xref: /linux/drivers/net/ethernet/qlogic/qed/qed_mcp.c (revision b04df400c30235fa347313c9e2a0695549bd2c8e)
1 /* QLogic qed NIC Driver
2  * Copyright (c) 2015-2017  QLogic Corporation
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and /or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 #include <linux/types.h>
34 #include <asm/byteorder.h>
35 #include <linux/delay.h>
36 #include <linux/errno.h>
37 #include <linux/kernel.h>
38 #include <linux/slab.h>
39 #include <linux/spinlock.h>
40 #include <linux/string.h>
41 #include <linux/etherdevice.h>
42 #include "qed.h"
43 #include "qed_cxt.h"
44 #include "qed_dcbx.h"
45 #include "qed_hsi.h"
46 #include "qed_hw.h"
47 #include "qed_mcp.h"
48 #include "qed_reg_addr.h"
49 #include "qed_sriov.h"
50 
51 #define CHIP_MCP_RESP_ITER_US 10
52 
53 #define QED_DRV_MB_MAX_RETRIES	(500 * 1000)	/* Account for 5 sec */
54 #define QED_MCP_RESET_RETRIES	(50 * 1000)	/* Account for 500 msec */
55 
56 #define DRV_INNER_WR(_p_hwfn, _p_ptt, _ptr, _offset, _val)	     \
57 	qed_wr(_p_hwfn, _p_ptt, (_p_hwfn->mcp_info->_ptr + _offset), \
58 	       _val)
59 
60 #define DRV_INNER_RD(_p_hwfn, _p_ptt, _ptr, _offset) \
61 	qed_rd(_p_hwfn, _p_ptt, (_p_hwfn->mcp_info->_ptr + _offset))
62 
63 #define DRV_MB_WR(_p_hwfn, _p_ptt, _field, _val)  \
64 	DRV_INNER_WR(p_hwfn, _p_ptt, drv_mb_addr, \
65 		     offsetof(struct public_drv_mb, _field), _val)
66 
67 #define DRV_MB_RD(_p_hwfn, _p_ptt, _field)	   \
68 	DRV_INNER_RD(_p_hwfn, _p_ptt, drv_mb_addr, \
69 		     offsetof(struct public_drv_mb, _field))
70 
71 #define PDA_COMP (((FW_MAJOR_VERSION) + (FW_MINOR_VERSION << 8)) << \
72 		  DRV_ID_PDA_COMP_VER_SHIFT)
73 
74 #define MCP_BYTES_PER_MBIT_SHIFT 17
75 
76 bool qed_mcp_is_init(struct qed_hwfn *p_hwfn)
77 {
78 	if (!p_hwfn->mcp_info || !p_hwfn->mcp_info->public_base)
79 		return false;
80 	return true;
81 }
82 
83 void qed_mcp_cmd_port_init(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
84 {
85 	u32 addr = SECTION_OFFSIZE_ADDR(p_hwfn->mcp_info->public_base,
86 					PUBLIC_PORT);
87 	u32 mfw_mb_offsize = qed_rd(p_hwfn, p_ptt, addr);
88 
89 	p_hwfn->mcp_info->port_addr = SECTION_ADDR(mfw_mb_offsize,
90 						   MFW_PORT(p_hwfn));
91 	DP_VERBOSE(p_hwfn, QED_MSG_SP,
92 		   "port_addr = 0x%x, port_id 0x%02x\n",
93 		   p_hwfn->mcp_info->port_addr, MFW_PORT(p_hwfn));
94 }
95 
96 void qed_mcp_read_mb(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
97 {
98 	u32 length = MFW_DRV_MSG_MAX_DWORDS(p_hwfn->mcp_info->mfw_mb_length);
99 	u32 tmp, i;
100 
101 	if (!p_hwfn->mcp_info->public_base)
102 		return;
103 
104 	for (i = 0; i < length; i++) {
105 		tmp = qed_rd(p_hwfn, p_ptt,
106 			     p_hwfn->mcp_info->mfw_mb_addr +
107 			     (i << 2) + sizeof(u32));
108 
109 		/* The MB data is actually BE; Need to force it to cpu */
110 		((u32 *)p_hwfn->mcp_info->mfw_mb_cur)[i] =
111 			be32_to_cpu((__force __be32)tmp);
112 	}
113 }
114 
115 struct qed_mcp_cmd_elem {
116 	struct list_head list;
117 	struct qed_mcp_mb_params *p_mb_params;
118 	u16 expected_seq_num;
119 	bool b_is_completed;
120 };
121 
122 /* Must be called while cmd_lock is acquired */
123 static struct qed_mcp_cmd_elem *
124 qed_mcp_cmd_add_elem(struct qed_hwfn *p_hwfn,
125 		     struct qed_mcp_mb_params *p_mb_params,
126 		     u16 expected_seq_num)
127 {
128 	struct qed_mcp_cmd_elem *p_cmd_elem = NULL;
129 
130 	p_cmd_elem = kzalloc(sizeof(*p_cmd_elem), GFP_ATOMIC);
131 	if (!p_cmd_elem)
132 		goto out;
133 
134 	p_cmd_elem->p_mb_params = p_mb_params;
135 	p_cmd_elem->expected_seq_num = expected_seq_num;
136 	list_add(&p_cmd_elem->list, &p_hwfn->mcp_info->cmd_list);
137 out:
138 	return p_cmd_elem;
139 }
140 
141 /* Must be called while cmd_lock is acquired */
142 static void qed_mcp_cmd_del_elem(struct qed_hwfn *p_hwfn,
143 				 struct qed_mcp_cmd_elem *p_cmd_elem)
144 {
145 	list_del(&p_cmd_elem->list);
146 	kfree(p_cmd_elem);
147 }
148 
149 /* Must be called while cmd_lock is acquired */
150 static struct qed_mcp_cmd_elem *qed_mcp_cmd_get_elem(struct qed_hwfn *p_hwfn,
151 						     u16 seq_num)
152 {
153 	struct qed_mcp_cmd_elem *p_cmd_elem = NULL;
154 
155 	list_for_each_entry(p_cmd_elem, &p_hwfn->mcp_info->cmd_list, list) {
156 		if (p_cmd_elem->expected_seq_num == seq_num)
157 			return p_cmd_elem;
158 	}
159 
160 	return NULL;
161 }
162 
163 int qed_mcp_free(struct qed_hwfn *p_hwfn)
164 {
165 	if (p_hwfn->mcp_info) {
166 		struct qed_mcp_cmd_elem *p_cmd_elem, *p_tmp;
167 
168 		kfree(p_hwfn->mcp_info->mfw_mb_cur);
169 		kfree(p_hwfn->mcp_info->mfw_mb_shadow);
170 
171 		spin_lock_bh(&p_hwfn->mcp_info->cmd_lock);
172 		list_for_each_entry_safe(p_cmd_elem,
173 					 p_tmp,
174 					 &p_hwfn->mcp_info->cmd_list, list) {
175 			qed_mcp_cmd_del_elem(p_hwfn, p_cmd_elem);
176 		}
177 		spin_unlock_bh(&p_hwfn->mcp_info->cmd_lock);
178 	}
179 
180 	kfree(p_hwfn->mcp_info);
181 	p_hwfn->mcp_info = NULL;
182 
183 	return 0;
184 }
185 
186 static int qed_load_mcp_offsets(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
187 {
188 	struct qed_mcp_info *p_info = p_hwfn->mcp_info;
189 	u32 drv_mb_offsize, mfw_mb_offsize;
190 	u32 mcp_pf_id = MCP_PF_ID(p_hwfn);
191 
192 	p_info->public_base = qed_rd(p_hwfn, p_ptt, MISC_REG_SHARED_MEM_ADDR);
193 	if (!p_info->public_base)
194 		return 0;
195 
196 	p_info->public_base |= GRCBASE_MCP;
197 
198 	/* Calculate the driver and MFW mailbox address */
199 	drv_mb_offsize = qed_rd(p_hwfn, p_ptt,
200 				SECTION_OFFSIZE_ADDR(p_info->public_base,
201 						     PUBLIC_DRV_MB));
202 	p_info->drv_mb_addr = SECTION_ADDR(drv_mb_offsize, mcp_pf_id);
203 	DP_VERBOSE(p_hwfn, QED_MSG_SP,
204 		   "drv_mb_offsiz = 0x%x, drv_mb_addr = 0x%x mcp_pf_id = 0x%x\n",
205 		   drv_mb_offsize, p_info->drv_mb_addr, mcp_pf_id);
206 
207 	/* Set the MFW MB address */
208 	mfw_mb_offsize = qed_rd(p_hwfn, p_ptt,
209 				SECTION_OFFSIZE_ADDR(p_info->public_base,
210 						     PUBLIC_MFW_MB));
211 	p_info->mfw_mb_addr = SECTION_ADDR(mfw_mb_offsize, mcp_pf_id);
212 	p_info->mfw_mb_length =	(u16)qed_rd(p_hwfn, p_ptt, p_info->mfw_mb_addr);
213 
214 	/* Get the current driver mailbox sequence before sending
215 	 * the first command
216 	 */
217 	p_info->drv_mb_seq = DRV_MB_RD(p_hwfn, p_ptt, drv_mb_header) &
218 			     DRV_MSG_SEQ_NUMBER_MASK;
219 
220 	/* Get current FW pulse sequence */
221 	p_info->drv_pulse_seq = DRV_MB_RD(p_hwfn, p_ptt, drv_pulse_mb) &
222 				DRV_PULSE_SEQ_MASK;
223 
224 	p_info->mcp_hist = qed_rd(p_hwfn, p_ptt, MISCS_REG_GENERIC_POR_0);
225 
226 	return 0;
227 }
228 
229 int qed_mcp_cmd_init(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
230 {
231 	struct qed_mcp_info *p_info;
232 	u32 size;
233 
234 	/* Allocate mcp_info structure */
235 	p_hwfn->mcp_info = kzalloc(sizeof(*p_hwfn->mcp_info), GFP_KERNEL);
236 	if (!p_hwfn->mcp_info)
237 		goto err;
238 	p_info = p_hwfn->mcp_info;
239 
240 	/* Initialize the MFW spinlock */
241 	spin_lock_init(&p_info->cmd_lock);
242 	spin_lock_init(&p_info->link_lock);
243 
244 	INIT_LIST_HEAD(&p_info->cmd_list);
245 
246 	if (qed_load_mcp_offsets(p_hwfn, p_ptt) != 0) {
247 		DP_NOTICE(p_hwfn, "MCP is not initialized\n");
248 		/* Do not free mcp_info here, since public_base indicate that
249 		 * the MCP is not initialized
250 		 */
251 		return 0;
252 	}
253 
254 	size = MFW_DRV_MSG_MAX_DWORDS(p_info->mfw_mb_length) * sizeof(u32);
255 	p_info->mfw_mb_cur = kzalloc(size, GFP_KERNEL);
256 	p_info->mfw_mb_shadow = kzalloc(size, GFP_KERNEL);
257 	if (!p_info->mfw_mb_cur || !p_info->mfw_mb_shadow)
258 		goto err;
259 
260 	return 0;
261 
262 err:
263 	qed_mcp_free(p_hwfn);
264 	return -ENOMEM;
265 }
266 
267 static void qed_mcp_reread_offsets(struct qed_hwfn *p_hwfn,
268 				   struct qed_ptt *p_ptt)
269 {
270 	u32 generic_por_0 = qed_rd(p_hwfn, p_ptt, MISCS_REG_GENERIC_POR_0);
271 
272 	/* Use MCP history register to check if MCP reset occurred between init
273 	 * time and now.
