1 /* QLogic qede NIC Driver 2 * Copyright (c) 2015-2017 QLogic Corporation 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and /or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 */ 32 #include <linux/module.h> 33 #include <linux/pci.h> 34 #include <linux/version.h> 35 #include <linux/device.h> 36 #include <linux/netdevice.h> 37 #include <linux/etherdevice.h> 38 #include <linux/skbuff.h> 39 #include <linux/errno.h> 40 #include <linux/list.h> 41 #include <linux/string.h> 42 #include <linux/dma-mapping.h> 43 #include <linux/interrupt.h> 44 #include <asm/byteorder.h> 45 #include <asm/param.h> 46 #include <linux/io.h> 47 #include <linux/netdev_features.h> 48 #include <linux/udp.h> 49 #include <linux/tcp.h> 50 #include <net/udp_tunnel.h> 51 #include <linux/ip.h> 52 #include <net/ipv6.h> 53 #include <net/tcp.h> 54 #include <linux/if_ether.h> 55 #include <linux/if_vlan.h> 56 #include <linux/pkt_sched.h> 57 #include <linux/ethtool.h> 58 #include <linux/in.h> 59 #include <linux/random.h> 60 #include <net/ip6_checksum.h> 61 #include <linux/bitops.h> 62 #include <linux/vmalloc.h> 63 #include "qede.h" 64 #include "qede_ptp.h" 65 66 static char version[] = 67 "QLogic FastLinQ 4xxxx Ethernet Driver qede " DRV_MODULE_VERSION "\n"; 68 69 MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver"); 70 MODULE_LICENSE("GPL"); 71 MODULE_VERSION(DRV_MODULE_VERSION); 72 73 static uint debug; 74 module_param(debug, uint, 0); 75 MODULE_PARM_DESC(debug, " Default debug msglevel"); 76 77 static const struct qed_eth_ops *qed_ops; 78 79 #define CHIP_NUM_57980S_40 0x1634 80 #define CHIP_NUM_57980S_10 0x1666 81 #define CHIP_NUM_57980S_MF 0x1636 82 #define CHIP_NUM_57980S_100 0x1644 83 #define CHIP_NUM_57980S_50 0x1654 84 #define CHIP_NUM_57980S_25 0x1656 85 #define CHIP_NUM_57980S_IOV 0x1664 86 #define CHIP_NUM_AH 0x8070 87 #define CHIP_NUM_AH_IOV 0x8090 88 89 #ifndef PCI_DEVICE_ID_NX2_57980E 90 #define PCI_DEVICE_ID_57980S_40 CHIP_NUM_57980S_40 91 #define PCI_DEVICE_ID_57980S_10 CHIP_NUM_57980S_10 92 #define PCI_DEVICE_ID_57980S_MF CHIP_NUM_57980S_MF 93 #define PCI_DEVICE_ID_57980S_100 CHIP_NUM_57980S_100 94 #define PCI_DEVICE_ID_57980S_50 CHIP_NUM_57980S_50 95 #define PCI_DEVICE_ID_57980S_25 CHIP_NUM_57980S_25 96 #define PCI_DEVICE_ID_57980S_IOV CHIP_NUM_57980S_IOV 97 #define PCI_DEVICE_ID_AH CHIP_NUM_AH 98 #define PCI_DEVICE_ID_AH_IOV CHIP_NUM_AH_IOV 99 100 #endif 101 102 enum qede_pci_private { 103 QEDE_PRIVATE_PF, 104 QEDE_PRIVATE_VF 105 }; 106 107 static const struct pci_device_id qede_pci_tbl[] = { 108 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF}, 109 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF}, 110 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF}, 111 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF}, 112 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF}, 113 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF}, 114 #ifdef CONFIG_QED_SRIOV 115 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF}, 116 #endif 117 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH), QEDE_PRIVATE_PF}, 118 #ifdef CONFIG_QED_SRIOV 119 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH_IOV), QEDE_PRIVATE_VF}, 120 #endif 121 { 0 } 122 }; 123 124 MODULE_DEVICE_TABLE(pci, qede_pci_tbl); 125 126 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id); 127 128 #define TX_TIMEOUT (5 * HZ) 129 130 /* Utilize last protocol index for XDP */ 131 #define XDP_PI 11 132 133 static void qede_remove(struct pci_dev *pdev); 134 static void qede_shutdown(struct pci_dev *pdev); 135 static void qede_link_update(void *dev, struct qed_link_output *link); 136 static void qede_get_eth_tlv_data(void *edev, void *data); 137 static void qede_get_generic_tlv_data(void *edev, 138 struct qed_generic_tlvs *data); 139 140 /* The qede lock is used to protect driver state change and driver flows that 141 * are not reentrant. 142 */ 143 void __qede_lock(struct qede_dev *edev) 144 { 145 mutex_lock(&edev->qede_lock); 146 } 147 148 void __qede_unlock(struct qede_dev *edev) 149 { 150 mutex_unlock(&edev->qede_lock); 151 } 152 153 #ifdef CONFIG_QED_SRIOV 154 static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos, 155 __be16 vlan_proto) 156 { 157 struct qede_dev *edev = netdev_priv(ndev); 158 159 if (vlan > 4095) { 160 DP_NOTICE(edev, "Illegal vlan value %d\n", vlan); 161 return -EINVAL; 162 } 163 164 if (vlan_proto != htons(ETH_P_8021Q)) 165 return -EPROTONOSUPPORT; 166 167 DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n", 168 vlan, vf); 169 170 return edev->ops->iov->set_vlan(edev->cdev, vlan, vf); 171 } 172 173 static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac) 174 { 175 struct qede_dev *edev = netdev_priv(ndev); 176 177 DP_VERBOSE(edev, QED_MSG_IOV, 178 "Setting MAC %02x:%02x:%02x:%02x:%02x:%02x to VF [%d]\n", 179 mac[0], mac[1], mac[2], mac[3], mac[4], mac[5], vfidx); 180 181 if (!is_valid_ether_addr(mac)) { 182 DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n"); 183 return -EINVAL; 184 } 185 186 return edev->ops->iov->set_mac(edev->cdev, mac, vfidx); 187 } 188 189 static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param) 190 { 191 struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev)); 192 struct qed_dev_info *qed_info = &edev->dev_info.common; 193 struct qed_update_vport_params *vport_params; 194 int rc; 195 196 vport_params = vzalloc(sizeof(*vport_params)); 197 if (!vport_params) 198 return -ENOMEM; 199 DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param); 200 201 rc = edev->ops->iov->configure(edev->cdev, num_vfs_param); 202 203 /* Enable/Disable Tx switching for PF */ 204 if ((rc == num_vfs_param) && netif_running(edev->ndev) && 205 !qed_info->b_inter_pf_switch && qed_info->tx_switching) { 206 vport_params->vport_id = 0; 207 vport_params->update_tx_switching_flg = 1; 208 vport_params->tx_switching_flg = num_vfs_param ? 1 : 0; 209 edev->ops->vport_update(edev->cdev, vport_params); 210 } 211 212 vfree(vport_params); 213 return rc; 214 } 215 #endif 216 217 static struct pci_driver qede_pci_driver = { 218 .name = "qede", 219 .id_table = qede_pci_tbl, 220 .probe = qede_probe, 221 .remove = qede_remove, 222 .shutdown = qede_shutdown, 223 #ifdef CONFIG_QED_SRIOV 224 .sriov_configure = qede_sriov_configure, 225 #endif 226 }; 227 228 static struct qed_eth_cb_ops qede_ll_ops = { 229 { 230 #ifdef CONFIG_RFS_ACCEL 231 .arfs_filter_op = qede_arfs_filter_op, 232 #endif 233 .link_update = qede_link_update, 234 .get_generic_tlv_data = qede_get_generic_tlv_data, 235 .get_protocol_tlv_data = qede_get_eth_tlv_data, 236 }, 237 .force_mac = qede_force_mac, 238 .ports_update = qede_udp_ports_update, 239 }; 240 241 static int qede_netdev_event(struct notifier_block *this, unsigned long event, 242 void *ptr) 243 { 244 struct net_device *ndev = netdev_notifier_info_to_dev(ptr); 245 struct ethtool_drvinfo drvinfo; 246 struct qede_dev *edev; 247 248 if (event != NETDEV_CHANGENAME && event != NETDEV_CHANGEADDR) 249 goto done; 250 251 /* Check whether this is a qede device */ 252 if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo) 253 goto done; 254 255 memset(&drvinfo, 0, sizeof(drvinfo)); 256 ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo); 257 if (strcmp(drvinfo.driver, "qede")) 258 goto done; 259 edev = netdev_priv(ndev); 260 261 switch (event) { 262 case NETDEV_CHANGENAME: 263 /* Notify qed of the name change */ 264 if (!edev->ops || !edev->ops->common) 265 goto done; 266 edev->ops->common->set_name(edev->cdev, edev->ndev->name); 267 break; 268 case NETDEV_CHANGEADDR: 269 edev = netdev_priv(ndev); 270 qede_rdma_event_changeaddr(edev); 271 break; 272 } 273 274 done: 275 return NOTIFY_DONE; 276 } 277 278 static struct notifier_block qede_netdev_notifier = { 279 .notifier_call = qede_netdev_event, 280 }; 281 282 static 283 int __init qede_init(void) 284 { 285 int ret; 286 287 pr_info("qede_init: %s\n", version); 288 289 qed_ops = qed_get_eth_ops(); 290 if (!qed_ops) { 291 pr_notice("Failed to get qed ethtool operations\n"); 292 return -EINVAL; 293 } 294 295 /* Must register notifier before pci ops, since we might miss 296 * interface rename after pci probe and netdev registration. 