xref: /linux/drivers/net/ethernet/qlogic/qed/qed_sriov.c (revision cc7b790d412461520de49eb321a0aeed2735e5c4)
1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause)
2 /* QLogic qed NIC Driver
3  * Copyright (c) 2015-2017  QLogic Corporation
4  * Copyright (c) 2019-2020 Marvell International Ltd.
5  */
6 
7 #include <linux/etherdevice.h>
8 #include <linux/crc32.h>
9 #include <linux/vmalloc.h>
10 #include <linux/crash_dump.h>
11 #include <linux/qed/qed_iov_if.h>
12 #include "qed_cxt.h"
13 #include "qed_hsi.h"
14 #include "qed_iro_hsi.h"
15 #include "qed_hw.h"
16 #include "qed_init_ops.h"
17 #include "qed_int.h"
18 #include "qed_mcp.h"
19 #include "qed_reg_addr.h"
20 #include "qed_sp.h"
21 #include "qed_sriov.h"
22 #include "qed_vf.h"
23 static int qed_iov_bulletin_set_mac(struct qed_hwfn *p_hwfn, u8 *mac, int vfid);
24 
25 static u16 qed_vf_from_entity_id(__le16 entity_id)
26 {
27 	return le16_to_cpu(entity_id) - MAX_NUM_PFS;
28 }
29 
30 static u8 qed_vf_calculate_legacy(struct qed_vf_info *p_vf)
31 {
32 	u8 legacy = 0;
33 
34 	if (p_vf->acquire.vfdev_info.eth_fp_hsi_minor ==
35 	    ETH_HSI_VER_NO_PKT_LEN_TUNN)
36 		legacy |= QED_QCID_LEGACY_VF_RX_PROD;
37 
38 	if (!(p_vf->acquire.vfdev_info.capabilities &
39 	      VFPF_ACQUIRE_CAP_QUEUE_QIDS))
40 		legacy |= QED_QCID_LEGACY_VF_CID;
41 
42 	return legacy;
43 }
44 
45 /* IOV ramrods */
46 static int qed_sp_vf_start(struct qed_hwfn *p_hwfn, struct qed_vf_info *p_vf)
47 {
48 	struct vf_start_ramrod_data *p_ramrod = NULL;
49 	struct qed_spq_entry *p_ent = NULL;
50 	struct qed_sp_init_data init_data;
51 	int rc = -EINVAL;
52 	u8 fp_minor;
53 
54 	/* Get SPQ entry */
55 	memset(&init_data, 0, sizeof(init_data));
56 	init_data.cid = qed_spq_get_cid(p_hwfn);
57 	init_data.opaque_fid = p_vf->opaque_fid;
58 	init_data.comp_mode = QED_SPQ_MODE_EBLOCK;
59 
60 	rc = qed_sp_init_request(p_hwfn, &p_ent,
61 				 COMMON_RAMROD_VF_START,
62 				 PROTOCOLID_COMMON, &init_data);
63 	if (rc)
64 		return rc;
65 
66 	p_ramrod = &p_ent->ramrod.vf_start;
67 
68 	p_ramrod->vf_id = GET_FIELD(p_vf->concrete_fid, PXP_CONCRETE_FID_VFID);
69 	p_ramrod->opaque_fid = cpu_to_le16(p_vf->opaque_fid);
70 
71 	switch (p_hwfn->hw_info.personality) {
72 	case QED_PCI_ETH:
73 		p_ramrod->personality = PERSONALITY_ETH;
74 		break;
75 	case QED_PCI_ETH_ROCE:
76 	case QED_PCI_ETH_IWARP:
77 		p_ramrod->personality = PERSONALITY_RDMA_AND_ETH;
78 		break;
79 	default:
80 		DP_NOTICE(p_hwfn, "Unknown VF personality %d\n",
81 			  p_hwfn->hw_info.personality);
82 		qed_sp_destroy_request(p_hwfn, p_ent);
83 		return -EINVAL;
84 	}
85 
86 	fp_minor = p_vf->acquire.vfdev_info.eth_fp_hsi_minor;
87 	if (fp_minor > ETH_HSI_VER_MINOR &&
88 	    fp_minor != ETH_HSI_VER_NO_PKT_LEN_TUNN) {
89 		DP_VERBOSE(p_hwfn,
90 			   QED_MSG_IOV,
91 			   "VF [%d] - Requested fp hsi %02x.%02x which is slightly newer than PF's %02x.%02x; Configuring PFs version\n",
92 			   p_vf->abs_vf_id,
93 			   ETH_HSI_VER_MAJOR,
94 			   fp_minor, ETH_HSI_VER_MAJOR, ETH_HSI_VER_MINOR);
95 		fp_minor = ETH_HSI_VER_MINOR;
96 	}
97 
98 	p_ramrod->hsi_fp_ver.major_ver_arr[ETH_VER_KEY] = ETH_HSI_VER_MAJOR;
99 	p_ramrod->hsi_fp_ver.minor_ver_arr[ETH_VER_KEY] = fp_minor;
100 
101 	DP_VERBOSE(p_hwfn, QED_MSG_IOV,
102 		   "VF[%d] - Starting using HSI %02x.%02x\n",
103 		   p_vf->abs_vf_id, ETH_HSI_VER_MAJOR, fp_minor);
104 
105 	return qed_spq_post(p_hwfn, p_ent, NULL);
106 }
107 
108 static int qed_sp_vf_stop(struct qed_hwfn *p_hwfn,
109 			  u32 concrete_vfid, u16 opaque_vfid)
110 {
111 	struct vf_stop_ramrod_data *p_ramrod = NULL;
112 	struct qed_spq_entry *p_ent = NULL;
113 	struct qed_sp_init_data init_data;
114 	int rc = -EINVAL;
115 
116 	/* Get SPQ entry */
117 	memset(&init_data, 0, sizeof(init_data));
118 	init_data.cid = qed_spq_get_cid(p_hwfn);
119 	init_data.opaque_fid = opaque_vfid;
120 	init_data.comp_mode = QED_SPQ_MODE_EBLOCK;
121 
122 	rc = qed_sp_init_request(p_hwfn, &p_ent,
123 				 COMMON_RAMROD_VF_STOP,
124 				 PROTOCOLID_COMMON, &init_data);
125 	if (rc)
126 		return rc;
127 
128 	p_ramrod = &p_ent->ramrod.vf_stop;
129 
130 	p_ramrod->vf_id = GET_FIELD(concrete_vfid, PXP_CONCRETE_FID_VFID);
131 
132 	return qed_spq_post(p_hwfn, p_ent, NULL);
133 }
134 
135 bool qed_iov_is_valid_vfid(struct qed_hwfn *p_hwfn,
136 			   int rel_vf_id,
137 			   bool b_enabled_only, bool b_non_malicious)
138 {
139 	if (!p_hwfn->pf_iov_info) {
140 		DP_NOTICE(p_hwfn->cdev, "No iov info\n");
141 		return false;
142 	}
143 
144 	if ((rel_vf_id >= p_hwfn->cdev->p_iov_info->total_vfs) ||
145 	    (rel_vf_id < 0))
146 		return false;
147 
148 	if ((!p_hwfn->pf_iov_info->vfs_array[rel_vf_id].b_init) &&
149 	    b_enabled_only)
150 		return false;
151 
152 	if ((p_hwfn->pf_iov_info->vfs_array[rel_vf_id].b_malicious) &&
153 	    b_non_malicious)
154 		return false;
155 
156 	return true;
157 }
158 
159 static struct qed_vf_info *qed_iov_get_vf_info(struct qed_hwfn *p_hwfn,
160 					       u16 relative_vf_id,
161 					       bool b_enabled_only)
162 {
163 	struct qed_vf_info *vf = NULL;
164 
165 	if (!p_hwfn->pf_iov_info) {
166 		DP_NOTICE(p_hwfn->cdev, "No iov info\n");
167 		return NULL;
168 	}
169 
170 	if (qed_iov_is_valid_vfid(p_hwfn, relative_vf_id,
171 				  b_enabled_only, false))
172 		vf = &p_hwfn->pf_iov_info->vfs_array[relative_vf_id];
173 	else
174 		DP_ERR(p_hwfn, "%s: VF[%d] is not enabled\n",
175 		       __func__, relative_vf_id);
176 
177 	return vf;
178 }
179 
180 static struct qed_queue_cid *
181 qed_iov_get_vf_rx_queue_cid(struct qed_vf_queue *p_queue)
182 {
183 	int i;
184 
185 	for (i = 0; i < MAX_QUEUES_PER_QZONE; i++) {
186 		if (p_queue->cids[i].p_cid && !p_queue->cids[i].b_is_tx)
187 			return p_queue->cids[i].p_cid;
188 	}
189 
190 	return NULL;
191 }
192 
193 enum qed_iov_validate_q_mode {
194 	QED_IOV_VALIDATE_Q_NA,
195 	QED_IOV_VALIDATE_Q_ENABLE,
196 	QED_IOV_VALIDATE_Q_DISABLE,
197 };
198 
199 static bool qed_iov_validate_queue_mode(struct qed_hwfn *p_hwfn,
200 					struct qed_vf_info *p_vf,
201 					u16 qid,
202 					enum qed_iov_validate_q_mode mode,
203 					bool b_is_tx)
204 {
205 	int i;
206 
207 	if (mode == QED_IOV_VALIDATE_Q_NA)
208 		return true;
209 
210 	for (i = 0; i < MAX_QUEUES_PER_QZONE; i++) {
211 		struct qed_vf_queue_cid *p_qcid;
212 
213 		p_qcid = &p_vf->vf_queues[qid].cids[i];
214 
215 		if (!p_qcid->p_cid)
216 			continue;
217 
218 		if (p_qcid->b_is_tx != b_is_tx)
219 			continue;
220 
221 		return mode == QED_IOV_VALIDATE_Q_ENABLE;
222 	}
223 
224 	/* In case we haven't found any valid cid, then its disabled */
225 	return mode == QED_IOV_VALIDATE_Q_DISABLE;
226 }
227 
228 static bool qed_iov_validate_rxq(struct qed_hwfn *p_hwfn,
229 				 struct qed_vf_info *p_vf,
230 				 u16 rx_qid,
231 				 enum qed_iov_validate_q_mode mode)
232 {
233 	if (rx_qid >= p_vf->num_rxqs) {
234 		DP_VERBOSE(p_hwfn,
235 			   QED_MSG_IOV,
236 			   "VF[0x%02x] - can't touch Rx queue[%04x]; Only 0x%04x are allocated\n",
237 			   p_vf->abs_vf_id, rx_qid, p_vf->num_rxqs);
238 		return false;
239 	}
240 
241 	return qed_iov_validate_queue_mode(p_hwfn, p_vf, rx_qid, mode, false);
242 }
243 
244 static bool qed_iov_validate_txq(struct qed_hwfn *p_hwfn,
245 				 struct qed_vf_info *p_vf,
246 				 u16 tx_qid,
247 				 enum qed_iov_validate_q_mode mode)
248 {
249 	if (tx_qid >= p_vf->num_txqs) {
250 		DP_VERBOSE(p_hwfn,
251 			   QED_MSG_IOV,
252 			   "VF[0x%02x] - can't touch Tx queue[%04x]; Only 0x%04x are allocated\n",
253 			   p_vf->abs_vf_id, tx_qid, p_vf->num_txqs);
254 		return false;
255 	}
256 
257 	return qed_iov_validate_queue_mode(p_hwfn, p_vf, tx_qid, mode, true);
258 }
259 
260 static bool qed_iov_validate_sb(struct qed_hwfn *p_hwfn,
261 				struct qed_vf_info *p_vf, u16 sb_idx)
262 {
263 	int i;
264 
265 	for (i = 0; i < p_vf->num_sbs; i++)
266 		if (p_vf->igu_sbs[i] == sb_idx)
267 			return true;
268 
269 	DP_VERBOSE(p_hwfn,
270 		   QED_MSG_IOV,
271 		   "VF[0%02x] - tried using sb_idx %04x which doesn't exist as one of its 0x%02x SBs\n",
272 		   p_vf->abs_vf_id, sb_idx, p_vf->num_sbs);
273 
274 	return false;
275 }
276 
277 static bool qed_iov_validate_active_rxq(struct qed_hwfn *p_hwfn,
278 					struct qed_vf_info *p_vf)
279 {
280 	u8 i;
281 
282 	for (i = 0; i < p_vf->num_rxqs; i++)
283 		if (qed_iov_validate_queue_mode(p_hwfn, p_vf, i,
284 						QED_IOV_VALIDATE_Q_ENABLE,
285 						false))
286 			return true;
287 
288 	return false;
289 }
290 
291 static bool qed_iov_validate_active_txq(struct qed_hwfn *p_hwfn,
292 					struct qed_vf_info *p_vf)
293 {
294 	u8 i;
295 
296 	for (i = 0; i < p_vf->num_txqs; i++)
297 		if (qed_iov_validate_queue_mode(p_hwfn, p_vf, i,
298 						QED_IOV_VALIDATE_Q_ENABLE,
299 						true))
300 			return true;
301 
302 	return false;
303 }
304 
305 static int qed_iov_post_vf_bulletin(struct qed_hwfn *p_hwfn,
306 				    int vfid, struct qed_ptt *p_ptt)
307 {
308 	struct qed_bulletin_content *p_bulletin;
309 	int crc_size = sizeof(p_bulletin->crc);
310 	struct qed_dmae_params params;
311 	struct qed_vf_info *p_vf;
312 
313 	p_vf = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true);
314 	if (!p_vf)
315 		return -EINVAL;
316 
317 	if (!p_vf->vf_bulletin)
318 		return -EINVAL;
319 
320 	p_bulletin = p_vf->bulletin.p_virt;
321 
322 	/* Increment bulletin board version and compute crc */
323 	p_bulletin->version++;
324 	p_bulletin->crc = crc32(0, (u8 *)p_bulletin + crc_size,
325 				p_vf->bulletin.size - crc_size);
326 
327 	DP_VERBOSE(p_hwfn, QED_MSG_IOV,
328 		   "Posting Bulletin 0x%08x to VF[%d] (CRC 0x%08x)\n",
329 		   p_bulletin->version, p_vf->relative_vf_id, p_bulletin->crc);
330 
331 	/* propagate bulletin board via dmae to vm memory */
332 	memset(&params, 0, sizeof(params));
333 	SET_FIELD(params.flags, QED_DMAE_PARAMS_DST_VF_VALID, 0x1);
334 	params.dst_vfid = p_vf->abs_vf_id;
335 	return qed_dmae_host2host(p_hwfn, p_ptt, p_vf->bulletin.phys,
336 				  p_vf->vf_bulletin, p_vf->bulletin.size / 4,
337 				  &params);
338 }
339 
340 static int qed_iov_pci_cfg_info(struct qed_dev *cdev)
341 {
342 	struct qed_hw_sriov_info *iov = cdev->p_iov_info;
343 	int pos = iov->pos;
344 
345 	DP_VERBOSE(cdev, QED_MSG_IOV, "sriov ext pos %d\n", pos);
346 	pci_read_config_word(cdev->pdev, pos + PCI_SRIOV_CTRL, &iov->ctrl);
347 
348 	pci_read_config_word(cdev->pdev,
349 			     pos + PCI_SRIOV_TOTAL_VF, &iov->total_vfs);
350 	pci_read_config_word(cdev->pdev,
351 			     pos + PCI_SRIOV_INITIAL_VF, &iov->initial_vfs);
352 
353 	pci_read_config_word(cdev->pdev, pos + PCI_SRIOV_NUM_VF, &iov->num_vfs);
354 	if (iov->num_vfs) {
355 		DP_VERBOSE(cdev,
356 			   QED_MSG_IOV,
357 			   "Number of VFs are already set to non-zero value. Ignoring PCI configuration value\n");
358 		iov->num_vfs = 0;
359 	}
360 
361 	pci_read_config_word(cdev->pdev,
362 			     pos + PCI_SRIOV_VF_OFFSET, &iov->offset);
363 
364 	pci_read_config_word(cdev->pdev,
365 			     pos + PCI_SRIOV_VF_STRIDE, &iov->stride);
366 
367 	pci_read_config_word(cdev->pdev,
368 			     pos + PCI_SRIOV_VF_DID, &iov->vf_device_id);
369 
370 	pci_read_config_dword(cdev->pdev,
371 			      pos + PCI_SRIOV_SUP_PGSIZE, &iov->pgsz);
372 
373 	pci_read_config_dword(cdev->pdev, pos + PCI_SRIOV_CAP, &iov->cap);
374 
375 	pci_read_config_byte(cdev->pdev, pos + PCI_SRIOV_FUNC_LINK, &iov->link);
376 
377 	DP_VERBOSE(cdev,
378 		   QED_MSG_IOV,
379 		   "IOV info: nres %d, cap 0x%x, ctrl 0x%x, total %d, initial %d, num vfs %d, offset %d, stride %d, page size 0x%x\n",
380 		   iov->nres,
381 		   iov->cap,
382 		   iov->ctrl,
383 		   iov->total_vfs,
384 		   iov->initial_vfs,
385 		   iov->nr_virtfn, iov->offset, iov->stride, iov->pgsz);
386 
387 	/* Some sanity checks */
388 	if (iov->num_vfs > NUM_OF_VFS(cdev) ||
389 	    iov->total_vfs > NUM_OF_VFS(cdev)) {
390 		/* This can happen only due to a bug. In this case we set
391 		 * num_vfs to zero to avoid memory corruption in the code that
392 		 * assumes max number of vfs
393 		 */
394 		DP_NOTICE(cdev,
395 			  "IOV: Unexpected number of vfs set: %d setting num_vf to zero\n",
396 			  iov->num_vfs);
397 
398 		iov->num_vfs = 0;
399 		iov->total_vfs = 0;
400 	}
401 
402 	return 0;
403 }
404 
405 static void qed_iov_setup_vfdb(struct qed_hwfn *p_hwfn)
406 {
407 	struct qed_hw_sriov_info *p_iov = p_hwfn->cdev->p_iov_info;
408 	struct qed_pf_iov *p_iov_info = p_hwfn->pf_iov_info;
409 	struct qed_bulletin_content *p_bulletin_virt;
410 	dma_addr_t req_p, rply_p, bulletin_p;
411 	union pfvf_tlvs *p_reply_virt_addr;
412 	union vfpf_tlvs *p_req_virt_addr;
413 	u8 idx = 0;
414 
415 	memset(p_iov_info->vfs_array, 0, sizeof(p_iov_info->vfs_array));
416 
417 	p_req_virt_addr = p_iov_info->mbx_msg_virt_addr;
418 	req_p = p_iov_info->mbx_msg_phys_addr;
419 	p_reply_virt_addr = p_iov_info->mbx_reply_virt_addr;
420 	rply_p = p_iov_info->mbx_reply_phys_addr;
421 	p_bulletin_virt = p_iov_info->p_bulletins;
422 	bulletin_p = p_iov_info->bulletins_phys;
423 	if (!p_req_virt_addr || !p_reply_virt_addr || !p_bulletin_virt) {
424 		DP_ERR(p_hwfn,
425 		       "%s called without allocating mem first\n", __func__);
426 		return;
427 	}
428 
429 	for (idx = 0; idx < p_iov->total_vfs; idx++) {
430 		struct qed_vf_info *vf = &p_iov_info->vfs_array[idx];
431 		u32 concrete;
432 
433 		vf->vf_mbx.req_virt = p_req_virt_addr + idx;
434 		vf->vf_mbx.req_phys = req_p + idx * sizeof(union vfpf_tlvs);
435 		vf->vf_mbx.reply_virt = p_reply_virt_addr + idx;
436 		vf->vf_mbx.reply_phys = rply_p + idx * sizeof(union pfvf_tlvs);
437 
438 		vf->state = VF_STOPPED;
439 		vf->b_init = false;
440 
441 		vf->bulletin.phys = idx *
442 				    sizeof(struct qed_bulletin_content) +
443 				    bulletin_p;
444 		vf->bulletin.p_virt = p_bulletin_virt + idx;
445 		vf->bulletin.size = sizeof(struct qed_bulletin_content);
446 
447 		vf->relative_vf_id = idx;
448 		vf->abs_vf_id = idx + p_iov->first_vf_in_pf;
449 		concrete = qed_vfid_to_concrete(p_hwfn, vf->abs_vf_id);
450 		vf->concrete_fid = concrete;
451 		vf->opaque_fid = (p_hwfn->hw_info.opaque_fid & 0xff) |
452 				 (vf->abs_vf_id << 8);
453 		vf->vport_id = idx + 1;
454 
455 		vf->num_mac_filters = QED_ETH_VF_NUM_MAC_FILTERS;
456 		vf->num_vlan_filters = QED_ETH_VF_NUM_VLAN_FILTERS;
457 	}
458 }
459 
460 static int qed_iov_allocate_vfdb(struct qed_hwfn *p_hwfn)
461 {
462 	struct qed_pf_iov *p_iov_info = p_hwfn->pf_iov_info;
463 	void **p_v_addr;
464 	u16 num_vfs = 0;
465 
466 	num_vfs = p_hwfn->cdev->p_iov_info->total_vfs;
467 
468 	DP_VERBOSE(p_hwfn, QED_MSG_IOV,
469 		   "%s for %d VFs\n", __func__, num_vfs);
470 
471 	/* Allocate PF Mailbox buffer (per-VF) */
472 	p_iov_info->mbx_msg_size = sizeof(union vfpf_tlvs) * num_vfs;
473 	p_v_addr = &p_iov_info->mbx_msg_virt_addr;
474 	*p_v_addr = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
475 				       p_iov_info->mbx_msg_size,
476 				       &p_iov_info->mbx_msg_phys_addr,
477 				       GFP_KERNEL);
478 	if (!*p_v_addr)
479 		return -ENOMEM;
480 
481 	/* Allocate PF Mailbox Reply buffer (per-VF) */
482 	p_iov_info->mbx_reply_size = sizeof(union pfvf_tlvs) * num_vfs;
483 	p_v_addr = &p_iov_info->mbx_reply_virt_addr;
484 	*p_v_addr = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
485 				       p_iov_info->mbx_reply_size,
486 				       &p_iov_info->mbx_reply_phys_addr,
487 				       GFP_KERNEL);
488 	if (!*p_v_addr)
489 		return -ENOMEM;
490 
491 	p_iov_info->bulletins_size = sizeof(struct qed_bulletin_content) *
492 				     num_vfs;
493 	p_v_addr = &p_iov_info->p_bulletins;
494 	*p_v_addr = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
495 				       p_iov_info->bulletins_size,
496 				       &p_iov_info->bulletins_phys,
497 				       GFP_KERNEL);
498 	if (!*p_v_addr)
499 		return -ENOMEM;
500 
501 	DP_VERBOSE(p_hwfn,
502 		   QED_MSG_IOV,
503 		   "PF's Requests mailbox [%p virt 0x%llx phys],  Response mailbox [%p virt 0x%llx phys] Bulletins [%p virt 0x%llx phys]\n",
504 		   p_iov_info->mbx_msg_virt_addr,
505 		   (u64)p_iov_info->mbx_msg_phys_addr,
506 		   p_iov_info->mbx_reply_virt_addr,
507 		   (u64)p_iov_info->mbx_reply_phys_addr,
508 		   p_iov_info->p_bulletins, (u64)p_iov_info->bulletins_phys);
509 
510 	return 0;
511 }
512 
513 static void qed_iov_free_vfdb(struct qed_hwfn *p_hwfn)
514 {
515 	struct qed_pf_iov *p_iov_info = p_hwfn->pf_iov_info;
516 
517 	if (p_hwfn->pf_iov_info->mbx_msg_virt_addr)
518 		dma_free_coherent(&p_hwfn->cdev->pdev->dev,
519 				  p_iov_info->mbx_msg_size,
520 				  p_iov_info->mbx_msg_virt_addr,
521 				  p_iov_info->mbx_msg_phys_addr);
522 
523 	if (p_hwfn->pf_iov_info->mbx_reply_virt_addr)
524 		dma_free_coherent(&p_hwfn->cdev->pdev->dev,
525 				  p_iov_info->mbx_reply_size,
526 				  p_iov_info->mbx_reply_virt_addr,
527 				  p_iov_info->mbx_reply_phys_addr);
528 
529 	if (p_iov_info->p_bulletins)
530 		dma_free_coherent(&p_hwfn->cdev->pdev->dev,
531 				  p_iov_info->bulletins_size,
532 				  p_iov_info->p_bulletins,
533 				  p_iov_info->bulletins_phys);
534 }
535 
536 int qed_iov_alloc(struct qed_hwfn *p_hwfn)
537 {
538 	struct qed_pf_iov *p_sriov;
539 
540 	if (!IS_PF_SRIOV(p_hwfn)) {
541 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
542 			   "No SR-IOV - no need for IOV db\n");
543 		return 0;
544 	}
545 
546 	p_sriov = kzalloc(sizeof(*p_sriov), GFP_KERNEL);
547 	if (!p_sriov)
548 		return -ENOMEM;
549 
550 	p_hwfn->pf_iov_info = p_sriov;
551 
552 	qed_spq_register_async_cb(p_hwfn, PROTOCOLID_COMMON,
553 				  qed_sriov_eqe_event);
554 
555 	return qed_iov_allocate_vfdb(p_hwfn);
556 }
557 
558 void qed_iov_setup(struct qed_hwfn *p_hwfn)
559 {
560 	if (!IS_PF_SRIOV(p_hwfn) || !IS_PF_SRIOV_ALLOC(p_hwfn))
561 		return;
562 
563 	qed_iov_setup_vfdb(p_hwfn);
564 }
565 
566 void qed_iov_free(struct qed_hwfn *p_hwfn)
567 {
568 	qed_spq_unregister_async_cb(p_hwfn, PROTOCOLID_COMMON);
569 
570 	if (IS_PF_SRIOV_ALLOC(p_hwfn)) {
571 		qed_iov_free_vfdb(p_hwfn);
572 		kfree(p_hwfn->pf_iov_info);
573 	}
574 }
575 
576 void qed_iov_free_hw_info(struct qed_dev *cdev)
577 {
578 	kfree(cdev->p_iov_info);
579 	cdev->p_iov_info = NULL;
580 }
581 
582 int qed_iov_hw_info(struct qed_hwfn *p_hwfn)
583 {
584 	struct qed_dev *cdev = p_hwfn->cdev;
585 	int pos;
586 	int rc;
587 
588 	if (is_kdump_kernel())
589 		return 0;
590 
591 	if (IS_VF(p_hwfn->cdev))
592 		return 0;
593 
594 	/* Learn the PCI configuration */
595 	pos = pci_find_ext_capability(p_hwfn->cdev->pdev,
596 				      PCI_EXT_CAP_ID_SRIOV);
597 	if (!pos) {
598 		DP_VERBOSE(p_hwfn, QED_MSG_IOV, "No PCIe IOV support\n");
599 		return 0;
600 	}
601 
602 	/* Allocate a new struct for IOV information */
603 	cdev->p_iov_info = kzalloc(sizeof(*cdev->p_iov_info), GFP_KERNEL);
604 	if (!cdev->p_iov_info)
605 		return -ENOMEM;
606 
607 	cdev->p_iov_info->pos = pos;
608 
609 	rc = qed_iov_pci_cfg_info(cdev);
610 	if (rc)
611 		return rc;
612 
613 	/* We want PF IOV to be synonemous with the existence of p_iov_info;
614 	 * In case the capability is published but there are no VFs, simply
615 	 * de-allocate the struct.
616 	 */
617 	if (!cdev->p_iov_info->total_vfs) {
618 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
619 			   "IOV capabilities, but no VFs are published\n");
620 		kfree(cdev->p_iov_info);
621 		cdev->p_iov_info = NULL;
622 		return 0;
623 	}
624 
625 	/* First VF index based on offset is tricky:
626 	 *  - If ARI is supported [likely], offset - (16 - pf_id) would
627 	 *    provide the number for eng0. 2nd engine Vfs would begin
628 	 *    after the first engine's VFs.
629 	 *  - If !ARI, VFs would start on next device.
630 	 *    so offset - (256 - pf_id) would provide the number.
631 	 * Utilize the fact that (256 - pf_id) is achieved only by later
632 	 * to differentiate between the two.
