1 /* QLogic qed NIC Driver 2 * Copyright (c) 2015 QLogic Corporation 3 * 4 * This software is available under the terms of the GNU General Public License 5 * (GPL) Version 2, available from the file COPYING in the main directory of 6 * this source tree. 7 */ 8 9 #include <linux/etherdevice.h> 10 #include <linux/crc32.h> 11 #include <linux/qed/qed_iov_if.h> 12 #include "qed_cxt.h" 13 #include "qed_hsi.h" 14 #include "qed_hw.h" 15 #include "qed_init_ops.h" 16 #include "qed_int.h" 17 #include "qed_mcp.h" 18 #include "qed_reg_addr.h" 19 #include "qed_sp.h" 20 #include "qed_sriov.h" 21 #include "qed_vf.h" 22 23 /* IOV ramrods */ 24 static int qed_sp_vf_start(struct qed_hwfn *p_hwfn, 25 u32 concrete_vfid, u16 opaque_vfid) 26 { 27 struct vf_start_ramrod_data *p_ramrod = NULL; 28 struct qed_spq_entry *p_ent = NULL; 29 struct qed_sp_init_data init_data; 30 int rc = -EINVAL; 31 32 /* Get SPQ entry */ 33 memset(&init_data, 0, sizeof(init_data)); 34 init_data.cid = qed_spq_get_cid(p_hwfn); 35 init_data.opaque_fid = opaque_vfid; 36 init_data.comp_mode = QED_SPQ_MODE_EBLOCK; 37 38 rc = qed_sp_init_request(p_hwfn, &p_ent, 39 COMMON_RAMROD_VF_START, 40 PROTOCOLID_COMMON, &init_data); 41 if (rc) 42 return rc; 43 44 p_ramrod = &p_ent->ramrod.vf_start; 45 46 p_ramrod->vf_id = GET_FIELD(concrete_vfid, PXP_CONCRETE_FID_VFID); 47 p_ramrod->opaque_fid = cpu_to_le16(opaque_vfid); 48 49 p_ramrod->personality = PERSONALITY_ETH; 50 51 return qed_spq_post(p_hwfn, p_ent, NULL); 52 } 53 54 static int qed_sp_vf_stop(struct qed_hwfn *p_hwfn, 55 u32 concrete_vfid, u16 opaque_vfid) 56 { 57 struct vf_stop_ramrod_data *p_ramrod = NULL; 58 struct qed_spq_entry *p_ent = NULL; 59 struct qed_sp_init_data init_data; 60 int rc = -EINVAL; 61 62 /* Get SPQ entry */ 63 memset(&init_data, 0, sizeof(init_data)); 64 init_data.cid = qed_spq_get_cid(p_hwfn); 65 init_data.opaque_fid = opaque_vfid; 66 init_data.comp_mode = QED_SPQ_MODE_EBLOCK; 67 68 rc = qed_sp_init_request(p_hwfn, &p_ent, 69 COMMON_RAMROD_VF_STOP, 70 PROTOCOLID_COMMON, &init_data); 71 if (rc) 72 return rc; 73 74 p_ramrod = &p_ent->ramrod.vf_stop; 75 76 p_ramrod->vf_id = GET_FIELD(concrete_vfid, PXP_CONCRETE_FID_VFID); 77 78 return qed_spq_post(p_hwfn, p_ent, NULL); 79 } 80 81 bool qed_iov_is_valid_vfid(struct qed_hwfn *p_hwfn, 82 int rel_vf_id, bool b_enabled_only) 83 { 84 if (!p_hwfn->pf_iov_info) { 85 DP_NOTICE(p_hwfn->cdev, "No iov info\n"); 86 return false; 87 } 88 89 if ((rel_vf_id >= p_hwfn->cdev->p_iov_info->total_vfs) || 90 (rel_vf_id < 0)) 91 return false; 92 93 if ((!p_hwfn->pf_iov_info->vfs_array[rel_vf_id].b_init) && 94 b_enabled_only) 95 return false; 96 97 return true; 98 } 99 100 static struct qed_vf_info *qed_iov_get_vf_info(struct qed_hwfn *p_hwfn, 101 u16 relative_vf_id, 102 bool b_enabled_only) 103 { 104 struct qed_vf_info *vf = NULL; 105 106 if (!p_hwfn->pf_iov_info) { 107 DP_NOTICE(p_hwfn->cdev, "No iov info\n"); 108 return NULL; 109 } 110 111 if (qed_iov_is_valid_vfid(p_hwfn, relative_vf_id, b_enabled_only)) 112 vf = &p_hwfn->pf_iov_info->vfs_array[relative_vf_id]; 113 else 114 DP_ERR(p_hwfn, "qed_iov_get_vf_info: VF[%d] is not enabled\n", 115 relative_vf_id); 116 117 return vf; 118 } 119 120 int qed_iov_post_vf_bulletin(struct qed_hwfn *p_hwfn, 121 int vfid, struct qed_ptt *p_ptt) 122 { 123 struct qed_bulletin_content *p_bulletin; 124 int crc_size = sizeof(p_bulletin->crc); 125 struct qed_dmae_params params; 126 struct qed_vf_info *p_vf; 127 128 p_vf = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true); 129 if (!p_vf) 130 return -EINVAL; 131 132 if (!p_vf->vf_bulletin) 133 return -EINVAL; 134 135 p_bulletin = p_vf->bulletin.p_virt; 136 137 /* Increment bulletin board version and compute crc */ 138 p_bulletin->version++; 139 p_bulletin->crc = crc32(0, (u8 *)p_bulletin + crc_size, 140 p_vf->bulletin.size - crc_size); 141 142 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 143 "Posting Bulletin 0x%08x to VF[%d] (CRC 0x%08x)\n", 144 p_bulletin->version, p_vf->relative_vf_id, p_bulletin->crc); 145 146 /* propagate bulletin board via dmae to vm memory */ 147 memset(¶ms, 0, sizeof(params)); 148 params.flags = QED_DMAE_FLAG_VF_DST; 149 params.dst_vfid = p_vf->abs_vf_id; 150 return qed_dmae_host2host(p_hwfn, p_ptt, p_vf->bulletin.phys, 151 p_vf->vf_bulletin, p_vf->bulletin.size / 4, 152 ¶ms); 153 } 154 155 static int qed_iov_pci_cfg_info(struct qed_dev *cdev) 156 { 157 struct qed_hw_sriov_info *iov = cdev->p_iov_info; 158 int pos = iov->pos; 159 160 DP_VERBOSE(cdev, QED_MSG_IOV, "sriov ext pos %d\n", pos); 161 pci_read_config_word(cdev->pdev, pos + PCI_SRIOV_CTRL, &iov->ctrl); 162 163 pci_read_config_word(cdev->pdev, 164 pos + PCI_SRIOV_TOTAL_VF, &iov->total_vfs); 165 pci_read_config_word(cdev->pdev, 166 pos + PCI_SRIOV_INITIAL_VF, &iov->initial_vfs); 167 168 pci_read_config_word(cdev->pdev, pos + PCI_SRIOV_NUM_VF, &iov->num_vfs); 169 if (iov->num_vfs) { 170 DP_VERBOSE(cdev, 171 QED_MSG_IOV, 172 "Number of VFs are already set to non-zero value. Ignoring PCI configuration value\n"); 173 iov->num_vfs = 0; 174 } 175 176 pci_read_config_word(cdev->pdev, 177 pos + PCI_SRIOV_VF_OFFSET, &iov->offset); 178 179 pci_read_config_word(cdev->pdev, 180 pos + PCI_SRIOV_VF_STRIDE, &iov->stride); 181 182 pci_read_config_word(cdev->pdev, 183 pos + PCI_SRIOV_VF_DID, &iov->vf_device_id); 184 185 pci_read_config_dword(cdev->pdev, 186 pos + PCI_SRIOV_SUP_PGSIZE, &iov->pgsz); 187 188 pci_read_config_dword(cdev->pdev, pos + PCI_SRIOV_CAP, &iov->cap); 189 190 pci_read_config_byte(cdev->pdev, pos + PCI_SRIOV_FUNC_LINK, &iov->link); 191 192 DP_VERBOSE(cdev, 193 QED_MSG_IOV, 194 "IOV info: nres %d, cap 0x%x, ctrl 0x%x, total %d, initial %d, num vfs %d, offset %d, stride %d, page size 0x%x\n", 195 iov->nres, 196 iov->cap, 197 iov->ctrl, 198 iov->total_vfs, 199 iov->initial_vfs, 200 iov->nr_virtfn, iov->offset, iov->stride, iov->pgsz); 201 202 /* Some sanity checks */ 203 if (iov->num_vfs > NUM_OF_VFS(cdev) || 204 iov->total_vfs > NUM_OF_VFS(cdev)) { 205 /* This can happen only due to a bug. In this case we set 206 * num_vfs to zero to avoid memory corruption in the code that 207 * assumes max number of vfs 208 */ 209 DP_NOTICE(cdev, 210 "IOV: Unexpected number of vfs set: %d setting num_vf to zero\n", 211 iov->num_vfs); 212 213 iov->num_vfs = 0; 214 iov->total_vfs = 0; 215 } 216 217 return 0; 218 } 219 220 static void qed_iov_clear_vf_igu_blocks(struct qed_hwfn *p_hwfn, 221 struct qed_ptt *p_ptt) 222 { 223 struct qed_igu_block *p_sb; 224 u16 sb_id; 225 u32 val; 226 227 if (!p_hwfn->hw_info.p_igu_info) { 228 DP_ERR(p_hwfn, 229 "qed_iov_clear_vf_igu_blocks IGU Info not initialized\n"); 230 return; 231 } 232 233 for (sb_id = 0; sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); 234 sb_id++) { 235 p_sb = &p_hwfn->hw_info.p_igu_info->igu_map.igu_blocks[sb_id]; 236 if ((p_sb->status & QED_IGU_STATUS_FREE) && 237 !(p_sb->status & QED_IGU_STATUS_PF)) { 238 val = qed_rd(p_hwfn, p_ptt, 239 IGU_REG_MAPPING_MEMORY + sb_id * 4); 240 SET_FIELD(val, IGU_MAPPING_LINE_VALID, 0); 241 qed_wr(p_hwfn, p_ptt, 242 IGU_REG_MAPPING_MEMORY + 4 * sb_id, val); 243 } 244 } 245 } 246 247 static void qed_iov_setup_vfdb(struct qed_hwfn *p_hwfn) 248 { 249 struct qed_hw_sriov_info *p_iov = p_hwfn->cdev->p_iov_info; 250 struct qed_pf_iov *p_iov_info = p_hwfn->pf_iov_info; 251 struct qed_bulletin_content *p_bulletin_virt; 252 dma_addr_t req_p, rply_p, bulletin_p; 253 union pfvf_tlvs *p_reply_virt_addr; 254 union vfpf_tlvs *p_req_virt_addr; 255 u8 idx = 0; 256 257 memset(p_iov_info->vfs_array, 0, sizeof(p_iov_info->vfs_array)); 258 259 p_req_virt_addr = p_iov_info->mbx_msg_virt_addr; 260 req_p = p_iov_info->mbx_msg_phys_addr; 261 p_reply_virt_addr = p_iov_info->mbx_reply_virt_addr; 262 rply_p = p_iov_info->mbx_reply_phys_addr; 263 p_bulletin_virt = p_iov_info->p_bulletins; 264 bulletin_p = p_iov_info->bulletins_phys; 265 if (!p_req_virt_addr || !p_reply_virt_addr || !p_bulletin_virt) { 266 DP_ERR(p_hwfn, 267 "qed_iov_setup_vfdb called without allocating mem first\n"); 268 return; 269 } 270 271 for (idx = 0; idx < p_iov->total_vfs; idx++) { 272 struct qed_vf_info *vf = &p_iov_info->vfs_array[idx]; 273 u32 concrete; 274 275 vf->vf_mbx.req_virt = p_req_virt_addr + idx; 276 vf->vf_mbx.req_phys = req_p + idx * sizeof(union vfpf_tlvs); 277 vf->vf_mbx.reply_virt = p_reply_virt_addr + idx; 278 vf->vf_mbx.reply_phys = rply_p + idx * sizeof(union pfvf_tlvs); 279 280 vf->state = VF_STOPPED; 281 vf->b_init = false; 282 283 vf->bulletin.phys = idx * 284 sizeof(struct qed_bulletin_content) + 285 bulletin_p; 286 vf->bulletin.p_virt = p_bulletin_virt + idx; 287 vf->bulletin.size = sizeof(struct qed_bulletin_content); 288 289 vf->relative_vf_id = idx; 290 vf->abs_vf_id = idx + p_iov->first_vf_in_pf; 291 concrete = qed_vfid_to_concrete(p_hwfn, vf->abs_vf_id); 292 vf->concrete_fid = concrete; 293 vf->opaque_fid = (p_hwfn->hw_info.opaque_fid & 0xff) | 294 (vf->abs_vf_id << 8); 295 vf->vport_id = idx + 1; 296 } 297 } 298 299 static int qed_iov_allocate_vfdb(struct qed_hwfn *p_hwfn) 300 { 301 struct qed_pf_iov *p_iov_info = p_hwfn->pf_iov_info; 302 void **p_v_addr; 303 u16 num_vfs = 0; 304 305 num_vfs = p_hwfn->cdev->p_iov_info->total_vfs; 306 307 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 308 "qed_iov_allocate_vfdb for %d VFs\n", num_vfs); 309 310 /* Allocate PF Mailbox buffer (per-VF) */ 311 p_iov_info->mbx_msg_size = sizeof(union vfpf_tlvs) * num_vfs; 312 p_v_addr = &p_iov_info->mbx_msg_virt_addr; 313 *p_v_addr = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev, 314 p_iov_info->mbx_msg_size, 315 &p_iov_info->mbx_msg_phys_addr, 316 GFP_KERNEL); 317 if (!*p_v_addr) 318 return -ENOMEM; 319 320 /* Allocate PF Mailbox Reply buffer (per-VF) */ 321 p_iov_info->mbx_reply_size = sizeof(union pfvf_tlvs) * num_vfs; 322 p_v_addr = &p_iov_info->mbx_reply_virt_addr; 323 *p_v_addr = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev, 324 p_iov_info->mbx_reply_size, 325 &p_iov_info->mbx_reply_phys_addr, 326 GFP_KERNEL); 327 if (!*p_v_addr) 328 return -ENOMEM; 329 330 p_iov_info->bulletins_size = sizeof(struct qed_bulletin_content) * 331 num_vfs; 332 p_v_addr = &p_iov_info->p_bulletins; 333 *p_v_addr = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev, 334 p_iov_info->bulletins_size, 335 &p_iov_info->bulletins_phys, 336 GFP_KERNEL); 337 if (!*p_v_addr) 338 return -ENOMEM; 339 340 DP_VERBOSE(p_hwfn, 341 QED_MSG_IOV, 342 "PF's Requests mailbox [%p virt 0x%llx phys], Response mailbox [%p virt 0x%llx phys] Bulletins [%p virt 0x%llx phys]\n", 343 p_iov_info->mbx_msg_virt_addr, 344 (u64) p_iov_info->mbx_msg_phys_addr, 345 p_iov_info->mbx_reply_virt_addr, 346 (u64) p_iov_info->mbx_reply_phys_addr, 347 p_iov_info->p_bulletins, (u64) p_iov_info->bulletins_phys); 348 349 return 0; 350 } 351 352 static void qed_iov_free_vfdb(struct qed_hwfn *p_hwfn) 353 { 354 struct qed_pf_iov *p_iov_info = p_hwfn->pf_iov_info; 355 356 if (p_hwfn->pf_iov_info->mbx_msg_virt_addr) 357 dma_free_coherent(&p_hwfn->cdev->pdev->dev, 358 p_iov_info->mbx_msg_size, 359 p_iov_info->mbx_msg_virt_addr, 360 p_iov_info->mbx_msg_phys_addr); 361 362 if (p_hwfn->pf_iov_info->mbx_reply_virt_addr) 363 dma_free_coherent(&p_hwfn->cdev->pdev->dev, 364 p_iov_info->mbx_reply_size, 365 p_iov_info->mbx_reply_virt_addr, 366 p_iov_info->mbx_reply_phys_addr); 367 368 if (p_iov_info->p_bulletins) 369 dma_free_coherent(&p_hwfn->cdev->pdev->dev, 370 p_iov_info->bulletins_size, 371 p_iov_info->p_bulletins, 372 p_iov_info->bulletins_phys); 373 } 374 375 int qed_iov_alloc(struct qed_hwfn *p_hwfn) 376 { 377 struct qed_pf_iov *p_sriov; 378 379 if (!IS_PF_SRIOV(p_hwfn)) { 380 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 381 "No SR-IOV - no need for IOV db\n"); 382 return 0; 383 } 384 385 p_sriov = kzalloc(sizeof(*p_sriov), GFP_KERNEL); 386 if (!p_sriov) { 387 DP_NOTICE(p_hwfn, "Failed to allocate `struct qed_sriov'\n"); 388 return -ENOMEM; 389 } 390 391 p_hwfn->pf_iov_info = p_sriov; 392 393 return qed_iov_allocate_vfdb(p_hwfn); 394 } 395 396 void qed_iov_setup(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 397 { 398 if (!IS_PF_SRIOV(p_hwfn) || !IS_PF_SRIOV_ALLOC(p_hwfn)) 399 return; 400 401 qed_iov_setup_vfdb(p_hwfn); 402 qed_iov_clear_vf_igu_blocks(p_hwfn, p_ptt); 403 } 404 405 void qed_iov_free(struct qed_hwfn *p_hwfn) 406 { 407 if (IS_PF_SRIOV_ALLOC(p_hwfn)) { 408 qed_iov_free_vfdb(p_hwfn); 409 kfree(p_hwfn->pf_iov_info); 410 } 411 } 412 413 void qed_iov_free_hw_info(struct qed_dev *cdev) 414 { 415 kfree(cdev->p_iov_info); 416 cdev->p_iov_info = NULL; 417 } 418 419 int qed_iov_hw_info(struct qed_hwfn *p_hwfn) 420 { 421 struct qed_dev *cdev = p_hwfn->cdev; 422 int pos; 423 int rc; 424 425 if (IS_VF(p_hwfn->cdev)) 426 return 0; 427 428 /* Learn the PCI configuration */ 429 pos = pci_find_ext_capability(p_hwfn->cdev->pdev, 430 PCI_EXT_CAP_ID_SRIOV); 431 if (!pos) { 432 DP_VERBOSE(p_hwfn, QED_MSG_IOV, "No PCIe IOV support\n"); 433 return 0; 434 } 435 436 /* Allocate a new struct for IOV information */ 437 cdev->p_iov_info = kzalloc(sizeof(*cdev->p_iov_info), GFP_KERNEL); 438 if (!cdev->p_iov_info) { 439 DP_NOTICE(p_hwfn, "Can't support IOV due to lack of memory\n"); 440 return -ENOMEM; 441 } 442 cdev->p_iov_info->pos = pos; 443 444 rc = qed_iov_pci_cfg_info(cdev); 445 if (rc) 446 return rc; 447 448 /* We want PF IOV to be synonemous with the existance of p_iov_info; 449 * In case the capability is published but there are no VFs, simply 450 * de-allocate the struct. 