1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause) 2 /* QLogic qede NIC Driver 3 * Copyright (c) 2015-2017 QLogic Corporation 4 * Copyright (c) 2019-2020 Marvell International Ltd. 5 */ 6 7 #include <linux/netdevice.h> 8 #include <linux/etherdevice.h> 9 #include <linux/skbuff.h> 10 #include <linux/bpf_trace.h> 11 #include <net/udp_tunnel.h> 12 #include <linux/ip.h> 13 #include <net/gro.h> 14 #include <net/ipv6.h> 15 #include <net/tcp.h> 16 #include <linux/if_ether.h> 17 #include <linux/if_vlan.h> 18 #include <net/ip6_checksum.h> 19 #include "qede_ptp.h" 20 21 #include <linux/qed/qed_if.h> 22 #include "qede.h" 23 /********************************* 24 * Content also used by slowpath * 25 *********************************/ 26 27 int qede_alloc_rx_buffer(struct qede_rx_queue *rxq, bool allow_lazy) 28 { 29 struct sw_rx_data *sw_rx_data; 30 struct eth_rx_bd *rx_bd; 31 dma_addr_t mapping; 32 struct page *data; 33 34 /* In case lazy-allocation is allowed, postpone allocation until the 35 * end of the NAPI run. We'd still need to make sure the Rx ring has 36 * sufficient buffers to guarantee an additional Rx interrupt. 37 */ 38 if (allow_lazy && likely(rxq->filled_buffers > 12)) { 39 rxq->filled_buffers--; 40 return 0; 41 } 42 43 data = alloc_pages(GFP_ATOMIC, 0); 44 if (unlikely(!data)) 45 return -ENOMEM; 46 47 /* Map the entire page as it would be used 48 * for multiple RX buffer segment size mapping. 49 */ 50 mapping = dma_map_page(rxq->dev, data, 0, 51 PAGE_SIZE, rxq->data_direction); 52 if (unlikely(dma_mapping_error(rxq->dev, mapping))) { 53 __free_page(data); 54 return -ENOMEM; 55 } 56 57 sw_rx_data = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX]; 58 sw_rx_data->page_offset = 0; 59 sw_rx_data->data = data; 60 sw_rx_data->mapping = mapping; 61 62 /* Advance PROD and get BD pointer */ 63 rx_bd = (struct eth_rx_bd *)qed_chain_produce(&rxq->rx_bd_ring); 64 WARN_ON(!rx_bd); 65 rx_bd->addr.hi = cpu_to_le32(upper_32_bits(mapping)); 66 rx_bd->addr.lo = cpu_to_le32(lower_32_bits(mapping) + 67 rxq->rx_headroom); 68 69 rxq->sw_rx_prod++; 70 rxq->filled_buffers++; 71 72 return 0; 73 } 74 75 /* Unmap the data and free skb */ 76 int qede_free_tx_pkt(struct qede_dev *edev, struct qede_tx_queue *txq, int *len) 77 { 78 u16 idx = txq->sw_tx_cons; 79 struct sk_buff *skb = txq->sw_tx_ring.skbs[idx].skb; 80 struct eth_tx_1st_bd *first_bd; 81 struct eth_tx_bd *tx_data_bd; 82 int bds_consumed = 0; 83 int nbds; 84 bool data_split = txq->sw_tx_ring.skbs[idx].flags & QEDE_TSO_SPLIT_BD; 85 int i, split_bd_len = 0; 86 87 if (unlikely(!skb)) { 88 DP_ERR(edev, 89 "skb is null for txq idx=%d txq->sw_tx_cons=%d txq->sw_tx_prod=%d\n", 90 idx, txq->sw_tx_cons, txq->sw_tx_prod); 91 return -1; 92 } 93 94 *len = skb->len; 95 96 first_bd = (struct eth_tx_1st_bd *)qed_chain_consume(&txq->tx_pbl); 97 98 bds_consumed++; 99 100 nbds = first_bd->data.nbds; 101 102 if (data_split) { 103 struct eth_tx_bd *split = (struct eth_tx_bd *) 104 qed_chain_consume(&txq->tx_pbl); 105 split_bd_len = BD_UNMAP_LEN(split); 106 bds_consumed++; 107 } 108 dma_unmap_single(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd), 109 BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE); 110 111 /* Unmap the data of the skb frags */ 112 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, bds_consumed++) { 113 tx_data_bd = (struct eth_tx_bd *) 114 qed_chain_consume(&txq->tx_pbl); 115 dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(tx_data_bd), 116 BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE); 117 } 118 119 while (bds_consumed++ < nbds) 120 qed_chain_consume(&txq->tx_pbl); 121 122 /* Free skb */ 123 dev_kfree_skb_any(skb); 124 txq->sw_tx_ring.skbs[idx].skb = NULL; 125 txq->sw_tx_ring.skbs[idx].flags = 0; 126 127 return 0; 128 } 129 130 /* Unmap the data and free skb when mapping failed during start_xmit */ 131 static void qede_free_failed_tx_pkt(struct qede_tx_queue *txq, 132 struct eth_tx_1st_bd *first_bd, 133 int nbd, bool data_split) 134 { 135 u16 idx = txq->sw_tx_prod; 136 struct sk_buff *skb = txq->sw_tx_ring.skbs[idx].skb; 137 struct eth_tx_bd *tx_data_bd; 138 int i, split_bd_len = 0; 139 140 /* Return prod to its position before this skb was handled */ 141 qed_chain_set_prod(&txq->tx_pbl, 142 le16_to_cpu(txq->tx_db.data.bd_prod), first_bd); 143 144 first_bd = (struct eth_tx_1st_bd *)qed_chain_produce(&txq->tx_pbl); 145 146 if (data_split) { 147 struct eth_tx_bd *split = (struct eth_tx_bd *) 148 qed_chain_produce(&txq->tx_pbl); 149 split_bd_len = BD_UNMAP_LEN(split); 150 nbd--; 151 } 152 153 dma_unmap_single(txq->dev, BD_UNMAP_ADDR(first_bd), 154 BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE); 155 156 /* Unmap the data of the skb frags */ 157 for (i = 0; i < nbd; i++) { 158 tx_data_bd = (struct eth_tx_bd *) 159 qed_chain_produce(&txq->tx_pbl); 160 if (tx_data_bd->nbytes) 161 dma_unmap_page(txq->dev, 162 BD_UNMAP_ADDR(tx_data_bd), 163 BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE); 164 } 165 166 /* Return again prod to its position before this skb was handled */ 167 qed_chain_set_prod(&txq->tx_pbl, 168 le16_to_cpu(txq->tx_db.data.bd_prod), first_bd); 169 170 /* Free skb */ 171 dev_kfree_skb_any(skb); 172 txq->sw_tx_ring.skbs[idx].skb = NULL; 173 txq->sw_tx_ring.skbs[idx].flags = 0; 174 } 175 176 static u32 qede_xmit_type(struct sk_buff *skb, int *ipv6_ext) 177 { 178 u32 rc = XMIT_L4_CSUM; 179 __be16 l3_proto; 180 181 if (skb->ip_summed != CHECKSUM_PARTIAL) 182 return XMIT_PLAIN; 183 184 l3_proto = vlan_get_protocol(skb); 185 if (l3_proto == htons(ETH_P_IPV6) && 186 (ipv6_hdr(skb)->nexthdr == NEXTHDR_IPV6)) 187 *ipv6_ext = 1; 188 189 if (skb->encapsulation) { 190 rc |= XMIT_ENC; 191 if (skb_is_gso(skb)) { 192 unsigned short gso_type = skb_shinfo(skb)->gso_type; 193 194 if ((gso_type & SKB_GSO_UDP_TUNNEL_CSUM) || 195 (gso_type & SKB_GSO_GRE_CSUM)) 196 rc |= XMIT_ENC_GSO_L4_CSUM; 197 198 rc |= XMIT_LSO; 199 return rc; 200 } 201 } 202 203 if (skb_is_gso(skb)) 204 rc |= XMIT_LSO; 205 206 return rc; 207 } 208 209 static void qede_set_params_for_ipv6_ext(struct sk_buff *skb, 210 struct eth_tx_2nd_bd *second_bd, 211 struct eth_tx_3rd_bd *third_bd) 212 { 213 u8 l4_proto; 214 u16 bd2_bits1 = 0, bd2_bits2 = 0; 215 216 bd2_bits1 |= (1 << ETH_TX_DATA_2ND_BD_IPV6_EXT_SHIFT); 217 218 bd2_bits2 |= ((skb_transport_offset(skb) >> 1) & 219 ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK) 220 << ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_SHIFT; 221 222 bd2_bits1 |= (ETH_L4_PSEUDO_CSUM_CORRECT_LENGTH << 223 ETH_TX_DATA_2ND_BD_L4_PSEUDO_CSUM_MODE_SHIFT); 224 225 if (vlan_get_protocol(skb) == htons(ETH_P_IPV6)) 226 l4_proto = ipv6_hdr(skb)->nexthdr; 227 else 228 l4_proto = ip_hdr(skb)->protocol; 229 230 if (l4_proto == IPPROTO_UDP) 231 bd2_bits1 |= 1 << ETH_TX_DATA_2ND_BD_L4_UDP_SHIFT; 232 233 