633 	 */
634 
635 	if (p_hwfn->cdev->p_iov_info->offset < (256 - p_hwfn->abs_pf_id)) {
636 		u32 first = p_hwfn->cdev->p_iov_info->offset +
637 			    p_hwfn->abs_pf_id - 16;
638 
639 		cdev->p_iov_info->first_vf_in_pf = first;
640 
641 		if (QED_PATH_ID(p_hwfn))
642 			cdev->p_iov_info->first_vf_in_pf -= MAX_NUM_VFS_BB;
643 	} else {
644 		u32 first = p_hwfn->cdev->p_iov_info->offset +
645 			    p_hwfn->abs_pf_id - 256;
646 
647 		cdev->p_iov_info->first_vf_in_pf = first;
648 	}
649 
650 	DP_VERBOSE(p_hwfn, QED_MSG_IOV,
651 		   "First VF in hwfn 0x%08x\n",
652 		   cdev->p_iov_info->first_vf_in_pf);
653 
654 	return 0;
655 }
656 
657 static bool _qed_iov_pf_sanity_check(struct qed_hwfn *p_hwfn,
658 				     int vfid, bool b_fail_malicious)
659 {
660 	/* Check PF supports sriov */
661 	if (IS_VF(p_hwfn->cdev) || !IS_QED_SRIOV(p_hwfn->cdev) ||
662 	    !IS_PF_SRIOV_ALLOC(p_hwfn))
663 		return false;
664 
665 	/* Check VF validity */
666 	if (!qed_iov_is_valid_vfid(p_hwfn, vfid, true, b_fail_malicious))
667 		return false;
668 
669 	return true;
670 }
671 
672 static bool qed_iov_pf_sanity_check(struct qed_hwfn *p_hwfn, int vfid)
673 {
674 	return _qed_iov_pf_sanity_check(p_hwfn, vfid, true);
675 }
676 
677 static void qed_iov_set_vf_to_disable(struct qed_dev *cdev,
678 				      u16 rel_vf_id, u8 to_disable)
679 {
680 	struct qed_vf_info *vf;
681 	int i;
682 
683 	for_each_hwfn(cdev, i) {
684 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
685 
686 		vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, false);
687 		if (!vf)
688 			continue;
689 
690 		vf->to_disable = to_disable;
691 	}
692 }
693 
694 static void qed_iov_set_vfs_to_disable(struct qed_dev *cdev, u8 to_disable)
695 {
696 	u16 i;
697 
698 	if (!IS_QED_SRIOV(cdev))
699 		return;
700 
701 	for (i = 0; i < cdev->p_iov_info->total_vfs; i++)
702 		qed_iov_set_vf_to_disable(cdev, i, to_disable);
703 }
704 
705 static void qed_iov_vf_pglue_clear_err(struct qed_hwfn *p_hwfn,
706 				       struct qed_ptt *p_ptt, u8 abs_vfid)
707 {
708 	qed_wr(p_hwfn, p_ptt,
709 	       PGLUE_B_REG_WAS_ERROR_VF_31_0_CLR + (abs_vfid >> 5) * 4,
710 	       1 << (abs_vfid & 0x1f));
711 }
712 
713 static void qed_iov_vf_igu_reset(struct qed_hwfn *p_hwfn,
714 				 struct qed_ptt *p_ptt, struct qed_vf_info *vf)
715 {
716 	int i;
717 
718 	/* Set VF masks and configuration - pretend */
719 	qed_fid_pretend(p_hwfn, p_ptt, (u16)vf->concrete_fid);
720 
721 	qed_wr(p_hwfn, p_ptt, IGU_REG_STATISTIC_NUM_VF_MSG_SENT, 0);
722 
723 	/* unpretend */
724 	qed_fid_pretend(p_hwfn, p_ptt, (u16)p_hwfn->hw_info.concrete_fid);
725 
726 	/* iterate over all queues, clear sb consumer */
727 	for (i = 0; i < vf->num_sbs; i++)
728 		qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt,
729 						vf->igu_sbs[i],
730 						vf->opaque_fid, true);
731 }
732 
733 static void qed_iov_vf_igu_set_int(struct qed_hwfn *p_hwfn,
734 				   struct qed_ptt *p_ptt,
735 				   struct qed_vf_info *vf, bool enable)
736 {
737 	u32 igu_vf_conf;
738 
739 	qed_fid_pretend(p_hwfn, p_ptt, (u16)vf->concrete_fid);
740 
741 	igu_vf_conf = qed_rd(p_hwfn, p_ptt, IGU_REG_VF_CONFIGURATION);
742 
743 	if (enable)
744 		igu_vf_conf |= IGU_VF_CONF_MSI_MSIX_EN;
745 	else
746 		igu_vf_conf &= ~IGU_VF_CONF_MSI_MSIX_EN;
747 
748 	qed_wr(p_hwfn, p_ptt, IGU_REG_VF_CONFIGURATION, igu_vf_conf);
749 
750 	/* unpretend */
751 	qed_fid_pretend(p_hwfn, p_ptt, (u16)p_hwfn->hw_info.concrete_fid);
752 }
753 
754 static int
755 qed_iov_enable_vf_access_msix(struct qed_hwfn *p_hwfn,
756 			      struct qed_ptt *p_ptt, u8 abs_vf_id, u8 num_sbs)
757 {
758 	u8 current_max = 0;
759 	int i;
760 
761 	/* For AH onward, configuration is per-PF. Find maximum of all
762 	 * the currently enabled child VFs, and set the number to be that.
763 	 */
764 	if (!QED_IS_BB(p_hwfn->cdev)) {
765 		qed_for_each_vf(p_hwfn, i) {
766 			struct qed_vf_info *p_vf;
767 
768 			p_vf = qed_iov_get_vf_info(p_hwfn, (u16)i, true);
769 			if (!p_vf)
770 				continue;
771 
772 			current_max = max_t(u8, current_max, p_vf->num_sbs);
773 		}
774 	}
775 
776 	if (num_sbs > current_max)
777 		return qed_mcp_config_vf_msix(p_hwfn, p_ptt,
778 					      abs_vf_id, num_sbs);
779 
780 	return 0;
781 }
782 
783 static int qed_iov_enable_vf_access(struct qed_hwfn *p_hwfn,
784 				    struct qed_ptt *p_ptt,
785 				    struct qed_vf_info *vf)
786 {
787 	u32 igu_vf_conf = IGU_VF_CONF_FUNC_EN;
788 	int rc;
789 
790 	/* It's possible VF was previously considered malicious -
791 	 * clear the indication even if we're only going to disable VF.
792 	 */
793 	vf->b_malicious = false;
794 
795 	if (vf->to_disable)
796 		return 0;
797 
798 	DP_VERBOSE(p_hwfn,
799 		   QED_MSG_IOV,
800 		   "Enable internal access for vf %x [abs %x]\n",
801 		   vf->abs_vf_id, QED_VF_ABS_ID(p_hwfn, vf));
802 
803 	qed_iov_vf_pglue_clear_err(p_hwfn, p_ptt, QED_VF_ABS_ID(p_hwfn, vf));
804 
805 	qed_iov_vf_igu_reset(p_hwfn, p_ptt, vf);
806 
807 	rc = qed_iov_enable_vf_access_msix(p_hwfn, p_ptt,
808 					   vf->abs_vf_id, vf->num_sbs);
809 	if (rc)
810 		return rc;
811 
812 	qed_fid_pretend(p_hwfn, p_ptt, (u16)vf->concrete_fid);
813 
814 	SET_FIELD(igu_vf_conf, IGU_VF_CONF_PARENT, p_hwfn->rel_pf_id);
815 	STORE_RT_REG(p_hwfn, IGU_REG_VF_CONFIGURATION_RT_OFFSET, igu_vf_conf);
816 
817 	qed_init_run(p_hwfn, p_ptt, PHASE_VF, vf->abs_vf_id,
818 		     p_hwfn->hw_info.hw_mode);
819 
820 	/* unpretend */
821 	qed_fid_pretend(p_hwfn, p_ptt, (u16)p_hwfn->hw_info.concrete_fid);
822 
823 	vf->state = VF_FREE;
824 
825 	return rc;
826 }
827 
828 /**
829  * qed_iov_config_perm_table() - Configure the permission zone table.
830  *
831  * @p_hwfn: HW device data.
832  * @p_ptt: PTT window for writing the registers.
833  * @vf: VF info data.
834  * @enable: The actual permission for this VF.
835  *
836  * In E4, queue zone permission table size is 320x9. There
837  * are 320 VF queues for single engine device (256 for dual
838  * engine device), and each entry has the following format:
839  * {Valid, VF[7:0]}
840  */
841 static void qed_iov_config_perm_table(struct qed_hwfn *p_hwfn,
842 				      struct qed_ptt *p_ptt,
843 				      struct qed_vf_info *vf, u8 enable)
844 {
845 	u32 reg_addr, val;
846 	u16 qzone_id = 0;
847 	int qid;
848 
849 	for (qid = 0; qid < vf->num_rxqs; qid++) {
850 		qed_fw_l2_queue(p_hwfn, vf->vf_queues[qid].fw_rx_qid,
851 				&qzone_id);
852 
853 		reg_addr = PSWHST_REG_ZONE_PERMISSION_TABLE + qzone_id * 4;
854 		val = enable ? (vf->abs_vf_id | BIT(8)) : 0;
855 		qed_wr(p_hwfn, p_ptt, reg_addr, val);
856 	}
857 }
858 
859 static void qed_iov_enable_vf_traffic(struct qed_hwfn *p_hwfn,
860 				      struct qed_ptt *p_ptt,
861 				      struct qed_vf_info *vf)
862 {
863 	/* Reset vf in IGU - interrupts are still disabled */
864 	qed_iov_vf_igu_reset(p_hwfn, p_ptt, vf);
865 
866 	qed_iov_vf_igu_set_int(p_hwfn, p_ptt, vf, 1);
867 
868 	/* Permission Table */
869 	qed_iov_config_perm_table(p_hwfn, p_ptt, vf, true);
870 }
871 
872 static u8 qed_iov_alloc_vf_igu_sbs(struct qed_hwfn *p_hwfn,
873 				   struct qed_ptt *p_ptt,
874 				   struct qed_vf_info *vf, u16 num_rx_queues)
875 {
876 	struct qed_igu_block *p_block;
877 	struct cau_sb_entry sb_entry;
878 	int qid = 0;
879 	u32 val = 0;
880 
881 	if (num_rx_queues > p_hwfn->hw_info.p_igu_info->usage.free_cnt_iov)
882 		num_rx_queues = p_hwfn->hw_info.p_igu_info->usage.free_cnt_iov;
883 	p_hwfn->hw_info.p_igu_info->usage.free_cnt_iov -= num_rx_queues;
884 
885 	SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER, vf->abs_vf_id);
886 	SET_FIELD(val, IGU_MAPPING_LINE_VALID, 1);
887 	SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, 0);
888 
889 	for (qid = 0; qid < num_rx_queues; qid++) {
890 		p_block = qed_get_igu_free_sb(p_hwfn, false);
891 		vf->igu_sbs[qid] = p_block->igu_sb_id;
892 		p_block->status &= ~QED_IGU_STATUS_FREE;
893 		SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER, qid);
894 
895 		qed_wr(p_hwfn, p_ptt,
896 		       IGU_REG_MAPPING_MEMORY +
897 		       sizeof(u32) * p_block->igu_sb_id, val);
898 
899 		/* Configure igu sb in CAU which were marked valid */
900 		qed_init_cau_sb_entry(p_hwfn, &sb_entry,
901 				      p_hwfn->rel_pf_id, vf->abs_vf_id, 1);
902 
903 		qed_dmae_host2grc(p_hwfn, p_ptt,
904 				  (u64)(uintptr_t)&sb_entry,
905 				  CAU_REG_SB_VAR_MEMORY +
906 				  p_block->igu_sb_id * sizeof(u64), 2, NULL);
907 	}
908 
909 	vf->num_sbs = (u8)num_rx_queues;
910 
911 	return vf->num_sbs;
912 }
913 
914 static void qed_iov_free_vf_igu_sbs(struct qed_hwfn *p_hwfn,
915 				    struct qed_ptt *p_ptt,
916 				    struct qed_vf_info *vf)
917 {
918 	struct qed_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
919 	int idx, igu_id;
920 	u32 addr, val;
921 
922 	/* Invalidate igu CAM lines and mark them as free */
923 	for (idx = 0; idx < vf->num_sbs; idx++) {
924 		igu_id = vf->igu_sbs[idx];
925 		addr = IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_id;
926 
927 		val = qed_rd(p_hwfn, p_ptt, addr);
928 		SET_FIELD(val, IGU_MAPPING_LINE_VALID, 0);
929 		qed_wr(p_hwfn, p_ptt, addr, val);
930 
931 		p_info->entry[igu_id].status |= QED_IGU_STATUS_FREE;
932 		p_hwfn->hw_info.p_igu_info->usage.free_cnt_iov++;
933 	}
934 
935 	vf->num_sbs = 0;
936 }
937 
938 static void qed_iov_set_link(struct qed_hwfn *p_hwfn,
939 			     u16 vfid,
940 			     struct qed_mcp_link_params *params,
941 			     struct qed_mcp_link_state *link,
942 			     struct qed_mcp_link_capabilities *p_caps)
943 {
944 	struct qed_vf_info *p_vf = qed_iov_get_vf_info(p_hwfn,
945 						       vfid,
946 						       false);
947 	struct qed_bulletin_content *p_bulletin;
948 
949 	if (!p_vf)
950 		return;
951 
952 	p_bulletin = p_vf->bulletin.p_virt;
953 	p_bulletin->req_autoneg = params->speed.autoneg;
954 	p_bulletin->req_adv_speed = params->speed.advertised_speeds;
955 	p_bulletin->req_forced_speed = params->speed.forced_speed;
956 	p_bulletin->req_autoneg_pause = params->pause.autoneg;
957 	p_bulletin->req_forced_rx = params->pause.forced_rx;
958 	p_bulletin->req_forced_tx = params->pause.forced_tx;
959 	p_bulletin->req_loopback = params->loopback_mode;
960 
961 	p_bulletin->link_up = link->link_up;
962 	p_bulletin->speed = link->speed;
963 	p_bulletin->full_duplex = link->full_duplex;
964 	p_bulletin->autoneg = link->an;
965 	p_bulletin->autoneg_complete = link->an_complete;
966 	p_bulletin->parallel_detection = link->parallel_detection;
967 	p_bulletin->pfc_enabled = link->pfc_enabled;
968 	p_bulletin->partner_adv_speed = link->partner_adv_speed;
969 	p_bulletin->partner_tx_flow_ctrl_en = link->partner_tx_flow_ctrl_en;
970 	p_bulletin->partner_rx_flow_ctrl_en = link->partner_rx_flow_ctrl_en;
971 	p_bulletin->partner_adv_pause = link->partner_adv_pause;
972 	p_bulletin->sfp_tx_fault = link->sfp_tx_fault;
973 
974 	p_bulletin->capability_speed = p_caps->speed_capabilities;
975 }
976 
977 static int qed_iov_init_hw_for_vf(struct qed_hwfn *p_hwfn,
978 				  struct qed_ptt *p_ptt,
979 				  struct qed_iov_vf_init_params *p_params)
980 {
981 	struct qed_mcp_link_capabilities link_caps;
982 	struct qed_mcp_link_params link_params;
983 	struct qed_mcp_link_state link_state;
984 	u8 num_of_vf_avaiable_chains = 0;
985 	struct qed_vf_info *vf = NULL;
986 	u16 qid, num_irqs;
987 	int rc = 0;
988 	u32 cids;
989 	u8 i;
990 
991 	vf = qed_iov_get_vf_info(p_hwfn, p_params->rel_vf_id, false);
992 	if (!vf) {
993 		DP_ERR(p_hwfn, "%s : vf is NULL\n", __func__);
994 		return -EINVAL;
995 	}
996 
997 	if (vf->b_init) {
998 		DP_NOTICE(p_hwfn, "VF[%d] is already active.\n",
999 			  p_params->rel_vf_id);
1000 		return -EINVAL;
1001 	}
1002 
1003 	/* Perform sanity checking on the requested queue_id */
1004 	for (i = 0; i < p_params->num_queues; i++) {
1005 		u16 min_vf_qzone = FEAT_NUM(p_hwfn, QED_PF_L2_QUE);
1006 		u16 max_vf_qzone = min_vf_qzone +
1007 		    FEAT_NUM(p_hwfn, QED_VF_L2_QUE) - 1;
1008 
1009 		qid = p_params->req_rx_queue[i];
1010 		if (qid < min_vf_qzone || qid > max_vf_qzone) {
1011 			DP_NOTICE(p_hwfn,
1012 				  "Can't enable Rx qid [%04x] for VF[%d]: qids [0x%04x,...,0x%04x] available\n",
1013 				  qid,
1014 				  p_params->rel_vf_id,
1015 				  min_vf_qzone, max_vf_qzone);
1016 			return -EINVAL;
1017 		}
1018 
1019 		qid = p_params->req_tx_queue[i];
1020 		if (qid > max_vf_qzone) {
1021 			DP_NOTICE(p_hwfn,
1022 				  "Can't enable Tx qid [%04x] for VF[%d]: max qid 0x%04x\n",
1023 				  qid, p_params->rel_vf_id, max_vf_qzone);
1024 			return -EINVAL;
1025 		}
1026 
1027 		/* If client *really* wants, Tx qid can be shared with PF */
1028 		if (qid < min_vf_qzone)
1029 			DP_VERBOSE(p_hwfn,
1030 				   QED_MSG_IOV,
1031 				   "VF[%d] is using PF qid [0x%04x] for Txq[0x%02x]\n",
1032 				   p_params->rel_vf_id, qid, i);
1033 	}
1034 
1035 	/* Limit number of queues according to number of CIDs */
1036 	qed_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_ETH, &cids);
1037 	DP_VERBOSE(p_hwfn,
1038 		   QED_MSG_IOV,
1039 		   "VF[%d] - requesting to initialize for 0x%04x queues [0x%04x CIDs available]\n",
1040 		   vf->relative_vf_id, p_params->num_queues, (u16)cids);
1041 	num_irqs = min_t(u16, p_params->num_queues, ((u16)cids));
1042 
1043 	num_of_vf_avaiable_chains = qed_iov_alloc_vf_igu_sbs(p_hwfn,
1044 							     p_ptt,
1045 							     vf, num_irqs);
1046 	if (!num_of_vf_avaiable_chains) {
1047 		DP_ERR(p_hwfn, "no available igu sbs\n");
1048 		return -ENOMEM;
1049 	}
1050 
1051 	/* Choose queue number and index ranges */
1052 	vf->num_rxqs = num_of_vf_avaiable_chains;
1053 	vf->num_txqs = num_of_vf_avaiable_chains;
1054 
1055 	for (i = 0; i < vf->num_rxqs; i++) {
1056 		struct qed_vf_queue *p_queue = &vf->vf_queues[i];
1057 
1058 		p_queue->fw_rx_qid = p_params->req_rx_queue[i];
1059 		p_queue->fw_tx_qid = p_params->req_tx_queue[i];
1060 
1061 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1062 			   "VF[%d] - Q[%d] SB %04x, qid [Rx %04x Tx %04x]\n",
1063 			   vf->relative_vf_id, i, vf->igu_sbs[i],
1064 			   p_queue->fw_rx_qid, p_queue->fw_tx_qid);
1065 	}
1066 
1067 	/* Update the link configuration in bulletin */
1068 	memcpy(&link_params, qed_mcp_get_link_params(p_hwfn),
1069 	       sizeof(link_params));
1070 	memcpy(&link_state, qed_mcp_get_link_state(p_hwfn), sizeof(link_state));
1071 	memcpy(&link_caps, qed_mcp_get_link_capabilities(p_hwfn),
1072 	       sizeof(link_caps));
1073 	qed_iov_set_link(p_hwfn, p_params->rel_vf_id,
1074 			 &link_params, &link_state, &link_caps);
1075 
1076 	rc = qed_iov_enable_vf_access(p_hwfn, p_ptt, vf);
1077 	if (!rc) {
1078 		vf->b_init = true;
1079 
1080 		if (IS_LEAD_HWFN(p_hwfn))
1081 			p_hwfn->cdev->p_iov_info->num_vfs++;
1082 	}
1083 
1084 	return rc;
1085 }
1086 
1087 static int qed_iov_release_hw_for_vf(struct qed_hwfn *p_hwfn,
1088 				     struct qed_ptt *p_ptt, u16 rel_vf_id)
1089 {
1090 	struct qed_mcp_link_capabilities caps;
1091 	struct qed_mcp_link_params params;
1092 	struct qed_mcp_link_state link;
1093 	struct qed_vf_info *vf = NULL;
1094 
1095 	vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true);
1096 	if (!vf) {
1097 		DP_ERR(p_hwfn, "%s : vf is NULL\n", __func__);
1098 		return -EINVAL;
1099 	}
1100 
1101 	if (vf->bulletin.p_virt)
1102 		memset(vf->bulletin.p_virt, 0, sizeof(*vf->bulletin.p_virt));
1103 
1104 	memset(&vf->p_vf_info, 0, sizeof(vf->p_vf_info));
1105 
1106 	/* Get the link configuration back in bulletin so
1107 	 * that when VFs are re-enabled they get the actual
1108 	 * link configuration.
1109 	 */
1110 	memcpy(&params, qed_mcp_get_link_params(p_hwfn), sizeof(params));
1111 	memcpy(&link, qed_mcp_get_link_state(p_hwfn), sizeof(link));
1112 	memcpy(&caps, qed_mcp_get_link_capabilities(p_hwfn), sizeof(caps));
1113 	qed_iov_set_link(p_hwfn, rel_vf_id, &params, &link, &caps);
1114 
1115 	/* Forget the VF's acquisition message */
1116 	memset(&vf->acquire, 0, sizeof(vf->acquire));
1117 
1118 	/* disablng interrupts and resetting permission table was done during
1119 	 * vf-close, however, we could get here without going through vf_close
1120 	 */
1121 	/* Disable Interrupts for VF */
1122 	qed_iov_vf_igu_set_int(p_hwfn, p_ptt, vf, 0);
1123 
1124 	/* Reset Permission table */
1125 	qed_iov_config_perm_table(p_hwfn, p_ptt, vf, 0);
1126 
1127 	vf->num_rxqs = 0;
1128 	vf->num_txqs = 0;
1129 	qed_iov_free_vf_igu_sbs(p_hwfn, p_ptt, vf);
1130 
1131 	if (vf->b_init) {
1132 		vf->b_init = false;
1133 
1134 		if (IS_LEAD_HWFN(p_hwfn))
1135 			p_hwfn->cdev->p_iov_info->num_vfs--;
1136 	}
1137 
1138 	return 0;
1139 }
1140 
1141 static bool qed_iov_tlv_supported(u16 tlvtype)
1142 {
1143 	return CHANNEL_TLV_NONE < tlvtype && tlvtype < CHANNEL_TLV_MAX;
1144 }
1145 
1146 /* place a given tlv on the tlv buffer, continuing current tlv list */
1147 void *qed_add_tlv(struct qed_hwfn *p_hwfn, u8 **offset, u16 type, u16 length)
1148 {
1149 	struct channel_tlv *tl = (struct channel_tlv *)*offset;
1150 
1151 	tl->type = type;
1152 	tl->length = length;
1153 
1154 	/* Offset should keep pointing to next TLV (the end of the last) */
1155 	*offset += length;
1156 
1157 	/* Return a pointer to the start of the added tlv */
1158 	return *offset - length;
1159 }
1160 
1161 /* list the types and lengths of the tlvs on the buffer */
1162 void qed_dp_tlv_list(struct qed_hwfn *p_hwfn, void *tlvs_list)
1163 {
1164 	u16 i = 1, total_length = 0;
1165 	struct channel_tlv *tlv;
1166 
1167 	do {
1168 		tlv = (struct channel_tlv *)((u8 *)tlvs_list + total_length);
1169 
1170 		/* output tlv */
1171 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1172 			   "TLV number %d: type %d, length %d\n",
1173 			   i, tlv->type, tlv->length);
1174 
1175 		if (tlv->type == CHANNEL_TLV_LIST_END)
1176 			return;
1177 
1178 		/* Validate entry - protect against malicious VFs */
1179 		if (!tlv->length) {
1180 			DP_NOTICE(p_hwfn, "TLV of length 0 found\n");
1181 			return;
1182 		}
1183 
1184 		total_length += tlv->length;
1185 
1186 		if (total_length >= sizeof(struct tlv_buffer_size)) {
1187 			DP_NOTICE(p_hwfn, "TLV ==> Buffer overflow\n");
1188 			return;
1189 		}
1190 
1191 		i++;
1192 	} while (1);
1193 }
1194 
1195 static void qed_iov_send_response(struct qed_hwfn *p_hwfn,
1196 				  struct qed_ptt *p_ptt,
1197 				  struct qed_vf_info *p_vf,
1198 				  u16 length, u8 status)
1199 {
1200 	struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx;
1201 	struct qed_dmae_params params;
1202 	u8 eng_vf_id;
1203 
1204 	mbx->reply_virt->default_resp.hdr.status = status;
1205 
1206 	qed_dp_tlv_list(p_hwfn, mbx->reply_virt);
1207 
1208 	eng_vf_id = p_vf->abs_vf_id;
1209 
1210 	memset(&params, 0, sizeof(params));
1211 	SET_FIELD(params.flags, QED_DMAE_PARAMS_DST_VF_VALID, 0x1);
1212 	params.dst_vfid = eng_vf_id;
1213 
1214 	qed_dmae_host2host(p_hwfn, p_ptt, mbx->reply_phys + sizeof(u64),
1215 			   mbx->req_virt->first_tlv.reply_address +
1216 			   sizeof(u64),
1217 			   (sizeof(union pfvf_tlvs) - sizeof(u64)) / 4,
1218 			   &params);
1219 
1220 	/* Once PF copies the rc to the VF, the latter can continue
1221 	 * and send an additional message. So we have to make sure the
1222 	 * channel would be re-set to ready prior to that.
1223 	 */
1224 	REG_WR(p_hwfn,
1225 	       GET_GTT_REG_ADDR(GTT_BAR0_MAP_REG_USDM_RAM,
1226 				USTORM_VF_PF_CHANNEL_READY, eng_vf_id), 1);
1227 
1228 	qed_dmae_host2host(p_hwfn, p_ptt, mbx->reply_phys,
1229 			   mbx->req_virt->first_tlv.reply_address,
1230 			   sizeof(u64) / 4, &params);
1231 }
1232 
1233 static u16 qed_iov_vport_to_tlv(struct qed_hwfn *p_hwfn,
1234 				enum qed_iov_vport_update_flag flag)
1235 {
1236 	switch (flag) {
1237 	case QED_IOV_VP_UPDATE_ACTIVATE:
1238 		return CHANNEL_TLV_VPORT_UPDATE_ACTIVATE;
1239 	case QED_IOV_VP_UPDATE_VLAN_STRIP:
1240 		return CHANNEL_TLV_VPORT_UPDATE_VLAN_STRIP;
1241 	case QED_IOV_VP_UPDATE_TX_SWITCH:
1242 		return CHANNEL_TLV_VPORT_UPDATE_TX_SWITCH;
1243 	case QED_IOV_VP_UPDATE_MCAST:
1244 		return CHANNEL_TLV_VPORT_UPDATE_MCAST;
1245 	case QED_IOV_VP_UPDATE_ACCEPT_PARAM:
1246 		return CHANNEL_TLV_VPORT_UPDATE_ACCEPT_PARAM;
1247 	case QED_IOV_VP_UPDATE_RSS:
1248 		return CHANNEL_TLV_VPORT_UPDATE_RSS;
1249 	case QED_IOV_VP_UPDATE_ACCEPT_ANY_VLAN:
1250 		return CHANNEL_TLV_VPORT_UPDATE_ACCEPT_ANY_VLAN;
1251 	case QED_IOV_VP_UPDATE_SGE_TPA:
1252 		return CHANNEL_TLV_VPORT_UPDATE_SGE_TPA;
1253 	default:
1254 		return 0;
1255 	}
1256 }
1257 
1258 static u16 qed_iov_prep_vp_update_resp_tlvs(struct qed_hwfn *p_hwfn,
1259 					    struct qed_vf_info *p_vf,
1260 					    struct qed_iov_vf_mbx *p_mbx,
1261 					    u8 status,
1262 					    u16 tlvs_mask, u16 tlvs_accepted)
1263 {
1264 	struct pfvf_def_resp_tlv *resp;
1265 	u16 size, total_len, i;
1266 
1267 	memset(p_mbx->reply_virt, 0, sizeof(union pfvf_tlvs));
1268 	p_mbx->offset = (u8 *)p_mbx->reply_virt;
1269 	size = sizeof(struct pfvf_def_resp_tlv);
1270 	total_len = size;
1271 
1272 	qed_add_tlv(p_hwfn, &p_mbx->offset, CHANNEL_TLV_VPORT_UPDATE, size);
1273 
1274 	/* Prepare response for all extended tlvs if they are found by PF */
1275 	for (i = 0; i < QED_IOV_VP_UPDATE_MAX; i++) {
1276 		if (!(tlvs_mask & BIT(i)))
1277 			continue;
1278 
1279 		resp = qed_add_tlv(p_hwfn, &p_mbx->offset,
1280 				   qed_iov_vport_to_tlv(p_hwfn, i), size);
1281 
1282 		if (tlvs_accepted & BIT(i))
1283 			resp->hdr.status = status;
1284 		else
1285 			resp->hdr.status = PFVF_STATUS_NOT_SUPPORTED;
1286 
1287 		DP_VERBOSE(p_hwfn,
1288 			   QED_MSG_IOV,
1289 			   "VF[%d] - vport_update response: TLV %d, status %02x\n",
1290 			   p_vf->relative_vf_id,
1291 			   qed_iov_vport_to_tlv(p_hwfn, i), resp->hdr.status);
1292 
1293 		total_len += size;
1294 	}
1295 
1296 	qed_add_tlv(p_hwfn, &p_mbx->offset, CHANNEL_TLV_LIST_END,
1297 		    sizeof(struct channel_list_end_tlv));
1298 
1299 	return total_len;
1300 }
1301 
1302 static void qed_iov_prepare_resp(struct qed_hwfn *p_hwfn,
1303 				 struct qed_ptt *p_ptt,
1304 				 struct qed_vf_info *vf_info,
1305 				 u16 type, u16 length, u8 status)
1306 {
1307 	struct qed_iov_vf_mbx *mbx = &vf_info->vf_mbx;
1308 
1309 	mbx->offset = (u8 *)mbx->reply_virt;
1310 
1311 	qed_add_tlv(p_hwfn, &mbx->offset, type, length);
1312 	qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END,
1313 		    sizeof(struct channel_list_end_tlv));
1314 
1315 	qed_iov_send_response(p_hwfn, p_ptt, vf_info, length, status);
1316 }
1317 
1318 static struct
1319 qed_public_vf_info *qed_iov_get_public_vf_info(struct qed_hwfn *p_hwfn,
1320 					       u16 relative_vf_id,
1321 					       bool b_enabled_only)
1322 {
1323 	struct qed_vf_info *vf = NULL;
1324 
1325 	vf = qed_iov_get_vf_info(p_hwfn, relative_vf_id, b_enabled_only);
1326 	if (!vf)
1327 		return NULL;
1328 
1329 	return &vf->p_vf_info;
1330 }
1331 
1332 static void qed_iov_clean_vf(struct qed_hwfn *p_hwfn, u8 vfid)
1333 {
1334 	struct qed_public_vf_info *vf_info;
1335 
1336 	vf_info = qed_iov_get_public_vf_info(p_hwfn, vfid, false);
1337 
1338 	if (!vf_info)
1339 		return;
1340 
1341 	/* Clear the VF mac */
1342 	eth_zero_addr(vf_info->mac);
1343 
1344 	vf_info->rx_accept_mode = 0;
1345 	vf_info->tx_accept_mode = 0;
1346 }
1347 
1348 static void qed_iov_vf_cleanup(struct qed_hwfn *p_hwfn,
1349 			       struct qed_vf_info *p_vf)
1350 {
1351 	u32 i, j;
1352 
1353 	p_vf->vf_bulletin = 0;
1354 	p_vf->vport_instance = 0;
1355 	p_vf->configured_features = 0;
1356 
1357 	/* If VF previously requested less resources, go back to default */
1358 	p_vf->num_rxqs = p_vf->num_sbs;
1359 	p_vf->num_txqs = p_vf->num_sbs;
1360 
1361 	p_vf->num_active_rxqs = 0;
1362 
1363 	for (i = 0; i < QED_MAX_VF_CHAINS_PER_PF; i++) {
1364 		struct qed_vf_queue *p_queue = &p_vf->vf_queues[i];
1365 
1366 		for (j = 0; j < MAX_QUEUES_PER_QZONE; j++) {
1367 			if (!p_queue->cids[j].p_cid)
1368 				continue;
1369 
1370 			qed_eth_queue_cid_release(p_hwfn,
1371 						  p_queue->cids[j].p_cid);
1372 			p_queue->cids[j].p_cid = NULL;
1373 		}
1374 	}
1375 
1376 	memset(&p_vf->shadow_config, 0, sizeof(p_vf->shadow_config));
1377 	memset(&p_vf->acquire, 0, sizeof(p_vf->acquire));
1378 	qed_iov_clean_vf(p_hwfn, p_vf->relative_vf_id);
1379 }
1380 
1381 /* Returns either 0, or log(size) */
1382 static u32 qed_iov_vf_db_bar_size(struct qed_hwfn *p_hwfn,
1383 				  struct qed_ptt *p_ptt)
1384 {
1385 	u32 val = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_VF_BAR1_SIZE);
1386 
1387 	if (val)
1388 		return val + 11;
1389 	return 0;
1390 }
1391 
1392 static void
1393 qed_iov_vf_mbx_acquire_resc_cids(struct qed_hwfn *p_hwfn,
1394 				 struct qed_ptt *p_ptt,
1395 				 struct qed_vf_info *p_vf,
1396 				 struct vf_pf_resc_request *p_req,
1397 				 struct pf_vf_resc *p_resp)
1398 {
1399 	u8 num_vf_cons = p_hwfn->pf_params.eth_pf_params.num_vf_cons;
1400 	u8 db_size = qed_db_addr_vf(1, DQ_DEMS_LEGACY) -
1401 		     qed_db_addr_vf(0, DQ_DEMS_LEGACY);
1402 	u32 bar_size;
1403 
1404 	p_resp->num_cids = min_t(u8, p_req->num_cids, num_vf_cons);
1405 
1406 	/* If VF didn't bother asking for QIDs than don't bother limiting
1407 	 * number of CIDs. The VF doesn't care about the number, and this
1408 	 * has the likely result of causing an additional acquisition.
