xref: /linux/drivers/net/ethernet/qlogic/qede/qede_fp.c (revision e5c86679d5e864947a52fb31e45a425dea3e7fa9)
1 /* QLogic qede NIC Driver
2  * Copyright (c) 2015-2017  QLogic Corporation
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and /or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 #include <linux/netdevice.h>
33 #include <linux/etherdevice.h>
34 #include <linux/skbuff.h>
35 #include <linux/bpf_trace.h>
36 #include <net/udp_tunnel.h>
37 #include <linux/ip.h>
38 #include <net/ipv6.h>
39 #include <net/tcp.h>
40 #include <linux/if_ether.h>
41 #include <linux/if_vlan.h>
42 #include <net/ip6_checksum.h>
43 #include "qede_ptp.h"
44 
45 #include <linux/qed/qed_if.h>
46 #include "qede.h"
47 /*********************************
48  * Content also used by slowpath *
49  *********************************/
50 
51 int qede_alloc_rx_buffer(struct qede_rx_queue *rxq, bool allow_lazy)
52 {
53 	struct sw_rx_data *sw_rx_data;
54 	struct eth_rx_bd *rx_bd;
55 	dma_addr_t mapping;
56 	struct page *data;
57 
58 	/* In case lazy-allocation is allowed, postpone allocation until the
59 	 * end of the NAPI run. We'd still need to make sure the Rx ring has
60 	 * sufficient buffers to guarantee an additional Rx interrupt.
61 	 */
62 	if (allow_lazy && likely(rxq->filled_buffers > 12)) {
63 		rxq->filled_buffers--;
64 		return 0;
65 	}
66 
67 	data = alloc_pages(GFP_ATOMIC, 0);
68 	if (unlikely(!data))
69 		return -ENOMEM;
70 
71 	/* Map the entire page as it would be used
72 	 * for multiple RX buffer segment size mapping.
73 	 */
74 	mapping = dma_map_page(rxq->dev, data, 0,
75 			       PAGE_SIZE, rxq->data_direction);
76 	if (unlikely(dma_mapping_error(rxq->dev, mapping))) {
77 		__free_page(data);
78 		return -ENOMEM;
79 	}
80 
81 	sw_rx_data = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
82 	sw_rx_data->page_offset = 0;
83 	sw_rx_data->data = data;
84 	sw_rx_data->mapping = mapping;
85 
86 	/* Advance PROD and get BD pointer */
87 	rx_bd = (struct eth_rx_bd *)qed_chain_produce(&rxq->rx_bd_ring);
88 	WARN_ON(!rx_bd);
89 	rx_bd->addr.hi = cpu_to_le32(upper_32_bits(mapping));
90 	rx_bd->addr.lo = cpu_to_le32(lower_32_bits(mapping));
91 
92 	rxq->sw_rx_prod++;
93 	rxq->filled_buffers++;
94 
95 	return 0;
96 }
97 
98 /* Unmap the data and free skb */
99 int qede_free_tx_pkt(struct qede_dev *edev, struct qede_tx_queue *txq, int *len)
100 {
101 	u16 idx = txq->sw_tx_cons & NUM_TX_BDS_MAX;
102 	struct sk_buff *skb = txq->sw_tx_ring.skbs[idx].skb;
103 	struct eth_tx_1st_bd *first_bd;
104 	struct eth_tx_bd *tx_data_bd;
105 	int bds_consumed = 0;
106 	int nbds;
107 	bool data_split = txq->sw_tx_ring.skbs[idx].flags & QEDE_TSO_SPLIT_BD;
108 	int i, split_bd_len = 0;
109 
110 	if (unlikely(!skb)) {
111 		DP_ERR(edev,
112 		       "skb is null for txq idx=%d txq->sw_tx_cons=%d txq->sw_tx_prod=%d\n",
113 		       idx, txq->sw_tx_cons, txq->sw_tx_prod);
114 		return -1;
115 	}
116 
117 	*len = skb->len;
118 
119 	first_bd = (struct eth_tx_1st_bd *)qed_chain_consume(&txq->tx_pbl);
120 
121 	bds_consumed++;
122 
123 	nbds = first_bd->data.nbds;
124 
125 	if (data_split) {
126 		struct eth_tx_bd *split = (struct eth_tx_bd *)
127 			qed_chain_consume(&txq->tx_pbl);
128 		split_bd_len = BD_UNMAP_LEN(split);
129 		bds_consumed++;
130 	}
131 	dma_unmap_single(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd),
132 			 BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
133 
134 	/* Unmap the data of the skb frags */
135 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, bds_consumed++) {
136 		tx_data_bd = (struct eth_tx_bd *)
137 			qed_chain_consume(&txq->tx_pbl);
138 		dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(tx_data_bd),
139 			       BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
140 	}
141 
142 	while (bds_consumed++ < nbds)
143 		qed_chain_consume(&txq->tx_pbl);
144 
145 	/* Free skb */
146 	dev_kfree_skb_any(skb);
147 	txq->sw_tx_ring.skbs[idx].skb = NULL;
148 	txq->sw_tx_ring.skbs[idx].flags = 0;
149 
150 	return 0;
151 }
152 
153 /* Unmap the data and free skb when mapping failed during start_xmit */
154 static void qede_free_failed_tx_pkt(struct qede_tx_queue *txq,
155 				    struct eth_tx_1st_bd *first_bd,
156 				    int nbd, bool data_split)
157 {
158 	u16 idx = txq->sw_tx_prod & NUM_TX_BDS_MAX;
159 	struct sk_buff *skb = txq->sw_tx_ring.skbs[idx].skb;
160 	struct eth_tx_bd *tx_data_bd;
161 	int i, split_bd_len = 0;
162 
163 	/* Return prod to its position before this skb was handled */
164 	qed_chain_set_prod(&txq->tx_pbl,
165 			   le16_to_cpu(txq->tx_db.data.bd_prod), first_bd);
166 
167 	first_bd = (struct eth_tx_1st_bd *)qed_chain_produce(&txq->tx_pbl);
168 
169 	if (data_split) {
170 		struct eth_tx_bd *split = (struct eth_tx_bd *)
171 					  qed_chain_produce(&txq->tx_pbl);
172 		split_bd_len = BD_UNMAP_LEN(split);
173 		nbd--;
174 	}
175 
176 	dma_unmap_single(txq->dev, BD_UNMAP_ADDR(first_bd),
177 			 BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
178 
179 	/* Unmap the data of the skb frags */
180 	for (i = 0; i < nbd; i++) {
181 		tx_data_bd = (struct eth_tx_bd *)
182 			qed_chain_produce(&txq->tx_pbl);
183 		if (tx_data_bd->nbytes)
184 			dma_unmap_page(txq->dev,
185 				       BD_UNMAP_ADDR(tx_data_bd),
186 				       BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
187 	}
188 
189 	/* Return again prod to its position before this skb was handled */
190 	qed_chain_set_prod(&txq->tx_pbl,
191 			   le16_to_cpu(txq->tx_db.data.bd_prod), first_bd);
192 
193 	/* Free skb */
194 	dev_kfree_skb_any(skb);
195 	txq->sw_tx_ring.skbs[idx].skb = NULL;
196 	txq->sw_tx_ring.skbs[idx].flags = 0;
197 }
198 
199 static u32 qede_xmit_type(struct sk_buff *skb, int *ipv6_ext)
200 {
201 	u32 rc = XMIT_L4_CSUM;
202 	__be16 l3_proto;
203 
204 	if (skb->ip_summed != CHECKSUM_PARTIAL)
205 		return XMIT_PLAIN;
206 
207 	l3_proto = vlan_get_protocol(skb);
208 	if (l3_proto == htons(ETH_P_IPV6) &&
209 	    (ipv6_hdr(skb)->nexthdr == NEXTHDR_IPV6))
210 		*ipv6_ext = 1;
211 
212 	if (skb->encapsulation) {
213 		rc |= XMIT_ENC;
214 		if (skb_is_gso(skb)) {
215 			unsigned short gso_type = skb_shinfo(skb)->gso_type;
216 
217 			if ((gso_type & SKB_GSO_UDP_TUNNEL_CSUM) ||
218 			    (gso_type & SKB_GSO_GRE_CSUM))
219 				rc |= XMIT_ENC_GSO_L4_CSUM;
220 
221 			rc |= XMIT_LSO;
222 			return rc;
223 		}
224 	}
225 
226 	if (skb_is_gso(skb))
227 		rc |= XMIT_LSO;
228 
229 	return rc;
230 }
231 
232 static void qede_set_params_for_ipv6_ext(struct sk_buff *skb,
233 					 struct eth_tx_2nd_bd *second_bd,
234 					 struct eth_tx_3rd_bd *third_bd)
235 {
236 	u8 l4_proto;
237 	u16 bd2_bits1 = 0, bd2_bits2 = 0;
238 
239 	bd2_bits1 |= (1 << ETH_TX_DATA_2ND_BD_IPV6_EXT_SHIFT);
240 
