed_work(&edev->periodic_task, edev->stats_coal_ticks); 1090 } 1091 1092 static void qede_init_periodic_task(struct qede_dev *edev) 1093 { 1094 INIT_DELAYED_WORK(&edev->periodic_task, qede_periodic_task); 1095 spin_lock_init(&edev->stats_lock); 1096 edev->stats_coal_usecs = USEC_PER_SEC; 1097 edev->stats_coal_ticks = usecs_to_jiffies(USEC_PER_SEC); 1098 } 1099 1100 static void qede_sp_task(struct work_struct *work) 1101 { 1102 struct qede_dev *edev = container_of(work, struct qede_dev, 1103 sp_task.work); 1104 1105 /* Disable execution of this deferred work once 1106 * qede removal is in progress, this stop any future 1107 * scheduling of sp_task. 1108 */ 1109 if (test_bit(QEDE_SP_DISABLE, &edev->sp_flags)) 1110 return; 1111 1112 /* The locking scheme depends on the specific flag: 1113 * In case of QEDE_SP_RECOVERY, acquiring the RTNL lock is required to 1114 * ensure that ongoing flows are ended and new ones are not started. 1115 * In other cases - only the internal qede lock should be acquired. 1116 */ 1117 1118 if (test_and_clear_bit(QEDE_SP_RECOVERY, &edev->sp_flags)) { 1119 cancel_delayed_work_sync(&edev->periodic_task); 1120 #ifdef CONFIG_QED_SRIOV 1121 /* SRIOV must be disabled outside the lock to avoid a deadlock. 1122 * The recovery of the active VFs is currently not supported. 1123 */ 1124 if (pci_num_vf(edev->pdev)) 1125 qede_sriov_configure(edev->pdev, 0); 1126 #endif 1127 qede_lock(edev); 1128 qede_recovery_handler(edev); 1129 qede_unlock(edev); 1130 } 1131 1132 __qede_lock(edev); 1133 1134 if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags)) 1135 if (edev->state == QEDE_STATE_OPEN) 1136 qede_config_rx_mode(edev->ndev); 1137 1138 #ifdef CONFIG_RFS_ACCEL 1139 if (test_and_clear_bit(QEDE_SP_ARFS_CONFIG, &edev->sp_flags)) { 1140 if (edev->state == QEDE_STATE_OPEN) 1141 qede_process_arfs_filters(edev, false); 1142 } 1143 #endif 1144 if (test_and_clear_bit(QEDE_SP_HW_ERR, &edev->sp_flags)) 1145 qede_generic_hw_err_handler(edev); 1146 __qede_unlock(edev); 1147 1148 if (test_and_clear_bit(QEDE_SP_AER, &edev->sp_flags)) { 1149 #ifdef CONFIG_QED_SRIOV 1150 /* SRIOV must be disabled outside the lock to avoid a deadlock. 1151 * The recovery of the active VFs is currently not supported. 1152 */ 1153 if (pci_num_vf(edev->pdev)) 1154 qede_sriov_configure(edev->pdev, 0); 1155 #endif 1156 edev->ops->common->recovery_process(edev->cdev); 1157 } 1158 } 1159 1160 static void qede_update_pf_params(struct qed_dev *cdev) 1161 { 1162 struct qed_pf_params pf_params; 1163 u16 num_cons; 1164 1165 /* 64 rx + 64 tx + 64 XDP */ 1166 memset(&pf_params, 0, sizeof(struct qed_pf_params)); 1167 1168 /* 1 rx + 1 xdp + max tx cos */ 1169 num_cons = QED_MIN_L2_CONS; 1170 1171 pf_params.eth_pf_params.num_cons = (MAX_SB_PER_PF_MIMD - 1) * num_cons; 1172 1173 /* Same for VFs - make sure they'll have sufficient connections 1174 * to support XDP Tx queues. 1175 */ 1176 pf_params.eth_pf_params.num_vf_cons = 48; 1177 1178 pf_params.eth_pf_params.num_arfs_filters = QEDE_RFS_MAX_FLTR; 1179 qed_ops->common->update_pf_params(cdev, &pf_params); 1180 } 1181 1182 #define QEDE_FW_VER_STR_SIZE 80 1183 1184 static void qede_log_probe(struct qede_dev *edev) 1185 { 1186 struct qed_dev_info *p_dev_info = &edev->dev_info.common; 1187 u8 buf[QEDE_FW_VER_STR_SIZE]; 1188 size_t left_size; 1189 1190 snprintf(buf, QEDE_FW_VER_STR_SIZE, 1191 "Storm FW %d.%d.%d.%d, Management FW %d.%d.%d.%d", 1192 p_dev_info->fw_major, p_dev_info->fw_minor, p_dev_info->fw_rev, 1193 p_dev_info->fw_eng, 1194 (p_dev_info->mfw_rev & QED_MFW_VERSION_3_MASK) >> 1195 QED_MFW_VERSION_3_OFFSET, 1196 (p_dev_info->mfw_rev & QED_MFW_VERSION_2_MASK) >> 1197 QED_MFW_VERSION_2_OFFSET, 1198 (p_dev_info->mfw_rev & QED_MFW_VERSION_1_MASK) >> 1199 QED_MFW_VERSION_1_OFFSET, 1200 (p_dev_info->mfw_rev & QED_MFW_VERSION_0_MASK) >> 1201 QED_MFW_VERSION_0_OFFSET); 1202 1203 left_size = QEDE_FW_VER_STR_SIZE - strlen(buf); 1204 if (p_dev_info->mbi_version && left_size) 1205 snprintf(buf + strlen(buf), left_size, 1206 " [MBI %d.%d.%d]", 1207 (p_dev_info->mbi_version & QED_MBI_VERSION_2_MASK) >> 1208 QED_MBI_VERSION_2_OFFSET, 1209 (p_dev_info->mbi_version & QED_MBI_VERSION_1_MASK) >> 1210 QED_MBI_VERSION_1_OFFSET, 1211 (p_dev_info->mbi_version & QED_MBI_VERSION_0_MASK) >> 1212 QED_MBI_VERSION_0_OFFSET); 1213 1214 pr_info("qede %02x:%02x.%02x: %s [%s]\n", edev->pdev->bus->number, 1215 PCI_SLOT(edev->pdev->devfn), PCI_FUNC(edev->pdev->devfn), 1216 buf, edev->ndev->name); 1217 } 1218 1219 enum qede_probe_mode { 1220 QEDE_PROBE_NORMAL, 1221 QEDE_PROBE_RECOVERY, 1222 }; 1223 1224 static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level, 1225 bool is_vf, enum qede_probe_mode mode) 1226 { 1227 struct qed_probe_params probe_params; 1228 struct qed_slowpath_params sp_params; 1229 struct qed_dev_eth_info dev_info; 1230 struct qede_dev *edev; 1231 struct qed_dev *cdev; 1232 int rc; 1233 1234 if (unlikely(dp_level & QED_LEVEL_INFO)) 1235 pr_notice("Starting qede probe\n"); 1236 1237 memset(&probe_params, 0, sizeof(probe_params)); 1238 probe_params.protocol = QED_PROTOCOL_ETH; 1239 probe_params.dp_module = dp_module; 1240 probe_params.dp_level = dp_level; 1241 probe_params.is_vf = is_vf; 1242 probe_params.recov_in_prog = (mode == QEDE_PROBE_RECOVERY); 1243 cdev = qed_ops->common->probe(pdev, &probe_params); 1244 if (!cdev) { 1245 rc = -ENODEV; 1246 goto err0; 1247 } 1248 1249 qede_update_pf_params(cdev); 1250 1251 /* Start the Slowpath-process */ 1252 memset(&sp_params, 0, sizeof(sp_params)); 1253 sp_params.int_mode = QED_INT_MODE_MSIX; 1254 strscpy(sp_params.name, "qede LAN", QED_DRV_VER_STR_SIZE); 1255 rc = qed_ops->common->slowpath_start(cdev, &sp_params); 1256 if (rc) { 1257 pr_notice("Cannot start slowpath\n"); 1258 goto err1; 1259 } 1260 1261 /* Learn information crucial for qede to progress */ 1262 rc = qed_ops->fill_dev_info(cdev, &dev_info); 1263 if (rc) 1264 goto err2; 1265 1266 if (mode != QEDE_PROBE_RECOVERY) { 1267 edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module, 1268 dp_level); 1269 if (!edev) { 1270 rc = -ENOMEM; 1271 goto err2; 1272 } 1273 1274 edev->devlink = qed_ops->common->devlink_register(cdev); 1275 if (IS_ERR(edev->devlink)) { 1276 DP_NOTICE(edev, "Cannot register devlink\n"); 1277 rc = PTR_ERR(edev->devlink); 1278 edev->devlink = NULL; 1279 goto err3; 1280 } 1281 } else { 1282 struct net_device *ndev = pci_get_drvdata(pdev); 1283 struct qed_devlink *qdl; 1284 1285 edev = netdev_priv(ndev); 1286 qdl = devlink_priv(edev->devlink); 1287 qdl->cdev = cdev; 1288 edev->cdev = cdev; 1289 memset(&edev->stats, 0, sizeof(edev->stats)); 1290 memcpy(&edev->dev_info, &dev_info, sizeof(dev_info)); 1291 } 1292 1293 if (is_vf) 1294 set_bit(QEDE_FLAGS_IS_VF, &edev->flags); 1295 1296 qede_init_ndev(edev); 1297 1298 rc = qede_rdma_dev_add(edev, (mode == QEDE_PROBE_RECOVERY)); 1299 if (rc) 1300 goto err3; 1301 1302 if (mode != QEDE_PROBE_RECOVERY) { 1303 /* Prepare the lock prior to the registration of the netdev, 1304 * as once it's registered we might reach flows requiring it 1305 * [it's even possible to reach a flow needing it directly 1306 * from there, although it's unlikely]. 