1409 	 */
1410 	if (!(p_vf->acquire.vfdev_info.capabilities &
1411 	      VFPF_ACQUIRE_CAP_QUEUE_QIDS))
1412 		return;
1413 
1414 	/* If doorbell bar was mapped by VF, limit the VF CIDs to an amount
1415 	 * that would make sure doorbells for all CIDs fall within the bar.
1416 	 * If it doesn't, make sure regview window is sufficient.
1417 	 */
1418 	if (p_vf->acquire.vfdev_info.capabilities &
1419 	    VFPF_ACQUIRE_CAP_PHYSICAL_BAR) {
1420 		bar_size = qed_iov_vf_db_bar_size(p_hwfn, p_ptt);
1421 		if (bar_size)
1422 			bar_size = 1 << bar_size;
1423 
1424 		if (p_hwfn->cdev->num_hwfns > 1)
1425 			bar_size /= 2;
1426 	} else {
1427 		bar_size = PXP_VF_BAR0_DQ_LENGTH;
1428 	}
1429 
1430 	if (bar_size / db_size < 256)
1431 		p_resp->num_cids = min_t(u8, p_resp->num_cids,
1432 					 (u8)(bar_size / db_size));
1433 }
1434 
1435 static u8 qed_iov_vf_mbx_acquire_resc(struct qed_hwfn *p_hwfn,
1436 				      struct qed_ptt *p_ptt,
1437 				      struct qed_vf_info *p_vf,
1438 				      struct vf_pf_resc_request *p_req,
1439 				      struct pf_vf_resc *p_resp)
1440 {
1441 	u8 i;
1442 
1443 	/* Queue related information */
1444 	p_resp->num_rxqs = p_vf->num_rxqs;
1445 	p_resp->num_txqs = p_vf->num_txqs;
1446 	p_resp->num_sbs = p_vf->num_sbs;
1447 
1448 	for (i = 0; i < p_resp->num_sbs; i++) {
1449 		p_resp->hw_sbs[i].hw_sb_id = p_vf->igu_sbs[i];
1450 		p_resp->hw_sbs[i].sb_qid = 0;
1451 	}
1452 
1453 	/* These fields are filled for backward compatibility.
1454 	 * Unused by modern vfs.
1455 	 */
1456 	for (i = 0; i < p_resp->num_rxqs; i++) {
1457 		qed_fw_l2_queue(p_hwfn, p_vf->vf_queues[i].fw_rx_qid,
1458 				(u16 *)&p_resp->hw_qid[i]);
1459 		p_resp->cid[i] = i;
1460 	}
1461 
1462 	/* Filter related information */
1463 	p_resp->num_mac_filters = min_t(u8, p_vf->num_mac_filters,
1464 					p_req->num_mac_filters);
1465 	p_resp->num_vlan_filters = min_t(u8, p_vf->num_vlan_filters,
1466 					 p_req->num_vlan_filters);
1467 
1468 	qed_iov_vf_mbx_acquire_resc_cids(p_hwfn, p_ptt, p_vf, p_req, p_resp);
1469 
1470 	/* This isn't really needed/enforced, but some legacy VFs might depend
1471 	 * on the correct filling of this field.
1472 	 */
1473 	p_resp->num_mc_filters = QED_MAX_MC_ADDRS;
1474 
1475 	/* Validate sufficient resources for VF */
1476 	if (p_resp->num_rxqs < p_req->num_rxqs ||
1477 	    p_resp->num_txqs < p_req->num_txqs ||
1478 	    p_resp->num_sbs < p_req->num_sbs ||
1479 	    p_resp->num_mac_filters < p_req->num_mac_filters ||
1480 	    p_resp->num_vlan_filters < p_req->num_vlan_filters ||
1481 	    p_resp->num_mc_filters < p_req->num_mc_filters ||
1482 	    p_resp->num_cids < p_req->num_cids) {
1483 		DP_VERBOSE(p_hwfn,
1484 			   QED_MSG_IOV,
1485 			   "VF[%d] - Insufficient resources: rxq [%02x/%02x] txq [%02x/%02x] sbs [%02x/%02x] mac [%02x/%02x] vlan [%02x/%02x] mc [%02x/%02x] cids [%02x/%02x]\n",
1486 			   p_vf->abs_vf_id,
1487 			   p_req->num_rxqs,
1488 			   p_resp->num_rxqs,
1489 			   p_req->num_rxqs,
1490 			   p_resp->num_txqs,
1491 			   p_req->num_sbs,
1492 			   p_resp->num_sbs,
1493 			   p_req->num_mac_filters,
1494 			   p_resp->num_mac_filters,
1495 			   p_req->num_vlan_filters,
1496 			   p_resp->num_vlan_filters,
1497 			   p_req->num_mc_filters,
1498 			   p_resp->num_mc_filters,
1499 			   p_req->num_cids, p_resp->num_cids);
1500 
1501 		/* Some legacy OSes are incapable of correctly handling this
1502 		 * failure.
1503 		 */
1504 		if ((p_vf->acquire.vfdev_info.eth_fp_hsi_minor ==
1505 		     ETH_HSI_VER_NO_PKT_LEN_TUNN) &&
1506 		    (p_vf->acquire.vfdev_info.os_type ==
1507 		     VFPF_ACQUIRE_OS_WINDOWS))
1508 			return PFVF_STATUS_SUCCESS;
1509 
1510 		return PFVF_STATUS_NO_RESOURCE;
1511 	}
1512 
1513 	return PFVF_STATUS_SUCCESS;
1514 }
1515 
1516 static void qed_iov_vf_mbx_acquire_stats(struct qed_hwfn *p_hwfn,
1517 					 struct pfvf_stats_info *p_stats)
1518 {
1519 	p_stats->mstats.address = PXP_VF_BAR0_START_MSDM_ZONE_B +
1520 				  offsetof(struct mstorm_vf_zone,
1521 					   non_trigger.eth_queue_stat);
1522 	p_stats->mstats.len = sizeof(struct eth_mstorm_per_queue_stat);
1523 	p_stats->ustats.address = PXP_VF_BAR0_START_USDM_ZONE_B +
1524 				  offsetof(struct ustorm_vf_zone,
1525 					   non_trigger.eth_queue_stat);
1526 	p_stats->ustats.len = sizeof(struct eth_ustorm_per_queue_stat);
1527 	p_stats->pstats.address = PXP_VF_BAR0_START_PSDM_ZONE_B +
1528 				  offsetof(struct pstorm_vf_zone,
1529 					   non_trigger.eth_queue_stat);
1530 	p_stats->pstats.len = sizeof(struct eth_pstorm_per_queue_stat);
1531 	p_stats->tstats.address = 0;
1532 	p_stats->tstats.len = 0;
1533 }
1534 
1535 static void qed_iov_vf_mbx_acquire(struct qed_hwfn *p_hwfn,
1536 				   struct qed_ptt *p_ptt,
1537 				   struct qed_vf_info *vf)
1538 {
1539 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
1540 	struct pfvf_acquire_resp_tlv *resp = &mbx->reply_virt->acquire_resp;
1541 	struct pf_vf_pfdev_info *pfdev_info = &resp->pfdev_info;
1542 	struct vfpf_acquire_tlv *req = &mbx->req_virt->acquire;
1543 	u8 vfpf_status = PFVF_STATUS_NOT_SUPPORTED;
1544 	struct pf_vf_resc *resc = &resp->resc;
1545 	int rc;
1546 
1547 	memset(resp, 0, sizeof(*resp));
1548 
1549 	/* Write the PF version so that VF would know which version
1550 	 * is supported - might be later overridden. This guarantees that
1551 	 * VF could recognize legacy PF based on lack of versions in reply.
1552 	 */
1553 	pfdev_info->major_fp_hsi = ETH_HSI_VER_MAJOR;
1554 	pfdev_info->minor_fp_hsi = ETH_HSI_VER_MINOR;
1555 
1556 	if (vf->state != VF_FREE && vf->state != VF_STOPPED) {
1557 		DP_VERBOSE(p_hwfn,
1558 			   QED_MSG_IOV,
1559 			   "VF[%d] sent ACQUIRE but is already in state %d - fail request\n",
1560 			   vf->abs_vf_id, vf->state);
1561 		goto out;
1562 	}
1563 
1564 	/* Validate FW compatibility */
1565 	if (req->vfdev_info.eth_fp_hsi_major != ETH_HSI_VER_MAJOR) {
1566 		if (req->vfdev_info.capabilities &
1567 		    VFPF_ACQUIRE_CAP_PRE_FP_HSI) {
1568 			struct vf_pf_vfdev_info *p_vfdev = &req->vfdev_info;
1569 
1570 			DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1571 				   "VF[%d] is pre-fastpath HSI\n",
1572 				   vf->abs_vf_id);
1573 			p_vfdev->eth_fp_hsi_major = ETH_HSI_VER_MAJOR;
1574 			p_vfdev->eth_fp_hsi_minor = ETH_HSI_VER_NO_PKT_LEN_TUNN;
1575 		} else {
1576 			DP_INFO(p_hwfn,
1577 				"VF[%d] needs fastpath HSI %02x.%02x, which is incompatible with loaded FW's fastpath HSI %02x.%02x\n",
1578 				vf->abs_vf_id,
1579 				req->vfdev_info.eth_fp_hsi_major,
1580 				req->vfdev_info.eth_fp_hsi_minor,
1581 				ETH_HSI_VER_MAJOR, ETH_HSI_VER_MINOR);
1582 
1583 			goto out;
1584 		}
1585 	}
1586 
1587 	/* On 100g PFs, prevent old VFs from loading */
1588 	if ((p_hwfn->cdev->num_hwfns > 1) &&
1589 	    !(req->vfdev_info.capabilities & VFPF_ACQUIRE_CAP_100G)) {
1590 		DP_INFO(p_hwfn,
1591 			"VF[%d] is running an old driver that doesn't support 100g\n",
1592 			vf->abs_vf_id);
1593 		goto out;
1594 	}
1595 
1596 	/* Store the acquire message */
1597 	memcpy(&vf->acquire, req, sizeof(vf->acquire));
1598 
1599 	vf->opaque_fid = req->vfdev_info.opaque_fid;
1600 
1601 	vf->vf_bulletin = req->bulletin_addr;
1602 	vf->bulletin.size = (vf->bulletin.size < req->bulletin_size) ?
1603 			    vf->bulletin.size : req->bulletin_size;
1604 
1605 	/* fill in pfdev info */
1606 	pfdev_info->chip_num = p_hwfn->cdev->chip_num;
1607 	pfdev_info->db_size = 0;
1608 	pfdev_info->indices_per_sb = PIS_PER_SB;
1609 
1610 	pfdev_info->capabilities = PFVF_ACQUIRE_CAP_DEFAULT_UNTAGGED |
1611 				   PFVF_ACQUIRE_CAP_POST_FW_OVERRIDE;
1612 	if (p_hwfn->cdev->num_hwfns > 1)
1613 		pfdev_info->capabilities |= PFVF_ACQUIRE_CAP_100G;
1614 
1615 	/* Share our ability to use multiple queue-ids only with VFs
1616 	 * that request it.
1617 	 */
1618 	if (req->vfdev_info.capabilities & VFPF_ACQUIRE_CAP_QUEUE_QIDS)
1619 		pfdev_info->capabilities |= PFVF_ACQUIRE_CAP_QUEUE_QIDS;
1620 
1621 	/* Share the sizes of the bars with VF */
1622 	resp->pfdev_info.bar_size = qed_iov_vf_db_bar_size(p_hwfn, p_ptt);
1623 
1624 	qed_iov_vf_mbx_acquire_stats(p_hwfn, &pfdev_info->stats_info);
1625 
1626 	memcpy(pfdev_info->port_mac, p_hwfn->hw_info.hw_mac_addr, ETH_ALEN);
1627 
1628 	pfdev_info->fw_major = FW_MAJOR_VERSION;
1629 	pfdev_info->fw_minor = FW_MINOR_VERSION;
1630 	pfdev_info->fw_rev = FW_REVISION_VERSION;
1631 	pfdev_info->fw_eng = FW_ENGINEERING_VERSION;
1632 
1633 	/* Incorrect when legacy, but doesn't matter as legacy isn't reading
1634 	 * this field.
1635 	 */
1636 	pfdev_info->minor_fp_hsi = min_t(u8, ETH_HSI_VER_MINOR,
1637 					 req->vfdev_info.eth_fp_hsi_minor);
1638 	pfdev_info->os_type = VFPF_ACQUIRE_OS_LINUX;
1639 	qed_mcp_get_mfw_ver(p_hwfn, p_ptt, &pfdev_info->mfw_ver, NULL);
1640 
1641 	pfdev_info->dev_type = p_hwfn->cdev->type;
1642 	pfdev_info->chip_rev = p_hwfn->cdev->chip_rev;
1643 
1644 	/* Fill resources available to VF; Make sure there are enough to
1645 	 * satisfy the VF's request.
1646 	 */
1647 	vfpf_status = qed_iov_vf_mbx_acquire_resc(p_hwfn, p_ptt, vf,
1648 						  &req->resc_request, resc);
1649 	if (vfpf_status != PFVF_STATUS_SUCCESS)
1650 		goto out;
1651 
1652 	/* Start the VF in FW */
1653 	rc = qed_sp_vf_start(p_hwfn, vf);
1654 	if (rc) {
1655 		DP_NOTICE(p_hwfn, "Failed to start VF[%02x]\n", vf->abs_vf_id);
1656 		vfpf_status = PFVF_STATUS_FAILURE;
1657 		goto out;
1658 	}
1659 
1660 	/* Fill agreed size of bulletin board in response */
1661 	resp->bulletin_size = vf->bulletin.size;
1662 	qed_iov_post_vf_bulletin(p_hwfn, vf->relative_vf_id, p_ptt);
1663 
1664 	DP_VERBOSE(p_hwfn,
1665 		   QED_MSG_IOV,
1666 		   "VF[%d] ACQUIRE_RESPONSE: pfdev_info- chip_num=0x%x, db_size=%d, idx_per_sb=%d, pf_cap=0x%llx\n"
1667 		   "resources- n_rxq-%d, n_txq-%d, n_sbs-%d, n_macs-%d, n_vlans-%d\n",
1668 		   vf->abs_vf_id,
1669 		   resp->pfdev_info.chip_num,
1670 		   resp->pfdev_info.db_size,
1671 		   resp->pfdev_info.indices_per_sb,
1672 		   resp->pfdev_info.capabilities,
1673 		   resc->num_rxqs,
1674 		   resc->num_txqs,
1675 		   resc->num_sbs,
1676 		   resc->num_mac_filters,
1677 		   resc->num_vlan_filters);
1678 	vf->state = VF_ACQUIRED;
1679 
1680 	/* Prepare Response */
1681 out:
1682 	qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_ACQUIRE,
1683 			     sizeof(struct pfvf_acquire_resp_tlv), vfpf_status);
1684 }
1685 
1686 static int __qed_iov_spoofchk_set(struct qed_hwfn *p_hwfn,
1687 				  struct qed_vf_info *p_vf, bool val)
1688 {
1689 	struct qed_sp_vport_update_params params;
1690 	int rc;
1691 
1692 	if (val == p_vf->spoof_chk) {
1693 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1694 			   "Spoofchk value[%d] is already configured\n", val);
1695 		return 0;
1696 	}
1697 
1698 	memset(&params, 0, sizeof(struct qed_sp_vport_update_params));
1699 	params.opaque_fid = p_vf->opaque_fid;
1700 	params.vport_id = p_vf->vport_id;
1701 	params.update_anti_spoofing_en_flg = 1;
1702 	params.anti_spoofing_en = val;
1703 
1704 	rc = qed_sp_vport_update(p_hwfn, &params, QED_SPQ_MODE_EBLOCK, NULL);
1705 	if (!rc) {
1706 		p_vf->spoof_chk = val;
1707 		p_vf->req_spoofchk_val = p_vf->spoof_chk;
1708 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1709 			   "Spoofchk val[%d] configured\n", val);
1710 	} else {
1711 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1712 			   "Spoofchk configuration[val:%d] failed for VF[%d]\n",
1713 			   val, p_vf->relative_vf_id);
1714 	}
1715 
1716 	return rc;
1717 }
1718 
1719 static int qed_iov_reconfigure_unicast_vlan(struct qed_hwfn *p_hwfn,
1720 					    struct qed_vf_info *p_vf)
1721 {
1722 	struct qed_filter_ucast filter;
1723 	int rc = 0;
1724 	int i;
1725 
1726 	memset(&filter, 0, sizeof(filter));
1727 	filter.is_rx_filter = 1;
1728 	filter.is_tx_filter = 1;
1729 	filter.vport_to_add_to = p_vf->vport_id;
1730 	filter.opcode = QED_FILTER_ADD;
1731 
1732 	/* Reconfigure vlans */
1733 	for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++) {
1734 		if (!p_vf->shadow_config.vlans[i].used)
1735 			continue;
1736 
1737 		filter.type = QED_FILTER_VLAN;
1738 		filter.vlan = p_vf->shadow_config.vlans[i].vid;
1739 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1740 			   "Reconfiguring VLAN [0x%04x] for VF [%04x]\n",
1741 			   filter.vlan, p_vf->relative_vf_id);
1742 		rc = qed_sp_eth_filter_ucast(p_hwfn, p_vf->opaque_fid,
1743 					     &filter, QED_SPQ_MODE_CB, NULL);
1744 		if (rc) {
1745 			DP_NOTICE(p_hwfn,
1746 				  "Failed to configure VLAN [%04x] to VF [%04x]\n",
1747 				  filter.vlan, p_vf->relative_vf_id);
1748 			break;
1749 		}
1750 	}
1751 
1752 	return rc;
1753 }
1754 
1755 static int
1756 qed_iov_reconfigure_unicast_shadow(struct qed_hwfn *p_hwfn,
1757 				   struct qed_vf_info *p_vf, u64 events)
1758 {
1759 	int rc = 0;
1760 
1761 	if ((events & BIT(VLAN_ADDR_FORCED)) &&
1762 	    !(p_vf->configured_features & (1 << VLAN_ADDR_FORCED)))
1763 		rc = qed_iov_reconfigure_unicast_vlan(p_hwfn, p_vf);
1764 
1765 	return rc;
1766 }
1767 
1768 static int qed_iov_configure_vport_forced(struct qed_hwfn *p_hwfn,
1769 					  struct qed_vf_info *p_vf, u64 events)
1770 {
1771 	int rc = 0;
1772 	struct qed_filter_ucast filter;
1773 
1774 	if (!p_vf->vport_instance)
1775 		return -EINVAL;
1776 
1777 	if ((events & BIT(MAC_ADDR_FORCED)) ||
1778 	    p_vf->p_vf_info.is_trusted_configured) {
1779 		/* Since there's no way [currently] of removing the MAC,
1780 		 * we can always assume this means we need to force it.
1781 		 */
1782 		memset(&filter, 0, sizeof(filter));
1783 		filter.type = QED_FILTER_MAC;
1784 		filter.opcode = QED_FILTER_REPLACE;
1785 		filter.is_rx_filter = 1;
1786 		filter.is_tx_filter = 1;
1787 		filter.vport_to_add_to = p_vf->vport_id;
1788 		ether_addr_copy(filter.mac, p_vf->bulletin.p_virt->mac);
1789 
1790 		rc = qed_sp_eth_filter_ucast(p_hwfn, p_vf->opaque_fid,
1791 					     &filter, QED_SPQ_MODE_CB, NULL);
1792 		if (rc) {
1793 			DP_NOTICE(p_hwfn,
1794 				  "PF failed to configure MAC for VF\n");
1795 			return rc;
1796 		}
1797 		if (p_vf->p_vf_info.is_trusted_configured)
1798 			p_vf->configured_features |=
1799 				BIT(VFPF_BULLETIN_MAC_ADDR);
1800 		else
1801 			p_vf->configured_features |=
1802 				BIT(MAC_ADDR_FORCED);
1803 	}
1804 
1805 	if (events & BIT(VLAN_ADDR_FORCED)) {
1806 		struct qed_sp_vport_update_params vport_update;
1807 		u8 removal;
1808 		int i;
1809 
1810 		memset(&filter, 0, sizeof(filter));
1811 		filter.type = QED_FILTER_VLAN;
1812 		filter.is_rx_filter = 1;
1813 		filter.is_tx_filter = 1;
1814 		filter.vport_to_add_to = p_vf->vport_id;
1815 		filter.vlan = p_vf->bulletin.p_virt->pvid;
1816 		filter.opcode = filter.vlan ? QED_FILTER_REPLACE :
1817 					      QED_FILTER_FLUSH;
1818 
1819 		/* Send the ramrod */
1820 		rc = qed_sp_eth_filter_ucast(p_hwfn, p_vf->opaque_fid,
1821 					     &filter, QED_SPQ_MODE_CB, NULL);
1822 		if (rc) {
1823 			DP_NOTICE(p_hwfn,
1824 				  "PF failed to configure VLAN for VF\n");
1825 			return rc;
1826 		}
1827 
1828 		/* Update the default-vlan & silent vlan stripping */
1829 		memset(&vport_update, 0, sizeof(vport_update));
1830 		vport_update.opaque_fid = p_vf->opaque_fid;
1831 		vport_update.vport_id = p_vf->vport_id;
1832 		vport_update.update_default_vlan_enable_flg = 1;
1833 		vport_update.default_vlan_enable_flg = filter.vlan ? 1 : 0;
1834 		vport_update.update_default_vlan_flg = 1;
1835 		vport_update.default_vlan = filter.vlan;
1836 
1837 		vport_update.update_inner_vlan_removal_flg = 1;
1838 		removal = filter.vlan ? 1
1839 				      : p_vf->shadow_config.inner_vlan_removal;
1840 		vport_update.inner_vlan_removal_flg = removal;
1841 		vport_update.silent_vlan_removal_flg = filter.vlan ? 1 : 0;
1842 		rc = qed_sp_vport_update(p_hwfn,
1843 					 &vport_update,
1844 					 QED_SPQ_MODE_EBLOCK, NULL);
1845 		if (rc) {
1846 			DP_NOTICE(p_hwfn,
1847 				  "PF failed to configure VF vport for vlan\n");
1848 			return rc;
1849 		}
1850 
1851 		/* Update all the Rx queues */
1852 		for (i = 0; i < QED_MAX_VF_CHAINS_PER_PF; i++) {
1853 			struct qed_vf_queue *p_queue = &p_vf->vf_queues[i];
1854 			struct qed_queue_cid *p_cid = NULL;
1855 
1856 			/* There can be at most 1 Rx queue on qzone. Find it */
1857 			p_cid = qed_iov_get_vf_rx_queue_cid(p_queue);
1858 			if (!p_cid)
1859 				continue;
1860 
1861 			rc = qed_sp_eth_rx_queues_update(p_hwfn,
1862 							 (void **)&p_cid,
1863 							 1, 0, 1,
1864 							 QED_SPQ_MODE_EBLOCK,
1865 							 NULL);
1866 			if (rc) {
1867 				DP_NOTICE(p_hwfn,
1868 					  "Failed to send Rx update fo queue[0x%04x]\n",
1869 					  p_cid->rel.queue_id);
1870 				return rc;
1871 			}
1872 		}
1873 
1874 		if (filter.vlan)
1875 			p_vf->configured_features |= 1 << VLAN_ADDR_FORCED;
1876 		else
1877 			p_vf->configured_features &= ~BIT(VLAN_ADDR_FORCED);
1878 	}
1879 
1880 	/* If forced features are terminated, we need to configure the shadow
1881 	 * configuration back again.
1882 	 */
1883 	if (events)
1884 		qed_iov_reconfigure_unicast_shadow(p_hwfn, p_vf, events);
1885 
1886 	return rc;
1887 }
1888 
1889 static void qed_iov_vf_mbx_start_vport(struct qed_hwfn *p_hwfn,
1890 				       struct qed_ptt *p_ptt,
1891 				       struct qed_vf_info *vf)
1892 {
1893 	struct qed_sp_vport_start_params params = { 0 };
1894 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
1895 	struct vfpf_vport_start_tlv *start;
1896 	u8 status = PFVF_STATUS_SUCCESS;
1897 	struct qed_vf_info *vf_info;
1898 	u64 *p_bitmap;
1899 	int sb_id;
1900 	int rc;
1901 
1902 	vf_info = qed_iov_get_vf_info(p_hwfn, (u16)vf->relative_vf_id, true);
1903 	if (!vf_info) {
1904 		DP_NOTICE(p_hwfn->cdev,
1905 			  "Failed to get VF info, invalid vfid [%d]\n",
1906 			  vf->relative_vf_id);
1907 		return;
1908 	}
1909 
1910 	vf->state = VF_ENABLED;
1911 	start = &mbx->req_virt->start_vport;
1912 
1913 	qed_iov_enable_vf_traffic(p_hwfn, p_ptt, vf);
1914 
1915 	/* Initialize Status block in CAU */
1916 	for (sb_id = 0; sb_id < vf->num_sbs; sb_id++) {
1917 		if (!start->sb_addr[sb_id]) {
1918 			DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1919 				   "VF[%d] did not fill the address of SB %d\n",
1920 				   vf->relative_vf_id, sb_id);
1921 			break;
1922 		}
1923 
1924 		qed_int_cau_conf_sb(p_hwfn, p_ptt,
1925 				    start->sb_addr[sb_id],
1926 				    vf->igu_sbs[sb_id], vf->abs_vf_id, 1);
1927 	}
1928 
1929 	vf->mtu = start->mtu;
1930 	vf->shadow_config.inner_vlan_removal = start->inner_vlan_removal;
1931 
1932 	/* Take into consideration configuration forced by hypervisor;
1933 	 * If none is configured, use the supplied VF values [for old
1934 	 * vfs that would still be fine, since they passed '0' as padding].