241 	bd2_bits2 |= ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) &
242 		     ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK)
243 		    << ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_SHIFT;
244 
245 	bd2_bits1 |= (ETH_L4_PSEUDO_CSUM_CORRECT_LENGTH <<
246 		      ETH_TX_DATA_2ND_BD_L4_PSEUDO_CSUM_MODE_SHIFT);
247 
248 	if (vlan_get_protocol(skb) == htons(ETH_P_IPV6))
249 		l4_proto = ipv6_hdr(skb)->nexthdr;
250 	else
251 		l4_proto = ip_hdr(skb)->protocol;
252 
253 	if (l4_proto == IPPROTO_UDP)
254 		bd2_bits1 |= 1 << ETH_TX_DATA_2ND_BD_L4_UDP_SHIFT;
255 
256 	if (third_bd)
257 		third_bd->data.bitfields |=
258 			cpu_to_le16(((tcp_hdrlen(skb) / 4) &
259 				ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_MASK) <<
260 				ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_SHIFT);
261 
262 	second_bd->data.bitfields1 = cpu_to_le16(bd2_bits1);
263 	second_bd->data.bitfields2 = cpu_to_le16(bd2_bits2);
264 }
265 
266 static int map_frag_to_bd(struct qede_tx_queue *txq,
267 			  skb_frag_t *frag, struct eth_tx_bd *bd)
268 {
269 	dma_addr_t mapping;
270 
271 	/* Map skb non-linear frag data for DMA */
272 	mapping = skb_frag_dma_map(txq->dev, frag, 0,
273 				   skb_frag_size(frag), DMA_TO_DEVICE);
274 	if (unlikely(dma_mapping_error(txq->dev, mapping)))
275 		return -ENOMEM;
276 
277 	/* Setup the data pointer of the frag data */
278 	BD_SET_UNMAP_ADDR_LEN(bd, mapping, skb_frag_size(frag));
279 
280 	return 0;
281 }
282 
283 static u16 qede_get_skb_hlen(struct sk_buff *skb, bool is_encap_pkt)
284 {
285 	if (is_encap_pkt)
286 		return (skb_inner_transport_header(skb) +
287 			inner_tcp_hdrlen(skb) - skb->data);
288 	else
289 		return (skb_transport_header(skb) +
290 			tcp_hdrlen(skb) - skb->data);
291 }
292 
293 /* +2 for 1st BD for headers and 2nd BD for headlen (if required) */
294 #if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET)
295 static bool qede_pkt_req_lin(struct sk_buff *skb, u8 xmit_type)
296 {
297 	int allowed_frags = ETH_TX_MAX_BDS_PER_NON_LSO_PACKET - 1;
298 
299 	if (xmit_type & XMIT_LSO) {
300 		int hlen;
301 
302 		hlen = qede_get_skb_hlen(skb, xmit_type & XMIT_ENC);
303 
304 		/* linear payload would require its own BD */
305 		if (skb_headlen(skb) > hlen)
306 			allowed_frags--;
307 	}
308 
309 	return (skb_shinfo(skb)->nr_frags > allowed_frags);
310 }
311 #endif
312 
313 static inline void qede_update_tx_producer(struct qede_tx_queue *txq)
314 {
315 	/* wmb makes sure that the BDs data is updated before updating the
316 	 * producer, otherwise FW may read old data from the BDs.
317 	 */
318 	wmb();
319 	barrier();
320 	writel(txq->tx_db.raw, txq->doorbell_addr);
321 
322 	/* mmiowb is needed to synchronize doorbell writes from more than one
323 	 * processor. It guarantees that the write arrives to the device before
324 	 * the queue lock is released and another start_xmit is called (possibly
325 	 * on another CPU). Without this barrier, the next doorbell can bypass
326 	 * this doorbell. This is applicable to IA64/Altix systems.
327 	 */
328 	mmiowb();
329 }
330 
331 static int qede_xdp_xmit(struct qede_dev *edev, struct qede_fastpath *fp,
332 			 struct sw_rx_data *metadata, u16 padding, u16 length)
333 {
334 	struct qede_tx_queue *txq = fp->xdp_tx;
335 	u16 idx = txq->sw_tx_prod & NUM_TX_BDS_MAX;
336 	struct eth_tx_1st_bd *first_bd;
337 
338 	if (!qed_chain_get_elem_left(&txq->tx_pbl)) {
339 		txq->stopped_cnt++;
340 		return -ENOMEM;
341 	}
342 
343 	first_bd = (struct eth_tx_1st_bd *)qed_chain_produce(&txq->tx_pbl);
344 
345 	memset(first_bd, 0, sizeof(*first_bd));
346 	first_bd->data.bd_flags.bitfields =
347 	    BIT(ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT);
348 	first_bd->data.bitfields |=
349 	    (length & ETH_TX_DATA_1ST_BD_PKT_LEN_MASK) <<
350 	    ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT;
351 	first_bd->data.nbds = 1;
352 
353 	/* We can safely ignore the offset, as it's 0 for XDP */
354 	BD_SET_UNMAP_ADDR_LEN(first_bd, metadata->mapping + padding, length);
355 
356 	/* Synchronize the buffer back to device, as program [probably]
357 	 * has changed it.
358 	 */
359 	dma_sync_single_for_device(&edev->pdev->dev,
360 				   metadata->mapping + padding,
361 				   length, PCI_DMA_TODEVICE);
362 
363 	txq->sw_tx_ring.pages[idx] = metadata->data;
364 	txq->sw_tx_prod++;
365 
366 	/* Mark the fastpath for future XDP doorbell */
367 	fp->xdp_xmit = 1;
368 
369 	return 0;
370 }
371 
372 int qede_txq_has_work(struct qede_tx_queue *txq)
373 {
374 	u16 hw_bd_cons;
375 
376 	/* Tell compiler that consumer and producer can change */
377 	barrier();
378 	hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
379 	if (qed_chain_get_cons_idx(&txq->tx_pbl) == hw_bd_cons + 1)
380 		return 0;
381 
382 	return hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl);
383 }
384 
385 static void qede_xdp_tx_int(struct qede_dev *edev, struct qede_tx_queue *txq)
386 {
387 	struct eth_tx_1st_bd *bd;
388 	u16 hw_bd_cons;
389 
390 	hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
391 	barrier();
392 
393 	while (hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl)) {
394 		bd = (struct eth_tx_1st_bd *)qed_chain_consume(&txq->tx_pbl);
395 
396 		dma_unmap_single(&edev->pdev->dev, BD_UNMAP_ADDR(bd),
397 				 PAGE_SIZE, DMA_BIDIRECTIONAL);
398 		__free_page(txq->sw_tx_ring.pages[txq->sw_tx_cons &
399 						  NUM_TX_BDS_MAX]);
400 
401 		txq->sw_tx_cons++;
402 		txq->xmit_pkts++;
403 	}
404 }
405 
406 static int qede_tx_int(struct qede_dev *edev, struct qede_tx_queue *txq)
407 {
408 	struct netdev_queue *netdev_txq;
409 	u16 hw_bd_cons;
410 	unsigned int pkts_compl = 0, bytes_compl = 0;
411 	int rc;
412 
413 	netdev_txq = netdev_get_tx_queue(edev->ndev, txq->index);
414 
415 	hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
416 	barrier();
417 
418 	while (hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl)) {
419 		int len = 0;
420 
421 		rc = qede_free_tx_pkt(edev, txq, &len);
422 		if (rc) {
423 			DP_NOTICE(edev, "hw_bd_cons = %d, chain_cons=%d\n",
424 				  hw_bd_cons,
425 				  qed_chain_get_cons_idx(&txq->tx_pbl));
426 			break;
427 		}
428 
429 		bytes_compl += len;
430 		pkts_compl++;
431 		txq->sw_tx_cons++;
432 		txq->xmit_pkts++;
433 	}
434 
435 	netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl);
436 
437 	/* Need to make the tx_bd_cons update visible to start_xmit()
438 	 * before checking for netif_tx_queue_stopped().  Without the
439 	 * memory barrier, there is a small possibility that
440 	 * start_xmit() will miss it and cause the queue to be stopped
441 	 * forever.
442 	 * On the other hand we need an rmb() here to ensure the proper
443 	 * ordering of bit testing in the following
444 	 * netif_tx_queue_stopped(txq) call.