451 */ 452 if (!cdev->p_iov_info->total_vfs) { 453 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 454 "IOV capabilities, but no VFs are published\n"); 455 kfree(cdev->p_iov_info); 456 cdev->p_iov_info = NULL; 457 return 0; 458 } 459 460 /* Calculate the first VF index - this is a bit tricky; Basically, 461 * VFs start at offset 16 relative to PF0, and 2nd engine VFs begin 462 * after the first engine's VFs. 463 */ 464 cdev->p_iov_info->first_vf_in_pf = p_hwfn->cdev->p_iov_info->offset + 465 p_hwfn->abs_pf_id - 16; 466 if (QED_PATH_ID(p_hwfn)) 467 cdev->p_iov_info->first_vf_in_pf -= MAX_NUM_VFS_BB; 468 469 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 470 "First VF in hwfn 0x%08x\n", 471 cdev->p_iov_info->first_vf_in_pf); 472 473 return 0; 474 } 475 476 static bool qed_iov_pf_sanity_check(struct qed_hwfn *p_hwfn, int vfid) 477 { 478 /* Check PF supports sriov */ 479 if (IS_VF(p_hwfn->cdev) || !IS_QED_SRIOV(p_hwfn->cdev) || 480 !IS_PF_SRIOV_ALLOC(p_hwfn)) 481 return false; 482 483 /* Check VF validity */ 484 if (!qed_iov_is_valid_vfid(p_hwfn, vfid, true)) 485 return false; 486 487 return true; 488 } 489 490 static void qed_iov_set_vf_to_disable(struct qed_dev *cdev, 491 u16 rel_vf_id, u8 to_disable) 492 { 493 struct qed_vf_info *vf; 494 int i; 495 496 for_each_hwfn(cdev, i) { 497 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 498 499 vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, false); 500 if (!vf) 501 continue; 502 503 vf->to_disable = to_disable; 504 } 505 } 506 507 void qed_iov_set_vfs_to_disable(struct qed_dev *cdev, u8 to_disable) 508 { 509 u16 i; 510 511 if (!IS_QED_SRIOV(cdev)) 512 return; 513 514 for (i = 0; i < cdev->p_iov_info->total_vfs; i++) 515 qed_iov_set_vf_to_disable(cdev, i, to_disable); 516 } 517 518 static void qed_iov_vf_pglue_clear_err(struct qed_hwfn *p_hwfn, 519 struct qed_ptt *p_ptt, u8 abs_vfid) 520 { 521 qed_wr(p_hwfn, p_ptt, 522 PGLUE_B_REG_WAS_ERROR_VF_31_0_CLR + (abs_vfid >> 5) * 4, 523 1 << (abs_vfid & 0x1f)); 524 } 525 526 static void qed_iov_vf_igu_reset(struct qed_hwfn *p_hwfn, 527 struct qed_ptt *p_ptt, struct qed_vf_info *vf) 528 { 529 int i; 530 531 /* Set VF masks and configuration - pretend */ 532 qed_fid_pretend(p_hwfn, p_ptt, (u16) vf->concrete_fid); 533 534 qed_wr(p_hwfn, p_ptt, IGU_REG_STATISTIC_NUM_VF_MSG_SENT, 0); 535 536 /* unpretend */ 537 qed_fid_pretend(p_hwfn, p_ptt, (u16) p_hwfn->hw_info.concrete_fid); 538 539 /* iterate over all queues, clear sb consumer */ 540 for (i = 0; i < vf->num_sbs; i++) 541 qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt, 542 vf->igu_sbs[i], 543 vf->opaque_fid, true); 544 } 545 546 static void qed_iov_vf_igu_set_int(struct qed_hwfn *p_hwfn, 547 struct qed_ptt *p_ptt, 548 struct qed_vf_info *vf, bool enable) 549 { 550 u32 igu_vf_conf; 551 552 qed_fid_pretend(p_hwfn, p_ptt, (u16) vf->concrete_fid); 553 554 igu_vf_conf = qed_rd(p_hwfn, p_ptt, IGU_REG_VF_CONFIGURATION); 555 556 if (enable) 557 igu_vf_conf |= IGU_VF_CONF_MSI_MSIX_EN; 558 else 559 igu_vf_conf &= ~IGU_VF_CONF_MSI_MSIX_EN; 560 561 qed_wr(p_hwfn, p_ptt, IGU_REG_VF_CONFIGURATION, igu_vf_conf); 562 563 /* unpretend */ 564 qed_fid_pretend(p_hwfn, p_ptt, (u16) p_hwfn->hw_info.concrete_fid); 565 } 566 567 static int qed_iov_enable_vf_access(struct qed_hwfn *p_hwfn, 568 struct qed_ptt *p_ptt, 569 struct qed_vf_info *vf) 570 { 571 u32 igu_vf_conf = IGU_VF_CONF_FUNC_EN; 572 int rc; 573 574 if (vf->to_disable) 575 return 0; 576 577 DP_VERBOSE(p_hwfn, 578 QED_MSG_IOV, 579 "Enable internal access for vf %x [abs %x]\n", 580 vf->abs_vf_id, QED_VF_ABS_ID(p_hwfn, vf)); 581 582 qed_iov_vf_pglue_clear_err(p_hwfn, p_ptt, QED_VF_ABS_ID(p_hwfn, vf)); 583 584 qed_iov_vf_igu_reset(p_hwfn, p_ptt, vf); 585 586 rc = qed_mcp_config_vf_msix(p_hwfn, p_ptt, vf->abs_vf_id, vf->num_sbs); 587 if (rc) 588 return rc; 589 590 qed_fid_pretend(p_hwfn, p_ptt, (u16) vf->concrete_fid); 591 592 SET_FIELD(igu_vf_conf, IGU_VF_CONF_PARENT, p_hwfn->rel_pf_id); 593 STORE_RT_REG(p_hwfn, IGU_REG_VF_CONFIGURATION_RT_OFFSET, igu_vf_conf); 594 595 qed_init_run(p_hwfn, p_ptt, PHASE_VF, vf->abs_vf_id, 596 p_hwfn->hw_info.hw_mode); 597 598 /* unpretend */ 599 qed_fid_pretend(p_hwfn, p_ptt, (u16) p_hwfn->hw_info.concrete_fid); 600 601 if (vf->state != VF_STOPPED) { 602 DP_NOTICE(p_hwfn, "VF[%02x] is already started\n", 603 vf->abs_vf_id); 604 return -EINVAL; 605 } 606 607 /* Start VF */ 608 rc = qed_sp_vf_start(p_hwfn, vf->concrete_fid, vf->opaque_fid); 609 if (rc) 610 DP_NOTICE(p_hwfn, "Failed to start VF[%02x]\n", vf->abs_vf_id); 611 612 vf->state = VF_FREE; 613 614 return rc; 615 } 616 617 /** 618 * @brief qed_iov_config_perm_table - configure the permission 619 * zone table. 620 * In E4, queue zone permission table size is 320x9. There 621 * are 320 VF queues for single engine device (256 for dual 622 * engine device), and each entry has the following format: 623 * {Valid, VF[7:0]} 624 * @param p_hwfn 625 * @param p_ptt 626 * @param vf 627 * @param enable 628 */ 629 static void qed_iov_config_perm_table(struct qed_hwfn *p_hwfn, 630 struct qed_ptt *p_ptt, 631 struct qed_vf_info *vf, u8 enable) 632 { 633 u32 reg_addr, val; 634 u16 qzone_id = 0; 635 int qid; 636 637 for (qid = 0; qid < vf->num_rxqs; qid++) { 638 qed_fw_l2_queue(p_hwfn, vf->vf_queues[qid].fw_rx_qid, 639 &qzone_id); 640 641 reg_addr = PSWHST_REG_ZONE_PERMISSION_TABLE + qzone_id * 4; 642 val = enable ? (vf->abs_vf_id | (1 << 8)) : 0; 643 qed_wr(p_hwfn, p_ptt, reg_addr, val); 644 } 645 } 646 647 static void qed_iov_enable_vf_traffic(struct qed_hwfn *p_hwfn, 648 struct qed_ptt *p_ptt, 649 struct qed_vf_info *vf) 650 { 651 /* Reset vf in IGU - interrupts are still disabled */ 652 qed_iov_vf_igu_reset(p_hwfn, p_ptt, vf); 653 654 qed_iov_vf_igu_set_int(p_hwfn, p_ptt, vf, 1); 655 656 /* Permission Table */ 657 qed_iov_config_perm_table(p_hwfn, p_ptt, vf, true); 658 } 659 660 static u8 qed_iov_alloc_vf_igu_sbs(struct qed_hwfn *p_hwfn, 661 struct qed_ptt *p_ptt, 662 struct qed_vf_info *vf, u16 num_rx_queues) 663 { 664 struct qed_igu_block *igu_blocks; 665 int qid = 0, igu_id = 0; 666 u32 val = 0; 667 668 igu_blocks = p_hwfn->hw_info.p_igu_info->igu_map.igu_blocks; 669 670 if (num_rx_queues > p_hwfn->hw_info.p_igu_info->free_blks) 671 num_rx_queues = p_hwfn->hw_info.p_igu_info->free_blks; 672 p_hwfn->hw_info.p_igu_info->free_blks -= num_rx_queues; 673 674 SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER, vf->abs_vf_id); 675 SET_FIELD(val, IGU_MAPPING_LINE_VALID, 1); 676 SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, 0); 677 678 while ((qid < num_rx_queues) && 679 (igu_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev))) { 680 if (igu_blocks[igu_id].status & QED_IGU_STATUS_FREE) { 681 struct cau_sb_entry sb_entry; 682 683 vf->igu_sbs[qid] = (u16)igu_id; 684 igu_blocks[igu_id].status &= ~QED_IGU_STATUS_FREE; 685 686 SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER, qid); 687 688 qed_wr(p_hwfn, p_ptt, 689 IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_id, 690 val); 691 692 /* Configure igu sb in CAU which were marked valid */ 693 qed_init_cau_sb_entry(p_hwfn, &sb_entry, 694 p_hwfn->rel_pf_id, 695 vf->abs_vf_id, 1); 696 qed_dmae_host2grc(p_hwfn, p_ptt, 697 (u64)(uintptr_t)&sb_entry, 698 CAU_REG_SB_VAR_MEMORY + 699 igu_id * sizeof(u64), 2, 0); 700 qid++; 701 } 702 igu_id++; 703 } 704 705 vf->num_sbs = (u8) num_rx_queues; 706 707 return vf->num_sbs; 708 } 709 710 static void qed_iov_free_vf_igu_sbs(struct qed_hwfn *p_hwfn, 711 struct qed_ptt *p_ptt, 712 struct qed_vf_info *vf) 713 { 714 struct qed_igu_info *p_info = p_hwfn->hw_info.p_igu_info; 715 int idx, igu_id; 716 u32 addr, val; 717 718 /* Invalidate igu CAM lines and mark them as free */ 719 for (idx = 0; idx < vf->num_sbs; idx++) { 720 igu_id = vf->igu_sbs[idx]; 721 addr = IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_id; 722 723 val = qed_rd(p_hwfn, p_ptt, addr); 724 SET_FIELD(val, IGU_MAPPING_LINE_VALID, 0); 725 qed_wr(p_hwfn, p_ptt, addr, val); 726 727 p_info->igu_map.igu_blocks[igu_id].status |= 728 QED_IGU_STATUS_FREE; 729 730 p_hwfn->hw_info.p_igu_info->free_blks++; 731 } 732 733 vf->num_sbs = 0; 734 } 735 736 static int qed_iov_init_hw_for_vf(struct qed_hwfn *p_hwfn, 737 struct qed_ptt *p_ptt, 738 u16 rel_vf_id, u16 num_rx_queues) 739 { 740 u8 num_of_vf_avaiable_chains = 0; 741 struct qed_vf_info *vf = NULL; 742 int rc = 0; 743 u32 cids; 744 u8 i; 745 746 vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, false); 747 if (!vf) { 748 DP_ERR(p_hwfn, "qed_iov_init_hw_for_vf : vf is NULL\n"); 749 return -EINVAL; 750 } 751 752 if (vf->b_init) { 753 DP_NOTICE(p_hwfn, "VF[%d] is already active.\n", rel_vf_id); 754 return -EINVAL; 755 } 756 757 /* Limit number of queues according to number of CIDs */ 758 qed_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_ETH, &cids); 759 DP_VERBOSE(p_hwfn, 760 QED_MSG_IOV, 761 "VF[%d] - requesting to initialize for 0x%04x queues [0x%04x CIDs available]\n", 762 vf->relative_vf_id, num_rx_queues, (u16) cids); 763 num_rx_queues = min_t(u16, num_rx_queues, ((u16) cids)); 764 765 num_of_vf_avaiable_chains = qed_iov_alloc_vf_igu_sbs(p_hwfn, 766 p_ptt, 767 vf, 768 num_rx_queues); 769 if (!num_of_vf_avaiable_chains) { 770 DP_ERR(p_hwfn, "no available igu sbs\n"); 771 return -ENOMEM; 772 } 773 774 /* Choose queue number and index ranges */ 775 vf->num_rxqs = num_of_vf_avaiable_chains; 776 vf->num_txqs = num_of_vf_avaiable_chains; 777 778 for (i = 0; i < vf->num_rxqs; i++) { 779 u16 queue_id = qed_int_queue_id_from_sb_id(p_hwfn, 780 vf->igu_sbs[i]); 781 782 if (queue_id > RESC_NUM(p_hwfn, QED_L2_QUEUE)) { 783 DP_NOTICE(p_hwfn, 784 "VF[%d] will require utilizing of out-of-bounds queues - %04x\n", 785 vf->relative_vf_id, queue_id); 786 return -EINVAL; 787 } 788 789 /* CIDs are per-VF, so no problem having them 0-based. */ 790 vf->vf_queues[i].fw_rx_qid = queue_id; 791 vf->vf_queues[i].fw_tx_qid = queue_id; 792 vf->vf_queues[i].fw_cid = i; 793 794 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 795 "VF[%d] - [%d] SB %04x, Tx/Rx queue %04x CID %04x\n", 796 vf->relative_vf_id, i, vf->igu_sbs[i], queue_id, i); 797 } 798 rc = qed_iov_enable_vf_access(p_hwfn, p_ptt, vf); 799 if (!rc) { 800 vf->b_init = true; 801 802 if (IS_LEAD_HWFN(p_hwfn)) 803 p_hwfn->cdev->p_iov_info->num_vfs++; 804 } 805 806 return rc; 807 } 808 809 static void qed_iov_set_link(struct qed_hwfn *p_hwfn, 810 u16 vfid, 811 struct qed_mcp_link_params *params, 812 struct qed_mcp_link_state *link, 813 struct qed_mcp_link_capabilities *p_caps) 814 { 815 struct qed_vf_info *p_vf = qed_iov_get_vf_info(p_hwfn, 816 vfid, 817 false); 818 struct qed_bulletin_content *p_bulletin; 819 820 if (!p_vf) 821 return; 822 823 p_bulletin = p_vf->bulletin.p_virt; 824 p_bulletin->req_autoneg = params->speed.autoneg; 825 p_bulletin->req_adv_speed = params->speed.advertised_speeds; 826 p_bulletin->req_forced_speed = params->speed.forced_speed; 827 p_bulletin->req_autoneg_pause = params->pause.autoneg; 828 p_bulletin->req_forced_rx = params->pause.forced_rx; 829 p_bulletin->req_forced_tx = params->pause.forced_tx; 830 p_bulletin->req_loopback = params->loopback_mode; 831 832 p_bulletin->link_up = link->link_up; 833 p_bulletin->speed = link->speed; 834 p_bulletin->full_duplex = link->full_duplex; 835 p_bulletin->autoneg = link->an; 836 p_bulletin->autoneg_complete = link->an_complete; 837 p_bulletin->parallel_detection = link->parallel_detection; 838 p_bulletin->pfc_enabled = link->pfc_enabled; 839 p_bulletin->partner_adv_speed = link->partner_adv_speed; 840 p_bulletin->partner_tx_flow_ctrl_en = link->partner_tx_flow_ctrl_en; 841 p_bulletin->partner_rx_flow_ctrl_en = link->partner_rx_flow_ctrl_en; 842 p_bulletin->partner_adv_pause = link->partner_adv_pause; 843 p_bulletin->sfp_tx_fault = link->sfp_tx_fault; 844 845 p_bulletin->capability_speed = p_caps->speed_capabilities; 846 } 847 848 static int qed_iov_release_hw_for_vf(struct qed_hwfn *p_hwfn, 849 struct qed_ptt *p_ptt, u16 rel_vf_id) 850 { 851 struct qed_mcp_link_capabilities caps; 852 struct qed_mcp_link_params params; 853 struct qed_mcp_link_state link; 854 struct qed_vf_info *vf = NULL; 855 int rc = 0; 856 857 vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true); 858 if (!vf) { 859 DP_ERR(p_hwfn, "qed_iov_release_hw_for_vf : vf is NULL\n"); 860 return -EINVAL; 861 } 862 863 if (vf->bulletin.p_virt) 864 memset(vf->bulletin.p_virt, 0, sizeof(*vf->bulletin.p_virt)); 865 866 memset(&vf->p_vf_info, 0, sizeof(vf->p_vf_info)); 867 868 /* Get the link configuration back in bulletin so 869 * that when VFs are re-enabled they get the actual 870 * link configuration. 