1935 	 */
1936 	p_bitmap = &vf_info->bulletin.p_virt->valid_bitmap;
1937 	if (!(*p_bitmap & BIT(VFPF_BULLETIN_UNTAGGED_DEFAULT_FORCED))) {
1938 		u8 vf_req = start->only_untagged;
1939 
1940 		vf_info->bulletin.p_virt->default_only_untagged = vf_req;
1941 		*p_bitmap |= 1 << VFPF_BULLETIN_UNTAGGED_DEFAULT;
1942 	}
1943 
1944 	params.tpa_mode = start->tpa_mode;
1945 	params.remove_inner_vlan = start->inner_vlan_removal;
1946 	params.tx_switching = true;
1947 
1948 	params.only_untagged = vf_info->bulletin.p_virt->default_only_untagged;
1949 	params.drop_ttl0 = false;
1950 	params.concrete_fid = vf->concrete_fid;
1951 	params.opaque_fid = vf->opaque_fid;
1952 	params.vport_id = vf->vport_id;
1953 	params.max_buffers_per_cqe = start->max_buffers_per_cqe;
1954 	params.mtu = vf->mtu;
1955 
1956 	/* Non trusted VFs should enable control frame filtering */
1957 	params.check_mac = !vf->p_vf_info.is_trusted_configured;
1958 
1959 	rc = qed_sp_eth_vport_start(p_hwfn, &params);
1960 	if (rc) {
1961 		DP_ERR(p_hwfn,
1962 		       "%s returned error %d\n", __func__, rc);
1963 		status = PFVF_STATUS_FAILURE;
1964 	} else {
1965 		vf->vport_instance++;
1966 
1967 		/* Force configuration if needed on the newly opened vport */
1968 		qed_iov_configure_vport_forced(p_hwfn, vf, *p_bitmap);
1969 
1970 		__qed_iov_spoofchk_set(p_hwfn, vf, vf->req_spoofchk_val);
1971 	}
1972 	qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_VPORT_START,
1973 			     sizeof(struct pfvf_def_resp_tlv), status);
1974 }
1975 
1976 static void qed_iov_vf_mbx_stop_vport(struct qed_hwfn *p_hwfn,
1977 				      struct qed_ptt *p_ptt,
1978 				      struct qed_vf_info *vf)
1979 {
1980 	u8 status = PFVF_STATUS_SUCCESS;
1981 	int rc;
1982 
1983 	vf->vport_instance--;
1984 	vf->spoof_chk = false;
1985 
1986 	if ((qed_iov_validate_active_rxq(p_hwfn, vf)) ||
1987 	    (qed_iov_validate_active_txq(p_hwfn, vf))) {
1988 		vf->b_malicious = true;
1989 		DP_NOTICE(p_hwfn,
1990 			  "VF [%02x] - considered malicious; Unable to stop RX/TX queues\n",
1991 			  vf->abs_vf_id);
1992 		status = PFVF_STATUS_MALICIOUS;
1993 		goto out;
1994 	}
1995 
1996 	rc = qed_sp_vport_stop(p_hwfn, vf->opaque_fid, vf->vport_id);
1997 	if (rc) {
1998 		DP_ERR(p_hwfn, "%s returned error %d\n",
1999 		       __func__, rc);
2000 		status = PFVF_STATUS_FAILURE;
2001 	}
2002 
2003 	/* Forget the configuration on the vport */
2004 	vf->configured_features = 0;
2005 	memset(&vf->shadow_config, 0, sizeof(vf->shadow_config));
2006 
2007 out:
2008 	qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_VPORT_TEARDOWN,
2009 			     sizeof(struct pfvf_def_resp_tlv), status);
2010 }
2011 
2012 static void qed_iov_vf_mbx_start_rxq_resp(struct qed_hwfn *p_hwfn,
2013 					  struct qed_ptt *p_ptt,
2014 					  struct qed_vf_info *vf,
2015 					  u8 status, bool b_legacy)
2016 {
2017 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
2018 	struct pfvf_start_queue_resp_tlv *p_tlv;
2019 	struct vfpf_start_rxq_tlv *req;
2020 	u16 length;
2021 
2022 	mbx->offset = (u8 *)mbx->reply_virt;
2023 
2024 	/* Taking a bigger struct instead of adding a TLV to list was a
2025 	 * mistake, but one which we're now stuck with, as some older
2026 	 * clients assume the size of the previous response.
2027 	 */
2028 	if (!b_legacy)
2029 		length = sizeof(*p_tlv);
2030 	else
2031 		length = sizeof(struct pfvf_def_resp_tlv);
2032 
2033 	p_tlv = qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_START_RXQ,
2034 			    length);
2035 	qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END,
2036 		    sizeof(struct channel_list_end_tlv));
2037 
2038 	/* Update the TLV with the response */
2039 	if ((status == PFVF_STATUS_SUCCESS) && !b_legacy) {
2040 		req = &mbx->req_virt->start_rxq;
2041 		p_tlv->offset = PXP_VF_BAR0_START_MSDM_ZONE_B +
2042 				offsetof(struct mstorm_vf_zone,
2043 					 non_trigger.eth_rx_queue_producers) +
2044 				sizeof(struct eth_rx_prod_data) * req->rx_qid;
2045 	}
2046 
2047 	qed_iov_send_response(p_hwfn, p_ptt, vf, length, status);
2048 }
2049 
2050 static u8 qed_iov_vf_mbx_qid(struct qed_hwfn *p_hwfn,
2051 			     struct qed_vf_info *p_vf, bool b_is_tx)
2052 {
2053 	struct qed_iov_vf_mbx *p_mbx = &p_vf->vf_mbx;
2054 	struct vfpf_qid_tlv *p_qid_tlv;
2055 
2056 	/* Search for the qid if the VF published its going to provide it */
2057 	if (!(p_vf->acquire.vfdev_info.capabilities &
2058 	      VFPF_ACQUIRE_CAP_QUEUE_QIDS)) {
2059 		if (b_is_tx)
2060 			return QED_IOV_LEGACY_QID_TX;
2061 		else
2062 			return QED_IOV_LEGACY_QID_RX;
2063 	}
2064 
2065 	p_qid_tlv = (struct vfpf_qid_tlv *)
2066 		    qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt,
2067 					     CHANNEL_TLV_QID);
2068 	if (!p_qid_tlv) {
2069 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2070 			   "VF[%2x]: Failed to provide qid\n",
2071 			   p_vf->relative_vf_id);
2072 
2073 		return QED_IOV_QID_INVALID;
2074 	}
2075 
2076 	if (p_qid_tlv->qid >= MAX_QUEUES_PER_QZONE) {
2077 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2078 			   "VF[%02x]: Provided qid out-of-bounds %02x\n",
2079 			   p_vf->relative_vf_id, p_qid_tlv->qid);
2080 		return QED_IOV_QID_INVALID;
2081 	}
2082 
2083 	return p_qid_tlv->qid;
2084 }
2085 
2086 static void qed_iov_vf_mbx_start_rxq(struct qed_hwfn *p_hwfn,
2087 				     struct qed_ptt *p_ptt,
2088 				     struct qed_vf_info *vf)
2089 {
2090 	struct qed_queue_start_common_params params;
2091 	struct qed_queue_cid_vf_params vf_params;
2092 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
2093 	u8 status = PFVF_STATUS_NO_RESOURCE;
2094 	u8 qid_usage_idx, vf_legacy = 0;
2095 	struct vfpf_start_rxq_tlv *req;
2096 	struct qed_vf_queue *p_queue;
2097 	struct qed_queue_cid *p_cid;
2098 	struct qed_sb_info sb_dummy;
2099 	int rc;
2100 
2101 	req = &mbx->req_virt->start_rxq;
2102 
2103 	if (!qed_iov_validate_rxq(p_hwfn, vf, req->rx_qid,
2104 				  QED_IOV_VALIDATE_Q_DISABLE) ||
2105 	    !qed_iov_validate_sb(p_hwfn, vf, req->hw_sb))
2106 		goto out;
2107 
2108 	qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, false);
2109 	if (qid_usage_idx == QED_IOV_QID_INVALID)
2110 		goto out;
2111 
2112 	p_queue = &vf->vf_queues[req->rx_qid];
2113 	if (p_queue->cids[qid_usage_idx].p_cid)
2114 		goto out;
2115 
2116 	vf_legacy = qed_vf_calculate_legacy(vf);
2117 
2118 	/* Acquire a new queue-cid */
2119 	memset(&params, 0, sizeof(params));
2120 	params.queue_id = p_queue->fw_rx_qid;
2121 	params.vport_id = vf->vport_id;
2122 	params.stats_id = vf->abs_vf_id + 0x10;
2123 	/* Since IGU index is passed via sb_info, construct a dummy one */
2124 	memset(&sb_dummy, 0, sizeof(sb_dummy));
2125 	sb_dummy.igu_sb_id = req->hw_sb;
2126 	params.p_sb = &sb_dummy;
2127 	params.sb_idx = req->sb_index;
2128 
2129 	memset(&vf_params, 0, sizeof(vf_params));
2130 	vf_params.vfid = vf->relative_vf_id;
2131 	vf_params.vf_qid = (u8)req->rx_qid;
2132 	vf_params.vf_legacy = vf_legacy;
2133 	vf_params.qid_usage_idx = qid_usage_idx;
2134 	p_cid = qed_eth_queue_to_cid(p_hwfn, vf->opaque_fid,
2135 				     &params, true, &vf_params);
2136 	if (!p_cid)
2137 		goto out;
2138 
2139 	/* Legacy VFs have their Producers in a different location, which they
2140 	 * calculate on their own and clean the producer prior to this.
2141 	 */
2142 	if (!(vf_legacy & QED_QCID_LEGACY_VF_RX_PROD))
2143 		qed_wr(p_hwfn, p_ptt, MSEM_REG_FAST_MEMORY +
2144 		       SEM_FAST_REG_INT_RAM +
2145 		       MSTORM_ETH_VF_PRODS_OFFSET(vf->abs_vf_id,
2146 						  req->rx_qid), 0);
2147 
2148 	rc = qed_eth_rxq_start_ramrod(p_hwfn, p_cid,
2149 				      req->bd_max_bytes,
2150 				      req->rxq_addr,
2151 				      req->cqe_pbl_addr, req->cqe_pbl_size);
2152 	if (rc) {
2153 		status = PFVF_STATUS_FAILURE;
2154 		qed_eth_queue_cid_release(p_hwfn, p_cid);
2155 	} else {
2156 		p_queue->cids[qid_usage_idx].p_cid = p_cid;
2157 		p_queue->cids[qid_usage_idx].b_is_tx = false;
2158 		status = PFVF_STATUS_SUCCESS;
2159 		vf->num_active_rxqs++;
2160 	}
2161 
2162 out:
2163 	qed_iov_vf_mbx_start_rxq_resp(p_hwfn, p_ptt, vf, status,
2164 				      !!(vf_legacy &
2165 					 QED_QCID_LEGACY_VF_RX_PROD));
2166 }
2167 
2168 static void
2169 qed_iov_pf_update_tun_response(struct pfvf_update_tunn_param_tlv *p_resp,
2170 			       struct qed_tunnel_info *p_tun,
2171 			       u16 tunn_feature_mask)
2172 {
2173 	p_resp->tunn_feature_mask = tunn_feature_mask;
2174 	p_resp->vxlan_mode = p_tun->vxlan.b_mode_enabled;
2175 	p_resp->l2geneve_mode = p_tun->l2_geneve.b_mode_enabled;
2176 	p_resp->ipgeneve_mode = p_tun->ip_geneve.b_mode_enabled;
2177 	p_resp->l2gre_mode = p_tun->l2_gre.b_mode_enabled;
2178 	p_resp->ipgre_mode = p_tun->l2_gre.b_mode_enabled;
2179 	p_resp->vxlan_clss = p_tun->vxlan.tun_cls;
2180 	p_resp->l2gre_clss = p_tun->l2_gre.tun_cls;
2181 	p_resp->ipgre_clss = p_tun->ip_gre.tun_cls;
2182 	p_resp->l2geneve_clss = p_tun->l2_geneve.tun_cls;
2183 	p_resp->ipgeneve_clss = p_tun->ip_geneve.tun_cls;
2184 	p_resp->geneve_udp_port = p_tun->geneve_port.port;
2185 	p_resp->vxlan_udp_port = p_tun->vxlan_port.port;
2186 }
2187 
2188 static void
2189 __qed_iov_pf_update_tun_param(struct vfpf_update_tunn_param_tlv *p_req,
2190 			      struct qed_tunn_update_type *p_tun,
2191 			      enum qed_tunn_mode mask, u8 tun_cls)
2192 {
2193 	if (p_req->tun_mode_update_mask & BIT(mask)) {
2194 		p_tun->b_update_mode = true;
2195 
2196 		if (p_req->tunn_mode & BIT(mask))
2197 			p_tun->b_mode_enabled = true;
2198 	}
2199 
2200 	p_tun->tun_cls = tun_cls;
2201 }
2202 
2203 static void
2204 qed_iov_pf_update_tun_param(struct vfpf_update_tunn_param_tlv *p_req,
2205 			    struct qed_tunn_update_type *p_tun,
2206 			    struct qed_tunn_update_udp_port *p_port,
2207 			    enum qed_tunn_mode mask,
2208 			    u8 tun_cls, u8 update_port, u16 port)
2209 {
2210 	if (update_port) {
2211 		p_port->b_update_port = true;
2212 		p_port->port = port;
2213 	}
2214 
2215 	__qed_iov_pf_update_tun_param(p_req, p_tun, mask, tun_cls);
2216 }
2217 
2218 static bool
2219 qed_iov_pf_validate_tunn_param(struct vfpf_update_tunn_param_tlv *p_req)
2220 {
2221 	bool b_update_requested = false;
2222 
2223 	if (p_req->tun_mode_update_mask || p_req->update_tun_cls ||
2224 	    p_req->update_geneve_port || p_req->update_vxlan_port)
2225 		b_update_requested = true;
2226 
2227 	return b_update_requested;
2228 }
2229 
2230 static void qed_pf_validate_tunn_mode(struct qed_tunn_update_type *tun, int *rc)
2231 {
2232 	if (tun->b_update_mode && !tun->b_mode_enabled) {
2233 		tun->b_update_mode = false;
2234 		*rc = -EINVAL;
2235 	}
2236 }
2237 
2238 static int
2239 qed_pf_validate_modify_tunn_config(struct qed_hwfn *p_hwfn,
2240 				   u16 *tun_features, bool *update,
2241 				   struct qed_tunnel_info *tun_src)
2242 {
2243 	struct qed_eth_cb_ops *ops = p_hwfn->cdev->protocol_ops.eth;
2244 	struct qed_tunnel_info *tun = &p_hwfn->cdev->tunnel;
2245 	u16 bultn_vxlan_port, bultn_geneve_port;
2246 	void *cookie = p_hwfn->cdev->ops_cookie;
2247 	int i, rc = 0;
2248 
2249 	*tun_features = p_hwfn->cdev->tunn_feature_mask;
2250 	bultn_vxlan_port = tun->vxlan_port.port;
2251 	bultn_geneve_port = tun->geneve_port.port;
2252 	qed_pf_validate_tunn_mode(&tun_src->vxlan, &rc);
2253 	qed_pf_validate_tunn_mode(&tun_src->l2_geneve, &rc);
2254 	qed_pf_validate_tunn_mode(&tun_src->ip_geneve, &rc);
2255 	qed_pf_validate_tunn_mode(&tun_src->l2_gre, &rc);
2256 	qed_pf_validate_tunn_mode(&tun_src->ip_gre, &rc);
2257 
2258 	if ((tun_src->b_update_rx_cls || tun_src->b_update_tx_cls) &&
2259 	    (tun_src->vxlan.tun_cls != QED_TUNN_CLSS_MAC_VLAN ||
2260 	     tun_src->l2_geneve.tun_cls != QED_TUNN_CLSS_MAC_VLAN ||
2261 	     tun_src->ip_geneve.tun_cls != QED_TUNN_CLSS_MAC_VLAN ||
2262 	     tun_src->l2_gre.tun_cls != QED_TUNN_CLSS_MAC_VLAN ||
2263 	     tun_src->ip_gre.tun_cls != QED_TUNN_CLSS_MAC_VLAN)) {
2264 		tun_src->b_update_rx_cls = false;
2265 		tun_src->b_update_tx_cls = false;
2266 		rc = -EINVAL;
2267 	}
2268 
2269 	if (tun_src->vxlan_port.b_update_port) {
2270 		if (tun_src->vxlan_port.port == tun->vxlan_port.port) {
2271 			tun_src->vxlan_port.b_update_port = false;
2272 		} else {
2273 			*update = true;
2274 			bultn_vxlan_port = tun_src->vxlan_port.port;
2275 		}
2276 	}
2277 
2278 	if (tun_src->geneve_port.b_update_port) {
2279 		if (tun_src->geneve_port.port == tun->geneve_port.port) {
2280 			tun_src->geneve_port.b_update_port = false;
2281 		} else {
2282 			*update = true;
2283 			bultn_geneve_port = tun_src->geneve_port.port;
2284 		}
2285 	}
2286 
2287 	qed_for_each_vf(p_hwfn, i) {
2288 		qed_iov_bulletin_set_udp_ports(p_hwfn, i, bultn_vxlan_port,
2289 					       bultn_geneve_port);
2290 	}
2291 
2292 	qed_schedule_iov(p_hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG);
2293 	ops->ports_update(cookie, bultn_vxlan_port, bultn_geneve_port);
2294 
2295 	return rc;
2296 }
2297 
2298 static void qed_iov_vf_mbx_update_tunn_param(struct qed_hwfn *p_hwfn,
2299 					     struct qed_ptt *p_ptt,
2300 					     struct qed_vf_info *p_vf)
2301 {
2302 	struct qed_tunnel_info *p_tun = &p_hwfn->cdev->tunnel;
2303 	struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx;
2304 	struct pfvf_update_tunn_param_tlv *p_resp;
2305 	struct vfpf_update_tunn_param_tlv *p_req;
2306 	u8 status = PFVF_STATUS_SUCCESS;
2307 	bool b_update_required = false;
2308 	struct qed_tunnel_info tunn;
2309 	u16 tunn_feature_mask = 0;
2310 	int i, rc = 0;
2311 
2312 	mbx->offset = (u8 *)mbx->reply_virt;
2313 
2314 	memset(&tunn, 0, sizeof(tunn));
2315 	p_req = &mbx->req_virt->tunn_param_update;
2316 
2317 	if (!qed_iov_pf_validate_tunn_param(p_req)) {
2318 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2319 			   "No tunnel update requested by VF\n");
2320 		status = PFVF_STATUS_FAILURE;
2321 		goto send_resp;
2322 	}
2323 
2324 	tunn.b_update_rx_cls = p_req->update_tun_cls;
2325 	tunn.b_update_tx_cls = p_req->update_tun_cls;
2326 
2327 	qed_iov_pf_update_tun_param(p_req, &tunn.vxlan, &tunn.vxlan_port,
2328 				    QED_MODE_VXLAN_TUNN, p_req->vxlan_clss,
2329 				    p_req->update_vxlan_port,
2330 				    p_req->vxlan_port);
2331 	qed_iov_pf_update_tun_param(p_req, &tunn.l2_geneve, &tunn.geneve_port,
2332 				    QED_MODE_L2GENEVE_TUNN,
2333 				    p_req->l2geneve_clss,
2334 				    p_req->update_geneve_port,
2335 				    p_req->geneve_port);
2336 	__qed_iov_pf_update_tun_param(p_req, &tunn.ip_geneve,
2337 				      QED_MODE_IPGENEVE_TUNN,
2338 				      p_req->ipgeneve_clss);
2339 	__qed_iov_pf_update_tun_param(p_req, &tunn.l2_gre,
2340 				      QED_MODE_L2GRE_TUNN, p_req->l2gre_clss);
2341 	__qed_iov_pf_update_tun_param(p_req, &tunn.ip_gre,
2342 				      QED_MODE_IPGRE_TUNN, p_req->ipgre_clss);
2343 
2344 	/* If PF modifies VF's req then it should
2345 	 * still return an error in case of partial configuration
2346 	 * or modified configuration as opposed to requested one.
2347 	 */
2348 	rc = qed_pf_validate_modify_tunn_config(p_hwfn, &tunn_feature_mask,
2349 						&b_update_required, &tunn);
2350 
2351 	if (rc)
2352 		status = PFVF_STATUS_FAILURE;
2353 
2354 	/* If QED client is willing to update anything ? */
2355 	if (b_update_required) {
2356 		u16 geneve_port;
2357 
2358 		rc = qed_sp_pf_update_tunn_cfg(p_hwfn, p_ptt, &tunn,
2359 					       QED_SPQ_MODE_EBLOCK, NULL);
2360 		if (rc)
2361 			status = PFVF_STATUS_FAILURE;
2362 
2363 		geneve_port = p_tun->geneve_port.port;
2364 		qed_for_each_vf(p_hwfn, i) {
2365 			qed_iov_bulletin_set_udp_ports(p_hwfn, i,
2366 						       p_tun->vxlan_port.port,
2367 						       geneve_port);
2368 		}
2369 	}
2370 
2371 send_resp:
2372 	p_resp = qed_add_tlv(p_hwfn, &mbx->offset,
2373 			     CHANNEL_TLV_UPDATE_TUNN_PARAM, sizeof(*p_resp));
2374 
2375 	qed_iov_pf_update_tun_response(p_resp, p_tun, tunn_feature_mask);
2376 	qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END,
2377 		    sizeof(struct channel_list_end_tlv));
2378 
2379 	qed_iov_send_response(p_hwfn, p_ptt, p_vf, sizeof(*p_resp), status);
2380 }
2381 
2382 static void qed_iov_vf_mbx_start_txq_resp(struct qed_hwfn *p_hwfn,
2383 					  struct qed_ptt *p_ptt,
2384 					  struct qed_vf_info *p_vf,
2385 					  u32 cid, u8 status)
2386 {
2387 	struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx;
2388 	struct pfvf_start_queue_resp_tlv *p_tlv;
2389 	bool b_legacy = false;
2390 	u16 length;
2391 
2392 	mbx->offset = (u8 *)mbx->reply_virt;
2393 
2394 	/* Taking a bigger struct instead of adding a TLV to list was a
2395 	 * mistake, but one which we're now stuck with, as some older
2396 	 * clients assume the size of the previous response.
2397 	 */
2398 	if (p_vf->acquire.vfdev_info.eth_fp_hsi_minor ==
2399 	    ETH_HSI_VER_NO_PKT_LEN_TUNN)
2400 		b_legacy = true;
2401 
2402 	if (!b_legacy)
2403 		length = sizeof(*p_tlv);
2404 	else
2405 		length = sizeof(struct pfvf_def_resp_tlv);
2406 
2407 	p_tlv = qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_START_TXQ,
2408 			    length);
2409 	qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END,
2410 		    sizeof(struct channel_list_end_tlv));
2411 
2412 	/* Update the TLV with the response */
2413 	if ((status == PFVF_STATUS_SUCCESS) && !b_legacy)
2414 		p_tlv->offset = qed_db_addr_vf(cid, DQ_DEMS_LEGACY);
2415 
2416 	qed_iov_send_response(p_hwfn, p_ptt, p_vf, length, status);
2417 }
2418 
2419 static void qed_iov_vf_mbx_start_txq(struct qed_hwfn *p_hwfn,
2420 				     struct qed_ptt *p_ptt,
2421 				     struct qed_vf_info *vf)
2422 {
2423 	struct qed_queue_start_common_params params;
2424 	struct qed_queue_cid_vf_params vf_params;
2425 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
2426 	u8 status = PFVF_STATUS_NO_RESOURCE;
2427 	struct vfpf_start_txq_tlv *req;
2428 	struct qed_vf_queue *p_queue;
2429 	struct qed_queue_cid *p_cid;
2430 	struct qed_sb_info sb_dummy;
2431 	u8 qid_usage_idx, vf_legacy;
2432 	u32 cid = 0;
2433 	int rc;
2434 	u16 pq;
2435 
2436 	memset(&params, 0, sizeof(params));
2437 	req = &mbx->req_virt->start_txq;
2438 
2439 	if (!qed_iov_validate_txq(p_hwfn, vf, req->tx_qid,
2440 				  QED_IOV_VALIDATE_Q_NA) ||
2441 	    !qed_iov_validate_sb(p_hwfn, vf, req->hw_sb))
2442 		goto out;
2443 
2444 	qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, true);
2445 	if (qid_usage_idx == QED_IOV_QID_INVALID)
2446 		goto out;
2447 
2448 	p_queue = &vf->vf_queues[req->tx_qid];
2449 	if (p_queue->cids[qid_usage_idx].p_cid)
2450 		goto out;
2451 
2452 	vf_legacy = qed_vf_calculate_legacy(vf);
2453 
2454 	/* Acquire a new queue-cid */
2455 	params.queue_id = p_queue->fw_tx_qid;
2456 	params.vport_id = vf->vport_id;
2457 	params.stats_id = vf->abs_vf_id + 0x10;
2458 
2459 	/* Since IGU index is passed via sb_info, construct a dummy one */
2460 	memset(&sb_dummy, 0, sizeof(sb_dummy));
2461 	sb_dummy.igu_sb_id = req->hw_sb;
2462 	params.p_sb = &sb_dummy;
2463 	params.sb_idx = req->sb_index;
2464 
2465 	memset(&vf_params, 0, sizeof(vf_params));
2466 	vf_params.vfid = vf->relative_vf_id;
2467 	vf_params.vf_qid = (u8)req->tx_qid;
2468 	vf_params.vf_legacy = vf_legacy;
2469 	vf_params.qid_usage_idx = qid_usage_idx;
2470 
2471 	p_cid = qed_eth_queue_to_cid(p_hwfn, vf->opaque_fid,
2472 				     &params, false, &vf_params);
2473 	if (!p_cid)
2474 		goto out;
2475 
2476 	pq = qed_get_cm_pq_idx_vf(p_hwfn, vf->relative_vf_id);
2477 	rc = qed_eth_txq_start_ramrod(p_hwfn, p_cid,
2478 				      req->pbl_addr, req->pbl_size, pq);
2479 	if (rc) {
2480 		status = PFVF_STATUS_FAILURE;
2481 		qed_eth_queue_cid_release(p_hwfn, p_cid);
2482 	} else {
2483 		status = PFVF_STATUS_SUCCESS;
2484 		p_queue->cids[qid_usage_idx].p_cid = p_cid;
2485 		p_queue->cids[qid_usage_idx].b_is_tx = true;
2486 		cid = p_cid->cid;
2487 	}
2488 
2489 out:
2490 	qed_iov_vf_mbx_start_txq_resp(p_hwfn, p_ptt, vf, cid, status);
2491 }
2492 
2493 static int qed_iov_vf_stop_rxqs(struct qed_hwfn *p_hwfn,
2494 				struct qed_vf_info *vf,
2495 				u16 rxq_id,
2496 				u8 qid_usage_idx, bool cqe_completion)
2497 {
2498 	struct qed_vf_queue *p_queue;
2499 	int rc = 0;
2500 
2501 	if (!qed_iov_validate_rxq(p_hwfn, vf, rxq_id, QED_IOV_VALIDATE_Q_NA)) {
2502 		DP_VERBOSE(p_hwfn,
2503 			   QED_MSG_IOV,
2504 			   "VF[%d] Tried Closing Rx 0x%04x.%02x which is inactive\n",
2505 			   vf->relative_vf_id, rxq_id, qid_usage_idx);
2506 		return -EINVAL;
2507 	}
2508 
2509 	p_queue = &vf->vf_queues[rxq_id];
2510 
2511 	/* We've validated the index and the existence of the active RXQ -
2512 	 * now we need to make sure that it's using the correct qid.
2513 	 */
2514 	if (!p_queue->cids[qid_usage_idx].p_cid ||
2515 	    p_queue->cids[qid_usage_idx].b_is_tx) {
2516 		struct qed_queue_cid *p_cid;
2517 
2518 		p_cid = qed_iov_get_vf_rx_queue_cid(p_queue);
2519 		DP_VERBOSE(p_hwfn,
2520 			   QED_MSG_IOV,
2521 			   "VF[%d] - Tried Closing Rx 0x%04x.%02x, but Rx is at %04x.%02x\n",
2522 			   vf->relative_vf_id,
2523 			   rxq_id, qid_usage_idx, rxq_id, p_cid->qid_usage_idx);
2524 		return -EINVAL;
2525 	}
2526 
2527 	/* Now that we know we have a valid Rx-queue - close it */
2528 	rc = qed_eth_rx_queue_stop(p_hwfn,
2529 				   p_queue->cids[qid_usage_idx].p_cid,
2530 				   false, cqe_completion);
2531 	if (rc)
2532 		return rc;
2533 
2534 	p_queue->cids[qid_usage_idx].p_cid = NULL;
2535 	vf->num_active_rxqs--;
2536 
2537 	return 0;
2538 }
2539 
2540 static int qed_iov_vf_stop_txqs(struct qed_hwfn *p_hwfn,
2541 				struct qed_vf_info *vf,
2542 				u16 txq_id, u8 qid_usage_idx)
2543 {
2544 	struct qed_vf_queue *p_queue;
2545 	int rc = 0;
2546 
2547 	if (!qed_iov_validate_txq(p_hwfn, vf, txq_id, QED_IOV_VALIDATE_Q_NA))
2548 		return -EINVAL;
2549 
2550 	p_queue = &vf->vf_queues[txq_id];
2551 	if (!p_queue->cids[qid_usage_idx].p_cid ||
2552 	    !p_queue->cids[qid_usage_idx].b_is_tx)
2553 		return -EINVAL;
2554 
2555 	rc = qed_eth_tx_queue_stop(p_hwfn, p_queue->cids[qid_usage_idx].p_cid);
2556 	if (rc)
2557 		return rc;
2558 
2559 	p_queue->cids[qid_usage_idx].p_cid = NULL;
2560 	return 0;
2561 }
2562 
2563 static void qed_iov_vf_mbx_stop_rxqs(struct qed_hwfn *p_hwfn,
2564 				     struct qed_ptt *p_ptt,
2565 				     struct qed_vf_info *vf)
2566 {
2567 	u16 length = sizeof(struct pfvf_def_resp_tlv);
2568 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
2569 	u8 status = PFVF_STATUS_FAILURE;
2570 	struct vfpf_stop_rxqs_tlv *req;
2571 	u8 qid_usage_idx;
2572 	int rc;
2573 
2574 	/* There has never been an official driver that used this interface
2575 	 * for stopping multiple queues, and it is now considered deprecated.