297 */ 298 ret = register_netdevice_notifier(&qede_netdev_notifier); 299 if (ret) { 300 pr_notice("Failed to register netdevice_notifier\n"); 301 qed_put_eth_ops(); 302 return -EINVAL; 303 } 304 305 ret = pci_register_driver(&qede_pci_driver); 306 if (ret) { 307 pr_notice("Failed to register driver\n"); 308 unregister_netdevice_notifier(&qede_netdev_notifier); 309 qed_put_eth_ops(); 310 return -EINVAL; 311 } 312 313 return 0; 314 } 315 316 static void __exit qede_cleanup(void) 317 { 318 if (debug & QED_LOG_INFO_MASK) 319 pr_info("qede_cleanup called\n"); 320 321 unregister_netdevice_notifier(&qede_netdev_notifier); 322 pci_unregister_driver(&qede_pci_driver); 323 qed_put_eth_ops(); 324 } 325 326 module_init(qede_init); 327 module_exit(qede_cleanup); 328 329 static int qede_open(struct net_device *ndev); 330 static int qede_close(struct net_device *ndev); 331 332 void qede_fill_by_demand_stats(struct qede_dev *edev) 333 { 334 struct qede_stats_common *p_common = &edev->stats.common; 335 struct qed_eth_stats stats; 336 337 edev->ops->get_vport_stats(edev->cdev, &stats); 338 339 p_common->no_buff_discards = stats.common.no_buff_discards; 340 p_common->packet_too_big_discard = stats.common.packet_too_big_discard; 341 p_common->ttl0_discard = stats.common.ttl0_discard; 342 p_common->rx_ucast_bytes = stats.common.rx_ucast_bytes; 343 p_common->rx_mcast_bytes = stats.common.rx_mcast_bytes; 344 p_common->rx_bcast_bytes = stats.common.rx_bcast_bytes; 345 p_common->rx_ucast_pkts = stats.common.rx_ucast_pkts; 346 p_common->rx_mcast_pkts = stats.common.rx_mcast_pkts; 347 p_common->rx_bcast_pkts = stats.common.rx_bcast_pkts; 348 p_common->mftag_filter_discards = stats.common.mftag_filter_discards; 349 p_common->mac_filter_discards = stats.common.mac_filter_discards; 350 p_common->gft_filter_drop = stats.common.gft_filter_drop; 351 352 p_common->tx_ucast_bytes = stats.common.tx_ucast_bytes; 353 p_common->tx_mcast_bytes = stats.common.tx_mcast_bytes; 354 p_common->tx_bcast_bytes = stats.common.tx_bcast_bytes; 355 p_common->tx_ucast_pkts = stats.common.tx_ucast_pkts; 356 p_common->tx_mcast_pkts = stats.common.tx_mcast_pkts; 357 p_common->tx_bcast_pkts = stats.common.tx_bcast_pkts; 358 p_common->tx_err_drop_pkts = stats.common.tx_err_drop_pkts; 359 p_common->coalesced_pkts = stats.common.tpa_coalesced_pkts; 360 p_common->coalesced_events = stats.common.tpa_coalesced_events; 361 p_common->coalesced_aborts_num = stats.common.tpa_aborts_num; 362 p_common->non_coalesced_pkts = stats.common.tpa_not_coalesced_pkts; 363 p_common->coalesced_bytes = stats.common.tpa_coalesced_bytes; 364 365 p_common->rx_64_byte_packets = stats.common.rx_64_byte_packets; 366 p_common->rx_65_to_127_byte_packets = 367 stats.common.rx_65_to_127_byte_packets; 368 p_common->rx_128_to_255_byte_packets = 369 stats.common.rx_128_to_255_byte_packets; 370 p_common->rx_256_to_511_byte_packets = 371 stats.common.rx_256_to_511_byte_packets; 372 p_common->rx_512_to_1023_byte_packets = 373 stats.common.rx_512_to_1023_byte_packets; 374 p_common->rx_1024_to_1518_byte_packets = 375 stats.common.rx_1024_to_1518_byte_packets; 376 p_common->rx_crc_errors = stats.common.rx_crc_errors; 377 p_common->rx_mac_crtl_frames = stats.common.rx_mac_crtl_frames; 378 p_common->rx_pause_frames = stats.common.rx_pause_frames; 379 p_common->rx_pfc_frames = stats.common.rx_pfc_frames; 380 p_common->rx_align_errors = stats.common.rx_align_errors; 381 p_common->rx_carrier_errors = stats.common.rx_carrier_errors; 382 p_common->rx_oversize_packets = stats.common.rx_oversize_packets; 383 p_common->rx_jabbers = stats.common.rx_jabbers; 384 p_common->rx_undersize_packets = stats.common.rx_undersize_packets; 385 p_common->rx_fragments = stats.common.rx_fragments; 386 p_common->tx_64_byte_packets = stats.common.tx_64_byte_packets; 387 p_common->tx_65_to_127_byte_packets = 388 stats.common.tx_65_to_127_byte_packets; 389 p_common->tx_128_to_255_byte_packets = 390 stats.common.tx_128_to_255_byte_packets; 391 p_common->tx_256_to_511_byte_packets = 392 stats.common.tx_256_to_511_byte_packets; 393 p_common->tx_512_to_1023_byte_packets = 394 stats.common.tx_512_to_1023_byte_packets; 395 p_common->tx_1024_to_1518_byte_packets = 396 stats.common.tx_1024_to_1518_byte_packets; 397 p_common->tx_pause_frames = stats.common.tx_pause_frames; 398 p_common->tx_pfc_frames = stats.common.tx_pfc_frames; 399 p_common->brb_truncates = stats.common.brb_truncates; 400 p_common->brb_discards = stats.common.brb_discards; 401 p_common->tx_mac_ctrl_frames = stats.common.tx_mac_ctrl_frames; 402 403 if (QEDE_IS_BB(edev)) { 404 struct qede_stats_bb *p_bb = &edev->stats.bb; 405 406 p_bb->rx_1519_to_1522_byte_packets = 407 stats.bb.rx_1519_to_1522_byte_packets; 408 p_bb->rx_1519_to_2047_byte_packets = 409 stats.bb.rx_1519_to_2047_byte_packets; 410 p_bb->rx_2048_to_4095_byte_packets = 411 stats.bb.rx_2048_to_4095_byte_packets; 412 p_bb->rx_4096_to_9216_byte_packets = 413 stats.bb.rx_4096_to_9216_byte_packets; 414 p_bb->rx_9217_to_16383_byte_packets = 415 stats.bb.rx_9217_to_16383_byte_packets; 416 p_bb->tx_1519_to_2047_byte_packets = 417 stats.bb.tx_1519_to_2047_byte_packets; 418 p_bb->tx_2048_to_4095_byte_packets = 419 stats.bb.tx_2048_to_4095_byte_packets; 420 p_bb->tx_4096_to_9216_byte_packets = 421 stats.bb.tx_4096_to_9216_byte_packets; 422 p_bb->tx_9217_to_16383_byte_packets = 423 stats.bb.tx_9217_to_16383_byte_packets; 424 p_bb->tx_lpi_entry_count = stats.bb.tx_lpi_entry_count; 425 p_bb->tx_total_collisions = stats.bb.tx_total_collisions; 426 } else { 427 struct qede_stats_ah *p_ah = &edev->stats.ah; 428 429 p_ah->rx_1519_to_max_byte_packets = 430 stats.ah.rx_1519_to_max_byte_packets; 431 p_ah->tx_1519_to_max_byte_packets = 432 stats.ah.tx_1519_to_max_byte_packets; 433 } 434 } 435 436 static void qede_get_stats64(struct net_device *dev, 437 struct rtnl_link_stats64 *stats) 438 { 439 struct qede_dev *edev = netdev_priv(dev); 440 struct qede_stats_common *p_common; 441 442 qede_fill_by_demand_stats(edev); 443 p_common = &edev->stats.common; 444 445 stats->rx_packets = p_common->rx_ucast_pkts + p_common->rx_mcast_pkts + 446 p_common->rx_bcast_pkts; 447 stats->tx_packets = p_common->tx_ucast_pkts + p_common->tx_mcast_pkts + 448 p_common->tx_bcast_pkts; 449 450 stats->rx_bytes = p_common->rx_ucast_bytes + p_common->rx_mcast_bytes + 451 p_common->rx_bcast_bytes; 452 stats->tx_bytes = p_common->tx_ucast_bytes + p_common->tx_mcast_bytes + 453 p_common->tx_bcast_bytes; 454 455 stats->tx_errors = p_common->tx_err_drop_pkts; 456 stats->multicast = p_common->rx_mcast_pkts + p_common->rx_bcast_pkts; 457 458 stats->rx_fifo_errors = p_common->no_buff_discards; 459 460 if (QEDE_IS_BB(edev)) 461 stats->collisions = edev->stats.bb.tx_total_collisions; 462 stats->rx_crc_errors = p_common->rx_crc_errors; 463 stats->rx_frame_errors = p_common->rx_align_errors; 464 } 465 466 #ifdef CONFIG_QED_SRIOV 467 static int qede_get_vf_config(struct net_device *dev, int vfidx, 468 struct ifla_vf_info *ivi) 469 { 470 struct qede_dev *edev = netdev_priv(dev); 471 472 if (!edev->ops) 473 return -EINVAL; 474 475 return edev->ops->iov->get_config(edev->cdev, vfidx, ivi); 476 } 477 478 static int qede_set_vf_rate(struct net_device *dev, int vfidx, 479 int min_tx_rate, int max_tx_rate) 480 { 481 struct qede_dev *edev = netdev_priv(dev); 482 483 return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate, 484 max_tx_rate); 485 } 486 487 static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val) 488 { 489 struct qede_dev *edev = netdev_priv(dev); 490 491 if (!edev->ops) 492 return -EINVAL; 493 494 return edev->ops->iov->set_spoof(edev->cdev, vfidx, val); 495 } 496 497 static int qede_set_vf_link_state(struct net_device *dev, int vfidx, 498 int link_state) 499 { 500 struct qede_dev *edev = netdev_priv(dev); 501 502 if (!edev->ops) 503 return -EINVAL; 504 505 return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state); 506 } 507 508 static int qede_set_vf_trust(struct net_device *dev, int vfidx, bool setting) 509 { 510 struct qede_dev *edev = netdev_priv(dev); 511 512 if (!edev->ops) 513 return -EINVAL; 514 515 return edev->ops->iov->set_trust(edev->cdev, vfidx, setting); 516 } 517 #endif 