xref: /linux/drivers/net/ethernet/qlogic/qede/qede_main.c (revision 13a370b9d275959ac75e92dc14e43eeae75804f8)
1 /* QLogic qede NIC Driver
2  * Copyright (c) 2015-2017  QLogic Corporation
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and /or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 #include <linux/module.h>
33 #include <linux/pci.h>
34 #include <linux/version.h>
35 #include <linux/device.h>
36 #include <linux/netdevice.h>
37 #include <linux/etherdevice.h>
38 #include <linux/skbuff.h>
39 #include <linux/errno.h>
40 #include <linux/list.h>
41 #include <linux/string.h>
42 #include <linux/dma-mapping.h>
43 #include <linux/interrupt.h>
44 #include <asm/byteorder.h>
45 #include <asm/param.h>
46 #include <linux/io.h>
47 #include <linux/netdev_features.h>
48 #include <linux/udp.h>
49 #include <linux/tcp.h>
50 #include <net/udp_tunnel.h>
51 #include <linux/ip.h>
52 #include <net/ipv6.h>
53 #include <net/tcp.h>
54 #include <linux/if_ether.h>
55 #include <linux/if_vlan.h>
56 #include <linux/pkt_sched.h>
57 #include <linux/ethtool.h>
58 #include <linux/in.h>
59 #include <linux/random.h>
60 #include <net/ip6_checksum.h>
61 #include <linux/bitops.h>
62 #include <linux/vmalloc.h>
63 #include "qede.h"
64 #include "qede_ptp.h"
65 
66 static char version[] =
67 	"QLogic FastLinQ 4xxxx Ethernet Driver qede " DRV_MODULE_VERSION "\n";
68 
69 MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver");
70 MODULE_LICENSE("GPL");
71 MODULE_VERSION(DRV_MODULE_VERSION);
72 
73 static uint debug;
74 module_param(debug, uint, 0);
75 MODULE_PARM_DESC(debug, " Default debug msglevel");
76 
77 static const struct qed_eth_ops *qed_ops;
78 
79 #define CHIP_NUM_57980S_40		0x1634
80 #define CHIP_NUM_57980S_10		0x1666
81 #define CHIP_NUM_57980S_MF		0x1636
82 #define CHIP_NUM_57980S_100		0x1644
83 #define CHIP_NUM_57980S_50		0x1654
84 #define CHIP_NUM_57980S_25		0x1656
85 #define CHIP_NUM_57980S_IOV		0x1664
86 #define CHIP_NUM_AH			0x8070
87 #define CHIP_NUM_AH_IOV			0x8090
88 
89 #ifndef PCI_DEVICE_ID_NX2_57980E
90 #define PCI_DEVICE_ID_57980S_40		CHIP_NUM_57980S_40
91 #define PCI_DEVICE_ID_57980S_10		CHIP_NUM_57980S_10
92 #define PCI_DEVICE_ID_57980S_MF		CHIP_NUM_57980S_MF
93 #define PCI_DEVICE_ID_57980S_100	CHIP_NUM_57980S_100
94 #define PCI_DEVICE_ID_57980S_50		CHIP_NUM_57980S_50
95 #define PCI_DEVICE_ID_57980S_25		CHIP_NUM_57980S_25
96 #define PCI_DEVICE_ID_57980S_IOV	CHIP_NUM_57980S_IOV
97 #define PCI_DEVICE_ID_AH		CHIP_NUM_AH
98 #define PCI_DEVICE_ID_AH_IOV		CHIP_NUM_AH_IOV
99 
100 #endif
101 
102 enum qede_pci_private {
103 	QEDE_PRIVATE_PF,
104 	QEDE_PRIVATE_VF
105 };
106 
107 static const struct pci_device_id qede_pci_tbl[] = {
108 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF},
109 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF},
110 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF},
111 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF},
112 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF},
113 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF},
114 #ifdef CONFIG_QED_SRIOV
115 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF},
116 #endif
117 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH), QEDE_PRIVATE_PF},
118 #ifdef CONFIG_QED_SRIOV
119 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH_IOV), QEDE_PRIVATE_VF},
120 #endif
121 	{ 0 }
122 };
123 
124 MODULE_DEVICE_TABLE(pci, qede_pci_tbl);
125 
126 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id);
127 
128 #define TX_TIMEOUT		(5 * HZ)
129 
130 /* Utilize last protocol index for XDP */
131 #define XDP_PI	11
132 
133 static void qede_remove(struct pci_dev *pdev);
134 static void qede_shutdown(struct pci_dev *pdev);
135 static void qede_link_update(void *dev, struct qed_link_output *link);
136 static void qede_get_eth_tlv_data(void *edev, void *data);
137 static void qede_get_generic_tlv_data(void *edev,
138 				      struct qed_generic_tlvs *data);
139 
140 /* The qede lock is used to protect driver state change and driver flows that
141  * are not reentrant.
142  */
143 void __qede_lock(struct qede_dev *edev)
144 {
145 	mutex_lock(&edev->qede_lock);
146 }
147 
148 void __qede_unlock(struct qede_dev *edev)
149 {
150 	mutex_unlock(&edev->qede_lock);
151 }
152 
153 #ifdef CONFIG_QED_SRIOV
154 static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos,
155 			    __be16 vlan_proto)
156 {
157 	struct qede_dev *edev = netdev_priv(ndev);
158 
159 	if (vlan > 4095) {
160 		DP_NOTICE(edev, "Illegal vlan value %d\n", vlan);
161 		return -EINVAL;
162 	}
163 
164 	if (vlan_proto != htons(ETH_P_8021Q))
165 		return -EPROTONOSUPPORT;
166 
167 	DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n",
168 		   vlan, vf);
169 
170 	return edev->ops->iov->set_vlan(edev->cdev, vlan, vf);
171 }
172 
173 static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac)
174 {
175 	struct qede_dev *edev = netdev_priv(ndev);
176 
177 	DP_VERBOSE(edev, QED_MSG_IOV,
178 		   "Setting MAC %02x:%02x:%02x:%02x:%02x:%02x to VF [%d]\n",
179 		   mac[0], mac[1], mac[2], mac[3], mac[4], mac[5], vfidx);
180 
181 	if (!is_valid_ether_addr(mac)) {
182 		DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n");
183 		return -EINVAL;
184 	}
185 
186 	return edev->ops->iov->set_mac(edev->cdev, mac, vfidx);
187 }
188 
189 static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param)
190 {
191 	struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev));
192 	struct qed_dev_info *qed_info = &edev->dev_info.common;
193 	struct qed_update_vport_params *vport_params;
194 	int rc;
195 
196 	vport_params = vzalloc(sizeof(*vport_params));
197 	if (!vport_params)
198 		return -ENOMEM;
199 	DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param);
200 
201 	rc = edev->ops->iov->configure(edev->cdev, num_vfs_param);
202 
203 	/* Enable/Disable Tx switching for PF */
204 	if ((rc == num_vfs_param) && netif_running(edev->ndev) &&
205 	    !qed_info->b_inter_pf_switch && qed_info->tx_switching) {
206 		vport_params->vport_id = 0;
207 		vport_params->update_tx_switching_flg = 1;
208 		vport_params->tx_switching_flg = num_vfs_param ? 1 : 0;
209 		edev->ops->vport_update(edev->cdev, vport_params);
210 	}
211 
212 	vfree(vport_params);
213 	return rc;
214 }
215 #endif
216 
217 static struct pci_driver qede_pci_driver = {
218 	.name = "qede",
219 	.id_table = qede_pci_tbl,
220 	.probe = qede_probe,
221 	.remove = qede_remove,
222 	.shutdown = qede_shutdown,
223 #ifdef CONFIG_QED_SRIOV
224 	.sriov_configure = qede_sriov_configure,
225 #endif
226 };
227 
228 static struct qed_eth_cb_ops qede_ll_ops = {
229 	{
230 #ifdef CONFIG_RFS_ACCEL
231 		.arfs_filter_op = qede_arfs_filter_op,
232 #endif
233 		.link_update = qede_link_update,
234 		.get_generic_tlv_data = qede_get_generic_tlv_data,
235 		.get_protocol_tlv_data = qede_get_eth_tlv_data,
236 	},
237 	.force_mac = qede_force_mac,
238 	.ports_update = qede_udp_ports_update,
239 };
240 
241 static int qede_netdev_event(struct notifier_block *this, unsigned long event,
242 			     void *ptr)
243 {
244 	struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
245 	struct ethtool_drvinfo drvinfo;
246 	struct qede_dev *edev;
247 
248 	if (event != NETDEV_CHANGENAME && event != NETDEV_CHANGEADDR)
249 		goto done;
250 
251 	/* Check whether this is a qede device */
252 	if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo)
253 		goto done;
254 
255 	memset(&drvinfo, 0, sizeof(drvinfo));
256 	ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo);
257 	if (strcmp(drvinfo.driver, "qede"))
258 		goto done;
259 	edev = netdev_priv(ndev);
260 
261 	switch (event) {
262 	case NETDEV_CHANGENAME:
263 		/* Notify qed of the name change */
264 		if (!edev->ops || !edev->ops->common)
265 			goto done;
266 		edev->ops->common->set_name(edev->cdev, edev->ndev->name);
267 		break;
268 	case NETDEV_CHANGEADDR:
269 		edev = netdev_priv(ndev);
270 		qede_rdma_event_changeaddr(edev);
271 		break;
272 	}
273 
274 done:
275 	return NOTIFY_DONE;
276 }
277 
278 static struct notifier_block qede_netdev_notifier = {
279 	.notifier_call = qede_netdev_event,
280 };
281 
282 static
283 int __init qede_init(void)
284 {
285 	int ret;
286 
287 	pr_info("qede_init: %s\n", version);
288 
289 	qed_ops = qed_get_eth_ops();
290 	if (!qed_ops) {
291 		pr_notice("Failed to get qed ethtool operations\n");
292 		return -EINVAL;
293 	}
294 
295 	/* Must register notifier before pci ops, since we might miss
296 	 * interface rename after pci probe and netdev registration.