2576 	 * Validate this isn't used here.
2577 	 */
2578 	req = &mbx->req_virt->stop_rxqs;
2579 	if (req->num_rxqs != 1) {
2580 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2581 			   "Odd; VF[%d] tried stopping multiple Rx queues\n",
2582 			   vf->relative_vf_id);
2583 		status = PFVF_STATUS_NOT_SUPPORTED;
2584 		goto out;
2585 	}
2586 
2587 	/* Find which qid-index is associated with the queue */
2588 	qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, false);
2589 	if (qid_usage_idx == QED_IOV_QID_INVALID)
2590 		goto out;
2591 
2592 	rc = qed_iov_vf_stop_rxqs(p_hwfn, vf, req->rx_qid,
2593 				  qid_usage_idx, req->cqe_completion);
2594 	if (!rc)
2595 		status = PFVF_STATUS_SUCCESS;
2596 out:
2597 	qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_STOP_RXQS,
2598 			     length, status);
2599 }
2600 
2601 static void qed_iov_vf_mbx_stop_txqs(struct qed_hwfn *p_hwfn,
2602 				     struct qed_ptt *p_ptt,
2603 				     struct qed_vf_info *vf)
2604 {
2605 	u16 length = sizeof(struct pfvf_def_resp_tlv);
2606 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
2607 	u8 status = PFVF_STATUS_FAILURE;
2608 	struct vfpf_stop_txqs_tlv *req;
2609 	u8 qid_usage_idx;
2610 	int rc;
2611 
2612 	/* There has never been an official driver that used this interface
2613 	 * for stopping multiple queues, and it is now considered deprecated.
2614 	 * Validate this isn't used here.
2615 	 */
2616 	req = &mbx->req_virt->stop_txqs;
2617 	if (req->num_txqs != 1) {
2618 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2619 			   "Odd; VF[%d] tried stopping multiple Tx queues\n",
2620 			   vf->relative_vf_id);
2621 		status = PFVF_STATUS_NOT_SUPPORTED;
2622 		goto out;
2623 	}
2624 
2625 	/* Find which qid-index is associated with the queue */
2626 	qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, true);
2627 	if (qid_usage_idx == QED_IOV_QID_INVALID)
2628 		goto out;
2629 
2630 	rc = qed_iov_vf_stop_txqs(p_hwfn, vf, req->tx_qid, qid_usage_idx);
2631 	if (!rc)
2632 		status = PFVF_STATUS_SUCCESS;
2633 
2634 out:
2635 	qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_STOP_TXQS,
2636 			     length, status);
2637 }
2638 
2639 static void qed_iov_vf_mbx_update_rxqs(struct qed_hwfn *p_hwfn,
2640 				       struct qed_ptt *p_ptt,
2641 				       struct qed_vf_info *vf)
2642 {
2643 	struct qed_queue_cid *handlers[QED_MAX_VF_CHAINS_PER_PF];
2644 	u16 length = sizeof(struct pfvf_def_resp_tlv);
2645 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
2646 	struct vfpf_update_rxq_tlv *req;
2647 	u8 status = PFVF_STATUS_FAILURE;
2648 	u8 complete_event_flg;
2649 	u8 complete_cqe_flg;
2650 	u8 qid_usage_idx;
2651 	int rc;
2652 	u8 i;
2653 
2654 	req = &mbx->req_virt->update_rxq;
2655 	complete_cqe_flg = !!(req->flags & VFPF_RXQ_UPD_COMPLETE_CQE_FLAG);
2656 	complete_event_flg = !!(req->flags & VFPF_RXQ_UPD_COMPLETE_EVENT_FLAG);
2657 
2658 	qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, false);
2659 	if (qid_usage_idx == QED_IOV_QID_INVALID)
2660 		goto out;
2661 
2662 	/* There shouldn't exist a VF that uses queue-qids yet uses this
2663 	 * API with multiple Rx queues. Validate this.
2664 	 */
2665 	if ((vf->acquire.vfdev_info.capabilities &
2666 	     VFPF_ACQUIRE_CAP_QUEUE_QIDS) && req->num_rxqs != 1) {
2667 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2668 			   "VF[%d] supports QIDs but sends multiple queues\n",
2669 			   vf->relative_vf_id);
2670 		goto out;
2671 	}
2672 
2673 	/* Validate inputs - for the legacy case this is still true since
2674 	 * qid_usage_idx for each Rx queue would be LEGACY_QID_RX.
2675 	 */
2676 	for (i = req->rx_qid; i < req->rx_qid + req->num_rxqs; i++) {
2677 		if (!qed_iov_validate_rxq(p_hwfn, vf, i,
2678 					  QED_IOV_VALIDATE_Q_NA) ||
2679 		    !vf->vf_queues[i].cids[qid_usage_idx].p_cid ||
2680 		    vf->vf_queues[i].cids[qid_usage_idx].b_is_tx) {
2681 			DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2682 				   "VF[%d]: Incorrect Rxqs [%04x, %02x]\n",
2683 				   vf->relative_vf_id, req->rx_qid,
2684 				   req->num_rxqs);
2685 			goto out;
2686 		}
2687 	}
2688 
2689 	/* Prepare the handlers */
2690 	for (i = 0; i < req->num_rxqs; i++) {
2691 		u16 qid = req->rx_qid + i;
2692 
2693 		handlers[i] = vf->vf_queues[qid].cids[qid_usage_idx].p_cid;
2694 	}
2695 
2696 	rc = qed_sp_eth_rx_queues_update(p_hwfn, (void **)&handlers,
2697 					 req->num_rxqs,
2698 					 complete_cqe_flg,
2699 					 complete_event_flg,
2700 					 QED_SPQ_MODE_EBLOCK, NULL);
2701 	if (rc)
2702 		goto out;
2703 
2704 	status = PFVF_STATUS_SUCCESS;
2705 out:
2706 	qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_UPDATE_RXQ,
2707 			     length, status);
2708 }
2709 
2710 void *qed_iov_search_list_tlvs(struct qed_hwfn *p_hwfn,
2711 			       void *p_tlvs_list, u16 req_type)
2712 {
2713 	struct channel_tlv *p_tlv = (struct channel_tlv *)p_tlvs_list;
2714 	int len = 0;
2715 
2716 	do {
2717 		if (!p_tlv->length) {
2718 			DP_NOTICE(p_hwfn, "Zero length TLV found\n");
2719 			return NULL;
2720 		}
2721 
2722 		if (p_tlv->type == req_type) {
2723 			DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2724 				   "Extended tlv type %d, length %d found\n",
2725 				   p_tlv->type, p_tlv->length);
2726 			return p_tlv;
2727 		}
2728 
2729 		len += p_tlv->length;
2730 		p_tlv = (struct channel_tlv *)((u8 *)p_tlv + p_tlv->length);
2731 
2732 		if ((len + p_tlv->length) > TLV_BUFFER_SIZE) {
2733 			DP_NOTICE(p_hwfn, "TLVs has overrun the buffer size\n");
2734 			return NULL;
2735 		}
2736 	} while (p_tlv->type != CHANNEL_TLV_LIST_END);
2737 
2738 	return NULL;
2739 }
2740 
2741 static void
2742 qed_iov_vp_update_act_param(struct qed_hwfn *p_hwfn,
2743 			    struct qed_sp_vport_update_params *p_data,
2744 			    struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
2745 {
2746 	struct vfpf_vport_update_activate_tlv *p_act_tlv;
2747 	u16 tlv = CHANNEL_TLV_VPORT_UPDATE_ACTIVATE;
2748 
2749 	p_act_tlv = (struct vfpf_vport_update_activate_tlv *)
2750 		    qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv);
2751 	if (!p_act_tlv)
2752 		return;
2753 
2754 	p_data->update_vport_active_rx_flg = p_act_tlv->update_rx;
2755 	p_data->vport_active_rx_flg = p_act_tlv->active_rx;
2756 	p_data->update_vport_active_tx_flg = p_act_tlv->update_tx;
2757 	p_data->vport_active_tx_flg = p_act_tlv->active_tx;
2758 	*tlvs_mask |= 1 << QED_IOV_VP_UPDATE_ACTIVATE;
2759 }
2760 
2761 static void
2762 qed_iov_vp_update_vlan_param(struct qed_hwfn *p_hwfn,
2763 			     struct qed_sp_vport_update_params *p_data,
2764 			     struct qed_vf_info *p_vf,
2765 			     struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
2766 {
2767 	struct vfpf_vport_update_vlan_strip_tlv *p_vlan_tlv;
2768 	u16 tlv = CHANNEL_TLV_VPORT_UPDATE_VLAN_STRIP;
2769 
2770 	p_vlan_tlv = (struct vfpf_vport_update_vlan_strip_tlv *)
2771 		     qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv);
2772 	if (!p_vlan_tlv)
2773 		return;
2774 
2775 	p_vf->shadow_config.inner_vlan_removal = p_vlan_tlv->remove_vlan;
2776 
2777 	/* Ignore the VF request if we're forcing a vlan */
2778 	if (!(p_vf->configured_features & BIT(VLAN_ADDR_FORCED))) {
2779 		p_data->update_inner_vlan_removal_flg = 1;
2780 		p_data->inner_vlan_removal_flg = p_vlan_tlv->remove_vlan;
2781 	}
2782 
2783 	*tlvs_mask |= 1 << QED_IOV_VP_UPDATE_VLAN_STRIP;
2784 }
2785 
2786 static void
2787 qed_iov_vp_update_tx_switch(struct qed_hwfn *p_hwfn,
2788 			    struct qed_sp_vport_update_params *p_data,
2789 			    struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
2790 {
2791 	struct vfpf_vport_update_tx_switch_tlv *p_tx_switch_tlv;
2792 	u16 tlv = CHANNEL_TLV_VPORT_UPDATE_TX_SWITCH;
2793 
2794 	p_tx_switch_tlv = (struct vfpf_vport_update_tx_switch_tlv *)
2795 			  qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt,
2796 						   tlv);
2797 	if (!p_tx_switch_tlv)
2798 		return;
2799 
2800 	p_data->update_tx_switching_flg = 1;
2801 	p_data->tx_switching_flg = p_tx_switch_tlv->tx_switching;
2802 	*tlvs_mask |= 1 << QED_IOV_VP_UPDATE_TX_SWITCH;
2803 }
2804 
2805 static void
2806 qed_iov_vp_update_mcast_bin_param(struct qed_hwfn *p_hwfn,
2807 				  struct qed_sp_vport_update_params *p_data,
2808 				  struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
2809 {
2810 	struct vfpf_vport_update_mcast_bin_tlv *p_mcast_tlv;
2811 	u16 tlv = CHANNEL_TLV_VPORT_UPDATE_MCAST;
2812 
2813 	p_mcast_tlv = (struct vfpf_vport_update_mcast_bin_tlv *)
2814 	    qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv);
2815 	if (!p_mcast_tlv)
2816 		return;
2817 
2818 	p_data->update_approx_mcast_flg = 1;
2819 	memcpy(p_data->bins, p_mcast_tlv->bins,
2820 	       sizeof(u32) * ETH_MULTICAST_MAC_BINS_IN_REGS);
2821 	*tlvs_mask |= 1 << QED_IOV_VP_UPDATE_MCAST;
2822 }
2823 
2824 static void
2825 qed_iov_vp_update_accept_flag(struct qed_hwfn *p_hwfn,
2826 			      struct qed_sp_vport_update_params *p_data,
2827 			      struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
2828 {
2829 	struct qed_filter_accept_flags *p_flags = &p_data->accept_flags;
2830 	struct vfpf_vport_update_accept_param_tlv *p_accept_tlv;
2831 	u16 tlv = CHANNEL_TLV_VPORT_UPDATE_ACCEPT_PARAM;
2832 
2833 	p_accept_tlv = (struct vfpf_vport_update_accept_param_tlv *)
2834 	    qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv);
2835 	if (!p_accept_tlv)
2836 		return;
2837 
2838 	p_flags->update_rx_mode_config = p_accept_tlv->update_rx_mode;
2839 	p_flags->rx_accept_filter = p_accept_tlv->rx_accept_filter;
2840 	p_flags->update_tx_mode_config = p_accept_tlv->update_tx_mode;
2841 	p_flags->tx_accept_filter = p_accept_tlv->tx_accept_filter;
2842 	*tlvs_mask |= 1 << QED_IOV_VP_UPDATE_ACCEPT_PARAM;
2843 }
2844 
2845 static void
2846 qed_iov_vp_update_accept_any_vlan(struct qed_hwfn *p_hwfn,
2847 				  struct qed_sp_vport_update_params *p_data,
2848 				  struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
2849 {
2850 	struct vfpf_vport_update_accept_any_vlan_tlv *p_accept_any_vlan;
2851 	u16 tlv = CHANNEL_TLV_VPORT_UPDATE_ACCEPT_ANY_VLAN;
2852 
2853 	p_accept_any_vlan = (struct vfpf_vport_update_accept_any_vlan_tlv *)
2854 			    qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt,
2855 						     tlv);
2856 	if (!p_accept_any_vlan)
2857 		return;
2858 
2859 	p_data->accept_any_vlan = p_accept_any_vlan->accept_any_vlan;
2860 	p_data->update_accept_any_vlan_flg =
2861 		    p_accept_any_vlan->update_accept_any_vlan_flg;
2862 	*tlvs_mask |= 1 << QED_IOV_VP_UPDATE_ACCEPT_ANY_VLAN;
2863 }
2864 
2865 static void
2866 qed_iov_vp_update_rss_param(struct qed_hwfn *p_hwfn,
2867 			    struct qed_vf_info *vf,
2868 			    struct qed_sp_vport_update_params *p_data,
2869 			    struct qed_rss_params *p_rss,
2870 			    struct qed_iov_vf_mbx *p_mbx,
2871 			    u16 *tlvs_mask, u16 *tlvs_accepted)
2872 {
2873 	struct vfpf_vport_update_rss_tlv *p_rss_tlv;
2874 	u16 tlv = CHANNEL_TLV_VPORT_UPDATE_RSS;
2875 	bool b_reject = false;
2876 	u16 table_size;
2877 	u16 i, q_idx;
2878 
2879 	p_rss_tlv = (struct vfpf_vport_update_rss_tlv *)
2880 		    qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv);
2881 	if (!p_rss_tlv) {
2882 		p_data->rss_params = NULL;
2883 		return;
2884 	}
2885 
2886 	memset(p_rss, 0, sizeof(struct qed_rss_params));
2887 
2888 	p_rss->update_rss_config = !!(p_rss_tlv->update_rss_flags &
2889 				      VFPF_UPDATE_RSS_CONFIG_FLAG);
2890 	p_rss->update_rss_capabilities = !!(p_rss_tlv->update_rss_flags &
2891 					    VFPF_UPDATE_RSS_CAPS_FLAG);
2892 	p_rss->update_rss_ind_table = !!(p_rss_tlv->update_rss_flags &
2893 					 VFPF_UPDATE_RSS_IND_TABLE_FLAG);
2894 	p_rss->update_rss_key = !!(p_rss_tlv->update_rss_flags &
2895 				   VFPF_UPDATE_RSS_KEY_FLAG);
2896 
2897 	p_rss->rss_enable = p_rss_tlv->rss_enable;
2898 	p_rss->rss_eng_id = vf->relative_vf_id + 1;
2899 	p_rss->rss_caps = p_rss_tlv->rss_caps;
2900 	p_rss->rss_table_size_log = p_rss_tlv->rss_table_size_log;
2901 	memcpy(p_rss->rss_key, p_rss_tlv->rss_key, sizeof(p_rss->rss_key));
2902 
2903 	table_size = min_t(u16, ARRAY_SIZE(p_rss->rss_ind_table),
2904 			   (1 << p_rss_tlv->rss_table_size_log));
2905 
2906 	for (i = 0; i < table_size; i++) {
2907 		struct qed_queue_cid *p_cid;
2908 
2909 		q_idx = p_rss_tlv->rss_ind_table[i];
2910 		if (!qed_iov_validate_rxq(p_hwfn, vf, q_idx,
2911 					  QED_IOV_VALIDATE_Q_ENABLE)) {
2912 			DP_VERBOSE(p_hwfn,
2913 				   QED_MSG_IOV,
2914 				   "VF[%d]: Omitting RSS due to wrong queue %04x\n",
2915 				   vf->relative_vf_id, q_idx);
2916 			b_reject = true;
2917 			goto out;
2918 		}
2919 
2920 		p_cid = qed_iov_get_vf_rx_queue_cid(&vf->vf_queues[q_idx]);
2921 		p_rss->rss_ind_table[i] = p_cid;
2922 	}
2923 
2924 	p_data->rss_params = p_rss;
2925 out:
2926 	*tlvs_mask |= 1 << QED_IOV_VP_UPDATE_RSS;
2927 	if (!b_reject)
2928 		*tlvs_accepted |= 1 << QED_IOV_VP_UPDATE_RSS;
2929 }
2930 
2931 static void
2932 qed_iov_vp_update_sge_tpa_param(struct qed_hwfn *p_hwfn,
2933 				struct qed_vf_info *vf,
2934 				struct qed_sp_vport_update_params *p_data,
2935 				struct qed_sge_tpa_params *p_sge_tpa,
2936 				struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
2937 {
2938 	struct vfpf_vport_update_sge_tpa_tlv *p_sge_tpa_tlv;
2939 	u16 tlv = CHANNEL_TLV_VPORT_UPDATE_SGE_TPA;
2940 
2941 	p_sge_tpa_tlv = (struct vfpf_vport_update_sge_tpa_tlv *)
2942 	    qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv);
2943 
2944 	if (!p_sge_tpa_tlv) {
2945 		p_data->sge_tpa_params = NULL;
2946 		return;
2947 	}
2948 
2949 	memset(p_sge_tpa, 0, sizeof(struct qed_sge_tpa_params));
2950 
2951 	p_sge_tpa->update_tpa_en_flg =
2952 	    !!(p_sge_tpa_tlv->update_sge_tpa_flags & VFPF_UPDATE_TPA_EN_FLAG);
2953 	p_sge_tpa->update_tpa_param_flg =
2954 	    !!(p_sge_tpa_tlv->update_sge_tpa_flags &
2955 		VFPF_UPDATE_TPA_PARAM_FLAG);
2956 
2957 	p_sge_tpa->tpa_ipv4_en_flg =
2958 	    !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_IPV4_EN_FLAG);
2959 	p_sge_tpa->tpa_ipv6_en_flg =
2960 	    !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_IPV6_EN_FLAG);
2961 	p_sge_tpa->tpa_pkt_split_flg =
2962 	    !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_PKT_SPLIT_FLAG);
2963 	p_sge_tpa->tpa_hdr_data_split_flg =
2964 	    !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_HDR_DATA_SPLIT_FLAG);
2965 	p_sge_tpa->tpa_gro_consistent_flg =
2966 	    !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_GRO_CONSIST_FLAG);
2967 
2968 	p_sge_tpa->tpa_max_aggs_num = p_sge_tpa_tlv->tpa_max_aggs_num;
2969 	p_sge_tpa->tpa_max_size = p_sge_tpa_tlv->tpa_max_size;
2970 	p_sge_tpa->tpa_min_size_to_start = p_sge_tpa_tlv->tpa_min_size_to_start;
2971 	p_sge_tpa->tpa_min_size_to_cont = p_sge_tpa_tlv->tpa_min_size_to_cont;
2972 	p_sge_tpa->max_buffers_per_cqe = p_sge_tpa_tlv->max_buffers_per_cqe;
2973 
2974 	p_data->sge_tpa_params = p_sge_tpa;
2975 
2976 	*tlvs_mask |= 1 << QED_IOV_VP_UPDATE_SGE_TPA;
2977 }
2978 
2979 static int qed_iov_pre_update_vport(struct qed_hwfn *hwfn,
2980 				    u8 vfid,
2981 				    struct qed_sp_vport_update_params *params,
2982 				    u16 *tlvs)
2983 {
2984 	u8 mask = QED_ACCEPT_UCAST_UNMATCHED | QED_ACCEPT_MCAST_UNMATCHED;
2985 	struct qed_filter_accept_flags *flags = &params->accept_flags;
2986 	struct qed_public_vf_info *vf_info;
2987 	u16 tlv_mask;
2988 
2989 	tlv_mask = BIT(QED_IOV_VP_UPDATE_ACCEPT_PARAM) |
2990 		   BIT(QED_IOV_VP_UPDATE_ACCEPT_ANY_VLAN);
2991 
2992 	/* Untrusted VFs can't even be trusted to know that fact.
2993 	 * Simply indicate everything is configured fine, and trace
2994 	 * configuration 'behind their back'.
2995 	 */
2996 	if (!(*tlvs & tlv_mask))
2997 		return 0;
2998 
2999 	vf_info = qed_iov_get_public_vf_info(hwfn, vfid, true);
3000 
3001 	if (flags->update_rx_mode_config) {
3002 		vf_info->rx_accept_mode = flags->rx_accept_filter;
3003 		if (!vf_info->is_trusted_configured)
3004 			flags->rx_accept_filter &= ~mask;
3005 	}
3006 
3007 	if (flags->update_tx_mode_config) {
3008 		vf_info->tx_accept_mode = flags->tx_accept_filter;
3009 		if (!vf_info->is_trusted_configured)
3010 			flags->tx_accept_filter &= ~mask;
3011 	}
3012 
3013 	if (params->update_accept_any_vlan_flg) {
3014 		vf_info->accept_any_vlan = params->accept_any_vlan;
3015 
3016 		if (vf_info->forced_vlan && !vf_info->is_trusted_configured)
3017 			params->accept_any_vlan = false;
3018 	}
3019 
3020 	return 0;
3021 }
3022 
3023 static void qed_iov_vf_mbx_vport_update(struct qed_hwfn *p_hwfn,
3024 					struct qed_ptt *p_ptt,
3025 					struct qed_vf_info *vf)
3026 {
3027 	struct qed_rss_params *p_rss_params = NULL;
3028 	struct qed_sp_vport_update_params params;
3029 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
3030 	struct qed_sge_tpa_params sge_tpa_params;
3031 	u16 tlvs_mask = 0, tlvs_accepted = 0;
3032 	u8 status = PFVF_STATUS_SUCCESS;
3033 	u16 length;
3034 	int rc;
3035 
3036 	/* Valiate PF can send such a request */
3037 	if (!vf->vport_instance) {
3038 		DP_VERBOSE(p_hwfn,
3039 			   QED_MSG_IOV,
3040 			   "No VPORT instance available for VF[%d], failing vport update\n",
3041 			   vf->abs_vf_id);
3042 		status = PFVF_STATUS_FAILURE;
3043 		goto out;
3044 	}
3045 	p_rss_params = vzalloc(sizeof(*p_rss_params));
3046 	if (!p_rss_params) {
3047 		status = PFVF_STATUS_FAILURE;
3048 		goto out;
3049 	}
3050 
3051 	memset(&params, 0, sizeof(params));
3052 	params.opaque_fid = vf->opaque_fid;
3053 	params.vport_id = vf->vport_id;
3054 	params.rss_params = NULL;
3055 
3056 	/* Search for extended tlvs list and update values
3057 	 * from VF in struct qed_sp_vport_update_params.
3058 	 */
3059 	qed_iov_vp_update_act_param(p_hwfn, &params, mbx, &tlvs_mask);
3060 	qed_iov_vp_update_vlan_param(p_hwfn, &params, vf, mbx, &tlvs_mask);
3061 	qed_iov_vp_update_tx_switch(p_hwfn, &params, mbx, &tlvs_mask);
3062 	qed_iov_vp_update_mcast_bin_param(p_hwfn, &params, mbx, &tlvs_mask);
3063 	qed_iov_vp_update_accept_flag(p_hwfn, &params, mbx, &tlvs_mask);
3064 	qed_iov_vp_update_accept_any_vlan(p_hwfn, &params, mbx, &tlvs_mask);
3065 	qed_iov_vp_update_sge_tpa_param(p_hwfn, vf, &params,
3066 					&sge_tpa_params, mbx, &tlvs_mask);
3067 
3068 	tlvs_accepted = tlvs_mask;
3069 
3070 	/* Some of the extended TLVs need to be validated first; In that case,
3071 	 * they can update the mask without updating the accepted [so that
3072 	 * PF could communicate to VF it has rejected request].
3073 	 */
3074 	qed_iov_vp_update_rss_param(p_hwfn, vf, &params, p_rss_params,
3075 				    mbx, &tlvs_mask, &tlvs_accepted);
3076 
3077 	if (qed_iov_pre_update_vport(p_hwfn, vf->relative_vf_id,
3078 				     &params, &tlvs_accepted)) {
3079 		tlvs_accepted = 0;
3080 		status = PFVF_STATUS_NOT_SUPPORTED;
3081 		goto out;
3082 	}
3083 
3084 	if (!tlvs_accepted) {
3085 		if (tlvs_mask)
3086 			DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3087 				   "Upper-layer prevents VF vport configuration\n");
3088 		else
3089 			DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3090 				   "No feature tlvs found for vport update\n");
3091 		status = PFVF_STATUS_NOT_SUPPORTED;
3092 		goto out;
3093 	}
3094 
3095 	rc = qed_sp_vport_update(p_hwfn, &params, QED_SPQ_MODE_EBLOCK, NULL);
3096 
3097 	if (rc)
3098 		status = PFVF_STATUS_FAILURE;
3099 
3100 out:
3101 	vfree(p_rss_params);
3102 	length = qed_iov_prep_vp_update_resp_tlvs(p_hwfn, vf, mbx, status,
3103 						  tlvs_mask, tlvs_accepted);
3104 	qed_iov_send_response(p_hwfn, p_ptt, vf, length, status);
3105 }
3106 
3107 static int qed_iov_vf_update_vlan_shadow(struct qed_hwfn *p_hwfn,
3108 					 struct qed_vf_info *p_vf,
3109 					 struct qed_filter_ucast *p_params)
3110 {
3111 	int i;
3112 
3113 	/* First remove entries and then add new ones */
3114 	if (p_params->opcode == QED_FILTER_REMOVE) {
3115 		for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++)
3116 			if (p_vf->shadow_config.vlans[i].used &&
3117 			    p_vf->shadow_config.vlans[i].vid ==
3118 			    p_params->vlan) {
3119 				p_vf->shadow_config.vlans[i].used = false;
3120 				break;
3121 			}
3122 		if (i == QED_ETH_VF_NUM_VLAN_FILTERS + 1) {
3123 			DP_VERBOSE(p_hwfn,
3124 				   QED_MSG_IOV,
3125 				   "VF [%d] - Tries to remove a non-existing vlan\n",
3126 				   p_vf->relative_vf_id);
3127 			return -EINVAL;
3128 		}
3129 	} else if (p_params->opcode == QED_FILTER_REPLACE ||
3130 		   p_params->opcode == QED_FILTER_FLUSH) {
3131 		for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++)
3132 			p_vf->shadow_config.vlans[i].used = false;
3133 	}
3134 
3135 	/* In forced mode, we're willing to remove entries - but we don't add
3136 	 * new ones.