274 	 */
275 	if (p_hwfn->mcp_info->mcp_hist != generic_por_0) {
276 		DP_VERBOSE(p_hwfn,
277 			   QED_MSG_SP,
278 			   "Rereading MCP offsets [mcp_hist 0x%08x, generic_por_0 0x%08x]\n",
279 			   p_hwfn->mcp_info->mcp_hist, generic_por_0);
280 
281 		qed_load_mcp_offsets(p_hwfn, p_ptt);
282 		qed_mcp_cmd_port_init(p_hwfn, p_ptt);
283 	}
284 }
285 
286 int qed_mcp_reset(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
287 {
288 	u32 org_mcp_reset_seq, seq, delay = CHIP_MCP_RESP_ITER_US, cnt = 0;
289 	int rc = 0;
290 
291 	/* Ensure that only a single thread is accessing the mailbox */
292 	spin_lock_bh(&p_hwfn->mcp_info->cmd_lock);
293 
294 	org_mcp_reset_seq = qed_rd(p_hwfn, p_ptt, MISCS_REG_GENERIC_POR_0);
295 
296 	/* Set drv command along with the updated sequence */
297 	qed_mcp_reread_offsets(p_hwfn, p_ptt);
298 	seq = ++p_hwfn->mcp_info->drv_mb_seq;
299 	DRV_MB_WR(p_hwfn, p_ptt, drv_mb_header, (DRV_MSG_CODE_MCP_RESET | seq));
300 
301 	do {
302 		/* Wait for MFW response */
303 		udelay(delay);
304 		/* Give the FW up to 500 second (50*1000*10usec) */
305 	} while ((org_mcp_reset_seq == qed_rd(p_hwfn, p_ptt,
306 					      MISCS_REG_GENERIC_POR_0)) &&
307 		 (cnt++ < QED_MCP_RESET_RETRIES));
308 
309 	if (org_mcp_reset_seq !=
310 	    qed_rd(p_hwfn, p_ptt, MISCS_REG_GENERIC_POR_0)) {
311 		DP_VERBOSE(p_hwfn, QED_MSG_SP,
312 			   "MCP was reset after %d usec\n", cnt * delay);
313 	} else {
314 		DP_ERR(p_hwfn, "Failed to reset MCP\n");
315 		rc = -EAGAIN;
316 	}
317 
318 	spin_unlock_bh(&p_hwfn->mcp_info->cmd_lock);
319 
320 	return rc;
321 }
322 
323 /* Must be called while cmd_lock is acquired */
324 static bool qed_mcp_has_pending_cmd(struct qed_hwfn *p_hwfn)
325 {
326 	struct qed_mcp_cmd_elem *p_cmd_elem;
327 
328 	/* There is at most one pending command at a certain time, and if it
329 	 * exists - it is placed at the HEAD of the list.
330 	 */
331 	if (!list_empty(&p_hwfn->mcp_info->cmd_list)) {
332 		p_cmd_elem = list_first_entry(&p_hwfn->mcp_info->cmd_list,
333 					      struct qed_mcp_cmd_elem, list);
334 		return !p_cmd_elem->b_is_completed;
335 	}
336 
337 	return false;
338 }
339 
340 /* Must be called while cmd_lock is acquired */
341 static int
342 qed_mcp_update_pending_cmd(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
343 {
344 	struct qed_mcp_mb_params *p_mb_params;
345 	struct qed_mcp_cmd_elem *p_cmd_elem;
346 	u32 mcp_resp;
347 	u16 seq_num;
348 
349 	mcp_resp = DRV_MB_RD(p_hwfn, p_ptt, fw_mb_header);
350 	seq_num = (u16)(mcp_resp & FW_MSG_SEQ_NUMBER_MASK);
351 
352 	/* Return if no new non-handled response has been received */
353 	if (seq_num != p_hwfn->mcp_info->drv_mb_seq)
354 		return -EAGAIN;
355 
356 	p_cmd_elem = qed_mcp_cmd_get_elem(p_hwfn, seq_num);
357 	if (!p_cmd_elem) {
358 		DP_ERR(p_hwfn,
359 		       "Failed to find a pending mailbox cmd that expects sequence number %d\n",
360 		       seq_num);
361 		return -EINVAL;
362 	}
363 
364 	p_mb_params = p_cmd_elem->p_mb_params;
365 
366 	/* Get the MFW response along with the sequence number */
367 	p_mb_params->mcp_resp = mcp_resp;
368 
369 	/* Get the MFW param */
370 	p_mb_params->mcp_param = DRV_MB_RD(p_hwfn, p_ptt, fw_mb_param);
371 
372 	/* Get the union data */
373 	if (p_mb_params->p_data_dst != NULL && p_mb_params->data_dst_size) {
374 		u32 union_data_addr = p_hwfn->mcp_info->drv_mb_addr +
375 				      offsetof(struct public_drv_mb,
376 					       union_data);
377 		qed_memcpy_from(p_hwfn, p_ptt, p_mb_params->p_data_dst,
378 				union_data_addr, p_mb_params->data_dst_size);
379 	}
380 
381 	p_cmd_elem->b_is_completed = true;
382 
383 	return 0;
384 }
385 
386 /* Must be called while cmd_lock is acquired */
387 static void __qed_mcp_cmd_and_union(struct qed_hwfn *p_hwfn,
388 				    struct qed_ptt *p_ptt,
389 				    struct qed_mcp_mb_params *p_mb_params,
390 				    u16 seq_num)
391 {
392 	union drv_union_data union_data;
393 	u32 union_data_addr;
394 
395 	/* Set the union data */
396 	union_data_addr = p_hwfn->mcp_info->drv_mb_addr +
397 			  offsetof(struct public_drv_mb, union_data);
398 	memset(&union_data, 0, sizeof(union_data));
399 	if (p_mb_params->p_data_src != NULL && p_mb_params->data_src_size)
400 		memcpy(&union_data, p_mb_params->p_data_src,
401 		       p_mb_params->data_src_size);
402 	qed_memcpy_to(p_hwfn, p_ptt, union_data_addr, &union_data,
403 		      sizeof(union_data));
404 
405 	/* Set the drv param */
406 	DRV_MB_WR(p_hwfn, p_ptt, drv_mb_param, p_mb_params->param);
407 
408 	/* Set the drv command along with the sequence number */
409 	DRV_MB_WR(p_hwfn, p_ptt, drv_mb_header, (p_mb_params->cmd | seq_num));
410 
411 	DP_VERBOSE(p_hwfn, QED_MSG_SP,
412 		   "MFW mailbox: command 0x%08x param 0x%08x\n",
413 		   (p_mb_params->cmd | seq_num), p_mb_params->param);
414 }
415 
416 static int
417 _qed_mcp_cmd_and_union(struct qed_hwfn *p_hwfn,
418 		       struct qed_ptt *p_ptt,
419 		       struct qed_mcp_mb_params *p_mb_params,
420 		       u32 max_retries, u32 delay)
421 {
422 	struct qed_mcp_cmd_elem *p_cmd_elem;
423 	u32 cnt = 0;
424 	u16 seq_num;
425 	int rc = 0;
426 
427 	/* Wait until the mailbox is non-occupied */
428 	do {
429 		/* Exit the loop if there is no pending command, or if the
430 		 * pending command is completed during this iteration.
431 		 * The spinlock stays locked until the command is sent.
432 		 */
433 
434 		spin_lock_bh(&p_hwfn->mcp_info->cmd_lock);
435 
436 		if (!qed_mcp_has_pending_cmd(p_hwfn))
437 			break;
438 
439 		rc = qed_mcp_update_pending_cmd(p_hwfn, p_ptt);
440 		if (!rc)
441 			break;
442 		else if (rc != -EAGAIN)
443 			goto err;
444 
445 		spin_unlock_bh(&p_hwfn->mcp_info->cmd_lock);
446 		udelay(delay);
447 	} while (++cnt < max_retries);
448 
449 	if (cnt >= max_retries) {
450 		DP_NOTICE(p_hwfn,
451 			  "The MFW mailbox is occupied by an uncompleted command. Failed to send command 0x%08x [param 0x%08x].\n",
452 			  p_mb_params->cmd, p_mb_params->param);
453 		return -EAGAIN;
454 	}
455 
456 	/* Send the mailbox command */
457 	qed_mcp_reread_offsets(p_hwfn, p_ptt);
458 	seq_num = ++p_hwfn->mcp_info->drv_mb_seq;
459 	p_cmd_elem = qed_mcp_cmd_add_elem(p_hwfn, p_mb_params, seq_num);
460 	if (!p_cmd_elem) {
461 		rc = -ENOMEM;
462 		goto err;
463 	}
464 
465 	__qed_mcp_cmd_and_union(p_hwfn, p_ptt, p_mb_params, seq_num);
466 	spin_unlock_bh(&p_hwfn->mcp_info->cmd_lock);
467 
468 	/* Wait for the MFW response */
469 	do {
470 		/* Exit the loop if the command is already completed, or if the
471 		 * command is completed during this iteration.
472 		 * The spinlock stays locked until the list element is removed.