if (third_bd) 234 third_bd->data.bitfields |= 235 cpu_to_le16(((tcp_hdrlen(skb) / 4) & 236 ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_MASK) << 237 ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_SHIFT); 238 239 second_bd->data.bitfields1 = cpu_to_le16(bd2_bits1); 240 second_bd->data.bitfields2 = cpu_to_le16(bd2_bits2); 241 } 242 243 static int map_frag_to_bd(struct qede_tx_queue *txq, 244 skb_frag_t *frag, struct eth_tx_bd *bd) 245 { 246 dma_addr_t mapping; 247 248 /* Map skb non-linear frag data for DMA */ 249 mapping = skb_frag_dma_map(txq->dev, frag, 0, 250 skb_frag_size(frag), DMA_TO_DEVICE); 251 if (unlikely(dma_mapping_error(txq->dev, mapping))) 252 return -ENOMEM; 253 254 /* Setup the data pointer of the frag data */ 255 BD_SET_UNMAP_ADDR_LEN(bd, mapping, skb_frag_size(frag)); 256 257 return 0; 258 } 259 260 static u16 qede_get_skb_hlen(struct sk_buff *skb, bool is_encap_pkt) 261 { 262 if (is_encap_pkt) 263 return skb_inner_tcp_all_headers(skb); 264 265 return skb_tcp_all_headers(skb); 266 } 267 268 /* +2 for 1st BD for headers and 2nd BD for headlen (if required) */ 269 #if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET) 270 static bool qede_pkt_req_lin(struct sk_buff *skb, u8 xmit_type) 271 { 272 int allowed_frags = ETH_TX_MAX_BDS_PER_NON_LSO_PACKET - 1; 273 274 if (xmit_type & XMIT_LSO) { 275 int hlen; 276 277 hlen = qede_get_skb_hlen(skb, xmit_type & XMIT_ENC); 278 279 /* linear payload would require its own BD */ 280 if (skb_headlen(skb) > hlen) 281 allowed_frags--; 282 } 283 284 return (skb_shinfo(skb)->nr_frags > allowed_frags); 285 } 286 #endif 287 288 static inline void qede_update_tx_producer(struct qede_tx_queue *txq) 289 { 290 /* wmb makes sure that the BDs data is updated before updating the 291 * producer, otherwise FW may read old data from the BDs. 292 */ 293 wmb(); 294 barrier(); 295 writel(txq->tx_db.raw, txq->doorbell_addr); 296 297 /* Fence required to flush the write combined buffer, since another 298 * CPU may write to the same doorbell address and data may be lost 299 * due to relaxed order nature of write combined bar. 300 */ 301 wmb(); 302 } 303 304 static int qede_xdp_xmit(struct qede_tx_queue *txq, dma_addr_t dma, u16 pad, 305 u16 len, struct page *page, struct xdp_frame *xdpf) 306 { 307 struct eth_tx_1st_bd *bd; 308 struct sw_tx_xdp *xdp; 309 u16 val; 310 311 if (unlikely(qed_chain_get_elem_used(&txq->tx_pbl) >= 312 txq->num_tx_buffers)) { 313 txq->stopped_cnt++; 314 return -ENOMEM; 315 } 316 317 bd = qed_chain_produce(&txq->tx_pbl); 318 bd->data.nbds = 1; 319 bd->data.bd_flags.bitfields = BIT(ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT); 320 321 val = (len & ETH_TX_DATA_1ST_BD_PKT_LEN_MASK) << 322 ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT; 323 324 bd->data.bitfields = cpu_to_le16(val); 325 326 /* We can safely ignore the offset, as it's 0 for XDP */ 327 BD_SET_UNMAP_ADDR_LEN(bd, dma + pad, len); 328 329 xdp = txq->sw_tx_ring.xdp + txq->sw_tx_prod; 330 xdp->mapping = dma; 331 xdp->page = page; 332 xdp->xdpf = xdpf; 333 334 txq->sw_tx_prod = (txq->sw_tx_prod + 1) % txq->num_tx_buffers; 335 336 return 0; 337 } 338 339 int qede_xdp_transmit(struct net_device *dev, int n_frames, 340 struct xdp_frame **frames, u32 flags) 341 { 342 struct qede_dev *edev = netdev_priv(dev); 343 struct device *dmadev = &edev->pdev->dev; 344 struct qede_tx_queue *xdp_tx; 345 struct xdp_frame *xdpf; 346 dma_addr_t mapping; 347 int i, nxmit = 0; 348 u16 xdp_prod; 349 350 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 351 return -EINVAL; 352 353 if (unlikely(!netif_running(dev))) 354 return -ENETDOWN; 355 356 i = smp_processor_id() % edev->total_xdp_queues; 357 xdp_tx = edev->fp_array[i].xdp_tx; 358 359 spin_lock(&xdp_tx->xdp_tx_lock); 360 361 for (i = 0; i < n_frames; i++) { 362 xdpf = frames[i]; 363 364 mapping = dma_map_single(dmadev, xdpf->data, xdpf->len, 365 DMA_TO_DEVICE); 366 if (unlikely(dma_mapping_error(dmadev, mapping))) 367 break; 368 369 if (unlikely(qede_xdp_xmit(xdp_tx, mapping, 0, xdpf->len, 370 NULL, xdpf))) 371 break; 372 nxmit++; 373 } 374 375 if (flags & XDP_XMIT_FLUSH) { 376 xdp_prod = qed_chain_get_prod_idx(&xdp_tx->tx_pbl); 377 378 xdp_tx->tx_db.data.bd_prod = cpu_to_le16(xdp_prod); 379 qede_update_tx_producer(xdp_tx); 380 } 381 382 spin_unlock(&xdp_tx->xdp_tx_lock); 383 384 return nxmit; 385 } 386 387 int qede_txq_has_work(struct qede_tx_queue *txq) 388 { 389 u16 hw_bd_cons; 390 391 /* Tell compiler that consumer and producer can change */ 392 barrier(); 393 hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr); 394 if (qed_chain_get_cons_idx(&txq->tx_pbl) == hw_bd_cons + 1) 395 return 0; 396 397 return hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl); 398 } 399 400 static void qede_xdp_tx_int(struct qede_dev *edev, struct qede_tx_queue *txq) 401 { 402 struct sw_tx_xdp *xdp_info, *xdp_arr = txq->sw_tx_ring.xdp; 403 struct device *dev = &edev->pdev->dev; 404 struct xdp_frame *xdpf; 405 u16 hw_bd_cons; 406 407 hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr); 408 barrier(); 409 410 while (hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl)) { 411 xdp_info = xdp_arr + txq->sw_tx_cons; 412 xdpf = xdp_info->xdpf; 413 414 if (xdpf) { 415 dma_unmap_single(dev, xdp_info->mapping, xdpf->len, 416 DMA_TO_DEVICE); 417 xdp_return_frame(xdpf); 418 419 xdp_info->xdpf = NULL; 420 } else { 421 dma_unmap_page(dev, xdp_info->mapping, PAGE_SIZE, 422 DMA_BIDIRECTIONAL); 423 __free_page(xdp_info->page); 424 } 425 426 qed_chain_consume(&txq->tx_pbl); 427 txq->sw_tx_cons = (txq->sw_tx_cons + 1) % txq->num_tx_buffers; 428 txq->xmit_pkts++; 429 } 430 } 431 432 static int qede_tx_int(struct qede_dev *edev, struct qede_tx_queue *txq) 433 { 434 unsigned int pkts_compl = 0, bytes_compl = 0; 435 struct netdev_queue *netdev_txq; 436 u16 hw_bd_cons; 437 int rc; 438 439 netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id); 440 441 hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr); 442 barrier(); 443 444 while (hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl)) { 445 int len = 0; 446 447 rc = qede_free_tx_pkt(edev, txq, &len); 448 if (rc) { 449 DP_NOTICE(edev, "hw_bd_cons = %d, chain_cons=%d\n", 450 hw_bd_cons, 451 qed_chain_get_cons_idx(&txq->tx_pbl)); 452 break; 453 } 454 455 bytes_compl += len; 456 pkts_compl++; 457 txq->sw_tx_cons = (txq->sw_tx_cons + 1) % txq->num_tx_buffers; 458 txq->xmit_pkts++; 459 } 460 461 netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl); 462 463 /* Need to make the tx_bd_cons update visible to start_xmit() 464 * before checking for netif_tx_queue_stopped(). Without the 465 * memory barrier, there is a small possibility that 466 * start_xmit() will miss it and cause the queue to be stopped 467 * forever. 