3137 	 */
3138 	if (p_vf->bulletin.p_virt->valid_bitmap & BIT(VLAN_ADDR_FORCED))
3139 		return 0;
3140 
3141 	if (p_params->opcode == QED_FILTER_ADD ||
3142 	    p_params->opcode == QED_FILTER_REPLACE) {
3143 		for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++) {
3144 			if (p_vf->shadow_config.vlans[i].used)
3145 				continue;
3146 
3147 			p_vf->shadow_config.vlans[i].used = true;
3148 			p_vf->shadow_config.vlans[i].vid = p_params->vlan;
3149 			break;
3150 		}
3151 
3152 		if (i == QED_ETH_VF_NUM_VLAN_FILTERS + 1) {
3153 			DP_VERBOSE(p_hwfn,
3154 				   QED_MSG_IOV,
3155 				   "VF [%d] - Tries to configure more than %d vlan filters\n",
3156 				   p_vf->relative_vf_id,
3157 				   QED_ETH_VF_NUM_VLAN_FILTERS + 1);
3158 			return -EINVAL;
3159 		}
3160 	}
3161 
3162 	return 0;
3163 }
3164 
3165 static int qed_iov_vf_update_mac_shadow(struct qed_hwfn *p_hwfn,
3166 					struct qed_vf_info *p_vf,
3167 					struct qed_filter_ucast *p_params)
3168 {
3169 	int i;
3170 
3171 	/* If we're in forced-mode, we don't allow any change */
3172 	if (p_vf->bulletin.p_virt->valid_bitmap & BIT(MAC_ADDR_FORCED))
3173 		return 0;
3174 
3175 	/* Don't keep track of shadow copy since we don't intend to restore. */
3176 	if (p_vf->p_vf_info.is_trusted_configured)
3177 		return 0;
3178 
3179 	/* First remove entries and then add new ones */
3180 	if (p_params->opcode == QED_FILTER_REMOVE) {
3181 		for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) {
3182 			if (ether_addr_equal(p_vf->shadow_config.macs[i],
3183 					     p_params->mac)) {
3184 				eth_zero_addr(p_vf->shadow_config.macs[i]);
3185 				break;
3186 			}
3187 		}
3188 
3189 		if (i == QED_ETH_VF_NUM_MAC_FILTERS) {
3190 			DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3191 				   "MAC isn't configured\n");
3192 			return -EINVAL;
3193 		}
3194 	} else if (p_params->opcode == QED_FILTER_REPLACE ||
3195 		   p_params->opcode == QED_FILTER_FLUSH) {
3196 		for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++)
3197 			eth_zero_addr(p_vf->shadow_config.macs[i]);
3198 	}
3199 
3200 	/* List the new MAC address */
3201 	if (p_params->opcode != QED_FILTER_ADD &&
3202 	    p_params->opcode != QED_FILTER_REPLACE)
3203 		return 0;
3204 
3205 	for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) {
3206 		if (is_zero_ether_addr(p_vf->shadow_config.macs[i])) {
3207 			ether_addr_copy(p_vf->shadow_config.macs[i],
3208 					p_params->mac);
3209 			DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3210 				   "Added MAC at %d entry in shadow\n", i);
3211 			break;
3212 		}
3213 	}
3214 
3215 	if (i == QED_ETH_VF_NUM_MAC_FILTERS) {
3216 		DP_VERBOSE(p_hwfn, QED_MSG_IOV, "No available place for MAC\n");
3217 		return -EINVAL;
3218 	}
3219 
3220 	return 0;
3221 }
3222 
3223 static int
3224 qed_iov_vf_update_unicast_shadow(struct qed_hwfn *p_hwfn,
3225 				 struct qed_vf_info *p_vf,
3226 				 struct qed_filter_ucast *p_params)
3227 {
3228 	int rc = 0;
3229 
3230 	if (p_params->type == QED_FILTER_MAC) {
3231 		rc = qed_iov_vf_update_mac_shadow(p_hwfn, p_vf, p_params);
3232 		if (rc)
3233 			return rc;
3234 	}
3235 
3236 	if (p_params->type == QED_FILTER_VLAN)
3237 		rc = qed_iov_vf_update_vlan_shadow(p_hwfn, p_vf, p_params);
3238 
3239 	return rc;
3240 }
3241 
3242 static int qed_iov_chk_ucast(struct qed_hwfn *hwfn,
3243 			     int vfid, struct qed_filter_ucast *params)
3244 {
3245 	struct qed_public_vf_info *vf;
3246 
3247 	vf = qed_iov_get_public_vf_info(hwfn, vfid, true);
3248 	if (!vf)
3249 		return -EINVAL;
3250 
3251 	/* No real decision to make; Store the configured MAC */
3252 	if (params->type == QED_FILTER_MAC ||
3253 	    params->type == QED_FILTER_MAC_VLAN) {
3254 		ether_addr_copy(vf->mac, params->mac);
3255 
3256 		if (vf->is_trusted_configured) {
3257 			qed_iov_bulletin_set_mac(hwfn, vf->mac, vfid);
3258 
3259 			/* Update and post bulleitin again */
3260 			qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG);
3261 		}
3262 	}
3263 
3264 	return 0;
3265 }
3266 
3267 static void qed_iov_vf_mbx_ucast_filter(struct qed_hwfn *p_hwfn,
3268 					struct qed_ptt *p_ptt,
3269 					struct qed_vf_info *vf)
3270 {
3271 	struct qed_bulletin_content *p_bulletin = vf->bulletin.p_virt;
3272 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
3273 	struct vfpf_ucast_filter_tlv *req;
3274 	u8 status = PFVF_STATUS_SUCCESS;
3275 	struct qed_filter_ucast params;
3276 	int rc;
3277 
3278 	/* Prepare the unicast filter params */
3279 	memset(&params, 0, sizeof(struct qed_filter_ucast));
3280 	req = &mbx->req_virt->ucast_filter;
3281 	params.opcode = (enum qed_filter_opcode)req->opcode;
3282 	params.type = (enum qed_filter_ucast_type)req->type;
3283 
3284 	params.is_rx_filter = 1;
3285 	params.is_tx_filter = 1;
3286 	params.vport_to_remove_from = vf->vport_id;
3287 	params.vport_to_add_to = vf->vport_id;
3288 	memcpy(params.mac, req->mac, ETH_ALEN);
3289 	params.vlan = req->vlan;
3290 
3291 	DP_VERBOSE(p_hwfn,
3292 		   QED_MSG_IOV,
3293 		   "VF[%d]: opcode 0x%02x type 0x%02x [%s %s] [vport 0x%02x] MAC %pM, vlan 0x%04x\n",
3294 		   vf->abs_vf_id, params.opcode, params.type,
3295 		   params.is_rx_filter ? "RX" : "",
3296 		   params.is_tx_filter ? "TX" : "",
3297 		   params.vport_to_add_to,
3298 		   params.mac, params.vlan);
3299 
3300 	if (!vf->vport_instance) {
3301 		DP_VERBOSE(p_hwfn,
3302 			   QED_MSG_IOV,
3303 			   "No VPORT instance available for VF[%d], failing ucast MAC configuration\n",
3304 			   vf->abs_vf_id);
3305 		status = PFVF_STATUS_FAILURE;
3306 		goto out;
3307 	}
3308 
3309 	/* Update shadow copy of the VF configuration */
3310 	if (qed_iov_vf_update_unicast_shadow(p_hwfn, vf, &params)) {
3311 		status = PFVF_STATUS_FAILURE;
3312 		goto out;
3313 	}
3314 
3315 	/* Determine if the unicast filtering is acceptible by PF */
3316 	if ((p_bulletin->valid_bitmap & BIT(VLAN_ADDR_FORCED)) &&
3317 	    (params.type == QED_FILTER_VLAN ||
3318 	     params.type == QED_FILTER_MAC_VLAN)) {
3319 		/* Once VLAN is forced or PVID is set, do not allow
3320 		 * to add/replace any further VLANs.
3321 		 */
3322 		if (params.opcode == QED_FILTER_ADD ||
3323 		    params.opcode == QED_FILTER_REPLACE)
3324 			status = PFVF_STATUS_FORCED;
3325 		goto out;
3326 	}
3327 
3328 	if ((p_bulletin->valid_bitmap & BIT(MAC_ADDR_FORCED)) &&
3329 	    (params.type == QED_FILTER_MAC ||
3330 	     params.type == QED_FILTER_MAC_VLAN)) {
3331 		if (!ether_addr_equal(p_bulletin->mac, params.mac) ||
3332 		    (params.opcode != QED_FILTER_ADD &&
3333 		     params.opcode != QED_FILTER_REPLACE))
3334 			status = PFVF_STATUS_FORCED;
3335 		goto out;
3336 	}
3337 
3338 	rc = qed_iov_chk_ucast(p_hwfn, vf->relative_vf_id, &params);
3339 	if (rc) {
3340 		status = PFVF_STATUS_FAILURE;
3341 		goto out;
3342 	}
3343 
3344 	rc = qed_sp_eth_filter_ucast(p_hwfn, vf->opaque_fid, &params,
3345 				     QED_SPQ_MODE_CB, NULL);
3346 	if (rc)
3347 		status = PFVF_STATUS_FAILURE;
3348 
3349 out:
3350 	qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_UCAST_FILTER,
3351 			     sizeof(struct pfvf_def_resp_tlv), status);
3352 }
3353 
3354 static void qed_iov_vf_mbx_int_cleanup(struct qed_hwfn *p_hwfn,
3355 				       struct qed_ptt *p_ptt,
3356 				       struct qed_vf_info *vf)
3357 {
3358 	int i;
3359 
3360 	/* Reset the SBs */
3361 	for (i = 0; i < vf->num_sbs; i++)
3362 		qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt,
3363 						vf->igu_sbs[i],
3364 						vf->opaque_fid, false);
3365 
3366 	qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_INT_CLEANUP,
3367 			     sizeof(struct pfvf_def_resp_tlv),
3368 			     PFVF_STATUS_SUCCESS);
3369 }
3370 
3371 static void qed_iov_vf_mbx_close(struct qed_hwfn *p_hwfn,
3372 				 struct qed_ptt *p_ptt, struct qed_vf_info *vf)
3373 {
3374 	u16 length = sizeof(struct pfvf_def_resp_tlv);
3375 	u8 status = PFVF_STATUS_SUCCESS;
3376 
3377 	/* Disable Interrupts for VF */
3378 	qed_iov_vf_igu_set_int(p_hwfn, p_ptt, vf, 0);
3379 
3380 	/* Reset Permission table */
3381 	qed_iov_config_perm_table(p_hwfn, p_ptt, vf, 0);
3382 
3383 	qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_CLOSE,
3384 			     length, status);
3385 }
3386 
3387 static void qed_iov_vf_mbx_release(struct qed_hwfn *p_hwfn,
3388 				   struct qed_ptt *p_ptt,
3389 				   struct qed_vf_info *p_vf)
3390 {
3391 	u16 length = sizeof(struct pfvf_def_resp_tlv);
3392 	u8 status = PFVF_STATUS_SUCCESS;
3393 	int rc = 0;
3394 
3395 	qed_iov_vf_cleanup(p_hwfn, p_vf);
3396 
3397 	if (p_vf->state != VF_STOPPED && p_vf->state != VF_FREE) {
3398 		/* Stopping the VF */
3399 		rc = qed_sp_vf_stop(p_hwfn, p_vf->concrete_fid,
3400 				    p_vf->opaque_fid);
3401 
3402 		if (rc) {
3403 			DP_ERR(p_hwfn, "qed_sp_vf_stop returned error %d\n",
3404 			       rc);
3405 			status = PFVF_STATUS_FAILURE;
3406 		}
3407 
3408 		p_vf->state = VF_STOPPED;
3409 	}
3410 
3411 	qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf, CHANNEL_TLV_RELEASE,
3412 			     length, status);
3413 }
3414 
3415 static void qed_iov_vf_pf_get_coalesce(struct qed_hwfn *p_hwfn,
3416 				       struct qed_ptt *p_ptt,
3417 				       struct qed_vf_info *p_vf)
3418 {
3419 	struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx;
3420 	struct pfvf_read_coal_resp_tlv *p_resp;
3421 	struct vfpf_read_coal_req_tlv *req;
3422 	u8 status = PFVF_STATUS_FAILURE;
3423 	struct qed_vf_queue *p_queue;
3424 	struct qed_queue_cid *p_cid;
3425 	u16 coal = 0, qid, i;
3426 	bool b_is_rx;
3427 	int rc = 0;
3428 
3429 	mbx->offset = (u8 *)mbx->reply_virt;
3430 	req = &mbx->req_virt->read_coal_req;
3431 
3432 	qid = req->qid;
3433 	b_is_rx = req->is_rx ? true : false;
3434 
3435 	if (b_is_rx) {
3436 		if (!qed_iov_validate_rxq(p_hwfn, p_vf, qid,
3437 					  QED_IOV_VALIDATE_Q_ENABLE)) {
3438 			DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3439 				   "VF[%d]: Invalid Rx queue_id = %d\n",
3440 				   p_vf->abs_vf_id, qid);
3441 			goto send_resp;
3442 		}
3443 
3444 		p_cid = qed_iov_get_vf_rx_queue_cid(&p_vf->vf_queues[qid]);
3445 		rc = qed_get_rxq_coalesce(p_hwfn, p_ptt, p_cid, &coal);
3446 		if (rc)
3447 			goto send_resp;
3448 	} else {
3449 		if (!qed_iov_validate_txq(p_hwfn, p_vf, qid,
3450 					  QED_IOV_VALIDATE_Q_ENABLE)) {
3451 			DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3452 				   "VF[%d]: Invalid Tx queue_id = %d\n",
3453 				   p_vf->abs_vf_id, qid);
3454 			goto send_resp;
3455 		}
3456 		for (i = 0; i < MAX_QUEUES_PER_QZONE; i++) {
3457 			p_queue = &p_vf->vf_queues[qid];
3458 			if ((!p_queue->cids[i].p_cid) ||
3459 			    (!p_queue->cids[i].b_is_tx))
3460 				continue;
3461 
3462 			p_cid = p_queue->cids[i].p_cid;
3463 
3464 			rc = qed_get_txq_coalesce(p_hwfn, p_ptt, p_cid, &coal);
3465 			if (rc)
3466 				goto send_resp;
3467 			break;
3468 		}
3469 	}
3470 
3471 	status = PFVF_STATUS_SUCCESS;
3472 
3473 send_resp:
3474 	p_resp = qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_COALESCE_READ,
3475 			     sizeof(*p_resp));
3476 	p_resp->coal = coal;
3477 
3478 	qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END,
3479 		    sizeof(struct channel_list_end_tlv));
3480 
3481 	qed_iov_send_response(p_hwfn, p_ptt, p_vf, sizeof(*p_resp), status);
3482 }
3483 
3484 static void qed_iov_vf_pf_set_coalesce(struct qed_hwfn *p_hwfn,
3485 				       struct qed_ptt *p_ptt,
3486 				       struct qed_vf_info *vf)
3487 {
3488 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
3489 	struct vfpf_update_coalesce *req;
3490 	u8 status = PFVF_STATUS_FAILURE;
3491 	struct qed_queue_cid *p_cid;
3492 	u16 rx_coal, tx_coal;
3493 	int rc = 0, i;
3494 	u16 qid;
3495 
3496 	req = &mbx->req_virt->update_coalesce;
3497 
3498 	rx_coal = req->rx_coal;
3499 	tx_coal = req->tx_coal;
3500 	qid = req->qid;
3501 
3502 	if (!qed_iov_validate_rxq(p_hwfn, vf, qid,
3503 				  QED_IOV_VALIDATE_Q_ENABLE) && rx_coal) {
3504 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3505 			   "VF[%d]: Invalid Rx queue_id = %d\n",
3506 			   vf->abs_vf_id, qid);
3507 		goto out;
3508 	}
3509 
3510 	if (!qed_iov_validate_txq(p_hwfn, vf, qid,
3511 				  QED_IOV_VALIDATE_Q_ENABLE) && tx_coal) {
3512 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3513 			   "VF[%d]: Invalid Tx queue_id = %d\n",
3514 			   vf->abs_vf_id, qid);
3515 		goto out;
3516 	}
3517 
3518 	DP_VERBOSE(p_hwfn,
3519 		   QED_MSG_IOV,
3520 		   "VF[%d]: Setting coalesce for VF rx_coal = %d, tx_coal = %d at queue = %d\n",
3521 		   vf->abs_vf_id, rx_coal, tx_coal, qid);
3522 
3523 	if (rx_coal) {
3524 		p_cid = qed_iov_get_vf_rx_queue_cid(&vf->vf_queues[qid]);
3525 
3526 		rc = qed_set_rxq_coalesce(p_hwfn, p_ptt, rx_coal, p_cid);
3527 		if (rc) {
3528 			DP_VERBOSE(p_hwfn,
3529 				   QED_MSG_IOV,
3530 				   "VF[%d]: Unable to set rx queue = %d coalesce\n",
3531 				   vf->abs_vf_id, vf->vf_queues[qid].fw_rx_qid);
3532 			goto out;
3533 		}
3534 		vf->rx_coal = rx_coal;
3535 	}
3536 
3537 	if (tx_coal) {
3538 		struct qed_vf_queue *p_queue = &vf->vf_queues[qid];
3539 
3540 		for (i = 0; i < MAX_QUEUES_PER_QZONE; i++) {
3541 			if (!p_queue->cids[i].p_cid)
3542 				continue;
3543 
3544 			if (!p_queue->cids[i].b_is_tx)
3545 				continue;
3546 
3547 			rc = qed_set_txq_coalesce(p_hwfn, p_ptt, tx_coal,
3548 						  p_queue->cids[i].p_cid);
3549 
3550 			if (rc) {
3551 				DP_VERBOSE(p_hwfn,
3552 					   QED_MSG_IOV,
3553 					   "VF[%d]: Unable to set tx queue coalesce\n",
3554 					   vf->abs_vf_id);
3555 				goto out;
3556 			}
3557 		}
3558 		vf->tx_coal = tx_coal;
3559 	}
3560 
3561 	status = PFVF_STATUS_SUCCESS;
3562 out:
3563 	qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_COALESCE_UPDATE,
3564 			     sizeof(struct pfvf_def_resp_tlv), status);
3565 }
3566 
3567 static int
3568 qed_iov_vf_flr_poll_dorq(struct qed_hwfn *p_hwfn,
3569 			 struct qed_vf_info *p_vf, struct qed_ptt *p_ptt)
3570 {
3571 	int cnt;
3572 	u32 val;
3573 
3574 	qed_fid_pretend(p_hwfn, p_ptt, (u16)p_vf->concrete_fid);
3575 
3576 	for (cnt = 0; cnt < 50; cnt++) {
3577 		val = qed_rd(p_hwfn, p_ptt, DORQ_REG_VF_USAGE_CNT);
3578 		if (!val)
3579 			break;
3580 		msleep(20);
3581 	}
3582 	qed_fid_pretend(p_hwfn, p_ptt, (u16)p_hwfn->hw_info.concrete_fid);
3583 
3584 	if (cnt == 50) {
3585 		DP_ERR(p_hwfn,
3586 		       "VF[%d] - dorq failed to cleanup [usage 0x%08x]\n",
3587 		       p_vf->abs_vf_id, val);
3588 		return -EBUSY;
3589 	}
3590 
3591 	return 0;
3592 }
3593 
3594 #define MAX_NUM_EXT_VOQS        (MAX_NUM_PORTS * NUM_OF_TCS)
3595 
3596 static int
3597 qed_iov_vf_flr_poll_pbf(struct qed_hwfn *p_hwfn,
3598 			struct qed_vf_info *p_vf, struct qed_ptt *p_ptt)
3599 {
3600 	u32 prod, cons[MAX_NUM_EXT_VOQS], distance[MAX_NUM_EXT_VOQS], tmp;
3601 	u8 max_phys_tcs_per_port = p_hwfn->qm_info.max_phys_tcs_per_port;
3602 	u8 max_ports_per_engine = p_hwfn->cdev->num_ports_in_engine;
3603 	u32 prod_voq0_addr = PBF_REG_NUM_BLOCKS_ALLOCATED_PROD_VOQ0;
3604 	u32 cons_voq0_addr = PBF_REG_NUM_BLOCKS_ALLOCATED_CONS_VOQ0;
3605 	u8 port_id, tc, tc_id = 0, voq = 0;
3606 	int cnt;
3607 
3608 	memset(cons, 0, MAX_NUM_EXT_VOQS * sizeof(u32));
3609 	memset(distance, 0, MAX_NUM_EXT_VOQS * sizeof(u32));
3610 
3611 	/* Read initial consumers & producers */
3612 	for (port_id = 0; port_id < max_ports_per_engine; port_id++) {
3613 		/* "max_phys_tcs_per_port" active TCs + 1 pure LB TC */
3614 		for (tc = 0; tc < max_phys_tcs_per_port + 1; tc++) {
3615 			tc_id = (tc < max_phys_tcs_per_port) ? tc : PURE_LB_TC;
3616 			voq = VOQ(port_id, tc_id, max_phys_tcs_per_port);
3617 			cons[voq] = qed_rd(p_hwfn, p_ptt,
3618 					   cons_voq0_addr + voq * 0x40);
3619 			prod = qed_rd(p_hwfn, p_ptt,
3620 				      prod_voq0_addr + voq * 0x40);
3621 			distance[voq] = prod - cons[voq];
3622 		}
3623 	}
3624 
3625 	/* Wait for consumers to pass the producers */
3626 	port_id = 0;
3627 	tc = 0;
3628 	for (cnt = 0; cnt < 50; cnt++) {
3629 		for (; port_id < max_ports_per_engine; port_id++) {
3630 			/* "max_phys_tcs_per_port" active TCs + 1 pure LB TC */
3631 			for (; tc < max_phys_tcs_per_port + 1; tc++) {
3632 				tc_id = (tc < max_phys_tcs_per_port) ?
3633 				    tc : PURE_LB_TC;
3634 				voq = VOQ(port_id,
3635 					  tc_id, max_phys_tcs_per_port);
3636 				tmp = qed_rd(p_hwfn, p_ptt,
3637 					     cons_voq0_addr + voq * 0x40);
3638 				if (distance[voq] > tmp - cons[voq])
3639 					break;
3640 			}
3641 
3642 			if (tc == max_phys_tcs_per_port + 1)
3643 				tc = 0;
3644 			else
3645 				break;
3646 		}
3647 
3648 		if (port_id == max_ports_per_engine)
3649 			break;
3650 
3651 		msleep(20);
3652 	}
3653 
3654 	if (cnt == 50) {
3655 		DP_ERR(p_hwfn, "VF[%d]: pbf poll failed on VOQ%d\n",
3656 		       p_vf->abs_vf_id, (int)voq);
3657 
3658 		DP_ERR(p_hwfn, "VOQ %d has port_id as %d and tc_id as %d]\n",
3659 		       (int)voq, (int)port_id, (int)tc_id);
3660 
3661 		return -EBUSY;
3662 	}
3663 
3664 	return 0;
3665 }
3666 
3667 static int qed_iov_vf_flr_poll(struct qed_hwfn *p_hwfn,
3668 			       struct qed_vf_info *p_vf, struct qed_ptt *p_ptt)
3669 {
3670 	int rc;
3671 
3672 	rc = qed_iov_vf_flr_poll_dorq(p_hwfn, p_vf, p_ptt);
3673 	if (rc)
3674 		return rc;
3675 
3676 	rc = qed_iov_vf_flr_poll_pbf(p_hwfn, p_vf, p_ptt);
3677 	if (rc)
3678 		return rc;
3679 
3680 	return 0;
3681 }
3682 
3683 static int
3684 qed_iov_execute_vf_flr_cleanup(struct qed_hwfn *p_hwfn,
3685 			       struct qed_ptt *p_ptt,
3686 			       u16 rel_vf_id, u32 *ack_vfs)
3687 {
3688 	struct qed_vf_info *p_vf;
3689 	int rc = 0;
3690 
3691 	p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, false);
3692 	if (!p_vf)
3693 		return 0;
3694 
3695 	if (p_hwfn->pf_iov_info->pending_flr[rel_vf_id / 64] &
3696 	    (1ULL << (rel_vf_id % 64))) {
3697 		u16 vfid = p_vf->abs_vf_id;
3698 
3699 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3700 			   "VF[%d] - Handling FLR\n", vfid);
3701 
3702 		qed_iov_vf_cleanup(p_hwfn, p_vf);
3703 
3704 		/* If VF isn't active, no need for anything but SW */
3705 		if (!p_vf->b_init)
3706 			goto cleanup;
3707 
3708 		rc = qed_iov_vf_flr_poll(p_hwfn, p_vf, p_ptt);
3709 		if (rc)
3710 			goto cleanup;
3711 
3712 		rc = qed_final_cleanup(p_hwfn, p_ptt, vfid, true);
3713 		if (rc) {
3714 			DP_ERR(p_hwfn, "Failed handle FLR of VF[%d]\n", vfid);
3715 			return rc;
3716 		}
3717 
3718 		/* Workaround to make VF-PF channel ready, as FW
3719 		 * doesn't do that as a part of FLR.
3720 		 */
3721 		REG_WR(p_hwfn,
3722 		       GET_GTT_REG_ADDR(GTT_BAR0_MAP_REG_USDM_RAM,
3723 					USTORM_VF_PF_CHANNEL_READY, vfid), 1);
3724 
3725 		/* VF_STOPPED has to be set only after final cleanup
3726 		 * but prior to re-enabling the VF.
3727 		 */
3728 		p_vf->state = VF_STOPPED;
3729 
3730 		rc = qed_iov_enable_vf_access(p_hwfn, p_ptt, p_vf);
3731 		if (rc) {
3732 			DP_ERR(p_hwfn, "Failed to re-enable VF[%d] acces\n",
3733 			       vfid);
3734 			return rc;
3735 		}
3736 cleanup:
3737 		/* Mark VF for ack and clean pending state */
3738 		if (p_vf->state == VF_RESET)
3739 			p_vf->state = VF_STOPPED;
3740 		ack_vfs[vfid / 32] |= BIT((vfid % 32));
3741 		p_hwfn->pf_iov_info->pending_flr[rel_vf_id / 64] &=
3742 		    ~(1ULL << (rel_vf_id % 64));
3743 		p_vf->vf_mbx.b_pending_msg = false;
3744 	}
3745 
3746 	return rc;
3747 }
3748 
3749 static int
3750 qed_iov_vf_flr_cleanup(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
3751 {
3752 	u32 ack_vfs[VF_MAX_STATIC / 32];
3753 	int rc = 0;
3754 	u16 i;
3755 
3756 	memset(ack_vfs, 0, sizeof(u32) * (VF_MAX_STATIC / 32));
3757 
3758 	/* Since BRB <-> PRS interface can't be tested as part of the flr
3759 	 * polling due to HW limitations, simply sleep a bit. And since
3760 	 * there's no need to wait per-vf, do it before looping.
3761 	 */
3762 	msleep(100);
3763 
3764 	for (i = 0; i < p_hwfn->cdev->p_iov_info->total_vfs; i++)
3765 		qed_iov_execute_vf_flr_cleanup(p_hwfn, p_ptt, i, ack_vfs);
3766 
3767 	rc = qed_mcp_ack_vf_flr(p_hwfn, p_ptt, ack_vfs);
3768 	return rc;
3769 }
3770 
3771 bool qed_iov_mark_vf_flr(struct qed_hwfn *p_hwfn, u32 *p_disabled_vfs)
3772 {
3773 	bool found = false;
3774 	u16 i;
3775 
3776 	DP_VERBOSE(p_hwfn, QED_MSG_IOV, "Marking FLR-ed VFs\n");
3777 	for (i = 0; i < (VF_MAX_STATIC / 32); i++)
3778 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3779 			   "[%08x,...,%08x]: %08x\n",
3780 			   i * 32, (i + 1) * 32 - 1, p_disabled_vfs[i]);
3781 
3782 	if (!p_hwfn->cdev->p_iov_info) {
3783 		DP_NOTICE(p_hwfn, "VF flr but no IOV\n");
3784 		return false;
3785 	}
3786 
3787 	/* Mark VFs */
3788 	for (i = 0; i < p_hwfn->cdev->p_iov_info->total_vfs; i++) {
3789 		struct qed_vf_info *p_vf;
3790 		u8 vfid;
3791 
3792 		p_vf = qed_iov_get_vf_info(p_hwfn, i, false);
3793 		if (!p_vf)
3794 			continue;
3795 
3796 		vfid = p_vf->abs_vf_id;
3797 		if (BIT((vfid % 32)) & p_disabled_vfs[vfid / 32]) {
3798 			u64 *p_flr = p_hwfn->pf_iov_info->pending_flr;
3799 			u16 rel_vf_id = p_vf->relative_vf_id;
3800 
3801 			DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3802 				   "VF[%d] [rel %d] got FLR-ed\n",
3803 				   vfid, rel_vf_id);
3804 
3805 			p_vf->state = VF_RESET;
3806 
3807 			/* No need to lock here, since pending_flr should
3808 			 * only change here and before ACKing MFw. Since
3809 			 * MFW will not trigger an additional attention for
3810 			 * VF flr until ACKs, we're safe.