518 519 static int qede_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 520 { 521 struct qede_dev *edev = netdev_priv(dev); 522 523 if (!netif_running(dev)) 524 return -EAGAIN; 525 526 switch (cmd) { 527 case SIOCSHWTSTAMP: 528 return qede_ptp_hw_ts(edev, ifr); 529 default: 530 DP_VERBOSE(edev, QED_MSG_DEBUG, 531 "default IOCTL cmd 0x%x\n", cmd); 532 return -EOPNOTSUPP; 533 } 534 535 return 0; 536 } 537 538 static const struct net_device_ops qede_netdev_ops = { 539 .ndo_open = qede_open, 540 .ndo_stop = qede_close, 541 .ndo_start_xmit = qede_start_xmit, 542 .ndo_set_rx_mode = qede_set_rx_mode, 543 .ndo_set_mac_address = qede_set_mac_addr, 544 .ndo_validate_addr = eth_validate_addr, 545 .ndo_change_mtu = qede_change_mtu, 546 .ndo_do_ioctl = qede_ioctl, 547 #ifdef CONFIG_QED_SRIOV 548 .ndo_set_vf_mac = qede_set_vf_mac, 549 .ndo_set_vf_vlan = qede_set_vf_vlan, 550 .ndo_set_vf_trust = qede_set_vf_trust, 551 #endif 552 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid, 553 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid, 554 .ndo_fix_features = qede_fix_features, 555 .ndo_set_features = qede_set_features, 556 .ndo_get_stats64 = qede_get_stats64, 557 #ifdef CONFIG_QED_SRIOV 558 .ndo_set_vf_link_state = qede_set_vf_link_state, 559 .ndo_set_vf_spoofchk = qede_set_vf_spoofchk, 560 .ndo_get_vf_config = qede_get_vf_config, 561 .ndo_set_vf_rate = qede_set_vf_rate, 562 #endif 563 .ndo_udp_tunnel_add = qede_udp_tunnel_add, 564 .ndo_udp_tunnel_del = qede_udp_tunnel_del, 565 .ndo_features_check = qede_features_check, 566 .ndo_bpf = qede_xdp, 567 #ifdef CONFIG_RFS_ACCEL 568 .ndo_rx_flow_steer = qede_rx_flow_steer, 569 #endif 570 }; 571 572 static const struct net_device_ops qede_netdev_vf_ops = { 573 .ndo_open = qede_open, 574 .ndo_stop = qede_close, 575 .ndo_start_xmit = qede_start_xmit, 576 .ndo_set_rx_mode = qede_set_rx_mode, 577 .ndo_set_mac_address = qede_set_mac_addr, 578 .ndo_validate_addr = eth_validate_addr, 579 .ndo_change_mtu = qede_change_mtu, 580 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid, 581 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid, 582 .ndo_fix_features = qede_fix_features, 583 .ndo_set_features = qede_set_features, 584 .ndo_get_stats64 = qede_get_stats64, 585 .ndo_udp_tunnel_add = qede_udp_tunnel_add, 586 .ndo_udp_tunnel_del = qede_udp_tunnel_del, 587 .ndo_features_check = qede_features_check, 588 }; 589 590 static const struct net_device_ops qede_netdev_vf_xdp_ops = { 591 .ndo_open = qede_open, 592 .ndo_stop = qede_close, 593 .ndo_start_xmit = qede_start_xmit, 594 .ndo_set_rx_mode = qede_set_rx_mode, 595 .ndo_set_mac_address = qede_set_mac_addr, 596 .ndo_validate_addr = eth_validate_addr, 597 .ndo_change_mtu = qede_change_mtu, 598 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid, 599 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid, 600 .ndo_fix_features = qede_fix_features, 601 .ndo_set_features = qede_set_features, 602 .ndo_get_stats64 = qede_get_stats64, 603 .ndo_udp_tunnel_add = qede_udp_tunnel_add, 604 .ndo_udp_tunnel_del = qede_udp_tunnel_del, 605 .ndo_features_check = qede_features_check, 606 .ndo_bpf = qede_xdp, 607 }; 608 609 /* ------------------------------------------------------------------------- 610 * START OF PROBE / REMOVE 611 * ------------------------------------------------------------------------- 612 */ 613 614 static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev, 615 struct pci_dev *pdev, 616 struct qed_dev_eth_info *info, 617 u32 dp_module, u8 dp_level) 618 { 619 struct net_device *ndev; 620 struct qede_dev *edev; 621 622 ndev = alloc_etherdev_mqs(sizeof(*edev), 623 info->num_queues, info->num_queues); 624 if (!ndev) { 625 pr_err("etherdev allocation failed\n"); 626 return NULL; 627 } 628 629 edev = netdev_priv(ndev); 630 edev->ndev = ndev; 631 edev->cdev = cdev; 632 edev->pdev = pdev; 633 edev->dp_module = dp_module; 634 edev->dp_level = dp_level; 635 edev->ops = qed_ops; 636 edev->q_num_rx_buffers = NUM_RX_BDS_DEF; 637 edev->q_num_tx_buffers = NUM_TX_BDS_DEF; 638 639 DP_INFO(edev, "Allocated netdev with %d tx queues and %d rx queues\n", 640 info->num_queues, info->num_queues); 641 642 SET_NETDEV_DEV(ndev, &pdev->dev); 643 644 memset(&edev->stats, 0, sizeof(edev->stats)); 645 memcpy(&edev->dev_info, info, sizeof(*info)); 646 647 /* As ethtool doesn't have the ability to show WoL behavior as 648 * 'default', if device supports it declare it's enabled. 649 */ 650 if (edev->dev_info.common.wol_support) 651 edev->wol_enabled = true; 652 653 INIT_LIST_HEAD(&edev->vlan_list); 654 655 return edev; 656 } 657 658 static void qede_init_ndev(struct qede_dev *edev) 659 { 660 struct net_device *ndev = edev->ndev; 661 struct pci_dev *pdev = edev->pdev; 662 bool udp_tunnel_enable = false; 663 netdev_features_t hw_features; 664 665 pci_set_drvdata(pdev, ndev); 666 667 ndev->mem_start = edev->dev_info.common.pci_mem_start; 668 ndev->base_addr = ndev->mem_start; 669 ndev->mem_end = edev->dev_info.common.pci_mem_end; 670 ndev->irq = edev->dev_info.common.pci_irq; 671 672 ndev->watchdog_timeo = TX_TIMEOUT; 673 674 if (IS_VF(edev)) { 675 if (edev->dev_info.xdp_supported) 676 ndev->netdev_ops = &qede_netdev_vf_xdp_ops; 677 else 678 ndev->netdev_ops = &qede_netdev_vf_ops; 679 } else { 680 ndev->netdev_ops = &qede_netdev_ops; 681 } 682 683 qede_set_ethtool_ops(ndev); 684 685 ndev->priv_flags |= IFF_UNICAST_FLT; 686 687 /* user-changeble features */ 688 hw_features = NETIF_F_GRO | NETIF_F_GRO_HW | NETIF_F_SG | 689 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 690 NETIF_F_TSO | NETIF_F_TSO6; 691 692 if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) 693 hw_features |= NETIF_F_NTUPLE; 694 695 if (edev->dev_info.common.vxlan_enable || 696 edev->dev_info.common.geneve_enable) 697 udp_tunnel_enable = true; 698 699 if (udp_tunnel_enable || edev->dev_info.common.gre_enable) { 700 hw_features |= NETIF_F_TSO_ECN; 701 ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 702 NETIF_F_SG | NETIF_F_TSO | 703 NETIF_F_TSO_ECN | NETIF_F_TSO6 | 704 NETIF_F_RXCSUM; 705 } 706 707 if (udp_tunnel_enable) { 708 hw_features |= (NETIF_F_GSO_UDP_TUNNEL | 709 NETIF_F_GSO_UDP_TUNNEL_CSUM); 710 ndev->hw_enc_features |= (NETIF_F_GSO_UDP_TUNNEL | 711 NETIF_F_GSO_UDP_TUNNEL_CSUM); 712 } 713 714 if (edev->dev_info.common.gre_enable) { 715 hw_features |= (NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM); 716 ndev->hw_enc_features |= (NETIF_F_GSO_GRE | 717 NETIF_F_GSO_GRE_CSUM); 718 } 719 720 ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM | 721 NETIF_F_HIGHDMA; 722 ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM | 723 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA | 724 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX; 725 726 ndev->hw_features = hw_features; 727 728 /* MTU range: 46 - 9600 */ 729 ndev->min_mtu = ETH_ZLEN - ETH_HLEN; 730 ndev->max_mtu = QEDE_MAX_JUMBO_PACKET_SIZE; 731 732 /* Set network device HW mac */ 733 ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac); 734 735 ndev->mtu = edev->dev_info.common.mtu; 736 } 737 738 /* This function converts from 32b param to two params of level and module 739 * Input 32b decoding: 740 * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the 741 * 'happy' flow, e.g. memory allocation failed. 742 * b30 - enable all INFO prints. INFO prints are for major steps in the flow 743 * and provide important parameters. 744 * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that 745 * module. VERBOSE prints are for tracking the specific flow in low level. 