297 	 */
298 	ret = register_netdevice_notifier(&qede_netdev_notifier);
299 	if (ret) {
300 		pr_notice("Failed to register netdevice_notifier\n");
301 		qed_put_eth_ops();
302 		return -EINVAL;
303 	}
304 
305 	ret = pci_register_driver(&qede_pci_driver);
306 	if (ret) {
307 		pr_notice("Failed to register driver\n");
308 		unregister_netdevice_notifier(&qede_netdev_notifier);
309 		qed_put_eth_ops();
310 		return -EINVAL;
311 	}
312 
313 	return 0;
314 }
315 
316 static void __exit qede_cleanup(void)
317 {
318 	if (debug & QED_LOG_INFO_MASK)
319 		pr_info("qede_cleanup called\n");
320 
321 	unregister_netdevice_notifier(&qede_netdev_notifier);
322 	pci_unregister_driver(&qede_pci_driver);
323 	qed_put_eth_ops();
324 }
325 
326 module_init(qede_init);
327 module_exit(qede_cleanup);
328 
329 static int qede_open(struct net_device *ndev);
330 static int qede_close(struct net_device *ndev);
331 
332 void qede_fill_by_demand_stats(struct qede_dev *edev)
333 {
334 	struct qede_stats_common *p_common = &edev->stats.common;
335 	struct qed_eth_stats stats;
336 
337 	edev->ops->get_vport_stats(edev->cdev, &stats);
338 
339 	p_common->no_buff_discards = stats.common.no_buff_discards;
340 	p_common->packet_too_big_discard = stats.common.packet_too_big_discard;
341 	p_common->ttl0_discard = stats.common.ttl0_discard;
342 	p_common->rx_ucast_bytes = stats.common.rx_ucast_bytes;
343 	p_common->rx_mcast_bytes = stats.common.rx_mcast_bytes;
344 	p_common->rx_bcast_bytes = stats.common.rx_bcast_bytes;
345 	p_common->rx_ucast_pkts = stats.common.rx_ucast_pkts;
346 	p_common->rx_mcast_pkts = stats.common.rx_mcast_pkts;
347 	p_common->rx_bcast_pkts = stats.common.rx_bcast_pkts;
348 	p_common->mftag_filter_discards = stats.common.mftag_filter_discards;
349 	p_common->mac_filter_discards = stats.common.mac_filter_discards;
350 	p_common->gft_filter_drop = stats.common.gft_filter_drop;
351 
352 	p_common->tx_ucast_bytes = stats.common.tx_ucast_bytes;
353 	p_common->tx_mcast_bytes = stats.common.tx_mcast_bytes;
354 	p_common->tx_bcast_bytes = stats.common.tx_bcast_bytes;
355 	p_common->tx_ucast_pkts = stats.common.tx_ucast_pkts;
356 	p_common->tx_mcast_pkts = stats.common.tx_mcast_pkts;
357 	p_common->tx_bcast_pkts = stats.common.tx_bcast_pkts;
358 	p_common->tx_err_drop_pkts = stats.common.tx_err_drop_pkts;
359 	p_common->coalesced_pkts = stats.common.tpa_coalesced_pkts;
360 	p_common->coalesced_events = stats.common.tpa_coalesced_events;
361 	p_common->coalesced_aborts_num = stats.common.tpa_aborts_num;
362 	p_common->non_coalesced_pkts = stats.common.tpa_not_coalesced_pkts;
363 	p_common->coalesced_bytes = stats.common.tpa_coalesced_bytes;
364 
365 	p_common->rx_64_byte_packets = stats.common.rx_64_byte_packets;
366 	p_common->rx_65_to_127_byte_packets =
367 	    stats.common.rx_65_to_127_byte_packets;
368 	p_common->rx_128_to_255_byte_packets =
369 	    stats.common.rx_128_to_255_byte_packets;
370 	p_common->rx_256_to_511_byte_packets =
371 	    stats.common.rx_256_to_511_byte_packets;
372 	p_common->rx_512_to_1023_byte_packets =
373 	    stats.common.rx_512_to_1023_byte_packets;
374 	p_common->rx_1024_to_1518_byte_packets =
375 	    stats.common.rx_1024_to_1518_byte_packets;
376 	p_common->rx_crc_errors = stats.common.rx_crc_errors;
377 	p_common->rx_mac_crtl_frames = stats.common.rx_mac_crtl_frames;
378 	p_common->rx_pause_frames = stats.common.rx_pause_frames;
379 	p_common->rx_pfc_frames = stats.common.rx_pfc_frames;
380 	p_common->rx_align_errors = stats.common.rx_align_errors;
381 	p_common->rx_carrier_errors = stats.common.rx_carrier_errors;
382 	p_common->rx_oversize_packets = stats.common.rx_oversize_packets;
383 	p_common->rx_jabbers = stats.common.rx_jabbers;
384 	p_common->rx_undersize_packets = stats.common.rx_undersize_packets;
385 	p_common->rx_fragments = stats.common.rx_fragments;
386 	p_common->tx_64_byte_packets = stats.common.tx_64_byte_packets;
387 	p_common->tx_65_to_127_byte_packets =
388 	    stats.common.tx_65_to_127_byte_packets;
389 	p_common->tx_128_to_255_byte_packets =
390 	    stats.common.tx_128_to_255_byte_packets;
391 	p_common->tx_256_to_511_byte_packets =
392 	    stats.common.tx_256_to_511_byte_packets;
393 	p_common->tx_512_to_1023_byte_packets =
394 	    stats.common.tx_512_to_1023_byte_packets;
395 	p_common->tx_1024_to_1518_byte_packets =
396 	    stats.common.tx_1024_to_1518_byte_packets;
397 	p_common->tx_pause_frames = stats.common.tx_pause_frames;
398 	p_common->tx_pfc_frames = stats.common.tx_pfc_frames;
399 	p_common->brb_truncates = stats.common.brb_truncates;
400 	p_common->brb_discards = stats.common.brb_discards;
401 	p_common->tx_mac_ctrl_frames = stats.common.tx_mac_ctrl_frames;
402 
403 	if (QEDE_IS_BB(edev)) {
404 		struct qede_stats_bb *p_bb = &edev->stats.bb;
405 
406 		p_bb->rx_1519_to_1522_byte_packets =
407 		    stats.bb.rx_1519_to_1522_byte_packets;
408 		p_bb->rx_1519_to_2047_byte_packets =
409 		    stats.bb.rx_1519_to_2047_byte_packets;
410 		p_bb->rx_2048_to_4095_byte_packets =
411 		    stats.bb.rx_2048_to_4095_byte_packets;
412 		p_bb->rx_4096_to_9216_byte_packets =
413 		    stats.bb.rx_4096_to_9216_byte_packets;
414 		p_bb->rx_9217_to_16383_byte_packets =
415 		    stats.bb.rx_9217_to_16383_byte_packets;
416 		p_bb->tx_1519_to_2047_byte_packets =
417 		    stats.bb.tx_1519_to_2047_byte_packets;
418 		p_bb->tx_2048_to_4095_byte_packets =
419 		    stats.bb.tx_2048_to_4095_byte_packets;
420 		p_bb->tx_4096_to_9216_byte_packets =
421 		    stats.bb.tx_4096_to_9216_byte_packets;
422 		p_bb->tx_9217_to_16383_byte_packets =
423 		    stats.bb.tx_9217_to_16383_byte_packets;
424 		p_bb->tx_lpi_entry_count = stats.bb.tx_lpi_entry_count;
425 		p_bb->tx_total_collisions = stats.bb.tx_total_collisions;
426 	} else {
427 		struct qede_stats_ah *p_ah = &edev->stats.ah;
428 
429 		p_ah->rx_1519_to_max_byte_packets =
430 		    stats.ah.rx_1519_to_max_byte_packets;
431 		p_ah->tx_1519_to_max_byte_packets =
432 		    stats.ah.tx_1519_to_max_byte_packets;
433 	}
434 }
435 
436 static void qede_get_stats64(struct net_device *dev,
437 			     struct rtnl_link_stats64 *stats)
438 {
439 	struct qede_dev *edev = netdev_priv(dev);
440 	struct qede_stats_common *p_common;
441 
442 	qede_fill_by_demand_stats(edev);
443 	p_common = &edev->stats.common;
444 
445 	stats->rx_packets = p_common->rx_ucast_pkts + p_common->rx_mcast_pkts +
446 			    p_common->rx_bcast_pkts;
447 	stats->tx_packets = p_common->tx_ucast_pkts + p_common->tx_mcast_pkts +
448 			    p_common->tx_bcast_pkts;
449 
450 	stats->rx_bytes = p_common->rx_ucast_bytes + p_common->rx_mcast_bytes +
451 			  p_common->rx_bcast_bytes;
452 	stats->tx_bytes = p_common->tx_ucast_bytes + p_common->tx_mcast_bytes +
453 			  p_common->tx_bcast_bytes;
454 
455 	stats->tx_errors = p_common->tx_err_drop_pkts;
456 	stats->multicast = p_common->rx_mcast_pkts + p_common->rx_bcast_pkts;
457 
458 	stats->rx_fifo_errors = p_common->no_buff_discards;
459 
460 	if (QEDE_IS_BB(edev))
461 		stats->collisions = edev->stats.bb.tx_total_collisions;
462 	stats->rx_crc_errors = p_common->rx_crc_errors;
463 	stats->rx_frame_errors = p_common->rx_align_errors;
464 }
465 
466 #ifdef CONFIG_QED_SRIOV
467 static int qede_get_vf_config(struct net_device *dev, int vfidx,
468 			      struct ifla_vf_info *ivi)
469 {
470 	struct qede_dev *edev = netdev_priv(dev);
471 
472 	if (!edev->ops)
473 		return -EINVAL;
474 
475 	return edev->ops->iov->get_config(edev->cdev, vfidx, ivi);
476 }
477 
478 static int qede_set_vf_rate(struct net_device *dev, int vfidx,
479 			    int min_tx_rate, int max_tx_rate)
480 {
481 	struct qede_dev *edev = netdev_priv(dev);
482 
483 	return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate,
484 					max_tx_rate);
485 }
486 
487 static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val)
488 {
489 	struct qede_dev *edev = netdev_priv(dev);
490 
491 	if (!edev->ops)
492 		return -EINVAL;
493 
494 	return edev->ops->iov->set_spoof(edev->cdev, vfidx, val);
495 }
496 
497 static int qede_set_vf_link_state(struct net_device *dev, int vfidx,
498 				  int link_state)
499 {
500 	struct qede_dev *edev = netdev_priv(dev);
501 
502 	if (!edev->ops)
503 		return -EINVAL;
504 
505 	return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state);
506 }
507 
508 static int qede_set_vf_trust(struct net_device *dev, int vfidx, bool setting)
509 {
510 	struct qede_dev *edev = netdev_priv(dev);
511 
512 	if (!edev->ops)
513 		return -EINVAL;
514 
515 	return edev->ops->iov->set_trust(edev->cdev, vfidx, setting);
516 }
517 #endif
518 
519 static int qede_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
520 {
521 	struct qede_dev *edev = netdev_priv(dev);
522 
523 	if (!netif_running(dev))
524 		return -EAGAIN;
525 
526 	switch (cmd) {
527 	case SIOCSHWTSTAMP:
528 		return qede_ptp_hw_ts(edev, ifr);
529 	default:
530 		DP_VERBOSE(edev, QED_MSG_DEBUG,
531 			   "default IOCTL cmd 0x%x\n", cmd);
532 		return -EOPNOTSUPP;
533 	}
534 
535 	return 0;
536 }
537 
538 static const struct net_device_ops qede_netdev_ops = {
539 	.ndo_open = qede_open,
540 	.ndo_stop = qede_close,
541 	.ndo_start_xmit = qede_start_xmit,
542 	.ndo_set_rx_mode = qede_set_rx_mode,