871 */ 872 memcpy(¶ms, qed_mcp_get_link_params(p_hwfn), sizeof(params)); 873 memcpy(&link, qed_mcp_get_link_state(p_hwfn), sizeof(link)); 874 memcpy(&caps, qed_mcp_get_link_capabilities(p_hwfn), sizeof(caps)); 875 qed_iov_set_link(p_hwfn, rel_vf_id, ¶ms, &link, &caps); 876 877 if (vf->state != VF_STOPPED) { 878 /* Stopping the VF */ 879 rc = qed_sp_vf_stop(p_hwfn, vf->concrete_fid, vf->opaque_fid); 880 881 if (rc != 0) { 882 DP_ERR(p_hwfn, "qed_sp_vf_stop returned error %d\n", 883 rc); 884 return rc; 885 } 886 887 vf->state = VF_STOPPED; 888 } 889 890 /* disablng interrupts and resetting permission table was done during 891 * vf-close, however, we could get here without going through vf_close 892 */ 893 /* Disable Interrupts for VF */ 894 qed_iov_vf_igu_set_int(p_hwfn, p_ptt, vf, 0); 895 896 /* Reset Permission table */ 897 qed_iov_config_perm_table(p_hwfn, p_ptt, vf, 0); 898 899 vf->num_rxqs = 0; 900 vf->num_txqs = 0; 901 qed_iov_free_vf_igu_sbs(p_hwfn, p_ptt, vf); 902 903 if (vf->b_init) { 904 vf->b_init = false; 905 906 if (IS_LEAD_HWFN(p_hwfn)) 907 p_hwfn->cdev->p_iov_info->num_vfs--; 908 } 909 910 return 0; 911 } 912 913 static bool qed_iov_tlv_supported(u16 tlvtype) 914 { 915 return CHANNEL_TLV_NONE < tlvtype && tlvtype < CHANNEL_TLV_MAX; 916 } 917 918 /* place a given tlv on the tlv buffer, continuing current tlv list */ 919 void *qed_add_tlv(struct qed_hwfn *p_hwfn, u8 **offset, u16 type, u16 length) 920 { 921 struct channel_tlv *tl = (struct channel_tlv *)*offset; 922 923 tl->type = type; 924 tl->length = length; 925 926 /* Offset should keep pointing to next TLV (the end of the last) */ 927 *offset += length; 928 929 /* Return a pointer to the start of the added tlv */ 930 return *offset - length; 931 } 932 933 /* list the types and lengths of the tlvs on the buffer */ 934 void qed_dp_tlv_list(struct qed_hwfn *p_hwfn, void *tlvs_list) 935 { 936 u16 i = 1, total_length = 0; 937 struct channel_tlv *tlv; 938 939 do { 940 tlv = (struct channel_tlv *)((u8 *)tlvs_list + total_length); 941 942 /* output tlv */ 943 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 944 "TLV number %d: type %d, length %d\n", 945 i, tlv->type, tlv->length); 946 947 if (tlv->type == CHANNEL_TLV_LIST_END) 948 return; 949 950 /* Validate entry - protect against malicious VFs */ 951 if (!tlv->length) { 952 DP_NOTICE(p_hwfn, "TLV of length 0 found\n"); 953 return; 954 } 955 956 total_length += tlv->length; 957 958 if (total_length >= sizeof(struct tlv_buffer_size)) { 959 DP_NOTICE(p_hwfn, "TLV ==> Buffer overflow\n"); 960 return; 961 } 962 963 i++; 964 } while (1); 965 } 966 967 static void qed_iov_send_response(struct qed_hwfn *p_hwfn, 968 struct qed_ptt *p_ptt, 969 struct qed_vf_info *p_vf, 970 u16 length, u8 status) 971 { 972 struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx; 973 struct qed_dmae_params params; 974 u8 eng_vf_id; 975 976 mbx->reply_virt->default_resp.hdr.status = status; 977 978 qed_dp_tlv_list(p_hwfn, mbx->reply_virt); 979 980 eng_vf_id = p_vf->abs_vf_id; 981 982 memset(¶ms, 0, sizeof(struct qed_dmae_params)); 983 params.flags = QED_DMAE_FLAG_VF_DST; 984 params.dst_vfid = eng_vf_id; 985 986 qed_dmae_host2host(p_hwfn, p_ptt, mbx->reply_phys + sizeof(u64), 987 mbx->req_virt->first_tlv.reply_address + 988 sizeof(u64), 989 (sizeof(union pfvf_tlvs) - sizeof(u64)) / 4, 990 ¶ms); 991 992 qed_dmae_host2host(p_hwfn, p_ptt, mbx->reply_phys, 993 mbx->req_virt->first_tlv.reply_address, 994 sizeof(u64) / 4, ¶ms); 995 996 REG_WR(p_hwfn, 997 GTT_BAR0_MAP_REG_USDM_RAM + 998 USTORM_VF_PF_CHANNEL_READY_OFFSET(eng_vf_id), 1); 999 } 1000 1001 static u16 qed_iov_vport_to_tlv(struct qed_hwfn *p_hwfn, 1002 enum qed_iov_vport_update_flag flag) 1003 { 1004 switch (flag) { 1005 case QED_IOV_VP_UPDATE_ACTIVATE: 1006 return CHANNEL_TLV_VPORT_UPDATE_ACTIVATE; 1007 case QED_IOV_VP_UPDATE_VLAN_STRIP: 1008 return CHANNEL_TLV_VPORT_UPDATE_VLAN_STRIP; 1009 case QED_IOV_VP_UPDATE_TX_SWITCH: 1010 return CHANNEL_TLV_VPORT_UPDATE_TX_SWITCH; 1011 case QED_IOV_VP_UPDATE_MCAST: 1012 return CHANNEL_TLV_VPORT_UPDATE_MCAST; 1013 case QED_IOV_VP_UPDATE_ACCEPT_PARAM: 1014 return CHANNEL_TLV_VPORT_UPDATE_ACCEPT_PARAM; 1015 case QED_IOV_VP_UPDATE_RSS: 1016 return CHANNEL_TLV_VPORT_UPDATE_RSS; 1017 case QED_IOV_VP_UPDATE_ACCEPT_ANY_VLAN: 1018 return CHANNEL_TLV_VPORT_UPDATE_ACCEPT_ANY_VLAN; 1019 case QED_IOV_VP_UPDATE_SGE_TPA: 1020 return CHANNEL_TLV_VPORT_UPDATE_SGE_TPA; 1021 default: 1022 return 0; 1023 } 1024 } 1025 1026 static u16 qed_iov_prep_vp_update_resp_tlvs(struct qed_hwfn *p_hwfn, 1027 struct qed_vf_info *p_vf, 1028 struct qed_iov_vf_mbx *p_mbx, 1029 u8 status, 1030 u16 tlvs_mask, u16 tlvs_accepted) 1031 { 1032 struct pfvf_def_resp_tlv *resp; 1033 u16 size, total_len, i; 1034 1035 memset(p_mbx->reply_virt, 0, sizeof(union pfvf_tlvs)); 1036 p_mbx->offset = (u8 *)p_mbx->reply_virt; 1037 size = sizeof(struct pfvf_def_resp_tlv); 1038 total_len = size; 1039 1040 qed_add_tlv(p_hwfn, &p_mbx->offset, CHANNEL_TLV_VPORT_UPDATE, size); 1041 1042 /* Prepare response for all extended tlvs if they are found by PF */ 1043 for (i = 0; i < QED_IOV_VP_UPDATE_MAX; i++) { 1044 if (!(tlvs_mask & (1 << i))) 1045 continue; 1046 1047 resp = qed_add_tlv(p_hwfn, &p_mbx->offset, 1048 qed_iov_vport_to_tlv(p_hwfn, i), size); 1049 1050 if (tlvs_accepted & (1 << i)) 1051 resp->hdr.status = status; 1052 else 1053 resp->hdr.status = PFVF_STATUS_NOT_SUPPORTED; 1054 1055 DP_VERBOSE(p_hwfn, 1056 QED_MSG_IOV, 1057 "VF[%d] - vport_update response: TLV %d, status %02x\n", 1058 p_vf->relative_vf_id, 1059 qed_iov_vport_to_tlv(p_hwfn, i), resp->hdr.status); 1060 1061 total_len += size; 1062 } 1063 1064 qed_add_tlv(p_hwfn, &p_mbx->offset, CHANNEL_TLV_LIST_END, 1065 sizeof(struct channel_list_end_tlv)); 1066 1067 return total_len; 1068 } 1069 1070 static void qed_iov_prepare_resp(struct qed_hwfn *p_hwfn, 1071 struct qed_ptt *p_ptt, 1072 struct qed_vf_info *vf_info, 1073 u16 type, u16 length, u8 status) 1074 { 1075 struct qed_iov_vf_mbx *mbx = &vf_info->vf_mbx; 1076 1077 mbx->offset = (u8 *)mbx->reply_virt; 1078 1079 qed_add_tlv(p_hwfn, &mbx->offset, type, length); 1080 qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END, 1081 sizeof(struct channel_list_end_tlv)); 1082 1083 qed_iov_send_response(p_hwfn, p_ptt, vf_info, length, status); 1084 } 1085 1086 struct qed_public_vf_info *qed_iov_get_public_vf_info(struct qed_hwfn *p_hwfn, 1087 u16 relative_vf_id, 1088 bool b_enabled_only) 1089 { 1090 struct qed_vf_info *vf = NULL; 1091 1092 vf = qed_iov_get_vf_info(p_hwfn, relative_vf_id, b_enabled_only); 1093 if (!vf) 1094 return NULL; 1095 1096 return &vf->p_vf_info; 1097 } 1098 1099 void qed_iov_clean_vf(struct qed_hwfn *p_hwfn, u8 vfid) 1100 { 1101 struct qed_public_vf_info *vf_info; 1102 1103 vf_info = qed_iov_get_public_vf_info(p_hwfn, vfid, false); 1104 1105 if (!vf_info) 1106 return; 1107 1108 /* Clear the VF mac */ 1109 memset(vf_info->mac, 0, ETH_ALEN); 1110 } 1111 1112 static void qed_iov_vf_cleanup(struct qed_hwfn *p_hwfn, 1113 struct qed_vf_info *p_vf) 1114 { 1115 u32 i; 1116 1117 p_vf->vf_bulletin = 0; 1118 p_vf->vport_instance = 0; 1119 p_vf->num_mac_filters = 0; 1120 p_vf->num_vlan_filters = 0; 1121 p_vf->configured_features = 0; 1122 1123 /* If VF previously requested less resources, go back to default */ 1124 p_vf->num_rxqs = p_vf->num_sbs; 1125 p_vf->num_txqs = p_vf->num_sbs; 1126 1127 p_vf->num_active_rxqs = 0; 1128 1129 for (i = 0; i < QED_MAX_VF_CHAINS_PER_PF; i++) 1130 p_vf->vf_queues[i].rxq_active = 0; 1131 1132 memset(&p_vf->shadow_config, 0, sizeof(p_vf->shadow_config)); 1133 qed_iov_clean_vf(p_hwfn, p_vf->relative_vf_id); 1134 } 1135 1136 static void qed_iov_vf_mbx_acquire(struct qed_hwfn *p_hwfn, 1137 struct qed_ptt *p_ptt, 1138 struct qed_vf_info *vf) 1139 { 1140 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 1141 struct pfvf_acquire_resp_tlv *resp = &mbx->reply_virt->acquire_resp; 1142 struct pf_vf_pfdev_info *pfdev_info = &resp->pfdev_info; 1143 struct vfpf_acquire_tlv *req = &mbx->req_virt->acquire; 1144 u8 i, vfpf_status = PFVF_STATUS_SUCCESS; 1145 struct pf_vf_resc *resc = &resp->resc; 1146 1147 /* Validate FW compatibility */ 1148 if (req->vfdev_info.fw_major != FW_MAJOR_VERSION || 1149 req->vfdev_info.fw_minor != FW_MINOR_VERSION || 1150 req->vfdev_info.fw_revision != FW_REVISION_VERSION || 1151 req->vfdev_info.fw_engineering != FW_ENGINEERING_VERSION) { 1152 DP_INFO(p_hwfn, 1153 "VF[%d] is running an incompatible driver [VF needs FW %02x:%02x:%02x:%02x but Hypervisor is using %02x:%02x:%02x:%02x]\n", 1154 vf->abs_vf_id, 1155 req->vfdev_info.fw_major, 1156 req->vfdev_info.fw_minor, 1157 req->vfdev_info.fw_revision, 1158 req->vfdev_info.fw_engineering, 1159 FW_MAJOR_VERSION, 1160 FW_MINOR_VERSION, 1161 FW_REVISION_VERSION, FW_ENGINEERING_VERSION); 1162 vfpf_status = PFVF_STATUS_NOT_SUPPORTED; 1163 goto out; 1164 } 1165 1166 /* On 100g PFs, prevent old VFs from loading */ 1167 if ((p_hwfn->cdev->num_hwfns > 1) && 1168 !(req->vfdev_info.capabilities & VFPF_ACQUIRE_CAP_100G)) { 1169 DP_INFO(p_hwfn, 1170 "VF[%d] is running an old driver that doesn't support 100g\n", 1171 vf->abs_vf_id); 1172 vfpf_status = PFVF_STATUS_NOT_SUPPORTED; 1173 goto out; 1174 } 1175 1176 memset(resp, 0, sizeof(*resp)); 1177 1178 /* Fill in vf info stuff */ 1179 vf->opaque_fid = req->vfdev_info.opaque_fid; 1180 vf->num_mac_filters = 1; 1181 vf->num_vlan_filters = QED_ETH_VF_NUM_VLAN_FILTERS; 1182 1183 vf->vf_bulletin = req->bulletin_addr; 1184 vf->bulletin.size = (vf->bulletin.size < req->bulletin_size) ? 1185 vf->bulletin.size : req->bulletin_size; 1186 1187 /* fill in pfdev info */ 1188 pfdev_info->chip_num = p_hwfn->cdev->chip_num; 1189 pfdev_info->db_size = 0; 1190 pfdev_info->indices_per_sb = PIS_PER_SB; 1191 1192 pfdev_info->capabilities = PFVF_ACQUIRE_CAP_DEFAULT_UNTAGGED | 1193 PFVF_ACQUIRE_CAP_POST_FW_OVERRIDE; 1194 if (p_hwfn->cdev->num_hwfns > 1) 1195 pfdev_info->capabilities |= PFVF_ACQUIRE_CAP_100G; 1196 1197 pfdev_info->stats_info.mstats.address = 1198 PXP_VF_BAR0_START_MSDM_ZONE_B + 1199 offsetof(struct mstorm_vf_zone, non_trigger.eth_queue_stat); 1200 pfdev_info->stats_info.mstats.len = 1201 sizeof(struct eth_mstorm_per_queue_stat); 1202 1203 pfdev_info->stats_info.ustats.address = 1204 PXP_VF_BAR0_START_USDM_ZONE_B + 1205 offsetof(struct ustorm_vf_zone, non_trigger.eth_queue_stat); 1206 pfdev_info->stats_info.ustats.len = 1207 sizeof(struct eth_ustorm_per_queue_stat); 1208 1209 pfdev_info->stats_info.pstats.address = 1210 PXP_VF_BAR0_START_PSDM_ZONE_B + 1211 offsetof(struct pstorm_vf_zone, non_trigger.eth_queue_stat); 1212 pfdev_info->stats_info.pstats.len = 1213 sizeof(struct eth_pstorm_per_queue_stat); 1214 1215 pfdev_info->stats_info.tstats.address = 0; 1216 pfdev_info->stats_info.tstats.len = 0; 1217 1218 memcpy(pfdev_info->port_mac, p_hwfn->hw_info.hw_mac_addr, ETH_ALEN); 1219 1220 pfdev_info->fw_major = FW_MAJOR_VERSION; 1221 pfdev_info->fw_minor = FW_MINOR_VERSION; 1222 pfdev_info->fw_rev = FW_REVISION_VERSION; 1223 pfdev_info->fw_eng = FW_ENGINEERING_VERSION; 1224 pfdev_info->os_type = VFPF_ACQUIRE_OS_LINUX; 1225 qed_mcp_get_mfw_ver(p_hwfn, p_ptt, &pfdev_info->mfw_ver, NULL); 1226 1227 pfdev_info->dev_type = p_hwfn->cdev->type; 1228 pfdev_info->chip_rev = p_hwfn->cdev->chip_rev; 1229 1230 resc->num_rxqs = vf->num_rxqs; 1231 resc->num_txqs = vf->num_txqs; 1232 resc->num_sbs = vf->num_sbs; 1233 for (i = 0; i < resc->num_sbs; i++) { 1234 resc->hw_sbs[i].hw_sb_id = vf->igu_sbs[i]; 1235 resc->hw_sbs[i].sb_qid = 0; 1236 } 1237 1238 for (i = 0; i < resc->num_rxqs; i++) { 1239 qed_fw_l2_queue(p_hwfn, vf->vf_queues[i].fw_rx_qid, 1240 (u16 *)&resc->hw_qid[i]); 1241 resc->cid[i] = vf->vf_queues[i].fw_cid; 1242 } 1243 1244 resc->num_mac_filters = min_t(u8, vf->num_mac_filters, 1245 req->resc_request.num_mac_filters); 1246 resc->num_vlan_filters = min_t(u8, vf->num_vlan_filters, 1247 req->resc_request.num_vlan_filters); 1248 1249 /* This isn't really required as VF isn't limited, but some VFs might 1250 * actually test this value, so need to provide it. 1251 */ 1252 resc->num_mc_filters = req->resc_request.num_mc_filters; 1253 1254 /* Fill agreed size of bulletin board in response */ 1255 resp->bulletin_size = vf->bulletin.size; 1256 qed_iov_post_vf_bulletin(p_hwfn, vf->relative_vf_id, p_ptt); 1257 1258 DP_VERBOSE(p_hwfn, 1259 QED_MSG_IOV, 1260 "VF[%d] ACQUIRE_RESPONSE: pfdev_info- chip_num=0x%x, db_size=%d, idx_per_sb=%d, pf_cap=0x%llx\n" 1261 "resources- n_rxq-%d, n_txq-%d, n_sbs-%d, n_macs-%d, n_vlans-%d\n", 1262 vf->abs_vf_id, 1263 resp->pfdev_info.chip_num, 1264 resp->pfdev_info.db_size, 1265 resp->pfdev_info.indices_per_sb, 1266 resp->pfdev_info.capabilities, 1267 resc->num_rxqs, 1268 resc->num_txqs, 1269 resc->num_sbs, 1270 resc->num_mac_filters, 1271 resc->num_vlan_filters); 1272 vf->state = VF_ACQUIRED; 1273 1274 /* Prepare Response */ 1275 out: 1276 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_ACQUIRE, 1277 sizeof(struct pfvf_acquire_resp_tlv), vfpf_status); 1278 } 1279 1280 static int __qed_iov_spoofchk_set(struct qed_hwfn *p_hwfn, 1281 struct qed_vf_info *p_vf, bool val) 1282 { 1283 struct qed_sp_vport_update_params params; 1284 int rc; 1285 1286 if (val == p_vf->spoof_chk) { 1287 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 1288 "Spoofchk value[%d] is already configured\n", val); 1289 return 0; 1290 } 1291 1292 memset(¶ms, 0, sizeof(struct qed_sp_vport_update_params)); 1293 params.opaque_fid = p_vf->opaque_fid; 1294 params.vport_id = p_vf->vport_id; 1295 params.update_anti_spoofing_en_flg = 1; 1296 params.anti_spoofing_en = val; 1297 1298 rc = qed_sp_vport_update(p_hwfn, ¶ms, QED_SPQ_MODE_EBLOCK, NULL); 1299 if (rc) { 1300 p_vf->spoof_chk = val; 1301 p_vf->req_spoofchk_val = p_vf->spoof_chk; 1302 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 1303 "Spoofchk val[%d] configured\n", val); 1304 } else { 1305 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 1306 "Spoofchk configuration[val:%d] failed for VF[%d]\n", 1307 val, p_vf->relative_vf_id); 1308 } 1309 1310 return rc; 1311 } 1312 1313 static int qed_iov_reconfigure_unicast_vlan(struct qed_hwfn *p_hwfn, 1314 struct qed_vf_info *p_vf) 1315 { 1316 struct qed_filter_ucast filter; 1317 int rc = 0; 1318 int i; 1319 1320 memset(&filter, 0, sizeof(filter)); 1321 filter.is_rx_filter = 1; 1322 filter.is_tx_filter = 1; 1323 filter.vport_to_add_to = p_vf->vport_id; 1324 filter.opcode = QED_FILTER_ADD; 1325 1326 /* Reconfigure vlans */ 1327 for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++) { 1328 if (!p_vf->shadow_config.vlans[i].used) 1329 continue; 1330 1331 filter.type = QED_FILTER_VLAN; 1332 filter.vlan = p_vf->shadow_config.vlans[i].vid; 1333 DP_VERBOSE(p_hwfn, 1334 QED_MSG_IOV, 1335 "Reconfiguring VLAN [0x%04x] for VF [%04x]\n", 1336 filter.vlan, p_vf->relative_vf_id); 1337 rc = qed_sp_eth_filter_ucast(p_hwfn, 1338 p_vf->opaque_fid, 1339 &filter, 1340 QED_SPQ_MODE_CB, NULL); 1341 if (rc) { 1342 DP_NOTICE(p_hwfn, 1343 "Failed to configure VLAN [%04x] to VF [%04x]\n", 1344 filter.vlan, p_vf->relative_vf_id); 1345 break; 1346 } 1347 } 1348 1349 return rc; 1350 } 1351 1352 static int 1353 qed_iov_reconfigure_unicast_shadow(struct qed_hwfn *p_hwfn, 1354 struct qed_vf_info *p_vf, u64 events) 1355 { 1356 int rc = 0; 1357 1358 if ((events & (1 << VLAN_ADDR_FORCED)) && 1359 !