746 * 747 * Notice that the level should be that of the lowest required logs. 748 */ 749 void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level) 750 { 751 *p_dp_level = QED_LEVEL_NOTICE; 752 *p_dp_module = 0; 753 754 if (debug & QED_LOG_VERBOSE_MASK) { 755 *p_dp_level = QED_LEVEL_VERBOSE; 756 *p_dp_module = (debug & 0x3FFFFFFF); 757 } else if (debug & QED_LOG_INFO_MASK) { 758 *p_dp_level = QED_LEVEL_INFO; 759 } else if (debug & QED_LOG_NOTICE_MASK) { 760 *p_dp_level = QED_LEVEL_NOTICE; 761 } 762 } 763 764 static void qede_free_fp_array(struct qede_dev *edev) 765 { 766 if (edev->fp_array) { 767 struct qede_fastpath *fp; 768 int i; 769 770 for_each_queue(i) { 771 fp = &edev->fp_array[i]; 772 773 kfree(fp->sb_info); 774 /* Handle mem alloc failure case where qede_init_fp 775 * didn't register xdp_rxq_info yet. 776 * Implicit only (fp->type & QEDE_FASTPATH_RX) 777 */ 778 if (fp->rxq && xdp_rxq_info_is_reg(&fp->rxq->xdp_rxq)) 779 xdp_rxq_info_unreg(&fp->rxq->xdp_rxq); 780 kfree(fp->rxq); 781 kfree(fp->xdp_tx); 782 kfree(fp->txq); 783 } 784 kfree(edev->fp_array); 785 } 786 787 edev->num_queues = 0; 788 edev->fp_num_tx = 0; 789 edev->fp_num_rx = 0; 790 } 791 792 static int qede_alloc_fp_array(struct qede_dev *edev) 793 { 794 u8 fp_combined, fp_rx = edev->fp_num_rx; 795 struct qede_fastpath *fp; 796 int i; 797 798 edev->fp_array = kcalloc(QEDE_QUEUE_CNT(edev), 799 sizeof(*edev->fp_array), GFP_KERNEL); 800 if (!edev->fp_array) { 801 DP_NOTICE(edev, "fp array allocation failed\n"); 802 goto err; 803 } 804 805 fp_combined = QEDE_QUEUE_CNT(edev) - fp_rx - edev->fp_num_tx; 806 807 /* Allocate the FP elements for Rx queues followed by combined and then 808 * the Tx. This ordering should be maintained so that the respective 809 * queues (Rx or Tx) will be together in the fastpath array and the 810 * associated ids will be sequential. 811 */ 812 for_each_queue(i) { 813 fp = &edev->fp_array[i]; 814 815 fp->sb_info = kzalloc(sizeof(*fp->sb_info), GFP_KERNEL); 816 if (!fp->sb_info) { 817 DP_NOTICE(edev, "sb info struct allocation failed\n"); 818 goto err; 819 } 820 821 if (fp_rx) { 822 fp->type = QEDE_FASTPATH_RX; 823 fp_rx--; 824 } else if (fp_combined) { 825 fp->type = QEDE_FASTPATH_COMBINED; 826 fp_combined--; 827 } else { 828 fp->type = QEDE_FASTPATH_TX; 829 } 830 831 if (fp->type & QEDE_FASTPATH_TX) { 832 fp->txq = kzalloc(sizeof(*fp->txq), GFP_KERNEL); 833 if (!fp->txq) 834 goto err; 835 } 836 837 if (fp->type & QEDE_FASTPATH_RX) { 838 fp->rxq = kzalloc(sizeof(*fp->rxq), GFP_KERNEL); 839 if (!fp->rxq) 840 goto err; 841 842 if (edev->xdp_prog) { 843 fp->xdp_tx = kzalloc(sizeof(*fp->xdp_tx), 844 GFP_KERNEL); 845 if (!fp->xdp_tx) 846 goto err; 847 fp->type |= QEDE_FASTPATH_XDP; 848 } 849 } 850 } 851 852 return 0; 853 err: 854 qede_free_fp_array(edev); 855 return -ENOMEM; 856 } 857 858 static void qede_sp_task(struct work_struct *work) 859 { 860 struct qede_dev *edev = container_of(work, struct qede_dev, 861 sp_task.work); 862 863 __qede_lock(edev); 864 865 if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags)) 866 if (edev->state == QEDE_STATE_OPEN) 867 qede_config_rx_mode(edev->ndev); 868 869 #ifdef CONFIG_RFS_ACCEL 870 if (test_and_clear_bit(QEDE_SP_ARFS_CONFIG, &edev->sp_flags)) { 871 if (edev->state == QEDE_STATE_OPEN) 872 qede_process_arfs_filters(edev, false); 873 } 874 #endif 875 __qede_unlock(edev); 876 } 877 878 static void qede_update_pf_params(struct qed_dev *cdev) 879 { 880 struct qed_pf_params pf_params; 881 882 /* 64 rx + 64 tx + 64 XDP */ 883 memset(&pf_params, 0, sizeof(struct qed_pf_params)); 884 pf_params.eth_pf_params.num_cons = (MAX_SB_PER_PF_MIMD - 1) * 3; 885 886 /* Same for VFs - make sure they'll have sufficient connections 887 * to support XDP Tx queues. 888 */ 889 pf_params.eth_pf_params.num_vf_cons = 48; 890 891 pf_params.eth_pf_params.num_arfs_filters = QEDE_RFS_MAX_FLTR; 892 qed_ops->common->update_pf_params(cdev, &pf_params); 893 } 894 895 #define QEDE_FW_VER_STR_SIZE 80 896 897 static void qede_log_probe(struct qede_dev *edev) 898 { 899 struct qed_dev_info *p_dev_info = &edev->dev_info.common; 900 u8 buf[QEDE_FW_VER_STR_SIZE]; 901 size_t left_size; 902 903 snprintf(buf, QEDE_FW_VER_STR_SIZE, 904 "Storm FW %d.%d.%d.%d, Management FW %d.%d.%d.%d", 905 p_dev_info->fw_major, p_dev_info->fw_minor, p_dev_info->fw_rev, 906 p_dev_info->fw_eng, 907 (p_dev_info->mfw_rev & QED_MFW_VERSION_3_MASK) >> 908 QED_MFW_VERSION_3_OFFSET, 909 (p_dev_info->mfw_rev & QED_MFW_VERSION_2_MASK) >> 910 QED_MFW_VERSION_2_OFFSET, 911 (p_dev_info->mfw_rev & QED_MFW_VERSION_1_MASK) >> 912 QED_MFW_VERSION_1_OFFSET, 913 (p_dev_info->mfw_rev & QED_MFW_VERSION_0_MASK) >> 914 QED_MFW_VERSION_0_OFFSET); 915 916 left_size = QEDE_FW_VER_STR_SIZE - strlen(buf); 917 if (p_dev_info->mbi_version && left_size) 918 snprintf(buf + strlen(buf), left_size, 919 " [MBI %d.%d.%d]", 920 (p_dev_info->mbi_version & QED_MBI_VERSION_2_MASK) >> 921 QED_MBI_VERSION_2_OFFSET, 922 (p_dev_info->mbi_version & QED_MBI_VERSION_1_MASK) >> 923 QED_MBI_VERSION_1_OFFSET, 924 (p_dev_info->mbi_version & QED_MBI_VERSION_0_MASK) >> 925 QED_MBI_VERSION_0_OFFSET); 926 927 pr_info("qede %02x:%02x.%02x: %s [%s]\n", edev->pdev->bus->number, 928 PCI_SLOT(edev->pdev->devfn), PCI_FUNC(edev->pdev->devfn), 929 buf, edev->ndev->name); 930 } 931 932 enum qede_probe_mode { 933 QEDE_PROBE_NORMAL, 934 }; 935 936 static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level, 937 bool is_vf, enum qede_probe_mode mode) 938 { 939 struct qed_probe_params probe_params; 940 struct qed_slowpath_params sp_params; 941 struct qed_dev_eth_info dev_info; 942 struct qede_dev *edev; 943 struct qed_dev *cdev; 944 int rc; 945 946 if (unlikely(dp_level & QED_LEVEL_INFO)) 947 pr_notice("Starting qede probe\n"); 948 949 memset(&probe_params, 0, sizeof(probe_params)); 950 probe_params.protocol = QED_PROTOCOL_ETH; 951 probe_params.dp_module = dp_module; 952 probe_params.dp_level = dp_level; 953 probe_params.is_vf = is_vf; 954 cdev = qed_ops->common->probe(pdev, &probe_params); 955 if (!cdev) { 956 rc = -ENODEV; 957 goto err0; 958 } 959 960 qede_update_pf_params(cdev); 961 962 /* Start the Slowpath-process */ 963 memset(&sp_params, 0, sizeof(sp_params)); 964 sp_params.int_mode = QED_INT_MODE_MSIX; 965 sp_params.drv_major = QEDE_MAJOR_VERSION; 966 sp_params.drv_minor = QEDE_MINOR_VERSION; 967 sp_params.drv_rev = QEDE_REVISION_VERSION; 968 sp_params.drv_eng = QEDE_ENGINEERING_VERSION; 969 strlcpy(sp_params.name, "qede LAN", QED_DRV_VER_STR_SIZE); 970 rc = qed_ops->common->slowpath_start(cdev, &sp_params); 971 if (rc) { 972 pr_notice("Cannot start slowpath\n"); 973 goto err1; 974 } 975 976 /* Learn information crucial for qede to progress */ 977 rc = qed_ops->fill_dev_info(cdev, &dev_info); 978 if (rc) 979 goto err2; 980 981 edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module, 982 dp_level); 983 if (!edev) { 984 rc = -ENOMEM; 985 goto err2; 986 } 987 988 if (is_vf) 989 edev->flags |= QEDE_FLAG_IS_VF; 990 991 qede_init_ndev(edev); 992 993 rc = qede_rdma_dev_add(edev); 994 if (rc) 995 goto err3; 996 997 /* Prepare the lock prior to the registration of the netdev, 998 * as once it's registered we might reach flows requiring it 999 * [it's even possible to reach a flow needing it directly 1000 * from there, although it's unlikely]. 1001 */ 1002 INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task); 1003 mutex_init(&edev->qede_lock); 1004 rc = register_netdev(edev->ndev); 1005 if (rc) { 1006 DP_NOTICE(edev, "Cannot register net-device\n"); 1007 goto err4; 1008 } 1009 1010 edev->ops->common->set_name(cdev, edev->ndev->name); 1011 1012 /* PTP not supported on VFs */ 1013 if (!is_vf) 1014 qede_ptp_enable(edev, true); 1015 1016 edev->ops->register_ops(cdev, &qede_ll_ops, edev); 1017 1018 #ifdef CONFIG_DCB 1019 if (!IS_VF(edev)) 1020 qede_set_dcbnl_ops(edev->ndev); 1021 #endif 1022 1023 edev->rx_copybreak = QEDE_RX_HDR_SIZE; 1024 1025 qede_log_probe(edev); 1026 return 0; 1027 1028 err4: 1029 qede_rdma_dev_remove(edev); 1030 err3: 1031 free_netdev(edev->ndev); 1032 err2: 1033 qed_ops->common->slowpath_stop(cdev); 1034 err1: 1035 qed_ops->common->remove(cdev); 1036 err0: 1037 return rc; 1038 } 1039 1040 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id) 1041 { 1042 bool is_vf = false; 1043 u32 dp_module = 0; 1044 u8 dp_level = 0; 1045 1046 switch ((enum qede_pci_private)id->driver_data) { 1047 case QEDE_PRIVATE_VF: 1048 if (debug & QED_LOG_VERBOSE_MASK) 1049 dev_err(&pdev->dev, "Probing a VF\n"); 1050 is_vf = true; 1051 break; 1052 default: 1053 if (debug & QED_LOG_VERBOSE_MASK) 1054 dev_err(&pdev->dev, "Probing a PF\n"); 1055 } 1056 1057 qede_config_debug(debug, &dp_module, &dp_level); 1058 1059 return __qede_probe(pdev, dp_module, dp_level, is_vf, 1060 QEDE_PROBE_NORMAL); 1061 } 1062 1063 enum qede_remove_mode { 1064 QEDE_REMOVE_NORMAL, 1065 }; 1066 1067 static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode) 1068 { 1069 struct net_device *ndev = pci_get_drvdata(pdev); 1070 struct qede_dev *edev = netdev_priv(ndev); 1071 struct qed_dev *cdev = edev->cdev; 1072 1073 DP_INFO(edev, "Starting qede_remove\n"); 1074 1075 qede_rdma_dev_remove(edev); 1076 unregister_netdev(ndev); 1077 cancel_delayed_work_sync(&edev->sp_task); 1078 1079 qede_ptp_disable(edev); 1080 1081 edev->ops->common->set_power_state(cdev, PCI_D0); 1082 1083 pci_set_drvdata(pdev, NULL); 1084 1085 /* Use global ops since we've freed edev */ 1086 qed_ops->common->slowpath_stop(cdev); 1087 if (system_state == SYSTEM_POWER_OFF) 1088 return; 1089 qed_ops->common->remove(cdev); 1090 1091 /* Since this can happen out-of-sync with other flows, 1092 * don't release the netdevice until after slowpath stop 1093 * has been called to guarantee various other contexts 1094 * [e.g., QED register callbacks] won't break anything when 1095 * accessing the netdevice. 