445 	 */
446 	smp_mb();
447 
448 	if (unlikely(netif_tx_queue_stopped(netdev_txq))) {
449 		/* Taking tx_lock is needed to prevent reenabling the queue
450 		 * while it's empty. This could have happen if rx_action() gets
451 		 * suspended in qede_tx_int() after the condition before
452 		 * netif_tx_wake_queue(), while tx_action (qede_start_xmit()):
453 		 *
454 		 * stops the queue->sees fresh tx_bd_cons->releases the queue->
455 		 * sends some packets consuming the whole queue again->
456 		 * stops the queue
457 		 */
458 
459 		__netif_tx_lock(netdev_txq, smp_processor_id());
460 
461 		if ((netif_tx_queue_stopped(netdev_txq)) &&
462 		    (edev->state == QEDE_STATE_OPEN) &&
463 		    (qed_chain_get_elem_left(&txq->tx_pbl)
464 		      >= (MAX_SKB_FRAGS + 1))) {
465 			netif_tx_wake_queue(netdev_txq);
466 			DP_VERBOSE(edev, NETIF_MSG_TX_DONE,
467 				   "Wake queue was called\n");
468 		}
469 
470 		__netif_tx_unlock(netdev_txq);
471 	}
472 
473 	return 0;
474 }
475 
476 bool qede_has_rx_work(struct qede_rx_queue *rxq)
477 {
478 	u16 hw_comp_cons, sw_comp_cons;
479 
480 	/* Tell compiler that status block fields can change */
481 	barrier();
482 
483 	hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
484 	sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
485 
486 	return hw_comp_cons != sw_comp_cons;
487 }
488 
489 static inline void qede_rx_bd_ring_consume(struct qede_rx_queue *rxq)
490 {
491 	qed_chain_consume(&rxq->rx_bd_ring);
492 	rxq->sw_rx_cons++;
493 }
494 
495 /* This function reuses the buffer(from an offset) from
496  * consumer index to producer index in the bd ring
497  */
498 static inline void qede_reuse_page(struct qede_rx_queue *rxq,
499 				   struct sw_rx_data *curr_cons)
500 {
501 	struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring);
502 	struct sw_rx_data *curr_prod;
503 	dma_addr_t new_mapping;
504 
505 	curr_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
506 	*curr_prod = *curr_cons;
507 
508 	new_mapping = curr_prod->mapping + curr_prod->page_offset;
509 
510 	rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(new_mapping));
511 	rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(new_mapping));
512 
513 	rxq->sw_rx_prod++;
514 	curr_cons->data = NULL;
515 }
516 
517 /* In case of allocation failures reuse buffers
518  * from consumer index to produce buffers for firmware
519  */
520 void qede_recycle_rx_bd_ring(struct qede_rx_queue *rxq, u8 count)
521 {
522 	struct sw_rx_data *curr_cons;
523 
524 	for (; count > 0; count--) {
525 		curr_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
526 		qede_reuse_page(rxq, curr_cons);
527 		qede_rx_bd_ring_consume(rxq);
528 	}
529 }
530 
531 static inline int qede_realloc_rx_buffer(struct qede_rx_queue *rxq,
532 					 struct sw_rx_data *curr_cons)
533 {
534 	/* Move to the next segment in the page */
535 	curr_cons->page_offset += rxq->rx_buf_seg_size;
536 
537 	if (curr_cons->page_offset == PAGE_SIZE) {
538 		if (unlikely(qede_alloc_rx_buffer(rxq, true))) {
539 			/* Since we failed to allocate new buffer
540 			 * current buffer can be used again.
541 			 */
542 			curr_cons->page_offset -= rxq->rx_buf_seg_size;
543 
544 			return -ENOMEM;
545 		}
546 
547 		dma_unmap_page(rxq->dev, curr_cons->mapping,
548 			       PAGE_SIZE, rxq->data_direction);
549 	} else {
550 		/* Increment refcount of the page as we don't want
551 		 * network stack to take the ownership of the page
552 		 * which can be recycled multiple times by the driver.
553 		 */
554 		page_ref_inc(curr_cons->data);
555 		qede_reuse_page(rxq, curr_cons);
556 	}
557 
558 	return 0;
559 }
560 
561 void qede_update_rx_prod(struct qede_dev *edev, struct qede_rx_queue *rxq)
562 {
563 	u16 bd_prod = qed_chain_get_prod_idx(&rxq->rx_bd_ring);
564 	u16 cqe_prod = qed_chain_get_prod_idx(&rxq->rx_comp_ring);
565 	struct eth_rx_prod_data rx_prods = {0};
566 
567 	/* Update producers */
568 	rx_prods.bd_prod = cpu_to_le16(bd_prod);
569 	rx_prods.cqe_prod = cpu_to_le16(cqe_prod);
570 
571 	/* Make sure that the BD and SGE data is updated before updating the
572 	 * producers since FW might read the BD/SGE right after the producer
573 	 * is updated.
574 	 */
575 	wmb();
576 
577 	internal_ram_wr(rxq->hw_rxq_prod_addr, sizeof(rx_prods),
578 			(u32 *)&rx_prods);
579 
580 	/* mmiowb is needed to synchronize doorbell writes from more than one
581 	 * processor. It guarantees that the write arrives to the device before
582 	 * the napi lock is released and another qede_poll is called (possibly
583 	 * on another CPU). Without this barrier, the next doorbell can bypass
584 	 * this doorbell. This is applicable to IA64/Altix systems.
585 	 */
586 	mmiowb();
587 }
588 
589 static void qede_get_rxhash(struct sk_buff *skb, u8 bitfields, __le32 rss_hash)
590 {
591 	enum pkt_hash_types hash_type = PKT_HASH_TYPE_NONE;
592 	enum rss_hash_type htype;
593 	u32 hash = 0;
594 
595 	htype = GET_FIELD(bitfields, ETH_FAST_PATH_RX_REG_CQE_RSS_HASH_TYPE);
596 	if (htype) {
597 		hash_type = ((htype == RSS_HASH_TYPE_IPV4) ||
598 			     (htype == RSS_HASH_TYPE_IPV6)) ?
599 			    PKT_HASH_TYPE_L3 : PKT_HASH_TYPE_L4;
600 		hash = le32_to_cpu(rss_hash);
601 	}
602 	skb_set_hash(skb, hash, hash_type);
603 }
604 
605 static void qede_set_skb_csum(struct sk_buff *skb, u8 csum_flag)
606 {
607 	skb_checksum_none_assert(skb);
608 
609 	if (csum_flag & QEDE_CSUM_UNNECESSARY)
610 		skb->ip_summed = CHECKSUM_UNNECESSARY;
611 
612 	if (csum_flag & QEDE_TUNN_CSUM_UNNECESSARY) {
613 		skb->csum_level = 1;
614 		skb->encapsulation = 1;
615 	}
616 }
617 
618 static inline void qede_skb_receive(struct qede_dev *edev,
619 				    struct qede_fastpath *fp,
620 				    struct qede_rx_queue *rxq,
621 				    struct sk_buff *skb, u16 vlan_tag)
622 {
623 	if (vlan_tag)
624 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
625 
626 	napi_gro_receive(&fp->napi, skb);
627 	rxq->rcv_pkts++;
628 }
629 
630 static void qede_set_gro_params(struct qede_dev *edev,
631 				struct sk_buff *skb,
632 				struct eth_fast_path_rx_tpa_start_cqe *cqe)
633 {
634 	u16 parsing_flags = le16_to_cpu(cqe->pars_flags.flags);
635 
636 	if (((parsing_flags >> PARSING_AND_ERR_FLAGS_L3TYPE_SHIFT) &
637 	    PARSING_AND_ERR_FLAGS_L3TYPE_MASK) == 2)
638 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
639 	else
640 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
641 
642 	skb_shinfo(skb)->gso_size = __le16_to_cpu(cqe->len_on_first_bd) -
643 				    cqe->header_len;
644 }
645 
646 static int qede_fill_frag_skb(struct qede_dev *edev,
647 			      struct qede_rx_queue *rxq,
648 			      u8 tpa_agg_index, u16 len_on_bd)
649 {
650 	struct sw_rx_data *current_bd = &rxq->sw_rx_ring[rxq->sw_rx_cons &
651 							 NUM_RX_BDS_MAX];
652 	struct qede_agg_info *tpa_info = &rxq->tpa_info[tpa_agg_index];
653 	struct sk_buff *skb = tpa_info->skb;
654 
655 	if (unlikely(tpa_info->state != QEDE_AGG_STATE_START))
656 		goto out;
657 
658 	/* Add one frag and update the appropriate fields in the skb */
659 	skb_fill_page_desc(skb, tpa_info->frag_id++,
660 			   current_bd->data, current_bd->page_offset,
661 			   len_on_bd);
662 
663 	if (unlikely(qede_realloc_rx_buffer(rxq, current_bd))) {
664 		/* Incr page ref count to reuse on allocation failure
665 		 * so that it doesn't get freed while freeing SKB.