1307 */ 1308 INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task); 1309 mutex_init(&edev->qede_lock); 1310 qede_init_periodic_task(edev); 1311 1312 rc = register_netdev(edev->ndev); 1313 if (rc) { 1314 DP_NOTICE(edev, "Cannot register net-device\n"); 1315 goto err4; 1316 } 1317 } 1318 1319 edev->ops->common->set_name(cdev, edev->ndev->name); 1320 1321 /* PTP not supported on VFs */ 1322 if (!is_vf) 1323 qede_ptp_enable(edev); 1324 1325 edev->ops->register_ops(cdev, &qede_ll_ops, edev); 1326 1327 #ifdef CONFIG_DCB 1328 if (!IS_VF(edev)) 1329 qede_set_dcbnl_ops(edev->ndev); 1330 #endif 1331 1332 edev->rx_copybreak = QEDE_RX_HDR_SIZE; 1333 1334 qede_log_probe(edev); 1335 1336 /* retain user config (for example - after recovery) */ 1337 if (edev->stats_coal_usecs) 1338 schedule_delayed_work(&edev->periodic_task, 0); 1339 1340 return 0; 1341 1342 err4: 1343 qede_rdma_dev_remove(edev, (mode == QEDE_PROBE_RECOVERY)); 1344 err3: 1345 if (mode != QEDE_PROBE_RECOVERY) 1346 free_netdev(edev->ndev); 1347 else 1348 edev->cdev = NULL; 1349 err2: 1350 qed_ops->common->slowpath_stop(cdev); 1351 err1: 1352 qed_ops->common->remove(cdev); 1353 err0: 1354 return rc; 1355 } 1356 1357 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id) 1358 { 1359 bool is_vf = false; 1360 u32 dp_module = 0; 1361 u8 dp_level = 0; 1362 1363 switch ((enum qede_pci_private)id->driver_data) { 1364 case QEDE_PRIVATE_VF: 1365 if (debug & QED_LOG_VERBOSE_MASK) 1366 dev_err(&pdev->dev, "Probing a VF\n"); 1367 is_vf = true; 1368 break; 1369 default: 1370 if (debug & QED_LOG_VERBOSE_MASK) 1371 dev_err(&pdev->dev, "Probing a PF\n"); 1372 } 1373 1374 qede_config_debug(debug, &dp_module, &dp_level); 1375 1376 return __qede_probe(pdev, dp_module, dp_level, is_vf, 1377 QEDE_PROBE_NORMAL); 1378 } 1379 1380 enum qede_remove_mode { 1381 QEDE_REMOVE_NORMAL, 1382 QEDE_REMOVE_RECOVERY, 1383 }; 1384 1385 static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode) 1386 { 1387 struct net_device *ndev = pci_get_drvdata(pdev); 1388 struct qede_dev *edev; 1389 struct qed_dev *cdev; 1390 1391 if (!ndev) { 1392 dev_info(&pdev->dev, "Device has already been removed\n"); 1393 return; 1394 } 1395 1396 edev = netdev_priv(ndev); 1397 cdev = edev->cdev; 1398 1399 DP_INFO(edev, "Starting qede_remove\n"); 1400 1401 qede_rdma_dev_remove(edev, (mode == QEDE_REMOVE_RECOVERY)); 1402 1403 if (mode != QEDE_REMOVE_RECOVERY) { 1404 set_bit(QEDE_SP_DISABLE, &edev->sp_flags); 1405 unregister_netdev(ndev); 1406 1407 cancel_delayed_work_sync(&edev->sp_task); 1408 cancel_delayed_work_sync(&edev->periodic_task); 1409 1410 edev->ops->common->set_power_state(cdev, PCI_D0); 1411 1412 pci_set_drvdata(pdev, NULL); 1413 } 1414 1415 qede_ptp_disable(edev); 1416 1417 /* Use global ops since we've freed edev */ 1418 qed_ops->common->slowpath_stop(cdev); 1419 if (system_state == SYSTEM_POWER_OFF) 1420 return; 1421 1422 if (mode != QEDE_REMOVE_RECOVERY && edev->devlink) { 1423 qed_ops->common->devlink_unregister(edev->devlink); 1424 edev->devlink = NULL; 1425 } 1426 qed_ops->common->remove(cdev); 1427 edev->cdev = NULL; 1428 1429 /* Since this can happen out-of-sync with other flows, 1430 * don't release the netdevice until after slowpath stop 1431 * has been called to guarantee various other contexts 1432 * [e.g., QED register callbacks] won't break anything when 1433 * accessing the netdevice. 1434 */ 1435 if (mode != QEDE_REMOVE_RECOVERY) { 1436 kfree(edev->coal_entry); 1437 free_netdev(ndev); 1438 } 1439 1440 dev_info(&pdev->dev, "Ending qede_remove successfully\n"); 1441 } 1442 1443 static void qede_remove(struct pci_dev *pdev) 1444 { 1445 __qede_remove(pdev, QEDE_REMOVE_NORMAL); 1446 } 1447 1448 static void qede_shutdown(struct pci_dev *pdev) 1449 { 1450 __qede_remove(pdev, QEDE_REMOVE_NORMAL); 1451 } 1452 1453 /* ------------------------------------------------------------------------- 1454 * START OF LOAD / UNLOAD 1455 * ------------------------------------------------------------------------- 1456 */ 1457 1458 static int qede_set_num_queues(struct qede_dev *edev) 1459 { 1460 int rc; 1461 u16 rss_num; 1462 1463 /* Setup queues according to possible resources*/ 1464 if (edev->req_queues) 1465 rss_num = edev->req_queues; 1466 else 1467 rss_num = netif_get_num_default_rss_queues() * 1468 edev->dev_info.common.num_hwfns; 1469 1470 rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num); 1471 1472 rc = edev->ops->common->set_fp_int(edev->cdev, rss_num); 1473 if (rc > 0) { 1474 /* Managed to request interrupts for our queues */ 1475 edev->num_queues = rc; 1476 DP_INFO(edev, "Managed %d [of %d] RSS queues\n", 1477 QEDE_QUEUE_CNT(edev), rss_num); 1478 rc = 0; 1479 } 1480 1481 edev->fp_num_tx = edev->req_num_tx; 1482 edev->fp_num_rx = edev->req_num_rx; 1483 1484 return rc; 1485 } 1486 1487 static void qede_free_mem_sb(struct qede_dev *edev, struct qed_sb_info *sb_info, 1488 u16 sb_id) 1489 { 1490 if (sb_info->sb_virt) { 1491 edev->ops->common->sb_release(edev->cdev, sb_info, sb_id, 1492 QED_SB_TYPE_L2_QUEUE); 1493 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt), 1494 (void *)sb_info->sb_virt, sb_info->sb_phys); 1495 memset(sb_info, 0, sizeof(*sb_info)); 1496 } 1497 } 1498 1499 /* This function allocates fast-path status block memory */ 1500 static int qede_alloc_mem_sb(struct qede_dev *edev, 1501 struct qed_sb_info *sb_info, u16 sb_id) 1502 { 1503 struct status_block *sb_virt; 1504 dma_addr_t sb_phys; 1505 int rc; 1506 1507 sb_virt = dma_alloc_coherent(&edev->pdev->dev, 1508 sizeof(*sb_virt), &sb_phys, GFP_KERNEL); 1509 if (!sb_virt) { 1510 DP_ERR(edev, "Status block allocation failed\n"); 1511 return -ENOMEM; 1512 } 1513 1514 rc = edev->ops->common->sb_init(edev->cdev, sb_info, 1515 sb_virt, sb_phys, sb_id, 1516 QED_SB_TYPE_L2_QUEUE); 1517 if (rc) { 1518 DP_ERR(edev, "Status block initialization failed\n"); 1519 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt), 1520 sb_virt, sb_phys); 1521 return rc; 1522 } 1523 1524 return 0; 1525 } 1526 1527 static void qede_free_rx_buffers(struct qede_dev *edev, 1528 struct qede_rx_queue *rxq) 1529 { 1530 u16 i; 1531 1532 