543 	.ndo_set_mac_address = qede_set_mac_addr,
544 	.ndo_validate_addr = eth_validate_addr,
545 	.ndo_change_mtu = qede_change_mtu,
546 	.ndo_do_ioctl = qede_ioctl,
547 #ifdef CONFIG_QED_SRIOV
548 	.ndo_set_vf_mac = qede_set_vf_mac,
549 	.ndo_set_vf_vlan = qede_set_vf_vlan,
550 	.ndo_set_vf_trust = qede_set_vf_trust,
551 #endif
552 	.ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
553 	.ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
554 	.ndo_fix_features = qede_fix_features,
555 	.ndo_set_features = qede_set_features,
556 	.ndo_get_stats64 = qede_get_stats64,
557 #ifdef CONFIG_QED_SRIOV
558 	.ndo_set_vf_link_state = qede_set_vf_link_state,
559 	.ndo_set_vf_spoofchk = qede_set_vf_spoofchk,
560 	.ndo_get_vf_config = qede_get_vf_config,
561 	.ndo_set_vf_rate = qede_set_vf_rate,
562 #endif
563 	.ndo_udp_tunnel_add = qede_udp_tunnel_add,
564 	.ndo_udp_tunnel_del = qede_udp_tunnel_del,
565 	.ndo_features_check = qede_features_check,
566 	.ndo_bpf = qede_xdp,
567 #ifdef CONFIG_RFS_ACCEL
568 	.ndo_rx_flow_steer = qede_rx_flow_steer,
569 #endif
570 };
571 
572 static const struct net_device_ops qede_netdev_vf_ops = {
573 	.ndo_open = qede_open,
574 	.ndo_stop = qede_close,
575 	.ndo_start_xmit = qede_start_xmit,
576 	.ndo_set_rx_mode = qede_set_rx_mode,
577 	.ndo_set_mac_address = qede_set_mac_addr,
578 	.ndo_validate_addr = eth_validate_addr,
579 	.ndo_change_mtu = qede_change_mtu,
580 	.ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
581 	.ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
582 	.ndo_fix_features = qede_fix_features,
583 	.ndo_set_features = qede_set_features,
584 	.ndo_get_stats64 = qede_get_stats64,
585 	.ndo_udp_tunnel_add = qede_udp_tunnel_add,
586 	.ndo_udp_tunnel_del = qede_udp_tunnel_del,
587 	.ndo_features_check = qede_features_check,
588 };
589 
590 static const struct net_device_ops qede_netdev_vf_xdp_ops = {
591 	.ndo_open = qede_open,
592 	.ndo_stop = qede_close,
593 	.ndo_start_xmit = qede_start_xmit,
594 	.ndo_set_rx_mode = qede_set_rx_mode,
595 	.ndo_set_mac_address = qede_set_mac_addr,
596 	.ndo_validate_addr = eth_validate_addr,
597 	.ndo_change_mtu = qede_change_mtu,
598 	.ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
599 	.ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
600 	.ndo_fix_features = qede_fix_features,
601 	.ndo_set_features = qede_set_features,
602 	.ndo_get_stats64 = qede_get_stats64,
603 	.ndo_udp_tunnel_add = qede_udp_tunnel_add,
604 	.ndo_udp_tunnel_del = qede_udp_tunnel_del,
605 	.ndo_features_check = qede_features_check,
606 	.ndo_bpf = qede_xdp,
607 };
608 
609 /* -------------------------------------------------------------------------
610  * START OF PROBE / REMOVE
611  * -------------------------------------------------------------------------
612  */
613 
614 static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev,
615 					    struct pci_dev *pdev,
616 					    struct qed_dev_eth_info *info,
617 					    u32 dp_module, u8 dp_level)
618 {
619 	struct net_device *ndev;
620 	struct qede_dev *edev;
621 
622 	ndev = alloc_etherdev_mqs(sizeof(*edev),
623 				  info->num_queues, info->num_queues);
624 	if (!ndev) {
625 		pr_err("etherdev allocation failed\n");
626 		return NULL;
627 	}
628 
629 	edev = netdev_priv(ndev);
630 	edev->ndev = ndev;
631 	edev->cdev = cdev;
632 	edev->pdev = pdev;
633 	edev->dp_module = dp_module;
634 	edev->dp_level = dp_level;
635 	edev->ops = qed_ops;
636 	edev->q_num_rx_buffers = NUM_RX_BDS_DEF;
637 	edev->q_num_tx_buffers = NUM_TX_BDS_DEF;
638 
639 	DP_INFO(edev, "Allocated netdev with %d tx queues and %d rx queues\n",
640 		info->num_queues, info->num_queues);
641 
642 	SET_NETDEV_DEV(ndev, &pdev->dev);
643 
644 	memset(&edev->stats, 0, sizeof(edev->stats));
645 	memcpy(&edev->dev_info, info, sizeof(*info));
646 
647 	/* As ethtool doesn't have the ability to show WoL behavior as
648 	 * 'default', if device supports it declare it's enabled.
649 	 */
650 	if (edev->dev_info.common.wol_support)
651 		edev->wol_enabled = true;
652 
653 	INIT_LIST_HEAD(&edev->vlan_list);
654 
655 	return edev;
656 }
657 
658 static void qede_init_ndev(struct qede_dev *edev)
659 {
660 	struct net_device *ndev = edev->ndev;
661 	struct pci_dev *pdev = edev->pdev;
662 	bool udp_tunnel_enable = false;
663 	netdev_features_t hw_features;
664 
665 	pci_set_drvdata(pdev, ndev);
666 
667 	ndev->mem_start = edev->dev_info.common.pci_mem_start;
668 	ndev->base_addr = ndev->mem_start;
669 	ndev->mem_end = edev->dev_info.common.pci_mem_end;
670 	ndev->irq = edev->dev_info.common.pci_irq;
671 
672 	ndev->watchdog_timeo = TX_TIMEOUT;
673 
674 	if (IS_VF(edev)) {
675 		if (edev->dev_info.xdp_supported)
676 			ndev->netdev_ops = &qede_netdev_vf_xdp_ops;
677 		else
678 			ndev->netdev_ops = &qede_netdev_vf_ops;
679 	} else {
680 		ndev->netdev_ops = &qede_netdev_ops;
681 	}
682 
683 	qede_set_ethtool_ops(ndev);
684 
685 	ndev->priv_flags |= IFF_UNICAST_FLT;
686 
687 	/* user-changeble features */
688 	hw_features = NETIF_F_GRO | NETIF_F_GRO_HW | NETIF_F_SG |
689 		      NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
690 		      NETIF_F_TSO | NETIF_F_TSO6;
691 
692 	if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1)
693 		hw_features |= NETIF_F_NTUPLE;
694 
695 	if (edev->dev_info.common.vxlan_enable ||
696 	    edev->dev_info.common.geneve_enable)
697 		udp_tunnel_enable = true;
698 
699 	if (udp_tunnel_enable || edev->dev_info.common.gre_enable) {
700 		hw_features |= NETIF_F_TSO_ECN;
701 		ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
702 					NETIF_F_SG | NETIF_F_TSO |
703 					NETIF_F_TSO_ECN | NETIF_F_TSO6 |
704 					NETIF_F_RXCSUM;
705 	}
706 
707 	if (udp_tunnel_enable) {
708 		hw_features |= (NETIF_F_GSO_UDP_TUNNEL |
709 				NETIF_F_GSO_UDP_TUNNEL_CSUM);
710 		ndev->hw_enc_features |= (NETIF_F_GSO_UDP_TUNNEL |
711 					  NETIF_F_GSO_UDP_TUNNEL_CSUM);
712 	}
713 
714 	if (edev->dev_info.common.gre_enable) {
715 		hw_features |= (NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM);
716 		ndev->hw_enc_features |= (NETIF_F_GSO_GRE |
717 					  NETIF_F_GSO_GRE_CSUM);
718 	}
719 
720 	ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
721 			      NETIF_F_HIGHDMA;
722 	ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
723 			 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA |
724 			 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX;
725 
726 	ndev->hw_features = hw_features;
727 
728 	/* MTU range: 46 - 9600 */
729 	ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
730 	ndev->max_mtu = QEDE_MAX_JUMBO_PACKET_SIZE;
731 
732 	/* Set network device HW mac */
733 	ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac);
734 
735 	ndev->mtu = edev->dev_info.common.mtu;
736 }
737 
738 /* This function converts from 32b param to two params of level and module
739  * Input 32b decoding:
740  * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the
741  * 'happy' flow, e.g. memory allocation failed.
742  * b30 - enable all INFO prints. INFO prints are for major steps in the flow
743  * and provide important parameters.
744  * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that
745  * module. VERBOSE prints are for tracking the specific flow in low level.
746  *
747  * Notice that the level should be that of the lowest required logs.
748  */
749 void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level)
750 {
751 	*p_dp_level = QED_LEVEL_NOTICE;
752 	*p_dp_module = 0;
753 
754 	if (debug & QED_LOG_VERBOSE_MASK) {
755 		*p_dp_level = QED_LEVEL_VERBOSE;
756 		*p_dp_module = (debug & 0x3FFFFFFF);
757 	} else if (debug & QED_LOG_INFO_MASK) {
758 		*p_dp_level = QED_LEVEL_INFO;
759 	} else if (debug & QED_LOG_NOTICE_MASK) {
760 		*p_dp_level = QED_LEVEL_NOTICE;
761 	}
762 }
763 
764 static void qede_free_fp_array(struct qede_dev *edev)
765 {
766 	if (edev->fp_array) {
767 		struct qede_fastpath *fp;
768 		int i;
769 
770 		for_each_queue(i) {
771 			fp = &edev->fp_array[i];
772 
773 			kfree(fp->sb_info);
774 			/* Handle mem alloc failure case where qede_init_fp
775 			 * didn't register xdp_rxq_info yet.
776 			 * Implicit only (fp->type & QEDE_FASTPATH_RX)
777 			 */
778 			if (fp->rxq && xdp_rxq_info_is_reg(&fp->rxq->xdp_rxq))
779 				xdp_rxq_info_unreg(&fp->rxq->xdp_rxq);
780 			kfree(fp->rxq);
781 			kfree(fp->xdp_tx);
782 			kfree(fp->txq);
783 		}
784 		kfree(edev->fp_array);
785 	}
786 
787 	edev->num_queues = 0;
788 	edev->fp_num_tx = 0;
789 	edev->fp_num_rx = 0;
790 }
791 
792 static int qede_alloc_fp_array(struct qede_dev *edev)
793 {
794 	u8 fp_combined, fp_rx = edev->fp_num_rx;
795 	struct qede_fastpath *fp;
796 	int i;
797 
798 	edev->fp_array = kcalloc(QEDE_QUEUE_CNT(edev),
799 				 sizeof(*edev->fp_array), GFP_KERNEL);
800 	if (!edev->fp_array) {
801 		DP_NOTICE(edev, "fp array allocation failed\n");
802 		goto err;
803 	}
804 
805 	fp_combined = QEDE_QUEUE_CNT(edev) - fp_rx - edev->fp_num_tx;
806 
807 	/* Allocate the FP elements for Rx queues followed by combined and then
808 	 * the Tx. This ordering should be maintained so that the respective
809 	 * queues (Rx or Tx) will be together in the fastpath array and the
810 	 * associated ids will be sequential.