468 * On the other hand we need an rmb() here to ensure the proper 469 * ordering of bit testing in the following 470 * netif_tx_queue_stopped(txq) call. 471 */ 472 smp_mb(); 473 474 if (unlikely(netif_tx_queue_stopped(netdev_txq))) { 475 /* Taking tx_lock is needed to prevent reenabling the queue 476 * while it's empty. This could have happen if rx_action() gets 477 * suspended in qede_tx_int() after the condition before 478 * netif_tx_wake_queue(), while tx_action (qede_start_xmit()): 479 * 480 * stops the queue->sees fresh tx_bd_cons->releases the queue-> 481 * sends some packets consuming the whole queue again-> 482 * stops the queue 483 */ 484 485 __netif_tx_lock(netdev_txq, smp_processor_id()); 486 487 if ((netif_tx_queue_stopped(netdev_txq)) && 488 (edev->state == QEDE_STATE_OPEN) && 489 (qed_chain_get_elem_left(&txq->tx_pbl) 490 >= (MAX_SKB_FRAGS + 1))) { 491 netif_tx_wake_queue(netdev_txq); 492 DP_VERBOSE(edev, NETIF_MSG_TX_DONE, 493 "Wake queue was called\n"); 494 } 495 496 __netif_tx_unlock(netdev_txq); 497 } 498 499 return 0; 500 } 501 502 bool qede_has_rx_work(struct qede_rx_queue *rxq) 503 { 504 u16 hw_comp_cons, sw_comp_cons; 505 506 /* Tell compiler that status block fields can change */ 507 barrier(); 508 509 hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr); 510 sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring); 511 512 return hw_comp_cons != sw_comp_cons; 513 } 514 515 static inline void qede_rx_bd_ring_consume(struct qede_rx_queue *rxq) 516 { 517 qed_chain_consume(&rxq->rx_bd_ring); 518 rxq->sw_rx_cons++; 519 } 520 521 /* This function reuses the buffer(from an offset) from 522 * consumer index to producer index in the bd ring 523 */ 524 static inline void qede_reuse_page(struct qede_rx_queue *rxq, 525 struct sw_rx_data *curr_cons) 526 { 527 struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring); 528 struct sw_rx_data *curr_prod; 529 dma_addr_t new_mapping; 530 531 curr_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX]; 532 *curr_prod = *curr_cons; 533 534 new_mapping = curr_prod->mapping + curr_prod->page_offset; 535 536 rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(new_mapping)); 537 rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(new_mapping) + 538 rxq->rx_headroom); 539 540 rxq->sw_rx_prod++; 541 curr_cons->data = NULL; 542 } 543 544 /* In case of allocation failures reuse buffers 545 * from consumer index to produce buffers for firmware 546 */ 547 void qede_recycle_rx_bd_ring(struct qede_rx_queue *rxq, u8 count) 548 { 549 struct sw_rx_data *curr_cons; 550 551 for (; count > 0; count--) { 552 curr_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX]; 553 qede_reuse_page(rxq, curr_cons); 554 qede_rx_bd_ring_consume(rxq); 555 } 556 } 557 558 static inline int qede_realloc_rx_buffer(struct qede_rx_queue *rxq, 559 struct sw_rx_data *curr_cons) 560 { 561 /* Move to the next segment in the page */ 562 curr_cons->page_offset += rxq->rx_buf_seg_size; 563 564 if (curr_cons->page_offset == PAGE_SIZE) { 565 if (unlikely(qede_alloc_rx_buffer(rxq, true))) { 566 /* Since we failed to allocate new buffer 567 * current buffer can be used again. 568 */ 569 curr_cons->page_offset -= rxq->rx_buf_seg_size; 570 571 return -ENOMEM; 572 } 573 574 dma_unmap_page(rxq->dev, curr_cons->mapping, 575 PAGE_SIZE, rxq->data_direction); 576 } else { 577 /* Increment refcount of the page as we don't want 578 * network stack to take the ownership of the page 579 * which can be recycled multiple times by the driver. 580 */ 581 page_ref_inc(curr_cons->data); 582 qede_reuse_page(rxq, curr_cons); 583 } 584 585 return 0; 586 } 587 588 void qede_update_rx_prod(struct qede_dev *edev, struct qede_rx_queue *rxq) 589 { 590 u16 bd_prod = qed_chain_get_prod_idx(&rxq->rx_bd_ring); 591 u16 cqe_prod = qed_chain_get_prod_idx(&rxq->rx_comp_ring); 592 struct eth_rx_prod_data rx_prods = {0}; 593 594 /* Update producers */ 595 rx_prods.bd_prod = cpu_to_le16(bd_prod); 596 rx_prods.cqe_prod = cpu_to_le16(cqe_prod); 597 598 /* Make sure that the BD and SGE data is updated before updating the 599 * producers since FW might read the BD/SGE right after the producer 600 * is updated. 601 */ 602 wmb(); 603 604 internal_ram_wr(rxq->hw_rxq_prod_addr, sizeof(rx_prods), 605 (u32 *)&rx_prods); 606 } 607 608 static void qede_get_rxhash(struct sk_buff *skb, u8 bitfields, __le32 rss_hash) 609 { 610 enum pkt_hash_types hash_type = PKT_HASH_TYPE_NONE; 611 enum rss_hash_type htype; 612 u32 hash = 0; 613 614 htype = GET_FIELD(bitfields, ETH_FAST_PATH_RX_REG_CQE_RSS_HASH_TYPE); 615 if (htype) { 616 hash_type = ((htype == RSS_HASH_TYPE_IPV4) || 617 (htype == RSS_HASH_TYPE_IPV6)) ? 618 PKT_HASH_TYPE_L3 : PKT_HASH_TYPE_L4; 619 hash = le32_to_cpu(rss_hash); 620 } 621 skb_set_hash(skb, hash, hash_type); 622 } 623 624 static void qede_set_skb_csum(struct sk_buff *skb, u8 csum_flag) 625 { 626 skb_checksum_none_assert(skb); 627 628 if (csum_flag & QEDE_CSUM_UNNECESSARY) 629 skb->ip_summed = CHECKSUM_UNNECESSARY; 630 631 if (csum_flag & QEDE_TUNN_CSUM_UNNECESSARY) { 632 skb->csum_level = 1; 633 skb->encapsulation = 1; 634 } 635 } 636 637 static inline void qede_skb_receive(struct qede_dev *edev, 638 struct qede_fastpath *fp, 639 struct qede_rx_queue *rxq, 640 struct sk_buff *skb, u16 vlan_tag) 641 { 642 if (vlan_tag) 643 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag); 644 645 napi_gro_receive(&fp->napi, skb); 646 } 647 648 static void qede_set_gro_params(struct qede_dev *edev, 649 struct sk_buff *skb, 650 struct eth_fast_path_rx_tpa_start_cqe *cqe) 651 { 652 u16 parsing_flags = le16_to_cpu(cqe->pars_flags.flags); 653 654 if (((parsing_flags >> PARSING_AND_ERR_FLAGS_L3TYPE_SHIFT) & 655 PARSING_AND_ERR_FLAGS_L3TYPE_MASK) == 2) 656 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6; 657 else 658 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4; 659 660 skb_shinfo(skb)->gso_size = __le16_to_cpu(cqe->len_on_first_bd) - 661 cqe->header_len; 662 } 663 664 static int qede_fill_frag_skb(struct qede_dev *edev, 665 struct qede_rx_queue *rxq, 666 u8 tpa_agg_index, u16 len_on_bd) 667 { 668 struct sw_rx_data *current_bd = &rxq->sw_rx_ring[rxq->sw_rx_cons & 669 NUM_RX_BDS_MAX]; 670 struct qede_agg_info *tpa_info = &rxq->tpa_info[tpa_agg_index]; 671 struct sk_buff *skb = tpa_info->skb; 672 673 if (unlikely(tpa_info->state != QEDE_AGG_STATE_START)) 674 goto out; 675 676 /* Add one frag and update the appropriate fields in the skb */ 677 skb_fill_page_desc(skb, tpa_info->frag_id++, 678 current_bd->data, 679 current_bd->page_offset + rxq->rx_headroom, 680 len_on_bd); 681 682 if (unlikely(qede_realloc_rx_buffer(rxq, current_bd))) { 683 /* Incr page ref count to reuse on allocation failure 684 * so that it doesn't get freed while freeing SKB. 685 */ 686 page_ref_inc(current_bd->data); 687 goto out; 688 } 689 690 qede_rx_bd_ring_consume(rxq); 691 692 skb->data_len += len_on_bd; 693 skb->truesize += rxq->rx_buf_seg_size; 694 skb->len += len_on_bd; 695 696 return 0; 697 698 out: 699 tpa_info->state = QEDE_AGG_STATE_ERROR; 700 qede_recycle_rx_bd_ring(rxq, 1); 701 702 return -ENOMEM; 703 } 704 705 static bool qede_tunn_exist(u16 flag) 706 { 707 return !!