666 		 */
667 		page_ref_inc(current_bd->data);
668 		goto out;
669 	}
670 
671 	qed_chain_consume(&rxq->rx_bd_ring);
672 	rxq->sw_rx_cons++;
673 
674 	skb->data_len += len_on_bd;
675 	skb->truesize += rxq->rx_buf_seg_size;
676 	skb->len += len_on_bd;
677 
678 	return 0;
679 
680 out:
681 	tpa_info->state = QEDE_AGG_STATE_ERROR;
682 	qede_recycle_rx_bd_ring(rxq, 1);
683 
684 	return -ENOMEM;
685 }
686 
687 static bool qede_tunn_exist(u16 flag)
688 {
689 	return !!(flag & (PARSING_AND_ERR_FLAGS_TUNNELEXIST_MASK <<
690 			  PARSING_AND_ERR_FLAGS_TUNNELEXIST_SHIFT));
691 }
692 
693 static u8 qede_check_tunn_csum(u16 flag)
694 {
695 	u16 csum_flag = 0;
696 	u8 tcsum = 0;
697 
698 	if (flag & (PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_MASK <<
699 		    PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_SHIFT))
700 		csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_MASK <<
701 			     PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_SHIFT;
702 
703 	if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
704 		    PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) {
705 		csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
706 			     PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
707 		tcsum = QEDE_TUNN_CSUM_UNNECESSARY;
708 	}
709 
710 	csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_MASK <<
711 		     PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_SHIFT |
712 		     PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
713 		     PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;
714 
715 	if (csum_flag & flag)
716 		return QEDE_CSUM_ERROR;
717 
718 	return QEDE_CSUM_UNNECESSARY | tcsum;
719 }
720 
721 static void qede_tpa_start(struct qede_dev *edev,
722 			   struct qede_rx_queue *rxq,
723 			   struct eth_fast_path_rx_tpa_start_cqe *cqe)
724 {
725 	struct qede_agg_info *tpa_info = &rxq->tpa_info[cqe->tpa_agg_index];
726 	struct eth_rx_bd *rx_bd_cons = qed_chain_consume(&rxq->rx_bd_ring);
727 	struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring);
728 	struct sw_rx_data *replace_buf = &tpa_info->buffer;
729 	dma_addr_t mapping = tpa_info->buffer_mapping;
730 	struct sw_rx_data *sw_rx_data_cons;
731 	struct sw_rx_data *sw_rx_data_prod;
732 
733 	sw_rx_data_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
734 	sw_rx_data_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
735 
736 	/* Use pre-allocated replacement buffer - we can't release the agg.
737 	 * start until its over and we don't want to risk allocation failing
738 	 * here, so re-allocate when aggregation will be over.
739 	 */
740 	sw_rx_data_prod->mapping = replace_buf->mapping;
741 
742 	sw_rx_data_prod->data = replace_buf->data;
743 	rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(mapping));
744 	rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(mapping));
745 	sw_rx_data_prod->page_offset = replace_buf->page_offset;
746 
747 	rxq->sw_rx_prod++;
748 
749 	/* move partial skb from cons to pool (don't unmap yet)
750 	 * save mapping, incase we drop the packet later on.
751 	 */
752 	tpa_info->buffer = *sw_rx_data_cons;
753 	mapping = HILO_U64(le32_to_cpu(rx_bd_cons->addr.hi),
754 			   le32_to_cpu(rx_bd_cons->addr.lo));
755 
756 	tpa_info->buffer_mapping = mapping;
757 	rxq->sw_rx_cons++;
758 
759 	/* set tpa state to start only if we are able to allocate skb
760 	 * for this aggregation, otherwise mark as error and aggregation will
761 	 * be dropped
762 	 */
763 	tpa_info->skb = netdev_alloc_skb(edev->ndev,
764 					 le16_to_cpu(cqe->len_on_first_bd));
765 	if (unlikely(!tpa_info->skb)) {
766 		DP_NOTICE(edev, "Failed to allocate SKB for gro\n");
767 		tpa_info->state = QEDE_AGG_STATE_ERROR;
768 		goto cons_buf;
769 	}
770 
771 	/* Start filling in the aggregation info */
772 	skb_put(tpa_info->skb, le16_to_cpu(cqe->len_on_first_bd));
773 	tpa_info->frag_id = 0;
774 	tpa_info->state = QEDE_AGG_STATE_START;
775 
776 	/* Store some information from first CQE */
777 	tpa_info->start_cqe_placement_offset = cqe->placement_offset;
778 	tpa_info->start_cqe_bd_len = le16_to_cpu(cqe->len_on_first_bd);
779 	if ((le16_to_cpu(cqe->pars_flags.flags) >>
780 	     PARSING_AND_ERR_FLAGS_TAG8021QEXIST_SHIFT) &
781 	    PARSING_AND_ERR_FLAGS_TAG8021QEXIST_MASK)
782 		tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag);
783 	else
784 		tpa_info->vlan_tag = 0;
785 
786 	qede_get_rxhash(tpa_info->skb, cqe->bitfields, cqe->rss_hash);
787 
788 	/* This is needed in order to enable forwarding support */
789 	qede_set_gro_params(edev, tpa_info->skb, cqe);
790 
791 cons_buf: /* We still need to handle bd_len_list to consume buffers */
792 	if (likely(cqe->ext_bd_len_list[0]))
793 		qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
794 				   le16_to_cpu(cqe->ext_bd_len_list[0]));
795 
796 	if (unlikely(cqe->ext_bd_len_list[1])) {
797 		DP_ERR(edev,
798 		       "Unlikely - got a TPA aggregation with more than one ext_bd_len_list entry in the TPA start\n");
799 		tpa_info->state = QEDE_AGG_STATE_ERROR;
800 	}
801 }
802 
803 #ifdef CONFIG_INET
804 static void qede_gro_ip_csum(struct sk_buff *skb)
805 {
806 	const struct iphdr *iph = ip_hdr(skb);
807 	struct tcphdr *th;
808 
809 	skb_set_transport_header(skb, sizeof(struct iphdr));
810 	th = tcp_hdr(skb);
811 
812 	th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
813 				  iph->saddr, iph->daddr, 0);
814 
815 	tcp_gro_complete(skb);
816 }
817 
818 static void qede_gro_ipv6_csum(struct sk_buff *skb)
819 {
820 	struct ipv6hdr *iph = ipv6_hdr(skb);
821 	struct tcphdr *th;
822 
823 	skb_set_transport_header(skb, sizeof(struct ipv6hdr));
824 	th = tcp_hdr(skb);
825 
826 	th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb),
827 				  &iph->saddr, &iph->daddr, 0);
828 	tcp_gro_complete(skb);
829 }
830 #endif
831 
832 static void qede_gro_receive(struct qede_dev *edev,
833 			     struct qede_fastpath *fp,
834 			     struct sk_buff *skb,
835 			     u16 vlan_tag)
836 {
837 	/* FW can send a single MTU sized packet from gro flow
838 	 * due to aggregation timeout/last segment etc. which
839 	 * is not expected to be a gro packet. If a skb has zero
840 	 * frags then simply push it in the stack as non gso skb.