811 	 */
812 	for_each_queue(i) {
813 		fp = &edev->fp_array[i];
814 
815 		fp->sb_info = kzalloc(sizeof(*fp->sb_info), GFP_KERNEL);
816 		if (!fp->sb_info) {
817 			DP_NOTICE(edev, "sb info struct allocation failed\n");
818 			goto err;
819 		}
820 
821 		if (fp_rx) {
822 			fp->type = QEDE_FASTPATH_RX;
823 			fp_rx--;
824 		} else if (fp_combined) {
825 			fp->type = QEDE_FASTPATH_COMBINED;
826 			fp_combined--;
827 		} else {
828 			fp->type = QEDE_FASTPATH_TX;
829 		}
830 
831 		if (fp->type & QEDE_FASTPATH_TX) {
832 			fp->txq = kzalloc(sizeof(*fp->txq), GFP_KERNEL);
833 			if (!fp->txq)
834 				goto err;
835 		}
836 
837 		if (fp->type & QEDE_FASTPATH_RX) {
838 			fp->rxq = kzalloc(sizeof(*fp->rxq), GFP_KERNEL);
839 			if (!fp->rxq)
840 				goto err;
841 
842 			if (edev->xdp_prog) {
843 				fp->xdp_tx = kzalloc(sizeof(*fp->xdp_tx),
844 						     GFP_KERNEL);
845 				if (!fp->xdp_tx)
846 					goto err;
847 				fp->type |= QEDE_FASTPATH_XDP;
848 			}
849 		}
850 	}
851 
852 	return 0;
853 err:
854 	qede_free_fp_array(edev);
855 	return -ENOMEM;
856 }
857 
858 static void qede_sp_task(struct work_struct *work)
859 {
860 	struct qede_dev *edev = container_of(work, struct qede_dev,
861 					     sp_task.work);
862 
863 	__qede_lock(edev);
864 
865 	if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags))
866 		if (edev->state == QEDE_STATE_OPEN)
867 			qede_config_rx_mode(edev->ndev);
868 
869 #ifdef CONFIG_RFS_ACCEL
870 	if (test_and_clear_bit(QEDE_SP_ARFS_CONFIG, &edev->sp_flags)) {
871 		if (edev->state == QEDE_STATE_OPEN)
872 			qede_process_arfs_filters(edev, false);
873 	}
874 #endif
875 	__qede_unlock(edev);
876 }
877 
878 static void qede_update_pf_params(struct qed_dev *cdev)
879 {
880 	struct qed_pf_params pf_params;
881 
882 	/* 64 rx + 64 tx + 64 XDP */
883 	memset(&pf_params, 0, sizeof(struct qed_pf_params));
884 	pf_params.eth_pf_params.num_cons = (MAX_SB_PER_PF_MIMD - 1) * 3;
885 
886 	/* Same for VFs - make sure they'll have sufficient connections
887 	 * to support XDP Tx queues.
888 	 */
889 	pf_params.eth_pf_params.num_vf_cons = 48;
890 
891 	pf_params.eth_pf_params.num_arfs_filters = QEDE_RFS_MAX_FLTR;
892 	qed_ops->common->update_pf_params(cdev, &pf_params);
893 }
894 
895 #define QEDE_FW_VER_STR_SIZE	80
896 
897 static void qede_log_probe(struct qede_dev *edev)
898 {
899 	struct qed_dev_info *p_dev_info = &edev->dev_info.common;
900 	u8 buf[QEDE_FW_VER_STR_SIZE];
901 	size_t left_size;
902 
903 	snprintf(buf, QEDE_FW_VER_STR_SIZE,
904 		 "Storm FW %d.%d.%d.%d, Management FW %d.%d.%d.%d",
905 		 p_dev_info->fw_major, p_dev_info->fw_minor, p_dev_info->fw_rev,
906 		 p_dev_info->fw_eng,
907 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_3_MASK) >>
908 		 QED_MFW_VERSION_3_OFFSET,
909 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_2_MASK) >>
910 		 QED_MFW_VERSION_2_OFFSET,
911 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_1_MASK) >>
912 		 QED_MFW_VERSION_1_OFFSET,
913 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_0_MASK) >>
914 		 QED_MFW_VERSION_0_OFFSET);
915 
916 	left_size = QEDE_FW_VER_STR_SIZE - strlen(buf);
917 	if (p_dev_info->mbi_version && left_size)
918 		snprintf(buf + strlen(buf), left_size,
919 			 " [MBI %d.%d.%d]",
920 			 (p_dev_info->mbi_version & QED_MBI_VERSION_2_MASK) >>
921 			 QED_MBI_VERSION_2_OFFSET,
922 			 (p_dev_info->mbi_version & QED_MBI_VERSION_1_MASK) >>
923 			 QED_MBI_VERSION_1_OFFSET,
924 			 (p_dev_info->mbi_version & QED_MBI_VERSION_0_MASK) >>
925 			 QED_MBI_VERSION_0_OFFSET);
926 
927 	pr_info("qede %02x:%02x.%02x: %s [%s]\n", edev->pdev->bus->number,
928 		PCI_SLOT(edev->pdev->devfn), PCI_FUNC(edev->pdev->devfn),
929 		buf, edev->ndev->name);
930 }
931 
932 enum qede_probe_mode {
933 	QEDE_PROBE_NORMAL,
934 };
935 
936 static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level,
937 			bool is_vf, enum qede_probe_mode mode)
938 {
939 	struct qed_probe_params probe_params;
940 	struct qed_slowpath_params sp_params;
941 	struct qed_dev_eth_info dev_info;
942 	struct qede_dev *edev;
943 	struct qed_dev *cdev;
944 	int rc;
945 
946 	if (unlikely(dp_level & QED_LEVEL_INFO))
947 		pr_notice("Starting qede probe\n");
948 
949 	memset(&probe_params, 0, sizeof(probe_params));
950 	probe_params.protocol = QED_PROTOCOL_ETH;
951 	probe_params.dp_module = dp_module;
952 	probe_params.dp_level = dp_level;
953 	probe_params.is_vf = is_vf;
954 	cdev = qed_ops->common->probe(pdev, &probe_params);
955 	if (!cdev) {
956 		rc = -ENODEV;
957 		goto err0;
958 	}
959 
960 	qede_update_pf_params(cdev);
961 
962 	/* Start the Slowpath-process */
963 	memset(&sp_params, 0, sizeof(sp_params));
964 	sp_params.int_mode = QED_INT_MODE_MSIX;
965 	sp_params.drv_major = QEDE_MAJOR_VERSION;
966 	sp_params.drv_minor = QEDE_MINOR_VERSION;
967 	sp_params.drv_rev = QEDE_REVISION_VERSION;
968 	sp_params.drv_eng = QEDE_ENGINEERING_VERSION;
969 	strlcpy(sp_params.name, "qede LAN", QED_DRV_VER_STR_SIZE);
970 	rc = qed_ops->common->slowpath_start(cdev, &sp_params);
971 	if (rc) {
972 		pr_notice("Cannot start slowpath\n");
973 		goto err1;
974 	}
975 
976 	/* Learn information crucial for qede to progress */
977 	rc = qed_ops->fill_dev_info(cdev, &dev_info);
978 	if (rc)
979 		goto err2;
980 
981 	edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module,
982 				   dp_level);
983 	if (!edev) {
984 		rc = -ENOMEM;
985 		goto err2;
986 	}
987 
988 	if (is_vf)
989 		edev->flags |= QEDE_FLAG_IS_VF;
990 
991 	qede_init_ndev(edev);
992 
993 	rc = qede_rdma_dev_add(edev);
994 	if (rc)
995 		goto err3;
996 
997 	/* Prepare the lock prior to the registration of the netdev,
998 	 * as once it's registered we might reach flows requiring it
999 	 * [it's even possible to reach a flow needing it directly
1000 	 * from there, although it's unlikely].
1001 	 */
1002 	INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task);
1003 	mutex_init(&edev->qede_lock);
1004 	rc = register_netdev(edev->ndev);
1005 	if (rc) {
1006 		DP_NOTICE(edev, "Cannot register net-device\n");
1007 		goto err4;
1008 	}
1009 
1010 	edev->ops->common->set_name(cdev, edev->ndev->name);
1011 
1012 	/* PTP not supported on VFs */
1013 	if (!is_vf)
1014 		qede_ptp_enable(edev, true);
1015 
1016 	edev->ops->register_ops(cdev, &qede_ll_ops, edev);
1017 
1018 #ifdef CONFIG_DCB
1019 	if (!IS_VF(edev))
1020 		qede_set_dcbnl_ops(edev->ndev);
1021 #endif
1022 
1023 	edev->rx_copybreak = QEDE_RX_HDR_SIZE;
1024 
1025 	qede_log_probe(edev);
1026 	return 0;
1027 
1028 err4:
1029 	qede_rdma_dev_remove(edev);
1030 err3:
1031 	free_netdev(edev->ndev);
1032 err2:
1033 	qed_ops->common->slowpath_stop(cdev);
1034 err1:
1035 	qed_ops->common->remove(cdev);
1036 err0:
1037 	return rc;
1038 }
1039 
1040 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1041 {
1042 	bool is_vf = false;
1043 	u32 dp_module = 0;
1044 	u8 dp_level = 0;
1045 
1046 	switch ((enum qede_pci_private)id->driver_data) {
1047 	case QEDE_PRIVATE_VF:
1048 		if (debug & QED_LOG_VERBOSE_MASK)
1049 			dev_err(&pdev->dev, "Probing a VF\n");
1050 		is_vf = true;
1051 		break;
1052 	default:
1053 		if (debug & QED_LOG_VERBOSE_MASK)
1054 			dev_err(&pdev->dev, "Probing a PF\n");
1055 	}
1056 
1057 	qede_config_debug(debug, &dp_module, &dp_level);
1058 
1059 	return __qede_probe(pdev, dp_module, dp_level, is_vf,
1060 			    QEDE_PROBE_NORMAL);
1061 }
1062 
1063 enum qede_remove_mode {
1064 	QEDE_REMOVE_NORMAL,
1065 };
1066 
1067 static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode)
1068 {
1069 	struct net_device *ndev = pci_get_drvdata(pdev);
1070 	struct qede_dev *edev = netdev_priv(ndev);
1071 	struct qed_dev *cdev = edev->cdev;
1072 
1073 	DP_INFO(edev, "Starting qede_remove\n");
1074 
1075 	qede_rdma_dev_remove(edev);
1076 	unregister_netdev(ndev);
1077 	cancel_delayed_work_sync(&edev->sp_task);
1078 
1079 	qede_ptp_disable(edev);
1080 
1081 	edev->ops->common->set_power_state(cdev, PCI_D0);
1082 
1083 	pci_set_drvdata(pdev, NULL);
1084 
1085 	/* Use global ops since we've freed edev */
1086 	qed_ops->common->slowpath_stop(cdev);
1087 	if (system_state == SYSTEM_POWER_OFF)
1088 		return;
1089 	qed_ops->common->remove(cdev);
1090 
1091 	/* Since this can happen out-of-sync with other flows,
1092 	 * don't release the netdevice until after slowpath stop
1093 	 * has been called to guarantee various other contexts
1094 	 * [e.g., QED register callbacks] won't break anything when
1095 	 * accessing the netdevice.