(flag & (PARSING_AND_ERR_FLAGS_TUNNELEXIST_MASK << 708 PARSING_AND_ERR_FLAGS_TUNNELEXIST_SHIFT)); 709 } 710 711 static u8 qede_check_tunn_csum(u16 flag) 712 { 713 u16 csum_flag = 0; 714 u8 tcsum = 0; 715 716 if (flag & (PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_MASK << 717 PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_SHIFT)) 718 csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_MASK << 719 PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_SHIFT; 720 721 if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK << 722 PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) { 723 csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK << 724 PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT; 725 tcsum = QEDE_TUNN_CSUM_UNNECESSARY; 726 } 727 728 csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_MASK << 729 PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_SHIFT | 730 PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK << 731 PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT; 732 733 if (csum_flag & flag) 734 return QEDE_CSUM_ERROR; 735 736 return QEDE_CSUM_UNNECESSARY | tcsum; 737 } 738 739 static inline struct sk_buff * 740 qede_build_skb(struct qede_rx_queue *rxq, 741 struct sw_rx_data *bd, u16 len, u16 pad) 742 { 743 struct sk_buff *skb; 744 void *buf; 745 746 buf = page_address(bd->data) + bd->page_offset; 747 skb = build_skb(buf, rxq->rx_buf_seg_size); 748 749 if (unlikely(!skb)) 750 return NULL; 751 752 skb_reserve(skb, pad); 753 skb_put(skb, len); 754 755 return skb; 756 } 757 758 static struct sk_buff * 759 qede_tpa_rx_build_skb(struct qede_dev *edev, 760 struct qede_rx_queue *rxq, 761 struct sw_rx_data *bd, u16 len, u16 pad, 762 bool alloc_skb) 763 { 764 struct sk_buff *skb; 765 766 skb = qede_build_skb(rxq, bd, len, pad); 767 bd->page_offset += rxq->rx_buf_seg_size; 768 769 if (bd->page_offset == PAGE_SIZE) { 770 if (unlikely(qede_alloc_rx_buffer(rxq, true))) { 771 DP_NOTICE(edev, 772 "Failed to allocate RX buffer for tpa start\n"); 773 bd->page_offset -= rxq->rx_buf_seg_size; 774 page_ref_inc(bd->data); 775 dev_kfree_skb_any(skb); 776 return NULL; 777 } 778 } else { 779 page_ref_inc(bd->data); 780 qede_reuse_page(rxq, bd); 781 } 782 783 /* We've consumed the first BD and prepared an SKB */ 784 qede_rx_bd_ring_consume(rxq); 785 786 return skb; 787 } 788 789 static struct sk_buff * 790 qede_rx_build_skb(struct qede_dev *edev, 791 struct qede_rx_queue *rxq, 792 struct sw_rx_data *bd, u16 len, u16 pad) 793 { 794 struct sk_buff *skb = NULL; 795 796 /* For smaller frames still need to allocate skb, memcpy 797 * data and benefit in reusing the page segment instead of 798 * un-mapping it. 799 */ 800 if ((len + pad <= edev->rx_copybreak)) { 801 unsigned int offset = bd->page_offset + pad; 802 803 skb = netdev_alloc_skb(edev->ndev, QEDE_RX_HDR_SIZE); 804 if (unlikely(!skb)) 805 return NULL; 806 807 skb_reserve(skb, pad); 808 skb_put_data(skb, page_address(bd->data) + offset, len); 809 qede_reuse_page(rxq, bd); 810 goto out; 811 } 812 813 skb = qede_build_skb(rxq, bd, len, pad); 814 815 if (unlikely(qede_realloc_rx_buffer(rxq, bd))) { 816 /* Incr page ref count to reuse on allocation failure so 817 * that it doesn't get freed while freeing SKB [as its 818 * already mapped there]. 819 */ 820 page_ref_inc(bd->data); 821 dev_kfree_skb_any(skb); 822 return NULL; 823 } 824 out: 825 /* We've consumed the first BD and prepared an SKB */ 826 qede_rx_bd_ring_consume(rxq); 827 828 return skb; 829 } 830 831 static void qede_tpa_start(struct qede_dev *edev, 832 struct qede_rx_queue *rxq, 833 struct eth_fast_path_rx_tpa_start_cqe *cqe) 834 { 835 struct qede_agg_info *tpa_info = &rxq->tpa_info[cqe->tpa_agg_index]; 836 struct sw_rx_data *sw_rx_data_cons; 837 u16 pad; 838 839 sw_rx_data_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX]; 840 pad = cqe->placement_offset + rxq->rx_headroom; 841 842 tpa_info->skb = qede_tpa_rx_build_skb(edev, rxq, sw_rx_data_cons, 843 le16_to_cpu(cqe->len_on_first_bd), 844 pad, false); 845 tpa_info->buffer.page_offset = sw_rx_data_cons->page_offset; 846 tpa_info->buffer.mapping = sw_rx_data_cons->mapping; 847 848 if (unlikely(!tpa_info->skb)) { 849 DP_NOTICE(edev, "Failed to allocate SKB for gro\n"); 850 851 /* Consume from ring but do not produce since 852 * this might be used by FW still, it will be re-used 853 * at TPA end. 854 */ 855 tpa_info->tpa_start_fail = true; 856 qede_rx_bd_ring_consume(rxq); 857 tpa_info->state = QEDE_AGG_STATE_ERROR; 858 goto cons_buf; 859 } 860 861 tpa_info->frag_id = 0; 862 tpa_info->state = QEDE_AGG_STATE_START; 863 864 if ((le16_to_cpu(cqe->pars_flags.flags) >> 865 PARSING_AND_ERR_FLAGS_TAG8021QEXIST_SHIFT) & 866 PARSING_AND_ERR_FLAGS_TAG8021QEXIST_MASK) 867 tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag); 868 else 869 tpa_info->vlan_tag = 0; 870 871 qede_get_rxhash(tpa_info->skb, cqe->bitfields, cqe->rss_hash); 872 873 /* This is needed in order to enable forwarding support */ 874 qede_set_gro_params(edev, tpa_info->skb, cqe); 875 876 cons_buf: /* We still need to handle bd_len_list to consume buffers */ 877 if (likely(cqe->bw_ext_bd_len_list[0])) 878 qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index, 879 le16_to_cpu(cqe->bw_ext_bd_len_list[0])); 880 881 if (unlikely(cqe->bw_ext_bd_len_list[1])) { 882 DP_ERR(edev, 883 "Unlikely - got a TPA aggregation with more than one bw_ext_bd_len_list entry in the TPA start\n"); 884 tpa_info->state = QEDE_AGG_STATE_ERROR; 885 } 886 } 887 888 #ifdef CONFIG_INET 889 static void qede_gro_ip_csum(struct sk_buff *skb) 890 { 891 const struct iphdr *iph = ip_hdr(skb); 892 struct tcphdr *th; 893 894 skb_set_transport_header(skb, sizeof(struct iphdr)); 895 th = tcp_hdr(skb); 896 897 th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb), 898 iph->saddr, iph->daddr, 0); 899 900 tcp_gro_complete(skb); 901 } 902 903 static void qede_gro_ipv6_csum(struct sk_buff *skb) 904 { 905 struct ipv6hdr *iph = ipv6_hdr(skb); 906 struct tcphdr *th; 907 908 skb_set_transport_header(skb, sizeof(struct ipv6hdr)); 909 th = tcp_hdr(skb); 910 911 th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb), 912 &iph->saddr, &iph->daddr, 0); 913 tcp_gro_complete(skb); 914 } 915 #endif 916 917 static void qede_gro_receive(struct qede_dev *edev, 918 struct qede_fastpath *fp, 919 struct sk_buff *skb, 920 u16 vlan_tag) 921 { 922 /* FW can send a single MTU sized packet from gro flow 923 * due to aggregation timeout/last segment etc. which 924 * is not