841 	 */
842 	if (unlikely(!skb->data_len)) {
843 		skb_shinfo(skb)->gso_type = 0;
844 		skb_shinfo(skb)->gso_size = 0;
845 		goto send_skb;
846 	}
847 
848 #ifdef CONFIG_INET
849 	if (skb_shinfo(skb)->gso_size) {
850 		skb_reset_network_header(skb);
851 
852 		switch (skb->protocol) {
853 		case htons(ETH_P_IP):
854 			qede_gro_ip_csum(skb);
855 			break;
856 		case htons(ETH_P_IPV6):
857 			qede_gro_ipv6_csum(skb);
858 			break;
859 		default:
860 			DP_ERR(edev,
861 			       "Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n",
862 			       ntohs(skb->protocol));
863 		}
864 	}
865 #endif
866 
867 send_skb:
868 	skb_record_rx_queue(skb, fp->rxq->rxq_id);
869 	qede_skb_receive(edev, fp, fp->rxq, skb, vlan_tag);
870 }
871 
872 static inline void qede_tpa_cont(struct qede_dev *edev,
873 				 struct qede_rx_queue *rxq,
874 				 struct eth_fast_path_rx_tpa_cont_cqe *cqe)
875 {
876 	int i;
877 
878 	for (i = 0; cqe->len_list[i]; i++)
879 		qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
880 				   le16_to_cpu(cqe->len_list[i]));
881 
882 	if (unlikely(i > 1))
883 		DP_ERR(edev,
884 		       "Strange - TPA cont with more than a single len_list entry\n");
885 }
886 
887 static void qede_tpa_end(struct qede_dev *edev,
888 			 struct qede_fastpath *fp,
889 			 struct eth_fast_path_rx_tpa_end_cqe *cqe)
890 {
891 	struct qede_rx_queue *rxq = fp->rxq;
892 	struct qede_agg_info *tpa_info;
893 	struct sk_buff *skb;
894 	int i;
895 
896 	tpa_info = &rxq->tpa_info[cqe->tpa_agg_index];
897 	skb = tpa_info->skb;
898 
899 	for (i = 0; cqe->len_list[i]; i++)
900 		qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
901 				   le16_to_cpu(cqe->len_list[i]));
902 	if (unlikely(i > 1))
903 		DP_ERR(edev,
904 		       "Strange - TPA emd with more than a single len_list entry\n");
905 
906 	if (unlikely(tpa_info->state != QEDE_AGG_STATE_START))
907 		goto err;
908 
909 	/* Sanity */
910 	if (unlikely(cqe->num_of_bds != tpa_info->frag_id + 1))
911 		DP_ERR(edev,
912 		       "Strange - TPA had %02x BDs, but SKB has only %d frags\n",
913 		       cqe->num_of_bds, tpa_info->frag_id);
914 	if (unlikely(skb->len != le16_to_cpu(cqe->total_packet_len)))
915 		DP_ERR(edev,
916 		       "Strange - total packet len [cqe] is %4x but SKB has len %04x\n",
917 		       le16_to_cpu(cqe->total_packet_len), skb->len);
918 
919 	memcpy(skb->data,
920 	       page_address(tpa_info->buffer.data) +
921 	       tpa_info->start_cqe_placement_offset +
922 	       tpa_info->buffer.page_offset, tpa_info->start_cqe_bd_len);
923 
924 	/* Finalize the SKB */
925 	skb->protocol = eth_type_trans(skb, edev->ndev);
926 	skb->ip_summed = CHECKSUM_UNNECESSARY;
927 
928 	/* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count
929 	 * to skb_shinfo(skb)->gso_segs
930 	 */
931 	NAPI_GRO_CB(skb)->count = le16_to_cpu(cqe->num_of_coalesced_segs);
932 
933 	qede_gro_receive(edev, fp, skb, tpa_info->vlan_tag);
934 
935 	tpa_info->state = QEDE_AGG_STATE_NONE;
936 
937 	return;
938 err:
939 	tpa_info->state = QEDE_AGG_STATE_NONE;
940 	dev_kfree_skb_any(tpa_info->skb);
941 	tpa_info->skb = NULL;
942 }
943 
944 static u8 qede_check_notunn_csum(u16 flag)
945 {
946 	u16 csum_flag = 0;
947 	u8 csum = 0;
948 
949 	if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
950 		    PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) {
951 		csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
952 			     PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
953 		csum = QEDE_CSUM_UNNECESSARY;
954 	}
955 
956 	csum_flag |= PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
957 		     PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;
958 
959 	if (csum_flag & flag)
960 		return QEDE_CSUM_ERROR;
961 
962 	return csum;
963 }
964 
965 static u8 qede_check_csum(u16 flag)
966 {
967 	if (!qede_tunn_exist(flag))
968 		return qede_check_notunn_csum(flag);
969 	else
970 		return qede_check_tunn_csum(flag);
971 }
972 
973 static bool qede_pkt_is_ip_fragmented(struct eth_fast_path_rx_reg_cqe *cqe,
974 				      u16 flag)
975 {
976 	u8 tun_pars_flg = cqe->tunnel_pars_flags.flags;
977 
978 	if ((tun_pars_flg & (ETH_TUNNEL_PARSING_FLAGS_IPV4_FRAGMENT_MASK <<
979 			     ETH_TUNNEL_PARSING_FLAGS_IPV4_FRAGMENT_SHIFT)) ||
980 	    (flag & (PARSING_AND_ERR_FLAGS_IPV4FRAG_MASK <<
981 		     PARSING_AND_ERR_FLAGS_IPV4FRAG_SHIFT)))
982 		return true;
983 
984 	return false;
985 }
986 
987 /* Return true iff packet is to be passed to stack */
988 static bool qede_rx_xdp(struct qede_dev *edev,
989 			struct qede_fastpath *fp,
990 			struct qede_rx_queue *rxq,
991 			struct bpf_prog *prog,
992 			struct sw_rx_data *bd,
993 			struct eth_fast_path_rx_reg_cqe *cqe)
994 {
995 	u16 len = le16_to_cpu(cqe->len_on_first_bd);
996 	struct xdp_buff xdp;
997 	enum xdp_action act;
998 
999 	xdp.data = page_address(bd->data) + cqe->placement_offset;
1000 	xdp.data_end = xdp.data + len;
1001 
1002 	/* Queues always have a full reset currently, so for the time
1003 	 * being until there's atomic program replace just mark read
1004 	 * side for map helpers.
1005 	 */
1006 	rcu_read_lock();
1007 	act = bpf_prog_run_xdp(prog, &xdp);
1008 	rcu_read_unlock();
1009 
1010 	if (act == XDP_PASS)
1011 		return true;
1012 
1013 	/* Count number of packets not to be passed to stack */
1014 	rxq->xdp_no_pass++;
1015 
1016 	switch (act) {
1017 	case XDP_TX:
1018 		/* We need the replacement buffer before transmit. */
1019 		if (qede_alloc_rx_buffer(rxq, true)) {
1020 			qede_recycle_rx_bd_ring(rxq, 1);
1021 			trace_xdp_exception(edev->ndev, prog, act);
1022 			return false;
1023 		}
1024 
1025 		/* Now if there's a transmission problem, we'd still have to
1026 		 * throw current buffer, as replacement was already allocated.
1027 		 */
1028 		if (qede_xdp_xmit(edev, fp, bd, cqe->placement_offset, len)) {
1029 			dma_unmap_page(rxq->dev, bd->mapping,
1030 				       PAGE_SIZE, DMA_BIDIRECTIONAL);
1031 			__free_page(bd->data);
1032 			trace_xdp_exception(edev->ndev, prog, act);
1033 		}
1034 
1035 		/* Regardless, we've consumed an Rx BD */
1036 		qede_rx_bd_ring_consume(rxq);
1037 		return false;
1038 
1039 	default:
1040 		bpf_warn_invalid_xdp_action(act);
1041 	case XDP_ABORTED:
1042 		trace_xdp_exception(edev->ndev, prog, act);
1043 	case XDP_DROP:
1044 		qede_recycle_rx_bd_ring(rxq, cqe->bd_num);
1045 	}
1046 
1047 	return false;
1048 }
1049 
1050 static struct sk_buff *qede_rx_allocate_skb(struct qede_dev *edev,
1051 					    struct qede_rx_queue *rxq,
1052 					    struct sw_rx_data *bd, u16 len,
1053 					    u16 pad)
1054 {
1055 	unsigned int offset = bd->page_offset;
1056 	struct skb_frag_struct *frag;
1057 	struct page *page = bd->data;
1058 	unsigned int pull_len;
1059 	struct sk_buff *skb;
1060 	unsigned char *va;
1061 
1062 	/* Allocate a new SKB with a sufficient large header len */
1063 	skb = netdev_alloc_skb(edev->ndev, QEDE_RX_HDR_SIZE);
1064 	if (unlikely(!skb))
1065 		return NULL;
1066 
1067 	/* Copy data into SKB - if it's small, we can simply copy it and
1068 	 * re-use the already allcoated & mapped memory.
1069 	 */
1070 	if (len + pad <= edev->rx_copybreak) {
1071 		memcpy(skb_put(skb, len),
1072 		       page_address(page) + pad + offset, len);
1073 		qede_reuse_page(rxq, bd);
1074 		goto out;
1075 	}
1076 
1077 	frag = &skb_shinfo(skb)->frags[0];
1078 
1079 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
1080 			page, pad + offset, len, rxq->rx_buf_seg_size);
1081 
1082 	va = skb_frag_address(frag);
1083 	pull_len = eth_get_headlen(va, QEDE_RX_HDR_SIZE);
1084 
1085 	/* Align the pull_len to optimize memcpy */
1086 	memcpy(skb->data, va, ALIGN(pull_len, sizeof(long)));
1087 
1088 	/* Correct the skb & frag sizes offset after the pull */
1089 	skb_frag_size_sub(frag, pull_len);
1090 	frag->page_offset += pull_len;
1091 	skb->data_len -= pull_len;
1092 	skb->tail += pull_len;
1093 
1094 	if (unlikely(qede_realloc_rx_buffer(rxq, bd))) {
1095 		/* Incr page ref count to reuse on allocation failure so
1096 		 * that it doesn't get freed while freeing SKB [as its
1097 		 * already mapped there].