(p_vf->configured_features & (1 << VLAN_ADDR_FORCED))) 1360 rc = qed_iov_reconfigure_unicast_vlan(p_hwfn, p_vf); 1361 1362 return rc; 1363 } 1364 1365 static int qed_iov_configure_vport_forced(struct qed_hwfn *p_hwfn, 1366 struct qed_vf_info *p_vf, u64 events) 1367 { 1368 int rc = 0; 1369 struct qed_filter_ucast filter; 1370 1371 if (!p_vf->vport_instance) 1372 return -EINVAL; 1373 1374 if (events & (1 << MAC_ADDR_FORCED)) { 1375 /* Since there's no way [currently] of removing the MAC, 1376 * we can always assume this means we need to force it. 1377 */ 1378 memset(&filter, 0, sizeof(filter)); 1379 filter.type = QED_FILTER_MAC; 1380 filter.opcode = QED_FILTER_REPLACE; 1381 filter.is_rx_filter = 1; 1382 filter.is_tx_filter = 1; 1383 filter.vport_to_add_to = p_vf->vport_id; 1384 ether_addr_copy(filter.mac, p_vf->bulletin.p_virt->mac); 1385 1386 rc = qed_sp_eth_filter_ucast(p_hwfn, p_vf->opaque_fid, 1387 &filter, QED_SPQ_MODE_CB, NULL); 1388 if (rc) { 1389 DP_NOTICE(p_hwfn, 1390 "PF failed to configure MAC for VF\n"); 1391 return rc; 1392 } 1393 1394 p_vf->configured_features |= 1 << MAC_ADDR_FORCED; 1395 } 1396 1397 if (events & (1 << VLAN_ADDR_FORCED)) { 1398 struct qed_sp_vport_update_params vport_update; 1399 u8 removal; 1400 int i; 1401 1402 memset(&filter, 0, sizeof(filter)); 1403 filter.type = QED_FILTER_VLAN; 1404 filter.is_rx_filter = 1; 1405 filter.is_tx_filter = 1; 1406 filter.vport_to_add_to = p_vf->vport_id; 1407 filter.vlan = p_vf->bulletin.p_virt->pvid; 1408 filter.opcode = filter.vlan ? QED_FILTER_REPLACE : 1409 QED_FILTER_FLUSH; 1410 1411 /* Send the ramrod */ 1412 rc = qed_sp_eth_filter_ucast(p_hwfn, p_vf->opaque_fid, 1413 &filter, QED_SPQ_MODE_CB, NULL); 1414 if (rc) { 1415 DP_NOTICE(p_hwfn, 1416 "PF failed to configure VLAN for VF\n"); 1417 return rc; 1418 } 1419 1420 /* Update the default-vlan & silent vlan stripping */ 1421 memset(&vport_update, 0, sizeof(vport_update)); 1422 vport_update.opaque_fid = p_vf->opaque_fid; 1423 vport_update.vport_id = p_vf->vport_id; 1424 vport_update.update_default_vlan_enable_flg = 1; 1425 vport_update.default_vlan_enable_flg = filter.vlan ? 1 : 0; 1426 vport_update.update_default_vlan_flg = 1; 1427 vport_update.default_vlan = filter.vlan; 1428 1429 vport_update.update_inner_vlan_removal_flg = 1; 1430 removal = filter.vlan ? 1 1431 : p_vf->shadow_config.inner_vlan_removal; 1432 vport_update.inner_vlan_removal_flg = removal; 1433 vport_update.silent_vlan_removal_flg = filter.vlan ? 1 : 0; 1434 rc = qed_sp_vport_update(p_hwfn, 1435 &vport_update, 1436 QED_SPQ_MODE_EBLOCK, NULL); 1437 if (rc) { 1438 DP_NOTICE(p_hwfn, 1439 "PF failed to configure VF vport for vlan\n"); 1440 return rc; 1441 } 1442 1443 /* Update all the Rx queues */ 1444 for (i = 0; i < QED_MAX_VF_CHAINS_PER_PF; i++) { 1445 u16 qid; 1446 1447 if (!p_vf->vf_queues[i].rxq_active) 1448 continue; 1449 1450 qid = p_vf->vf_queues[i].fw_rx_qid; 1451 1452 rc = qed_sp_eth_rx_queues_update(p_hwfn, qid, 1453 1, 0, 1, 1454 QED_SPQ_MODE_EBLOCK, 1455 NULL); 1456 if (rc) { 1457 DP_NOTICE(p_hwfn, 1458 "Failed to send Rx update fo queue[0x%04x]\n", 1459 qid); 1460 return rc; 1461 } 1462 } 1463 1464 if (filter.vlan) 1465 p_vf->configured_features |= 1 << VLAN_ADDR_FORCED; 1466 else 1467 p_vf->configured_features &= ~(1 << VLAN_ADDR_FORCED); 1468 } 1469 1470 /* If forced features are terminated, we need to configure the shadow 1471 * configuration back again. 1472 */ 1473 if (events) 1474 qed_iov_reconfigure_unicast_shadow(p_hwfn, p_vf, events); 1475 1476 return rc; 1477 } 1478 1479 static void qed_iov_vf_mbx_start_vport(struct qed_hwfn *p_hwfn, 1480 struct qed_ptt *p_ptt, 1481 struct qed_vf_info *vf) 1482 { 1483 struct qed_sp_vport_start_params params = { 0 }; 1484 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 1485 struct vfpf_vport_start_tlv *start; 1486 u8 status = PFVF_STATUS_SUCCESS; 1487 struct qed_vf_info *vf_info; 1488 u64 *p_bitmap; 1489 int sb_id; 1490 int rc; 1491 1492 vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vf->relative_vf_id, true); 1493 if (!vf_info) { 1494 DP_NOTICE(p_hwfn->cdev, 1495 "Failed to get VF info, invalid vfid [%d]\n", 1496 vf->relative_vf_id); 1497 return; 1498 } 1499 1500 vf->state = VF_ENABLED; 1501 start = &mbx->req_virt->start_vport; 1502 1503 /* Initialize Status block in CAU */ 1504 for (sb_id = 0; sb_id < vf->num_sbs; sb_id++) { 1505 if (!start->sb_addr[sb_id]) { 1506 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 1507 "VF[%d] did not fill the address of SB %d\n", 1508 vf->relative_vf_id, sb_id); 1509 break; 1510 } 1511 1512 qed_int_cau_conf_sb(p_hwfn, p_ptt, 1513 start->sb_addr[sb_id], 1514 vf->igu_sbs[sb_id], 1515 vf->abs_vf_id, 1); 1516 } 1517 qed_iov_enable_vf_traffic(p_hwfn, p_ptt, vf); 1518 1519 vf->mtu = start->mtu; 1520 vf->shadow_config.inner_vlan_removal = start->inner_vlan_removal; 1521 1522 /* Take into consideration configuration forced by hypervisor; 1523 * If none is configured, use the supplied VF values [for old 1524 * vfs that would still be fine, since they passed '0' as padding]. 1525 */ 1526 p_bitmap = &vf_info->bulletin.p_virt->valid_bitmap; 1527 if (!(*p_bitmap & (1 << VFPF_BULLETIN_UNTAGGED_DEFAULT_FORCED))) { 1528 u8 vf_req = start->only_untagged; 1529 1530 vf_info->bulletin.p_virt->default_only_untagged = vf_req; 1531 *p_bitmap |= 1 << VFPF_BULLETIN_UNTAGGED_DEFAULT; 1532 } 1533 1534 params.tpa_mode = start->tpa_mode; 1535 params.remove_inner_vlan = start->inner_vlan_removal; 1536 params.tx_switching = true; 1537 1538 params.only_untagged = vf_info->bulletin.p_virt->default_only_untagged; 1539 params.drop_ttl0 = false; 1540 params.concrete_fid = vf->concrete_fid; 1541 params.opaque_fid = vf->opaque_fid; 1542 params.vport_id = vf->vport_id; 1543 params.max_buffers_per_cqe = start->max_buffers_per_cqe; 1544 params.mtu = vf->mtu; 1545 1546 rc = qed_sp_eth_vport_start(p_hwfn, ¶ms); 1547 if (rc != 0) { 1548 DP_ERR(p_hwfn, 1549 "qed_iov_vf_mbx_start_vport returned error %d\n", rc); 1550 status = PFVF_STATUS_FAILURE; 1551 } else { 1552 vf->vport_instance++; 1553 1554 /* Force configuration if needed on the newly opened vport */ 1555 qed_iov_configure_vport_forced(p_hwfn, vf, *p_bitmap); 1556 1557 __qed_iov_spoofchk_set(p_hwfn, vf, vf->req_spoofchk_val); 1558 } 1559 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_VPORT_START, 1560 sizeof(struct pfvf_def_resp_tlv), status); 1561 } 1562 1563 static void qed_iov_vf_mbx_stop_vport(struct qed_hwfn *p_hwfn, 1564 struct qed_ptt *p_ptt, 1565 struct qed_vf_info *vf) 1566 { 1567 u8 status = PFVF_STATUS_SUCCESS; 1568 int rc; 1569 1570 vf->vport_instance--; 1571 vf->spoof_chk = false; 1572 1573 rc = qed_sp_vport_stop(p_hwfn, vf->opaque_fid, vf->vport_id); 1574 if (rc != 0) { 1575 DP_ERR(p_hwfn, "qed_iov_vf_mbx_stop_vport returned error %d\n", 1576 rc); 1577 status = PFVF_STATUS_FAILURE; 1578 } 1579 1580 /* Forget the configuration on the vport */ 1581 vf->configured_features = 0; 1582 memset(&vf->shadow_config, 0, sizeof(vf->shadow_config)); 1583 1584 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_VPORT_TEARDOWN, 1585 sizeof(struct pfvf_def_resp_tlv), status); 1586 } 1587 1588 #define TSTORM_QZONE_START PXP_VF_BAR0_START_SDM_ZONE_A 1589 #define MSTORM_QZONE_START(dev) (TSTORM_QZONE_START + \ 1590 (TSTORM_QZONE_SIZE * NUM_OF_L2_QUEUES(dev))) 1591 1592 static void qed_iov_vf_mbx_start_rxq_resp(struct qed_hwfn *p_hwfn, 1593 struct qed_ptt *p_ptt, 1594 struct qed_vf_info *vf, u8 status) 1595 { 1596 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 1597 struct pfvf_start_queue_resp_tlv *p_tlv; 1598 struct vfpf_start_rxq_tlv *req; 1599 1600 mbx->offset = (u8 *)mbx->reply_virt; 1601 1602 p_tlv = qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_START_RXQ, 1603 sizeof(*p_tlv)); 1604 qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END, 1605 sizeof(struct channel_list_end_tlv)); 1606 1607 /* Update the TLV with the response */ 1608 if (status == PFVF_STATUS_SUCCESS) { 1609 u16 hw_qid = 0; 1610 1611 req = &mbx->req_virt->start_rxq; 1612 qed_fw_l2_queue(p_hwfn, vf->vf_queues[req->rx_qid].fw_rx_qid, 1613 &hw_qid); 1614 1615 p_tlv->offset = MSTORM_QZONE_START(p_hwfn->cdev) + 1616 hw_qid * MSTORM_QZONE_SIZE + 1617 offsetof(struct mstorm_eth_queue_zone, 1618 rx_producers); 1619 } 1620 1621 qed_iov_send_response(p_hwfn, p_ptt, vf, sizeof(*p_tlv), status); 1622 } 1623 1624 static void qed_iov_vf_mbx_start_rxq(struct qed_hwfn *p_hwfn, 1625 struct qed_ptt *p_ptt, 1626 struct qed_vf_info *vf) 1627 { 1628 struct qed_queue_start_common_params params; 1629 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 1630 u8 status = PFVF_STATUS_SUCCESS; 1631 struct vfpf_start_rxq_tlv *req; 1632 int rc; 1633 1634 memset(¶ms, 0, sizeof(params)); 1635 req = &mbx->req_virt->start_rxq; 1636 params.queue_id = vf->vf_queues[req->rx_qid].fw_rx_qid; 1637 params.vport_id = vf->vport_id; 1638 params.sb = req->hw_sb; 1639 params.sb_idx = req->sb_index; 1640 1641 rc = qed_sp_eth_rxq_start_ramrod(p_hwfn, vf->opaque_fid, 1642 vf->vf_queues[req->rx_qid].fw_cid, 1643 ¶ms, 1644 vf->abs_vf_id + 0x10, 1645 req->bd_max_bytes, 1646 req->rxq_addr, 1647 req->cqe_pbl_addr, req->cqe_pbl_size); 1648 1649 if (rc) { 1650 status = PFVF_STATUS_FAILURE; 1651 } else { 1652 vf->vf_queues[req->rx_qid].rxq_active = true; 1653 vf->num_active_rxqs++; 1654 } 1655 1656 qed_iov_vf_mbx_start_rxq_resp(p_hwfn, p_ptt, vf, status); 1657 } 1658 1659 static void qed_iov_vf_mbx_start_txq(struct qed_hwfn *p_hwfn, 1660 struct qed_ptt *p_ptt, 1661 struct qed_vf_info *vf) 1662 { 1663 u16 length = sizeof(struct pfvf_def_resp_tlv); 1664 struct qed_queue_start_common_params params; 1665 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 1666 union qed_qm_pq_params pq_params; 1667 u8 status = PFVF_STATUS_SUCCESS; 1668 struct vfpf_start_txq_tlv *req; 1669 int rc; 1670 1671 /* Prepare the parameters which would choose the right PQ */ 1672 memset(&pq_params, 0, sizeof(pq_params)); 1673 pq_params.eth.is_vf = 1; 1674 pq_params.eth.vf_id = vf->relative_vf_id; 1675 1676 memset(¶ms, 0, sizeof(params)); 1677 req = &mbx->req_virt->start_txq; 1678 params.queue_id = vf->vf_queues[req->tx_qid].fw_tx_qid; 1679 params.vport_id = vf->vport_id; 1680 params.sb = req->hw_sb; 1681 params.sb_idx = req->sb_index; 1682 1683 rc = qed_sp_eth_txq_start_ramrod(p_hwfn, 1684 vf->opaque_fid, 1685 vf->vf_queues[req->tx_qid].fw_cid, 1686 ¶ms, 1687 vf->abs_vf_id + 0x10, 1688 req->pbl_addr, 1689 req->pbl_size, &pq_params); 1690 1691 if (rc) 1692 status = PFVF_STATUS_FAILURE; 1693 else 1694 vf->vf_queues[req->tx_qid].txq_active = true; 1695 1696 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_START_TXQ, 1697 length, status); 1698 } 1699 1700 static int qed_iov_vf_stop_rxqs(struct qed_hwfn *p_hwfn, 1701 struct qed_vf_info *vf, 1702 u16 rxq_id, u8 num_rxqs, bool cqe_completion) 1703 { 1704 int rc = 0; 1705 int qid; 1706 1707 if (rxq_id + num_rxqs > ARRAY_SIZE(vf->vf_queues)) 1708 return -EINVAL; 1709 1710 for (qid = rxq_id; qid < rxq_id + num_rxqs; qid++) { 1711 if (vf->vf_queues[qid].rxq_active) { 1712 rc = qed_sp_eth_rx_queue_stop(p_hwfn, 1713 vf->vf_queues[qid]. 1714 fw_rx_qid, false, 1715 cqe_completion); 1716 1717 if (rc) 1718 return rc; 1719 } 1720 vf->vf_queues[qid].rxq_active = false; 1721 vf->num_active_rxqs--; 1722 } 1723 1724 return rc; 1725 } 1726 1727 static int qed_iov_vf_stop_txqs(struct qed_hwfn *p_hwfn, 1728 struct qed_vf_info *vf, u16 txq_id, u8 num_txqs) 1729 { 1730 int rc = 0; 1731 int qid; 1732 1733 if (txq_id + num_txqs > ARRAY_SIZE(vf->vf_queues)) 1734 return -EINVAL; 1735 1736 for (qid = txq_id; qid < txq_id + num_txqs; qid++) { 1737 if (vf->vf_queues[qid].txq_active) { 1738 rc = qed_sp_eth_tx_queue_stop(p_hwfn, 1739 vf->vf_queues[qid]. 1740 fw_tx_qid); 1741 1742 if (rc) 1743 return rc; 1744 } 1745 vf->vf_queues[qid].txq_active = false; 1746 } 1747 return rc; 1748 } 1749 1750 static void qed_iov_vf_mbx_stop_rxqs(struct qed_hwfn *p_hwfn, 1751 struct qed_ptt *p_ptt, 1752 struct qed_vf_info *vf) 1753 { 1754 u16 length = sizeof(struct pfvf_def_resp_tlv); 1755 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 1756 u8 status = PFVF_STATUS_SUCCESS; 1757 struct vfpf_stop_rxqs_tlv *req; 1758 int rc; 1759 1760 /* We give the option of starting from qid != 0, in this case we 1761 * need to make sure that qid + num_qs doesn't exceed the actual 1762 * amount of queues that exist. 1763 */ 1764 req = &mbx->req_virt->stop_rxqs; 1765 rc = qed_iov_vf_stop_rxqs(p_hwfn, vf, req->rx_qid, 1766 req->num_rxqs, req->cqe_completion); 1767 if (rc) 1768 status = PFVF_STATUS_FAILURE; 1769 1770 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_STOP_RXQS, 1771 length, status); 1772 } 1773 1774 static void qed_iov_vf_mbx_stop_txqs(struct qed_hwfn *p_hwfn, 1775 struct qed_ptt *p_ptt, 1776 struct qed_vf_info *vf) 1777 { 1778 u16 length = sizeof(struct pfvf_def_resp_tlv); 1779 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 1780 u8 status = PFVF_STATUS_SUCCESS; 1781 struct vfpf_stop_txqs_tlv *req; 1782 int rc; 1783 1784 /* We give the option of starting from qid != 0, in this case we 1785 * need to make sure that qid + num_qs doesn't exceed the actual 1786 * amount of queues that exist. 