for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) { 1533 struct sw_rx_data *rx_buf; 1534 struct page *data; 1535 1536 rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX]; 1537 data = rx_buf->data; 1538 1539 dma_unmap_page(&edev->pdev->dev, 1540 rx_buf->mapping, PAGE_SIZE, rxq->data_direction); 1541 1542 rx_buf->data = NULL; 1543 __free_page(data); 1544 } 1545 } 1546 1547 static void qede_free_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq) 1548 { 1549 /* Free rx buffers */ 1550 qede_free_rx_buffers(edev, rxq); 1551 1552 /* Free the parallel SW ring */ 1553 kfree(rxq->sw_rx_ring); 1554 1555 /* Free the real RQ ring used by FW */ 1556 edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring); 1557 edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring); 1558 } 1559 1560 static void qede_set_tpa_param(struct qede_rx_queue *rxq) 1561 { 1562 int i; 1563 1564 for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) { 1565 struct qede_agg_info *tpa_info = &rxq->tpa_info[i]; 1566 1567 tpa_info->state = QEDE_AGG_STATE_NONE; 1568 } 1569 } 1570 1571 /* This function allocates all memory needed per Rx queue */ 1572 static int qede_alloc_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq) 1573 { 1574 struct qed_chain_init_params params = { 1575 .cnt_type = QED_CHAIN_CNT_TYPE_U16, 1576 .num_elems = RX_RING_SIZE, 1577 }; 1578 struct qed_dev *cdev = edev->cdev; 1579 int i, rc, size; 1580 1581 rxq->num_rx_buffers = edev->q_num_rx_buffers; 1582 1583 rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD + edev->ndev->mtu; 1584 1585 rxq->rx_headroom = edev->xdp_prog ? XDP_PACKET_HEADROOM : NET_SKB_PAD; 1586 size = rxq->rx_headroom + 1587 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 1588 1589 /* Make sure that the headroom and payload fit in a single page */ 1590 if (rxq->rx_buf_size + size > PAGE_SIZE) 1591 rxq->rx_buf_size = PAGE_SIZE - size; 1592 1593 /* Segment size to split a page in multiple equal parts, 1594 * unless XDP is used in which case we'd use the entire page. 1595 */ 1596 if (!edev->xdp_prog) { 1597 size = size + rxq->rx_buf_size; 1598 rxq->rx_buf_seg_size = roundup_pow_of_two(size); 1599 } else { 1600 rxq->rx_buf_seg_size = PAGE_SIZE; 1601 edev->ndev->features &= ~NETIF_F_GRO_HW; 1602 } 1603 1604 /* Allocate the parallel driver ring for Rx buffers */ 1605 size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE; 1606 rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL); 1607 if (!rxq->sw_rx_ring) { 1608 DP_ERR(edev, "Rx buffers ring allocation failed\n"); 1609 rc = -ENOMEM; 1610 goto err; 1611 } 1612 1613 /* Allocate FW Rx ring */ 1614 params.mode = QED_CHAIN_MODE_NEXT_PTR; 1615 params.intended_use = QED_CHAIN_USE_TO_CONSUME_PRODUCE; 1616 params.elem_size = sizeof(struct eth_rx_bd); 1617 1618 rc = edev->ops->common->chain_alloc(cdev, &rxq->rx_bd_ring, ¶ms); 1619 if (rc) 1620 goto err; 1621 1622 /* Allocate FW completion ring */ 1623 params.mode = QED_CHAIN_MODE_PBL; 1624 params.intended_use = QED_CHAIN_USE_TO_CONSUME; 1625 params.elem_size = sizeof(union eth_rx_cqe); 1626 1627 rc = edev->ops->common->chain_alloc(cdev, &rxq->rx_comp_ring, ¶ms); 1628 if (rc) 1629 goto err; 1630 1631 /* Allocate buffers for the Rx ring */ 1632 rxq->filled_buffers = 0; 1633 for (i = 0; i < rxq->num_rx_buffers; i++) { 1634 rc = qede_alloc_rx_buffer(rxq, false); 1635 if (rc) { 1636 DP_ERR(edev, 1637 "Rx buffers allocation failed at index %d\n", i); 1638 goto err; 1639 } 1640 } 1641 1642 edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO_HW); 1643 if (!edev->gro_disable) 1644 qede_set_tpa_param(rxq); 1645 err: 1646 return rc; 1647 } 1648 1649 static void qede_free_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq) 1650 { 1651 /* Free the parallel SW ring */ 1652 if (txq->is_xdp) 1653 kfree(txq->sw_tx_ring.xdp); 1654 else 1655 kfree(txq->sw_tx_ring.skbs); 1656 1657 /* Free the real RQ ring used by FW */ 1658 edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl); 1659 } 1660 1661 /* This function allocates all memory needed per Tx queue */ 1662 static int qede_alloc_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq) 1663 { 1664 struct qed_chain_init_params params = { 1665 .mode = QED_CHAIN_MODE_PBL, 1666 .intended_use = QED_CHAIN_USE_TO_CONSUME_PRODUCE, 1667 .cnt_type = QED_CHAIN_CNT_TYPE_U16, 1668 .num_elems = edev->q_num_tx_buffers, 1669 .elem_size = sizeof(union eth_tx_bd_types), 1670 }; 1671 int size, rc; 1672 1673 txq->num_tx_buffers = edev->q_num_tx_buffers; 1674 1675 /* Allocate the parallel driver ring for Tx buffers */ 1676 if (txq->is_xdp) { 1677 size = sizeof(*txq->sw_tx_ring.xdp) * txq->num_tx_buffers; 1678 txq->sw_tx_ring.xdp = kzalloc(size, GFP_KERNEL); 1679 if (!txq->sw_tx_ring.xdp) 1680 goto err; 1681 } else { 1682 size = sizeof(*txq->sw_tx_ring.skbs) * txq->num_tx_buffers; 1683 txq->sw_tx_ring.skbs = kzalloc(size, GFP_KERNEL); 1684 if (!txq->sw_tx_ring.skbs) 1685 goto err; 1686 } 1687 1688 rc = edev->ops->common->chain_alloc(edev->cdev, &txq->tx_pbl, ¶ms); 1689 if (rc) 1690 goto err; 1691 1692 return 0; 1693 1694 err: 1695 qede_free_mem_txq(edev, txq); 1696 return -ENOMEM; 1697 } 1698 1699 /* This function frees all memory of a single fp */ 1700 static void qede_free_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp) 1701 { 1702 qede_free_mem_sb(edev, fp->sb_info, fp->id); 1703 1704 if (fp->type & QEDE_FASTPATH_RX) 1705 qede_free_mem_rxq(edev, fp->rxq); 1706 1707 if (fp->type & QEDE_FASTPATH_XDP) 1708 qede_free_mem_txq(edev, fp->xdp_tx); 1709 1710 if (fp->type & QEDE_FASTPATH_TX) { 1711 int cos; 1712 1713 for_each_cos_in_txq(edev, cos) 1714 qede_free_mem_txq(edev, &fp->txq[cos]); 1715 } 1716 } 1717 1718 /* This function allocates all memory needed for a single fp (i.e. an entity 1719 * which contains status block, one rx queue and/or multiple per-TC tx queues. 