expected to be a gro packet. If a skb has zero 925 * frags then simply push it in the stack as non gso skb. 926 */ 927 if (unlikely(!skb->data_len)) { 928 skb_shinfo(skb)->gso_type = 0; 929 skb_shinfo(skb)->gso_size = 0; 930 goto send_skb; 931 } 932 933 #ifdef CONFIG_INET 934 if (skb_shinfo(skb)->gso_size) { 935 skb_reset_network_header(skb); 936 937 switch (skb->protocol) { 938 case htons(ETH_P_IP): 939 qede_gro_ip_csum(skb); 940 break; 941 case htons(ETH_P_IPV6): 942 qede_gro_ipv6_csum(skb); 943 break; 944 default: 945 DP_ERR(edev, 946 "Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n", 947 ntohs(skb->protocol)); 948 } 949 } 950 #endif 951 952 send_skb: 953 skb_record_rx_queue(skb, fp->rxq->rxq_id); 954 qede_skb_receive(edev, fp, fp->rxq, skb, vlan_tag); 955 } 956 957 static inline void qede_tpa_cont(struct qede_dev *edev, 958 struct qede_rx_queue *rxq, 959 struct eth_fast_path_rx_tpa_cont_cqe *cqe) 960 { 961 int i; 962 963 for (i = 0; cqe->len_list[i]; i++) 964 qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index, 965 le16_to_cpu(cqe->len_list[i])); 966 967 if (unlikely(i > 1)) 968 DP_ERR(edev, 969 "Strange - TPA cont with more than a single len_list entry\n"); 970 } 971 972 static int qede_tpa_end(struct qede_dev *edev, 973 struct qede_fastpath *fp, 974 struct eth_fast_path_rx_tpa_end_cqe *cqe) 975 { 976 struct qede_rx_queue *rxq = fp->rxq; 977 struct qede_agg_info *tpa_info; 978 struct sk_buff *skb; 979 int i; 980 981 tpa_info = &rxq->tpa_info[cqe->tpa_agg_index]; 982 skb = tpa_info->skb; 983 984 if (tpa_info->buffer.page_offset == PAGE_SIZE) 985 dma_unmap_page(rxq->dev, tpa_info->buffer.mapping, 986 PAGE_SIZE, rxq->data_direction); 987 988 for (i = 0; cqe->len_list[i]; i++) 989 qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index, 990 le16_to_cpu(cqe->len_list[i])); 991 if (unlikely(i > 1)) 992 DP_ERR(edev, 993 "Strange - TPA emd with more than a single len_list entry\n"); 994 995 if (unlikely(tpa_info->state != QEDE_AGG_STATE_START)) 996 goto err; 997 998 /* Sanity */ 999 if (unlikely(cqe->num_of_bds != tpa_info->frag_id + 1)) 1000 DP_ERR(edev, 1001 "Strange - TPA had %02x BDs, but SKB has only %d frags\n", 1002 cqe->num_of_bds, tpa_info->frag_id); 1003 if (unlikely(skb->len != le16_to_cpu(cqe->total_packet_len))) 1004 DP_ERR(edev, 1005 "Strange - total packet len [cqe] is %4x but SKB has len %04x\n", 1006 le16_to_cpu(cqe->total_packet_len), skb->len); 1007 1008 /* Finalize the SKB */ 1009 skb->protocol = eth_type_trans(skb, edev->ndev); 1010 skb->ip_summed = CHECKSUM_UNNECESSARY; 1011 1012 /* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count 1013 * to skb_shinfo(skb)->gso_segs 1014 */ 1015 NAPI_GRO_CB(skb)->count = le16_to_cpu(cqe->num_of_coalesced_segs); 1016 1017 qede_gro_receive(edev, fp, skb, tpa_info->vlan_tag); 1018 1019 tpa_info->state = QEDE_AGG_STATE_NONE; 1020 1021 return 1; 1022 err: 1023 tpa_info->state = QEDE_AGG_STATE_NONE; 1024 1025 if (tpa_info->tpa_start_fail) { 1026 qede_reuse_page(rxq, &tpa_info->buffer); 1027 tpa_info->tpa_start_fail = false; 1028 } 1029 1030 dev_kfree_skb_any(tpa_info->skb); 1031 tpa_info->skb = NULL; 1032 return 0; 1033 } 1034 1035 static u8 qede_check_notunn_csum(u16 flag) 1036 { 1037 u16 csum_flag = 0; 1038 u8 csum = 0; 1039 1040 if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK << 1041 PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) { 1042 csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK << 1043 PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT; 1044 csum = QEDE_CSUM_UNNECESSARY; 1045 } 1046 1047 csum_flag |= PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK << 1048 PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT; 1049 1050 if (csum_flag & flag) 1051 return QEDE_CSUM_ERROR; 1052 1053 return csum; 1054 } 1055 1056 static u8 qede_check_csum(u16 flag) 1057 { 1058 if (!qede_tunn_exist(flag)) 1059 return qede_check_notunn_csum(flag); 1060 else 1061 return qede_check_tunn_csum(flag); 1062 } 1063 1064 static bool qede_pkt_is_ip_fragmented(struct eth_fast_path_rx_reg_cqe *cqe, 1065 u16 flag) 1066 { 1067 u8 tun_pars_flg = cqe->tunnel_pars_flags.flags; 1068 1069 if ((tun_pars_flg & (ETH_TUNNEL_PARSING_FLAGS_IPV4_FRAGMENT_MASK << 1070 ETH_TUNNEL_PARSING_FLAGS_IPV4_FRAGMENT_SHIFT)) || 1071 (flag & (PARSING_AND_ERR_FLAGS_IPV4FRAG_MASK << 1072 PARSING_AND_ERR_FLAGS_IPV4FRAG_SHIFT))) 1073 return true; 1074 1075 return false; 1076 } 1077 1078 /* Return true iff packet is to be passed to stack */ 1079 static bool qede_rx_xdp(struct qede_dev *edev, 1080 struct qede_fastpath *fp, 1081 struct qede_rx_queue *rxq, 1082 struct bpf_prog *prog, 1083 struct sw_rx_data *bd, 1084 struct eth_fast_path_rx_reg_cqe *cqe, 1085 u16 *data_offset, u16 *len) 1086 { 1087 struct xdp_buff xdp; 1088 enum xdp_action act; 1089 1090 xdp_init_buff(&xdp, rxq->rx_buf_seg_size, &rxq->xdp_rxq); 1091 xdp_prepare_buff(&xdp, page_address(bd->data), *data_offset, 1092 *len, false); 1093 1094 act = bpf_prog_run_xdp(prog, &xdp); 1095 1096 /* Recalculate, as XDP might have changed the headers */ 1097 *data_offset = xdp.data - xdp.data_hard_start; 1098 *len = xdp.data_end - xdp.data; 1099 1100 if (act == XDP_PASS) 1101 return true; 1102 1103 /* Count number of packets not to be passed to stack */ 1104 rxq->xdp_no_pass++; 1105 1106 switch (act) { 1107 case XDP_TX: 1108 /* We need the replacement buffer before transmit. */ 1109 if (unlikely(qede_alloc_rx_buffer(rxq, true))) { 1110 qede_recycle_rx_bd_ring(rxq, 1); 1111 1112 trace_xdp_exception(edev->ndev, prog, act); 1113 break; 1114 } 1115 1116 /* Now if there's a transmission problem, we'd still have to 1117 * throw current buffer, as replacement was already allocated. 1118 */ 1119 if (unlikely(qede_xdp_xmit(fp->xdp_tx, bd->mapping, 1120 *data_offset, *len, bd->data, 1121 NULL))) { 1122 dma_unmap_page(rxq->dev, bd->mapping, PAGE_SIZE, 1123 rxq->data_direction); 1124 __free_page(bd->data); 1125 1126 trace_xdp_exception(edev->ndev, prog, act); 1127 } else { 1128 dma_sync_single_for_device(rxq->dev, 1129 bd->mapping + *data_offset, 1130 *len, rxq->data_direction); 1131 fp->xdp_xmit |= QEDE_XDP_TX; 1132 } 1133 1134 /* Regardless, we've consumed an Rx BD */ 1135 qede_rx_bd_ring_consume(rxq); 1136 break; 1137 case XDP_REDIRECT: 1138 /* We need the replacement buffer before transmit. */ 1139 if (unlikely(qede_alloc_rx_buffer(rxq, true))) { 1140 qede_recycle_rx_bd_ring(rxq, 1); 1141 1142 trace_xdp_exception(edev->ndev, prog, act); 1143 break; 1144 } 1145 1146 dma_unmap_page(rxq->dev, bd->mapping, PAGE_SIZE, 1147 rxq->data_direction); 1148 1149 if (unlikely(xdp_do_redirect(edev->ndev, &xdp, prog))) 1150 DP_NOTICE(edev, "Failed to redirect the packet\n"); 1151 else 1152 fp->xdp_xmit |= QEDE_XDP_REDIRECT; 1153 1154 qede_rx_bd_ring_consume(rxq); 1155 break; 1156 default: 1157 