1096 */ 1097 free_netdev(ndev); 1098 1099 dev_info(&pdev->dev, "Ending qede_remove successfully\n"); 1100 } 1101 1102 static void qede_remove(struct pci_dev *pdev) 1103 { 1104 __qede_remove(pdev, QEDE_REMOVE_NORMAL); 1105 } 1106 1107 static void qede_shutdown(struct pci_dev *pdev) 1108 { 1109 __qede_remove(pdev, QEDE_REMOVE_NORMAL); 1110 } 1111 1112 /* ------------------------------------------------------------------------- 1113 * START OF LOAD / UNLOAD 1114 * ------------------------------------------------------------------------- 1115 */ 1116 1117 static int qede_set_num_queues(struct qede_dev *edev) 1118 { 1119 int rc; 1120 u16 rss_num; 1121 1122 /* Setup queues according to possible resources*/ 1123 if (edev->req_queues) 1124 rss_num = edev->req_queues; 1125 else 1126 rss_num = netif_get_num_default_rss_queues() * 1127 edev->dev_info.common.num_hwfns; 1128 1129 rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num); 1130 1131 rc = edev->ops->common->set_fp_int(edev->cdev, rss_num); 1132 if (rc > 0) { 1133 /* Managed to request interrupts for our queues */ 1134 edev->num_queues = rc; 1135 DP_INFO(edev, "Managed %d [of %d] RSS queues\n", 1136 QEDE_QUEUE_CNT(edev), rss_num); 1137 rc = 0; 1138 } 1139 1140 edev->fp_num_tx = edev->req_num_tx; 1141 edev->fp_num_rx = edev->req_num_rx; 1142 1143 return rc; 1144 } 1145 1146 static void qede_free_mem_sb(struct qede_dev *edev, struct qed_sb_info *sb_info, 1147 u16 sb_id) 1148 { 1149 if (sb_info->sb_virt) { 1150 edev->ops->common->sb_release(edev->cdev, sb_info, sb_id); 1151 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt), 1152 (void *)sb_info->sb_virt, sb_info->sb_phys); 1153 memset(sb_info, 0, sizeof(*sb_info)); 1154 } 1155 } 1156 1157 /* This function allocates fast-path status block memory */ 1158 static int qede_alloc_mem_sb(struct qede_dev *edev, 1159 struct qed_sb_info *sb_info, u16 sb_id) 1160 { 1161 struct status_block_e4 *sb_virt; 1162 dma_addr_t sb_phys; 1163 int rc; 1164 1165 sb_virt = dma_alloc_coherent(&edev->pdev->dev, 1166 sizeof(*sb_virt), &sb_phys, GFP_KERNEL); 1167 if (!sb_virt) { 1168 DP_ERR(edev, "Status block allocation failed\n"); 1169 return -ENOMEM; 1170 } 1171 1172 rc = edev->ops->common->sb_init(edev->cdev, sb_info, 1173 sb_virt, sb_phys, sb_id, 1174 QED_SB_TYPE_L2_QUEUE); 1175 if (rc) { 1176 DP_ERR(edev, "Status block initialization failed\n"); 1177 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt), 1178 sb_virt, sb_phys); 1179 return rc; 1180 } 1181 1182 return 0; 1183 } 1184 1185 static void qede_free_rx_buffers(struct qede_dev *edev, 1186 struct qede_rx_queue *rxq) 1187 { 1188 u16 i; 1189 1190 for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) { 1191 struct sw_rx_data *rx_buf; 1192 struct page *data; 1193 1194 rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX]; 1195 data = rx_buf->data; 1196 1197 dma_unmap_page(&edev->pdev->dev, 1198 rx_buf->mapping, PAGE_SIZE, rxq->data_direction); 1199 1200 rx_buf->data = NULL; 1201 __free_page(data); 1202 } 1203 } 1204 1205 static void qede_free_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq) 1206 { 1207 /* Free rx buffers */ 1208 qede_free_rx_buffers(edev, rxq); 1209 1210 /* Free the parallel SW ring */ 1211 kfree(rxq->sw_rx_ring); 1212 1213 /* Free the real RQ ring used by FW */ 1214 edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring); 1215 edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring); 1216 } 1217 1218 static void qede_set_tpa_param(struct qede_rx_queue *rxq) 1219 { 1220 int i; 1221 1222 for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) { 1223 struct qede_agg_info *tpa_info = &rxq->tpa_info[i]; 1224 1225 tpa_info->state = QEDE_AGG_STATE_NONE; 1226 } 1227 } 1228 1229 /* This function allocates all memory needed per Rx queue */ 1230 static int qede_alloc_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq) 1231 { 1232 int i, rc, size; 1233 1234 rxq->num_rx_buffers = edev->q_num_rx_buffers; 1235 1236 rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD + edev->ndev->mtu; 1237 1238 rxq->rx_headroom = edev->xdp_prog ? XDP_PACKET_HEADROOM : NET_SKB_PAD; 1239 size = rxq->rx_headroom + 1240 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 1241 1242 /* Make sure that the headroom and payload fit in a single page */ 1243 if (rxq->rx_buf_size + size > PAGE_SIZE) 1244 rxq->rx_buf_size = PAGE_SIZE - size; 1245 1246 /* Segment size to spilt a page in multiple equal parts , 1247 * unless XDP is used in which case we'd use the entire page. 1248 */ 1249 if (!edev->xdp_prog) { 1250 size = size + rxq->rx_buf_size; 1251 rxq->rx_buf_seg_size = roundup_pow_of_two(size); 1252 } else { 1253 rxq->rx_buf_seg_size = PAGE_SIZE; 1254 } 1255 1256 /* Allocate the parallel driver ring for Rx buffers */ 1257 size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE; 1258 rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL); 1259 if (!rxq->sw_rx_ring) { 1260 DP_ERR(edev, "Rx buffers ring allocation failed\n"); 1261 rc = -ENOMEM; 1262 goto err; 1263 } 1264 1265 /* Allocate FW Rx ring */ 1266 rc = edev->ops->common->chain_alloc(edev->cdev, 1267 QED_CHAIN_USE_TO_CONSUME_PRODUCE, 1268 QED_CHAIN_MODE_NEXT_PTR, 1269 QED_CHAIN_CNT_TYPE_U16, 1270 RX_RING_SIZE, 1271 sizeof(struct eth_rx_bd), 1272 &rxq->rx_bd_ring, NULL); 1273 if (rc) 1274 goto err; 1275 1276 /* Allocate FW completion ring */ 1277 rc = edev->ops->common->chain_alloc(edev->cdev, 1278 QED_CHAIN_USE_TO_CONSUME, 1279 QED_CHAIN_MODE_PBL, 1280 QED_CHAIN_CNT_TYPE_U16, 1281 RX_RING_SIZE, 1282 sizeof(union eth_rx_cqe), 1283 &rxq->rx_comp_ring, NULL); 1284 if (rc) 1285 goto err; 1286 1287 /* Allocate buffers for the Rx ring */ 1288 rxq->filled_buffers = 0; 1289 for (i = 0; i < rxq->num_rx_buffers; i++) { 1290 rc = qede_alloc_rx_buffer(rxq, false); 1291 if (rc) { 1292 DP_ERR(edev, 1293 "Rx buffers allocation failed at index %d\n", i); 1294 goto err; 1295 } 1296 } 1297 1298 if (!edev->gro_disable) 1299 qede_set_tpa_param(rxq); 1300 err: 1301 return rc; 1302 } 1303 1304 static void qede_free_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq) 1305 { 1306 /* Free the parallel SW ring */ 1307 if (txq->is_xdp) 1308 kfree(txq->sw_tx_ring.xdp); 1309 else 1310 kfree(txq->sw_tx_ring.skbs); 1311 1312 /* Free the real RQ ring used by FW */ 1313 edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl); 1314 } 1315 1316 /* This function allocates all memory needed per Tx queue */ 1317 static int qede_alloc_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq) 1318 { 1319 union eth_tx_bd_types *p_virt; 1320 int size, rc; 1321 1322 txq->num_tx_buffers = edev->q_num_tx_buffers; 1323 1324 /* Allocate the parallel driver ring for Tx buffers */ 1325 if (txq->is_xdp) { 1326 size = sizeof(*txq->sw_tx_ring.xdp) * txq->num_tx_buffers; 1327 txq->sw_tx_ring.xdp = kzalloc(size, GFP_KERNEL); 1328 if (!txq->sw_tx_ring.xdp) 1329 goto err; 1330 } else { 1331 size = sizeof(*txq->sw_tx_ring.skbs) * txq->num_tx_buffers; 1332 txq->sw_tx_ring.skbs = kzalloc(size, GFP_KERNEL); 1333 if (!txq->sw_tx_ring.skbs) 1334 goto err; 1335 } 1336 1337 rc = edev->ops->common->chain_alloc(edev->cdev, 1338 QED_CHAIN_USE_TO_CONSUME_PRODUCE, 1339 QED_CHAIN_MODE_PBL, 1340 QED_CHAIN_CNT_TYPE_U16, 1341 txq->num_tx_buffers, 1342 sizeof(*p_virt), 1343 &txq->tx_pbl, NULL); 1344 if (rc) 1345 goto err; 1346 1347 return 0; 1348 1349 err: 1350 qede_free_mem_txq(edev, txq); 1351 return -ENOMEM; 1352 } 1353 1354 /* This function frees all memory of a single fp */ 1355 static void qede_free_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp) 1356 { 1357 qede_free_mem_sb(edev, fp->sb_info, fp->id); 1358 1359 if (fp->type & QEDE_FASTPATH_RX) 1360 qede_free_mem_rxq(edev, fp->rxq); 1361 1362 if (fp->type & QEDE_FASTPATH_XDP) 1363 qede_free_mem_txq(edev, fp->xdp_tx); 1364 1365 if (fp->type & QEDE_FASTPATH_TX) 1366 qede_free_mem_txq(edev, fp->txq); 1367 } 1368 1369 /* This function allocates all memory needed for a single fp (i.e. an entity 1370 * which contains status block, one rx queue and/or multiple per-TC tx queues. 