3811 			 */
3812 			p_flr[rel_vf_id / 64] |= 1ULL << (rel_vf_id % 64);
3813 			found = true;
3814 		}
3815 	}
3816 
3817 	return found;
3818 }
3819 
3820 static int qed_iov_get_link(struct qed_hwfn *p_hwfn,
3821 			    u16 vfid,
3822 			    struct qed_mcp_link_params *p_params,
3823 			    struct qed_mcp_link_state *p_link,
3824 			    struct qed_mcp_link_capabilities *p_caps)
3825 {
3826 	struct qed_vf_info *p_vf = qed_iov_get_vf_info(p_hwfn,
3827 						       vfid,
3828 						       false);
3829 	struct qed_bulletin_content *p_bulletin;
3830 
3831 	if (!p_vf)
3832 		return -EINVAL;
3833 
3834 	p_bulletin = p_vf->bulletin.p_virt;
3835 
3836 	if (p_params)
3837 		__qed_vf_get_link_params(p_hwfn, p_params, p_bulletin);
3838 	if (p_link)
3839 		__qed_vf_get_link_state(p_hwfn, p_link, p_bulletin);
3840 	if (p_caps)
3841 		__qed_vf_get_link_caps(p_hwfn, p_caps, p_bulletin);
3842 	return 0;
3843 }
3844 
3845 static int
3846 qed_iov_vf_pf_bulletin_update_mac(struct qed_hwfn *p_hwfn,
3847 				  struct qed_ptt *p_ptt,
3848 				  struct qed_vf_info *p_vf)
3849 {
3850 	struct qed_bulletin_content *p_bulletin = p_vf->bulletin.p_virt;
3851 	struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx;
3852 	struct vfpf_bulletin_update_mac_tlv *p_req;
3853 	u8 status = PFVF_STATUS_SUCCESS;
3854 	int rc = 0;
3855 
3856 	if (!p_vf->p_vf_info.is_trusted_configured) {
3857 		DP_VERBOSE(p_hwfn,
3858 			   QED_MSG_IOV,
3859 			   "Blocking bulletin update request from untrusted VF[%d]\n",
3860 			   p_vf->abs_vf_id);
3861 		status = PFVF_STATUS_NOT_SUPPORTED;
3862 		rc = -EINVAL;
3863 		goto send_status;
3864 	}
3865 
3866 	p_req = &mbx->req_virt->bulletin_update_mac;
3867 	ether_addr_copy(p_bulletin->mac, p_req->mac);
3868 	DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3869 		   "Updated bulletin of VF[%d] with requested MAC[%pM]\n",
3870 		   p_vf->abs_vf_id, p_req->mac);
3871 
3872 send_status:
3873 	qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf,
3874 			     CHANNEL_TLV_BULLETIN_UPDATE_MAC,
3875 			     sizeof(struct pfvf_def_resp_tlv), status);
3876 	return rc;
3877 }
3878 
3879 static void qed_iov_process_mbx_req(struct qed_hwfn *p_hwfn,
3880 				    struct qed_ptt *p_ptt, int vfid)
3881 {
3882 	struct qed_iov_vf_mbx *mbx;
3883 	struct qed_vf_info *p_vf;
3884 
3885 	p_vf = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true);
3886 	if (!p_vf)
3887 		return;
3888 
3889 	mbx = &p_vf->vf_mbx;
3890 
3891 	/* qed_iov_process_mbx_request */
3892 	if (!mbx->b_pending_msg) {
3893 		DP_NOTICE(p_hwfn,
3894 			  "VF[%02x]: Trying to process mailbox message when none is pending\n",
3895 			  p_vf->abs_vf_id);
3896 		return;
3897 	}
3898 	mbx->b_pending_msg = false;
3899 
3900 	mbx->first_tlv = mbx->req_virt->first_tlv;
3901 
3902 	DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3903 		   "VF[%02x]: Processing mailbox message [type %04x]\n",
3904 		   p_vf->abs_vf_id, mbx->first_tlv.tl.type);
3905 
3906 	/* check if tlv type is known */
3907 	if (qed_iov_tlv_supported(mbx->first_tlv.tl.type) &&
3908 	    !p_vf->b_malicious) {
3909 		switch (mbx->first_tlv.tl.type) {
3910 		case CHANNEL_TLV_ACQUIRE:
3911 			qed_iov_vf_mbx_acquire(p_hwfn, p_ptt, p_vf);
3912 			break;
3913 		case CHANNEL_TLV_VPORT_START:
3914 			qed_iov_vf_mbx_start_vport(p_hwfn, p_ptt, p_vf);
3915 			break;
3916 		case CHANNEL_TLV_VPORT_TEARDOWN:
3917 			qed_iov_vf_mbx_stop_vport(p_hwfn, p_ptt, p_vf);
3918 			break;
3919 		case CHANNEL_TLV_START_RXQ:
3920 			qed_iov_vf_mbx_start_rxq(p_hwfn, p_ptt, p_vf);
3921 			break;
3922 		case CHANNEL_TLV_START_TXQ:
3923 			qed_iov_vf_mbx_start_txq(p_hwfn, p_ptt, p_vf);
3924 			break;
3925 		case CHANNEL_TLV_STOP_RXQS:
3926 			qed_iov_vf_mbx_stop_rxqs(p_hwfn, p_ptt, p_vf);
3927 			break;
3928 		case CHANNEL_TLV_STOP_TXQS:
3929 			qed_iov_vf_mbx_stop_txqs(p_hwfn, p_ptt, p_vf);
3930 			break;
3931 		case CHANNEL_TLV_UPDATE_RXQ:
3932 			qed_iov_vf_mbx_update_rxqs(p_hwfn, p_ptt, p_vf);
3933 			break;
3934 		case CHANNEL_TLV_VPORT_UPDATE:
3935 			qed_iov_vf_mbx_vport_update(p_hwfn, p_ptt, p_vf);
3936 			break;
3937 		case CHANNEL_TLV_UCAST_FILTER:
3938 			qed_iov_vf_mbx_ucast_filter(p_hwfn, p_ptt, p_vf);
3939 			break;
3940 		case CHANNEL_TLV_CLOSE:
3941 			qed_iov_vf_mbx_close(p_hwfn, p_ptt, p_vf);
3942 			break;
3943 		case CHANNEL_TLV_INT_CLEANUP:
3944 			qed_iov_vf_mbx_int_cleanup(p_hwfn, p_ptt, p_vf);
3945 			break;
3946 		case CHANNEL_TLV_RELEASE:
3947 			qed_iov_vf_mbx_release(p_hwfn, p_ptt, p_vf);
3948 			break;
3949 		case CHANNEL_TLV_UPDATE_TUNN_PARAM:
3950 			qed_iov_vf_mbx_update_tunn_param(p_hwfn, p_ptt, p_vf);
3951 			break;
3952 		case CHANNEL_TLV_COALESCE_UPDATE:
3953 			qed_iov_vf_pf_set_coalesce(p_hwfn, p_ptt, p_vf);
3954 			break;
3955 		case CHANNEL_TLV_COALESCE_READ:
3956 			qed_iov_vf_pf_get_coalesce(p_hwfn, p_ptt, p_vf);
3957 			break;
3958 		case CHANNEL_TLV_BULLETIN_UPDATE_MAC:
3959 			qed_iov_vf_pf_bulletin_update_mac(p_hwfn, p_ptt, p_vf);
3960 			break;
3961 		}
3962 	} else if (qed_iov_tlv_supported(mbx->first_tlv.tl.type)) {
3963 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3964 			   "VF [%02x] - considered malicious; Ignoring TLV [%04x]\n",
3965 			   p_vf->abs_vf_id, mbx->first_tlv.tl.type);
3966 
3967 		qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf,
3968 				     mbx->first_tlv.tl.type,
3969 				     sizeof(struct pfvf_def_resp_tlv),
3970 				     PFVF_STATUS_MALICIOUS);
3971 	} else {
3972 		/* unknown TLV - this may belong to a VF driver from the future
3973 		 * - a version written after this PF driver was written, which
3974 		 * supports features unknown as of yet. Too bad since we don't
3975 		 * support them. Or this may be because someone wrote a crappy
3976 		 * VF driver and is sending garbage over the channel.
3977 		 */
3978 		DP_NOTICE(p_hwfn,
3979 			  "VF[%02x]: unknown TLV. type %04x length %04x padding %08x reply address %llu\n",
3980 			  p_vf->abs_vf_id,
3981 			  mbx->first_tlv.tl.type,
3982 			  mbx->first_tlv.tl.length,
3983 			  mbx->first_tlv.padding, mbx->first_tlv.reply_address);
3984 
3985 		/* Try replying in case reply address matches the acquisition's
3986 		 * posted address.
3987 		 */
3988 		if (p_vf->acquire.first_tlv.reply_address &&
3989 		    (mbx->first_tlv.reply_address ==
3990 		     p_vf->acquire.first_tlv.reply_address)) {
3991 			qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf,
3992 					     mbx->first_tlv.tl.type,
3993 					     sizeof(struct pfvf_def_resp_tlv),
3994 					     PFVF_STATUS_NOT_SUPPORTED);
3995 		} else {
3996 			DP_VERBOSE(p_hwfn,
3997 				   QED_MSG_IOV,
3998 				   "VF[%02x]: Can't respond to TLV - no valid reply address\n",
3999 				   p_vf->abs_vf_id);
4000 		}
4001 	}
4002 }
4003 
4004 static void qed_iov_pf_get_pending_events(struct qed_hwfn *p_hwfn, u64 *events)
4005 {
4006 	int i;
4007 
4008 	memset(events, 0, sizeof(u64) * QED_VF_ARRAY_LENGTH);
4009 
4010 	qed_for_each_vf(p_hwfn, i) {
4011 		struct qed_vf_info *p_vf;
4012 
4013 		p_vf = &p_hwfn->pf_iov_info->vfs_array[i];
4014 		if (p_vf->vf_mbx.b_pending_msg)
4015 			events[i / 64] |= 1ULL << (i % 64);
4016 	}
4017 }
4018 
4019 static struct qed_vf_info *qed_sriov_get_vf_from_absid(struct qed_hwfn *p_hwfn,
4020 						       u16 abs_vfid)
4021 {
4022 	u8 min = (u8)p_hwfn->cdev->p_iov_info->first_vf_in_pf;
4023 
4024 	if (!_qed_iov_pf_sanity_check(p_hwfn, (int)abs_vfid - min, false)) {
4025 		DP_VERBOSE(p_hwfn,
4026 			   QED_MSG_IOV,
4027 			   "Got indication for VF [abs 0x%08x] that cannot be handled by PF\n",
4028 			   abs_vfid);
4029 		return NULL;
4030 	}
4031 
4032 	return &p_hwfn->pf_iov_info->vfs_array[(u8)abs_vfid - min];
4033 }
4034 
4035 static int qed_sriov_vfpf_msg(struct qed_hwfn *p_hwfn,
4036 			      u16 abs_vfid, struct regpair *vf_msg)
4037 {
4038 	struct qed_vf_info *p_vf = qed_sriov_get_vf_from_absid(p_hwfn,
4039 			   abs_vfid);
4040 
4041 	if (!p_vf)
4042 		return 0;
4043 
4044 	/* List the physical address of the request so that handler
4045 	 * could later on copy the message from it.
4046 	 */
4047 	p_vf->vf_mbx.pending_req = HILO_64(vf_msg->hi, vf_msg->lo);
4048 
4049 	/* Mark the event and schedule the workqueue */
4050 	p_vf->vf_mbx.b_pending_msg = true;
4051 	qed_schedule_iov(p_hwfn, QED_IOV_WQ_MSG_FLAG);
4052 
4053 	return 0;
4054 }
4055 
4056 void qed_sriov_vfpf_malicious(struct qed_hwfn *p_hwfn,
4057 			      struct fw_err_data *p_data)
4058 {
4059 	struct qed_vf_info *p_vf;
4060 
4061 	p_vf = qed_sriov_get_vf_from_absid(p_hwfn, qed_vf_from_entity_id
4062 					   (p_data->entity_id));
4063 	if (!p_vf)
4064 		return;
4065 
4066 	if (!p_vf->b_malicious) {
4067 		DP_NOTICE(p_hwfn,
4068 			  "VF [%d] - Malicious behavior [%02x]\n",
4069 			  p_vf->abs_vf_id, p_data->err_id);
4070 
4071 		p_vf->b_malicious = true;
4072 	} else {
4073 		DP_INFO(p_hwfn,
4074 			"VF [%d] - Malicious behavior [%02x]\n",
4075 			p_vf->abs_vf_id, p_data->err_id);
4076 	}
4077 }
4078 
4079 int qed_sriov_eqe_event(struct qed_hwfn *p_hwfn, u8 opcode, __le16 echo,
4080 			union event_ring_data *data, u8 fw_return_code)
4081 {
4082 	switch (opcode) {
4083 	case COMMON_EVENT_VF_PF_CHANNEL:
4084 		return qed_sriov_vfpf_msg(p_hwfn, le16_to_cpu(echo),
4085 					  &data->vf_pf_channel.msg_addr);
4086 	default:
4087 		DP_INFO(p_hwfn->cdev, "Unknown sriov eqe event 0x%02x\n",
4088 			opcode);
4089 		return -EINVAL;
4090 	}
4091 }
4092 
4093 u16 qed_iov_get_next_active_vf(struct qed_hwfn *p_hwfn, u16 rel_vf_id)
4094 {
4095 	struct qed_hw_sriov_info *p_iov = p_hwfn->cdev->p_iov_info;
4096 	u16 i;
4097 
4098 	if (!p_iov)
4099 		goto out;
4100 
4101 	for (i = rel_vf_id; i < p_iov->total_vfs; i++)
4102 		if (qed_iov_is_valid_vfid(p_hwfn, rel_vf_id, true, false))
4103 			return i;
4104 
4105 out:
4106 	return MAX_NUM_VFS;
4107 }
4108 
4109 static int qed_iov_copy_vf_msg(struct qed_hwfn *p_hwfn, struct qed_ptt *ptt,
4110 			       int vfid)
4111 {
4112 	struct qed_dmae_params params;
4113 	struct qed_vf_info *vf_info;
4114 
4115 	vf_info = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true);
4116 	if (!vf_info)
4117 		return -EINVAL;
4118 
4119 	memset(&params, 0, sizeof(params));
4120 	SET_FIELD(params.flags, QED_DMAE_PARAMS_SRC_VF_VALID, 0x1);
4121 	SET_FIELD(params.flags, QED_DMAE_PARAMS_COMPLETION_DST, 0x1);
4122 	params.src_vfid = vf_info->abs_vf_id;
4123 
4124 	if (qed_dmae_host2host(p_hwfn, ptt,
4125 			       vf_info->vf_mbx.pending_req,
4126 			       vf_info->vf_mbx.req_phys,
4127 			       sizeof(union vfpf_tlvs) / 4, &params)) {
4128 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
4129 			   "Failed to copy message from VF 0x%02x\n", vfid);
4130 
4131 		return -EIO;
4132 	}
4133 
4134 	return 0;
4135 }
4136 
4137 static void qed_iov_bulletin_set_forced_mac(struct qed_hwfn *p_hwfn,
4138 					    u8 *mac, int vfid)
4139 {
4140 	struct qed_vf_info *vf_info;
4141 	u64 feature;
4142 
4143 	vf_info = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true);
4144 	if (!vf_info) {
4145 		DP_NOTICE(p_hwfn->cdev,
4146 			  "Can not set forced MAC, invalid vfid [%d]\n", vfid);
4147 		return;
4148 	}
4149 
4150 	if (vf_info->b_malicious) {
4151 		DP_NOTICE(p_hwfn->cdev,
4152 			  "Can't set forced MAC to malicious VF [%d]\n", vfid);
4153 		return;
4154 	}
4155 
4156 	if (vf_info->p_vf_info.is_trusted_configured) {
4157 		feature = BIT(VFPF_BULLETIN_MAC_ADDR);
4158 		/* Trust mode will disable Forced MAC */
4159 		vf_info->bulletin.p_virt->valid_bitmap &=
4160 			~BIT(MAC_ADDR_FORCED);
4161 	} else {
4162 		feature = BIT(MAC_ADDR_FORCED);
4163 		/* Forced MAC will disable MAC_ADDR */
4164 		vf_info->bulletin.p_virt->valid_bitmap &=
4165 			~BIT(VFPF_BULLETIN_MAC_ADDR);
4166 	}
4167 
4168 	memcpy(vf_info->bulletin.p_virt->mac, mac, ETH_ALEN);
4169 
4170 	vf_info->bulletin.p_virt->valid_bitmap |= feature;
4171 
4172 	qed_iov_configure_vport_forced(p_hwfn, vf_info, feature);
4173 }
4174 
4175 static int qed_iov_bulletin_set_mac(struct qed_hwfn *p_hwfn, u8 *mac, int vfid)
4176 {
4177 	struct qed_vf_info *vf_info;
4178 	u64 feature;
4179 
4180 	vf_info = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true);
4181 	if (!vf_info) {
4182 		DP_NOTICE(p_hwfn->cdev, "Can not set MAC, invalid vfid [%d]\n",
4183 			  vfid);
4184 		return -EINVAL;
4185 	}
4186 
4187 	if (vf_info->b_malicious) {
4188 		DP_NOTICE(p_hwfn->cdev, "Can't set MAC to malicious VF [%d]\n",
4189 			  vfid);
4190 		return -EINVAL;
4191 	}
4192 
4193 	if (vf_info->bulletin.p_virt->valid_bitmap & BIT(MAC_ADDR_FORCED)) {
4194 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
4195 			   "Can not set MAC, Forced MAC is configured\n");
4196 		return -EINVAL;
4197 	}
4198 
4199 	feature = BIT(VFPF_BULLETIN_MAC_ADDR);
4200 	ether_addr_copy(vf_info->bulletin.p_virt->mac, mac);
4201 
4202 	vf_info->bulletin.p_virt->valid_bitmap |= feature;
4203 
4204 	if (vf_info->p_vf_info.is_trusted_configured)
4205 		qed_iov_configure_vport_forced(p_hwfn, vf_info, feature);
4206 
4207 	return 0;
4208 }
4209 
4210 static void qed_iov_bulletin_set_forced_vlan(struct qed_hwfn *p_hwfn,
4211 					     u16 pvid, int vfid)
4212 {
4213 	struct qed_vf_info *vf_info;
4214 	u64 feature;
4215 
4216 	vf_info = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true);
4217 	if (!vf_info) {
4218 		DP_NOTICE(p_hwfn->cdev,
4219 			  "Can not set forced MAC, invalid vfid [%d]\n", vfid);
4220 		return;
4221 	}
4222 
4223 	if (vf_info->b_malicious) {
4224 		DP_NOTICE(p_hwfn->cdev,
4225 			  "Can't set forced vlan to malicious VF [%d]\n", vfid);
4226 		return;
4227 	}
4228 
4229 	feature = 1 << VLAN_ADDR_FORCED;
4230 	vf_info->bulletin.p_virt->pvid = pvid;
4231 	if (pvid)
4232 		vf_info->bulletin.p_virt->valid_bitmap |= feature;
4233 	else
4234 		vf_info->bulletin.p_virt->valid_bitmap &= ~feature;
4235 
4236 	qed_iov_configure_vport_forced(p_hwfn, vf_info, feature);
4237 }
4238 
4239 void qed_iov_bulletin_set_udp_ports(struct qed_hwfn *p_hwfn,
4240 				    int vfid, u16 vxlan_port, u16 geneve_port)
4241 {
4242 	struct qed_vf_info *vf_info;
4243 
4244 	vf_info = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true);
4245 	if (!vf_info) {
4246 		DP_NOTICE(p_hwfn->cdev,
4247 			  "Can not set udp ports, invalid vfid [%d]\n", vfid);
4248 		return;
4249 	}
4250 
4251 	if (vf_info->b_malicious) {
4252 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
4253 			   "Can not set udp ports to malicious VF [%d]\n",
4254 			   vfid);
4255 		return;
4256 	}
4257 
4258 	vf_info->bulletin.p_virt->vxlan_udp_port = vxlan_port;
4259 	vf_info->bulletin.p_virt->geneve_udp_port = geneve_port;
4260 }
4261 
4262 static bool qed_iov_vf_has_vport_instance(struct qed_hwfn *p_hwfn, int vfid)
4263 {
4264 	struct qed_vf_info *p_vf_info;
4265 
4266 	p_vf_info = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true);
4267 	if (!p_vf_info)
4268 		return false;
4269 
4270 	return !!p_vf_info->vport_instance;
4271 }
4272 
4273 static bool qed_iov_is_vf_stopped(struct qed_hwfn *p_hwfn, int vfid)
4274 {
4275 	struct qed_vf_info *p_vf_info;
4276 
4277 	p_vf_info = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true);
4278 	if (!p_vf_info)
4279 		return true;
4280 
4281 	return p_vf_info->state == VF_STOPPED;
4282 }
4283 
4284 static bool qed_iov_spoofchk_get(struct qed_hwfn *p_hwfn, int vfid)
4285 {
4286 	struct qed_vf_info *vf_info;
4287 
4288 	vf_info = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true);
4289 	if (!vf_info)
4290 		return false;
4291 
4292 	return vf_info->spoof_chk;
4293 }
4294 
4295 static int qed_iov_spoofchk_set(struct qed_hwfn *p_hwfn, int vfid, bool val)
4296 {
4297 	struct qed_vf_info *vf;
4298 	int rc = -EINVAL;
4299 
4300 	if (!qed_iov_pf_sanity_check(p_hwfn, vfid)) {
4301 		DP_NOTICE(p_hwfn,
4302 			  "SR-IOV sanity check failed, can't set spoofchk\n");
4303 		goto out;
4304 	}
4305 
4306 	vf = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true);
4307 	if (!vf)
4308 		goto out;
4309 
4310 	if (!qed_iov_vf_has_vport_instance(p_hwfn, vfid)) {
4311 		/* After VF VPORT start PF will configure spoof check */
4312 		vf->req_spoofchk_val = val;
4313 		rc = 0;
4314 		goto out;
4315 	}
4316 
4317 	rc = __qed_iov_spoofchk_set(p_hwfn, vf, val);
4318 
4319 out:
4320 	return rc;
4321 }
4322 
4323 static u8 *qed_iov_bulletin_get_mac(struct qed_hwfn *p_hwfn, u16 rel_vf_id)
4324 {
4325 	struct qed_vf_info *p_vf;
4326 
4327 	p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true);
4328 	if (!p_vf || !p_vf->bulletin.p_virt)
4329 		return NULL;
4330 
4331 	if (!(p_vf->bulletin.p_virt->valid_bitmap &
4332 	      BIT(VFPF_BULLETIN_MAC_ADDR)))
4333 		return NULL;
4334 
4335 	return p_vf->bulletin.p_virt->mac;
4336 }
4337 
4338 static u8 *qed_iov_bulletin_get_forced_mac(struct qed_hwfn *p_hwfn,
4339 					   u16 rel_vf_id)
4340 {
4341 	struct qed_vf_info *p_vf;
4342 
4343 	p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true);
4344 	if (!p_vf || !p_vf->bulletin.p_virt)
4345 		return NULL;
4346 
4347 	if (!(p_vf->bulletin.p_virt->valid_bitmap & BIT(MAC_ADDR_FORCED)))
4348 		return NULL;
4349 
4350 	return p_vf->bulletin.p_virt->mac;
4351 }
4352 
4353 static u16
4354 qed_iov_bulletin_get_forced_vlan(struct qed_hwfn *p_hwfn, u16 rel_vf_id)
4355 {
4356 	struct qed_vf_info *p_vf;
4357 
4358 	p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true);
4359 	if (!p_vf || !p_vf->bulletin.p_virt)
4360 		return 0;
4361 
4362 	if (!(p_vf->bulletin.p_virt->valid_bitmap & BIT(VLAN_ADDR_FORCED)))
4363 		return 0;
4364 
4365 	return p_vf->bulletin.p_virt->pvid;
4366 }
4367 
4368 static int qed_iov_configure_tx_rate(struct qed_hwfn *p_hwfn,
4369 				     struct qed_ptt *p_ptt, int vfid, int val)
4370 {
4371 	struct qed_vf_info *vf;
4372 	u8 abs_vp_id = 0;
4373 	u16 rl_id;
4374 	int rc;
4375 
4376 	vf = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true);
4377 	if (!vf)
4378 		return -EINVAL;
4379 
4380 	rc = qed_fw_vport(p_hwfn, vf->vport_id, &abs_vp_id);
4381 	if (rc)
4382 		return rc;
4383 
4384 	rl_id = abs_vp_id;	/* The "rl_id" is set as the "vport_id" */
4385 	return qed_init_global_rl(p_hwfn, p_ptt, rl_id, (u32)val,
4386 				  QM_RL_TYPE_NORMAL);
4387 }
4388 
4389 static int
4390 qed_iov_configure_min_tx_rate(struct qed_dev *cdev, int vfid, u32 rate)
4391 {
4392 	struct qed_vf_info *vf;
4393 	u8 vport_id;
4394 	int i;
4395 
4396 	for_each_hwfn(cdev, i) {
4397 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
4398 
4399 		if (!qed_iov_pf_sanity_check(p_hwfn, vfid)) {
4400 			DP_NOTICE(p_hwfn,
4401 				  "SR-IOV sanity check failed, can't set min rate\n");
4402 			return -EINVAL;
4403 		}
4404 	}
4405 
4406 	vf = qed_iov_get_vf_info(QED_LEADING_HWFN(cdev), (u16)vfid, true);
4407 	if (!vf)
4408 		return -EINVAL;
4409 
4410 	vport_id = vf->vport_id;
4411 
4412 	return qed_configure_vport_wfq(cdev, vport_id, rate);
4413 }
4414 
4415 static int qed_iov_get_vf_min_rate(struct qed_hwfn *p_hwfn, int vfid)
4416 {
4417 	struct qed_wfq_data *vf_vp_wfq;
4418 	struct qed_vf_info *vf_info;
4419 
4420 	vf_info = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true);
4421 	if (!vf_info)
4422 		return 0;
4423 
4424 	vf_vp_wfq = &p_hwfn->qm_info.wfq_data[vf_info->vport_id];
4425 
4426 	if (vf_vp_wfq->configured)
4427 		return vf_vp_wfq->min_speed;
4428 	else
4429 		return 0;
4430 }
4431 
4432 /**
4433  * qed_schedule_iov - schedules IOV task for VF and PF
4434  * @hwfn: hardware function pointer
4435  * @flag: IOV flag for VF/PF
4436  */
4437 void qed_schedule_iov(struct qed_hwfn *hwfn, enum qed_iov_wq_flag flag)
4438 {
4439 	/* Memory barrier for setting atomic bit */
4440 	smp_mb__before_atomic();
4441 	set_bit(flag, &hwfn->iov_task_flags);
4442 	/* Memory barrier after setting atomic bit */
4443 	smp_mb__after_atomic();
4444 	DP_VERBOSE(hwfn, QED_MSG_IOV, "Scheduling iov task [Flag: %d]\n", flag);
4445 	queue_delayed_work(hwfn->iov_wq, &hwfn->iov_task, 0);
4446 }
4447 
4448 void qed_vf_start_iov_wq(struct qed_dev *cdev)
4449 {
4450 	int i;
4451 
4452 	for_each_hwfn(cdev, i)
4453 		queue_delayed_work(cdev->hwfns[i].iov_wq,
4454 				   &cdev->hwfns[i].iov_task, 0);
4455 }
4456 
4457 int qed_sriov_disable(struct qed_dev *cdev, bool pci_enabled)
4458 {
4459 	int i, j;
4460 
4461 	for_each_hwfn(cdev, i)
4462 		if (cdev->hwfns[i].iov_wq)
4463 			flush_workqueue(cdev->hwfns[i].iov_wq);
4464 
4465 	/* Mark VFs for disablement */
4466 	qed_iov_set_vfs_to_disable(cdev, true);
4467 
4468 	if (cdev->p_iov_info && cdev->p_iov_info->num_vfs && pci_enabled)
4469 		pci_disable_sriov(cdev->pdev);
4470 
4471 	if (cdev->recov_in_prog) {
4472 		DP_VERBOSE(cdev,
4473 			   QED_MSG_IOV,
4474 			   "Skip SRIOV disable operations in the device since a recovery is in progress\n");
4475 		goto out;
4476 	}
4477 
4478 	for_each_hwfn(cdev, i) {
4479 		struct qed_hwfn *hwfn = &cdev->hwfns[i];
4480 		struct qed_ptt *ptt = qed_ptt_acquire(hwfn);
4481 
4482 		/* Failure to acquire the ptt in 100g creates an odd error
4483 		 * where the first engine has already relased IOV.
4484 		 */
4485 		if (!ptt) {
4486 			DP_ERR(hwfn, "Failed to acquire ptt\n");
4487 			return -EBUSY;
4488 		}
4489 
4490 		/* Clean WFQ db and configure equal weight for all vports */
4491 		qed_clean_wfq_db(hwfn, ptt);
4492 
4493 		qed_for_each_vf(hwfn, j) {
4494 			int k;
4495 
4496 			if (!qed_iov_is_valid_vfid(hwfn, j, true, false))
4497 				continue;
4498 
4499 			/* Wait until VF is disabled before releasing */
4500 			for (k = 0; k < 100; k++) {
4501 				if (!qed_iov_is_vf_stopped(hwfn, j))
4502 					msleep(20);
4503 				else
4504 					break;
4505 			}
4506 
4507 			if (k < 100)
4508 				qed_iov_release_hw_for_vf(&cdev->hwfns[i],
4509 							  ptt, j);
4510 			else
4511 				DP_ERR(hwfn,
4512 				       "Timeout waiting for VF's FLR to end\n");
4513 		}
4514 
4515 		qed_ptt_release(hwfn, ptt);
4516 	}
4517 out:
4518 	qed_iov_set_vfs_to_disable(cdev, false);
4519 
4520 	return 0;
4521 }
4522 
4523 static void qed_sriov_enable_qid_config(struct qed_hwfn *hwfn,
4524 					u16 vfid,
4525 					struct qed_iov_vf_init_params *params)
4526 {
4527 	u16 base, i;
4528 
4529 	/* Since we have an equal resource distribution per-VF, and we assume
4530 	 * PF has acquired the QED_PF_L2_QUE first queues, we start setting
4531 	 * sequentially from there.