1720 */ 1721 static int qede_alloc_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp) 1722 { 1723 int rc = 0; 1724 1725 rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->id); 1726 if (rc) 1727 goto out; 1728 1729 if (fp->type & QEDE_FASTPATH_RX) { 1730 rc = qede_alloc_mem_rxq(edev, fp->rxq); 1731 if (rc) 1732 goto out; 1733 } 1734 1735 if (fp->type & QEDE_FASTPATH_XDP) { 1736 rc = qede_alloc_mem_txq(edev, fp->xdp_tx); 1737 if (rc) 1738 goto out; 1739 } 1740 1741 if (fp->type & QEDE_FASTPATH_TX) { 1742 int cos; 1743 1744 for_each_cos_in_txq(edev, cos) { 1745 rc = qede_alloc_mem_txq(edev, &fp->txq[cos]); 1746 if (rc) 1747 goto out; 1748 } 1749 } 1750 1751 out: 1752 return rc; 1753 } 1754 1755 static void qede_free_mem_load(struct qede_dev *edev) 1756 { 1757 int i; 1758 1759 for_each_queue(i) { 1760 struct qede_fastpath *fp = &edev->fp_array[i]; 1761 1762 qede_free_mem_fp(edev, fp); 1763 } 1764 } 1765 1766 /* This function allocates all qede memory at NIC load. */ 1767 static int qede_alloc_mem_load(struct qede_dev *edev) 1768 { 1769 int rc = 0, queue_id; 1770 1771 for (queue_id = 0; queue_id < QEDE_QUEUE_CNT(edev); queue_id++) { 1772 struct qede_fastpath *fp = &edev->fp_array[queue_id]; 1773 1774 rc = qede_alloc_mem_fp(edev, fp); 1775 if (rc) { 1776 DP_ERR(edev, 1777 "Failed to allocate memory for fastpath - rss id = %d\n", 1778 queue_id); 1779 qede_free_mem_load(edev); 1780 return rc; 1781 } 1782 } 1783 1784 return 0; 1785 } 1786 1787 static void qede_empty_tx_queue(struct qede_dev *edev, 1788 struct qede_tx_queue *txq) 1789 { 1790 unsigned int pkts_compl = 0, bytes_compl = 0; 1791 struct netdev_queue *netdev_txq; 1792 int rc, len = 0; 1793 1794 netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id); 1795 1796 while (qed_chain_get_cons_idx(&txq->tx_pbl) != 1797 qed_chain_get_prod_idx(&txq->tx_pbl)) { 1798 DP_VERBOSE(edev, NETIF_MSG_IFDOWN, 1799 "Freeing a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n", 1800 txq->index, qed_chain_get_cons_idx(&txq->tx_pbl), 1801 qed_chain_get_prod_idx(&txq->tx_pbl)); 1802 1803 rc = qede_free_tx_pkt(edev, txq, &len); 1804 if (rc) { 1805 DP_NOTICE(edev, 1806 "Failed to free a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n", 1807 txq->index, 1808 qed_chain_get_cons_idx(&txq->tx_pbl), 1809 qed_chain_get_prod_idx(&txq->tx_pbl)); 1810 break; 1811 } 1812 1813 bytes_compl += len; 1814 pkts_compl++; 1815 txq->sw_tx_cons++; 1816 } 1817 1818 netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl); 1819 } 1820 1821 static void qede_empty_tx_queues(struct qede_dev *edev) 1822 { 1823 int i; 1824 1825 for_each_queue(i) 1826 if (edev->fp_array[i].type & QEDE_FASTPATH_TX) { 1827 int cos; 1828 1829 for_each_cos_in_txq(edev, cos) { 1830 struct qede_fastpath *fp; 1831 1832 fp = &edev->fp_array[i]; 1833 qede_empty_tx_queue(edev, 1834 &fp->txq[cos]); 1835 } 1836 } 1837 } 1838 1839 /* This function inits fp content and resets the SB, RXQ and TXQ structures */ 1840 static void qede_init_fp(struct qede_dev *edev) 1841 { 1842 int queue_id, rxq_index = 0, txq_index = 0; 1843 struct qede_fastpath *fp; 1844 bool init_xdp = false; 1845 1846 for_each_queue(queue_id) { 1847 fp = &edev->fp_array[queue_id]; 1848 1849 fp->edev = edev; 1850 fp->id = queue_id; 1851 1852 if (fp->type & QEDE_FASTPATH_XDP) { 1853 fp->xdp_tx->index = QEDE_TXQ_IDX_TO_XDP(edev, 1854 rxq_index); 1855 fp->xdp_tx->is_xdp = 1; 1856 1857 spin_lock_init(&fp->xdp_tx->xdp_tx_lock); 1858 init_xdp = true; 1859 } 1860 1861 if (fp->type & QEDE_FASTPATH_RX) { 1862 fp->rxq->rxq_id = rxq_index++; 1863 1864 /* Determine how to map buffers for this queue */ 1865 if (fp->type & QEDE_FASTPATH_XDP) 1866 fp->rxq->data_direction = DMA_BIDIRECTIONAL; 1867 else 1868 fp->rxq->data_direction = DMA_FROM_DEVICE; 1869 fp->rxq->dev = &edev->pdev->dev; 1870 1871 /* Driver have no error path from here */ 1872 WARN_ON(xdp_rxq_info_reg(&fp->rxq->xdp_rxq, edev->ndev, 1873 fp->rxq->rxq_id, 0) < 0); 1874 1875 if (xdp_rxq_info_reg_mem_model(&fp->rxq->xdp_rxq, 1876 MEM_TYPE_PAGE_ORDER0, 1877 NULL)) { 1878 DP_NOTICE(edev, 1879 "Failed to register XDP memory model\n"); 1880 } 1881 } 1882 1883 if (fp->type & QEDE_FASTPATH_TX) { 1884 int cos; 1885 1886 for_each_cos_in_txq(edev, cos) { 1887 struct qede_tx_queue *txq = &fp->txq[cos]; 1888 u16 ndev_tx_id; 1889 1890 txq->cos = cos; 1891 txq->index = txq_index; 1892 ndev_tx_id = QEDE_TXQ_TO_NDEV_TXQ_ID(edev, txq); 1893 txq->ndev_txq_id = ndev_tx_id; 1894 1895 if (edev->dev_info.is_legacy) 1896 txq->is_legacy = true; 1897 txq->dev = &edev->pdev->dev; 1898 } 1899 1900 txq_index++; 1901 } 1902 1903 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d", 1904 edev->ndev->name, queue_id); 1905 } 1906 1907 if (init_xdp) { 1908 edev->total_xdp_queues = QEDE_RSS_COUNT(edev); 1909 DP_INFO(edev, "Total XDP queues: %u\n", edev->total_xdp_queues); 1910 } 1911 } 1912 1913 static int qede_set_real_num_queues(struct qede_dev *edev) 1914 { 1915 int rc = 0; 1916 1917 rc = netif_set_real_num_tx_queues(edev->ndev, 1918 QEDE_TSS_COUNT(edev) * 1919 edev->dev_info.num_tc); 1920 if (rc) { 1921 DP_NOTICE(edev, "Failed to set real number of Tx queues\n"); 1922 return rc; 1923 } 1924 1925 rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_COUNT(edev)); 1926 if (rc) { 1927 DP_NOTICE(edev, "Failed to set real number of Rx queues\n"); 1928 return rc; 1929 } 1930 1931 return 0; 1932 } 1933 1934 static void qede_napi_disable_remove(struct qede_dev *edev) 1935 { 1936 int i; 1937 1938 for_each_queue(i) { 1939 napi_disable(&edev->fp_array[i].napi); 1940 1941 netif_napi_del(&edev->fp_array[i].napi); 1942 } 1943 } 1944 1945 static void qede_napi_add_enable(struct qede_dev *edev) 1946 { 1947 int i; 1948 1949 /* Add NAPI objects */ 1950 for_each_queue(i) { 1951 netif_napi_add(edev->ndev, &edev->fp_array[i].napi, qede_poll); 1952 napi_enable(&edev->fp_array[i].napi); 1953 } 1954 } 1955 1956 static void qede_sync_free_irqs(struct qede_dev *edev) 1957 { 1958 int i; 1959 1960 for (i = 0; i < edev->int_info.used_cnt; i++) { 1961 if (edev->int_info.msix_cnt) { 1962 free_irq(edev->int_info.msix[i].vector, 1963 &edev->fp_array[i]); 1964 } else { 1965 edev->ops->common->simd_handler_clean(edev->cdev, i); 1966 } 1967 } 1968 1969 edev->int_info.used_cnt = 0; 1970 edev->int_info.msix_cnt = 0; 1971 } 1972 1973 static int qede_req_msix_irqs(struct qede_dev *edev) 1974 { 1975 int i, rc; 1976 1977 /* Sanitize number of interrupts == number of prepared RSS queues */ 1978 if (QEDE_QUEUE_CNT(edev) > edev->int_info.msix_cnt) { 1979 DP_ERR(edev, 1980 "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n", 1981 QEDE_QUEUE_CNT(edev), edev->int_info.msix_cnt); 1982 return -EINVAL; 1983 } 1984 1985 for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) { 1986 #ifdef CONFIG_RFS_ACCEL 1987 struct qede_fastpath *fp = &edev->fp_array[i]; 1988 1989 if (edev->ndev->rx_cpu_rmap && (fp->type & QEDE_FASTPATH_RX)) { 1990 rc = irq_cpu_rmap_add(edev->ndev->rx_cpu_rmap, 1991 edev->int_info.msix[i].vector); 1992 if (rc) { 1993 DP_ERR(edev, "Failed to add CPU rmap\n"); 1994 qede_free_arfs(edev); 1995 } 1996 } 1997 #endif 1998 rc = request_irq(edev->int_info.msix[i].vector, 1999 qede_msix_fp_int, 0, edev->fp_array[i].name, 2000 &edev->fp_array[i]); 2001 if (rc) { 2002 DP_ERR(edev, "Request fp %d irq failed\n", i); 2003 #ifdef CONFIG_RFS_ACCEL 2004 if (edev->ndev->rx_cpu_rmap) 2005 free_irq_cpu_rmap(edev->ndev->rx_cpu_rmap); 2006 2007 edev->ndev->rx_cpu_rmap = NULL; 2008 #endif 2009 