473 		 */
474 
475 		udelay(delay);
476 		spin_lock_bh(&p_hwfn->mcp_info->cmd_lock);
477 
478 		if (p_cmd_elem->b_is_completed)
479 			break;
480 
481 		rc = qed_mcp_update_pending_cmd(p_hwfn, p_ptt);
482 		if (!rc)
483 			break;
484 		else if (rc != -EAGAIN)
485 			goto err;
486 
487 		spin_unlock_bh(&p_hwfn->mcp_info->cmd_lock);
488 	} while (++cnt < max_retries);
489 
490 	if (cnt >= max_retries) {
491 		DP_NOTICE(p_hwfn,
492 			  "The MFW failed to respond to command 0x%08x [param 0x%08x].\n",
493 			  p_mb_params->cmd, p_mb_params->param);
494 
495 		spin_lock_bh(&p_hwfn->mcp_info->cmd_lock);
496 		qed_mcp_cmd_del_elem(p_hwfn, p_cmd_elem);
497 		spin_unlock_bh(&p_hwfn->mcp_info->cmd_lock);
498 
499 		return -EAGAIN;
500 	}
501 
502 	qed_mcp_cmd_del_elem(p_hwfn, p_cmd_elem);
503 	spin_unlock_bh(&p_hwfn->mcp_info->cmd_lock);
504 
505 	DP_VERBOSE(p_hwfn,
506 		   QED_MSG_SP,
507 		   "MFW mailbox: response 0x%08x param 0x%08x [after %d.%03d ms]\n",
508 		   p_mb_params->mcp_resp,
509 		   p_mb_params->mcp_param,
510 		   (cnt * delay) / 1000, (cnt * delay) % 1000);
511 
512 	/* Clear the sequence number from the MFW response */
513 	p_mb_params->mcp_resp &= FW_MSG_CODE_MASK;
514 
515 	return 0;
516 
517 err:
518 	spin_unlock_bh(&p_hwfn->mcp_info->cmd_lock);
519 	return rc;
520 }
521 
522 static int qed_mcp_cmd_and_union(struct qed_hwfn *p_hwfn,
523 				 struct qed_ptt *p_ptt,
524 				 struct qed_mcp_mb_params *p_mb_params)
525 {
526 	size_t union_data_size = sizeof(union drv_union_data);
527 	u32 max_retries = QED_DRV_MB_MAX_RETRIES;
528 	u32 delay = CHIP_MCP_RESP_ITER_US;
529 
530 	/* MCP not initialized */
531 	if (!qed_mcp_is_init(p_hwfn)) {
532 		DP_NOTICE(p_hwfn, "MFW is not initialized!\n");
533 		return -EBUSY;
534 	}
535 
536 	if (p_mb_params->data_src_size > union_data_size ||
537 	    p_mb_params->data_dst_size > union_data_size) {
538 		DP_ERR(p_hwfn,
539 		       "The provided size is larger than the union data size [src_size %u, dst_size %u, union_data_size %zu]\n",
540 		       p_mb_params->data_src_size,
541 		       p_mb_params->data_dst_size, union_data_size);
542 		return -EINVAL;
543 	}
544 
545 	return _qed_mcp_cmd_and_union(p_hwfn, p_ptt, p_mb_params, max_retries,
546 				      delay);
547 }
548 
549 int qed_mcp_cmd(struct qed_hwfn *p_hwfn,
550 		struct qed_ptt *p_ptt,
551 		u32 cmd,
552 		u32 param,
553 		u32 *o_mcp_resp,
554 		u32 *o_mcp_param)
555 {
556 	struct qed_mcp_mb_params mb_params;
557 	int rc;
558 
559 	memset(&mb_params, 0, sizeof(mb_params));
560 	mb_params.cmd = cmd;
561 	mb_params.param = param;
562 
563 	rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params);
564 	if (rc)
565 		return rc;
566 
567 	*o_mcp_resp = mb_params.mcp_resp;
568 	*o_mcp_param = mb_params.mcp_param;
569 
570 	return 0;
571 }
572 
573 int qed_mcp_nvm_wr_cmd(struct qed_hwfn *p_hwfn,
574 		       struct qed_ptt *p_ptt,
575 		       u32 cmd,
576 		       u32 param,
577 		       u32 *o_mcp_resp,
578 		       u32 *o_mcp_param, u32 i_txn_size, u32 *i_buf)
579 {
580 	struct qed_mcp_mb_params mb_params;
581 	int rc;
582 
583 	memset(&mb_params, 0, sizeof(mb_params));
584 	mb_params.cmd = cmd;
585 	mb_params.param = param;
586 	mb_params.p_data_src = i_buf;
587 	mb_params.data_src_size = (u8)i_txn_size;
588 	rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params);
589 	if (rc)
590 		return rc;
591 
592 	*o_mcp_resp = mb_params.mcp_resp;
593 	*o_mcp_param = mb_params.mcp_param;
594 
595 	return 0;
596 }
597 
598 int qed_mcp_nvm_rd_cmd(struct qed_hwfn *p_hwfn,
599 		       struct qed_ptt *p_ptt,
600 		       u32 cmd,
601 		       u32 param,
602 		       u32 *o_mcp_resp,
603 		       u32 *o_mcp_param, u32 *o_txn_size, u32 *o_buf)
604 {
605 	struct qed_mcp_mb_params mb_params;
606 	u8 raw_data[MCP_DRV_NVM_BUF_LEN];
607 	int rc;
608 
609 	memset(&mb_params, 0, sizeof(mb_params));
610 	mb_params.cmd = cmd;
611 	mb_params.param = param;
612 	mb_params.p_data_dst = raw_data;
613 
614 	/* Use the maximal value since the actual one is part of the response */
615 	mb_params.data_dst_size = MCP_DRV_NVM_BUF_LEN;
616 
617 	rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params);
618 	if (rc)
619 		return rc;
620 
621 	*o_mcp_resp = mb_params.mcp_resp;
622 	*o_mcp_param = mb_params.mcp_param;
623 
624 	*o_txn_size = *o_mcp_param;
625 	memcpy(o_buf, raw_data, *o_txn_size);
626 
627 	return 0;
628 }
629 
630 static bool
631 qed_mcp_can_force_load(u8 drv_role,
632 		       u8 exist_drv_role,
633 		       enum qed_override_force_load override_force_load)
634 {
635 	bool can_force_load = false;
636 
637 	switch (override_force_load) {
638 	case QED_OVERRIDE_FORCE_LOAD_ALWAYS:
639 		can_force_load = true;
640 		break;
641 	case QED_OVERRIDE_FORCE_LOAD_NEVER:
642 		can_force_load = false;
643 		break;
644 	default:
645 		can_force_load = (drv_role == DRV_ROLE_OS &&
646 				  exist_drv_role == DRV_ROLE_PREBOOT) ||
647 				 (drv_role == DRV_ROLE_KDUMP &&
648 				  exist_drv_role == DRV_ROLE_OS);
649 		break;
650 	}
651 
652 	return can_force_load;
653 }
654 
655 static int qed_mcp_cancel_load_req(struct qed_hwfn *p_hwfn,
656 				   struct qed_ptt *p_ptt)
657 {
658 	u32 resp = 0, param = 0;
659 	int rc;
660 
661 	rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_CANCEL_LOAD_REQ, 0,
662 			 &resp, &param);
663 	if (rc)
664 		DP_NOTICE(p_hwfn,
665 			  "Failed to send cancel load request, rc = %d\n", rc);
666 
667 	return rc;
668 }
669 
670 #define CONFIG_QEDE_BITMAP_IDX		BIT(0)
671 #define CONFIG_QED_SRIOV_BITMAP_IDX	BIT(1)
672 #define CONFIG_QEDR_BITMAP_IDX		BIT(2)
673 #define CONFIG_QEDF_BITMAP_IDX		BIT(4)
674 #define CONFIG_QEDI_BITMAP_IDX		BIT(5)
675 #define CONFIG_QED_LL2_BITMAP_IDX	BIT(6)
676 
677 static u32 qed_get_config_bitmap(void)
678 {
679 	u32 config_bitmap = 0x0;
680 
681 	if (IS_ENABLED(CONFIG_QEDE))
682 		config_bitmap |= CONFIG_QEDE_BITMAP_IDX;
683 
684 	if (IS_ENABLED(CONFIG_QED_SRIOV))
685 		config_bitmap |= CONFIG_QED_SRIOV_BITMAP_IDX;
686 
687 	if (IS_ENABLED(CONFIG_QED_RDMA))
688 		config_bitmap |= CONFIG_QEDR_BITMAP_IDX;
689 
690 	if (IS_ENABLED(CONFIG_QED_FCOE))
691 		config_bitmap |= CONFIG_QEDF_BITMAP_IDX;
692 
693 	if (IS_ENABLED(CONFIG_QED_ISCSI))
694 		config_bitmap |= CONFIG_QEDI_BITMAP_IDX;
695 
696 	if (IS_ENABLED(CONFIG_QED_LL2))
697 		config_bitmap |= CONFIG_QED_LL2_BITMAP_IDX;
698 
699 	return config_bitmap;
700 }
701 
702 struct qed_load_req_in_params {
703 	u8 hsi_ver;
704 #define QED_LOAD_REQ_HSI_VER_DEFAULT	0
705 #define QED_LOAD_REQ_HSI_VER_1		1
706 	u32 drv_ver_0;
707 	u32 drv_ver_1;
708 	u32 fw_ver;
709 	u8 drv_role;
710 	u8 timeout_val;
711 	u8 force_cmd;
712 	bool avoid_eng_reset;
713 };
714 
715 struct qed_load_req_out_params {
716 	u32 load_code;
717 	u32 exist_drv_ver_0;
718 	u32 exist_drv_ver_1;
719 	u32 exist_fw_ver;
720 	u8 exist_drv_role;
721 	u8 mfw_hsi_ver;
722 	bool drv_exists;
723 };
724 
725 static int
726 __qed_mcp_load_req(struct qed_hwfn *p_hwfn,
727 		   struct qed_ptt *p_ptt,
728 		   struct qed_load_req_in_params *p_in_params,
729 		   struct qed_load_req_out_params *p_out_params)
730 {
731 	struct qed_mcp_mb_params mb_params;
732 	struct load_req_stc load_req;
733 	struct load_rsp_stc load_rsp;
734 	u32 hsi_ver;
735 	int rc;
736 
737 	memset(&load_req, 0, sizeof(load_req));
738 	load_req.drv_ver_0 = p_in_params->drv_ver_0;
739 	load_req.drv_ver_1 = p_in_params->drv_ver_1;
740 	load_req.fw_ver = p_in_params->fw_ver;
741 	QED_MFW_SET_FIELD(load_req.misc0, LOAD_REQ_ROLE, p_in_params->drv_role);
742 	QED_MFW_SET_FIELD(load_req.misc0, LOAD_REQ_LOCK_TO,
743 			  p_in_params->timeout_val);
744 	QED_MFW_SET_FIELD(load_req.misc0, LOAD_REQ_FORCE,
745 			  p_in_params->force_cmd);
746 	QED_MFW_SET_FIELD(load_req.misc0, LOAD_REQ_FLAGS0,
747 			  p_in_params->avoid_eng_reset);
748 
749 	hsi_ver = (p_in_params->hsi_ver == QED_LOAD_REQ_HSI_VER_DEFAULT) ?