1098 		 */
1099 		page_ref_inc(page);
1100 		dev_kfree_skb_any(skb);
1101 		return NULL;
1102 	}
1103 
1104 out:
1105 	/* We've consumed the first BD and prepared an SKB */
1106 	qede_rx_bd_ring_consume(rxq);
1107 	return skb;
1108 }
1109 
1110 static int qede_rx_build_jumbo(struct qede_dev *edev,
1111 			       struct qede_rx_queue *rxq,
1112 			       struct sk_buff *skb,
1113 			       struct eth_fast_path_rx_reg_cqe *cqe,
1114 			       u16 first_bd_len)
1115 {
1116 	u16 pkt_len = le16_to_cpu(cqe->pkt_len);
1117 	struct sw_rx_data *bd;
1118 	u16 bd_cons_idx;
1119 	u8 num_frags;
1120 
1121 	pkt_len -= first_bd_len;
1122 
1123 	/* We've already used one BD for the SKB. Now take care of the rest */
1124 	for (num_frags = cqe->bd_num - 1; num_frags > 0; num_frags--) {
1125 		u16 cur_size = pkt_len > rxq->rx_buf_size ? rxq->rx_buf_size :
1126 		    pkt_len;
1127 
1128 		if (unlikely(!cur_size)) {
1129 			DP_ERR(edev,
1130 			       "Still got %d BDs for mapping jumbo, but length became 0\n",
1131 			       num_frags);
1132 			goto out;
1133 		}
1134 
1135 		/* We need a replacement buffer for each BD */
1136 		if (unlikely(qede_alloc_rx_buffer(rxq, true)))
1137 			goto out;
1138 
1139 		/* Now that we've allocated the replacement buffer,
1140 		 * we can safely consume the next BD and map it to the SKB.
1141 		 */
1142 		bd_cons_idx = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
1143 		bd = &rxq->sw_rx_ring[bd_cons_idx];
1144 		qede_rx_bd_ring_consume(rxq);
1145 
1146 		dma_unmap_page(rxq->dev, bd->mapping,
1147 			       PAGE_SIZE, DMA_FROM_DEVICE);
1148 
1149 		skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
1150 				   bd->data, 0, cur_size);
1151 
1152 		skb->truesize += PAGE_SIZE;
1153 		skb->data_len += cur_size;
1154 		skb->len += cur_size;
1155 		pkt_len -= cur_size;
1156 	}
1157 
1158 	if (unlikely(pkt_len))
1159 		DP_ERR(edev,
1160 		       "Mapped all BDs of jumbo, but still have %d bytes\n",
1161 		       pkt_len);
1162 
1163 out:
1164 	return num_frags;
1165 }
1166 
1167 static int qede_rx_process_tpa_cqe(struct qede_dev *edev,
1168 				   struct qede_fastpath *fp,
1169 				   struct qede_rx_queue *rxq,
1170 				   union eth_rx_cqe *cqe,
1171 				   enum eth_rx_cqe_type type)
1172 {
1173 	switch (type) {
1174 	case ETH_RX_CQE_TYPE_TPA_START:
1175 		qede_tpa_start(edev, rxq, &cqe->fast_path_tpa_start);
1176 		return 0;
1177 	case ETH_RX_CQE_TYPE_TPA_CONT:
1178 		qede_tpa_cont(edev, rxq, &cqe->fast_path_tpa_cont);
1179 		return 0;
1180 	case ETH_RX_CQE_TYPE_TPA_END:
1181 		qede_tpa_end(edev, fp, &cqe->fast_path_tpa_end);
1182 		return 1;
1183 	default:
1184 		return 0;
1185 	}
1186 }
1187 
1188 static int qede_rx_process_cqe(struct qede_dev *edev,
1189 			       struct qede_fastpath *fp,
1190 			       struct qede_rx_queue *rxq)
1191 {
1192 	struct bpf_prog *xdp_prog = READ_ONCE(rxq->xdp_prog);
1193 	struct eth_fast_path_rx_reg_cqe *fp_cqe;
1194 	u16 len, pad, bd_cons_idx, parse_flag;
1195 	enum eth_rx_cqe_type cqe_type;
1196 	union eth_rx_cqe *cqe;
1197 	struct sw_rx_data *bd;
1198 	struct sk_buff *skb;
1199 	__le16 flags;
1200 	u8 csum_flag;
1201 
1202 	/* Get the CQE from the completion ring */
1203 	cqe = (union eth_rx_cqe *)qed_chain_consume(&rxq->rx_comp_ring);
1204 	cqe_type = cqe->fast_path_regular.type;
1205 
1206 	/* Process an unlikely slowpath event */
1207 	if (unlikely(cqe_type == ETH_RX_CQE_TYPE_SLOW_PATH)) {
1208 		struct eth_slow_path_rx_cqe *sp_cqe;
1209 
1210 		sp_cqe = (struct eth_slow_path_rx_cqe *)cqe;
1211 		edev->ops->eth_cqe_completion(edev->cdev, fp->id, sp_cqe);
1212 		return 0;
1213 	}
1214 
1215 	/* Handle TPA cqes */
1216 	if (cqe_type != ETH_RX_CQE_TYPE_REGULAR)
1217 		return qede_rx_process_tpa_cqe(edev, fp, rxq, cqe, cqe_type);
1218 
1219 	/* Get the data from the SW ring; Consume it only after it's evident
1220 	 * we wouldn't recycle it.
1221 	 */
1222 	bd_cons_idx = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
1223 	bd = &rxq->sw_rx_ring[bd_cons_idx];
1224 
1225 	fp_cqe = &cqe->fast_path_regular;
1226 	len = le16_to_cpu(fp_cqe->len_on_first_bd);
1227 	pad = fp_cqe->placement_offset;
1228 
1229 	/* Run eBPF program if one is attached */
1230 	if (xdp_prog)
1231 		if (!qede_rx_xdp(edev, fp, rxq, xdp_prog, bd, fp_cqe))
1232 			return 1;
1233 
1234 	/* If this is an error packet then drop it */
1235 	flags = cqe->fast_path_regular.pars_flags.flags;
1236 	parse_flag = le16_to_cpu(flags);
1237 
1238 	csum_flag = qede_check_csum(parse_flag);
1239 	if (unlikely(csum_flag == QEDE_CSUM_ERROR)) {
1240 		if (qede_pkt_is_ip_fragmented(fp_cqe, parse_flag)) {
1241 			rxq->rx_ip_frags++;
1242 		} else {
1243 			DP_NOTICE(edev,
1244 				  "CQE has error, flags = %x, dropping incoming packet\n",
1245 				  parse_flag);
1246 			rxq->rx_hw_errors++;
1247 			qede_recycle_rx_bd_ring(rxq, fp_cqe->bd_num);
1248 			return 0;
1249 		}
1250 	}
1251 
1252 	/* Basic validation passed; Need to prepare an SKB. This would also
1253 	 * guarantee to finally consume the first BD upon success.
1254 	 */
1255 	skb = qede_rx_allocate_skb(edev, rxq, bd, len, pad);
1256 	if (!skb) {
1257 		rxq->rx_alloc_errors++;
1258 		qede_recycle_rx_bd_ring(rxq, fp_cqe->bd_num);
1259 		return 0;
1260 	}
1261 
1262 	/* In case of Jumbo packet, several PAGE_SIZEd buffers will be pointed
1263 	 * by a single cqe.
1264 	 */
1265 	if (fp_cqe->bd_num > 1) {
1266 		u16 unmapped_frags = qede_rx_build_jumbo(edev, rxq, skb,
1267 							 fp_cqe, len);
1268 
1269 		if (unlikely(unmapped_frags > 0)) {
1270 			qede_recycle_rx_bd_ring(rxq, unmapped_frags);
1271 			dev_kfree_skb_any(skb);
1272 			return 0;
1273 		}
1274 	}
1275 
1276 	/* The SKB contains all the data. Now prepare meta-magic */
1277 	skb->protocol = eth_type_trans(skb, edev->ndev);
1278 	qede_get_rxhash(skb, fp_cqe->bitfields, fp_cqe->rss_hash);
1279 	qede_set_skb_csum(skb, csum_flag);
1280 	skb_record_rx_queue(skb, rxq->rxq_id);
1281 	qede_ptp_record_rx_ts(edev, cqe, skb);
1282 
1283 	/* SKB is prepared - pass it to stack */
1284 	qede_skb_receive(edev, fp, rxq, skb, le16_to_cpu(fp_cqe->vlan_tag));
1285 
1286 	return 1;
1287 }
1288 
1289 static int qede_rx_int(struct qede_fastpath *fp, int budget)
1290 {
1291 	struct qede_rx_queue *rxq = fp->rxq;
1292 	struct qede_dev *edev = fp->edev;
1293 	u16 hw_comp_cons, sw_comp_cons;
1294 	int work_done = 0;
1295 
1296 	hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
1297 	sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
1298 
1299 	/* Memory barrier to prevent the CPU from doing speculative reads of CQE
1300 	 * / BD in the while-loop before reading hw_comp_cons. If the CQE is
1301 	 * read before it is written by FW, then FW writes CQE and SB, and then
1302 	 * the CPU reads the hw_comp_cons, it will use an old CQE.