1787 */ 1788 req = &mbx->req_virt->stop_txqs; 1789 rc = qed_iov_vf_stop_txqs(p_hwfn, vf, req->tx_qid, req->num_txqs); 1790 if (rc) 1791 status = PFVF_STATUS_FAILURE; 1792 1793 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_STOP_TXQS, 1794 length, status); 1795 } 1796 1797 static void qed_iov_vf_mbx_update_rxqs(struct qed_hwfn *p_hwfn, 1798 struct qed_ptt *p_ptt, 1799 struct qed_vf_info *vf) 1800 { 1801 u16 length = sizeof(struct pfvf_def_resp_tlv); 1802 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 1803 struct vfpf_update_rxq_tlv *req; 1804 u8 status = PFVF_STATUS_SUCCESS; 1805 u8 complete_event_flg; 1806 u8 complete_cqe_flg; 1807 u16 qid; 1808 int rc; 1809 u8 i; 1810 1811 req = &mbx->req_virt->update_rxq; 1812 complete_cqe_flg = !!(req->flags & VFPF_RXQ_UPD_COMPLETE_CQE_FLAG); 1813 complete_event_flg = !!(req->flags & VFPF_RXQ_UPD_COMPLETE_EVENT_FLAG); 1814 1815 for (i = 0; i < req->num_rxqs; i++) { 1816 qid = req->rx_qid + i; 1817 1818 if (!vf->vf_queues[qid].rxq_active) { 1819 DP_NOTICE(p_hwfn, "VF rx_qid = %d isn`t active!\n", 1820 qid); 1821 status = PFVF_STATUS_FAILURE; 1822 break; 1823 } 1824 1825 rc = qed_sp_eth_rx_queues_update(p_hwfn, 1826 vf->vf_queues[qid].fw_rx_qid, 1827 1, 1828 complete_cqe_flg, 1829 complete_event_flg, 1830 QED_SPQ_MODE_EBLOCK, NULL); 1831 1832 if (rc) { 1833 status = PFVF_STATUS_FAILURE; 1834 break; 1835 } 1836 } 1837 1838 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_UPDATE_RXQ, 1839 length, status); 1840 } 1841 1842 void *qed_iov_search_list_tlvs(struct qed_hwfn *p_hwfn, 1843 void *p_tlvs_list, u16 req_type) 1844 { 1845 struct channel_tlv *p_tlv = (struct channel_tlv *)p_tlvs_list; 1846 int len = 0; 1847 1848 do { 1849 if (!p_tlv->length) { 1850 DP_NOTICE(p_hwfn, "Zero length TLV found\n"); 1851 return NULL; 1852 } 1853 1854 if (p_tlv->type == req_type) { 1855 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 1856 "Extended tlv type %d, length %d found\n", 1857 p_tlv->type, p_tlv->length); 1858 return p_tlv; 1859 } 1860 1861 len += p_tlv->length; 1862 p_tlv = (struct channel_tlv *)((u8 *)p_tlv + p_tlv->length); 1863 1864 if ((len + p_tlv->length) > TLV_BUFFER_SIZE) { 1865 DP_NOTICE(p_hwfn, "TLVs has overrun the buffer size\n"); 1866 return NULL; 1867 } 1868 } while (p_tlv->type != CHANNEL_TLV_LIST_END); 1869 1870 return NULL; 1871 } 1872 1873 static void 1874 qed_iov_vp_update_act_param(struct qed_hwfn *p_hwfn, 1875 struct qed_sp_vport_update_params *p_data, 1876 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask) 1877 { 1878 struct vfpf_vport_update_activate_tlv *p_act_tlv; 1879 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_ACTIVATE; 1880 1881 p_act_tlv = (struct vfpf_vport_update_activate_tlv *) 1882 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv); 1883 if (!p_act_tlv) 1884 return; 1885 1886 p_data->update_vport_active_rx_flg = p_act_tlv->update_rx; 1887 p_data->vport_active_rx_flg = p_act_tlv->active_rx; 1888 p_data->update_vport_active_tx_flg = p_act_tlv->update_tx; 1889 p_data->vport_active_tx_flg = p_act_tlv->active_tx; 1890 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_ACTIVATE; 1891 } 1892 1893 static void 1894 qed_iov_vp_update_vlan_param(struct qed_hwfn *p_hwfn, 1895 struct qed_sp_vport_update_params *p_data, 1896 struct qed_vf_info *p_vf, 1897 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask) 1898 { 1899 struct vfpf_vport_update_vlan_strip_tlv *p_vlan_tlv; 1900 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_VLAN_STRIP; 1901 1902 p_vlan_tlv = (struct vfpf_vport_update_vlan_strip_tlv *) 1903 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv); 1904 if (!p_vlan_tlv) 1905 return; 1906 1907 p_vf->shadow_config.inner_vlan_removal = p_vlan_tlv->remove_vlan; 1908 1909 /* Ignore the VF request if we're forcing a vlan */ 1910 if (!(p_vf->configured_features & (1 << VLAN_ADDR_FORCED))) { 1911 p_data->update_inner_vlan_removal_flg = 1; 1912 p_data->inner_vlan_removal_flg = p_vlan_tlv->remove_vlan; 1913 } 1914 1915 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_VLAN_STRIP; 1916 } 1917 1918 static void 1919 qed_iov_vp_update_tx_switch(struct qed_hwfn *p_hwfn, 1920 struct qed_sp_vport_update_params *p_data, 1921 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask) 1922 { 1923 struct vfpf_vport_update_tx_switch_tlv *p_tx_switch_tlv; 1924 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_TX_SWITCH; 1925 1926 p_tx_switch_tlv = (struct vfpf_vport_update_tx_switch_tlv *) 1927 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, 1928 tlv); 1929 if (!p_tx_switch_tlv) 1930 return; 1931 1932 p_data->update_tx_switching_flg = 1; 1933 p_data->tx_switching_flg = p_tx_switch_tlv->tx_switching; 1934 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_TX_SWITCH; 1935 } 1936 1937 static void 1938 qed_iov_vp_update_mcast_bin_param(struct qed_hwfn *p_hwfn, 1939 struct qed_sp_vport_update_params *p_data, 1940 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask) 1941 { 1942 struct vfpf_vport_update_mcast_bin_tlv *p_mcast_tlv; 1943 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_MCAST; 1944 1945 p_mcast_tlv = (struct vfpf_vport_update_mcast_bin_tlv *) 1946 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv); 1947 if (!p_mcast_tlv) 1948 return; 1949 1950 p_data->update_approx_mcast_flg = 1; 1951 memcpy(p_data->bins, p_mcast_tlv->bins, 1952 sizeof(unsigned long) * ETH_MULTICAST_MAC_BINS_IN_REGS); 1953 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_MCAST; 1954 } 1955 1956 static void 1957 qed_iov_vp_update_accept_flag(struct qed_hwfn *p_hwfn, 1958 struct qed_sp_vport_update_params *p_data, 1959 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask) 1960 { 1961 struct qed_filter_accept_flags *p_flags = &p_data->accept_flags; 1962 struct vfpf_vport_update_accept_param_tlv *p_accept_tlv; 1963 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_ACCEPT_PARAM; 1964 1965 p_accept_tlv = (struct vfpf_vport_update_accept_param_tlv *) 1966 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv); 1967 if (!p_accept_tlv) 1968 return; 1969 1970 p_flags->update_rx_mode_config = p_accept_tlv->update_rx_mode; 1971 p_flags->rx_accept_filter = p_accept_tlv->rx_accept_filter; 1972 p_flags->update_tx_mode_config = p_accept_tlv->update_tx_mode; 1973 p_flags->tx_accept_filter = p_accept_tlv->tx_accept_filter; 1974 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_ACCEPT_PARAM; 1975 } 1976 1977 static void 1978 qed_iov_vp_update_accept_any_vlan(struct qed_hwfn *p_hwfn, 1979 struct qed_sp_vport_update_params *p_data, 1980 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask) 1981 { 1982 struct vfpf_vport_update_accept_any_vlan_tlv *p_accept_any_vlan; 1983 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_ACCEPT_ANY_VLAN; 1984 1985 p_accept_any_vlan = (struct vfpf_vport_update_accept_any_vlan_tlv *) 1986 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, 1987 tlv); 1988 if (!p_accept_any_vlan) 1989 return; 1990 1991 p_data->accept_any_vlan = p_accept_any_vlan->accept_any_vlan; 1992 p_data->update_accept_any_vlan_flg = 1993 p_accept_any_vlan->update_accept_any_vlan_flg; 1994 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_ACCEPT_ANY_VLAN; 1995 } 1996 1997 static void 1998 qed_iov_vp_update_rss_param(struct qed_hwfn *p_hwfn, 1999 struct qed_vf_info *vf, 2000 struct qed_sp_vport_update_params *p_data, 2001 struct qed_rss_params *p_rss, 2002 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask) 2003 { 2004 struct vfpf_vport_update_rss_tlv *p_rss_tlv; 2005 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_RSS; 2006 u16 i, q_idx, max_q_idx; 2007 u16 table_size; 2008 2009 p_rss_tlv = (struct vfpf_vport_update_rss_tlv *) 2010 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv); 2011 if (!p_rss_tlv) { 2012 p_data->rss_params = NULL; 2013 return; 2014 } 2015 2016 memset(p_rss, 0, sizeof(struct qed_rss_params)); 2017 2018 p_rss->update_rss_config = !!(p_rss_tlv->update_rss_flags & 2019 VFPF_UPDATE_RSS_CONFIG_FLAG); 2020 p_rss->update_rss_capabilities = !!(p_rss_tlv->update_rss_flags & 2021 VFPF_UPDATE_RSS_CAPS_FLAG); 2022 p_rss->update_rss_ind_table = !!(p_rss_tlv->update_rss_flags & 2023 VFPF_UPDATE_RSS_IND_TABLE_FLAG); 2024 p_rss->update_rss_key = !!(p_rss_tlv->update_rss_flags & 2025 VFPF_UPDATE_RSS_KEY_FLAG); 2026 2027 p_rss->rss_enable = p_rss_tlv->rss_enable; 2028 p_rss->rss_eng_id = vf->relative_vf_id + 1; 2029 p_rss->rss_caps = p_rss_tlv->rss_caps; 2030 p_rss->rss_table_size_log = p_rss_tlv->rss_table_size_log; 2031 memcpy(p_rss->rss_ind_table, p_rss_tlv->rss_ind_table, 2032 sizeof(p_rss->rss_ind_table)); 2033 memcpy(p_rss->rss_key, p_rss_tlv->rss_key, sizeof(p_rss->rss_key)); 2034 2035 table_size = min_t(u16, ARRAY_SIZE(p_rss->rss_ind_table), 2036 (1 << p_rss_tlv->rss_table_size_log)); 2037 2038 max_q_idx = ARRAY_SIZE(vf->vf_queues); 2039 2040 for (i = 0; i < table_size; i++) { 2041 u16 index = vf->vf_queues[0].fw_rx_qid; 2042 2043 q_idx = p_rss->rss_ind_table[i]; 2044 if (q_idx >= max_q_idx) 2045 DP_NOTICE(p_hwfn, 2046 "rss_ind_table[%d] = %d, rxq is out of range\n", 2047 i, q_idx); 2048 else if (!vf->vf_queues[q_idx].rxq_active) 2049 DP_NOTICE(p_hwfn, 2050 "rss_ind_table[%d] = %d, rxq is not active\n", 2051 i, q_idx); 2052 else 2053 index = vf->vf_queues[q_idx].fw_rx_qid; 2054 p_rss->rss_ind_table[i] = index; 2055 } 2056 2057 p_data->rss_params = p_rss; 2058 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_RSS; 2059 } 2060 2061 static void 2062 qed_iov_vp_update_sge_tpa_param(struct qed_hwfn *p_hwfn, 2063 struct qed_vf_info *vf, 2064 struct qed_sp_vport_update_params *p_data, 2065 struct qed_sge_tpa_params *p_sge_tpa, 2066 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask) 2067 { 2068 struct vfpf_vport_update_sge_tpa_tlv *p_sge_tpa_tlv; 2069 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_SGE_TPA; 2070 2071 p_sge_tpa_tlv = (struct vfpf_vport_update_sge_tpa_tlv *) 2072 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv); 2073 2074 if (!p_sge_tpa_tlv) { 2075 p_data->sge_tpa_params = NULL; 2076 return; 2077 } 2078 2079 memset(p_sge_tpa, 0, sizeof(struct qed_sge_tpa_params)); 2080 2081 p_sge_tpa->update_tpa_en_flg = 2082 !!(p_sge_tpa_tlv->update_sge_tpa_flags & VFPF_UPDATE_TPA_EN_FLAG); 2083 p_sge_tpa->update_tpa_param_flg = 2084 !!(p_sge_tpa_tlv->update_sge_tpa_flags & 2085 VFPF_UPDATE_TPA_PARAM_FLAG); 2086 2087 p_sge_tpa->tpa_ipv4_en_flg = 2088 !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_IPV4_EN_FLAG); 2089 p_sge_tpa->tpa_ipv6_en_flg = 2090 !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_IPV6_EN_FLAG); 2091 p_sge_tpa->tpa_pkt_split_flg = 2092 !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_PKT_SPLIT_FLAG); 2093 p_sge_tpa->tpa_hdr_data_split_flg = 2094 !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_HDR_DATA_SPLIT_FLAG); 2095 p_sge_tpa->tpa_gro_consistent_flg = 2096 !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_GRO_CONSIST_FLAG); 2097 2098 p_sge_tpa->tpa_max_aggs_num = p_sge_tpa_tlv->tpa_max_aggs_num; 2099 p_sge_tpa->tpa_max_size = p_sge_tpa_tlv->tpa_max_size; 2100 p_sge_tpa->tpa_min_size_to_start = p_sge_tpa_tlv->tpa_min_size_to_start; 2101 p_sge_tpa->tpa_min_size_to_cont = p_sge_tpa_tlv->tpa_min_size_to_cont; 2102 p_sge_tpa->max_buffers_per_cqe = p_sge_tpa_tlv->max_buffers_per_cqe; 2103 2104 p_data->sge_tpa_params = p_sge_tpa; 2105 2106 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_SGE_TPA; 2107 } 2108 2109 static void qed_iov_vf_mbx_vport_update(struct qed_hwfn *p_hwfn, 2110 struct qed_ptt *p_ptt, 2111 struct qed_vf_info *vf) 2112 { 2113 struct qed_sp_vport_update_params params; 2114 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 2115 struct qed_sge_tpa_params sge_tpa_params; 2116 struct qed_rss_params rss_params; 2117 u8 status = PFVF_STATUS_SUCCESS; 2118 u16 tlvs_mask = 0; 2119 u16 length; 2120 int rc; 2121 2122 memset(¶ms, 0, sizeof(params)); 2123 params.opaque_fid = vf->opaque_fid; 2124 params.vport_id = vf->vport_id; 2125 params.rss_params = NULL; 2126 2127 /* Search for extended tlvs list and update values 2128 * from VF in struct qed_sp_vport_update_params. 2129 */ 2130 qed_iov_vp_update_act_param(p_hwfn, ¶ms, mbx, &tlvs_mask); 2131 qed_iov_vp_update_vlan_param(p_hwfn, ¶ms, vf, mbx, &tlvs_mask); 2132 qed_iov_vp_update_tx_switch(p_hwfn, ¶ms, mbx, &tlvs_mask); 2133 qed_iov_vp_update_mcast_bin_param(p_hwfn, ¶ms, mbx, &tlvs_mask); 2134 qed_iov_vp_update_accept_flag(p_hwfn, ¶ms, mbx, &tlvs_mask); 2135 qed_iov_vp_update_rss_param(p_hwfn, vf, ¶ms, &rss_params, 2136 mbx, &tlvs_mask); 2137 qed_iov_vp_update_accept_any_vlan(p_hwfn, ¶ms, mbx, &tlvs_mask); 2138 qed_iov_vp_update_sge_tpa_param(p_hwfn, vf, ¶ms, 2139 &sge_tpa_params, mbx, &tlvs_mask); 2140 2141 /* Just log a message if there is no single extended tlv in buffer. 2142 * When all features of vport update ramrod would be requested by VF 2143 * as extended TLVs in buffer then an error can be returned in response 2144 * if there is no extended TLV present in buffer. 