1371 */ 1372 static int qede_alloc_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp) 1373 { 1374 int rc = 0; 1375 1376 rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->id); 1377 if (rc) 1378 goto out; 1379 1380 if (fp->type & QEDE_FASTPATH_RX) { 1381 rc = qede_alloc_mem_rxq(edev, fp->rxq); 1382 if (rc) 1383 goto out; 1384 } 1385 1386 if (fp->type & QEDE_FASTPATH_XDP) { 1387 rc = qede_alloc_mem_txq(edev, fp->xdp_tx); 1388 if (rc) 1389 goto out; 1390 } 1391 1392 if (fp->type & QEDE_FASTPATH_TX) { 1393 rc = qede_alloc_mem_txq(edev, fp->txq); 1394 if (rc) 1395 goto out; 1396 } 1397 1398 out: 1399 return rc; 1400 } 1401 1402 static void qede_free_mem_load(struct qede_dev *edev) 1403 { 1404 int i; 1405 1406 for_each_queue(i) { 1407 struct qede_fastpath *fp = &edev->fp_array[i]; 1408 1409 qede_free_mem_fp(edev, fp); 1410 } 1411 } 1412 1413 /* This function allocates all qede memory at NIC load. */ 1414 static int qede_alloc_mem_load(struct qede_dev *edev) 1415 { 1416 int rc = 0, queue_id; 1417 1418 for (queue_id = 0; queue_id < QEDE_QUEUE_CNT(edev); queue_id++) { 1419 struct qede_fastpath *fp = &edev->fp_array[queue_id]; 1420 1421 rc = qede_alloc_mem_fp(edev, fp); 1422 if (rc) { 1423 DP_ERR(edev, 1424 "Failed to allocate memory for fastpath - rss id = %d\n", 1425 queue_id); 1426 qede_free_mem_load(edev); 1427 return rc; 1428 } 1429 } 1430 1431 return 0; 1432 } 1433 1434 /* This function inits fp content and resets the SB, RXQ and TXQ structures */ 1435 static void qede_init_fp(struct qede_dev *edev) 1436 { 1437 int queue_id, rxq_index = 0, txq_index = 0; 1438 struct qede_fastpath *fp; 1439 1440 for_each_queue(queue_id) { 1441 fp = &edev->fp_array[queue_id]; 1442 1443 fp->edev = edev; 1444 fp->id = queue_id; 1445 1446 if (fp->type & QEDE_FASTPATH_XDP) { 1447 fp->xdp_tx->index = QEDE_TXQ_IDX_TO_XDP(edev, 1448 rxq_index); 1449 fp->xdp_tx->is_xdp = 1; 1450 } 1451 1452 if (fp->type & QEDE_FASTPATH_RX) { 1453 fp->rxq->rxq_id = rxq_index++; 1454 1455 /* Determine how to map buffers for this queue */ 1456 if (fp->type & QEDE_FASTPATH_XDP) 1457 fp->rxq->data_direction = DMA_BIDIRECTIONAL; 1458 else 1459 fp->rxq->data_direction = DMA_FROM_DEVICE; 1460 fp->rxq->dev = &edev->pdev->dev; 1461 1462 /* Driver have no error path from here */ 1463 WARN_ON(xdp_rxq_info_reg(&fp->rxq->xdp_rxq, edev->ndev, 1464 fp->rxq->rxq_id) < 0); 1465 } 1466 1467 if (fp->type & QEDE_FASTPATH_TX) { 1468 fp->txq->index = txq_index++; 1469 if (edev->dev_info.is_legacy) 1470 fp->txq->is_legacy = 1; 1471 fp->txq->dev = &edev->pdev->dev; 1472 } 1473 1474 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d", 1475 edev->ndev->name, queue_id); 1476 } 1477 1478 edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO_HW); 1479 } 1480 1481 static int qede_set_real_num_queues(struct qede_dev *edev) 1482 { 1483 int rc = 0; 1484 1485 rc = netif_set_real_num_tx_queues(edev->ndev, QEDE_TSS_COUNT(edev)); 1486 if (rc) { 1487 DP_NOTICE(edev, "Failed to set real number of Tx queues\n"); 1488 return rc; 1489 } 1490 1491 rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_COUNT(edev)); 1492 if (rc) { 1493 DP_NOTICE(edev, "Failed to set real number of Rx queues\n"); 1494 return rc; 1495 } 1496 1497 return 0; 1498 } 1499 1500 static void qede_napi_disable_remove(struct qede_dev *edev) 1501 { 1502 int i; 1503 1504 for_each_queue(i) { 1505 napi_disable(&edev->fp_array[i].napi); 1506 1507 netif_napi_del(&edev->fp_array[i].napi); 1508 } 1509 } 1510 1511 static void qede_napi_add_enable(struct qede_dev *edev) 1512 { 1513 int i; 1514 1515 /* Add NAPI objects */ 1516 for_each_queue(i) { 1517 netif_napi_add(edev->ndev, &edev->fp_array[i].napi, 1518 qede_poll, NAPI_POLL_WEIGHT); 1519 napi_enable(&edev->fp_array[i].napi); 1520 } 1521 } 1522 1523 static void qede_sync_free_irqs(struct qede_dev *edev) 1524 { 1525 int i; 1526 1527 for (i = 0; i < edev->int_info.used_cnt; i++) { 1528 if (edev->int_info.msix_cnt) { 1529 synchronize_irq(edev->int_info.msix[i].vector); 1530 free_irq(edev->int_info.msix[i].vector, 1531 &edev->fp_array[i]); 1532 } else { 1533 edev->ops->common->simd_handler_clean(edev->cdev, i); 1534 } 1535 } 1536 1537 edev->int_info.used_cnt = 0; 1538 } 1539 1540 static int qede_req_msix_irqs(struct qede_dev *edev) 1541 { 1542 int i, rc; 1543 1544 /* Sanitize number of interrupts == number of prepared RSS queues */ 1545 if (QEDE_QUEUE_CNT(edev) > edev->int_info.msix_cnt) { 1546 DP_ERR(edev, 1547 "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n", 1548 QEDE_QUEUE_CNT(edev), edev->int_info.msix_cnt); 1549 return -EINVAL; 1550 } 1551 1552 for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) { 1553 #ifdef CONFIG_RFS_ACCEL 1554 struct qede_fastpath *fp = &edev->fp_array[i]; 1555 1556 if (edev->ndev->rx_cpu_rmap && (fp->type & QEDE_FASTPATH_RX)) { 1557 rc = irq_cpu_rmap_add(edev->ndev->rx_cpu_rmap, 1558 edev->int_info.msix[i].vector); 1559 if (rc) { 1560 DP_ERR(edev, "Failed to add CPU rmap\n"); 1561 qede_free_arfs(edev); 1562 } 1563 } 1564 #endif 1565 rc = request_irq(edev->int_info.msix[i].vector, 1566 qede_msix_fp_int, 0, edev->fp_array[i].name, 1567 &edev->fp_array[i]); 1568 if (rc) { 1569 DP_ERR(edev, "Request fp %d irq failed\n", i); 1570 qede_sync_free_irqs(edev); 1571 return rc; 1572 } 1573 DP_VERBOSE(edev, NETIF_MSG_INTR, 1574 "Requested fp irq for %s [entry %d]. Cookie is at %p\n", 1575 edev->fp_array[i].name, i, 1576 &edev->fp_array[i]); 1577 edev->int_info.used_cnt++; 1578 } 1579 1580 return 0; 1581 } 1582 1583 static void qede_simd_fp_handler(void *cookie) 1584 { 1585 struct qede_fastpath *fp = (struct qede_fastpath *)cookie; 1586 1587 napi_schedule_irqoff(&fp->napi); 1588 } 1589 1590 static int qede_setup_irqs(struct qede_dev *edev) 1591 { 1592 int i, rc = 0; 1593 1594 /* Learn Interrupt configuration */ 1595 rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info); 1596 if (rc) 1597 return rc; 1598 1599 if (edev->int_info.msix_cnt) { 1600 rc = qede_req_msix_irqs(edev); 1601 if (rc) 1602 return rc; 1603 edev->ndev->irq = edev->int_info.msix[0].vector; 1604 } else { 1605 const struct qed_common_ops *ops; 1606 1607 /* qed should learn receive the RSS ids and callbacks */ 1608 ops = edev->ops->common; 1609 for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) 1610 ops->simd_handler_config(edev->cdev, 1611 &edev->fp_array[i], i, 1612 qede_simd_fp_handler); 1613 edev->int_info.used_cnt = QEDE_QUEUE_CNT(edev); 1614 } 1615 return 0; 1616 } 1617 1618 static int qede_drain_txq(struct qede_dev *edev, 1619 struct qede_tx_queue *txq, bool allow_drain) 1620 { 1621 int rc, cnt = 1000; 1622 1623 while (txq->sw_tx_cons != txq->sw_tx_prod) { 1624 if (!cnt) { 1625 if (allow_drain) { 1626 DP_NOTICE(edev, 1627 "Tx queue[%d] is stuck, requesting MCP to drain\n", 1628 txq->index); 1629 rc = edev->ops->common->drain(edev->cdev); 1630 if (rc) 1631 return rc; 1632 return qede_drain_txq(edev, txq, false); 1633 } 1634 DP_NOTICE(edev, 1635 "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n", 1636 txq->index, txq->sw_tx_prod, 1637 txq->sw_tx_cons); 1638 return -ENODEV; 1639 } 1640 cnt--; 1641 usleep_range(1000, 2000); 1642 barrier(); 1643 } 1644 1645 /* FW finished processing, wait for HW to transmit all tx packets */ 1646 usleep_range(1000, 2000); 1647 1648 return 0; 1649 } 1650 1651 static int qede_stop_txq(struct qede_dev *edev, 1652 struct