1096 	 */
1097 	 free_netdev(ndev);
1098 
1099 	dev_info(&pdev->dev, "Ending qede_remove successfully\n");
1100 }
1101 
1102 static void qede_remove(struct pci_dev *pdev)
1103 {
1104 	__qede_remove(pdev, QEDE_REMOVE_NORMAL);
1105 }
1106 
1107 static void qede_shutdown(struct pci_dev *pdev)
1108 {
1109 	__qede_remove(pdev, QEDE_REMOVE_NORMAL);
1110 }
1111 
1112 /* -------------------------------------------------------------------------
1113  * START OF LOAD / UNLOAD
1114  * -------------------------------------------------------------------------
1115  */
1116 
1117 static int qede_set_num_queues(struct qede_dev *edev)
1118 {
1119 	int rc;
1120 	u16 rss_num;
1121 
1122 	/* Setup queues according to possible resources*/
1123 	if (edev->req_queues)
1124 		rss_num = edev->req_queues;
1125 	else
1126 		rss_num = netif_get_num_default_rss_queues() *
1127 			  edev->dev_info.common.num_hwfns;
1128 
1129 	rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num);
1130 
1131 	rc = edev->ops->common->set_fp_int(edev->cdev, rss_num);
1132 	if (rc > 0) {
1133 		/* Managed to request interrupts for our queues */
1134 		edev->num_queues = rc;
1135 		DP_INFO(edev, "Managed %d [of %d] RSS queues\n",
1136 			QEDE_QUEUE_CNT(edev), rss_num);
1137 		rc = 0;
1138 	}
1139 
1140 	edev->fp_num_tx = edev->req_num_tx;
1141 	edev->fp_num_rx = edev->req_num_rx;
1142 
1143 	return rc;
1144 }
1145 
1146 static void qede_free_mem_sb(struct qede_dev *edev, struct qed_sb_info *sb_info,
1147 			     u16 sb_id)
1148 {
1149 	if (sb_info->sb_virt) {
1150 		edev->ops->common->sb_release(edev->cdev, sb_info, sb_id);
1151 		dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt),
1152 				  (void *)sb_info->sb_virt, sb_info->sb_phys);
1153 		memset(sb_info, 0, sizeof(*sb_info));
1154 	}
1155 }
1156 
1157 /* This function allocates fast-path status block memory */
1158 static int qede_alloc_mem_sb(struct qede_dev *edev,
1159 			     struct qed_sb_info *sb_info, u16 sb_id)
1160 {
1161 	struct status_block_e4 *sb_virt;
1162 	dma_addr_t sb_phys;
1163 	int rc;
1164 
1165 	sb_virt = dma_alloc_coherent(&edev->pdev->dev,
1166 				     sizeof(*sb_virt), &sb_phys, GFP_KERNEL);
1167 	if (!sb_virt) {
1168 		DP_ERR(edev, "Status block allocation failed\n");
1169 		return -ENOMEM;
1170 	}
1171 
1172 	rc = edev->ops->common->sb_init(edev->cdev, sb_info,
1173 					sb_virt, sb_phys, sb_id,
1174 					QED_SB_TYPE_L2_QUEUE);
1175 	if (rc) {
1176 		DP_ERR(edev, "Status block initialization failed\n");
1177 		dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt),
1178 				  sb_virt, sb_phys);
1179 		return rc;
1180 	}
1181 
1182 	return 0;
1183 }
1184 
1185 static void qede_free_rx_buffers(struct qede_dev *edev,
1186 				 struct qede_rx_queue *rxq)
1187 {
1188 	u16 i;
1189 
1190 	for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) {
1191 		struct sw_rx_data *rx_buf;
1192 		struct page *data;
1193 
1194 		rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX];
1195 		data = rx_buf->data;
1196 
1197 		dma_unmap_page(&edev->pdev->dev,
1198 			       rx_buf->mapping, PAGE_SIZE, rxq->data_direction);
1199 
1200 		rx_buf->data = NULL;
1201 		__free_page(data);
1202 	}
1203 }
1204 
1205 static void qede_free_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1206 {
1207 	/* Free rx buffers */
1208 	qede_free_rx_buffers(edev, rxq);
1209 
1210 	/* Free the parallel SW ring */
1211 	kfree(rxq->sw_rx_ring);
1212 
1213 	/* Free the real RQ ring used by FW */
1214 	edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring);
1215 	edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring);
1216 }
1217 
1218 static void qede_set_tpa_param(struct qede_rx_queue *rxq)
1219 {
1220 	int i;
1221 
1222 	for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
1223 		struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
1224 
1225 		tpa_info->state = QEDE_AGG_STATE_NONE;
1226 	}
1227 }
1228 
1229 /* This function allocates all memory needed per Rx queue */
1230 static int qede_alloc_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1231 {
1232 	int i, rc, size;
1233 
1234 	rxq->num_rx_buffers = edev->q_num_rx_buffers;
1235 
1236 	rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD + edev->ndev->mtu;
1237 
1238 	rxq->rx_headroom = edev->xdp_prog ? XDP_PACKET_HEADROOM : NET_SKB_PAD;
1239 	size = rxq->rx_headroom +
1240 	       SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1241 
1242 	/* Make sure that the headroom and  payload fit in a single page */
1243 	if (rxq->rx_buf_size + size > PAGE_SIZE)
1244 		rxq->rx_buf_size = PAGE_SIZE - size;
1245 
1246 	/* Segment size to spilt a page in multiple equal parts ,
1247 	 * unless XDP is used in which case we'd use the entire page.
1248 	 */
1249 	if (!edev->xdp_prog) {
1250 		size = size + rxq->rx_buf_size;
1251 		rxq->rx_buf_seg_size = roundup_pow_of_two(size);
1252 	} else {
1253 		rxq->rx_buf_seg_size = PAGE_SIZE;
1254 	}
1255 
1256 	/* Allocate the parallel driver ring for Rx buffers */
1257 	size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE;
1258 	rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL);
1259 	if (!rxq->sw_rx_ring) {
1260 		DP_ERR(edev, "Rx buffers ring allocation failed\n");
1261 		rc = -ENOMEM;
1262 		goto err;
1263 	}
1264 
1265 	/* Allocate FW Rx ring  */
1266 	rc = edev->ops->common->chain_alloc(edev->cdev,
1267 					    QED_CHAIN_USE_TO_CONSUME_PRODUCE,
1268 					    QED_CHAIN_MODE_NEXT_PTR,
1269 					    QED_CHAIN_CNT_TYPE_U16,
1270 					    RX_RING_SIZE,
1271 					    sizeof(struct eth_rx_bd),
1272 					    &rxq->rx_bd_ring, NULL);
1273 	if (rc)
1274 		goto err;
1275 
1276 	/* Allocate FW completion ring */
1277 	rc = edev->ops->common->chain_alloc(edev->cdev,
1278 					    QED_CHAIN_USE_TO_CONSUME,
1279 					    QED_CHAIN_MODE_PBL,
1280 					    QED_CHAIN_CNT_TYPE_U16,
1281 					    RX_RING_SIZE,
1282 					    sizeof(union eth_rx_cqe),
1283 					    &rxq->rx_comp_ring, NULL);
1284 	if (rc)
1285 		goto err;
1286 
1287 	/* Allocate buffers for the Rx ring */
1288 	rxq->filled_buffers = 0;
1289 	for (i = 0; i < rxq->num_rx_buffers; i++) {
1290 		rc = qede_alloc_rx_buffer(rxq, false);
1291 		if (rc) {
1292 			DP_ERR(edev,
1293 			       "Rx buffers allocation failed at index %d\n", i);
1294 			goto err;
1295 		}
1296 	}
1297 
1298 	if (!edev->gro_disable)
1299 		qede_set_tpa_param(rxq);
1300 err:
1301 	return rc;
1302 }
1303 
1304 static void qede_free_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1305 {
1306 	/* Free the parallel SW ring */
1307 	if (txq->is_xdp)
1308 		kfree(txq->sw_tx_ring.xdp);
1309 	else
1310 		kfree(txq->sw_tx_ring.skbs);
1311 
1312 	/* Free the real RQ ring used by FW */
1313 	edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl);
1314 }
1315 
1316 /* This function allocates all memory needed per Tx queue */
1317 static int qede_alloc_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1318 {
1319 	union eth_tx_bd_types *p_virt;
1320 	int size, rc;
1321 
1322 	txq->num_tx_buffers = edev->q_num_tx_buffers;
1323 
1324 	/* Allocate the parallel driver ring for Tx buffers */
1325 	if (txq->is_xdp) {
1326 		size = sizeof(*txq->sw_tx_ring.xdp) * txq->num_tx_buffers;
1327 		txq->sw_tx_ring.xdp = kzalloc(size, GFP_KERNEL);
1328 		if (!txq->sw_tx_ring.xdp)
1329 			goto err;
1330 	} else {
1331 		size = sizeof(*txq->sw_tx_ring.skbs) * txq->num_tx_buffers;
1332 		txq->sw_tx_ring.skbs = kzalloc(size, GFP_KERNEL);
1333 		if (!txq->sw_tx_ring.skbs)
1334 			goto err;
1335 	}
1336 
1337 	rc = edev->ops->common->chain_alloc(edev->cdev,
1338 					    QED_CHAIN_USE_TO_CONSUME_PRODUCE,
1339 					    QED_CHAIN_MODE_PBL,
1340 					    QED_CHAIN_CNT_TYPE_U16,
1341 					    txq->num_tx_buffers,
1342 					    sizeof(*p_virt),
1343 					    &txq->tx_pbl, NULL);
1344 	if (rc)
1345 		goto err;
1346 
1347 	return 0;
1348 
1349 err:
1350 	qede_free_mem_txq(edev, txq);
1351 	return -ENOMEM;
1352 }
1353 
1354 /* This function frees all memory of a single fp */
1355 static void qede_free_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1356 {
1357 	qede_free_mem_sb(edev, fp->sb_info, fp->id);
1358 
1359 	if (fp->type & QEDE_FASTPATH_RX)
1360 		qede_free_mem_rxq(edev, fp->rxq);
1361 
1362 	if (fp->type & QEDE_FASTPATH_XDP)
1363 		qede_free_mem_txq(edev, fp->xdp_tx);
1364 
1365 	if (fp->type & QEDE_FASTPATH_TX)
1366 		qede_free_mem_txq(edev, fp->txq);
1367 }
1368 
1369 /* This function allocates all memory needed for a single fp (i.e. an entity
1370  * which contains status block, one rx queue and/or multiple per-TC tx queues.