2145 */ 2146 if (!tlvs_mask) { 2147 DP_NOTICE(p_hwfn, 2148 "No feature tlvs found for vport update\n"); 2149 status = PFVF_STATUS_NOT_SUPPORTED; 2150 goto out; 2151 } 2152 2153 rc = qed_sp_vport_update(p_hwfn, ¶ms, QED_SPQ_MODE_EBLOCK, NULL); 2154 2155 if (rc) 2156 status = PFVF_STATUS_FAILURE; 2157 2158 out: 2159 length = qed_iov_prep_vp_update_resp_tlvs(p_hwfn, vf, mbx, status, 2160 tlvs_mask, tlvs_mask); 2161 qed_iov_send_response(p_hwfn, p_ptt, vf, length, status); 2162 } 2163 2164 static int qed_iov_vf_update_unicast_shadow(struct qed_hwfn *p_hwfn, 2165 struct qed_vf_info *p_vf, 2166 struct qed_filter_ucast *p_params) 2167 { 2168 int i; 2169 2170 if (p_params->type == QED_FILTER_MAC) 2171 return 0; 2172 2173 /* First remove entries and then add new ones */ 2174 if (p_params->opcode == QED_FILTER_REMOVE) { 2175 for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++) 2176 if (p_vf->shadow_config.vlans[i].used && 2177 p_vf->shadow_config.vlans[i].vid == 2178 p_params->vlan) { 2179 p_vf->shadow_config.vlans[i].used = false; 2180 break; 2181 } 2182 if (i == QED_ETH_VF_NUM_VLAN_FILTERS + 1) { 2183 DP_VERBOSE(p_hwfn, 2184 QED_MSG_IOV, 2185 "VF [%d] - Tries to remove a non-existing vlan\n", 2186 p_vf->relative_vf_id); 2187 return -EINVAL; 2188 } 2189 } else if (p_params->opcode == QED_FILTER_REPLACE || 2190 p_params->opcode == QED_FILTER_FLUSH) { 2191 for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++) 2192 p_vf->shadow_config.vlans[i].used = false; 2193 } 2194 2195 /* In forced mode, we're willing to remove entries - but we don't add 2196 * new ones. 2197 */ 2198 if (p_vf->bulletin.p_virt->valid_bitmap & (1 << VLAN_ADDR_FORCED)) 2199 return 0; 2200 2201 if (p_params->opcode == QED_FILTER_ADD || 2202 p_params->opcode == QED_FILTER_REPLACE) { 2203 for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++) { 2204 if (p_vf->shadow_config.vlans[i].used) 2205 continue; 2206 2207 p_vf->shadow_config.vlans[i].used = true; 2208 p_vf->shadow_config.vlans[i].vid = p_params->vlan; 2209 break; 2210 } 2211 2212 if (i == QED_ETH_VF_NUM_VLAN_FILTERS + 1) { 2213 DP_VERBOSE(p_hwfn, 2214 QED_MSG_IOV, 2215 "VF [%d] - Tries to configure more than %d vlan filters\n", 2216 p_vf->relative_vf_id, 2217 QED_ETH_VF_NUM_VLAN_FILTERS + 1); 2218 return -EINVAL; 2219 } 2220 } 2221 2222 return 0; 2223 } 2224 2225 int qed_iov_chk_ucast(struct qed_hwfn *hwfn, 2226 int vfid, struct qed_filter_ucast *params) 2227 { 2228 struct qed_public_vf_info *vf; 2229 2230 vf = qed_iov_get_public_vf_info(hwfn, vfid, true); 2231 if (!vf) 2232 return -EINVAL; 2233 2234 /* No real decision to make; Store the configured MAC */ 2235 if (params->type == QED_FILTER_MAC || 2236 params->type == QED_FILTER_MAC_VLAN) 2237 ether_addr_copy(vf->mac, params->mac); 2238 2239 return 0; 2240 } 2241 2242 static void qed_iov_vf_mbx_ucast_filter(struct qed_hwfn *p_hwfn, 2243 struct qed_ptt *p_ptt, 2244 struct qed_vf_info *vf) 2245 { 2246 struct qed_bulletin_content *p_bulletin = vf->bulletin.p_virt; 2247 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 2248 struct vfpf_ucast_filter_tlv *req; 2249 u8 status = PFVF_STATUS_SUCCESS; 2250 struct qed_filter_ucast params; 2251 int rc; 2252 2253 /* Prepare the unicast filter params */ 2254 memset(¶ms, 0, sizeof(struct qed_filter_ucast)); 2255 req = &mbx->req_virt->ucast_filter; 2256 params.opcode = (enum qed_filter_opcode)req->opcode; 2257 params.type = (enum qed_filter_ucast_type)req->type; 2258 2259 params.is_rx_filter = 1; 2260 params.is_tx_filter = 1; 2261 params.vport_to_remove_from = vf->vport_id; 2262 params.vport_to_add_to = vf->vport_id; 2263 memcpy(params.mac, req->mac, ETH_ALEN); 2264 params.vlan = req->vlan; 2265 2266 DP_VERBOSE(p_hwfn, 2267 QED_MSG_IOV, 2268 "VF[%d]: opcode 0x%02x type 0x%02x [%s %s] [vport 0x%02x] MAC %02x:%02x:%02x:%02x:%02x:%02x, vlan 0x%04x\n", 2269 vf->abs_vf_id, params.opcode, params.type, 2270 params.is_rx_filter ? "RX" : "", 2271 params.is_tx_filter ? "TX" : "", 2272 params.vport_to_add_to, 2273 params.mac[0], params.mac[1], 2274 params.mac[2], params.mac[3], 2275 params.mac[4], params.mac[5], params.vlan); 2276 2277 if (!vf->vport_instance) { 2278 DP_VERBOSE(p_hwfn, 2279 QED_MSG_IOV, 2280 "No VPORT instance available for VF[%d], failing ucast MAC configuration\n", 2281 vf->abs_vf_id); 2282 status = PFVF_STATUS_FAILURE; 2283 goto out; 2284 } 2285 2286 /* Update shadow copy of the VF configuration */ 2287 if (qed_iov_vf_update_unicast_shadow(p_hwfn, vf, ¶ms)) { 2288 status = PFVF_STATUS_FAILURE; 2289 goto out; 2290 } 2291 2292 /* Determine if the unicast filtering is acceptible by PF */ 2293 if ((p_bulletin->valid_bitmap & (1 << VLAN_ADDR_FORCED)) && 2294 (params.type == QED_FILTER_VLAN || 2295 params.type == QED_FILTER_MAC_VLAN)) { 2296 /* Once VLAN is forced or PVID is set, do not allow 2297 * to add/replace any further VLANs. 2298 */ 2299 if (params.opcode == QED_FILTER_ADD || 2300 params.opcode == QED_FILTER_REPLACE) 2301 status = PFVF_STATUS_FORCED; 2302 goto out; 2303 } 2304 2305 if ((p_bulletin->valid_bitmap & (1 << MAC_ADDR_FORCED)) && 2306 (params.type == QED_FILTER_MAC || 2307 params.type == QED_FILTER_MAC_VLAN)) { 2308 if (!ether_addr_equal(p_bulletin->mac, params.mac) || 2309 (params.opcode != QED_FILTER_ADD && 2310 params.opcode != QED_FILTER_REPLACE)) 2311 status = PFVF_STATUS_FORCED; 2312 goto out; 2313 } 2314 2315 rc = qed_iov_chk_ucast(p_hwfn, vf->relative_vf_id, ¶ms); 2316 if (rc) { 2317 status = PFVF_STATUS_FAILURE; 2318 goto out; 2319 } 2320 2321 rc = qed_sp_eth_filter_ucast(p_hwfn, vf->opaque_fid, ¶ms, 2322 QED_SPQ_MODE_CB, NULL); 2323 if (rc) 2324 status = PFVF_STATUS_FAILURE; 2325 2326 out: 2327 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_UCAST_FILTER, 2328 sizeof(struct pfvf_def_resp_tlv), status); 2329 } 2330 2331 static void qed_iov_vf_mbx_int_cleanup(struct qed_hwfn *p_hwfn, 2332 struct qed_ptt *p_ptt, 2333 struct qed_vf_info *vf) 2334 { 2335 int i; 2336 2337 /* Reset the SBs */ 2338 for (i = 0; i < vf->num_sbs; i++) 2339 qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt, 2340 vf->igu_sbs[i], 2341 vf->opaque_fid, false); 2342 2343 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_INT_CLEANUP, 2344 sizeof(struct pfvf_def_resp_tlv), 2345 PFVF_STATUS_SUCCESS); 2346 } 2347 2348 static void qed_iov_vf_mbx_close(struct qed_hwfn *p_hwfn, 2349 struct qed_ptt *p_ptt, struct qed_vf_info *vf) 2350 { 2351 u16 length = sizeof(struct pfvf_def_resp_tlv); 2352 u8 status = PFVF_STATUS_SUCCESS; 2353 2354 /* Disable Interrupts for VF */ 2355 qed_iov_vf_igu_set_int(p_hwfn, p_ptt, vf, 0); 2356 2357 /* Reset Permission table */ 2358 qed_iov_config_perm_table(p_hwfn, p_ptt, vf, 0); 2359 2360 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_CLOSE, 2361 length, status); 2362 } 2363 2364 static void qed_iov_vf_mbx_release(struct qed_hwfn *p_hwfn, 2365 struct qed_ptt *p_ptt, 2366 struct qed_vf_info *p_vf) 2367 { 2368 u16 length = sizeof(struct pfvf_def_resp_tlv); 2369 2370 qed_iov_vf_cleanup(p_hwfn, p_vf); 2371 2372 qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf, CHANNEL_TLV_RELEASE, 2373 length, PFVF_STATUS_SUCCESS); 2374 } 2375 2376 static int 2377 qed_iov_vf_flr_poll_dorq(struct qed_hwfn *p_hwfn, 2378 struct qed_vf_info *p_vf, struct qed_ptt *p_ptt) 2379 { 2380 int cnt; 2381 u32 val; 2382 2383 qed_fid_pretend(p_hwfn, p_ptt, (u16) p_vf->concrete_fid); 2384 2385 for (cnt = 0; cnt < 50; cnt++) { 2386 val = qed_rd(p_hwfn, p_ptt, DORQ_REG_VF_USAGE_CNT); 2387 if (!val) 2388 break; 2389 msleep(20); 2390 } 2391 qed_fid_pretend(p_hwfn, p_ptt, (u16) p_hwfn->hw_info.concrete_fid); 2392 2393 if (cnt == 50) { 2394 DP_ERR(p_hwfn, 2395 "VF[%d] - dorq failed to cleanup [usage 0x%08x]\n", 2396 p_vf->abs_vf_id, val); 2397 return -EBUSY; 2398 } 2399 2400 return 0; 2401 } 2402 2403 static int 2404 qed_iov_vf_flr_poll_pbf(struct qed_hwfn *p_hwfn, 2405 struct qed_vf_info *p_vf, struct qed_ptt *p_ptt) 2406 { 2407 u32 cons[MAX_NUM_VOQS], distance[MAX_NUM_VOQS]; 2408 int i, cnt; 2409 2410 /* Read initial consumers & producers */ 2411 for (i = 0; i < MAX_NUM_VOQS; i++) { 2412 u32 prod; 2413 2414 cons[i] = qed_rd(p_hwfn, p_ptt, 2415 PBF_REG_NUM_BLOCKS_ALLOCATED_CONS_VOQ0 + 2416 i * 0x40); 2417 prod = qed_rd(p_hwfn, p_ptt, 2418 PBF_REG_NUM_BLOCKS_ALLOCATED_PROD_VOQ0 + 2419 i * 0x40); 2420 distance[i] = prod - cons[i]; 2421 } 2422 2423 /* Wait for consumers to pass the producers */ 2424 i = 0; 2425 for (cnt = 0; cnt < 50; cnt++) { 2426 for (; i < MAX_NUM_VOQS; i++) { 2427 u32 tmp; 2428 2429 tmp = qed_rd(p_hwfn, p_ptt, 2430 PBF_REG_NUM_BLOCKS_ALLOCATED_CONS_VOQ0 + 2431 i * 0x40); 2432 if (distance[i] > tmp - cons[i]) 2433 break; 2434 } 2435 2436 if (i == MAX_NUM_VOQS) 2437 break; 2438 2439 msleep(20); 2440 } 2441 2442 if (cnt == 50) { 2443 DP_ERR(p_hwfn, "VF[%d] - pbf polling failed on VOQ %d\n", 2444 p_vf->abs_vf_id, i); 2445 return -EBUSY; 2446 } 2447 2448 return 0; 2449 } 2450 2451 static int qed_iov_vf_flr_poll(struct qed_hwfn *p_hwfn, 2452 struct qed_vf_info *p_vf, struct qed_ptt *p_ptt) 2453 { 2454 int rc; 2455 2456 rc = qed_iov_vf_flr_poll_dorq(p_hwfn, p_vf, p_ptt); 2457 if (rc) 2458 return rc; 2459 2460 rc = qed_iov_vf_flr_poll_pbf(p_hwfn, p_vf, p_ptt); 2461 if (rc) 2462 return rc; 2463 2464 return 0; 2465 } 2466 2467 static int 2468 qed_iov_execute_vf_flr_cleanup(struct qed_hwfn *p_hwfn, 2469 struct qed_ptt *p_ptt, 2470 u16 rel_vf_id, u32 *ack_vfs) 2471 { 2472 struct qed_vf_info *p_vf; 2473 int rc = 0; 2474 2475 p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, false); 2476 if (!p_vf) 2477 return 0; 2478 2479 if (p_hwfn->pf_iov_info->pending_flr[rel_vf_id / 64] & 2480 (1ULL << (rel_vf_id % 64))) { 2481 u16 vfid = p_vf->abs_vf_id; 2482 2483 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 2484 "VF[%d] - Handling FLR\n", vfid); 2485 2486 qed_iov_vf_cleanup(p_hwfn, p_vf); 2487 2488 /* If VF isn't active, no need for anything but SW */ 2489 if (!p_vf->b_init) 2490 goto cleanup; 2491 2492 rc = qed_iov_vf_flr_poll(p_hwfn, p_vf, p_ptt); 2493 if (rc) 2494 goto cleanup; 2495 2496 rc = qed_final_cleanup(p_hwfn, p_ptt, vfid, true); 2497 if (rc) { 2498 DP_ERR(p_hwfn, "Failed handle FLR of VF[%d]\n", vfid); 2499 return rc; 2500 } 2501 2502 /* VF_STOPPED has to be set only after final cleanup 2503 * but prior to re-enabling the VF. 2504 */ 2505 p_vf->state = VF_STOPPED; 2506 2507 rc = qed_iov_enable_vf_access(p_hwfn, p_ptt, p_vf); 2508 if (rc) { 2509 DP_ERR(p_hwfn, "Failed to re-enable VF[%d] acces\n", 2510 vfid); 2511 return rc; 2512 } 2513 cleanup: 2514 /* Mark VF for ack and clean pending state */ 2515 if (p_vf->state == VF_RESET) 2516 p_vf->state = VF_STOPPED; 2517 ack_vfs[vfid / 32] |= (1 << (vfid % 32)); 2518 p_hwfn->pf_iov_info->pending_flr[rel_vf_id / 64] &= 2519 ~(1ULL << (rel_vf_id % 64)); 2520 p_hwfn->pf_iov_info->pending_events[rel_vf_id / 64] &= 2521 ~(1ULL << (rel_vf_id % 64)); 2522 } 2523 2524 return rc; 2525 } 2526 2527 int qed_iov_vf_flr_cleanup(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 2528 { 2529 u32 ack_vfs[VF_MAX_STATIC / 32]; 2530 int rc = 0; 2531 u16 i; 2532 2533 memset(ack_vfs, 0, sizeof(u32) * (VF_MAX_STATIC / 32)); 2534 2535 /* Since BRB <-> PRS interface can't be tested as part of the flr 2536 * polling due to HW limitations, simply sleep a bit. And since 2537 * there's no need to wait per-vf, do it before looping. 2538 */ 2539 msleep(100); 2540 2541 for (i = 0; i < p_hwfn->cdev->p_iov_info->total_vfs; i++) 2542 qed_iov_execute_vf_flr_cleanup(p_hwfn, p_ptt, i, ack_vfs); 2543 2544 rc = qed_mcp_ack_vf_flr(p_hwfn, p_ptt, ack_vfs); 2545 return rc; 2546 } 2547 2548 int qed_iov_mark_vf_flr(struct qed_hwfn *p_hwfn, u32 *p_disabled_vfs) 2549 { 2550 u16 i, found = 0; 2551 2552 DP_VERBOSE(p_hwfn, QED_MSG_IOV, "Marking FLR-ed VFs\n"); 2553 for (i = 0; i < (VF_MAX_STATIC / 32); i++) 2554 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 2555 "[%08x,...,%08x]: %08x\n", 2556 i * 32, (i + 1) * 32 - 1, p_disabled_vfs[i]); 2557 2558 if (!p_hwfn->cdev->p_iov_info) { 2559 DP_NOTICE(p_hwfn, "VF flr but no IOV\n"); 2560 return 0; 2561 } 2562 2563 /* Mark VFs */ 2564 for (i = 0; i < p_hwfn->cdev->p_iov_info->total_vfs; i++) { 2565 struct qed_vf_info *p_vf; 2566 u8 vfid; 2567 2568 p_vf = qed_iov_get_vf_info(p_hwfn, i, false); 2569 if (!p_vf) 2570 continue; 2571 2572 vfid = p_vf->abs_vf_id; 2573 if ((1 << (vfid % 32)) & p_disabled_vfs[vfid / 32]) { 2574 u64 *p_flr = p_hwfn->pf_iov_info->pending_flr; 2575 u16 rel_vf_id = p_vf->relative_vf_id; 2576 2577 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 2578 "VF[%d] [rel %d] got FLR-ed\n", 2579 vfid, rel_vf_id); 2580 2581 p_vf->state = VF_RESET; 2582 2583 /* No need to lock here, since pending_flr should 2584 * only change here and before ACKing MFw. Since 2585 * MFW will not trigger an additional attention for 2586 * VF flr until ACKs, we're safe. 2587 */ 2588 p_flr[rel_vf_id / 64] |= 1ULL << (rel_vf_id % 64); 2589 found = 1; 2590 } 2591 } 2592 2593 return found; 2594 } 2595 2596 static void qed_iov_get_link(struct qed_hwfn *p_hwfn, 2597 u16 vfid, 2598 struct qed_mcp_link_params *p_params, 2599 struct qed_mcp_link_state *p_link, 2600 struct qed_mcp_link_capabilities *p_caps) 2601 { 2602 struct qed_vf_info *p_vf = qed_iov_get_vf_info(p_hwfn, 2603 vfid, 2604 false); 2605 struct qed_bulletin_content *p_bulletin; 2606 2607 if (!p_vf) 2608 return; 2609 2610 p_bulletin = p_vf->bulletin.p_virt; 2611 2612 if (p_params) 2613 __qed_vf_get_link_params(p_hwfn, p_params, p_bulletin); 2614 if (p_link) 2615 __qed_vf_get_link_state(p_hwfn, p_link, p_bulletin); 2616 if (p_caps) 2617 __qed_vf_get_link_caps(p_hwfn, p_caps, p_bulletin); 2618 } 2619 2620 static void qed_iov_process_mbx_req(struct qed_hwfn *p_hwfn, 2621 struct qed_ptt *p_ptt, int vfid) 2622 { 2623 struct qed_iov_vf_mbx *mbx; 2624 struct qed_vf_info *p_vf; 2625 int i; 2626 2627 p_vf = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true); 2628 if (!p_vf) 2629 return; 2630 2631 mbx = &p_vf->vf_mbx; 2632 2633 /* qed_iov_process_mbx_request */ 2634 DP_VERBOSE(p_hwfn, 2635 QED_MSG_IOV, 2636 "qed_iov_process_mbx_req vfid %d\n", p_vf->abs_vf_id); 2637 2638 mbx->first_tlv = mbx->req_virt->first_tlv; 2639 2640 /* check if tlv type is known */ 2641 if (qed_iov_tlv_supported(mbx->first_tlv.tl.type)) { 2642 switch (mbx->first_tlv.tl.type) { 2643 case CHANNEL_TLV_ACQUIRE: 2644 qed_iov_vf_mbx_acquire(p_hwfn, p_ptt, p_vf); 2645 break; 2646 case CHANNEL_TLV_VPORT_START: 2647 qed_iov_vf_mbx_start_vport(p_hwfn, p_ptt, p_vf); 2648 break; 2649 case CHANNEL_TLV_VPORT_TEARDOWN: 2650 qed_iov_vf_mbx_stop_vport(p_hwfn, p_ptt, p_vf); 2651 break; 2652 case CHANNEL_TLV_START_RXQ: 2653 qed_iov_vf_mbx_start_rxq(p_hwfn, p_ptt, p_vf); 2654 break; 2655 case CHANNEL_TLV_START_TXQ: 2656 qed_iov_vf_mbx_start_txq(p_hwfn, p_ptt, p_vf); 2657 break; 2658 case CHANNEL_TLV_STOP_RXQS: 2659 qed_iov_vf_mbx_stop_rxqs(p_hwfn, p_ptt, p_vf); 2660 break; 2661 case CHANNEL_TLV_STOP_TXQS: 2662 qed_iov_vf_mbx_stop_txqs(p_hwfn, p_ptt, p_vf); 2663 break; 2664 case CHANNEL_TLV_UPDATE_RXQ: 2665 qed_iov_vf_mbx_update_rxqs(p_hwfn, p_ptt, p_vf); 2666 break; 2667 case CHANNEL_TLV_VPORT_UPDATE: 2668 qed_iov_vf_mbx_vport_update(p_hwfn, p_ptt, p_vf); 2669 break; 2670 case CHANNEL_TLV_UCAST_FILTER: 2671 qed_iov_vf_mbx_ucast_filter(p_hwfn, p_ptt, p_vf); 2672 break; 2673 case CHANNEL_TLV_CLOSE: 2674 qed_iov_vf_mbx_close(p_hwfn, p_ptt, p_vf); 2675 break; 2676 case CHANNEL_TLV_INT_CLEANUP: 2677 qed_iov_vf_mbx_int_cleanup(p_hwfn, p_ptt, p_vf); 2678 break; 2679 case CHANNEL_TLV_RELEASE: 2680 qed_iov_vf_mbx_release(p_hwfn, p_ptt, p_vf); 2681 break; 2682 } 2683 } else { 2684 /* unknown TLV - this may belong to a VF driver from the future 2685 * - a version written after this PF driver was written, which 2686 * supports features unknown as of yet. Too bad since we don't 2687 * support them. Or this may be because someone wrote a crappy 2688 * VF driver and is sending garbage over the channel. 