bpf_warn_invalid_xdp_action(edev->ndev, prog, act); 1158 fallthrough; 1159 case XDP_ABORTED: 1160 trace_xdp_exception(edev->ndev, prog, act); 1161 fallthrough; 1162 case XDP_DROP: 1163 qede_recycle_rx_bd_ring(rxq, cqe->bd_num); 1164 } 1165 1166 return false; 1167 } 1168 1169 static int qede_rx_build_jumbo(struct qede_dev *edev, 1170 struct qede_rx_queue *rxq, 1171 struct sk_buff *skb, 1172 struct eth_fast_path_rx_reg_cqe *cqe, 1173 u16 first_bd_len) 1174 { 1175 u16 pkt_len = le16_to_cpu(cqe->pkt_len); 1176 struct sw_rx_data *bd; 1177 u16 bd_cons_idx; 1178 u8 num_frags; 1179 1180 pkt_len -= first_bd_len; 1181 1182 /* We've already used one BD for the SKB. Now take care of the rest */ 1183 for (num_frags = cqe->bd_num - 1; num_frags > 0; num_frags--) { 1184 u16 cur_size = pkt_len > rxq->rx_buf_size ? rxq->rx_buf_size : 1185 pkt_len; 1186 1187 if (unlikely(!cur_size)) { 1188 DP_ERR(edev, 1189 "Still got %d BDs for mapping jumbo, but length became 0\n", 1190 num_frags); 1191 goto out; 1192 } 1193 1194 /* We need a replacement buffer for each BD */ 1195 if (unlikely(qede_alloc_rx_buffer(rxq, true))) 1196 goto out; 1197 1198 /* Now that we've allocated the replacement buffer, 1199 * we can safely consume the next BD and map it to the SKB. 1200 */ 1201 bd_cons_idx = rxq->sw_rx_cons & NUM_RX_BDS_MAX; 1202 bd = &rxq->sw_rx_ring[bd_cons_idx]; 1203 qede_rx_bd_ring_consume(rxq); 1204 1205 dma_unmap_page(rxq->dev, bd->mapping, 1206 PAGE_SIZE, DMA_FROM_DEVICE); 1207 1208 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, bd->data, 1209 rxq->rx_headroom, cur_size, PAGE_SIZE); 1210 1211 pkt_len -= cur_size; 1212 } 1213 1214 if (unlikely(pkt_len)) 1215 DP_ERR(edev, 1216 "Mapped all BDs of jumbo, but still have %d bytes\n", 1217 pkt_len); 1218 1219 out: 1220 return num_frags; 1221 } 1222 1223 static int qede_rx_process_tpa_cqe(struct qede_dev *edev, 1224 struct qede_fastpath *fp, 1225 struct qede_rx_queue *rxq, 1226 union eth_rx_cqe *cqe, 1227 enum eth_rx_cqe_type type) 1228 { 1229 switch (type) { 1230 case ETH_RX_CQE_TYPE_TPA_START: 1231 qede_tpa_start(edev, rxq, &cqe->fast_path_tpa_start); 1232 return 0; 1233 case ETH_RX_CQE_TYPE_TPA_CONT: 1234 qede_tpa_cont(edev, rxq, &cqe->fast_path_tpa_cont); 1235 return 0; 1236 case ETH_RX_CQE_TYPE_TPA_END: 1237 return qede_tpa_end(edev, fp, &cqe->fast_path_tpa_end); 1238 default: 1239 return 0; 1240 } 1241 } 1242 1243 static int qede_rx_process_cqe(struct qede_dev *edev, 1244 struct qede_fastpath *fp, 1245 struct qede_rx_queue *rxq) 1246 { 1247 struct bpf_prog *xdp_prog = READ_ONCE(rxq->xdp_prog); 1248 struct eth_fast_path_rx_reg_cqe *fp_cqe; 1249 u16 len, pad, bd_cons_idx, parse_flag; 1250 enum eth_rx_cqe_type cqe_type; 1251 union eth_rx_cqe *cqe; 1252 struct sw_rx_data *bd; 1253 struct sk_buff *skb; 1254 __le16 flags; 1255 u8 csum_flag; 1256 1257 /* Get the CQE from the completion ring */ 1258 cqe = (union eth_rx_cqe *)qed_chain_consume(&rxq->rx_comp_ring); 1259 cqe_type = cqe->fast_path_regular.type; 1260 1261 /* Process an unlikely slowpath event */ 1262 if (unlikely(cqe_type == ETH_RX_CQE_TYPE_SLOW_PATH)) { 1263 struct eth_slow_path_rx_cqe *sp_cqe; 1264 1265 sp_cqe = (struct eth_slow_path_rx_cqe *)cqe; 1266 edev->ops->eth_cqe_completion(edev->cdev, fp->id, sp_cqe); 1267 return 0; 1268 } 1269 1270 /* Handle TPA cqes */ 1271 if (cqe_type != ETH_RX_CQE_TYPE_REGULAR) 1272 return qede_rx_process_tpa_cqe(edev, fp, rxq, cqe, cqe_type); 1273 1274 /* Get the data from the SW ring; Consume it only after it's evident 1275 * we wouldn't recycle it. 1276 */ 1277 bd_cons_idx = rxq->sw_rx_cons & NUM_RX_BDS_MAX; 1278 bd = &rxq->sw_rx_ring[bd_cons_idx]; 1279 1280 fp_cqe = &cqe->fast_path_regular; 1281 len = le16_to_cpu(fp_cqe->len_on_first_bd); 1282 pad = fp_cqe->placement_offset + rxq->rx_headroom; 1283 1284 /* Run eBPF program if one is attached */ 1285 if (xdp_prog) 1286 if (!qede_rx_xdp(edev, fp, rxq, xdp_prog, bd, fp_cqe, 1287 &pad, &len)) 1288 return 0; 1289 1290 /* If this is an error packet then drop it */ 1291 flags = cqe->fast_path_regular.pars_flags.flags; 1292 parse_flag = le16_to_cpu(flags); 1293 1294 csum_flag = qede_check_csum(parse_flag); 1295 if (unlikely(csum_flag == QEDE_CSUM_ERROR)) { 1296 if (qede_pkt_is_ip_fragmented(fp_cqe, parse_flag)) 1297 rxq->rx_ip_frags++; 1298 else 1299 rxq->rx_hw_errors++; 1300 } 1301 1302 /* Basic validation passed; Need to prepare an SKB. This would also 1303 * guarantee to finally consume the first BD upon success. 1304 */ 1305 skb = qede_rx_build_skb(edev, rxq, bd, len, pad); 1306 if (!skb) { 1307 rxq->rx_alloc_errors++; 1308 qede_recycle_rx_bd_ring(rxq, fp_cqe->bd_num); 1309 return 0; 1310 } 1311 1312 /* In case of Jumbo packet, several PAGE_SIZEd buffers will be pointed 1313 * by a single cqe. 1314 */ 1315 if (fp_cqe->bd_num > 1) { 1316 u16 unmapped_frags = qede_rx_build_jumbo(edev, rxq, skb, 1317 fp_cqe, len); 1318 1319 if (unlikely(unmapped_frags > 0)) { 1320 qede_recycle_rx_bd_ring(rxq, unmapped_frags); 1321 dev_kfree_skb_any(skb); 1322 return 0; 1323 } 1324 } 1325 1326 /* The SKB contains all the data. Now prepare meta-magic */ 1327 skb->protocol = eth_type_trans(skb, edev->ndev); 1328 qede_get_rxhash(skb, fp_cqe->bitfields, fp_cqe->rss_hash); 1329 qede_set_skb_csum(skb, csum_flag); 1330 skb_record_rx_queue(skb, rxq->rxq_id); 1331 qede_ptp_record_rx_ts(edev, cqe, skb); 1332 1333 /* SKB is prepared - pass it to stack */ 1334 qede_skb_receive(edev, fp, rxq, skb, le16_to_cpu(fp_cqe->vlan_tag)); 1335 1336 return 1; 1337 } 1338 1339 static int qede_rx_int(struct qede_fastpath *fp, int budget) 1340 { 1341 struct qede_rx_queue *rxq = fp->rxq; 1342 struct qede_dev *edev = fp->edev; 1343 int work_done = 0, rcv_pkts = 0; 1344 u16 hw_comp_cons, sw_comp_cons; 1345 1346 hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr); 1347 sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring); 1348 1349 /* Memory barrier to prevent the CPU from doing speculative reads of CQE 1350 * / BD in the while-loop before reading hw_comp_cons. If the CQE is 1351 * read before it is written by FW, then FW writes CQE and SB, and then 1352 * the CPU reads the hw_comp_cons, it will use an old CQE. 1353 */ 1354 rmb(); 1355 1356 /* Loop to complete all indicated BDs */ 1357 while ((sw_comp_cons != hw_comp_cons) && (work_done < budget)) { 1358 rcv_pkts += qede_rx_process_cqe(edev, fp, rxq); 1359 qed_chain_recycle_consumed(&rxq->rx_comp_ring); 1360 sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring); 1361 work_done++; 1362 } 1363 1364 rxq->rcv_pkts += rcv_pkts; 1365 1366 /* Allocate replacement buffers */ 1367 while (rxq->num_rx_buffers - rxq->filled_buffers) 1368 if (qede_alloc_rx_buffer(rxq, false)) 1369 break; 1370 1371 /* Update producers */ 1372 qede_update_rx_prod(edev, rxq); 1373 1374 return work_done; 1375 } 1376 1377 static bool qede_poll_is_more_work(struct qede_fastpath *fp) 1378 { 1379 qed_sb_update_sb_idx(fp->sb_info); 1380 1381 /* *_has_*_work() reads the status block, thus we need to ensure that 1382 * status block indices have been actually read (qed_sb_update_sb_idx) 1383 * prior to this check (*_has_*_work) so that we won't write the 1384 * "newer" value of the status block to HW (if there was a DMA right 1385 * after qede_has_rx_work and if there is no rmb, the memory reading 1386 * (qed_sb_update_sb_idx) may be postponed to right before *_ack_sb). 