1303 	 */
1304 	rmb();
1305 
1306 	/* Loop to complete all indicated BDs */
1307 	while ((sw_comp_cons != hw_comp_cons) && (work_done < budget)) {
1308 		qede_rx_process_cqe(edev, fp, rxq);
1309 		qed_chain_recycle_consumed(&rxq->rx_comp_ring);
1310 		sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
1311 		work_done++;
1312 	}
1313 
1314 	/* Allocate replacement buffers */
1315 	while (rxq->num_rx_buffers - rxq->filled_buffers)
1316 		if (qede_alloc_rx_buffer(rxq, false))
1317 			break;
1318 
1319 	/* Update producers */
1320 	qede_update_rx_prod(edev, rxq);
1321 
1322 	return work_done;
1323 }
1324 
1325 static bool qede_poll_is_more_work(struct qede_fastpath *fp)
1326 {
1327 	qed_sb_update_sb_idx(fp->sb_info);
1328 
1329 	/* *_has_*_work() reads the status block, thus we need to ensure that
1330 	 * status block indices have been actually read (qed_sb_update_sb_idx)
1331 	 * prior to this check (*_has_*_work) so that we won't write the
1332 	 * "newer" value of the status block to HW (if there was a DMA right
1333 	 * after qede_has_rx_work and if there is no rmb, the memory reading
1334 	 * (qed_sb_update_sb_idx) may be postponed to right before *_ack_sb).
1335 	 * In this case there will never be another interrupt until there is
1336 	 * another update of the status block, while there is still unhandled
1337 	 * work.
1338 	 */
1339 	rmb();
1340 
1341 	if (likely(fp->type & QEDE_FASTPATH_RX))
1342 		if (qede_has_rx_work(fp->rxq))
1343 			return true;
1344 
1345 	if (fp->type & QEDE_FASTPATH_XDP)
1346 		if (qede_txq_has_work(fp->xdp_tx))
1347 			return true;
1348 
1349 	if (likely(fp->type & QEDE_FASTPATH_TX))
1350 		if (qede_txq_has_work(fp->txq))
1351 			return true;
1352 
1353 	return false;
1354 }
1355 
1356 /*********************
1357  * NDO & API related *
1358  *********************/
1359 int qede_poll(struct napi_struct *napi, int budget)
1360 {
1361 	struct qede_fastpath *fp = container_of(napi, struct qede_fastpath,
1362 						napi);
1363 	struct qede_dev *edev = fp->edev;
1364 	int rx_work_done = 0;
1365 
1366 	if (likely(fp->type & QEDE_FASTPATH_TX) && qede_txq_has_work(fp->txq))
1367 		qede_tx_int(edev, fp->txq);
1368 
1369 	if ((fp->type & QEDE_FASTPATH_XDP) && qede_txq_has_work(fp->xdp_tx))
1370 		qede_xdp_tx_int(edev, fp->xdp_tx);
1371 
1372 	rx_work_done = (likely(fp->type & QEDE_FASTPATH_RX) &&
1373 			qede_has_rx_work(fp->rxq)) ?
1374 			qede_rx_int(fp, budget) : 0;
1375 	if (rx_work_done < budget) {
1376 		if (!qede_poll_is_more_work(fp)) {
1377 			napi_complete_done(napi, rx_work_done);
1378 
1379 			/* Update and reenable interrupts */
1380 			qed_sb_ack(fp->sb_info, IGU_INT_ENABLE, 1);
1381 		} else {
1382 			rx_work_done = budget;
1383 		}
1384 	}
1385 
1386 	if (fp->xdp_xmit) {
1387 		u16 xdp_prod = qed_chain_get_prod_idx(&fp->xdp_tx->tx_pbl);
1388 
1389 		fp->xdp_xmit = 0;
1390 		fp->xdp_tx->tx_db.data.bd_prod = cpu_to_le16(xdp_prod);
1391 		qede_update_tx_producer(fp->xdp_tx);
1392 	}
1393 
1394 	return rx_work_done;
1395 }
1396 
1397 irqreturn_t qede_msix_fp_int(int irq, void *fp_cookie)
1398 {
1399 	struct qede_fastpath *fp = fp_cookie;
1400 
1401 	qed_sb_ack(fp->sb_info, IGU_INT_DISABLE, 0 /*do not update*/);
1402 
1403 	napi_schedule_irqoff(&fp->napi);
1404 	return IRQ_HANDLED;
1405 }
1406 
1407 /* Main transmit function */
1408 netdev_tx_t qede_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1409 {
1410 	struct qede_dev *edev = netdev_priv(ndev);
1411 	struct netdev_queue *netdev_txq;
1412 	struct qede_tx_queue *txq;
1413 	struct eth_tx_1st_bd *first_bd;
1414 	struct eth_tx_2nd_bd *second_bd = NULL;
1415 	struct eth_tx_3rd_bd *third_bd = NULL;
1416 	struct eth_tx_bd *tx_data_bd = NULL;
1417 	u16 txq_index;
1418 	u8 nbd = 0;
1419 	dma_addr_t mapping;
1420 	int rc, frag_idx = 0, ipv6_ext = 0;
1421 	u8 xmit_type;
1422 	u16 idx;
1423 	u16 hlen;
1424 	bool data_split = false;
1425 
1426 	/* Get tx-queue context and netdev index */
1427 	txq_index = skb_get_queue_mapping(skb);
1428 	WARN_ON(txq_index >= QEDE_TSS_COUNT(edev));
1429 	txq = edev->fp_array[edev->fp_num_rx + txq_index].txq;
1430 	netdev_txq = netdev_get_tx_queue(ndev, txq_index);
1431 
1432 	WARN_ON(qed_chain_get_elem_left(&txq->tx_pbl) < (MAX_SKB_FRAGS + 1));
1433 
1434 	xmit_type = qede_xmit_type(skb, &ipv6_ext);
1435 
1436 #if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET)
1437 	if (qede_pkt_req_lin(skb, xmit_type)) {
1438 		if (skb_linearize(skb)) {
1439 			DP_NOTICE(edev,
1440 				  "SKB linearization failed - silently dropping this SKB\n");
1441 			dev_kfree_skb_any(skb);
1442 			return NETDEV_TX_OK;
1443 		}
1444 	}
1445 #endif
1446 
1447 	/* Fill the entry in the SW ring and the BDs in the FW ring */
1448 	idx = txq->sw_tx_prod & NUM_TX_BDS_MAX;
1449 	txq->sw_tx_ring.skbs[idx].skb = skb;
1450 	first_bd = (struct eth_tx_1st_bd *)
1451 		   qed_chain_produce(&txq->tx_pbl);
1452 	memset(first_bd, 0, sizeof(*first_bd));
1453 	first_bd->data.bd_flags.bitfields =
1454 		1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT;
1455 
1456 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP))
1457 		qede_ptp_tx_ts(edev, skb);
1458 
1459 	/* Map skb linear data for DMA and set in the first BD */
1460 	mapping = dma_map_single(txq->dev, skb->data,
1461 				 skb_headlen(skb), DMA_TO_DEVICE);
1462 	if (unlikely(dma_mapping_error(txq->dev, mapping))) {
1463 		DP_NOTICE(edev, "SKB mapping failed\n");
1464 		qede_free_failed_tx_pkt(txq, first_bd, 0, false);
1465 		qede_update_tx_producer(txq);
1466 		return NETDEV_TX_OK;
1467 	}
1468 	nbd++;
1469 	BD_SET_UNMAP_ADDR_LEN(first_bd, mapping, skb_headlen(skb));
1470 
1471 	/* In case there is IPv6 with extension headers or LSO we need 2nd and
1472 	 * 3rd BDs.
1473 	 */
1474 	if (unlikely((xmit_type & XMIT_LSO) | ipv6_ext)) {
1475 		second_bd = (struct eth_tx_2nd_bd *)
1476 			qed_chain_produce(&txq->tx_pbl);
1477 		memset(second_bd, 0, sizeof(*second_bd));
1478 
1479 		nbd++;
1480 		third_bd = (struct eth_tx_3rd_bd *)
1481 			qed_chain_produce(&txq->tx_pbl);
1482 		memset(third_bd, 0, sizeof(*third_bd));
1483 
1484 		nbd++;
1485 		/* We need to fill in additional data in second_bd... */
1486 		tx_data_bd = (struct eth_tx_bd *)second_bd;
1487 	}
1488 
1489 	if (skb_vlan_tag_present(skb)) {
1490 		first_bd->data.vlan = cpu_to_le16(skb_vlan_tag_get(skb));
1491 		first_bd->data.bd_flags.bitfields |=
1492 			1 << ETH_TX_1ST_BD_FLAGS_VLAN_INSERTION_SHIFT;
1493 	}
1494 
1495 	/* Fill the parsing flags & params according to the requested offload */
1496 	if (xmit_type & XMIT_L4_CSUM) {
1497 		/* We don't re-calculate IP checksum as it is already done by
1498 		 * the upper stack
1499 		 */
1500 		first_bd->data.bd_flags.bitfields |=
1501 			1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT;
1502 
1503 		if (xmit_type & XMIT_ENC) {
1504 			first_bd->data.bd_flags.bitfields |=
1505 				1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
1506 			first_bd->data.bitfields |=
1507 			    1 << ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT;
1508 		}
1509 
1510 		/* Legacy FW had flipped behavior in regard to this bit -
1511 		 * I.e., needed to set to prevent FW from touching encapsulated
1512 		 * packets when it didn't need to.