1371  */
1372 static int qede_alloc_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1373 {
1374 	int rc = 0;
1375 
1376 	rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->id);
1377 	if (rc)
1378 		goto out;
1379 
1380 	if (fp->type & QEDE_FASTPATH_RX) {
1381 		rc = qede_alloc_mem_rxq(edev, fp->rxq);
1382 		if (rc)
1383 			goto out;
1384 	}
1385 
1386 	if (fp->type & QEDE_FASTPATH_XDP) {
1387 		rc = qede_alloc_mem_txq(edev, fp->xdp_tx);
1388 		if (rc)
1389 			goto out;
1390 	}
1391 
1392 	if (fp->type & QEDE_FASTPATH_TX) {
1393 		rc = qede_alloc_mem_txq(edev, fp->txq);
1394 		if (rc)
1395 			goto out;
1396 	}
1397 
1398 out:
1399 	return rc;
1400 }
1401 
1402 static void qede_free_mem_load(struct qede_dev *edev)
1403 {
1404 	int i;
1405 
1406 	for_each_queue(i) {
1407 		struct qede_fastpath *fp = &edev->fp_array[i];
1408 
1409 		qede_free_mem_fp(edev, fp);
1410 	}
1411 }
1412 
1413 /* This function allocates all qede memory at NIC load. */
1414 static int qede_alloc_mem_load(struct qede_dev *edev)
1415 {
1416 	int rc = 0, queue_id;
1417 
1418 	for (queue_id = 0; queue_id < QEDE_QUEUE_CNT(edev); queue_id++) {
1419 		struct qede_fastpath *fp = &edev->fp_array[queue_id];
1420 
1421 		rc = qede_alloc_mem_fp(edev, fp);
1422 		if (rc) {
1423 			DP_ERR(edev,
1424 			       "Failed to allocate memory for fastpath - rss id = %d\n",
1425 			       queue_id);
1426 			qede_free_mem_load(edev);
1427 			return rc;
1428 		}
1429 	}
1430 
1431 	return 0;
1432 }
1433 
1434 /* This function inits fp content and resets the SB, RXQ and TXQ structures */
1435 static void qede_init_fp(struct qede_dev *edev)
1436 {
1437 	int queue_id, rxq_index = 0, txq_index = 0;
1438 	struct qede_fastpath *fp;
1439 
1440 	for_each_queue(queue_id) {
1441 		fp = &edev->fp_array[queue_id];
1442 
1443 		fp->edev = edev;
1444 		fp->id = queue_id;
1445 
1446 		if (fp->type & QEDE_FASTPATH_XDP) {
1447 			fp->xdp_tx->index = QEDE_TXQ_IDX_TO_XDP(edev,
1448 								rxq_index);
1449 			fp->xdp_tx->is_xdp = 1;
1450 		}
1451 
1452 		if (fp->type & QEDE_FASTPATH_RX) {
1453 			fp->rxq->rxq_id = rxq_index++;
1454 
1455 			/* Determine how to map buffers for this queue */
1456 			if (fp->type & QEDE_FASTPATH_XDP)
1457 				fp->rxq->data_direction = DMA_BIDIRECTIONAL;
1458 			else
1459 				fp->rxq->data_direction = DMA_FROM_DEVICE;
1460 			fp->rxq->dev = &edev->pdev->dev;
1461 
1462 			/* Driver have no error path from here */
1463 			WARN_ON(xdp_rxq_info_reg(&fp->rxq->xdp_rxq, edev->ndev,
1464 						 fp->rxq->rxq_id) < 0);
1465 		}
1466 
1467 		if (fp->type & QEDE_FASTPATH_TX) {
1468 			fp->txq->index = txq_index++;
1469 			if (edev->dev_info.is_legacy)
1470 				fp->txq->is_legacy = 1;
1471 			fp->txq->dev = &edev->pdev->dev;
1472 		}
1473 
1474 		snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
1475 			 edev->ndev->name, queue_id);
1476 	}
1477 
1478 	edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO_HW);
1479 }
1480 
1481 static int qede_set_real_num_queues(struct qede_dev *edev)
1482 {
1483 	int rc = 0;
1484 
1485 	rc = netif_set_real_num_tx_queues(edev->ndev, QEDE_TSS_COUNT(edev));
1486 	if (rc) {
1487 		DP_NOTICE(edev, "Failed to set real number of Tx queues\n");
1488 		return rc;
1489 	}
1490 
1491 	rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_COUNT(edev));
1492 	if (rc) {
1493 		DP_NOTICE(edev, "Failed to set real number of Rx queues\n");
1494 		return rc;
1495 	}
1496 
1497 	return 0;
1498 }
1499 
1500 static void qede_napi_disable_remove(struct qede_dev *edev)
1501 {
1502 	int i;
1503 
1504 	for_each_queue(i) {
1505 		napi_disable(&edev->fp_array[i].napi);
1506 
1507 		netif_napi_del(&edev->fp_array[i].napi);
1508 	}
1509 }
1510 
1511 static void qede_napi_add_enable(struct qede_dev *edev)
1512 {
1513 	int i;
1514 
1515 	/* Add NAPI objects */
1516 	for_each_queue(i) {
1517 		netif_napi_add(edev->ndev, &edev->fp_array[i].napi,
1518 			       qede_poll, NAPI_POLL_WEIGHT);
1519 		napi_enable(&edev->fp_array[i].napi);
1520 	}
1521 }
1522 
1523 static void qede_sync_free_irqs(struct qede_dev *edev)
1524 {
1525 	int i;
1526 
1527 	for (i = 0; i < edev->int_info.used_cnt; i++) {
1528 		if (edev->int_info.msix_cnt) {
1529 			synchronize_irq(edev->int_info.msix[i].vector);
1530 			free_irq(edev->int_info.msix[i].vector,
1531 				 &edev->fp_array[i]);
1532 		} else {
1533 			edev->ops->common->simd_handler_clean(edev->cdev, i);
1534 		}
1535 	}
1536 
1537 	edev->int_info.used_cnt = 0;
1538 }
1539 
1540 static int qede_req_msix_irqs(struct qede_dev *edev)
1541 {
1542 	int i, rc;
1543 
1544 	/* Sanitize number of interrupts == number of prepared RSS queues */
1545 	if (QEDE_QUEUE_CNT(edev) > edev->int_info.msix_cnt) {
1546 		DP_ERR(edev,
1547 		       "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n",
1548 		       QEDE_QUEUE_CNT(edev), edev->int_info.msix_cnt);
1549 		return -EINVAL;
1550 	}
1551 
1552 	for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) {
1553 #ifdef CONFIG_RFS_ACCEL
1554 		struct qede_fastpath *fp = &edev->fp_array[i];
1555 
1556 		if (edev->ndev->rx_cpu_rmap && (fp->type & QEDE_FASTPATH_RX)) {
1557 			rc = irq_cpu_rmap_add(edev->ndev->rx_cpu_rmap,
1558 					      edev->int_info.msix[i].vector);
1559 			if (rc) {
1560 				DP_ERR(edev, "Failed to add CPU rmap\n");
1561 				qede_free_arfs(edev);
1562 			}
1563 		}
1564 #endif
1565 		rc = request_irq(edev->int_info.msix[i].vector,
1566 				 qede_msix_fp_int, 0, edev->fp_array[i].name,
1567 				 &edev->fp_array[i]);
1568 		if (rc) {
1569 			DP_ERR(edev, "Request fp %d irq failed\n", i);
1570 			qede_sync_free_irqs(edev);
1571 			return rc;
1572 		}
1573 		DP_VERBOSE(edev, NETIF_MSG_INTR,
1574 			   "Requested fp irq for %s [entry %d]. Cookie is at %p\n",
1575 			   edev->fp_array[i].name, i,
1576 			   &edev->fp_array[i]);
1577 		edev->int_info.used_cnt++;
1578 	}
1579 
1580 	return 0;
1581 }
1582 
1583 static void qede_simd_fp_handler(void *cookie)
1584 {
1585 	struct qede_fastpath *fp = (struct qede_fastpath *)cookie;
1586 
1587 	napi_schedule_irqoff(&fp->napi);
1588 }
1589 
1590 static int qede_setup_irqs(struct qede_dev *edev)
1591 {
1592 	int i, rc = 0;
1593 
1594 	/* Learn Interrupt configuration */
1595 	rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info);
1596 	if (rc)
1597 		return rc;
1598 
1599 	if (edev->int_info.msix_cnt) {
1600 		rc = qede_req_msix_irqs(edev);
1601 		if (rc)
1602 			return rc;
1603 		edev->ndev->irq = edev->int_info.msix[0].vector;
1604 	} else {
1605 		const struct qed_common_ops *ops;
1606 
1607 		/* qed should learn receive the RSS ids and callbacks */
1608 		ops = edev->ops->common;
1609 		for (i = 0; i < QEDE_QUEUE_CNT(edev); i++)
1610 			ops->simd_handler_config(edev->cdev,
1611 						 &edev->fp_array[i], i,
1612 						 qede_simd_fp_handler);
1613 		edev->int_info.used_cnt = QEDE_QUEUE_CNT(edev);
1614 	}
1615 	return 0;
1616 }
1617 
1618 static int qede_drain_txq(struct qede_dev *edev,
1619 			  struct qede_tx_queue *txq, bool allow_drain)
1620 {
1621 	int rc, cnt = 1000;
1622 
1623 	while (txq->sw_tx_cons != txq->sw_tx_prod) {
1624 		if (!cnt) {
1625 			if (allow_drain) {
1626 				DP_NOTICE(edev,
1627 					  "Tx queue[%d] is stuck, requesting MCP to drain\n",
1628 					  txq->index);
1629 				rc = edev->ops->common->drain(edev->cdev);
1630 				if (rc)
1631 					return rc;
1632 				return qede_drain_txq(edev, txq, false);
1633 			}
1634 			DP_NOTICE(edev,
1635 				  "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n",
1636 				  txq->index, txq->sw_tx_prod,
1637 				  txq->sw_tx_cons);
1638 			return -ENODEV;
1639 		}
1640 		cnt--;
1641 		usleep_range(1000, 2000);
1642 		barrier();
1643 	}
1644 
1645 	/* FW finished processing, wait for HW to transmit all tx packets */
1646 	usleep_range(1000, 2000);
1647 
1648 	return 0;
1649 }
1650 
1651 static int qede_stop_txq(struct qede_dev *edev,
1652 			 struct qede_tx_queue *txq, int rss_id)
1653 {
1654 	return edev->ops->q_tx_stop(edev->cdev, rss_id, txq->handle);
1655 }
1656 
1657 static int qede_stop_queues(struct qede_dev *edev)
1658 {
1659 	struct qed_update_vport_params *vport_update_params;
1660 	struct qed_dev *cdev = edev->cdev;
1661 	struct qede_fastpath *fp;
1662 	int rc, i;
1663 
1664 	/* Disable the vport */
1665 	vport_update_params = vzalloc(sizeof(*vport_update_params));
1666 	if (!vport_update_params)
1667 		return -ENOMEM;
1668 
1669 	vport_update_params->vport_id = 0;
1670 	vport_update_params->update_vport_active_flg = 1;
1671 	vport_update_params->vport_active_flg = 0;
1672 	vport_update_params->update_rss_flg = 0;
1673 
1674 	rc = edev->ops->vport_update(cdev, vport_update_params);
1675 	vfree(vport_update_params);
1676 
1677 	if (rc) {
1678 		DP_ERR(edev, "Failed to update vport\n");
1679 		return rc;
1680 	}
1681 
1682 	/* Flush Tx queues. If needed, request drain from MCP */
1683 	for_each_queue(i) {
1684 		fp = &edev->fp_array[i];
1685 
1686 		if (fp->type & QEDE_FASTPATH_TX) {
1687 			rc = qede_drain_txq(edev, fp->txq, true);
1688 			if (rc)
1689 				return rc;
1690 		}
1691 
1692 		if (fp->type & QEDE_FASTPATH_XDP) {
1693 			rc = qede_drain_txq(edev, fp->xdp_tx, true);
1694 			if (rc)
1695 				return rc;
1696 		}
1697 	}
1698 
1699 	/* Stop all Queues in reverse order */
1700 	for (i = QEDE_QUEUE_CNT(edev) - 1; i >= 0; i--) {
1701 		fp = &edev->fp_array[i];
1702 
1703 		/* Stop the Tx Queue(s) */
1704 		if (fp->type & QEDE_FASTPATH_TX) {
1705 			rc = qede_stop_txq(edev, fp->txq, i);
1706 			if (rc)
1707 				return rc;
1708 		}
1709 
1710 		/* Stop the Rx Queue */
1711 		if (fp->type & QEDE_FASTPATH_RX) {
1712 			rc = edev->ops->q_rx_stop(cdev, i, fp->rxq->handle);
1713 			if (rc) {
1714 				DP_ERR(edev, "Failed to stop RXQ #%d\n", i);
1715 				return rc;
1716 			}
1717 		}
1718 
1719 		/* Stop the XDP forwarding queue */
1720 		if (fp->type & QEDE_FASTPATH_XDP) {
1721 			rc = qede_stop_txq(edev, fp->xdp_tx, i);
1722 			if (rc)
1723 				return rc;
1724 
1725 			bpf_prog_put(fp->rxq->xdp_prog);
1726 		}
1727 	}
1728 
1729 	/* Stop the vport */
1730 	rc = edev->ops->vport_stop(cdev, 0);
1731 	if (rc)
1732 		DP_ERR(edev, "Failed to stop VPORT\n");
1733 
1734 	return rc;
1735 }
1736 
1737 static int qede_start_txq(struct qede_dev *edev,
1738 			  struct qede_fastpath *fp,
1739 			  struct qede_tx_queue *txq, u8 rss_id, u16 sb_idx)
1740 {
1741 	dma_addr_t phys_table = qed_chain_get_pbl_phys(&txq->tx_pbl);
1742 	u32 page_cnt = qed_chain_get_page_cnt(&txq->tx_pbl);
1743 	struct qed_queue_start_common_params params;
1744 	struct qed_txq_start_ret_params ret_params;
1745 	int rc;
1746 
1747 	memset(&params, 0, sizeof(params));
1748 	memset(&ret_params, 0, sizeof(ret_params));
1749 
1750 	/* Let the XDP queue share the queue-zone with one of the regular txq.