qede_sync_free_irqs(edev); 2010 return rc; 2011 } 2012 DP_VERBOSE(edev, NETIF_MSG_INTR, 2013 "Requested fp irq for %s [entry %d]. Cookie is at %p\n", 2014 edev->fp_array[i].name, i, 2015 &edev->fp_array[i]); 2016 edev->int_info.used_cnt++; 2017 } 2018 2019 return 0; 2020 } 2021 2022 static void qede_simd_fp_handler(void *cookie) 2023 { 2024 struct qede_fastpath *fp = (struct qede_fastpath *)cookie; 2025 2026 napi_schedule_irqoff(&fp->napi); 2027 } 2028 2029 static int qede_setup_irqs(struct qede_dev *edev) 2030 { 2031 int i, rc = 0; 2032 2033 /* Learn Interrupt configuration */ 2034 rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info); 2035 if (rc) 2036 return rc; 2037 2038 if (edev->int_info.msix_cnt) { 2039 rc = qede_req_msix_irqs(edev); 2040 if (rc) 2041 return rc; 2042 edev->ndev->irq = edev->int_info.msix[0].vector; 2043 } else { 2044 const struct qed_common_ops *ops; 2045 2046 /* qed should learn receive the RSS ids and callbacks */ 2047 ops = edev->ops->common; 2048 for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) 2049 ops->simd_handler_config(edev->cdev, 2050 &edev->fp_array[i], i, 2051 qede_simd_fp_handler); 2052 edev->int_info.used_cnt = QEDE_QUEUE_CNT(edev); 2053 } 2054 return 0; 2055 } 2056 2057 static int qede_drain_txq(struct qede_dev *edev, 2058 struct qede_tx_queue *txq, bool allow_drain) 2059 { 2060 int rc, cnt = 1000; 2061 2062 while (txq->sw_tx_cons != txq->sw_tx_prod) { 2063 if (!cnt) { 2064 if (allow_drain) { 2065 DP_NOTICE(edev, 2066 "Tx queue[%d] is stuck, requesting MCP to drain\n", 2067 txq->index); 2068 rc = edev->ops->common->drain(edev->cdev); 2069 if (rc) 2070 return rc; 2071 return qede_drain_txq(edev, txq, false); 2072 } 2073 DP_NOTICE(edev, 2074 "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n", 2075 txq->index, txq->sw_tx_prod, 2076 txq->sw_tx_cons); 2077 return -ENODEV; 2078 } 2079 cnt--; 2080 usleep_range(1000, 2000); 2081 barrier(); 2082 } 2083 2084 /* FW finished processing, wait for HW to transmit all tx packets */ 2085 usleep_range(1000, 2000); 2086 2087 return 0; 2088 } 2089 2090 static int qede_stop_txq(struct qede_dev *edev, 2091 struct qede_tx_queue *txq, int rss_id) 2092 { 2093 /* delete doorbell from doorbell recovery mechanism */ 2094 edev->ops->common->db_recovery_del(edev->cdev, txq->doorbell_addr, 2095 &txq->tx_db); 2096 2097 return edev->ops->q_tx_stop(edev->cdev, rss_id, txq->handle); 2098 } 2099 2100 static int qede_stop_queues(struct qede_dev *edev) 2101 { 2102 struct qed_update_vport_params *vport_update_params; 2103 struct qed_dev *cdev = edev->cdev; 2104 struct qede_fastpath *fp; 2105 int rc, i; 2106 2107 /* Disable the vport */ 2108 vport_update_params = vzalloc(sizeof(*vport_update_params)); 2109 if (!vport_update_params) 2110 return -ENOMEM; 2111 2112 vport_update_params->vport_id = 0; 2113 vport_update_params->update_vport_active_flg = 1; 2114 vport_update_params->vport_active_flg = 0; 2115 vport_update_params->update_rss_flg = 0; 2116 2117 rc = edev->ops->vport_update(cdev, vport_update_params); 2118 vfree(vport_update_params); 2119 2120 if (rc) { 2121 DP_ERR(edev, "Failed to update vport\n"); 2122 return rc; 2123 } 2124 2125 /* Flush Tx queues. If needed, request drain from MCP */ 2126 for_each_queue(i) { 2127 fp = &edev->fp_array[i]; 2128 2129 if (fp->type & QEDE_FASTPATH_TX) { 2130 int cos; 2131 2132 for_each_cos_in_txq(edev, cos) { 2133 rc = qede_drain_txq(edev, &fp->txq[cos], true); 2134 if (rc) 2135 return rc; 2136 } 2137 } 2138 2139 if (fp->type & QEDE_FASTPATH_XDP) { 2140 rc = qede_drain_txq(edev, fp->xdp_tx, true); 2141 if (rc) 2142 return rc; 2143 } 2144 } 2145 2146 /* Stop all Queues in reverse order */ 2147 for (i = QEDE_QUEUE_CNT(edev) - 1; i >= 0; i--) { 2148 fp = &edev->fp_array[i]; 2149 2150 /* Stop the Tx Queue(s) */ 2151 if (fp->type & QEDE_FASTPATH_TX) { 2152 int cos; 2153 2154 for_each_cos_in_txq(edev, cos) { 2155 rc = qede_stop_txq(edev, &fp->txq[cos], i); 2156 if (rc) 2157 return rc; 2158 } 2159 } 2160 2161 /* Stop the Rx Queue */ 2162 if (fp->type & QEDE_FASTPATH_RX) { 2163 rc = edev->ops->q_rx_stop(cdev, i, fp->rxq->handle); 2164 if (rc) { 2165 DP_ERR(edev, "Failed to stop RXQ #%d\n", i); 2166 return rc; 2167 } 2168 } 2169 2170 /* Stop the XDP forwarding queue */ 2171 if (fp->type & QEDE_FASTPATH_XDP) { 2172 rc = qede_stop_txq(edev, fp->xdp_tx, i); 2173 if (rc) 2174 return rc; 2175 2176 bpf_prog_put(fp->rxq->xdp_prog); 2177 } 2178 } 2179 2180 /* Stop the vport */ 2181 rc = edev->ops->vport_stop(cdev, 0); 2182 if (rc) 2183 DP_ERR(edev, "Failed to stop VPORT\n"); 2184 2185 return rc; 2186 } 2187 2188 static int qede_start_txq(struct qede_dev *edev, 2189 struct qede_fastpath *fp, 2190 struct qede_tx_queue *txq, u8 rss_id, u16 sb_idx) 2191 { 2192 dma_addr_t phys_table = qed_chain_get_pbl_phys(&txq->tx_pbl); 2193 u32 page_cnt = qed_chain_get_page_cnt(&txq->tx_pbl); 2194 struct qed_queue_start_common_params params; 2195 struct qed_txq_start_ret_params ret_params; 2196 int rc; 2197 2198 memset(¶ms, 0, sizeof(params)); 2199 memset(&ret_params, 0, sizeof(ret_params)); 2200 2201 /* Let the XDP queue share the queue-zone with one of the regular txq. 2202 * We don't really care about its coalescing. 2203 */ 2204 if (txq->is_xdp) 2205 params.queue_id = QEDE_TXQ_XDP_TO_IDX(edev, txq); 2206 else 2207 params.queue_id = txq->index; 2208 2209 params.p_sb = fp->sb_info; 2210 params.sb_idx = sb_idx; 2211 params.tc = txq->cos; 2212 2213 rc = edev->ops->q_tx_start(edev->cdev, rss_id, ¶ms, phys_table, 2214 page_cnt, &ret_params); 2215 if (rc) { 2216 DP_ERR(edev, "Start TXQ #%d failed %d\n", txq->index, rc); 2217 return rc; 2218 } 2219 2220 txq->doorbell_addr = ret_params.p_doorbell; 2221 txq->handle = ret_params.p_handle; 2222 2223 /* Determine the FW consumer address associated */ 2224 txq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[sb_idx]; 2225 2226 /* Prepare the doorbell parameters */ 2227 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST, DB_DEST_XCM); 2228 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD, DB_AGG_CMD_SET); 2229 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_VAL_SEL, 2230 DQ_XCM_ETH_TX_BD_PROD_CMD); 2231 txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD; 2232 2233 /* register doorbell with doorbell recovery mechanism */ 2234 rc = edev->ops->common->db_recovery_add(edev->cdev, txq->doorbell_addr, 2235 &txq->tx_db, DB_REC_WIDTH_32B, 2236 DB_REC_KERNEL); 2237 2238 return rc; 2239 } 2240 2241 static int qede_start_queues(struct qede_dev *edev, bool clear_stats) 2242 { 2243 int vlan_removal_en = 1; 2244 struct qed_dev *cdev = edev->cdev; 2245 struct qed_dev_info *qed_info = &edev->dev_info.common; 2246 struct qed_update_vport_params *vport_update_params; 2247 struct qed_queue_start_common_params q_params; 2248 struct qed_start_vport_params start = {0}; 2249 int rc, i; 2250 2251 if (!edev->num_queues) { 2252 DP_ERR(edev, 2253 "Cannot update V-VPORT as active as there are no Rx queues\n"); 2254 return -EINVAL; 2255 } 2256 2257 vport_update_params = vzalloc(sizeof(*vport_update_params)); 2258 if (!vport_update_params) 2259 return -ENOMEM; 2260 2261 start.handle_ptp_pkts = !!