2689 */ 2690 DP_ERR(p_hwfn, 2691 "unknown TLV. type %d length %d. first 20 bytes of mailbox buffer:\n", 2692 mbx->first_tlv.tl.type, mbx->first_tlv.tl.length); 2693 2694 for (i = 0; i < 20; i++) { 2695 DP_VERBOSE(p_hwfn, 2696 QED_MSG_IOV, 2697 "%x ", 2698 mbx->req_virt->tlv_buf_size.tlv_buffer[i]); 2699 } 2700 } 2701 } 2702 2703 void qed_iov_pf_add_pending_events(struct qed_hwfn *p_hwfn, u8 vfid) 2704 { 2705 u64 add_bit = 1ULL << (vfid % 64); 2706 2707 p_hwfn->pf_iov_info->pending_events[vfid / 64] |= add_bit; 2708 } 2709 2710 static void qed_iov_pf_get_and_clear_pending_events(struct qed_hwfn *p_hwfn, 2711 u64 *events) 2712 { 2713 u64 *p_pending_events = p_hwfn->pf_iov_info->pending_events; 2714 2715 memcpy(events, p_pending_events, sizeof(u64) * QED_VF_ARRAY_LENGTH); 2716 memset(p_pending_events, 0, sizeof(u64) * QED_VF_ARRAY_LENGTH); 2717 } 2718 2719 static int qed_sriov_vfpf_msg(struct qed_hwfn *p_hwfn, 2720 u16 abs_vfid, struct regpair *vf_msg) 2721 { 2722 u8 min = (u8)p_hwfn->cdev->p_iov_info->first_vf_in_pf; 2723 struct qed_vf_info *p_vf; 2724 2725 if (!qed_iov_pf_sanity_check(p_hwfn, (int)abs_vfid - min)) { 2726 DP_VERBOSE(p_hwfn, 2727 QED_MSG_IOV, 2728 "Got a message from VF [abs 0x%08x] that cannot be handled by PF\n", 2729 abs_vfid); 2730 return 0; 2731 } 2732 p_vf = &p_hwfn->pf_iov_info->vfs_array[(u8)abs_vfid - min]; 2733 2734 /* List the physical address of the request so that handler 2735 * could later on copy the message from it. 2736 */ 2737 p_vf->vf_mbx.pending_req = (((u64)vf_msg->hi) << 32) | vf_msg->lo; 2738 2739 /* Mark the event and schedule the workqueue */ 2740 qed_iov_pf_add_pending_events(p_hwfn, p_vf->relative_vf_id); 2741 qed_schedule_iov(p_hwfn, QED_IOV_WQ_MSG_FLAG); 2742 2743 return 0; 2744 } 2745 2746 int qed_sriov_eqe_event(struct qed_hwfn *p_hwfn, 2747 u8 opcode, __le16 echo, union event_ring_data *data) 2748 { 2749 switch (opcode) { 2750 case COMMON_EVENT_VF_PF_CHANNEL: 2751 return qed_sriov_vfpf_msg(p_hwfn, le16_to_cpu(echo), 2752 &data->vf_pf_channel.msg_addr); 2753 default: 2754 DP_INFO(p_hwfn->cdev, "Unknown sriov eqe event 0x%02x\n", 2755 opcode); 2756 return -EINVAL; 2757 } 2758 } 2759 2760 u16 qed_iov_get_next_active_vf(struct qed_hwfn *p_hwfn, u16 rel_vf_id) 2761 { 2762 struct qed_hw_sriov_info *p_iov = p_hwfn->cdev->p_iov_info; 2763 u16 i; 2764 2765 if (!p_iov) 2766 goto out; 2767 2768 for (i = rel_vf_id; i < p_iov->total_vfs; i++) 2769 if (qed_iov_is_valid_vfid(p_hwfn, rel_vf_id, true)) 2770 return i; 2771 2772 out: 2773 return MAX_NUM_VFS; 2774 } 2775 2776 static int qed_iov_copy_vf_msg(struct qed_hwfn *p_hwfn, struct qed_ptt *ptt, 2777 int vfid) 2778 { 2779 struct qed_dmae_params params; 2780 struct qed_vf_info *vf_info; 2781 2782 vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true); 2783 if (!vf_info) 2784 return -EINVAL; 2785 2786 memset(¶ms, 0, sizeof(struct qed_dmae_params)); 2787 params.flags = QED_DMAE_FLAG_VF_SRC | QED_DMAE_FLAG_COMPLETION_DST; 2788 params.src_vfid = vf_info->abs_vf_id; 2789 2790 if (qed_dmae_host2host(p_hwfn, ptt, 2791 vf_info->vf_mbx.pending_req, 2792 vf_info->vf_mbx.req_phys, 2793 sizeof(union vfpf_tlvs) / 4, ¶ms)) { 2794 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 2795 "Failed to copy message from VF 0x%02x\n", vfid); 2796 2797 return -EIO; 2798 } 2799 2800 return 0; 2801 } 2802 2803 static void qed_iov_bulletin_set_forced_mac(struct qed_hwfn *p_hwfn, 2804 u8 *mac, int vfid) 2805 { 2806 struct qed_vf_info *vf_info; 2807 u64 feature; 2808 2809 vf_info = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true); 2810 if (!vf_info) { 2811 DP_NOTICE(p_hwfn->cdev, 2812 "Can not set forced MAC, invalid vfid [%d]\n", vfid); 2813 return; 2814 } 2815 2816 feature = 1 << MAC_ADDR_FORCED; 2817 memcpy(vf_info->bulletin.p_virt->mac, mac, ETH_ALEN); 2818 2819 vf_info->bulletin.p_virt->valid_bitmap |= feature; 2820 /* Forced MAC will disable MAC_ADDR */ 2821 vf_info->bulletin.p_virt->valid_bitmap &= 2822 ~(1 << VFPF_BULLETIN_MAC_ADDR); 2823 2824 qed_iov_configure_vport_forced(p_hwfn, vf_info, feature); 2825 } 2826 2827 void qed_iov_bulletin_set_forced_vlan(struct qed_hwfn *p_hwfn, 2828 u16 pvid, int vfid) 2829 { 2830 struct qed_vf_info *vf_info; 2831 u64 feature; 2832 2833 vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true); 2834 if (!vf_info) { 2835 DP_NOTICE(p_hwfn->cdev, 2836 "Can not set forced MAC, invalid vfid [%d]\n", vfid); 2837 return; 2838 } 2839 2840 feature = 1 << VLAN_ADDR_FORCED; 2841 vf_info->bulletin.p_virt->pvid = pvid; 2842 if (pvid) 2843 vf_info->bulletin.p_virt->valid_bitmap |= feature; 2844 else 2845 vf_info->bulletin.p_virt->valid_bitmap &= ~feature; 2846 2847 qed_iov_configure_vport_forced(p_hwfn, vf_info, feature); 2848 } 2849 2850 static bool qed_iov_vf_has_vport_instance(struct qed_hwfn *p_hwfn, int vfid) 2851 { 2852 struct qed_vf_info *p_vf_info; 2853 2854 p_vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true); 2855 if (!p_vf_info) 2856 return false; 2857 2858 return !!p_vf_info->vport_instance; 2859 } 2860 2861 bool qed_iov_is_vf_stopped(struct qed_hwfn *p_hwfn, int vfid) 2862 { 2863 struct qed_vf_info *p_vf_info; 2864 2865 p_vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true); 2866 if (!p_vf_info) 2867 return true; 2868 2869 return p_vf_info->state == VF_STOPPED; 2870 } 2871 2872 static bool qed_iov_spoofchk_get(struct qed_hwfn *p_hwfn, int vfid) 2873 { 2874 struct qed_vf_info *vf_info; 2875 2876 vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true); 2877 if (!vf_info) 2878 return false; 2879 2880 return vf_info->spoof_chk; 2881 } 2882 2883 int qed_iov_spoofchk_set(struct qed_hwfn *p_hwfn, int vfid, bool val) 2884 { 2885 struct qed_vf_info *vf; 2886 int rc = -EINVAL; 2887 2888 if (!qed_iov_pf_sanity_check(p_hwfn, vfid)) { 2889 DP_NOTICE(p_hwfn, 2890 "SR-IOV sanity check failed, can't set spoofchk\n"); 2891 goto out; 2892 } 2893 2894 vf = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true); 2895 if (!vf) 2896 goto out; 2897 2898 if (!qed_iov_vf_has_vport_instance(p_hwfn, vfid)) { 2899 /* After VF VPORT start PF will configure spoof check */ 2900 vf->req_spoofchk_val = val; 2901 rc = 0; 2902 goto out; 2903 } 2904 2905 rc = __qed_iov_spoofchk_set(p_hwfn, vf, val); 2906 2907 out: 2908 return rc; 2909 } 2910 2911 static u8 *qed_iov_bulletin_get_forced_mac(struct qed_hwfn *p_hwfn, 2912 u16 rel_vf_id) 2913 { 2914 struct qed_vf_info *p_vf; 2915 2916 p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true); 2917 if (!p_vf || !p_vf->bulletin.p_virt) 2918 return NULL; 2919 2920 if (!(p_vf->bulletin.p_virt->valid_bitmap & (1 << MAC_ADDR_FORCED))) 2921 return NULL; 2922 2923 return p_vf->bulletin.p_virt->mac; 2924 } 2925 2926 u16 qed_iov_bulletin_get_forced_vlan(struct qed_hwfn *p_hwfn, u16 rel_vf_id) 2927 { 2928 struct qed_vf_info *p_vf; 2929 2930 p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true); 2931 if (!p_vf || !p_vf->bulletin.p_virt) 2932 return 0; 2933 2934 if (!(p_vf->bulletin.p_virt->valid_bitmap & (1 << VLAN_ADDR_FORCED))) 2935 return 0; 2936 2937 return p_vf->bulletin.p_virt->pvid; 2938 } 2939 2940 static int qed_iov_configure_tx_rate(struct qed_hwfn *p_hwfn, 2941 struct qed_ptt *p_ptt, int vfid, int val) 2942 { 2943 struct qed_vf_info *vf; 2944 u8 abs_vp_id = 0; 2945 int rc; 2946 2947 vf = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true); 2948 if (!vf) 2949 return -EINVAL; 2950 2951 rc = qed_fw_vport(p_hwfn, vf->vport_id, &abs_vp_id); 2952 if (rc) 2953 return rc; 2954 2955 return qed_init_vport_rl(p_hwfn, p_ptt, abs_vp_id, (u32)val); 2956 } 2957 2958 int qed_iov_configure_min_tx_rate(struct qed_dev *cdev, int vfid, u32 rate) 2959 { 2960 struct qed_vf_info *vf; 2961 u8 vport_id; 2962 int i; 2963 2964 for_each_hwfn(cdev, i) { 2965 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 2966 2967 if (!qed_iov_pf_sanity_check(p_hwfn, vfid)) { 2968 DP_NOTICE(p_hwfn, 2969 "SR-IOV sanity check failed, can't set min rate\n"); 2970 return -EINVAL; 2971 } 2972 } 2973 2974 vf = qed_iov_get_vf_info(QED_LEADING_HWFN(cdev), (u16)vfid, true); 2975 vport_id = vf->vport_id; 2976 2977 return qed_configure_vport_wfq(cdev, vport_id, rate); 2978 } 2979 2980 static int qed_iov_get_vf_min_rate(struct qed_hwfn *p_hwfn, int vfid) 2981 { 2982 struct qed_wfq_data *vf_vp_wfq; 2983 struct qed_vf_info *vf_info; 2984 2985 vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true); 2986 if (!vf_info) 2987 return 0; 2988 2989 vf_vp_wfq = &p_hwfn->qm_info.wfq_data[vf_info->vport_id]; 2990 2991 if (vf_vp_wfq->configured) 2992 return vf_vp_wfq->min_speed; 2993 else 2994 return 0; 2995 } 2996 2997 /** 2998 * qed_schedule_iov - schedules IOV task for VF and PF 2999 * @hwfn: hardware function pointer 3000 * @flag: IOV flag for VF/PF 3001 */ 3002 void qed_schedule_iov(struct qed_hwfn *hwfn, enum qed_iov_wq_flag flag) 3003 { 3004 smp_mb__before_atomic(); 3005 set_bit(flag, &hwfn->iov_task_flags); 3006 smp_mb__after_atomic(); 3007 DP_VERBOSE(hwfn, QED_MSG_IOV, "Scheduling iov task [Flag: %d]\n", flag); 3008 queue_delayed_work(hwfn->iov_wq, &hwfn->iov_task, 0); 3009 } 3010 3011 void qed_vf_start_iov_wq(struct qed_dev *cdev) 3012 { 3013 int i; 3014 3015 for_each_hwfn(cdev, i) 3016 queue_delayed_work(cdev->hwfns[i].iov_wq, 3017 &cdev->hwfns[i].iov_task, 0); 3018 } 3019 3020 int qed_sriov_disable(struct qed_dev *cdev, bool pci_enabled) 3021 { 3022 int i, j; 3023 3024 for_each_hwfn(cdev, i) 3025 if (cdev->hwfns[i].iov_wq) 3026 flush_workqueue(cdev->hwfns[i].iov_wq); 3027 3028 /* Mark VFs for disablement */ 3029 qed_iov_set_vfs_to_disable(cdev, true); 3030 3031 if (cdev->p_iov_info && cdev->p_iov_info->num_vfs && pci_enabled) 3032 pci_disable_sriov(cdev->pdev); 3033 3034 for_each_hwfn(cdev, i) { 3035 struct qed_hwfn *hwfn = &cdev->hwfns[i]; 3036 struct qed_ptt *ptt = qed_ptt_acquire(hwfn); 3037 3038 /* Failure to acquire the ptt in 100g creates an odd error 3039 * where the first engine has already relased IOV. 3040 */ 3041 if (!ptt) { 3042 DP_ERR(hwfn, "Failed to acquire ptt\n"); 3043 return -EBUSY; 3044 } 3045 3046 /* Clean WFQ db and configure equal weight for all vports */ 3047 qed_clean_wfq_db(hwfn, ptt); 3048 3049 qed_for_each_vf(hwfn, j) { 3050 int k; 3051 3052 if (!qed_iov_is_valid_vfid(hwfn, j, true)) 3053 continue; 3054 3055 /* Wait until VF is disabled before releasing */ 3056 for (k = 0; k < 100; k++) { 3057 if (!qed_iov_is_vf_stopped(hwfn, j)) 3058 msleep(20); 3059 else 3060 break; 3061 } 3062 3063 if (k < 100) 3064 qed_iov_release_hw_for_vf(&cdev->hwfns[i], 3065 ptt, j); 3066 else 3067 DP_ERR(hwfn, 3068 "Timeout waiting for VF's FLR to end\n"); 3069 } 3070 3071 qed_ptt_release(hwfn, ptt); 3072 } 3073 3074 qed_iov_set_vfs_to_disable(cdev, false); 3075 3076 return 0; 3077 } 3078 3079 static int qed_sriov_enable(struct qed_dev *cdev, int num) 3080 { 3081 struct qed_sb_cnt_info sb_cnt_info; 3082 int i, j, rc; 3083 3084 if (num >= RESC_NUM(&cdev->hwfns[0], QED_VPORT)) { 3085 DP_NOTICE(cdev, "Can start at most %d VFs\n", 3086 RESC_NUM(&cdev->hwfns[0], QED_VPORT) - 1); 3087 return -EINVAL; 3088 } 3089 3090 /* Initialize HW for VF access */ 3091 for_each_hwfn(cdev, j) { 3092 struct qed_hwfn *hwfn = &cdev->hwfns[j]; 3093 struct qed_ptt *ptt = qed_ptt_acquire(hwfn); 3094 int num_sbs = 0, limit = 16; 3095 3096 if (!ptt) { 3097 DP_ERR(hwfn, "Failed to acquire ptt\n"); 3098 rc = -EBUSY; 3099 goto err; 3100 } 3101 3102 if (IS_MF_DEFAULT(hwfn)) 3103 limit = MAX_NUM_VFS_BB / hwfn->num_funcs_on_engine; 3104 3105 memset(&sb_cnt_info, 0, sizeof(sb_cnt_info)); 3106 qed_int_get_num_sbs(hwfn, &sb_cnt_info); 3107 num_sbs = min_t(int, sb_cnt_info.sb_free_blk, limit); 3108 3109 for (i = 0; i < num; i++) { 3110 if (!qed_iov_is_valid_vfid(hwfn, i, false)) 3111 continue; 3112 3113 rc = qed_iov_init_hw_for_vf(hwfn, 3114 ptt, i, num_sbs / num); 3115 if (rc) { 3116 DP_ERR(cdev, "Failed to enable VF[%d]\n", i); 3117 qed_ptt_release(hwfn, ptt); 3118 goto err; 3119 } 3120 } 3121 3122 qed_ptt_release(hwfn, ptt); 3123 } 3124 3125 /* Enable SRIOV PCIe functions */ 3126 rc = pci_enable_sriov(cdev->pdev, num); 3127 if (rc) { 3128 DP_ERR(cdev, "Failed to enable sriov [%d]\n", rc); 3129 goto err; 3130 } 3131 3132 return num; 3133 3134 err: 3135 qed_sriov_disable(cdev, false); 3136 return rc; 3137 } 3138 3139 static int qed_sriov_configure(struct qed_dev *cdev, int num_vfs_param) 3140 { 3141 if (!IS_QED_SRIOV(cdev)) { 3142 DP_VERBOSE(cdev, QED_MSG_IOV, "SR-IOV is not supported\n"); 3143 return -EOPNOTSUPP; 3144 } 3145 3146 if (num_vfs_param) 3147 return qed_sriov_enable(cdev, num_vfs_param); 3148 else 3149 return qed_sriov_disable(cdev, true); 3150 } 3151 3152 static int qed_sriov_pf_set_mac(struct qed_dev *cdev, u8 *mac, int vfid) 3153 { 3154 int i; 3155 3156 if (!IS_QED_SRIOV(cdev) || !IS_PF_SRIOV_ALLOC(&cdev->hwfns[0])) { 3157 DP_VERBOSE(cdev, QED_MSG_IOV, 3158 "Cannot set a VF MAC; Sriov is not enabled\n"); 3159 return -EINVAL; 3160 } 3161 3162 if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vfid, true)) { 3163 DP_VERBOSE(cdev, QED_MSG_IOV, 3164 "Cannot set VF[%d] MAC (VF is not active)\n", vfid); 3165 return -EINVAL; 3166 } 3167 3168 for_each_hwfn(cdev, i) { 3169 struct qed_hwfn *hwfn = &cdev->hwfns[i]; 3170 struct qed_public_vf_info *vf_info; 3171 3172 vf_info = qed_iov_get_public_vf_info(hwfn, vfid, true); 3173 if (!vf_info) 3174 continue; 3175 3176 /* Set the forced MAC, and schedule the IOV task */ 3177 ether_addr_copy(vf_info->forced_mac, mac); 3178 qed_schedule_iov(hwfn, QED_IOV_WQ_SET_UNICAST_FILTER_FLAG); 3179 } 3180 3181 return 0; 3182 } 3183 3184 static int qed_sriov_pf_set_vlan(struct qed_dev *cdev, u16 vid, int vfid) 3185 { 3186 int i; 3187 3188 if (!IS_QED_SRIOV(cdev) || !IS_PF_SRIOV_ALLOC(&cdev->hwfns[0])) { 3189 DP_VERBOSE(cdev, QED_MSG_IOV, 3190 "Cannot set a VF MAC; Sriov is not enabled\n"); 3191 return -EINVAL; 3192 } 3193 3194 if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vfid, true)) { 3195 DP_VERBOSE(cdev, QED_MSG_IOV, 3196 "Cannot set VF[%d] MAC (VF is not active)\n", vfid); 3197 return -EINVAL; 3198 } 3199 3200 for_each_hwfn(cdev, i) { 3201 struct qed_hwfn *hwfn = &cdev->hwfns[i]; 3202 struct qed_public_vf_info *vf_info; 3203 3204 vf_info = qed_iov_get_public_vf_info(hwfn, vfid, true); 3205 if (!vf_info) 3206 continue; 3207 3208 /* Set the forced vlan, and schedule the IOV task */ 3209 vf_info->forced_vlan = vid; 3210 qed_schedule_iov(hwfn, QED_IOV_WQ_SET_UNICAST_FILTER_FLAG); 3211 } 3212 3213 return 0; 3214 } 3215 3216 static int qed_get_vf_config(struct qed_dev *cdev, 3217 int vf_id, struct ifla_vf_info *ivi) 3218 { 3219 struct qed_hwfn *hwfn = QED_LEADING_HWFN(cdev); 3220 struct qed_public_vf_info *vf_info; 3221 struct qed_mcp_link_state link; 3222 u32 tx_rate; 3223 3224 /* Sanitize request */ 3225 if (IS_VF(cdev)) 3226 return -EINVAL; 3227 3228 if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vf_id, true)) { 3229 DP_VERBOSE(cdev, QED_MSG_IOV, 3230 "VF index [%d] isn't active\n", vf_id); 3231 return -EINVAL; 3232 } 3233 3234 vf_info = qed_iov_get_public_vf_info(hwfn, vf_id, true); 3235 3236 qed_iov_get_link(hwfn, vf_id, NULL, &link, NULL); 3237 3238 /* Fill information about VF */ 3239 ivi->vf = vf_id; 3240 3241 if (is_valid_ether_addr(vf_info->forced_mac)) 3242 ether_addr_copy(ivi->mac, vf_info->forced_mac); 3243 else 3244 ether_addr_copy(ivi->mac, vf_info->mac); 3245 3246 ivi->vlan = vf_info->forced_vlan; 3247 ivi->spoofchk = qed_iov_spoofchk_get(hwfn, vf_id); 3248 ivi->linkstate = vf_info->link_state; 3249 tx_rate = vf_info->tx_rate; 3250 ivi->max_tx_rate = tx_rate ? tx_rate : link.speed; 3251 ivi->min_tx_rate = qed_iov_get_vf_min_rate(hwfn, vf_id); 3252 3253 return 0; 3254 } 3255 3256 void qed_inform_vf_link_state(struct qed_hwfn *hwfn) 3257 { 3258 struct qed_mcp_link_capabilities caps; 3259 struct qed_mcp_link_params params; 3260 struct qed_mcp_link_state link; 3261 int i; 3262 3263 if (!hwfn->pf_iov_info) 3264 return; 3265 3266 /* Update bulletin of all future possible VFs with link configuration */ 3267 for (i = 0; i < hwfn->cdev->p_iov_info->total_vfs; i++) { 3268 struct qed_public_vf_info *vf_info; 3269 3270 vf_info = qed_iov_get_public_vf_info(hwfn, i, false); 3271 if (!vf_info) 3272 continue; 3273 3274 memcpy(¶ms, qed_mcp_get_link_params(hwfn), sizeof(params)); 3275 memcpy(&link, qed_mcp_get_link_state(hwfn), sizeof(link)); 3276 memcpy(&caps, qed_mcp_get_link_capabilities(hwfn), 3277 sizeof(caps)); 3278 3279 /* Modify link according to the VF's configured link state */ 3280 switch (vf_info->link_state) { 3281 case IFLA_VF_LINK_STATE_DISABLE: 3282 link.link_up = false; 3283 break; 3284 case IFLA_VF_LINK_STATE_ENABLE: 3285 link.link_up = true; 3286 /* Set speed according to maximum supported by HW. 3287 * that is 40G for regular devices and 100G for CMT 3288 * mode devices. 3289 */ 3290 link.speed = (hwfn->cdev->num_hwfns > 1) ? 3291 100000 : 40000; 3292 default: 3293 /* In auto mode pass PF link image to VF */ 3294 break; 3295 } 3296 3297 if (link.link_up && vf_info->tx_rate) { 3298 struct qed_ptt *ptt; 3299 int rate; 3300 3301 rate = min_t(int, vf_info->tx_rate, link.speed); 3302 3303 ptt = qed_ptt_acquire(hwfn); 3304 if (!ptt) { 3305 DP_NOTICE(hwfn, "Failed to acquire PTT\n"); 3306 return; 3307 } 3308 3309 if (!qed_iov_configure_tx_rate(hwfn, ptt, i, rate)) { 3310 vf_info->tx_rate = rate; 3311 link.speed = rate; 3312 } 3313 3314 qed_ptt_release(hwfn, ptt); 3315 } 3316 3317 qed_iov_set_link(hwfn, i, ¶ms, &link, &caps); 3318 } 3319 3320 qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG); 3321 } 3322 3323 static int qed_set_vf_link_state(struct qed_dev *cdev, 3324 int vf_id, int link_state) 3325 { 3326 int i; 3327 3328 /* Sanitize request */ 3329 if (IS_VF(cdev)) 3330 return -EINVAL; 3331 3332 if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vf_id, true)) { 3333 DP_VERBOSE(cdev, QED_MSG_IOV, 3334 "VF index [%d] isn't active\n", vf_id); 3335 return -EINVAL; 3336 } 3337 3338 /* Handle configuration of link state */ 3339 for_each_hwfn(cdev, i) { 3340 struct qed_hwfn *hwfn = &cdev->hwfns[i]; 3341 struct qed_public_vf_info *vf; 3342 3343 vf = qed_iov_get_public_vf_info(hwfn, vf_id, true); 3344 if (!vf) 3345 continue; 3346 3347 if (vf->link_state == link_state) 3348 continue; 3349 3350 vf->link_state = link_state; 3351 qed_inform_vf_link_state(&cdev->hwfns[i]); 3352 } 3353 3354 return 0; 3355 } 3356 3357 static int qed_spoof_configure(struct qed_dev *cdev, int vfid, bool val) 3358 { 3359 int i, rc = -EINVAL; 3360 3361 for_each_hwfn(cdev, i) { 3362 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 3363 3364 rc = qed_iov_spoofchk_set(p_hwfn, vfid, val); 3365 if (rc) 3366 break; 3367 } 3368 3369 return rc; 3370 } 3371 3372 static int qed_configure_max_vf_rate(struct qed_dev *cdev, int vfid, int rate) 3373 { 3374 int i; 3375 3376 for_each_hwfn(cdev, i) { 3377 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 3378 struct qed_public_vf_info *vf; 3379 3380 if (!qed_iov_pf_sanity_check(p_hwfn, vfid)) { 3381 DP_NOTICE(p_hwfn, 3382 "SR-IOV sanity check failed, can't set tx rate\n"); 3383 return -EINVAL; 3384 } 3385 3386 vf = qed_iov_get_public_vf_info(p_hwfn, vfid, true); 3387 3388 vf->tx_rate = rate; 3389 3390 qed_inform_vf_link_state(p_hwfn); 3391 } 3392 3393 return 0; 3394 } 3395 3396 static int qed_set_vf_rate(struct qed_dev *cdev, 3397 int vfid, u32 min_rate, u32 max_rate) 3398 { 3399 int rc_min = 0, rc_max = 0; 3400 3401 if (max_rate) 3402 rc_max = qed_configure_max_vf_rate(cdev, vfid, max_rate); 3403 3404 if (min_rate) 3405 rc_min = qed_iov_configure_min_tx_rate(cdev, vfid, min_rate); 3406 3407 if (rc_max | rc_min) 3408 return -EINVAL; 3409 3410 return 0; 3411 } 3412 3413 static void qed_handle_vf_msg(struct qed_hwfn *hwfn) 3414 { 3415 u64 events[QED_VF_ARRAY_LENGTH]; 3416 struct qed_ptt *ptt; 3417 int i; 3418 3419 ptt = qed_ptt_acquire(hwfn); 3420 if (!ptt) { 3421 DP_VERBOSE(hwfn, QED_MSG_IOV, 3422 "Can't acquire PTT; re-scheduling\n"); 3423 qed_schedule_iov(hwfn, QED_IOV_WQ_MSG_FLAG); 3424 return; 3425 } 3426 3427 qed_iov_pf_get_and_clear_pending_events(hwfn, events); 3428 3429 DP_VERBOSE(hwfn, QED_MSG_IOV, 3430 "Event mask of VF events: 0x%llx 0x%llx 0x%llx\n", 3431 events[0], events[1], events[2]); 3432 3433 qed_for_each_vf(hwfn, i) { 3434 /* Skip VFs with no pending messages */ 3435 if (!(events[i / 64] & (1ULL << (i % 64)))) 3436 continue; 3437 3438 DP_VERBOSE(hwfn, QED_MSG_IOV, 3439 "Handling VF message from VF 0x%02x [Abs 0x%02x]\n", 3440 i, hwfn->cdev->p_iov_info->first_vf_in_pf + i); 3441 3442 /* Copy VF's message to PF's request buffer for that VF */ 3443 if (qed_iov_copy_vf_msg(hwfn, ptt, i)) 3444 continue; 3445 3446 qed_iov_process_mbx_req(hwfn, ptt, i); 3447 } 3448 3449 qed_ptt_release(hwfn, ptt); 3450 } 3451 3452 static void qed_handle_pf_set_vf_unicast(struct qed_hwfn *hwfn) 3453 { 3454 int i; 3455 3456 qed_for_each_vf(hwfn, i) { 3457 struct qed_public_vf_info *info; 3458 bool update = false; 3459 u8 *mac; 3460 3461 info = qed_iov_get_public_vf_info(hwfn, i, true); 3462 if (!info) 3463 continue; 3464 3465 /* Update data on bulletin board */ 3466 mac = qed_iov_bulletin_get_forced_mac(hwfn, i); 3467 if (is_valid_ether_addr(info->forced_mac) && 3468 (!mac || !ether_addr_equal(mac, info->forced_mac))) { 3469 DP_VERBOSE(hwfn, 3470 QED_MSG_IOV, 3471 "Handling PF setting of VF MAC to VF 0x%02x [Abs 0x%02x]\n", 3472 i, 3473 hwfn->cdev->p_iov_info->first_vf_in_pf + i); 3474 3475 /* Update bulletin board with forced MAC */ 3476 qed_iov_bulletin_set_forced_mac(hwfn, 3477 info->forced_mac, i); 3478 update = true; 3479 } 3480 3481 if (qed_iov_bulletin_get_forced_vlan(hwfn, i) ^ 3482 info->forced_vlan) { 3483 DP_VERBOSE(hwfn, 3484 QED_MSG_IOV, 3485 "Handling PF setting of pvid [0x%04x] to VF 0x%02x [Abs 0x%02x]\n", 3486 info->forced_vlan, 3487 i, 3488 hwfn->cdev->p_iov_info->first_vf_in_pf + i); 3489 qed_iov_bulletin_set_forced_vlan(hwfn, 3490 info->forced_vlan, i); 3491 update = true; 3492 } 3493 3494 if (update) 3495 qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG); 3496 } 3497 } 3498 3499 static void qed_handle_bulletin_post(struct qed_hwfn *hwfn) 3500 { 3501 struct qed_ptt *ptt; 3502 int i; 3503 3504 ptt = qed_ptt_acquire(hwfn); 3505 if (!ptt) { 3506 DP_NOTICE(hwfn, "Failed allocating a ptt entry\n"); 3507 qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG); 3508 return; 3509 } 3510 3511 qed_for_each_vf(hwfn, i) 3512 qed_iov_post_vf_bulletin(hwfn, i, ptt); 3513 3514 qed_ptt_release(hwfn, ptt); 3515 } 3516 3517 void qed_iov_pf_task(struct work_struct *work) 3518 { 3519 struct qed_hwfn *hwfn = container_of(work, struct qed_hwfn, 3520 iov_task.work); 3521 int rc; 3522 3523 if (test_and_clear_bit(QED_IOV_WQ_STOP_WQ_FLAG, &hwfn->iov_task_flags)) 3524 return; 3525 3526 if (test_and_clear_bit(QED_IOV_WQ_FLR_FLAG, &hwfn->iov_task_flags)) { 3527 struct qed_ptt *ptt = qed_ptt_acquire(hwfn); 3528 3529 if (!ptt) { 3530 qed_schedule_iov(hwfn, QED_IOV_WQ_FLR_FLAG); 3531 return; 3532 } 3533 3534 rc = qed_iov_vf_flr_cleanup(hwfn, ptt); 3535 if (rc) 3536 qed_schedule_iov(hwfn, QED_IOV_WQ_FLR_FLAG); 3537 3538 qed_ptt_release(hwfn, ptt); 3539 } 3540 3541 if (test_and_clear_bit(QED_IOV_WQ_MSG_FLAG, &hwfn->iov_task_flags)) 3542 qed_handle_vf_msg(hwfn); 3543 3544 if (test_and_clear_bit(QED_IOV_WQ_SET_UNICAST_FILTER_FLAG, 3545 &hwfn->iov_task_flags)) 3546 qed_handle_pf_set_vf_unicast(hwfn); 3547 3548 if (test_and_clear_bit(QED_IOV_WQ_BULLETIN_UPDATE_FLAG, 3549 &hwfn->iov_task_flags)) 3550 qed_handle_bulletin_post(hwfn); 3551 } 3552 3553 void qed_iov_wq_stop(struct qed_dev *cdev, bool schedule_first) 3554 { 3555 int i; 3556 3557 for_each_hwfn(cdev, i) { 3558 if (!cdev->hwfns[i].iov_wq) 3559 continue; 3560 3561 if (schedule_first) { 3562 qed_schedule_iov(&cdev->hwfns[i], 3563 QED_IOV_WQ_STOP_WQ_FLAG); 3564 cancel_delayed_work_sync(&cdev->hwfns[i].iov_task); 3565 } 3566 3567 flush_workqueue(cdev->hwfns[i].iov_wq); 3568 destroy_workqueue(cdev->hwfns[i].iov_wq); 3569 } 3570 } 3571 3572 int qed_iov_wq_start(struct qed_dev *cdev) 3573 { 3574 char name[NAME_SIZE]; 3575 int i; 3576 3577 for_each_hwfn(cdev, i) { 3578 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 3579 3580 /* PFs needs a dedicated workqueue only if they support IOV. 3581 * VFs always require one. 3582 */ 3583 if (IS_PF(p_hwfn->cdev) && !IS_PF_SRIOV(p_hwfn)) 3584 continue; 3585 3586 snprintf(name, NAME_SIZE, "iov-%02x:%02x.%02x", 3587 cdev->pdev->bus->number, 3588 PCI_SLOT(cdev->pdev->devfn), p_hwfn->abs_pf_id); 3589 3590 p_hwfn->iov_wq = create_singlethread_workqueue(name); 3591 if (!p_hwfn->iov_wq) { 3592 DP_NOTICE(p_hwfn, "Cannot create iov workqueue\n"); 3593 return -ENOMEM; 3594 } 3595 3596 if (IS_PF(cdev)) 3597 INIT_DELAYED_WORK(&p_hwfn->iov_task, qed_iov_pf_task); 3598 else 3599 INIT_DELAYED_WORK(&p_hwfn->iov_task, qed_iov_vf_task); 3600 } 3601 3602 return 0; 3603 } 3604 3605 const struct qed_iov_hv_ops qed_iov_ops_pass = { 3606 .configure = &qed_sriov_configure, 3607 .set_mac = &qed_sriov_pf_set_mac, 3608 .set_vlan = &qed_sriov_pf_set_vlan, 3609 .get_config = &qed_get_vf_config, 3610 .set_link_state = &qed_set_vf_link_state, 3611 .set_spoof = &qed_spoof_configure, 3612 .set_rate = &qed_set_vf_rate, 3613 }; 3614