4532 	 */
4533 	base = FEAT_NUM(hwfn, QED_PF_L2_QUE) + vfid * params->num_queues;
4534 
4535 	params->rel_vf_id = vfid;
4536 	for (i = 0; i < params->num_queues; i++) {
4537 		params->req_rx_queue[i] = base + i;
4538 		params->req_tx_queue[i] = base + i;
4539 	}
4540 }
4541 
4542 static int qed_sriov_enable(struct qed_dev *cdev, int num)
4543 {
4544 	struct qed_iov_vf_init_params params;
4545 	struct qed_hwfn *hwfn;
4546 	struct qed_ptt *ptt;
4547 	int i, j, rc;
4548 
4549 	if (num >= RESC_NUM(&cdev->hwfns[0], QED_VPORT)) {
4550 		DP_NOTICE(cdev, "Can start at most %d VFs\n",
4551 			  RESC_NUM(&cdev->hwfns[0], QED_VPORT) - 1);
4552 		return -EINVAL;
4553 	}
4554 
4555 	memset(&params, 0, sizeof(params));
4556 
4557 	/* Initialize HW for VF access */
4558 	for_each_hwfn(cdev, j) {
4559 		hwfn = &cdev->hwfns[j];
4560 		ptt = qed_ptt_acquire(hwfn);
4561 
4562 		/* Make sure not to use more than 16 queues per VF */
4563 		params.num_queues = min_t(int,
4564 					  FEAT_NUM(hwfn, QED_VF_L2_QUE) / num,
4565 					  16);
4566 
4567 		if (!ptt) {
4568 			DP_ERR(hwfn, "Failed to acquire ptt\n");
4569 			rc = -EBUSY;
4570 			goto err;
4571 		}
4572 
4573 		for (i = 0; i < num; i++) {
4574 			if (!qed_iov_is_valid_vfid(hwfn, i, false, true))
4575 				continue;
4576 
4577 			qed_sriov_enable_qid_config(hwfn, i, &params);
4578 			rc = qed_iov_init_hw_for_vf(hwfn, ptt, &params);
4579 			if (rc) {
4580 				DP_ERR(cdev, "Failed to enable VF[%d]\n", i);
4581 				qed_ptt_release(hwfn, ptt);
4582 				goto err;
4583 			}
4584 		}
4585 
4586 		qed_ptt_release(hwfn, ptt);
4587 	}
4588 
4589 	/* Enable SRIOV PCIe functions */
4590 	rc = pci_enable_sriov(cdev->pdev, num);
4591 	if (rc) {
4592 		DP_ERR(cdev, "Failed to enable sriov [%d]\n", rc);
4593 		goto err;
4594 	}
4595 
4596 	hwfn = QED_LEADING_HWFN(cdev);
4597 	ptt = qed_ptt_acquire(hwfn);
4598 	if (!ptt) {
4599 		DP_ERR(hwfn, "Failed to acquire ptt\n");
4600 		rc = -EBUSY;
4601 		goto err;
4602 	}
4603 
4604 	rc = qed_mcp_ov_update_eswitch(hwfn, ptt, QED_OV_ESWITCH_VEB);
4605 	if (rc)
4606 		DP_INFO(cdev, "Failed to update eswitch mode\n");
4607 	qed_ptt_release(hwfn, ptt);
4608 
4609 	return num;
4610 
4611 err:
4612 	qed_sriov_disable(cdev, false);
4613 	return rc;
4614 }
4615 
4616 static int qed_sriov_configure(struct qed_dev *cdev, int num_vfs_param)
4617 {
4618 	if (!IS_QED_SRIOV(cdev)) {
4619 		DP_VERBOSE(cdev, QED_MSG_IOV, "SR-IOV is not supported\n");
4620 		return -EOPNOTSUPP;
4621 	}
4622 
4623 	if (num_vfs_param)
4624 		return qed_sriov_enable(cdev, num_vfs_param);
4625 	else
4626 		return qed_sriov_disable(cdev, true);
4627 }
4628 
4629 static int qed_sriov_pf_set_mac(struct qed_dev *cdev, u8 *mac, int vfid)
4630 {
4631 	int i;
4632 
4633 	if (!IS_QED_SRIOV(cdev) || !IS_PF_SRIOV_ALLOC(&cdev->hwfns[0])) {
4634 		DP_VERBOSE(cdev, QED_MSG_IOV,
4635 			   "Cannot set a VF MAC; Sriov is not enabled\n");
4636 		return -EINVAL;
4637 	}
4638 
4639 	if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vfid, true, true)) {
4640 		DP_VERBOSE(cdev, QED_MSG_IOV,
4641 			   "Cannot set VF[%d] MAC (VF is not active)\n", vfid);
4642 		return -EINVAL;
4643 	}
4644 
4645 	for_each_hwfn(cdev, i) {
4646 		struct qed_hwfn *hwfn = &cdev->hwfns[i];
4647 		struct qed_public_vf_info *vf_info;
4648 
4649 		vf_info = qed_iov_get_public_vf_info(hwfn, vfid, true);
4650 		if (!vf_info)
4651 			continue;
4652 
4653 		/* Set the MAC, and schedule the IOV task */
4654 		if (vf_info->is_trusted_configured)
4655 			ether_addr_copy(vf_info->mac, mac);
4656 		else
4657 			ether_addr_copy(vf_info->forced_mac, mac);
4658 
4659 		qed_schedule_iov(hwfn, QED_IOV_WQ_SET_UNICAST_FILTER_FLAG);
4660 	}
4661 
4662 	return 0;
4663 }
4664 
4665 static int qed_sriov_pf_set_vlan(struct qed_dev *cdev, u16 vid, int vfid)
4666 {
4667 	int i;
4668 
4669 	if (!IS_QED_SRIOV(cdev) || !IS_PF_SRIOV_ALLOC(&cdev->hwfns[0])) {
4670 		DP_VERBOSE(cdev, QED_MSG_IOV,
4671 			   "Cannot set a VF MAC; Sriov is not enabled\n");
4672 		return -EINVAL;
4673 	}
4674 
4675 	if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vfid, true, true)) {
4676 		DP_VERBOSE(cdev, QED_MSG_IOV,
4677 			   "Cannot set VF[%d] MAC (VF is not active)\n", vfid);
4678 		return -EINVAL;
4679 	}
4680 
4681 	for_each_hwfn(cdev, i) {
4682 		struct qed_hwfn *hwfn = &cdev->hwfns[i];
4683 		struct qed_public_vf_info *vf_info;
4684 
4685 		vf_info = qed_iov_get_public_vf_info(hwfn, vfid, true);
4686 		if (!vf_info)
4687 			continue;
4688 
4689 		/* Set the forced vlan, and schedule the IOV task */
4690 		vf_info->forced_vlan = vid;
4691 		qed_schedule_iov(hwfn, QED_IOV_WQ_SET_UNICAST_FILTER_FLAG);
4692 	}
4693 
4694 	return 0;
4695 }
4696 
4697 static int qed_get_vf_config(struct qed_dev *cdev,
4698 			     int vf_id, struct ifla_vf_info *ivi)
4699 {
4700 	struct qed_hwfn *hwfn = QED_LEADING_HWFN(cdev);
4701 	struct qed_public_vf_info *vf_info;
4702 	struct qed_mcp_link_state link;
4703 	u32 tx_rate;
4704 	int ret;
4705 
4706 	/* Sanitize request */
4707 	if (IS_VF(cdev))
4708 		return -EINVAL;
4709 
4710 	if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vf_id, true, false)) {
4711 		DP_VERBOSE(cdev, QED_MSG_IOV,
4712 			   "VF index [%d] isn't active\n", vf_id);
4713 		return -EINVAL;
4714 	}
4715 
4716 	vf_info = qed_iov_get_public_vf_info(hwfn, vf_id, true);
4717 
4718 	ret = qed_iov_get_link(hwfn, vf_id, NULL, &link, NULL);
4719 	if (ret)
4720 		return ret;
4721 
4722 	/* Fill information about VF */
4723 	ivi->vf = vf_id;
4724 
4725 	if (is_valid_ether_addr(vf_info->forced_mac))
4726 		ether_addr_copy(ivi->mac, vf_info->forced_mac);
4727 	else
4728 		ether_addr_copy(ivi->mac, vf_info->mac);
4729 
4730 	ivi->vlan = vf_info->forced_vlan;
4731 	ivi->spoofchk = qed_iov_spoofchk_get(hwfn, vf_id);
4732 	ivi->linkstate = vf_info->link_state;
4733 	tx_rate = vf_info->tx_rate;
4734 	ivi->max_tx_rate = tx_rate ? tx_rate : link.speed;
4735 	ivi->min_tx_rate = qed_iov_get_vf_min_rate(hwfn, vf_id);
4736 	ivi->trusted = vf_info->is_trusted_request;
4737 
4738 	return 0;
4739 }
4740 
4741 void qed_inform_vf_link_state(struct qed_hwfn *hwfn)
4742 {
4743 	struct qed_hwfn *lead_hwfn = QED_LEADING_HWFN(hwfn->cdev);
4744 	struct qed_mcp_link_capabilities caps;
4745 	struct qed_mcp_link_params params;
4746 	struct qed_mcp_link_state link;
4747 	int i;
4748 
4749 	if (!hwfn->pf_iov_info)
4750 		return;
4751 
4752 	/* Update bulletin of all future possible VFs with link configuration */
4753 	for (i = 0; i < hwfn->cdev->p_iov_info->total_vfs; i++) {
4754 		struct qed_public_vf_info *vf_info;
4755 
4756 		vf_info = qed_iov_get_public_vf_info(hwfn, i, false);
4757 		if (!vf_info)
4758 			continue;
4759 
4760 		/* Only hwfn0 is actually interested in the link speed.
4761 		 * But since only it would receive an MFW indication of link,
4762 		 * need to take configuration from it - otherwise things like
4763 		 * rate limiting for hwfn1 VF would not work.
4764 		 */
4765 		memcpy(&params, qed_mcp_get_link_params(lead_hwfn),
4766 		       sizeof(params));
4767 		memcpy(&link, qed_mcp_get_link_state(lead_hwfn), sizeof(link));
4768 		memcpy(&caps, qed_mcp_get_link_capabilities(lead_hwfn),
4769 		       sizeof(caps));
4770 
4771 		/* Modify link according to the VF's configured link state */
4772 		switch (vf_info->link_state) {
4773 		case IFLA_VF_LINK_STATE_DISABLE:
4774 			link.link_up = false;
4775 			break;
4776 		case IFLA_VF_LINK_STATE_ENABLE:
4777 			link.link_up = true;
4778 			/* Set speed according to maximum supported by HW.
4779 			 * that is 40G for regular devices and 100G for CMT
4780 			 * mode devices.
4781 			 */
4782 			link.speed = (hwfn->cdev->num_hwfns > 1) ?
4783 				     100000 : 40000;
4784 			break;
4785 		default:
4786 			/* In auto mode pass PF link image to VF */
4787 			break;
4788 		}
4789 
4790 		if (link.link_up && vf_info->tx_rate) {
4791 			struct qed_ptt *ptt;
4792 			int rate;
4793 
4794 			rate = min_t(int, vf_info->tx_rate, link.speed);
4795 
4796 			ptt = qed_ptt_acquire(hwfn);
4797 			if (!ptt) {
4798 				DP_NOTICE(hwfn, "Failed to acquire PTT\n");
4799 				return;
4800 			}
4801 
4802 			if (!qed_iov_configure_tx_rate(hwfn, ptt, i, rate)) {
4803 				vf_info->tx_rate = rate;
4804 				link.speed = rate;
4805 			}
4806 
4807 			qed_ptt_release(hwfn, ptt);
4808 		}
4809 
4810 		qed_iov_set_link(hwfn, i, &params, &link, &caps);
4811 	}
4812 
4813 	qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG);
4814 }
4815 
4816 static int qed_set_vf_link_state(struct qed_dev *cdev,
4817 				 int vf_id, int link_state)
4818 {
4819 	int i;
4820 
4821 	/* Sanitize request */
4822 	if (IS_VF(cdev))
4823 		return -EINVAL;
4824 
4825 	if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vf_id, true, true)) {
4826 		DP_VERBOSE(cdev, QED_MSG_IOV,
4827 			   "VF index [%d] isn't active\n", vf_id);
4828 		return -EINVAL;
4829 	}
4830 
4831 	/* Handle configuration of link state */
4832 	for_each_hwfn(cdev, i) {
4833 		struct qed_hwfn *hwfn = &cdev->hwfns[i];
4834 		struct qed_public_vf_info *vf;
4835 
4836 		vf = qed_iov_get_public_vf_info(hwfn, vf_id, true);
4837 		if (!vf)
4838 			continue;
4839 
4840 		if (vf->link_state == link_state)
4841 			continue;
4842 
4843 		vf->link_state = link_state;
4844 		qed_inform_vf_link_state(&cdev->hwfns[i]);
4845 	}
4846 
4847 	return 0;
4848 }
4849 
4850 static int qed_spoof_configure(struct qed_dev *cdev, int vfid, bool val)
4851 {
4852 	int i, rc = -EINVAL;
4853 
4854 	for_each_hwfn(cdev, i) {
4855 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
4856 
4857 		rc = qed_iov_spoofchk_set(p_hwfn, vfid, val);
4858 		if (rc)
4859 			break;
4860 	}
4861 
4862 	return rc;
4863 }
4864 
4865 static int qed_configure_max_vf_rate(struct qed_dev *cdev, int vfid, int rate)
4866 {
4867 	int i;
4868 
4869 	for_each_hwfn(cdev, i) {
4870 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
4871 		struct qed_public_vf_info *vf;
4872 
4873 		if (!qed_iov_pf_sanity_check(p_hwfn, vfid)) {
4874 			DP_NOTICE(p_hwfn,
4875 				  "SR-IOV sanity check failed, can't set tx rate\n");
4876 			return -EINVAL;
4877 		}
4878 
4879 		vf = qed_iov_get_public_vf_info(p_hwfn, vfid, true);
4880 
4881 		vf->tx_rate = rate;
4882 
4883 		qed_inform_vf_link_state(p_hwfn);
4884 	}
4885 
4886 	return 0;
4887 }
4888 
4889 static int qed_set_vf_rate(struct qed_dev *cdev,
4890 			   int vfid, u32 min_rate, u32 max_rate)
4891 {
4892 	int rc_min = 0, rc_max = 0;
4893 
4894 	if (max_rate)
4895 		rc_max = qed_configure_max_vf_rate(cdev, vfid, max_rate);
4896 
4897 	if (min_rate)
4898 		rc_min = qed_iov_configure_min_tx_rate(cdev, vfid, min_rate);
4899 
4900 	if (rc_max | rc_min)
4901 		return -EINVAL;
4902 
4903 	return 0;
4904 }
4905 
4906 static int qed_set_vf_trust(struct qed_dev *cdev, int vfid, bool trust)
4907 {
4908 	int i;
4909 
4910 	for_each_hwfn(cdev, i) {
4911 		struct qed_hwfn *hwfn = &cdev->hwfns[i];
4912 		struct qed_public_vf_info *vf;
4913 
4914 		if (!qed_iov_pf_sanity_check(hwfn, vfid)) {
4915 			DP_NOTICE(hwfn,
4916 				  "SR-IOV sanity check failed, can't set trust\n");
4917 			return -EINVAL;
4918 		}
4919 
4920 		vf = qed_iov_get_public_vf_info(hwfn, vfid, true);
4921 
4922 		if (vf->is_trusted_request == trust)
4923 			return 0;
4924 		vf->is_trusted_request = trust;
4925 
4926 		qed_schedule_iov(hwfn, QED_IOV_WQ_TRUST_FLAG);
4927 	}
4928 
4929 	return 0;
4930 }
4931 
4932 static void qed_handle_vf_msg(struct qed_hwfn *hwfn)
4933 {
4934 	u64 events[QED_VF_ARRAY_LENGTH];
4935 	struct qed_ptt *ptt;
4936 	int i;
4937 
4938 	ptt = qed_ptt_acquire(hwfn);
4939 	if (!ptt) {
4940 		DP_VERBOSE(hwfn, QED_MSG_IOV,
4941 			   "Can't acquire PTT; re-scheduling\n");
4942 		qed_schedule_iov(hwfn, QED_IOV_WQ_MSG_FLAG);
4943 		return;
4944 	}
4945 
4946 	qed_iov_pf_get_pending_events(hwfn, events);
4947 
4948 	DP_VERBOSE(hwfn, QED_MSG_IOV,
4949 		   "Event mask of VF events: 0x%llx 0x%llx 0x%llx\n",
4950 		   events[0], events[1], events[2]);
4951 
4952 	qed_for_each_vf(hwfn, i) {
4953 		/* Skip VFs with no pending messages */
4954 		if (!(events[i / 64] & (1ULL << (i % 64))))
4955 			continue;
4956 
4957 		DP_VERBOSE(hwfn, QED_MSG_IOV,
4958 			   "Handling VF message from VF 0x%02x [Abs 0x%02x]\n",
4959 			   i, hwfn->cdev->p_iov_info->first_vf_in_pf + i);
4960 
4961 		/* Copy VF's message to PF's request buffer for that VF */
4962 		if (qed_iov_copy_vf_msg(hwfn, ptt, i))
4963 			continue;
4964 
4965 		qed_iov_process_mbx_req(hwfn, ptt, i);
4966 	}
4967 
4968 	qed_ptt_release(hwfn, ptt);
4969 }
4970 
4971 static bool qed_pf_validate_req_vf_mac(struct qed_hwfn *hwfn,
4972 				       u8 *mac,
4973 				       struct qed_public_vf_info *info)
4974 {
4975 	if (info->is_trusted_configured) {
4976 		if (is_valid_ether_addr(info->mac) &&
4977 		    (!mac || !ether_addr_equal(mac, info->mac)))
4978 			return true;
4979 	} else {
4980 		if (is_valid_ether_addr(info->forced_mac) &&
4981 		    (!mac || !ether_addr_equal(mac, info->forced_mac)))
4982 			return true;
4983 	}
4984 
4985 	return false;
4986 }
4987 
4988 static void qed_set_bulletin_mac(struct qed_hwfn *hwfn,
4989 				 struct qed_public_vf_info *info,
4990 				 int vfid)
4991 {
4992 	if (info->is_trusted_configured)
4993 		qed_iov_bulletin_set_mac(hwfn, info->mac, vfid);
4994 	else
4995 		qed_iov_bulletin_set_forced_mac(hwfn, info->forced_mac, vfid);
4996 }
4997 
4998 static void qed_handle_pf_set_vf_unicast(struct qed_hwfn *hwfn)
4999 {
5000 	int i;
5001 
5002 	qed_for_each_vf(hwfn, i) {
5003 		struct qed_public_vf_info *info;
5004 		bool update = false;
5005 		u8 *mac;
5006 
5007 		info = qed_iov_get_public_vf_info(hwfn, i, true);
5008 		if (!info)
5009 			continue;
5010 
5011 		/* Update data on bulletin board */
5012 		if (info->is_trusted_configured)
5013 			mac = qed_iov_bulletin_get_mac(hwfn, i);
5014 		else
5015 			mac = qed_iov_bulletin_get_forced_mac(hwfn, i);
5016 
5017 		if (qed_pf_validate_req_vf_mac(hwfn, mac, info)) {
5018 			DP_VERBOSE(hwfn,
5019 				   QED_MSG_IOV,
5020 				   "Handling PF setting of VF MAC to VF 0x%02x [Abs 0x%02x]\n",
5021 				   i,
5022 				   hwfn->cdev->p_iov_info->first_vf_in_pf + i);
5023 
5024 			/* Update bulletin board with MAC */
5025 			qed_set_bulletin_mac(hwfn, info, i);
5026 			update = true;
5027 		}
5028 
5029 		if (qed_iov_bulletin_get_forced_vlan(hwfn, i) ^
5030 		    info->forced_vlan) {
5031 			DP_VERBOSE(hwfn,
5032 				   QED_MSG_IOV,
5033 				   "Handling PF setting of pvid [0x%04x] to VF 0x%02x [Abs 0x%02x]\n",
5034 				   info->forced_vlan,
5035 				   i,
5036 				   hwfn->cdev->p_iov_info->first_vf_in_pf + i);
5037 			qed_iov_bulletin_set_forced_vlan(hwfn,
5038 							 info->forced_vlan, i);
5039 			update = true;
5040 		}
5041 
5042 		if (update)
5043 			qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG);
5044 	}
5045 }
5046 
5047 static void qed_handle_bulletin_post(struct qed_hwfn *hwfn)
5048 {
5049 	struct qed_ptt *ptt;
5050 	int i;
5051 
5052 	ptt = qed_ptt_acquire(hwfn);
5053 	if (!ptt) {
5054 		DP_NOTICE(hwfn, "Failed allocating a ptt entry\n");
5055 		qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG);
5056 		return;
5057 	}
5058 
5059 	qed_for_each_vf(hwfn, i)
5060 		qed_iov_post_vf_bulletin(hwfn, i, ptt);
5061 
5062 	qed_ptt_release(hwfn, ptt);
5063 }
5064 
5065 static void qed_update_mac_for_vf_trust_change(struct qed_hwfn *hwfn, int vf_id)
5066 {
5067 	struct qed_public_vf_info *vf_info;
5068 	struct qed_vf_info *vf;
5069 	u8 *force_mac;
5070 	int i;
5071 
5072 	vf_info = qed_iov_get_public_vf_info(hwfn, vf_id, true);
5073 	vf = qed_iov_get_vf_info(hwfn, vf_id, true);
5074 
5075 	if (!vf_info || !vf)
5076 		return;
5077 
5078 	/* Force MAC converted to generic MAC in case of VF trust on */
5079 	if (vf_info->is_trusted_configured &&
5080 	    (vf->bulletin.p_virt->valid_bitmap & BIT(MAC_ADDR_FORCED))) {
5081 		force_mac = qed_iov_bulletin_get_forced_mac(hwfn, vf_id);
5082 
5083 		if (force_mac) {
5084 			/* Clear existing shadow copy of MAC to have a clean
5085 			 * slate.
5086 			 */
5087 			for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) {
5088 				if (ether_addr_equal(vf->shadow_config.macs[i],
5089 						     vf_info->mac)) {
5090 					eth_zero_addr(vf->shadow_config.macs[i]);
5091 					DP_VERBOSE(hwfn, QED_MSG_IOV,
5092 						   "Shadow MAC %pM removed for VF 0x%02x, VF trust mode is ON\n",
5093 						    vf_info->mac, vf_id);
5094 					break;
5095 				}
5096 			}
5097 
5098 			ether_addr_copy(vf_info->mac, force_mac);
5099 			eth_zero_addr(vf_info->forced_mac);
5100 			vf->bulletin.p_virt->valid_bitmap &=
5101 					~BIT(MAC_ADDR_FORCED);
5102 			qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG);
5103 		}
5104 	}
5105 
5106 	/* Update shadow copy with VF MAC when trust mode is turned off */
5107 	if (!vf_info->is_trusted_configured) {
5108 		u8 empty_mac[ETH_ALEN];
5109 
5110 		eth_zero_addr(empty_mac);
5111 		for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) {
5112 			if (ether_addr_equal(vf->shadow_config.macs[i],
5113 					     empty_mac)) {
5114 				ether_addr_copy(vf->shadow_config.macs[i],
5115 						vf_info->mac);
5116 				DP_VERBOSE(hwfn, QED_MSG_IOV,
5117 					   "Shadow is updated with %pM for VF 0x%02x, VF trust mode is OFF\n",
5118 					    vf_info->mac, vf_id);
5119 				break;
5120 			}
5121 		}
5122 		/* Clear bulletin when trust mode is turned off,
5123 		 * to have a clean slate for next (normal) operations.
5124 		 */
5125 		qed_iov_bulletin_set_mac(hwfn, empty_mac, vf_id);
5126 		qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG);
5127 	}
5128 }
5129 
5130 static void qed_iov_handle_trust_change(struct qed_hwfn *hwfn)
5131 {
5132 	struct qed_sp_vport_update_params params;
5133 	struct qed_filter_accept_flags *flags;
5134 	struct qed_public_vf_info *vf_info;
5135 	struct qed_vf_info *vf;
5136 	u8 mask;
5137 	int i;
5138 
5139 	mask = QED_ACCEPT_UCAST_UNMATCHED | QED_ACCEPT_MCAST_UNMATCHED;
5140 	flags = &params.accept_flags;
5141 
5142 	qed_for_each_vf(hwfn, i) {
5143 		/* Need to make sure current requested configuration didn't
5144 		 * flip so that we'll end up configuring something that's not
5145 		 * needed.
5146 		 */
5147 		vf_info = qed_iov_get_public_vf_info(hwfn, i, true);
5148 		if (vf_info->is_trusted_configured ==
5149 		    vf_info->is_trusted_request)
5150 			continue;
5151 		vf_info->is_trusted_configured = vf_info->is_trusted_request;
5152 
5153 		/* Handle forced MAC mode */
5154 		qed_update_mac_for_vf_trust_change(hwfn, i);
5155 
5156 		/* Validate that the VF has a configured vport */
5157 		vf = qed_iov_get_vf_info(hwfn, i, true);
5158 		if (!vf || !vf->vport_instance)
5159 			continue;
5160 
5161 		memset(&params, 0, sizeof(params));
5162 		params.opaque_fid = vf->opaque_fid;
5163 		params.vport_id = vf->vport_id;
5164 
5165 		params.update_ctl_frame_check = 1;
5166 		params.mac_chk_en = !vf_info->is_trusted_configured;
5167 		params.update_accept_any_vlan_flg = 0;
5168 
5169 		if (vf_info->accept_any_vlan && vf_info->forced_vlan) {
5170 			params.update_accept_any_vlan_flg = 1;
5171 			params.accept_any_vlan = vf_info->accept_any_vlan;
5172 		}
5173 
5174 		if (vf_info->rx_accept_mode & mask) {
5175 			flags->update_rx_mode_config = 1;
5176 			flags->rx_accept_filter = vf_info->rx_accept_mode;
5177 		}
5178 
5179 		if (vf_info->tx_accept_mode & mask) {
5180 			flags->update_tx_mode_config = 1;
5181 			flags->tx_accept_filter = vf_info->tx_accept_mode;
5182 		}
5183 
5184 		/* Remove if needed; Otherwise this would set the mask */
5185 		if (!vf_info->is_trusted_configured) {
5186 			flags->rx_accept_filter &= ~mask;
5187 			flags->tx_accept_filter &= ~mask;
5188 			params.accept_any_vlan = false;
5189 		}
5190 
5191 		if (flags->update_rx_mode_config ||
5192 		    flags->update_tx_mode_config ||
5193 		    params.update_ctl_frame_check ||
5194 		    params.update_accept_any_vlan_flg) {
5195 			DP_VERBOSE(hwfn, QED_MSG_IOV,
5196 				   "vport update config for %s VF[abs 0x%x rel 0x%x]\n",
5197 				   vf_info->is_trusted_configured ? "trusted" : "untrusted",
5198 				   vf->abs_vf_id, vf->relative_vf_id);
5199 			qed_sp_vport_update(hwfn, &params,
5200 					    QED_SPQ_MODE_EBLOCK, NULL);
5201 		}
5202 	}
5203 }
5204 
5205 static void qed_iov_pf_task(struct work_struct *work)
5206 
5207 {
5208 	struct qed_hwfn *hwfn = container_of(work, struct qed_hwfn,
5209 					     iov_task.work);
5210 	int rc;
5211 
5212 	if (test_and_clear_bit(QED_IOV_WQ_STOP_WQ_FLAG, &hwfn->iov_task_flags))
5213 		return;
5214 
5215 	if (test_and_clear_bit(QED_IOV_WQ_FLR_FLAG, &hwfn->iov_task_flags)) {
5216 		struct qed_ptt *ptt = qed_ptt_acquire(hwfn);
5217 
5218 		if (!ptt) {
5219 			qed_schedule_iov(hwfn, QED_IOV_WQ_FLR_FLAG);
5220 			return;
5221 		}
5222 
5223 		rc = qed_iov_vf_flr_cleanup(hwfn, ptt);
5224 		if (rc)
5225 			qed_schedule_iov(hwfn, QED_IOV_WQ_FLR_FLAG);
5226 
5227 		qed_ptt_release(hwfn, ptt);
5228 	}
5229 
5230 	if (test_and_clear_bit(QED_IOV_WQ_MSG_FLAG, &hwfn->iov_task_flags))
5231 		qed_handle_vf_msg(hwfn);
5232 
5233 	if (test_and_clear_bit(QED_IOV_WQ_SET_UNICAST_FILTER_FLAG,
5234 			       &hwfn->iov_task_flags))
5235 		qed_handle_pf_set_vf_unicast(hwfn);
5236 
5237 	if (test_and_clear_bit(QED_IOV_WQ_BULLETIN_UPDATE_FLAG,
5238 			       &hwfn->iov_task_flags))
5239 		qed_handle_bulletin_post(hwfn);
5240 
5241 	if (test_and_clear_bit(QED_IOV_WQ_TRUST_FLAG, &hwfn->iov_task_flags))
5242 		qed_iov_handle_trust_change(hwfn);
5243 }
5244 
5245 void qed_iov_wq_stop(struct qed_dev *cdev, bool schedule_first)
5246 {
5247 	int i;
5248 
5249 	for_each_hwfn(cdev, i) {
5250 		if (!cdev->hwfns[i].iov_wq)
5251 			continue;
5252 
5253 		if (schedule_first) {
5254 			qed_schedule_iov(&cdev->hwfns[i],
5255 					 QED_IOV_WQ_STOP_WQ_FLAG);
5256 			cancel_delayed_work_sync(&cdev->hwfns[i].iov_task);
5257 		}
5258 
5259 		destroy_workqueue(cdev->hwfns[i].iov_wq);
5260 	}
5261 }
5262 
5263 int qed_iov_wq_start(struct qed_dev *cdev)
5264 {
5265 	char name[NAME_SIZE];
5266 	int i;
5267 
5268 	for_each_hwfn(cdev, i) {
5269 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
5270 
5271 		/* PFs needs a dedicated workqueue only if they support IOV.
5272 		 * VFs always require one.
5273 		 */
5274 		if (IS_PF(p_hwfn->cdev) && !IS_PF_SRIOV(p_hwfn))
5275 			continue;
5276 
5277 		snprintf(name, NAME_SIZE, "iov-%02x:%02x.%02x",
5278 			 cdev->pdev->bus->number,
5279 			 PCI_SLOT(cdev->pdev->devfn), p_hwfn->abs_pf_id);
5280 
5281 		p_hwfn->iov_wq = create_singlethread_workqueue(name);
5282 		if (!p_hwfn->iov_wq) {
5283 			DP_NOTICE(p_hwfn, "Cannot create iov workqueue\n");
5284 			return -ENOMEM;
5285 		}
5286 
5287 		if (IS_PF(cdev))
5288 			INIT_DELAYED_WORK(&p_hwfn->iov_task, qed_iov_pf_task);
5289 		else
5290 			INIT_DELAYED_WORK(&p_hwfn->iov_task, qed_iov_vf_task);
5291 	}
5292 
5293 	return 0;
5294 }
5295 
5296 const struct qed_iov_hv_ops qed_iov_ops_pass = {
5297 	.configure = &qed_sriov_configure,
5298 	.set_mac = &qed_sriov_pf_set_mac,
5299 	.set_vlan = &qed_sriov_pf_set_vlan,
5300 	.get_config = &qed_get_vf_config,
5301 	.set_link_state = &qed_set_vf_link_state,
5302 	.set_spoof = &qed_spoof_configure,
5303 	.set_rate = &qed_set_vf_rate,
5304 	.set_trust = &qed_set_vf_trust,
5305 };
5306