1387 * In this case there will never be another interrupt until there is 1388 * another update of the status block, while there is still unhandled 1389 * work. 1390 */ 1391 rmb(); 1392 1393 if (likely(fp->type & QEDE_FASTPATH_RX)) 1394 if (qede_has_rx_work(fp->rxq)) 1395 return true; 1396 1397 if (fp->type & QEDE_FASTPATH_XDP) 1398 if (qede_txq_has_work(fp->xdp_tx)) 1399 return true; 1400 1401 if (likely(fp->type & QEDE_FASTPATH_TX)) { 1402 int cos; 1403 1404 for_each_cos_in_txq(fp->edev, cos) { 1405 if (qede_txq_has_work(&fp->txq[cos])) 1406 return true; 1407 } 1408 } 1409 1410 return false; 1411 } 1412 1413 /********************* 1414 * NDO & API related * 1415 *********************/ 1416 int qede_poll(struct napi_struct *napi, int budget) 1417 { 1418 struct qede_fastpath *fp = container_of(napi, struct qede_fastpath, 1419 napi); 1420 struct qede_dev *edev = fp->edev; 1421 int rx_work_done = 0; 1422 u16 xdp_prod; 1423 1424 fp->xdp_xmit = 0; 1425 1426 if (likely(fp->type & QEDE_FASTPATH_TX)) { 1427 int cos; 1428 1429 for_each_cos_in_txq(fp->edev, cos) { 1430 if (qede_txq_has_work(&fp->txq[cos])) 1431 qede_tx_int(edev, &fp->txq[cos]); 1432 } 1433 } 1434 1435 if ((fp->type & QEDE_FASTPATH_XDP) && qede_txq_has_work(fp->xdp_tx)) 1436 qede_xdp_tx_int(edev, fp->xdp_tx); 1437 1438 rx_work_done = (likely(fp->type & QEDE_FASTPATH_RX) && 1439 qede_has_rx_work(fp->rxq)) ? 1440 qede_rx_int(fp, budget) : 0; 1441 1442 if (fp->xdp_xmit & QEDE_XDP_REDIRECT) 1443 xdp_do_flush(); 1444 1445 /* Handle case where we are called by netpoll with a budget of 0 */ 1446 if (rx_work_done < budget || !budget) { 1447 if (!qede_poll_is_more_work(fp)) { 1448 napi_complete_done(napi, rx_work_done); 1449 1450 /* Update and reenable interrupts */ 1451 qed_sb_ack(fp->sb_info, IGU_INT_ENABLE, 1); 1452 } else { 1453 rx_work_done = budget; 1454 } 1455 } 1456 1457 if (fp->xdp_xmit & QEDE_XDP_TX) { 1458 xdp_prod = qed_chain_get_prod_idx(&fp->xdp_tx->tx_pbl); 1459 1460 fp->xdp_tx->tx_db.data.bd_prod = cpu_to_le16(xdp_prod); 1461 qede_update_tx_producer(fp->xdp_tx); 1462 } 1463 1464 return rx_work_done; 1465 } 1466 1467 irqreturn_t qede_msix_fp_int(int irq, void *fp_cookie) 1468 { 1469 struct qede_fastpath *fp = fp_cookie; 1470 1471 qed_sb_ack(fp->sb_info, IGU_INT_DISABLE, 0 /*do not update*/); 1472 1473 napi_schedule_irqoff(&fp->napi); 1474 return IRQ_HANDLED; 1475 } 1476 1477 /* Main transmit function */ 1478 netdev_tx_t qede_start_xmit(struct sk_buff *skb, struct net_device *ndev) 1479 { 1480 struct qede_dev *edev = netdev_priv(ndev); 1481 struct netdev_queue *netdev_txq; 1482 struct qede_tx_queue *txq; 1483 struct eth_tx_1st_bd *first_bd; 1484 struct eth_tx_2nd_bd *second_bd = NULL; 1485 struct eth_tx_3rd_bd *third_bd = NULL; 1486 struct eth_tx_bd *tx_data_bd = NULL; 1487 u16 txq_index, val = 0; 1488 u8 nbd = 0; 1489 dma_addr_t mapping; 1490 int rc, frag_idx = 0, ipv6_ext = 0; 1491 u8 xmit_type; 1492 u16 idx; 1493 u16 hlen; 1494 bool data_split = false; 1495 1496 /* Get tx-queue context and netdev index */ 1497 txq_index = skb_get_queue_mapping(skb); 1498 WARN_ON(txq_index >= QEDE_TSS_COUNT(edev) * edev->dev_info.num_tc); 1499 txq = QEDE_NDEV_TXQ_ID_TO_TXQ(edev, txq_index); 1500 netdev_txq = netdev_get_tx_queue(ndev, txq_index); 1501 1502 WARN_ON(qed_chain_get_elem_left(&txq->tx_pbl) < (MAX_SKB_FRAGS + 1)); 1503 1504 xmit_type = qede_xmit_type(skb, &ipv6_ext); 1505 1506 #if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET) 1507 if (qede_pkt_req_lin(skb, xmit_type)) { 1508 if (skb_linearize(skb)) { 1509 txq->tx_mem_alloc_err++; 1510 1511 dev_kfree_skb_any(skb); 1512 return NETDEV_TX_OK; 1513 } 1514 } 1515 #endif 1516 1517 /* Fill the entry in the SW ring and the BDs in the FW ring */ 1518 idx = txq->sw_tx_prod; 1519 txq->sw_tx_ring.skbs[idx].skb = skb; 1520 first_bd = (struct eth_tx_1st_bd *) 1521 qed_chain_produce(&txq->tx_pbl); 1522 memset(first_bd, 0, sizeof(*first_bd)); 1523 first_bd->data.bd_flags.bitfields = 1524 1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT; 1525 1526 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) 1527 qede_ptp_tx_ts(edev, skb); 1528 1529 /* Map skb linear data for DMA and set in the first BD */ 1530 mapping = dma_map_single(txq->dev, skb->data, 1531 skb_headlen(skb), DMA_TO_DEVICE); 1532 if (unlikely(dma_mapping_error(txq->dev, mapping))) { 1533 DP_NOTICE(edev, "SKB mapping failed\n"); 1534 qede_free_failed_tx_pkt(txq, first_bd, 0, false); 1535 qede_update_tx_producer(txq); 1536 return NETDEV_TX_OK; 1537 } 1538 nbd++; 1539 BD_SET_UNMAP_ADDR_LEN(first_bd, mapping, skb_headlen(skb)); 1540 1541 /* In case there is IPv6 with extension headers or LSO we need 2nd and 1542 * 3rd BDs. 1543 */ 1544 if (unlikely((xmit_type & XMIT_LSO) | ipv6_ext)) { 1545 second_bd = (struct eth_tx_2nd_bd *) 1546 qed_chain_produce(&txq->tx_pbl); 1547 memset(second_bd, 0, sizeof(*second_bd)); 1548 1549 nbd++; 1550 third_bd = (struct eth_tx_3rd_bd *) 1551 qed_chain_produce(&txq->tx_pbl); 1552 memset(third_bd, 0, sizeof(*third_bd)); 1553 1554 nbd++; 1555 /* We need to fill in additional data in second_bd... */ 1556 tx_data_bd = (struct eth_tx_bd *)second_bd; 1557 } 1558 1559 if (skb_vlan_tag_present(skb)) { 1560 first_bd->data.vlan = cpu_to_le16(skb_vlan_tag_get(skb)); 1561 first_bd->data.bd_flags.bitfields |= 1562 1 << ETH_TX_1ST_BD_FLAGS_VLAN_INSERTION_SHIFT; 1563 } 1564 1565 /* Fill the parsing flags & params according to the requested offload */ 1566 if (xmit_type & XMIT_L4_CSUM) { 1567 /* We don't re-calculate IP checksum as it is already done by 1568 * the upper stack 1569 */ 1570 first_bd->data.bd_flags.bitfields |= 1571 1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT; 1572 1573 if (xmit_type & XMIT_ENC) { 1574 first_bd->data.bd_flags.bitfields |= 1575 1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT; 1576 1577 val |= (1 << ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT); 1578 } 1579 1580 /* Legacy FW had flipped behavior in regard to this bit - 1581 * I.e., needed to set to prevent FW from touching encapsulated 1582 * packets when it didn't need to. 1583 */ 1584 if (unlikely(txq->is_legacy)) 1585 val ^= (1 << ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT); 1586 1587 /* If the packet is IPv6 with extension header, indicate that 1588 * to FW and pass few