1513 		 */
1514 		if (unlikely(txq->is_legacy))
1515 			first_bd->data.bitfields ^=
1516 			    1 << ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT;
1517 
1518 		/* If the packet is IPv6 with extension header, indicate that
1519 		 * to FW and pass few params, since the device cracker doesn't
1520 		 * support parsing IPv6 with extension header/s.
1521 		 */
1522 		if (unlikely(ipv6_ext))
1523 			qede_set_params_for_ipv6_ext(skb, second_bd, third_bd);
1524 	}
1525 
1526 	if (xmit_type & XMIT_LSO) {
1527 		first_bd->data.bd_flags.bitfields |=
1528 			(1 << ETH_TX_1ST_BD_FLAGS_LSO_SHIFT);
1529 		third_bd->data.lso_mss =
1530 			cpu_to_le16(skb_shinfo(skb)->gso_size);
1531 
1532 		if (unlikely(xmit_type & XMIT_ENC)) {
1533 			first_bd->data.bd_flags.bitfields |=
1534 				1 << ETH_TX_1ST_BD_FLAGS_TUNN_IP_CSUM_SHIFT;
1535 
1536 			if (xmit_type & XMIT_ENC_GSO_L4_CSUM) {
1537 				u8 tmp = ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_SHIFT;
1538 
1539 				first_bd->data.bd_flags.bitfields |= 1 << tmp;
1540 			}
1541 			hlen = qede_get_skb_hlen(skb, true);
1542 		} else {
1543 			first_bd->data.bd_flags.bitfields |=
1544 				1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
1545 			hlen = qede_get_skb_hlen(skb, false);
1546 		}
1547 
1548 		/* @@@TBD - if will not be removed need to check */
1549 		third_bd->data.bitfields |=
1550 			cpu_to_le16(1 << ETH_TX_DATA_3RD_BD_HDR_NBD_SHIFT);
1551 
1552 		/* Make life easier for FW guys who can't deal with header and
1553 		 * data on same BD. If we need to split, use the second bd...
1554 		 */
1555 		if (unlikely(skb_headlen(skb) > hlen)) {
1556 			DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
1557 				   "TSO split header size is %d (%x:%x)\n",
1558 				   first_bd->nbytes, first_bd->addr.hi,
1559 				   first_bd->addr.lo);
1560 
1561 			mapping = HILO_U64(le32_to_cpu(first_bd->addr.hi),
1562 					   le32_to_cpu(first_bd->addr.lo)) +
1563 					   hlen;
1564 
1565 			BD_SET_UNMAP_ADDR_LEN(tx_data_bd, mapping,
1566 					      le16_to_cpu(first_bd->nbytes) -
1567 					      hlen);
1568 
1569 			/* this marks the BD as one that has no
1570 			 * individual mapping
1571 			 */
1572 			txq->sw_tx_ring.skbs[idx].flags |= QEDE_TSO_SPLIT_BD;
1573 
1574 			first_bd->nbytes = cpu_to_le16(hlen);
1575 
1576 			tx_data_bd = (struct eth_tx_bd *)third_bd;
1577 			data_split = true;
1578 		}
1579 	} else {
1580 		first_bd->data.bitfields |=
1581 		    (skb->len & ETH_TX_DATA_1ST_BD_PKT_LEN_MASK) <<
1582 		    ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT;
1583 	}
1584 
1585 	/* Handle fragmented skb */
1586 	/* special handle for frags inside 2nd and 3rd bds.. */
1587 	while (tx_data_bd && frag_idx < skb_shinfo(skb)->nr_frags) {
1588 		rc = map_frag_to_bd(txq,
1589 				    &skb_shinfo(skb)->frags[frag_idx],
1590 				    tx_data_bd);
1591 		if (rc) {
1592 			qede_free_failed_tx_pkt(txq, first_bd, nbd, data_split);
1593 			qede_update_tx_producer(txq);
1594 			return NETDEV_TX_OK;
1595 		}
1596 
1597 		if (tx_data_bd == (struct eth_tx_bd *)second_bd)
1598 			tx_data_bd = (struct eth_tx_bd *)third_bd;
1599 		else
1600 			tx_data_bd = NULL;
1601 
1602 		frag_idx++;
1603 	}
1604 
1605 	/* map last frags into 4th, 5th .... */
1606 	for (; frag_idx < skb_shinfo(skb)->nr_frags; frag_idx++, nbd++) {
1607 		tx_data_bd = (struct eth_tx_bd *)
1608 			     qed_chain_produce(&txq->tx_pbl);
1609 
1610 		memset(tx_data_bd, 0, sizeof(*tx_data_bd));
1611 
1612 		rc = map_frag_to_bd(txq,
1613 				    &skb_shinfo(skb)->frags[frag_idx],
1614 				    tx_data_bd);
1615 		if (rc) {
1616 			qede_free_failed_tx_pkt(txq, first_bd, nbd, data_split);
1617 			qede_update_tx_producer(txq);
1618 			return NETDEV_TX_OK;
1619 		}
1620 	}
1621 
1622 	/* update the first BD with the actual num BDs */
1623 	first_bd->data.nbds = nbd;
1624 
1625 	netdev_tx_sent_queue(netdev_txq, skb->len);
1626 
1627 	skb_tx_timestamp(skb);
1628 
1629 	/* Advance packet producer only before sending the packet since mapping
1630 	 * of pages may fail.
1631 	 */
1632 	txq->sw_tx_prod++;
1633 
1634 	/* 'next page' entries are counted in the producer value */
1635 	txq->tx_db.data.bd_prod =
1636 		cpu_to_le16(qed_chain_get_prod_idx(&txq->tx_pbl));
1637 
1638 	if (!skb->xmit_more || netif_xmit_stopped(netdev_txq))
1639 		qede_update_tx_producer(txq);
1640 
1641 	if (unlikely(qed_chain_get_elem_left(&txq->tx_pbl)
1642 		      < (MAX_SKB_FRAGS + 1))) {
1643 		if (skb->xmit_more)
1644 			qede_update_tx_producer(txq);
1645 
1646 		netif_tx_stop_queue(netdev_txq);
1647 		txq->stopped_cnt++;
1648 		DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
1649 			   "Stop queue was called\n");
1650 		/* paired memory barrier is in qede_tx_int(), we have to keep
1651 		 * ordering of set_bit() in netif_tx_stop_queue() and read of
1652 		 * fp->bd_tx_cons
1653 		 */
1654 		smp_mb();
1655 
1656 		if ((qed_chain_get_elem_left(&txq->tx_pbl) >=
1657 		     (MAX_SKB_FRAGS + 1)) &&
1658 		    (edev->state == QEDE_STATE_OPEN)) {
1659 			netif_tx_wake_queue(netdev_txq);
1660 			DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
1661 				   "Wake queue was called\n");
1662 		}
1663 	}
1664 
1665 	return NETDEV_TX_OK;
1666 }
1667 
1668 /* 8B udp header + 8B base tunnel header + 32B option length */
1669 #define QEDE_MAX_TUN_HDR_LEN 48
1670 
1671 netdev_features_t qede_features_check(struct sk_buff *skb,
1672 				      struct net_device *dev,
1673 				      netdev_features_t features)
1674 {
1675 	if (skb->encapsulation) {
1676 		u8 l4_proto = 0;
1677 
1678 		switch (vlan_get_protocol(skb)) {
1679 		case htons(ETH_P_IP):
1680 			l4_proto = ip_hdr(skb)->protocol;
1681 			break;
1682 		case htons(ETH_P_IPV6):
1683 			l4_proto = ipv6_hdr(skb)->nexthdr;
1684 			break;
1685 		default:
1686 			return features;
1687 		}
1688 
1689 		/* Disable offloads for geneve tunnels, as HW can't parse
1690 		 * the geneve header which has option length greater than 32B.
1691 		 */
1692 		if ((l4_proto == IPPROTO_UDP) &&
1693 		    ((skb_inner_mac_header(skb) -
1694 		      skb_transport_header(skb)) > QEDE_MAX_TUN_HDR_LEN))
1695 			return features & ~(NETIF_F_CSUM_MASK |
1696 					    NETIF_F_GSO_MASK);
1697 	}
1698 
1699 	return features;
1700 }
1701