(edev->ptp); 2262 start.gro_enable = !edev->gro_disable; 2263 start.mtu = edev->ndev->mtu; 2264 start.vport_id = 0; 2265 start.drop_ttl0 = true; 2266 start.remove_inner_vlan = vlan_removal_en; 2267 start.clear_stats = clear_stats; 2268 2269 rc = edev->ops->vport_start(cdev, &start); 2270 2271 if (rc) { 2272 DP_ERR(edev, "Start V-PORT failed %d\n", rc); 2273 goto out; 2274 } 2275 2276 DP_VERBOSE(edev, NETIF_MSG_IFUP, 2277 "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n", 2278 start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en); 2279 2280 for_each_queue(i) { 2281 struct qede_fastpath *fp = &edev->fp_array[i]; 2282 dma_addr_t p_phys_table; 2283 u32 page_cnt; 2284 2285 if (fp->type & QEDE_FASTPATH_RX) { 2286 struct qed_rxq_start_ret_params ret_params; 2287 struct qede_rx_queue *rxq = fp->rxq; 2288 __le16 *val; 2289 2290 memset(&ret_params, 0, sizeof(ret_params)); 2291 memset(&q_params, 0, sizeof(q_params)); 2292 q_params.queue_id = rxq->rxq_id; 2293 q_params.vport_id = 0; 2294 q_params.p_sb = fp->sb_info; 2295 q_params.sb_idx = RX_PI; 2296 2297 p_phys_table = 2298 qed_chain_get_pbl_phys(&rxq->rx_comp_ring); 2299 page_cnt = qed_chain_get_page_cnt(&rxq->rx_comp_ring); 2300 2301 rc = edev->ops->q_rx_start(cdev, i, &q_params, 2302 rxq->rx_buf_size, 2303 rxq->rx_bd_ring.p_phys_addr, 2304 p_phys_table, 2305 page_cnt, &ret_params); 2306 if (rc) { 2307 DP_ERR(edev, "Start RXQ #%d failed %d\n", i, 2308 rc); 2309 goto out; 2310 } 2311 2312 /* Use the return parameters */ 2313 rxq->hw_rxq_prod_addr = ret_params.p_prod; 2314 rxq->handle = ret_params.p_handle; 2315 2316 val = &fp->sb_info->sb_virt->pi_array[RX_PI]; 2317 rxq->hw_cons_ptr = val; 2318 2319 qede_update_rx_prod(edev, rxq); 2320 } 2321 2322 if (fp->type & QEDE_FASTPATH_XDP) { 2323 rc = qede_start_txq(edev, fp, fp->xdp_tx, i, XDP_PI); 2324 if (rc) 2325 goto out; 2326 2327 bpf_prog_add(edev->xdp_prog, 1); 2328 fp->rxq->xdp_prog = edev->xdp_prog; 2329 } 2330 2331 if (fp->type & QEDE_FASTPATH_TX) { 2332 int cos; 2333 2334 for_each_cos_in_txq(edev, cos) { 2335 rc = qede_start_txq(edev, fp, &fp->txq[cos], i, 2336 TX_PI(cos)); 2337 if (rc) 2338 goto out; 2339 } 2340 } 2341 } 2342 2343 /* Prepare and send the vport enable */ 2344 vport_update_params->vport_id = start.vport_id; 2345 vport_update_params->update_vport_active_flg = 1; 2346 vport_update_params->vport_active_flg = 1; 2347 2348 if ((qed_info->b_inter_pf_switch || pci_num_vf(edev->pdev)) && 2349 qed_info->tx_switching) { 2350 vport_update_params->update_tx_switching_flg = 1; 2351 vport_update_params->tx_switching_flg = 1; 2352 } 2353 2354 qede_fill_rss_params(edev, &vport_update_params->rss_params, 2355 &vport_update_params->update_rss_flg); 2356 2357 rc = edev->ops->vport_update(cdev, vport_update_params); 2358 if (rc) 2359 DP_ERR(edev, "Update V-PORT failed %d\n", rc); 2360 2361 out: 2362 vfree(vport_update_params); 2363 return rc; 2364 } 2365 2366 enum qede_unload_mode { 2367 QEDE_UNLOAD_NORMAL, 2368 QEDE_UNLOAD_RECOVERY, 2369 }; 2370 2371 static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode, 2372 bool is_locked) 2373 { 2374 struct qed_link_params link_params; 2375 int rc; 2376 2377 DP_INFO(edev, "Starting qede unload\n"); 2378 2379 if (!is_locked) 2380 __qede_lock(edev); 2381 2382 clear_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags); 2383 2384 if (mode != QEDE_UNLOAD_RECOVERY) 2385 edev->state = QEDE_STATE_CLOSED; 2386 2387 qede_rdma_dev_event_close(edev); 2388 2389 /* Close OS Tx */ 2390 netif_tx_disable(edev->ndev); 2391 netif_carrier_off(edev->ndev); 2392 2393 if (mode != QEDE_UNLOAD_RECOVERY) { 2394 /* Reset the link */ 2395 memset(&link_params, 0, sizeof(link_params)); 2396 link_params.link_up = false; 2397 edev->ops->common->set_link(edev->cdev, &link_params); 2398 2399 rc = qede_stop_queues(edev); 2400 if (rc) { 2401 #ifdef CONFIG_RFS_ACCEL 2402 if (edev->dev_info.common.b_arfs_capable) { 2403 qede_poll_for_freeing_arfs_filters(edev); 2404 if (edev->ndev->rx_cpu_rmap) 2405 free_irq_cpu_rmap(edev->ndev->rx_cpu_rmap); 2406 2407 edev->ndev->rx_cpu_rmap = NULL; 2408 } 2409 #endif 2410 qede_sync_free_irqs(edev); 2411 goto out; 2412 } 2413 2414 DP_INFO(edev, "Stopped Queues\n"); 2415 } 2416 2417 qede_vlan_mark_nonconfigured(edev); 2418 edev->ops->fastpath_stop(edev->cdev); 2419 2420 if (edev->dev_info.common.b_arfs_capable) { 2421 qede_poll_for_freeing_arfs_filters(edev); 2422 qede_free_arfs(edev); 2423 } 2424 2425 /* Release the interrupts */ 2426 qede_sync_free_irqs(edev); 2427 edev->ops->common->set_fp_int(edev->cdev, 0); 2428 2429 qede_napi_disable_remove(edev); 2430 2431 if (mode == QEDE_UNLOAD_RECOVERY) 2432 qede_empty_tx_queues(edev); 2433 2434 qede_free_mem_load(edev); 2435 qede_free_fp_array(edev); 2436 2437 out: 2438 if (!is_locked) 2439 __qede_unlock(edev); 2440 2441 if (mode != QEDE_UNLOAD_RECOVERY) 2442 DP_NOTICE(edev, "Link is down\n"); 2443 2444 edev->ptp_skip_txts = 0; 2445 2446 DP_INFO(edev, "Ending qede unload\n"); 2447 } 2448 2449 enum qede_load_mode { 2450 QEDE_LOAD_NORMAL, 2451 QEDE_LOAD_RELOAD, 2452 QEDE_LOAD_RECOVERY, 2453 }; 2454 2455 static int qede_load(struct qede_dev *edev, enum qede_load_mode mode, 2456 bool is_locked) 2457 { 2458 struct qed_link_params link_params; 2459 struct ethtool_coalesce coal = {}; 2460 u8 num_tc; 2461 int rc, i; 2462 2463 DP_INFO(edev, "Starting qede load\n"); 2464 2465 if (!is_locked) 2466 __qede_lock(edev); 2467 2468 rc = qede_set_num_queues(edev); 2469 if (rc) 2470 goto out; 2471 2472 rc = qede_alloc_fp_array(edev); 2473 if (rc) 2474 goto out; 2475 2476 qede_init_fp(edev); 2477 2478 rc = qede_alloc_mem_load(edev); 2479 if (rc) 2480 goto err1; 2481 DP_INFO(edev, "Allocated %d Rx, %d Tx queues\n", 2482 QEDE_RSS_COUNT(edev), QEDE_TSS_COUNT(edev)); 2483 2484 rc = qede_set_real_num_queues(edev); 2485 if (rc) 2486 goto err2; 2487 2488 if (qede_alloc_arfs(edev)) { 2489 edev->ndev->features &= ~NETIF_F_NTUPLE; 2490 edev->dev_info.common.b_arfs_capable = false; 2491 } 2492 2493 qede_napi_add_enable(edev); 2494 DP_INFO(edev, "Napi added and enabled\n"); 2495 2496 rc = qede_setup_irqs(edev); 2497 if (rc) 2498 goto err3; 2499 