qede_tx_queue *txq, int rss_id) 1653 { 1654 return edev->ops->q_tx_stop(edev->cdev, rss_id, txq->handle); 1655 } 1656 1657 static int qede_stop_queues(struct qede_dev *edev) 1658 { 1659 struct qed_update_vport_params *vport_update_params; 1660 struct qed_dev *cdev = edev->cdev; 1661 struct qede_fastpath *fp; 1662 int rc, i; 1663 1664 /* Disable the vport */ 1665 vport_update_params = vzalloc(sizeof(*vport_update_params)); 1666 if (!vport_update_params) 1667 return -ENOMEM; 1668 1669 vport_update_params->vport_id = 0; 1670 vport_update_params->update_vport_active_flg = 1; 1671 vport_update_params->vport_active_flg = 0; 1672 vport_update_params->update_rss_flg = 0; 1673 1674 rc = edev->ops->vport_update(cdev, vport_update_params); 1675 vfree(vport_update_params); 1676 1677 if (rc) { 1678 DP_ERR(edev, "Failed to update vport\n"); 1679 return rc; 1680 } 1681 1682 /* Flush Tx queues. If needed, request drain from MCP */ 1683 for_each_queue(i) { 1684 fp = &edev->fp_array[i]; 1685 1686 if (fp->type & QEDE_FASTPATH_TX) { 1687 rc = qede_drain_txq(edev, fp->txq, true); 1688 if (rc) 1689 return rc; 1690 } 1691 1692 if (fp->type & QEDE_FASTPATH_XDP) { 1693 rc = qede_drain_txq(edev, fp->xdp_tx, true); 1694 if (rc) 1695 return rc; 1696 } 1697 } 1698 1699 /* Stop all Queues in reverse order */ 1700 for (i = QEDE_QUEUE_CNT(edev) - 1; i >= 0; i--) { 1701 fp = &edev->fp_array[i]; 1702 1703 /* Stop the Tx Queue(s) */ 1704 if (fp->type & QEDE_FASTPATH_TX) { 1705 rc = qede_stop_txq(edev, fp->txq, i); 1706 if (rc) 1707 return rc; 1708 } 1709 1710 /* Stop the Rx Queue */ 1711 if (fp->type & QEDE_FASTPATH_RX) { 1712 rc = edev->ops->q_rx_stop(cdev, i, fp->rxq->handle); 1713 if (rc) { 1714 DP_ERR(edev, "Failed to stop RXQ #%d\n", i); 1715 return rc; 1716 } 1717 } 1718 1719 /* Stop the XDP forwarding queue */ 1720 if (fp->type & QEDE_FASTPATH_XDP) { 1721 rc = qede_stop_txq(edev, fp->xdp_tx, i); 1722 if (rc) 1723 return rc; 1724 1725 bpf_prog_put(fp->rxq->xdp_prog); 1726 } 1727 } 1728 1729 /* Stop the vport */ 1730 rc = edev->ops->vport_stop(cdev, 0); 1731 if (rc) 1732 DP_ERR(edev, "Failed to stop VPORT\n"); 1733 1734 return rc; 1735 } 1736 1737 static int qede_start_txq(struct qede_dev *edev, 1738 struct qede_fastpath *fp, 1739 struct qede_tx_queue *txq, u8 rss_id, u16 sb_idx) 1740 { 1741 dma_addr_t phys_table = qed_chain_get_pbl_phys(&txq->tx_pbl); 1742 u32 page_cnt = qed_chain_get_page_cnt(&txq->tx_pbl); 1743 struct qed_queue_start_common_params params; 1744 struct qed_txq_start_ret_params ret_params; 1745 int rc; 1746 1747 memset(¶ms, 0, sizeof(params)); 1748 memset(&ret_params, 0, sizeof(ret_params)); 1749 1750 /* Let the XDP queue share the queue-zone with one of the regular txq. 1751 * We don't really care about its coalescing. 1752 */ 1753 if (txq->is_xdp) 1754 params.queue_id = QEDE_TXQ_XDP_TO_IDX(edev, txq); 1755 else 1756 params.queue_id = txq->index; 1757 1758 params.p_sb = fp->sb_info; 1759 params.sb_idx = sb_idx; 1760 1761 rc = edev->ops->q_tx_start(edev->cdev, rss_id, ¶ms, phys_table, 1762 page_cnt, &ret_params); 1763 if (rc) { 1764 DP_ERR(edev, "Start TXQ #%d failed %d\n", txq->index, rc); 1765 return rc; 1766 } 1767 1768 txq->doorbell_addr = ret_params.p_doorbell; 1769 txq->handle = ret_params.p_handle; 1770 1771 /* Determine the FW consumer address associated */ 1772 txq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[sb_idx]; 1773 1774 /* Prepare the doorbell parameters */ 1775 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST, DB_DEST_XCM); 1776 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD, DB_AGG_CMD_SET); 1777 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_VAL_SEL, 1778 DQ_XCM_ETH_TX_BD_PROD_CMD); 1779 txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD; 1780 1781 return rc; 1782 } 1783 1784 static int qede_start_queues(struct qede_dev *edev, bool clear_stats) 1785 { 1786 int vlan_removal_en = 1; 1787 struct qed_dev *cdev = edev->cdev; 1788 struct qed_dev_info *qed_info = &edev->dev_info.common; 1789 struct qed_update_vport_params *vport_update_params; 1790 struct qed_queue_start_common_params q_params; 1791 struct qed_start_vport_params start = {0}; 1792 int rc, i; 1793 1794 if (!edev->num_queues) { 1795 DP_ERR(edev, 1796 "Cannot update V-VPORT as active as there are no Rx queues\n"); 1797 return -EINVAL; 1798 } 1799 1800 vport_update_params = vzalloc(sizeof(*vport_update_params)); 1801 if (!vport_update_params) 1802 return -ENOMEM; 1803 1804 start.handle_ptp_pkts = !!(edev->ptp); 1805 start.gro_enable = !edev->gro_disable; 1806 start.mtu = edev->ndev->mtu; 1807 start.vport_id = 0; 1808 start.drop_ttl0 = true; 1809 start.remove_inner_vlan = vlan_removal_en; 1810 start.clear_stats = clear_stats; 1811 1812 rc = edev->ops->vport_start(cdev, &start); 1813 1814 if (rc) { 1815 DP_ERR(edev, "Start V-PORT failed %d\n", rc); 1816 goto out; 1817 } 1818 1819 DP_VERBOSE(edev, NETIF_MSG_IFUP, 1820 "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n", 1821 start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en); 1822 1823 for_each_queue(i) { 1824 struct qede_fastpath *fp = &edev->fp_array[i]; 1825 dma_addr_t p_phys_table; 1826 u32 page_cnt; 1827 1828 if (fp->type & QEDE_FASTPATH_RX) { 1829 struct qed_rxq_start_ret_params ret_params; 1830 struct qede_rx_queue *rxq = fp->rxq; 1831 __le16 *val; 1832 1833 memset(&ret_params, 0, sizeof(ret_params)); 1834 memset(&q_params, 0, sizeof(q_params)); 1835 q_params.queue_id = rxq->rxq_id; 1836 q_params.vport_id = 0; 1837 q_params.p_sb = fp->sb_info; 1838 q_params.sb_idx = RX_PI; 1839 1840 p_phys_table = 1841 qed_chain_get_pbl_phys(&rxq->rx_comp_ring); 1842 page_cnt = qed_chain_get_page_cnt(&rxq->rx_comp_ring); 1843 1844 rc = edev->ops->q_rx_start(cdev, i, &q_params, 1845 rxq->rx_buf_size, 1846 rxq->rx_bd_ring.p_phys_addr, 1847 p_phys_table, 1848 page_cnt, &ret_params); 1849 if (rc) { 1850 DP_ERR(edev, "Start RXQ #%d failed %d\n", i, 1851 rc); 1852 goto out; 1853 } 1854 1855 /* Use the return parameters */ 1856 rxq->hw_rxq_prod_addr = ret_params.p_prod; 1857 rxq->handle = ret_params.p_handle; 1858 1859 val = &fp->sb_info->sb_virt->pi_array[RX_PI]; 1860 rxq->hw_cons_ptr = val; 1861 1862 qede_update_rx_prod(edev, rxq); 1863 } 1864 1865 if (fp->type & QEDE_FASTPATH_XDP) { 1866 rc = qede_start_txq(edev, fp, fp->xdp_tx, i, XDP_PI); 1867 if (rc) 1868 goto out; 1869 1870 fp->rxq->xdp_prog = bpf_prog_add(edev->xdp_prog, 1); 1871 if (IS_ERR(fp->rxq->xdp_prog)) { 1872 rc = PTR_ERR(fp->rxq->xdp_prog); 1873 fp->rxq->xdp_prog = NULL; 1874 goto out; 1875 } 1876 } 1877 1878 if (fp->type & QEDE_FASTPATH_TX) { 1879 rc = qede_start_txq(edev, fp, fp->txq, i, TX_PI(0)); 1880 if (rc) 1881 goto out; 1882 } 1883 } 1884 1885 /* Prepare and send the vport enable */ 1886 vport_update_params->vport_id = start.vport_id; 1887 vport_update_params->update_vport_active_flg = 1; 1888 vport_update_params->vport_active_flg = 1; 1889 1890 if ((qed_info->b_inter_pf_switch || pci_num_vf(edev->pdev)) && 1891 qed_info->tx_switching) { 1892 vport_update_params->update_tx_switching_flg = 1; 1893 vport_update_params->tx_switching_flg = 1; 1894 } 1895 1896 qede_fill_rss_params(edev, &vport_update_params->rss_params, 1897 &vport_update_params->update_rss_flg); 1898 1899 rc = edev->ops->vport_update(cdev, vport_update_params); 1900 if (rc) 1901 DP_ERR(edev, "Update V-PORT failed %d\n", rc); 1902 1903 out: 1904 vfree(vport_update_params); 1905 return rc; 1906 } 1907 1908 enum qede_unload_mode { 1909 QEDE_UNLOAD_NORMAL, 1910 }; 1911 1912 static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode, 1913 bool is_locked) 1914 { 1915 struct qed_link_params link_params; 1916 int rc; 1917 1918 DP_INFO(edev, "Starting qede unload\n"); 1919 1920 if (!is_locked) 1921 __qede_lock(edev); 1922 1923 edev->state = QEDE_STATE_CLOSED; 1924 1925 qede_rdma_dev_event_close(edev); 1926 1927 /* Close OS Tx */ 1928 netif_tx_disable(edev->ndev); 1929 netif_carrier_off(edev->ndev); 1930 1931 /* Reset the link */ 1932 memset(&link_params, 0, sizeof(link_params)); 1933 link_params.link_up = false; 1934 edev->ops->common->set_link(edev->cdev, &link_params); 1935 rc = qede_stop_queues(edev); 1936 if (rc) { 1937 qede_sync_free_irqs(edev); 