1751 	 * We don't really care about its coalescing.
1752 	 */
1753 	if (txq->is_xdp)
1754 		params.queue_id = QEDE_TXQ_XDP_TO_IDX(edev, txq);
1755 	else
1756 		params.queue_id = txq->index;
1757 
1758 	params.p_sb = fp->sb_info;
1759 	params.sb_idx = sb_idx;
1760 
1761 	rc = edev->ops->q_tx_start(edev->cdev, rss_id, &params, phys_table,
1762 				   page_cnt, &ret_params);
1763 	if (rc) {
1764 		DP_ERR(edev, "Start TXQ #%d failed %d\n", txq->index, rc);
1765 		return rc;
1766 	}
1767 
1768 	txq->doorbell_addr = ret_params.p_doorbell;
1769 	txq->handle = ret_params.p_handle;
1770 
1771 	/* Determine the FW consumer address associated */
1772 	txq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[sb_idx];
1773 
1774 	/* Prepare the doorbell parameters */
1775 	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST, DB_DEST_XCM);
1776 	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD, DB_AGG_CMD_SET);
1777 	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_VAL_SEL,
1778 		  DQ_XCM_ETH_TX_BD_PROD_CMD);
1779 	txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
1780 
1781 	return rc;
1782 }
1783 
1784 static int qede_start_queues(struct qede_dev *edev, bool clear_stats)
1785 {
1786 	int vlan_removal_en = 1;
1787 	struct qed_dev *cdev = edev->cdev;
1788 	struct qed_dev_info *qed_info = &edev->dev_info.common;
1789 	struct qed_update_vport_params *vport_update_params;
1790 	struct qed_queue_start_common_params q_params;
1791 	struct qed_start_vport_params start = {0};
1792 	int rc, i;
1793 
1794 	if (!edev->num_queues) {
1795 		DP_ERR(edev,
1796 		       "Cannot update V-VPORT as active as there are no Rx queues\n");
1797 		return -EINVAL;
1798 	}
1799 
1800 	vport_update_params = vzalloc(sizeof(*vport_update_params));
1801 	if (!vport_update_params)
1802 		return -ENOMEM;
1803 
1804 	start.handle_ptp_pkts = !!(edev->ptp);
1805 	start.gro_enable = !edev->gro_disable;
1806 	start.mtu = edev->ndev->mtu;
1807 	start.vport_id = 0;
1808 	start.drop_ttl0 = true;
1809 	start.remove_inner_vlan = vlan_removal_en;
1810 	start.clear_stats = clear_stats;
1811 
1812 	rc = edev->ops->vport_start(cdev, &start);
1813 
1814 	if (rc) {
1815 		DP_ERR(edev, "Start V-PORT failed %d\n", rc);
1816 		goto out;
1817 	}
1818 
1819 	DP_VERBOSE(edev, NETIF_MSG_IFUP,
1820 		   "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n",
1821 		   start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en);
1822 
1823 	for_each_queue(i) {
1824 		struct qede_fastpath *fp = &edev->fp_array[i];
1825 		dma_addr_t p_phys_table;
1826 		u32 page_cnt;
1827 
1828 		if (fp->type & QEDE_FASTPATH_RX) {
1829 			struct qed_rxq_start_ret_params ret_params;
1830 			struct qede_rx_queue *rxq = fp->rxq;
1831 			__le16 *val;
1832 
1833 			memset(&ret_params, 0, sizeof(ret_params));
1834 			memset(&q_params, 0, sizeof(q_params));
1835 			q_params.queue_id = rxq->rxq_id;
1836 			q_params.vport_id = 0;
1837 			q_params.p_sb = fp->sb_info;
1838 			q_params.sb_idx = RX_PI;
1839 
1840 			p_phys_table =
1841 			    qed_chain_get_pbl_phys(&rxq->rx_comp_ring);
1842 			page_cnt = qed_chain_get_page_cnt(&rxq->rx_comp_ring);
1843 
1844 			rc = edev->ops->q_rx_start(cdev, i, &q_params,
1845 						   rxq->rx_buf_size,
1846 						   rxq->rx_bd_ring.p_phys_addr,
1847 						   p_phys_table,
1848 						   page_cnt, &ret_params);
1849 			if (rc) {
1850 				DP_ERR(edev, "Start RXQ #%d failed %d\n", i,
1851 				       rc);
1852 				goto out;
1853 			}
1854 
1855 			/* Use the return parameters */
1856 			rxq->hw_rxq_prod_addr = ret_params.p_prod;
1857 			rxq->handle = ret_params.p_handle;
1858 
1859 			val = &fp->sb_info->sb_virt->pi_array[RX_PI];
1860 			rxq->hw_cons_ptr = val;
1861 
1862 			qede_update_rx_prod(edev, rxq);
1863 		}
1864 
1865 		if (fp->type & QEDE_FASTPATH_XDP) {
1866 			rc = qede_start_txq(edev, fp, fp->xdp_tx, i, XDP_PI);
1867 			if (rc)
1868 				goto out;
1869 
1870 			fp->rxq->xdp_prog = bpf_prog_add(edev->xdp_prog, 1);
1871 			if (IS_ERR(fp->rxq->xdp_prog)) {
1872 				rc = PTR_ERR(fp->rxq->xdp_prog);
1873 				fp->rxq->xdp_prog = NULL;
1874 				goto out;
1875 			}
1876 		}
1877 
1878 		if (fp->type & QEDE_FASTPATH_TX) {
1879 			rc = qede_start_txq(edev, fp, fp->txq, i, TX_PI(0));
1880 			if (rc)
1881 				goto out;
1882 		}
1883 	}
1884 
1885 	/* Prepare and send the vport enable */
1886 	vport_update_params->vport_id = start.vport_id;
1887 	vport_update_params->update_vport_active_flg = 1;
1888 	vport_update_params->vport_active_flg = 1;
1889 
1890 	if ((qed_info->b_inter_pf_switch || pci_num_vf(edev->pdev)) &&
1891 	    qed_info->tx_switching) {
1892 		vport_update_params->update_tx_switching_flg = 1;
1893 		vport_update_params->tx_switching_flg = 1;
1894 	}
1895 
1896 	qede_fill_rss_params(edev, &vport_update_params->rss_params,
1897 			     &vport_update_params->update_rss_flg);
1898 
1899 	rc = edev->ops->vport_update(cdev, vport_update_params);
1900 	if (rc)
1901 		DP_ERR(edev, "Update V-PORT failed %d\n", rc);
1902 
1903 out:
1904 	vfree(vport_update_params);
1905 	return rc;
1906 }
1907 
1908 enum qede_unload_mode {
1909 	QEDE_UNLOAD_NORMAL,
1910 };
1911 
1912 static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode,
1913 			bool is_locked)
1914 {
1915 	struct qed_link_params link_params;
1916 	int rc;
1917 
1918 	DP_INFO(edev, "Starting qede unload\n");
1919 
1920 	if (!is_locked)
1921 		__qede_lock(edev);
1922 
1923 	edev->state = QEDE_STATE_CLOSED;
1924 
1925 	qede_rdma_dev_event_close(edev);
1926 
1927 	/* Close OS Tx */
1928 	netif_tx_disable(edev->ndev);
1929 	netif_carrier_off(edev->ndev);
1930 
1931 	/* Reset the link */
1932 	memset(&link_params, 0, sizeof(link_params));
1933 	link_params.link_up = false;
1934 	edev->ops->common->set_link(edev->cdev, &link_params);
1935 	rc = qede_stop_queues(edev);
1936 	if (rc) {
1937 		qede_sync_free_irqs(edev);
1938 		goto out;
1939 	}
1940 
1941 	DP_INFO(edev, "Stopped Queues\n");
1942 
1943 	qede_vlan_mark_nonconfigured(edev);
1944 	edev->ops->fastpath_stop(edev->cdev);
1945 
1946 	if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) {
1947 		qede_poll_for_freeing_arfs_filters(edev);
1948 		qede_free_arfs(edev);
1949 	}
1950 
1951 	/* Release the interrupts */
1952 	qede_sync_free_irqs(edev);
1953 	edev->ops->common->set_fp_int(edev->cdev, 0);
1954 
1955 	qede_napi_disable_remove(edev);
1956 
1957 	qede_free_mem_load(edev);
1958 	qede_free_fp_array(edev);
1959 
1960 out:
1961 	if (!is_locked)
1962 		__qede_unlock(edev);
1963 	DP_INFO(edev, "Ending qede unload\n");
1964 }
1965 
1966 enum qede_load_mode {
1967 	QEDE_LOAD_NORMAL,
1968 	QEDE_LOAD_RELOAD,
1969 };
1970 
1971 static int qede_load(struct qede_dev *edev, enum qede_load_mode mode,
1972 		     bool is_locked)
1973 {
1974 	struct qed_link_params link_params;
1975 	int rc;
1976 
1977 	DP_INFO(edev, "Starting qede load\n");
1978 
1979 	if (!is_locked)
1980 		__qede_lock(edev);
1981 
1982 	rc = qede_set_num_queues(edev);
1983 	if (rc)
1984 		goto out;
1985 
1986 	rc = qede_alloc_fp_array(edev);
1987 	if (rc)
1988 		goto out;
1989 
1990 	qede_init_fp(edev);
1991 
1992 	rc = qede_alloc_mem_load(edev);
1993 	if (rc)
1994 		goto err1;
1995 	DP_INFO(edev, "Allocated %d Rx, %d Tx queues\n",