750 		  DRV_ID_MCP_HSI_VER_CURRENT :
751 		  (p_in_params->hsi_ver << DRV_ID_MCP_HSI_VER_SHIFT);
752 
753 	memset(&mb_params, 0, sizeof(mb_params));
754 	mb_params.cmd = DRV_MSG_CODE_LOAD_REQ;
755 	mb_params.param = PDA_COMP | hsi_ver | p_hwfn->cdev->drv_type;
756 	mb_params.p_data_src = &load_req;
757 	mb_params.data_src_size = sizeof(load_req);
758 	mb_params.p_data_dst = &load_rsp;
759 	mb_params.data_dst_size = sizeof(load_rsp);
760 
761 	DP_VERBOSE(p_hwfn, QED_MSG_SP,
762 		   "Load Request: param 0x%08x [init_hw %d, drv_type %d, hsi_ver %d, pda 0x%04x]\n",
763 		   mb_params.param,
764 		   QED_MFW_GET_FIELD(mb_params.param, DRV_ID_DRV_INIT_HW),
765 		   QED_MFW_GET_FIELD(mb_params.param, DRV_ID_DRV_TYPE),
766 		   QED_MFW_GET_FIELD(mb_params.param, DRV_ID_MCP_HSI_VER),
767 		   QED_MFW_GET_FIELD(mb_params.param, DRV_ID_PDA_COMP_VER));
768 
769 	if (p_in_params->hsi_ver != QED_LOAD_REQ_HSI_VER_1) {
770 		DP_VERBOSE(p_hwfn, QED_MSG_SP,
771 			   "Load Request: drv_ver 0x%08x_0x%08x, fw_ver 0x%08x, misc0 0x%08x [role %d, timeout %d, force %d, flags0 0x%x]\n",
772 			   load_req.drv_ver_0,
773 			   load_req.drv_ver_1,
774 			   load_req.fw_ver,
775 			   load_req.misc0,
776 			   QED_MFW_GET_FIELD(load_req.misc0, LOAD_REQ_ROLE),
777 			   QED_MFW_GET_FIELD(load_req.misc0,
778 					     LOAD_REQ_LOCK_TO),
779 			   QED_MFW_GET_FIELD(load_req.misc0, LOAD_REQ_FORCE),
780 			   QED_MFW_GET_FIELD(load_req.misc0, LOAD_REQ_FLAGS0));
781 	}
782 
783 	rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params);
784 	if (rc) {
785 		DP_NOTICE(p_hwfn, "Failed to send load request, rc = %d\n", rc);
786 		return rc;
787 	}
788 
789 	DP_VERBOSE(p_hwfn, QED_MSG_SP,
790 		   "Load Response: resp 0x%08x\n", mb_params.mcp_resp);
791 	p_out_params->load_code = mb_params.mcp_resp;
792 
793 	if (p_in_params->hsi_ver != QED_LOAD_REQ_HSI_VER_1 &&
794 	    p_out_params->load_code != FW_MSG_CODE_DRV_LOAD_REFUSED_HSI_1) {
795 		DP_VERBOSE(p_hwfn,
796 			   QED_MSG_SP,
797 			   "Load Response: exist_drv_ver 0x%08x_0x%08x, exist_fw_ver 0x%08x, misc0 0x%08x [exist_role %d, mfw_hsi %d, flags0 0x%x]\n",
798 			   load_rsp.drv_ver_0,
799 			   load_rsp.drv_ver_1,
800 			   load_rsp.fw_ver,
801 			   load_rsp.misc0,
802 			   QED_MFW_GET_FIELD(load_rsp.misc0, LOAD_RSP_ROLE),
803 			   QED_MFW_GET_FIELD(load_rsp.misc0, LOAD_RSP_HSI),
804 			   QED_MFW_GET_FIELD(load_rsp.misc0, LOAD_RSP_FLAGS0));
805 
806 		p_out_params->exist_drv_ver_0 = load_rsp.drv_ver_0;
807 		p_out_params->exist_drv_ver_1 = load_rsp.drv_ver_1;
808 		p_out_params->exist_fw_ver = load_rsp.fw_ver;
809 		p_out_params->exist_drv_role =
810 		    QED_MFW_GET_FIELD(load_rsp.misc0, LOAD_RSP_ROLE);
811 		p_out_params->mfw_hsi_ver =
812 		    QED_MFW_GET_FIELD(load_rsp.misc0, LOAD_RSP_HSI);
813 		p_out_params->drv_exists =
814 		    QED_MFW_GET_FIELD(load_rsp.misc0, LOAD_RSP_FLAGS0) &
815 		    LOAD_RSP_FLAGS0_DRV_EXISTS;
816 	}
817 
818 	return 0;
819 }
820 
821 static int eocre_get_mfw_drv_role(struct qed_hwfn *p_hwfn,
822 				  enum qed_drv_role drv_role,
823 				  u8 *p_mfw_drv_role)
824 {
825 	switch (drv_role) {
826 	case QED_DRV_ROLE_OS:
827 		*p_mfw_drv_role = DRV_ROLE_OS;
828 		break;
829 	case QED_DRV_ROLE_KDUMP:
830 		*p_mfw_drv_role = DRV_ROLE_KDUMP;
831 		break;
832 	default:
833 		DP_ERR(p_hwfn, "Unexpected driver role %d\n", drv_role);
834 		return -EINVAL;
835 	}
836 
837 	return 0;
838 }
839 
840 enum qed_load_req_force {
841 	QED_LOAD_REQ_FORCE_NONE,
842 	QED_LOAD_REQ_FORCE_PF,
843 	QED_LOAD_REQ_FORCE_ALL,
844 };
845 
846 static void qed_get_mfw_force_cmd(struct qed_hwfn *p_hwfn,
847 
848 				  enum qed_load_req_force force_cmd,
849 				  u8 *p_mfw_force_cmd)
850 {
851 	switch (force_cmd) {
852 	case QED_LOAD_REQ_FORCE_NONE:
853 		*p_mfw_force_cmd = LOAD_REQ_FORCE_NONE;
854 		break;
855 	case QED_LOAD_REQ_FORCE_PF:
856 		*p_mfw_force_cmd = LOAD_REQ_FORCE_PF;
857 		break;
858 	case QED_LOAD_REQ_FORCE_ALL:
859 		*p_mfw_force_cmd = LOAD_REQ_FORCE_ALL;
860 		break;
861 	}
862 }
863 
864 int qed_mcp_load_req(struct qed_hwfn *p_hwfn,
865 		     struct qed_ptt *p_ptt,
866 		     struct qed_load_req_params *p_params)
867 {
868 	struct qed_load_req_out_params out_params;
869 	struct qed_load_req_in_params in_params;
870 	u8 mfw_drv_role, mfw_force_cmd;
871 	int rc;
872 
873 	memset(&in_params, 0, sizeof(in_params));
874 	in_params.hsi_ver = QED_LOAD_REQ_HSI_VER_DEFAULT;
875 	in_params.drv_ver_0 = QED_VERSION;
876 	in_params.drv_ver_1 = qed_get_config_bitmap();
877 	in_params.fw_ver = STORM_FW_VERSION;
878 	rc = eocre_get_mfw_drv_role(p_hwfn, p_params->drv_role, &mfw_drv_role);
879 	if (rc)
880 		return rc;
881 
882 	in_params.drv_role = mfw_drv_role;
883 	in_params.timeout_val = p_params->timeout_val;
884 	qed_get_mfw_force_cmd(p_hwfn,
885 			      QED_LOAD_REQ_FORCE_NONE, &mfw_force_cmd);
886 
887 	in_params.force_cmd = mfw_force_cmd;
888 	in_params.avoid_eng_reset = p_params->avoid_eng_reset;
889 
890 	memset(&out_params, 0, sizeof(out_params));
891 	rc = __qed_mcp_load_req(p_hwfn, p_ptt, &in_params, &out_params);
892 	if (rc)
893 		return rc;
894 
895 	/* First handle cases where another load request should/might be sent:
896 	 * - MFW expects the old interface [HSI version = 1]
897 	 * - MFW responds that a force load request is required
898 	 */
899 	if (out_params.load_code == FW_MSG_CODE_DRV_LOAD_REFUSED_HSI_1) {
900 		DP_INFO(p_hwfn,
901 			"MFW refused a load request due to HSI > 1. Resending with HSI = 1\n");
902 
903 		in_params.hsi_ver = QED_LOAD_REQ_HSI_VER_1;
904 		memset(&out_params, 0, sizeof(out_params));
905 		rc = __qed_mcp_load_req(p_hwfn, p_ptt, &in_params, &out_params);
906 		if (rc)
907 			return rc;
908 	} else if (out_params.load_code ==
909 		   FW_MSG_CODE_DRV_LOAD_REFUSED_REQUIRES_FORCE) {
910 		if (qed_mcp_can_force_load(in_params.drv_role,
911 					   out_params.exist_drv_role,
912 					   p_params->override_force_load)) {
913 			DP_INFO(p_hwfn,
914 				"A force load is required [{role, fw_ver, drv_ver}: loading={%d, 0x%08x, x%08x_0x%08x}, existing={%d, 0x%08x, 0x%08x_0x%08x}]\n",
915 				in_params.drv_role, in_params.fw_ver,
916 				in_params.drv_ver_0, in_params.drv_ver_1,
917 				out_params.exist_drv_role,
918 				out_params.exist_fw_ver,
919 				out_params.exist_drv_ver_0,
920 				out_params.exist_drv_ver_1);
921 
922 			qed_get_mfw_force_cmd(p_hwfn,
923 					      QED_LOAD_REQ_FORCE_ALL,
924 					      &mfw_force_cmd);
925 
926 			in_params.force_cmd = mfw_force_cmd;
927 			memset(&out_params, 0, sizeof(out_params));
928 			rc = __qed_mcp_load_req(p_hwfn, p_ptt, &in_params,
929 						&out_params);
930 			if (rc)
931 				return rc;
932 		} else {
933 			DP_NOTICE(p_hwfn,
934 				  "A force load is required [{role, fw_ver, drv_ver}: loading={%d, 0x%08x, x%08x_0x%08x}, existing={%d, 0x%08x, 0x%08x_0x%08x}] - Avoid\n",
935 				  in_params.drv_role, in_params.fw_ver,
936 				  in_params.drv_ver_0, in_params.drv_ver_1,
937 				  out_params.exist_drv_role,
938 				  out_params.exist_fw_ver,
939 				  out_params.exist_drv_ver_0,
940 				  out_params.exist_drv_ver_1);
941 			DP_NOTICE(p_hwfn,
942 				  "Avoid sending a force load request to prevent disruption of active PFs\n");
943 
944 			qed_mcp_cancel_load_req(p_hwfn, p_ptt);
945 			return -EBUSY;
946 		}
947 	}
948 
949 	/* Now handle the other types of responses.
950 	 * The "REFUSED_HSI_1" and "REFUSED_REQUIRES_FORCE" responses are not
951 	 * expected here after the additional revised load requests were sent.
952 	 */
953 	switch (out_params.load_code) {
954 	case FW_MSG_CODE_DRV_LOAD_ENGINE:
955 	case FW_MSG_CODE_DRV_LOAD_PORT:
956 	case FW_MSG_CODE_DRV_LOAD_FUNCTION:
957 		if (out_params.mfw_hsi_ver != QED_LOAD_REQ_HSI_VER_1 &&
958 		    out_params.drv_exists) {
959 			/* The role and fw/driver version match, but the PF is
960 			 * already loaded and has not been unloaded gracefully.