DP_INFO(edev, "Setup IRQs succeeded\n"); 2500 2501 rc = qede_start_queues(edev, mode != QEDE_LOAD_RELOAD); 2502 if (rc) 2503 goto err4; 2504 DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n"); 2505 2506 num_tc = netdev_get_num_tc(edev->ndev); 2507 num_tc = num_tc ? num_tc : edev->dev_info.num_tc; 2508 qede_setup_tc(edev->ndev, num_tc); 2509 2510 /* Program un-configured VLANs */ 2511 qede_configure_vlan_filters(edev); 2512 2513 set_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags); 2514 2515 /* Ask for link-up using current configuration */ 2516 memset(&link_params, 0, sizeof(link_params)); 2517 link_params.link_up = true; 2518 edev->ops->common->set_link(edev->cdev, &link_params); 2519 2520 edev->state = QEDE_STATE_OPEN; 2521 2522 coal.rx_coalesce_usecs = QED_DEFAULT_RX_USECS; 2523 coal.tx_coalesce_usecs = QED_DEFAULT_TX_USECS; 2524 2525 for_each_queue(i) { 2526 if (edev->coal_entry[i].isvalid) { 2527 coal.rx_coalesce_usecs = edev->coal_entry[i].rxc; 2528 coal.tx_coalesce_usecs = edev->coal_entry[i].txc; 2529 } 2530 __qede_unlock(edev); 2531 qede_set_per_coalesce(edev->ndev, i, &coal); 2532 __qede_lock(edev); 2533 } 2534 DP_INFO(edev, "Ending successfully qede load\n"); 2535 2536 goto out; 2537 err4: 2538 qede_sync_free_irqs(edev); 2539 err3: 2540 qede_napi_disable_remove(edev); 2541 err2: 2542 qede_free_mem_load(edev); 2543 err1: 2544 edev->ops->common->set_fp_int(edev->cdev, 0); 2545 qede_free_fp_array(edev); 2546 edev->num_queues = 0; 2547 edev->fp_num_tx = 0; 2548 edev->fp_num_rx = 0; 2549 out: 2550 if (!is_locked) 2551 __qede_unlock(edev); 2552 2553 return rc; 2554 } 2555 2556 /* 'func' should be able to run between unload and reload assuming interface 2557 * is actually running, or afterwards in case it's currently DOWN. 2558 */ 2559 void qede_reload(struct qede_dev *edev, 2560 struct qede_reload_args *args, bool is_locked) 2561 { 2562 if (!is_locked) 2563 __qede_lock(edev); 2564 2565 /* Since qede_lock is held, internal state wouldn't change even 2566 * if netdev state would start transitioning. Check whether current 2567 * internal configuration indicates device is up, then reload. 2568 */ 2569 if (edev->state == QEDE_STATE_OPEN) { 2570 qede_unload(edev, QEDE_UNLOAD_NORMAL, true); 2571 if (args) 2572 args->func(edev, args); 2573 qede_load(edev, QEDE_LOAD_RELOAD, true); 2574 2575 /* Since no one is going to do it for us, re-configure */ 2576 qede_config_rx_mode(edev->ndev); 2577 } else if (args) { 2578 args->func(edev, args); 2579 } 2580 2581 if (!is_locked) 2582 __qede_unlock(edev); 2583 } 2584 2585 /* called with rtnl_lock */ 2586 static int qede_open(struct net_device *ndev) 2587 { 2588 struct qede_dev *edev = netdev_priv(ndev); 2589 int rc; 2590 2591 netif_carrier_off(ndev); 2592 2593 edev->ops->common->set_power_state(edev->cdev, PCI_D0); 2594 2595 rc = qede_load(edev, QEDE_LOAD_NORMAL, false); 2596 if (rc) 2597 return rc; 2598 2599 udp_tunnel_nic_reset_ntf(ndev); 2600 2601 edev->ops->common->update_drv_state(edev->cdev, true); 2602 2603 return 0; 2604 } 2605 2606 static int qede_close(struct net_device *ndev) 2607 { 2608 struct qede_dev *edev = netdev_priv(ndev); 2609 2610 qede_unload(edev, QEDE_UNLOAD_NORMAL, false); 2611 2612 if (edev->cdev) 2613 edev->ops->common->update_drv_state(edev->cdev, false); 2614 2615 return 0; 2616 } 2617 2618 static void qede_link_update(void *dev, struct qed_link_output *link) 2619 { 2620 struct qede_dev *edev = dev; 2621 2622 if (!test_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags)) { 2623 DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not ready\n"); 2624 return; 2625 } 2626 2627 if (link->link_up) { 2628 if (!netif_carrier_ok(edev->ndev)) { 2629 DP_NOTICE(edev, "Link is up\n"); 2630 netif_tx_start_all_queues(edev->ndev); 2631 netif_carrier_on(edev->ndev); 2632 qede_rdma_dev_event_open(edev); 2633 } 2634 } else { 2635 if (netif_carrier_ok(edev->ndev)) { 2636 DP_NOTICE(edev, "Link is down\n"); 2637 netif_tx_disable(edev->ndev); 2638 netif_carrier_off(edev->ndev); 2639 qede_rdma_dev_event_close(edev); 2640 } 2641 } 2642 } 2643 2644 static void qede_schedule_recovery_handler(void *dev) 2645 { 2646 struct qede_dev *edev = dev; 2647 2648 if (edev->state == QEDE_STATE_RECOVERY) { 2649 DP_NOTICE(edev, 2650 "Avoid scheduling a recovery handling since already in recovery state\n"); 2651 return; 2652 } 2653 2654 set_bit(QEDE_SP_RECOVERY, &edev->sp_flags); 2655 schedule_delayed_work(&edev->sp_task, 0); 2656 2657 DP_INFO(edev, "Scheduled a recovery handler\n"); 2658 } 2659 2660 static void qede_recovery_failed(struct qede_dev *edev) 2661 { 2662 netdev_err(edev->ndev, "Recovery handling has failed. Power cycle is needed.\n"); 2663 2664 netif_device_detach(edev->ndev); 2665 2666 if (edev->cdev) 2667 edev->ops->common->set_power_state(edev->cdev, PCI_D3hot); 2668 } 2669 2670 static void qede_recovery_handler(struct qede_dev *edev) 2671 { 2672 u32 curr_state = edev->state; 2673 int rc; 2674 2675 DP_NOTICE(edev, "Starting a recovery process\n"); 2676 2677 /* No need to acquire first the qede_lock since is done by qede_sp_task 2678 * before calling this function. 2679 */ 2680 edev->state = QEDE_STATE_RECOVERY; 2681 2682 edev->ops->common->recovery_prolog(edev->cdev); 2683 2684 if (curr_state == QEDE_STATE_OPEN) 2685 qede_unload(edev, QEDE_UNLOAD_RECOVERY, true); 2686 2687 __qede_remove(edev->pdev, QEDE_REMOVE_RECOVERY); 2688 2689 rc = __qede_probe(edev->pdev, edev->dp_module, edev->dp_level, 2690 IS_VF(edev), QEDE_PROBE_RECOVERY); 2691 if (rc) { 2692 edev->cdev = NULL; 2693 goto err; 2694 } 2695 2696 if (curr_state == QEDE_STATE_OPEN) { 2697 rc = qede_load(edev, QEDE_LOAD_RECOVERY, true); 2698 if (rc) 2699 goto err; 2700 2701 qede_config_rx_mode(edev->ndev); 2702 udp_tunnel_nic_reset_ntf(edev->ndev); 2703 } 2704 2705 edev->state = curr_state; 2706 2707 DP_NOTICE(edev, "Recovery handling is done\n"); 2708 2709 return; 2710 2711 err: 2712 qede_recovery_failed(edev); 2713 } 2714 2715 static void qede_atomic_hw_err_handler(struct qede_dev *edev) 2716 { 2717 struct qed_dev *cdev = edev->cdev; 2718 2719 DP_NOTICE(edev, 2720 "Generic non-sleepable HW error handling started - err_flags 0x%lx\n", 2721 edev->err_flags); 2722 2723 /* Get a call trace of the flow that led to the error */ 2724 WARN_ON(test_bit(QEDE_ERR_WARN, &edev->err_flags)); 2725 2726 /* Prevent HW attentions from being reasserted */ 2727 if (test_bit(QEDE_ERR_ATTN_CLR_EN, &edev->err_flags)) 2728 edev->ops->common->attn_clr_enable(cdev, true); 2729 2730 DP_NOTICE(edev, "Generic non-sleepable HW error handling is done\n"); 2731 } 2732 2733 static void qede_generic_hw_err_handler(struct qede_dev *edev) 