params, since the device cracker doesn't 1589 * support parsing IPv6 with extension header/s. 1590 */ 1591 if (unlikely(ipv6_ext)) 1592 qede_set_params_for_ipv6_ext(skb, second_bd, third_bd); 1593 } 1594 1595 if (xmit_type & XMIT_LSO) { 1596 first_bd->data.bd_flags.bitfields |= 1597 (1 << ETH_TX_1ST_BD_FLAGS_LSO_SHIFT); 1598 third_bd->data.lso_mss = 1599 cpu_to_le16(skb_shinfo(skb)->gso_size); 1600 1601 if (unlikely(xmit_type & XMIT_ENC)) { 1602 first_bd->data.bd_flags.bitfields |= 1603 1 << ETH_TX_1ST_BD_FLAGS_TUNN_IP_CSUM_SHIFT; 1604 1605 if (xmit_type & XMIT_ENC_GSO_L4_CSUM) { 1606 u8 tmp = ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_SHIFT; 1607 1608 first_bd->data.bd_flags.bitfields |= 1 << tmp; 1609 } 1610 hlen = qede_get_skb_hlen(skb, true); 1611 } else { 1612 first_bd->data.bd_flags.bitfields |= 1613 1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT; 1614 hlen = qede_get_skb_hlen(skb, false); 1615 } 1616 1617 /* @@@TBD - if will not be removed need to check */ 1618 third_bd->data.bitfields |= 1619 cpu_to_le16(1 << ETH_TX_DATA_3RD_BD_HDR_NBD_SHIFT); 1620 1621 /* Make life easier for FW guys who can't deal with header and 1622 * data on same BD. If we need to split, use the second bd... 1623 */ 1624 if (unlikely(skb_headlen(skb) > hlen)) { 1625 DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED, 1626 "TSO split header size is %d (%x:%x)\n", 1627 first_bd->nbytes, first_bd->addr.hi, 1628 first_bd->addr.lo); 1629 1630 mapping = HILO_U64(le32_to_cpu(first_bd->addr.hi), 1631 le32_to_cpu(first_bd->addr.lo)) + 1632 hlen; 1633 1634 BD_SET_UNMAP_ADDR_LEN(tx_data_bd, mapping, 1635 le16_to_cpu(first_bd->nbytes) - 1636 hlen); 1637 1638 /* this marks the BD as one that has no 1639 * individual mapping 1640 */ 1641 txq->sw_tx_ring.skbs[idx].flags |= QEDE_TSO_SPLIT_BD; 1642 1643 first_bd->nbytes = cpu_to_le16(hlen); 1644 1645 tx_data_bd = (struct eth_tx_bd *)third_bd; 1646 data_split = true; 1647 } 1648 } else { 1649 if (unlikely(skb->len > ETH_TX_MAX_NON_LSO_PKT_LEN)) { 1650 DP_ERR(edev, "Unexpected non LSO skb length = 0x%x\n", skb->len); 1651 qede_free_failed_tx_pkt(txq, first_bd, 0, false); 1652 qede_update_tx_producer(txq); 1653 return NETDEV_TX_OK; 1654 } 1655 1656 val |= ((skb->len & ETH_TX_DATA_1ST_BD_PKT_LEN_MASK) << 1657 ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT); 1658 } 1659 1660 first_bd->data.bitfields = cpu_to_le16(val); 1661 1662 /* Handle fragmented skb */ 1663 /* special handle for frags inside 2nd and 3rd bds.. */ 1664 while (tx_data_bd && frag_idx < skb_shinfo(skb)->nr_frags) { 1665 rc = map_frag_to_bd(txq, 1666 &skb_shinfo(skb)->frags[frag_idx], 1667 tx_data_bd); 1668 if (rc) { 1669 qede_free_failed_tx_pkt(txq, first_bd, nbd, data_split); 1670 qede_update_tx_producer(txq); 1671 return NETDEV_TX_OK; 1672 } 1673 1674 if (tx_data_bd == (struct eth_tx_bd *)second_bd) 1675 tx_data_bd = (struct eth_tx_bd *)third_bd; 1676 else 1677 tx_data_bd = NULL; 1678 1679 frag_idx++; 1680 } 1681 1682 /* map last frags into 4th, 5th .... */ 1683 for (; frag_idx < skb_shinfo(skb)->nr_frags; frag_idx++, nbd++) { 1684 tx_data_bd = (struct eth_tx_bd *) 1685 qed_chain_produce(&txq->tx_pbl); 1686 1687 memset(tx_data_bd, 0, sizeof(*tx_data_bd)); 1688 1689 rc = map_frag_to_bd(txq, 1690 &skb_shinfo(skb)->frags[frag_idx], 1691 tx_data_bd); 1692 if (rc) { 1693 qede_free_failed_tx_pkt(txq, first_bd, nbd, data_split); 1694 qede_update_tx_producer(txq); 1695 return NETDEV_TX_OK; 1696 } 1697 } 1698 1699 /* update the first BD with the actual num BDs */ 1700 first_bd->data.nbds = nbd; 1701 1702 netdev_tx_sent_queue(netdev_txq, skb->len); 1703 1704 skb_tx_timestamp(skb); 1705 1706 /* Advance packet producer only before sending the packet since mapping 1707 * of pages may fail. 1708 */ 1709 txq->sw_tx_prod = (txq->sw_tx_prod + 1) % txq->num_tx_buffers; 1710 1711 /* 'next page' entries are counted in the producer value */ 1712 txq->tx_db.data.bd_prod = 1713 cpu_to_le16(qed_chain_get_prod_idx(&txq->tx_pbl)); 1714 1715 if (!netdev_xmit_more() || netif_xmit_stopped(netdev_txq)) 1716 qede_update_tx_producer(txq); 1717 1718 if (unlikely(qed_chain_get_elem_left(&txq->tx_pbl) 1719 < (MAX_SKB_FRAGS + 1))) { 1720 if (netdev_xmit_more()) 1721 qede_update_tx_producer(txq); 1722 1723 netif_tx_stop_queue(netdev_txq); 1724 txq->stopped_cnt++; 1725 DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED, 1726 "Stop queue was called\n"); 1727 /* paired memory barrier is in qede_tx_int(), we have to keep 1728 * ordering of set_bit() in netif_tx_stop_queue() and read of 1729 * fp->bd_tx_cons 1730 */ 1731 smp_mb(); 1732 1733 if ((qed_chain_get_elem_left(&txq->tx_pbl) >= 1734 (MAX_SKB_FRAGS + 1)) && 1735 (edev->state == QEDE_STATE_OPEN)) { 1736 netif_tx_wake_queue(netdev_txq); 1737 DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED, 1738 "Wake queue was called\n"); 1739 } 1740 } 1741 1742 return NETDEV_TX_OK; 1743 } 1744 1745 u16 qede_select_queue(struct net_device *dev, struct sk_buff *skb, 1746 struct net_device *sb_dev) 1747 { 1748 struct qede_dev *edev = netdev_priv(dev); 1749 int total_txq; 1750 1751 total_txq = QEDE_TSS_COUNT(edev) * edev->dev_info.num_tc; 1752 1753 return QEDE_TSS_COUNT(edev) ? 1754 netdev_pick_tx(dev, skb, NULL) % total_txq : 0; 1755 } 1756 1757 /* 8B udp header + 8B base tunnel header + 32B option length */ 1758 #define QEDE_MAX_TUN_HDR_LEN 48 1759 1760 netdev_features_t qede_features_check(struct sk_buff *skb, 1761 struct net_device *dev, 1762 netdev_features_t features) 1763 { 1764 if (skb->encapsulation) { 1765 u8 l4_proto = 0; 1766 1767 switch (vlan_get_protocol(skb)) { 1768 case htons(ETH_P_IP): 1769 l4_proto = ip_hdr(skb)->protocol; 1770 break; 1771 case htons(ETH_P_IPV6): 1772 l4_proto = ipv6_hdr(skb)->nexthdr; 1773 break; 1774 default: 1775 return features; 1776 } 1777 1778 /* Disable offloads for geneve tunnels, as HW can't parse 1779 * the geneve header which has option length greater than 32b 1780 * and disable offloads for the ports which are not offloaded. 1781 */ 1782 if (l4_proto == IPPROTO_UDP) { 1783 struct qede_dev *edev = netdev_priv(dev); 1784 u16 hdrlen, vxln_port, gnv_port; 1785 1786 hdrlen = QEDE_MAX_TUN_HDR_LEN; 1787 vxln_port = edev->vxlan_dst_port; 1788 gnv_port = edev->geneve_dst_port; 1789 1790 if ((skb_inner_mac_header(skb) - 1791 skb_transport_header(skb)) > hdrlen || 1792 (ntohs(udp_hdr(skb)->dest) != vxln_port && 1793 ntohs(udp_hdr(skb)->dest) != gnv_port)) 1794 return features & ~(NETIF_F_CSUM_MASK | 1795 NETIF_F_GSO_MASK); 1796 } else if (l4_proto == IPPROTO_IPIP) { 1797 /* IPIP tunnels are unknown to the device or at least unsupported natively, 1798 * offloads for them can't be done trivially, so disable them for such skb. 1799 */ 1800 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 1801 } 1802 } 1803 1804 return features; 1805 } 1806