961 			 */
962 			DP_NOTICE(p_hwfn,
963 				  "PF is already loaded\n");
964 			return -EINVAL;
965 		}
966 		break;
967 	default:
968 		DP_NOTICE(p_hwfn,
969 			  "Unexpected refusal to load request [resp 0x%08x]. Aborting.\n",
970 			  out_params.load_code);
971 		return -EBUSY;
972 	}
973 
974 	p_params->load_code = out_params.load_code;
975 
976 	return 0;
977 }
978 
979 int qed_mcp_unload_req(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
980 {
981 	u32 wol_param, mcp_resp, mcp_param;
982 
983 	switch (p_hwfn->cdev->wol_config) {
984 	case QED_OV_WOL_DISABLED:
985 		wol_param = DRV_MB_PARAM_UNLOAD_WOL_DISABLED;
986 		break;
987 	case QED_OV_WOL_ENABLED:
988 		wol_param = DRV_MB_PARAM_UNLOAD_WOL_ENABLED;
989 		break;
990 	default:
991 		DP_NOTICE(p_hwfn,
992 			  "Unknown WoL configuration %02x\n",
993 			  p_hwfn->cdev->wol_config);
994 		/* Fallthrough */
995 	case QED_OV_WOL_DEFAULT:
996 		wol_param = DRV_MB_PARAM_UNLOAD_WOL_MCP;
997 	}
998 
999 	return qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_UNLOAD_REQ, wol_param,
1000 			   &mcp_resp, &mcp_param);
1001 }
1002 
1003 int qed_mcp_unload_done(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1004 {
1005 	struct qed_mcp_mb_params mb_params;
1006 	struct mcp_mac wol_mac;
1007 
1008 	memset(&mb_params, 0, sizeof(mb_params));
1009 	mb_params.cmd = DRV_MSG_CODE_UNLOAD_DONE;
1010 
1011 	/* Set the primary MAC if WoL is enabled */
1012 	if (p_hwfn->cdev->wol_config == QED_OV_WOL_ENABLED) {
1013 		u8 *p_mac = p_hwfn->cdev->wol_mac;
1014 
1015 		memset(&wol_mac, 0, sizeof(wol_mac));
1016 		wol_mac.mac_upper = p_mac[0] << 8 | p_mac[1];
1017 		wol_mac.mac_lower = p_mac[2] << 24 | p_mac[3] << 16 |
1018 				    p_mac[4] << 8 | p_mac[5];
1019 
1020 		DP_VERBOSE(p_hwfn,
1021 			   (QED_MSG_SP | NETIF_MSG_IFDOWN),
1022 			   "Setting WoL MAC: %pM --> [%08x,%08x]\n",
1023 			   p_mac, wol_mac.mac_upper, wol_mac.mac_lower);
1024 
1025 		mb_params.p_data_src = &wol_mac;
1026 		mb_params.data_src_size = sizeof(wol_mac);
1027 	}
1028 
1029 	return qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params);
1030 }
1031 
1032 static void qed_mcp_handle_vf_flr(struct qed_hwfn *p_hwfn,
1033 				  struct qed_ptt *p_ptt)
1034 {
1035 	u32 addr = SECTION_OFFSIZE_ADDR(p_hwfn->mcp_info->public_base,
1036 					PUBLIC_PATH);
1037 	u32 mfw_path_offsize = qed_rd(p_hwfn, p_ptt, addr);
1038 	u32 path_addr = SECTION_ADDR(mfw_path_offsize,
1039 				     QED_PATH_ID(p_hwfn));
1040 	u32 disabled_vfs[VF_MAX_STATIC / 32];
1041 	int i;
1042 
1043 	DP_VERBOSE(p_hwfn,
1044 		   QED_MSG_SP,
1045 		   "Reading Disabled VF information from [offset %08x], path_addr %08x\n",
1046 		   mfw_path_offsize, path_addr);
1047 
1048 	for (i = 0; i < (VF_MAX_STATIC / 32); i++) {
1049 		disabled_vfs[i] = qed_rd(p_hwfn, p_ptt,
1050 					 path_addr +
1051 					 offsetof(struct public_path,
1052 						  mcp_vf_disabled) +
1053 					 sizeof(u32) * i);
1054 		DP_VERBOSE(p_hwfn, (QED_MSG_SP | QED_MSG_IOV),
1055 			   "FLR-ed VFs [%08x,...,%08x] - %08x\n",
1056 			   i * 32, (i + 1) * 32 - 1, disabled_vfs[i]);
1057 	}
1058 
1059 	if (qed_iov_mark_vf_flr(p_hwfn, disabled_vfs))
1060 		qed_schedule_iov(p_hwfn, QED_IOV_WQ_FLR_FLAG);
1061 }
1062 
1063 int qed_mcp_ack_vf_flr(struct qed_hwfn *p_hwfn,
1064 		       struct qed_ptt *p_ptt, u32 *vfs_to_ack)
1065 {
1066 	u32 addr = SECTION_OFFSIZE_ADDR(p_hwfn->mcp_info->public_base,
1067 					PUBLIC_FUNC);
1068 	u32 mfw_func_offsize = qed_rd(p_hwfn, p_ptt, addr);
1069 	u32 func_addr = SECTION_ADDR(mfw_func_offsize,
1070 				     MCP_PF_ID(p_hwfn));
1071 	struct qed_mcp_mb_params mb_params;
1072 	int rc;
1073 	int i;
1074 
1075 	for (i = 0; i < (VF_MAX_STATIC / 32); i++)
1076 		DP_VERBOSE(p_hwfn, (QED_MSG_SP | QED_MSG_IOV),
1077 			   "Acking VFs [%08x,...,%08x] - %08x\n",
1078 			   i * 32, (i + 1) * 32 - 1, vfs_to_ack[i]);
1079 
1080 	memset(&mb_params, 0, sizeof(mb_params));
1081 	mb_params.cmd = DRV_MSG_CODE_VF_DISABLED_DONE;
1082 	mb_params.p_data_src = vfs_to_ack;
1083 	mb_params.data_src_size = VF_MAX_STATIC / 8;
1084 	rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params);
1085 	if (rc) {
1086 		DP_NOTICE(p_hwfn, "Failed to pass ACK for VF flr to MFW\n");
1087 		return -EBUSY;
1088 	}
1089 
1090 	/* Clear the ACK bits */
1091 	for (i = 0; i < (VF_MAX_STATIC / 32); i++)
1092 		qed_wr(p_hwfn, p_ptt,
1093 		       func_addr +
1094 		       offsetof(struct public_func, drv_ack_vf_disabled) +
1095 		       i * sizeof(u32), 0);
1096 
1097 	return rc;
1098 }
1099 
1100 static void qed_mcp_handle_transceiver_change(struct qed_hwfn *p_hwfn,
1101 					      struct qed_ptt *p_ptt)
1102 {
1103 	u32 transceiver_state;
1104 
1105 	transceiver_state = qed_rd(p_hwfn, p_ptt,
1106 				   p_hwfn->mcp_info->port_addr +
1107 				   offsetof(struct public_port,
1108 					    transceiver_data));
1109 
1110 	DP_VERBOSE(p_hwfn,
1111 		   (NETIF_MSG_HW | QED_MSG_SP),
1112 		   "Received transceiver state update [0x%08x] from mfw [Addr 0x%x]\n",
1113 		   transceiver_state,
1114 		   (u32)(p_hwfn->mcp_info->port_addr +
1115 			  offsetof(struct public_port, transceiver_data)));
1116 
1117 	transceiver_state = GET_FIELD(transceiver_state,
1118 				      ETH_TRANSCEIVER_STATE);
1119 
1120 	if (transceiver_state == ETH_TRANSCEIVER_STATE_PRESENT)
1121 		DP_NOTICE(p_hwfn, "Transceiver is present.\n");
1122 	else
1123 		DP_NOTICE(p_hwfn, "Transceiver is unplugged.\n");
1124 }
1125 
1126 static void qed_mcp_read_eee_config(struct qed_hwfn *p_hwfn,
1127 				    struct qed_ptt *p_ptt,
1128 				    struct qed_mcp_link_state *p_link)
1129 {
1130 	u32 eee_status, val;
1131 
1132 	p_link->eee_adv_caps = 0;
1133 	p_link->eee_lp_adv_caps = 0;
1134 	eee_status = qed_rd(p_hwfn,
1135 			    p_ptt,
1136 			    p_hwfn->mcp_info->port_addr +
1137 			    offsetof(struct public_port, eee_status));
1138 	p_link->eee_active = !!(eee_status & EEE_ACTIVE_BIT);
1139 	val = (eee_status & EEE_LD_ADV_STATUS_MASK) >> EEE_LD_ADV_STATUS_OFFSET;
1140 	if (val & EEE_1G_ADV)
1141 		p_link->eee_adv_caps |= QED_EEE_1G_ADV;
1142 	if (val & EEE_10G_ADV)
1143 		p_link->eee_adv_caps |= QED_EEE_10G_ADV;
1144 	val = (eee_status & EEE_LP_ADV_STATUS_MASK) >> EEE_LP_ADV_STATUS_OFFSET;
1145 	if (val & EEE_1G_ADV)
1146 		p_link->eee_lp_adv_caps |= QED_EEE_1G_ADV;
1147 	if (val & EEE_10G_ADV)
1148 		p_link->eee_lp_adv_caps |= QED_EEE_10G_ADV;
1149 }
1150 
1151 static void qed_mcp_handle_link_change(struct qed_hwfn *p_hwfn,
1152 				       struct qed_ptt *p_ptt, bool b_reset)
1153 {
1154 	struct qed_mcp_link_state *p_link;
1155 	u8 max_bw, min_bw;
1156 	u32 status = 0;
1157 
1158 	/* Prevent SW/attentions from doing this at the same time */
1159 	spin_lock_bh(&p_hwfn->mcp_info->link_lock);
1160 
1161 	p_link = &p_hwfn->mcp_info->link_output;
1162 	memset(p_link, 0, sizeof(*p_link));
1163 	if (!b_reset) {
1164 		status = qed_rd(p_hwfn, p_ptt,
1165 				p_hwfn->mcp_info->port_addr +
1166 				offsetof(struct public_port, link_status));
1167 		DP_VERBOSE(p_hwfn, (NETIF_MSG_LINK | QED_MSG_SP),
1168 			   "Received link update [0x%08x] from mfw [Addr 0x%x]\n",
1169 			   status,
1170 			   (u32)(p_hwfn->mcp_info->port_addr +
1171 				 offsetof(struct public_port, link_status)));
1172 	} else {
1173 		DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
1174 			   "Resetting link indications\n");
1175 		goto out;
1176 	}
1177 
1178 	if (p_hwfn->b_drv_link_init)
1179 		p_link->link_up = !!(status & LINK_STATUS_LINK_UP);
1180 	else
1181 		p_link->link_up = false;
1182 
1183 	p_link->full_duplex = true;
1184 	switch ((status & LINK_STATUS_SPEED_AND_DUPLEX_MASK)) {
1185 	case LINK_STATUS_SPEED_AND_DUPLEX_100G:
1186 		p_link->speed = 100000;
1187 		break;
1188 	case LINK_STATUS_SPEED_AND_DUPLEX_50G:
1189 		p_link->speed = 50000;
1190 		break;
1191 	case LINK_STATUS_SPEED_AND_DUPLEX_40G:
1192 		p_link->speed = 40000;
1193 		break;
1194 	case LINK_STATUS_SPEED_AND_DUPLEX_25G:
1195 		p_link->speed = 25000;
1196 		break;
1197 	case LINK_STATUS_SPEED_AND_DUPLEX_20G:
1198 		p_link->speed = 20000;
1199 		break;
1200 	case LINK_STATUS_SPEED_AND_DUPLEX_10G:
1201 		p_link->speed = 10000;
1202 		break;
1203 	case LINK_STATUS_SPEED_AND_DUPLEX_1000THD:
1204 		p_link->full_duplex = false;
1205 	/* Fall-through */
1206 	case LINK_STATUS_SPEED_AND_DUPLEX_1000TFD:
1207 		p_link->speed = 1000;
1208 		break;
1209 	default:
1210 		p_link->speed = 0;
1211 	}
1212 
1213 	if (p_link->link_up && p_link->speed)
1214 		p_link->line_speed = p_link->speed;
1215 	else
1216 		p_link->line_speed = 0;
1217 
1218 	max_bw = p_hwfn->mcp_info->func_info.bandwidth_max;
1219 	min_bw = p_hwfn->mcp_info->func_info.bandwidth_min;
1220 
1221 	/* Max bandwidth configuration */
1222 	__qed_configure_pf_max_bandwidth(p_hwfn, p_ptt, p_link, max_bw);
1223 
1224 	/* Min bandwidth configuration */
1225 	__qed_configure_pf_min_bandwidth(p_hwfn, p_ptt, p_link, min_bw);
1226 	qed_configure_vp_wfq_on_link_change(p_hwfn->cdev, p_ptt,
1227 					    p_link->min_pf_rate);
1228 
1229 	p_link->an = !!(status & LINK_STATUS_AUTO_NEGOTIATE_ENABLED);
1230 	p_link->an_complete = !!(status &
1231 				 LINK_STATUS_AUTO_NEGOTIATE_COMPLETE);
1232 	p_link->parallel_detection = !!(status &
1233 					LINK_STATUS_PARALLEL_DETECTION_USED);
1234 	p_link->pfc_enabled = !!(status & LINK_STATUS_PFC_ENABLED);
1235 
1236 	p_link->partner_adv_speed |=
1237 		(status & LINK_STATUS_LINK_PARTNER_1000TFD_CAPABLE) ?