2734 { 2735 DP_NOTICE(edev, 2736 "Generic sleepable HW error handling started - err_flags 0x%lx\n", 2737 edev->err_flags); 2738 2739 if (edev->devlink) { 2740 DP_NOTICE(edev, "Reporting fatal error to devlink\n"); 2741 edev->ops->common->report_fatal_error(edev->devlink, edev->last_err_type); 2742 } 2743 2744 clear_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags); 2745 2746 DP_NOTICE(edev, "Generic sleepable HW error handling is done\n"); 2747 } 2748 2749 static void qede_set_hw_err_flags(struct qede_dev *edev, 2750 enum qed_hw_err_type err_type) 2751 { 2752 unsigned long err_flags = 0; 2753 2754 switch (err_type) { 2755 case QED_HW_ERR_DMAE_FAIL: 2756 set_bit(QEDE_ERR_WARN, &err_flags); 2757 fallthrough; 2758 case QED_HW_ERR_MFW_RESP_FAIL: 2759 case QED_HW_ERR_HW_ATTN: 2760 case QED_HW_ERR_RAMROD_FAIL: 2761 case QED_HW_ERR_FW_ASSERT: 2762 set_bit(QEDE_ERR_ATTN_CLR_EN, &err_flags); 2763 set_bit(QEDE_ERR_GET_DBG_INFO, &err_flags); 2764 /* make this error as recoverable and start recovery*/ 2765 set_bit(QEDE_ERR_IS_RECOVERABLE, &err_flags); 2766 break; 2767 2768 default: 2769 DP_NOTICE(edev, "Unexpected HW error [%d]\n", err_type); 2770 break; 2771 } 2772 2773 edev->err_flags |= err_flags; 2774 } 2775 2776 static void qede_schedule_hw_err_handler(void *dev, 2777 enum qed_hw_err_type err_type) 2778 { 2779 struct qede_dev *edev = dev; 2780 2781 /* Fan failure cannot be masked by handling of another HW error or by a 2782 * concurrent recovery process. 2783 */ 2784 if ((test_and_set_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags) || 2785 edev->state == QEDE_STATE_RECOVERY) && 2786 err_type != QED_HW_ERR_FAN_FAIL) { 2787 DP_INFO(edev, 2788 "Avoid scheduling an error handling while another HW error is being handled\n"); 2789 return; 2790 } 2791 2792 if (err_type >= QED_HW_ERR_LAST) { 2793 DP_NOTICE(edev, "Unknown HW error [%d]\n", err_type); 2794 clear_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags); 2795 return; 2796 } 2797 2798 edev->last_err_type = err_type; 2799 qede_set_hw_err_flags(edev, err_type); 2800 qede_atomic_hw_err_handler(edev); 2801 set_bit(QEDE_SP_HW_ERR, &edev->sp_flags); 2802 schedule_delayed_work(&edev->sp_task, 0); 2803 2804 DP_INFO(edev, "Scheduled a error handler [err_type %d]\n", err_type); 2805 } 2806 2807 static bool qede_is_txq_full(struct qede_dev *edev, struct qede_tx_queue *txq) 2808 { 2809 struct netdev_queue *netdev_txq; 2810 2811 netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id); 2812 if (netif_xmit_stopped(netdev_txq)) 2813 return true; 2814 2815 return false; 2816 } 2817 2818 static void qede_get_generic_tlv_data(void *dev, struct qed_generic_tlvs *data) 2819 { 2820 struct qede_dev *edev = dev; 2821 struct netdev_hw_addr *ha; 2822 int i; 2823 2824 if (edev->ndev->features & NETIF_F_IP_CSUM) 2825 data->feat_flags |= QED_TLV_IP_CSUM; 2826 if (edev->ndev->features & NETIF_F_TSO) 2827 data->feat_flags |= QED_TLV_LSO; 2828 2829 ether_addr_copy(data->mac[0], edev->ndev->dev_addr); 2830 eth_zero_addr(data->mac[1]); 2831 eth_zero_addr(data->mac[2]); 2832 /* Copy the first two UC macs */ 2833 netif_addr_lock_bh(edev->ndev); 2834 i = 1; 2835 netdev_for_each_uc_addr(ha, edev->ndev) { 2836 ether_addr_copy(data->mac[i++], ha->addr); 2837 if (i == QED_TLV_MAC_COUNT) 2838 break; 2839 } 2840 2841 netif_addr_unlock_bh(edev->ndev); 2842 } 2843 2844 static void qede_get_eth_tlv_data(void *dev, void *data) 2845 { 2846 struct qed_mfw_tlv_eth *etlv = data; 2847 struct qede_dev *edev = dev; 2848 struct qede_fastpath *fp; 2849 int i; 2850 2851 etlv->lso_maxoff_size = 0XFFFF; 2852 etlv->lso_maxoff_size_set = true; 2853 etlv->lso_minseg_size = (u16)ETH_TX_LSO_WINDOW_MIN_LEN; 2854 etlv->lso_minseg_size_set = true; 2855 etlv->prom_mode = !!(edev->ndev->flags & IFF_PROMISC); 2856 etlv->prom_mode_set = true; 2857 etlv->tx_descr_size = QEDE_TSS_COUNT(edev); 2858 etlv->tx_descr_size_set = true; 2859 etlv->rx_descr_size = QEDE_RSS_COUNT(edev); 2860 etlv->rx_descr_size_set = true; 2861 etlv->iov_offload = QED_MFW_TLV_IOV_OFFLOAD_VEB; 2862 etlv->iov_offload_set = true; 2863 2864 /* Fill information regarding queues; Should be done under the qede 2865 * lock to guarantee those don't change beneath our feet. 2866 */ 2867 etlv->txqs_empty = true; 2868 etlv->rxqs_empty = true; 2869 etlv->num_txqs_full = 0; 2870 etlv->num_rxqs_full = 0; 2871 2872 __qede_lock(edev); 2873 for_each_queue(i) { 2874 fp = &edev->fp_array[i]; 2875 if (fp->type & QEDE_FASTPATH_TX) { 2876 struct qede_tx_queue *txq = QEDE_FP_TC0_TXQ(fp); 2877 2878 if (txq->sw_tx_cons != txq->sw_tx_prod) 2879 etlv->txqs_empty = false; 2880 if (qede_is_txq_full(edev, txq)) 2881 etlv->num_txqs_full++; 2882 } 2883 if (fp->type & QEDE_FASTPATH_RX) { 2884 if (qede_has_rx_work(fp->rxq)) 2885 etlv->rxqs_empty = false; 2886 2887 /* This one is a bit tricky; Firmware might stop 2888 * placing packets if ring is not yet full. 2889 * Give an approximation. 2890 */ 2891 if (le16_to_cpu(*fp->rxq->hw_cons_ptr) - 2892 qed_chain_get_cons_idx(&fp->rxq->rx_comp_ring) > 2893 RX_RING_SIZE - 100) 2894 etlv->num_rxqs_full++; 2895 } 2896 } 2897 __qede_unlock(edev); 2898 2899 etlv->txqs_empty_set = true; 2900 etlv->rxqs_empty_set = true; 2901 etlv->num_txqs_full_set = true; 2902 etlv->num_rxqs_full_set = true; 2903 } 2904 2905 /** 2906 * qede_io_error_detected(): Called when PCI error is detected 2907 * 2908 * @pdev: Pointer to PCI device 2909 * @state: The current pci connection state 2910 * 2911 *Return: pci_ers_result_t. 2912 * 2913 * This function is called after a PCI bus error affecting 2914 * this device has been detected. 2915 */ 2916 static pci_ers_result_t 2917 qede_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state) 2918 { 2919 struct net_device *dev = pci_get_drvdata(pdev); 2920 struct qede_dev *edev = netdev_priv(dev); 2921 2922 if (!edev) 2923 return PCI_ERS_RESULT_NONE; 2924 2925 DP_NOTICE(edev, "IO error detected [%d]\n", state); 2926 2927 __qede_lock(edev); 2928 if (edev->state == QEDE_STATE_RECOVERY) { 2929 DP_NOTICE(edev, "Device already in the recovery state\n"); 2930 __qede_unlock(edev); 2931 return PCI_ERS_RESULT_NONE; 2932 } 2933 2934 /* PF handles the recovery of its VFs */ 2935 if (IS_VF(edev)) { 2936 DP_VERBOSE(edev, QED_MSG_IOV, 2937 "VF recovery is handled by its PF\n"); 2938 __qede_unlock(edev); 2939 return PCI_ERS_RESULT_RECOVERED; 2940 } 2941 2942 /* Close OS Tx */ 2943 netif_tx_disable(edev->ndev); 2944 netif_carrier_off(edev->ndev); 2945 2946 set_bit(QEDE_SP_AER, &edev->sp_flags); 2947 schedule_delayed_work(&edev->sp_task, 0); 2948 2949 __qede_unlock(edev); 2950 2951 return PCI_ERS_RESULT_CAN_RECOVER; 2952 } 2953