1996 		QEDE_RSS_COUNT(edev), QEDE_TSS_COUNT(edev));
1997 
1998 	rc = qede_set_real_num_queues(edev);
1999 	if (rc)
2000 		goto err2;
2001 
2002 	if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) {
2003 		rc = qede_alloc_arfs(edev);
2004 		if (rc)
2005 			DP_NOTICE(edev, "aRFS memory allocation failed\n");
2006 	}
2007 
2008 	qede_napi_add_enable(edev);
2009 	DP_INFO(edev, "Napi added and enabled\n");
2010 
2011 	rc = qede_setup_irqs(edev);
2012 	if (rc)
2013 		goto err3;
2014 	DP_INFO(edev, "Setup IRQs succeeded\n");
2015 
2016 	rc = qede_start_queues(edev, mode != QEDE_LOAD_RELOAD);
2017 	if (rc)
2018 		goto err4;
2019 	DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n");
2020 
2021 	/* Program un-configured VLANs */
2022 	qede_configure_vlan_filters(edev);
2023 
2024 	/* Ask for link-up using current configuration */
2025 	memset(&link_params, 0, sizeof(link_params));
2026 	link_params.link_up = true;
2027 	edev->ops->common->set_link(edev->cdev, &link_params);
2028 
2029 	edev->state = QEDE_STATE_OPEN;
2030 
2031 	DP_INFO(edev, "Ending successfully qede load\n");
2032 
2033 	goto out;
2034 err4:
2035 	qede_sync_free_irqs(edev);
2036 	memset(&edev->int_info.msix_cnt, 0, sizeof(struct qed_int_info));
2037 err3:
2038 	qede_napi_disable_remove(edev);
2039 err2:
2040 	qede_free_mem_load(edev);
2041 err1:
2042 	edev->ops->common->set_fp_int(edev->cdev, 0);
2043 	qede_free_fp_array(edev);
2044 	edev->num_queues = 0;
2045 	edev->fp_num_tx = 0;
2046 	edev->fp_num_rx = 0;
2047 out:
2048 	if (!is_locked)
2049 		__qede_unlock(edev);
2050 
2051 	return rc;
2052 }
2053 
2054 /* 'func' should be able to run between unload and reload assuming interface
2055  * is actually running, or afterwards in case it's currently DOWN.
2056  */
2057 void qede_reload(struct qede_dev *edev,
2058 		 struct qede_reload_args *args, bool is_locked)
2059 {
2060 	if (!is_locked)
2061 		__qede_lock(edev);
2062 
2063 	/* Since qede_lock is held, internal state wouldn't change even
2064 	 * if netdev state would start transitioning. Check whether current
2065 	 * internal configuration indicates device is up, then reload.
2066 	 */
2067 	if (edev->state == QEDE_STATE_OPEN) {
2068 		qede_unload(edev, QEDE_UNLOAD_NORMAL, true);
2069 		if (args)
2070 			args->func(edev, args);
2071 		qede_load(edev, QEDE_LOAD_RELOAD, true);
2072 
2073 		/* Since no one is going to do it for us, re-configure */
2074 		qede_config_rx_mode(edev->ndev);
2075 	} else if (args) {
2076 		args->func(edev, args);
2077 	}
2078 
2079 	if (!is_locked)
2080 		__qede_unlock(edev);
2081 }
2082 
2083 /* called with rtnl_lock */
2084 static int qede_open(struct net_device *ndev)
2085 {
2086 	struct qede_dev *edev = netdev_priv(ndev);
2087 	int rc;
2088 
2089 	netif_carrier_off(ndev);
2090 
2091 	edev->ops->common->set_power_state(edev->cdev, PCI_D0);
2092 
2093 	rc = qede_load(edev, QEDE_LOAD_NORMAL, false);
2094 	if (rc)
2095 		return rc;
2096 
2097 	udp_tunnel_get_rx_info(ndev);
2098 
2099 	edev->ops->common->update_drv_state(edev->cdev, true);
2100 
2101 	return 0;
2102 }
2103 
2104 static int qede_close(struct net_device *ndev)
2105 {
2106 	struct qede_dev *edev = netdev_priv(ndev);
2107 
2108 	qede_unload(edev, QEDE_UNLOAD_NORMAL, false);
2109 
2110 	edev->ops->common->update_drv_state(edev->cdev, false);
2111 
2112 	return 0;
2113 }
2114 
2115 static void qede_link_update(void *dev, struct qed_link_output *link)
2116 {
2117 	struct qede_dev *edev = dev;
2118 
2119 	if (!netif_running(edev->ndev)) {
2120 		DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not running\n");
2121 		return;
2122 	}
2123 
2124 	if (link->link_up) {
2125 		if (!netif_carrier_ok(edev->ndev)) {
2126 			DP_NOTICE(edev, "Link is up\n");
2127 			netif_tx_start_all_queues(edev->ndev);
2128 			netif_carrier_on(edev->ndev);
2129 			qede_rdma_dev_event_open(edev);
2130 		}
2131 	} else {
2132 		if (netif_carrier_ok(edev->ndev)) {
2133 			DP_NOTICE(edev, "Link is down\n");
2134 			netif_tx_disable(edev->ndev);
2135 			netif_carrier_off(edev->ndev);
2136 			qede_rdma_dev_event_close(edev);
2137 		}
2138 	}
2139 }
2140 
2141 static bool qede_is_txq_full(struct qede_dev *edev, struct qede_tx_queue *txq)
2142 {
2143 	struct netdev_queue *netdev_txq;
2144 
2145 	netdev_txq = netdev_get_tx_queue(edev->ndev, txq->index);
2146 	if (netif_xmit_stopped(netdev_txq))
2147 		return true;
2148 
2149 	return false;
2150 }
2151 
2152 static void qede_get_generic_tlv_data(void *dev, struct qed_generic_tlvs *data)
2153 {
2154 	struct qede_dev *edev = dev;
2155 	struct netdev_hw_addr *ha;
2156 	int i;
2157 
2158 	if (edev->ndev->features & NETIF_F_IP_CSUM)
2159 		data->feat_flags |= QED_TLV_IP_CSUM;
2160 	if (edev->ndev->features & NETIF_F_TSO)
2161 		data->feat_flags |= QED_TLV_LSO;
2162 
2163 	ether_addr_copy(data->mac[0], edev->ndev->dev_addr);
2164 	memset(data->mac[1], 0, ETH_ALEN);
2165 	memset(data->mac[2], 0, ETH_ALEN);
2166 	/* Copy the first two UC macs */
2167 	netif_addr_lock_bh(edev->ndev);
2168 	i = 1;
2169 	netdev_for_each_uc_addr(ha, edev->ndev) {
2170 		ether_addr_copy(data->mac[i++], ha->addr);
2171 		if (i == QED_TLV_MAC_COUNT)
2172 			break;
2173 	}
2174 
2175 	netif_addr_unlock_bh(edev->ndev);
2176 }
2177 
2178 static void qede_get_eth_tlv_data(void *dev, void *data)
2179 {
2180 	struct qed_mfw_tlv_eth *etlv = data;
2181 	struct qede_dev *edev = dev;
2182 	struct qede_fastpath *fp;
2183 	int i;
2184 
2185 	etlv->lso_maxoff_size = 0XFFFF;
2186 	etlv->lso_maxoff_size_set = true;
2187 	etlv->lso_minseg_size = (u16)ETH_TX_LSO_WINDOW_MIN_LEN;
2188 	etlv->lso_minseg_size_set = true;
2189 	etlv->prom_mode = !!(edev->ndev->flags & IFF_PROMISC);
2190 	etlv->prom_mode_set = true;
2191 	etlv->tx_descr_size = QEDE_TSS_COUNT(edev);
2192 	etlv->tx_descr_size_set = true;
2193 	etlv->rx_descr_size = QEDE_RSS_COUNT(edev);
2194 	etlv->rx_descr_size_set = true;
2195 	etlv->iov_offload = QED_MFW_TLV_IOV_OFFLOAD_VEB;
2196 	etlv->iov_offload_set = true;
2197 
2198 	/* Fill information regarding queues; Should be done under the qede
2199 	 * lock to guarantee those don't change beneath our feet.
2200 	 */
2201 	etlv->txqs_empty = true;
2202 	etlv->rxqs_empty = true;
2203 	etlv->num_txqs_full = 0;
2204 	etlv->num_rxqs_full = 0;
2205 
2206 	__qede_lock(edev);
2207 	for_each_queue(i) {
2208 		fp = &edev->fp_array[i];
2209 		if (fp->type & QEDE_FASTPATH_TX) {
2210 			if (fp->txq->sw_tx_cons != fp->txq->sw_tx_prod)
2211 				etlv->txqs_empty = false;
2212 			if (qede_is_txq_full(edev, fp->txq))
2213 				etlv->num_txqs_full++;
2214 		}
2215 		if (fp->type & QEDE_FASTPATH_RX) {
2216 			if (qede_has_rx_work(fp->rxq))
2217 				etlv->rxqs_empty = false;
2218 
2219 			/* This one is a bit tricky; Firmware might stop
2220 			 * placing packets if ring is not yet full.
2221 			 * Give an approximation.
2222 			 */
2223 			if (le16_to_cpu(*fp->rxq->hw_cons_ptr) -
2224 			    qed_chain_get_cons_idx(&fp->rxq->rx_comp_ring) >
2225 			    RX_RING_SIZE - 100)
2226 				etlv->num_rxqs_full++;
2227 		}
2228 	}
2229 	__qede_unlock(edev);
2230 
2231 	etlv->txqs_empty_set = true;
2232 	etlv->rxqs_empty_set = true;
2233 	etlv->num_txqs_full_set = true;
2234 	etlv->num_rxqs_full_set = true;
2235 }
2236