1238 		QED_LINK_PARTNER_SPEED_1G_FD : 0;
1239 	p_link->partner_adv_speed |=
1240 		(status & LINK_STATUS_LINK_PARTNER_1000THD_CAPABLE) ?
1241 		QED_LINK_PARTNER_SPEED_1G_HD : 0;
1242 	p_link->partner_adv_speed |=
1243 		(status & LINK_STATUS_LINK_PARTNER_10G_CAPABLE) ?
1244 		QED_LINK_PARTNER_SPEED_10G : 0;
1245 	p_link->partner_adv_speed |=
1246 		(status & LINK_STATUS_LINK_PARTNER_20G_CAPABLE) ?
1247 		QED_LINK_PARTNER_SPEED_20G : 0;
1248 	p_link->partner_adv_speed |=
1249 		(status & LINK_STATUS_LINK_PARTNER_25G_CAPABLE) ?
1250 		QED_LINK_PARTNER_SPEED_25G : 0;
1251 	p_link->partner_adv_speed |=
1252 		(status & LINK_STATUS_LINK_PARTNER_40G_CAPABLE) ?
1253 		QED_LINK_PARTNER_SPEED_40G : 0;
1254 	p_link->partner_adv_speed |=
1255 		(status & LINK_STATUS_LINK_PARTNER_50G_CAPABLE) ?
1256 		QED_LINK_PARTNER_SPEED_50G : 0;
1257 	p_link->partner_adv_speed |=
1258 		(status & LINK_STATUS_LINK_PARTNER_100G_CAPABLE) ?
1259 		QED_LINK_PARTNER_SPEED_100G : 0;
1260 
1261 	p_link->partner_tx_flow_ctrl_en =
1262 		!!(status & LINK_STATUS_TX_FLOW_CONTROL_ENABLED);
1263 	p_link->partner_rx_flow_ctrl_en =
1264 		!!(status & LINK_STATUS_RX_FLOW_CONTROL_ENABLED);
1265 
1266 	switch (status & LINK_STATUS_LINK_PARTNER_FLOW_CONTROL_MASK) {
1267 	case LINK_STATUS_LINK_PARTNER_SYMMETRIC_PAUSE:
1268 		p_link->partner_adv_pause = QED_LINK_PARTNER_SYMMETRIC_PAUSE;
1269 		break;
1270 	case LINK_STATUS_LINK_PARTNER_ASYMMETRIC_PAUSE:
1271 		p_link->partner_adv_pause = QED_LINK_PARTNER_ASYMMETRIC_PAUSE;
1272 		break;
1273 	case LINK_STATUS_LINK_PARTNER_BOTH_PAUSE:
1274 		p_link->partner_adv_pause = QED_LINK_PARTNER_BOTH_PAUSE;
1275 		break;
1276 	default:
1277 		p_link->partner_adv_pause = 0;
1278 	}
1279 
1280 	p_link->sfp_tx_fault = !!(status & LINK_STATUS_SFP_TX_FAULT);
1281 
1282 	if (p_hwfn->mcp_info->capabilities & FW_MB_PARAM_FEATURE_SUPPORT_EEE)
1283 		qed_mcp_read_eee_config(p_hwfn, p_ptt, p_link);
1284 
1285 	qed_link_update(p_hwfn);
1286 out:
1287 	spin_unlock_bh(&p_hwfn->mcp_info->link_lock);
1288 }
1289 
1290 int qed_mcp_set_link(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, bool b_up)
1291 {
1292 	struct qed_mcp_link_params *params = &p_hwfn->mcp_info->link_input;
1293 	struct qed_mcp_mb_params mb_params;
1294 	struct eth_phy_cfg phy_cfg;
1295 	int rc = 0;
1296 	u32 cmd;
1297 
1298 	/* Set the shmem configuration according to params */
1299 	memset(&phy_cfg, 0, sizeof(phy_cfg));
1300 	cmd = b_up ? DRV_MSG_CODE_INIT_PHY : DRV_MSG_CODE_LINK_RESET;
1301 	if (!params->speed.autoneg)
1302 		phy_cfg.speed = params->speed.forced_speed;
1303 	phy_cfg.pause |= (params->pause.autoneg) ? ETH_PAUSE_AUTONEG : 0;
1304 	phy_cfg.pause |= (params->pause.forced_rx) ? ETH_PAUSE_RX : 0;
1305 	phy_cfg.pause |= (params->pause.forced_tx) ? ETH_PAUSE_TX : 0;
1306 	phy_cfg.adv_speed = params->speed.advertised_speeds;
1307 	phy_cfg.loopback_mode = params->loopback_mode;
1308 	if (p_hwfn->mcp_info->capabilities & FW_MB_PARAM_FEATURE_SUPPORT_EEE) {
1309 		if (params->eee.enable)
1310 			phy_cfg.eee_cfg |= EEE_CFG_EEE_ENABLED;
1311 		if (params->eee.tx_lpi_enable)
1312 			phy_cfg.eee_cfg |= EEE_CFG_TX_LPI;
1313 		if (params->eee.adv_caps & QED_EEE_1G_ADV)
1314 			phy_cfg.eee_cfg |= EEE_CFG_ADV_SPEED_1G;
1315 		if (params->eee.adv_caps & QED_EEE_10G_ADV)
1316 			phy_cfg.eee_cfg |= EEE_CFG_ADV_SPEED_10G;
1317 		phy_cfg.eee_cfg |= (params->eee.tx_lpi_timer <<
1318 				    EEE_TX_TIMER_USEC_OFFSET) &
1319 				   EEE_TX_TIMER_USEC_MASK;
1320 	}
1321 
1322 	p_hwfn->b_drv_link_init = b_up;
1323 
1324 	if (b_up) {
1325 		DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
1326 			   "Configuring Link: Speed 0x%08x, Pause 0x%08x, adv_speed 0x%08x, loopback 0x%08x, features 0x%08x\n",
1327 			   phy_cfg.speed,
1328 			   phy_cfg.pause,
1329 			   phy_cfg.adv_speed,
1330 			   phy_cfg.loopback_mode,
1331 			   phy_cfg.feature_config_flags);
1332 	} else {
1333 		DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
1334 			   "Resetting link\n");
1335 	}
1336 
1337 	memset(&mb_params, 0, sizeof(mb_params));
1338 	mb_params.cmd = cmd;
1339 	mb_params.p_data_src = &phy_cfg;
1340 	mb_params.data_src_size = sizeof(phy_cfg);
1341 	rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params);
1342 
1343 	/* if mcp fails to respond we must abort */
1344 	if (rc) {
1345 		DP_ERR(p_hwfn, "MCP response failure, aborting\n");
1346 		return rc;
1347 	}
1348 
1349 	/* Mimic link-change attention, done for several reasons:
1350 	 *  - On reset, there's no guarantee MFW would trigger
1351 	 *    an attention.
1352 	 *  - On initialization, older MFWs might not indicate link change
1353 	 *    during LFA, so we'll never get an UP indication.
1354 	 */
1355 	qed_mcp_handle_link_change(p_hwfn, p_ptt, !b_up);
1356 
1357 	return 0;
1358 }
1359 
1360 static void qed_mcp_send_protocol_stats(struct qed_hwfn *p_hwfn,
1361 					struct qed_ptt *p_ptt,
1362 					enum MFW_DRV_MSG_TYPE type)
1363 {
1364 	enum qed_mcp_protocol_type stats_type;
1365 	union qed_mcp_protocol_stats stats;
1366 	struct qed_mcp_mb_params mb_params;
1367 	u32 hsi_param;
1368 
1369 	switch (type) {
1370 	case MFW_DRV_MSG_GET_LAN_STATS:
1371 		stats_type = QED_MCP_LAN_STATS;
1372 		hsi_param = DRV_MSG_CODE_STATS_TYPE_LAN;
1373 		break;
1374 	case MFW_DRV_MSG_GET_FCOE_STATS:
1375 		stats_type = QED_MCP_FCOE_STATS;
1376 		hsi_param = DRV_MSG_CODE_STATS_TYPE_FCOE;
1377 		break;
1378 	case MFW_DRV_MSG_GET_ISCSI_STATS:
1379 		stats_type = QED_MCP_ISCSI_STATS;
1380 		hsi_param = DRV_MSG_CODE_STATS_TYPE_ISCSI;
1381 		break;
1382 	case MFW_DRV_MSG_GET_RDMA_STATS:
1383 		stats_type = QED_MCP_RDMA_STATS;
1384 		hsi_param = DRV_MSG_CODE_STATS_TYPE_RDMA;
1385 		break;
1386 	default:
1387 		DP_NOTICE(p_hwfn, "Invalid protocol type %d\n", type);
1388 		return;
1389 	}
1390 
1391 	qed_get_protocol_stats(p_hwfn->cdev, stats_type, &stats);
1392 
1393 	memset(&mb_params, 0, sizeof(mb_params));
1394 	mb_params.cmd = DRV_MSG_CODE_GET_STATS;
1395 	mb_params.param = hsi_param;
1396 	mb_params.p_data_src = &stats;
1397 	mb_params.data_src_size = sizeof(stats);
1398 	qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params);
1399 }
1400 
1401 static void qed_read_pf_bandwidth(struct qed_hwfn *p_hwfn,
1402 				  struct public_func *p_shmem_info)
1403 {
1404 	struct qed_mcp_function_info *p_info;
1405 
1406 	p_info = &p_hwfn->mcp_info->func_info;
1407 
1408 	p_info->bandwidth_min = (p_shmem_info->config &
1409 				 FUNC_MF_CFG_MIN_BW_MASK) >>
1410 					FUNC_MF_CFG_MIN_BW_SHIFT;
1411 	if (p_info->bandwidth_min < 1 || p_info->bandwidth_min > 100) {
1412 		DP_INFO(p_hwfn,
1413 			"bandwidth minimum out of bounds [%02x]. Set to 1\n",
1414 			p_info->bandwidth_min);
1415 		p_info->bandwidth_min = 1;
1416 	}
1417 
1418 	p_info->bandwidth_max = (p_shmem_info->config &
1419 				 FUNC_MF_CFG_MAX_BW_MASK) >>
1420 					FUNC_MF_CFG_MAX_BW_SHIFT;
1421 	if (p_info->bandwidth_max < 1 || p_info->bandwidth_max > 100) {
1422 		DP_INFO(p_hwfn,
1423 			"bandwidth maximum out of bounds [%02x]. Set to 100\n",
1424 			p_info->bandwidth_max);
1425 		p_info->bandwidth_max = 100;
1426 	}
1427 }
1428 
1429 static u32 qed_mcp_get_shmem_func(struct qed_hwfn *p_hwfn,
1430 				  struct qed_ptt *p_ptt,
1431 				  struct public_func *p_data, int pfid)
1432 {