1938 goto out; 1939 } 1940 1941 DP_INFO(edev, "Stopped Queues\n"); 1942 1943 qede_vlan_mark_nonconfigured(edev); 1944 edev->ops->fastpath_stop(edev->cdev); 1945 1946 if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) { 1947 qede_poll_for_freeing_arfs_filters(edev); 1948 qede_free_arfs(edev); 1949 } 1950 1951 /* Release the interrupts */ 1952 qede_sync_free_irqs(edev); 1953 edev->ops->common->set_fp_int(edev->cdev, 0); 1954 1955 qede_napi_disable_remove(edev); 1956 1957 qede_free_mem_load(edev); 1958 qede_free_fp_array(edev); 1959 1960 out: 1961 if (!is_locked) 1962 __qede_unlock(edev); 1963 DP_INFO(edev, "Ending qede unload\n"); 1964 } 1965 1966 enum qede_load_mode { 1967 QEDE_LOAD_NORMAL, 1968 QEDE_LOAD_RELOAD, 1969 }; 1970 1971 static int qede_load(struct qede_dev *edev, enum qede_load_mode mode, 1972 bool is_locked) 1973 { 1974 struct qed_link_params link_params; 1975 int rc; 1976 1977 DP_INFO(edev, "Starting qede load\n"); 1978 1979 if (!is_locked) 1980 __qede_lock(edev); 1981 1982 rc = qede_set_num_queues(edev); 1983 if (rc) 1984 goto out; 1985 1986 rc = qede_alloc_fp_array(edev); 1987 if (rc) 1988 goto out; 1989 1990 qede_init_fp(edev); 1991 1992 rc = qede_alloc_mem_load(edev); 1993 if (rc) 1994 goto err1; 1995 DP_INFO(edev, "Allocated %d Rx, %d Tx queues\n", 1996 QEDE_RSS_COUNT(edev), QEDE_TSS_COUNT(edev)); 1997 1998 rc = qede_set_real_num_queues(edev); 1999 if (rc) 2000 goto err2; 2001 2002 if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) { 2003 rc = qede_alloc_arfs(edev); 2004 if (rc) 2005 DP_NOTICE(edev, "aRFS memory allocation failed\n"); 2006 } 2007 2008 qede_napi_add_enable(edev); 2009 DP_INFO(edev, "Napi added and enabled\n"); 2010 2011 rc = qede_setup_irqs(edev); 2012 if (rc) 2013 goto err3; 2014 DP_INFO(edev, "Setup IRQs succeeded\n"); 2015 2016 rc = qede_start_queues(edev, mode != QEDE_LOAD_RELOAD); 2017 if (rc) 2018 goto err4; 2019 DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n"); 2020 2021 /* Program un-configured VLANs */ 2022 qede_configure_vlan_filters(edev); 2023 2024 /* Ask for link-up using current configuration */ 2025 memset(&link_params, 0, sizeof(link_params)); 2026 link_params.link_up = true; 2027 edev->ops->common->set_link(edev->cdev, &link_params); 2028 2029 edev->state = QEDE_STATE_OPEN; 2030 2031 DP_INFO(edev, "Ending successfully qede load\n"); 2032 2033 goto out; 2034 err4: 2035 qede_sync_free_irqs(edev); 2036 memset(&edev->int_info.msix_cnt, 0, sizeof(struct qed_int_info)); 2037 err3: 2038 qede_napi_disable_remove(edev); 2039 err2: 2040 qede_free_mem_load(edev); 2041 err1: 2042 edev->ops->common->set_fp_int(edev->cdev, 0); 2043 qede_free_fp_array(edev); 2044 edev->num_queues = 0; 2045 edev->fp_num_tx = 0; 2046 edev->fp_num_rx = 0; 2047 out: 2048 if (!is_locked) 2049 __qede_unlock(edev); 2050 2051 return rc; 2052 } 2053 2054 /* 'func' should be able to run between unload and reload assuming interface 2055 * is actually running, or afterwards in case it's currently DOWN. 2056 */ 2057 void qede_reload(struct qede_dev *edev, 2058 struct qede_reload_args *args, bool is_locked) 2059 { 2060 if (!is_locked) 2061 __qede_lock(edev); 2062 2063 /* Since qede_lock is held, internal state wouldn't change even 2064 * if netdev state would start transitioning. Check whether current 2065 * internal configuration indicates device is up, then reload. 2066 */ 2067 if (edev->state == QEDE_STATE_OPEN) { 2068 qede_unload(edev, QEDE_UNLOAD_NORMAL, true); 2069 if (args) 2070 args->func(edev, args); 2071 qede_load(edev, QEDE_LOAD_RELOAD, true); 2072 2073 /* Since no one is going to do it for us, re-configure */ 2074 qede_config_rx_mode(edev->ndev); 2075 } else if (args) { 2076 args->func(edev, args); 2077 } 2078 2079 if (!is_locked) 2080 __qede_unlock(edev); 2081 } 2082 2083 /* called with rtnl_lock */ 2084 static int qede_open(struct net_device *ndev) 2085 { 2086 struct qede_dev *edev = netdev_priv(ndev); 2087 int rc; 2088 2089 netif_carrier_off(ndev); 2090 2091 edev->ops->common->set_power_state(edev->cdev, PCI_D0); 2092 2093 rc = qede_load(edev, QEDE_LOAD_NORMAL, false); 2094 if (rc) 2095 return rc; 2096 2097 udp_tunnel_get_rx_info(ndev); 2098 2099 edev->ops->common->update_drv_state(edev->cdev, true); 2100 2101 return 0; 2102 } 2103 2104 static int qede_close(struct net_device *ndev) 2105 { 2106 struct qede_dev *edev = netdev_priv(ndev); 2107 2108 qede_unload(edev, QEDE_UNLOAD_NORMAL, false); 2109 2110 edev->ops->common->update_drv_state(edev->cdev, false); 2111 2112 return 0; 2113 } 2114 2115 static void qede_link_update(void *dev, struct qed_link_output *link) 2116 { 2117 struct qede_dev *edev = dev; 2118 2119 if (!netif_running(edev->ndev)) { 2120 DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not running\n"); 2121 return; 2122 } 2123 2124 if (link->link_up) { 2125 if (!netif_carrier_ok(edev->ndev)) { 2126 DP_NOTICE(edev, "Link is up\n"); 2127 netif_tx_start_all_queues(edev->ndev); 2128 netif_carrier_on(edev->ndev); 2129 qede_rdma_dev_event_open(edev); 2130 } 2131 } else { 2132 if (netif_carrier_ok(edev->ndev)) { 2133 DP_NOTICE(edev, "Link is down\n"); 2134 netif_tx_disable(edev->ndev); 2135 netif_carrier_off(edev->ndev); 2136 qede_rdma_dev_event_close(edev); 2137 } 2138 } 2139 } 2140 2141 static bool qede_is_txq_full(struct qede_dev *edev, struct qede_tx_queue *txq) 2142 { 2143 struct netdev_queue *netdev_txq; 2144 2145 netdev_txq = netdev_get_tx_queue(edev->ndev, txq->index); 2146 if (netif_xmit_stopped(netdev_txq)) 2147 return true; 2148 2149 return false; 2150 } 2151 2152 static void qede_get_generic_tlv_data(void *dev, struct qed_generic_tlvs *data) 2153 { 2154 struct qede_dev *edev = dev; 2155 struct netdev_hw_addr *ha; 2156 int i; 2157 2158 if (edev->ndev->features & NETIF_F_IP_CSUM) 2159 data->feat_flags |= QED_TLV_IP_CSUM; 2160 if (edev->ndev->features & NETIF_F_TSO) 2161 data->feat_flags |= QED_TLV_LSO; 2162 2163 ether_addr_copy(data->mac[0], edev->ndev->dev_addr); 2164 memset(data->mac[1], 0, ETH_ALEN); 2165 memset(data->mac[2], 0, ETH_ALEN); 2166 /* Copy the first two UC macs */ 2167 netif_addr_lock_bh(edev->ndev); 2168 i = 1; 2169 netdev_for_each_uc_addr(ha, edev->ndev) { 2170 ether_addr_copy(data->mac[i++], ha->addr); 2171 if (i == QED_TLV_MAC_COUNT) 2172 break; 2173 } 2174 2175 netif_addr_unlock_bh(edev->ndev); 2176 } 2177 2178 static void qede_get_eth_tlv_data(void *dev, void *data) 2179 { 2180 struct qed_mfw_tlv_eth *etlv = data; 2181 struct qede_dev *edev = dev; 2182 struct qede_fastpath *fp; 2183 int i; 2184 2185 etlv->lso_maxoff_size = 0XFFFF; 2186 etlv->lso_maxoff_size_set = true; 2187 etlv->lso_minseg_size = (u16)ETH_TX_LSO_WINDOW_MIN_LEN; 2188 etlv->lso_minseg_size_set = true; 2189 etlv->prom_mode = !!(edev->ndev->flags & IFF_PROMISC); 2190 etlv->prom_mode_set = true; 2191 etlv->tx_descr_size = QEDE_TSS_COUNT(edev); 2192 etlv->tx_descr_size_set = true; 2193 etlv->rx_descr_size = QEDE_RSS_COUNT(edev); 2194 etlv->rx_descr_size_set = true; 2195 etlv->iov_offload = QED_MFW_TLV_IOV_OFFLOAD_VEB; 2196 etlv->iov_offload_set = true; 2197 2198 /* Fill information regarding queues; Should be done under the qede 2199 * lock to guarantee those don't change beneath our feet. 2200 */ 2201 etlv->txqs_empty = true; 2202 etlv->rxqs_empty = true; 2203 etlv->num_txqs_full = 0; 2204 etlv->num_rxqs_full = 0; 2205 2206 __qede_lock(edev); 2207 for_each_queue(i) { 2208 fp = &edev->fp_array[i]; 2209 if (fp->type & QEDE_FASTPATH_TX) { 2210 if (fp->txq->sw_tx_cons != fp->txq->sw_tx_prod) 2211 etlv->txqs_empty = false; 2212 if (qede_is_txq_full(edev, fp->txq)) 2213 etlv->num_txqs_full++; 2214 } 2215 if (fp->type & QEDE_FASTPATH_RX) { 2216 if (qede_has_rx_work(fp->rxq)) 2217 etlv->rxqs_empty = false; 2218 2219 /* This one is a bit tricky; Firmware might stop 2220 * placing packets if ring is not yet full. 2221 * Give an approximation. 2222 */ 2223 if (le16_to_cpu(*fp->rxq->hw_cons_ptr) - 2224 qed_chain_get_cons_idx(&fp->rxq->rx_comp_ring) > 2225 RX_RING_SIZE - 100) 2226 etlv->num_rxqs_full++; 2227 } 2228 } 2229 __qede_unlock(edev); 2230 2231 etlv->txqs_empty_set = true; 2232 etlv->rxqs_empty_set = true; 2233 etlv->num_txqs_full_set = true; 2234 etlv->num_rxqs_full_set = true; 2235 } 2236