1433 	u32 addr = SECTION_OFFSIZE_ADDR(p_hwfn->mcp_info->public_base,
1434 					PUBLIC_FUNC);
1435 	u32 mfw_path_offsize = qed_rd(p_hwfn, p_ptt, addr);
1436 	u32 func_addr = SECTION_ADDR(mfw_path_offsize, pfid);
1437 	u32 i, size;
1438 
1439 	memset(p_data, 0, sizeof(*p_data));
1440 
1441 	size = min_t(u32, sizeof(*p_data), QED_SECTION_SIZE(mfw_path_offsize));
1442 	for (i = 0; i < size / sizeof(u32); i++)
1443 		((u32 *)p_data)[i] = qed_rd(p_hwfn, p_ptt,
1444 					    func_addr + (i << 2));
1445 	return size;
1446 }
1447 
1448 static void qed_mcp_update_bw(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1449 {
1450 	struct qed_mcp_function_info *p_info;
1451 	struct public_func shmem_info;
1452 	u32 resp = 0, param = 0;
1453 
1454 	qed_mcp_get_shmem_func(p_hwfn, p_ptt, &shmem_info, MCP_PF_ID(p_hwfn));
1455 
1456 	qed_read_pf_bandwidth(p_hwfn, &shmem_info);
1457 
1458 	p_info = &p_hwfn->mcp_info->func_info;
1459 
1460 	qed_configure_pf_min_bandwidth(p_hwfn->cdev, p_info->bandwidth_min);
1461 	qed_configure_pf_max_bandwidth(p_hwfn->cdev, p_info->bandwidth_max);
1462 
1463 	/* Acknowledge the MFW */
1464 	qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_BW_UPDATE_ACK, 0, &resp,
1465 		    &param);
1466 }
1467 
1468 static void qed_mcp_update_stag(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1469 {
1470 	struct public_func shmem_info;
1471 	u32 resp = 0, param = 0;
1472 
1473 	qed_mcp_get_shmem_func(p_hwfn, p_ptt, &shmem_info, MCP_PF_ID(p_hwfn));
1474 
1475 	p_hwfn->mcp_info->func_info.ovlan = (u16)shmem_info.ovlan_stag &
1476 						 FUNC_MF_CFG_OV_STAG_MASK;
1477 	p_hwfn->hw_info.ovlan = p_hwfn->mcp_info->func_info.ovlan;
1478 	if ((p_hwfn->hw_info.hw_mode & BIT(MODE_MF_SD)) &&
1479 	    (p_hwfn->hw_info.ovlan != QED_MCP_VLAN_UNSET)) {
1480 		qed_wr(p_hwfn, p_ptt,
1481 		       NIG_REG_LLH_FUNC_TAG_VALUE, p_hwfn->hw_info.ovlan);
1482 		qed_sp_pf_update_stag(p_hwfn);
1483 	}
1484 
1485 	/* Acknowledge the MFW */
1486 	qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_S_TAG_UPDATE_ACK, 0,
1487 		    &resp, &param);
1488 }
1489 
1490 void qed_mcp_read_ufp_config(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1491 {
1492 	struct public_func shmem_info;
1493 	u32 port_cfg, val;
1494 
1495 	if (!test_bit(QED_MF_UFP_SPECIFIC, &p_hwfn->cdev->mf_bits))
1496 		return;
1497 
1498 	memset(&p_hwfn->ufp_info, 0, sizeof(p_hwfn->ufp_info));
1499 	port_cfg = qed_rd(p_hwfn, p_ptt, p_hwfn->mcp_info->port_addr +
1500 			  offsetof(struct public_port, oem_cfg_port));
1501 	val = (port_cfg & OEM_CFG_CHANNEL_TYPE_MASK) >>
1502 		OEM_CFG_CHANNEL_TYPE_OFFSET;
1503 	if (val != OEM_CFG_CHANNEL_TYPE_STAGGED)
1504 		DP_NOTICE(p_hwfn, "Incorrect UFP Channel type  %d\n", val);
1505 
1506 	val = (port_cfg & OEM_CFG_SCHED_TYPE_MASK) >> OEM_CFG_SCHED_TYPE_OFFSET;
1507 	if (val == OEM_CFG_SCHED_TYPE_ETS) {
1508 		p_hwfn->ufp_info.mode = QED_UFP_MODE_ETS;
1509 	} else if (val == OEM_CFG_SCHED_TYPE_VNIC_BW) {
1510 		p_hwfn->ufp_info.mode = QED_UFP_MODE_VNIC_BW;
1511 	} else {
1512 		p_hwfn->ufp_info.mode = QED_UFP_MODE_UNKNOWN;
1513 		DP_NOTICE(p_hwfn, "Unknown UFP scheduling mode %d\n", val);
1514 	}
1515 
1516 	qed_mcp_get_shmem_func(p_hwfn, p_ptt, &shmem_info, MCP_PF_ID(p_hwfn));
1517 	val = (port_cfg & OEM_CFG_FUNC_TC_MASK) >> OEM_CFG_FUNC_TC_OFFSET;
1518 	p_hwfn->ufp_info.tc = (u8)val;
1519 	val = (port_cfg & OEM_CFG_FUNC_HOST_PRI_CTRL_MASK) >>
1520 		OEM_CFG_FUNC_HOST_PRI_CTRL_OFFSET;
1521 	if (val == OEM_CFG_FUNC_HOST_PRI_CTRL_VNIC) {
1522 		p_hwfn->ufp_info.pri_type = QED_UFP_PRI_VNIC;
1523 	} else if (val == OEM_CFG_FUNC_HOST_PRI_CTRL_OS) {
1524 		p_hwfn->ufp_info.pri_type = QED_UFP_PRI_OS;
1525 	} else {
1526 		p_hwfn->ufp_info.pri_type = QED_UFP_PRI_UNKNOWN;
1527 		DP_NOTICE(p_hwfn, "Unknown Host priority control %d\n", val);
1528 	}
1529 
1530 	DP_NOTICE(p_hwfn,
1531 		  "UFP shmem config: mode = %d tc = %d pri_type = %d\n",
1532 		  p_hwfn->ufp_info.mode,
1533 		  p_hwfn->ufp_info.tc, p_hwfn->ufp_info.pri_type);
1534 }
1535 
1536 static int
1537 qed_mcp_handle_ufp_event(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1538 {
1539 	qed_mcp_read_ufp_config(p_hwfn, p_ptt);
1540 
1541 	if (p_hwfn->ufp_info.mode == QED_UFP_MODE_VNIC_BW) {
1542 		p_hwfn->qm_info.ooo_tc = p_hwfn->ufp_info.tc;
1543 		p_hwfn->hw_info.offload_tc = p_hwfn->ufp_info.tc;
1544 
1545 		qed_qm_reconf(p_hwfn, p_ptt);
1546 	} else if (p_hwfn->ufp_info.mode == QED_UFP_MODE_ETS) {
1547 		/* Merge UFP TC with the dcbx TC data */
1548 		qed_dcbx_mib_update_event(p_hwfn, p_ptt,
1549 					  QED_DCBX_OPERATIONAL_MIB);
1550 	} else {
1551 		DP_ERR(p_hwfn, "Invalid sched type, discard the UFP config\n");
1552 		return -EINVAL;
1553 	}
1554 
1555 	/* update storm FW with negotiation results */
1556 	qed_sp_pf_update_ufp(p_hwfn);
1557 
1558 	/* update stag pcp value */
1559 	qed_sp_pf_update_stag(p_hwfn);
1560 
1561 	return 0;
1562 }
1563 
1564 int qed_mcp_handle_events(struct qed_hwfn *p_hwfn,
1565 			  struct qed_ptt *p_ptt)
1566 {
1567 	struct qed_mcp_info *info = p_hwfn->mcp_info;
1568 	int rc = 0;
1569 	bool found = false;
1570 	u16 i;
1571 
1572 	DP_VERBOSE(p_hwfn, QED_MSG_SP, "Received message from MFW\n");
1573 
1574 	/* Read Messages from MFW */
1575 	qed_mcp_read_mb(p_hwfn, p_ptt);
1576 
1577 	/* Compare current messages to old ones */
1578 	for (i = 0; i < info->mfw_mb_length; i++) {
1579 		if (info->mfw_mb_cur[i] == info->mfw_mb_shadow[i])
1580 			continue;
1581 
1582 		found = true;
1583 
1584 		DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
1585 			   "Msg [%d] - old CMD 0x%02x, new CMD 0x%02x\n",
1586 			   i, info->mfw_mb_shadow[i], info->mfw_mb_cur[i]);
1587 
1588 		switch (i) {
1589 		case MFW_DRV_MSG_LINK_CHANGE:
1590 			qed_mcp_handle_link_change(p_hwfn, p_ptt, false);
1591 			break;
1592 		case MFW_DRV_MSG_VF_DISABLED:
1593 			qed_mcp_handle_vf_flr(p_hwfn, p_ptt);
1594 			break;
1595 		case MFW_DRV_MSG_LLDP_DATA_UPDATED:
1596 			qed_dcbx_mib_update_event(p_hwfn, p_ptt,
1597 						  QED_DCBX_REMOTE_LLDP_MIB);
1598 			break;
1599 		case MFW_DRV_MSG_DCBX_REMOTE_MIB_UPDATED:
1600 			qed_dcbx_mib_update_event(p_hwfn, p_ptt,
1601 						  QED_DCBX_REMOTE_MIB);
1602 			break;
1603 		case MFW_DRV_MSG_DCBX_OPERATIONAL_MIB_UPDATED:
1604 			qed_dcbx_mib_update_event(p_hwfn, p_ptt,
1605 						  QED_DCBX_OPERATIONAL_MIB);
1606 			break;
1607 		case MFW_DRV_MSG_OEM_CFG_UPDATE:
1608 			qed_mcp_handle_ufp_event(p_hwfn, p_ptt);
1609 			break;
1610 		case MFW_DRV_MSG_TRANSCEIVER_STATE_CHANGE:
1611 			qed_mcp_handle_transceiver_change(p_hwfn, p_ptt);
1612 			break;
1613 		case MFW_DRV_MSG_GET_LAN_STATS:
1614 		case MFW_DRV_MSG_GET_FCOE_STATS:
1615 		case MFW_DRV_MSG_GET_ISCSI_STATS:
1616 		case MFW_DRV_MSG_GET_RDMA_STATS:
1617 			qed_mcp_send_protocol_stats(p_hwfn, p_ptt, i);
1618 			break;
1619 		case MFW_DRV_MSG_BW_UPDATE:
1620 			qed_mcp_update_bw(p_hwfn, p_ptt);
1621 			break;
1622 		case MFW_DRV_MSG_S_TAG_UPDATE:
1623 			qed_mcp_update_stag(p_hwfn, p_ptt);
1624 			break;
1625 			break;
1626 		default:
1627 			DP_INFO(p_hwfn, "Unimplemented MFW message %d\n", i);
1628 			rc = -EINVAL;
1629 		}
1630 	}
1631 
1632 	/* ACK everything */
1633 	for (i = 0; i < MFW_DRV_MSG_MAX_DWORDS(info->mfw_mb_length); i++) {
1634 		__be32 val = cpu_to_be32(((u32 *)info->mfw_mb_cur)[i]);
1635 
1636 		/* MFW expect answer in BE, so we force write in that format */
1637 		qed_wr(p_hwfn, p_ptt,
1638 		       info->mfw_mb_addr + sizeof(u32) +
1639 		       MFW_DRV_MSG_MAX_DWORDS(info->mfw_mb_length) *
1640 		       sizeof(u32) + i * sizeof(u32),
1641 		       (__force u32)val);
1642 	}
1643 
1644 	if (!found) {
1645 		DP_NOTICE(p_hwfn,
1646 			  "Received an MFW message indication but no new message!\n");
1647 		rc = -EINVAL;
1648 	}
1649 
1650 	/* Copy the new mfw messages into the shadow */
1651 	memcpy(info->mfw_mb_shadow, info->mfw_mb_cur, info->mfw_mb_length);
1652 
1653 	return rc;
1654 }
1655 
1656 int qed_mcp_get_mfw_ver(struct qed_hwfn *p_hwfn,
1657 			struct qed_ptt *p_ptt,
1658 			u32 *p_mfw_ver, u32 *p_running_bundle_id)
1659 {
1660 	u32 global_offsize;
1661 
1662 	if (IS_VF(p_hwfn->cdev)) {
1663 		if (p_hwfn->vf_iov_info) {
1664 			struct pfvf_acquire_resp_tlv *p_resp;
1665 
1666 			p_resp = &p_hwfn->vf_iov_info->acquire_resp;
1667 			*p_mfw_ver = p_resp->pfdev_info.mfw_ver;
1668 			return 0;
1669 		} else {
1670 			DP_VERBOSE(p_hwfn,
1671 				   QED_MSG_IOV,
1672 				   "VF requested MFW version prior to ACQUIRE\n");
1673 			return -EINVAL;
1674 		}
1675 	}
1676 
1677 	global_offsize = qed_rd(p_hwfn, p_ptt,
1678 				SECTION_OFFSIZE_ADDR(p_hwfn->
1679 						     mcp_info->public_base,
1680 						     PUBLIC_GLOBAL));
1681 	*p_mfw_ver =
1682 	    qed_rd(p_hwfn, p_ptt,
1683 		   SECTION_ADDR(global_offsize,
1684 				0) + offsetof(struct public_global, mfw_ver));
1685 
1686 	if (p_running_bundle_id != NULL) {
1687 		*p_running_bundle_id = qed_rd(p_hwfn, p_ptt,
1688 					      SECTION_ADDR(global_offsize, 0) +
1689 					      offsetof(struct public_global,
1690 						       running_bundle_id));
1691 	}
1692 
1693 	return 0;
1694 }
1695 
1696 int qed_mcp_get_mbi_ver(struct qed_hwfn *p_hwfn,
1697 			struct qed_ptt *p_ptt, u32 *p_mbi_ver)
1698 {
1699 	u32 nvm_cfg_addr, nvm_cfg1_offset, mbi_ver_addr;
1700 
1701 	if (IS_VF(p_hwfn->cdev))
1702 		return -EINVAL;
1703 
1704 	/* Read the address of the nvm_cfg */
1705 	nvm_cfg_addr = qed_rd(p_hwfn, p_ptt, MISC_REG_GEN_PURP_CR0);
1706 	if (!nvm_cfg_addr) {
1707 		DP_NOTICE(p_hwfn, "Shared memory not initialized\n");
1708 		return -EINVAL;
1709 	}
1710 
1711 	/* Read the offset of nvm_cfg1 */
1712 	nvm_cfg1_offset = qed_rd(p_hwfn, p_ptt, nvm_cfg_addr + 4);
1713 
1714 	mbi_ver_addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
1715 		       offsetof(struct nvm_cfg1, glob) +
1716 		       offsetof(struct nvm_cfg1_glob, mbi_version);
1717 	*p_mbi_ver = qed_rd(p_hwfn, p_ptt,
1718 			    mbi_ver_addr) &
1719 		     (NVM_CFG1_GLOB_MBI_VERSION_0_MASK |
1720 		      NVM_CFG1_GLOB_MBI_VERSION_1_MASK |
1721 		      NVM_CFG1_GLOB_MBI_VERSION_2_MASK);
1722 
1723 	return 0;
1724 }
1725 
1726 int qed_mcp_get_media_type(struct qed_dev *cdev, u32 *p_media_type)
1727 {
1728 	struct qed_hwfn *p_hwfn = &cdev->hwfns[0];
1729 	struct qed_ptt  *p_ptt;
1730 
1731 	if (IS_VF(cdev))
1732 		return -EINVAL;
1733 
1734 	if (!qed_mcp_is_init(p_hwfn)) {
1735 		DP_NOTICE(p_hwfn, "MFW is not initialized!\n");
1736 		return -EBUSY;
1737 	}
1738 
1739 	*p_media_type = MEDIA_UNSPECIFIED;
1740 
1741 	p_ptt = qed_ptt_acquire(p_hwfn);
1742 	if (!p_ptt)
1743 		return -EBUSY;
1744 
1745 	*p_media_type = qed_rd(p_hwfn, p_ptt, p_hwfn->mcp_info->port_addr +
1746 			       offsetof(struct public_port, media_type));
1747 
1748 	qed_ptt_release(p_hwfn, p_ptt);
1749 
1750 	return 0;
1751 }
1752 
1753 /* Old MFW has a global configuration for all PFs regarding RDMA support */
1754 static void
1755 qed_mcp_get_shmem_proto_legacy(struct qed_hwfn *p_hwfn,
1756 			       enum qed_pci_personality *p_proto)
1757 {
1758 	/* There wasn't ever a legacy MFW that published iwarp.
1759 	 * So at this point, this is either plain l2 or RoCE.
1760 	 */
1761 	if (test_bit(QED_DEV_CAP_ROCE, &p_hwfn->hw_info.device_capabilities))
1762 		*p_proto = QED_PCI_ETH_ROCE;
1763 	else
1764 		*p_proto = QED_PCI_ETH;
1765 
1766 	DP_VERBOSE(p_hwfn, NETIF_MSG_IFUP,
1767 		   "According to Legacy capabilities, L2 personality is %08x\n",
1768 		   (u32) *p_proto);
1769 }
1770 
1771 static int
1772 qed_mcp_get_shmem_proto_mfw(struct qed_hwfn *p_hwfn,
1773 			    struct qed_ptt *p_ptt,
1774 			    enum qed_pci_personality *p_proto)
1775 {
1776 	u32 resp = 0, param = 0;
1777 	int rc;
1778 
1779 	rc = qed_mcp_cmd(p_hwfn, p_ptt,
1780 			 DRV_MSG_CODE_GET_PF_RDMA_PROTOCOL, 0, &resp, &param);
1781 	if (rc)
1782 		return rc;
1783 	if (resp != FW_MSG_CODE_OK) {
1784 		DP_VERBOSE(p_hwfn, NETIF_MSG_IFUP,
1785 			   "MFW lacks support for command; Returns %08x\n",
1786 			   resp);
1787 		return -EINVAL;
1788 	}
1789 
1790 	switch (param) {
1791 	case FW_MB_PARAM_GET_PF_RDMA_NONE:
1792 		*p_proto = QED_PCI_ETH;
1793 		break;
1794 	case FW_MB_PARAM_GET_PF_RDMA_ROCE:
1795 		*p_proto = QED_PCI_ETH_ROCE;
1796 		break;
1797 	case FW_MB_PARAM_GET_PF_RDMA_IWARP:
1798 		*p_proto = QED_PCI_ETH_IWARP;
1799 		break;
1800 	case FW_MB_PARAM_GET_PF_RDMA_BOTH:
1801 		*p_proto = QED_PCI_ETH_RDMA;
1802 		break;
1803 	default:
1804 		DP_NOTICE(p_hwfn,
1805 			  "MFW answers GET_PF_RDMA_PROTOCOL but param is %08x\n",
1806 			  param);
1807 		return -EINVAL;
1808 	}
1809 
1810 	DP_VERBOSE(p_hwfn,
1811 		   NETIF_MSG_IFUP,
1812 		   "According to capabilities, L2 personality is %08x [resp %08x param %08x]\n",
1813 		   (u32) *p_proto, resp, param);
1814 	return 0;
1815 }
1816 
1817 static int
1818 qed_mcp_get_shmem_proto(struct qed_hwfn *p_hwfn,
1819 			struct public_func *p_info,
1820 			struct qed_ptt *p_ptt,
1821 			enum qed_pci_personality *p_proto)
1822 {
1823 	int rc = 0;
1824 
1825 	switch (p_info->config & FUNC_MF_CFG_PROTOCOL_MASK) {
1826 	case FUNC_MF_CFG_PROTOCOL_ETHERNET:
1827 		if (!IS_ENABLED(CONFIG_QED_RDMA))
1828 			*p_proto = QED_PCI_ETH;
1829 		else if (qed_mcp_get_shmem_proto_mfw(p_hwfn, p_ptt, p_proto))
1830 			qed_mcp_get_shmem_proto_legacy(p_hwfn, p_proto);
1831 		break;
1832 	case FUNC_MF_CFG_PROTOCOL_ISCSI:
1833 		*p_proto = QED_PCI_ISCSI;
1834 		break;
1835 	case FUNC_MF_CFG_PROTOCOL_FCOE:
1836 		*p_proto = QED_PCI_FCOE;
1837 		break;
1838 	case FUNC_MF_CFG_PROTOCOL_ROCE:
1839 		DP_NOTICE(p_hwfn, "RoCE personality is not a valid value!\n");
1840 	/* Fallthrough */
1841 	default:
1842 		rc = -EINVAL;
1843 	}
1844 
1845 	return rc;
1846 }
1847 
1848 int qed_mcp_fill_shmem_func_info(struct qed_hwfn *p_hwfn,
1849 				 struct qed_ptt *p_ptt)
1850 {
1851 	struct qed_mcp_function_info *info;
1852 	struct public_func shmem_info;
1853 
1854 	qed_mcp_get_shmem_func(p_hwfn, p_ptt, &shmem_info, MCP_PF_ID(p_hwfn));
1855 	info = &p_hwfn->mcp_info->func_info;
1856 
1857 	info->pause_on_host = (shmem_info.config &
1858 			       FUNC_MF_CFG_PAUSE_ON_HOST_RING) ? 1 : 0;
1859 
1860 	if (qed_mcp_get_shmem_proto(p_hwfn, &shmem_info, p_ptt,
1861 				    &info->protocol)) {
1862 		DP_ERR(p_hwfn, "Unknown personality %08x\n",
1863 		       (u32)(shmem_info.config & FUNC_MF_CFG_PROTOCOL_MASK));
1864 		return -EINVAL;
1865 	}
1866 
1867 	qed_read_pf_bandwidth(p_hwfn, &shmem_info);
1868 
1869 	if (shmem_info.mac_upper || shmem_info.mac_lower) {
1870 		info->mac[0] = (u8)(shmem_info.mac_upper >> 8);
1871 		info->mac[1] = (u8)(shmem_info.mac_upper);
1872 		info->mac[2] = (u8)(shmem_info.mac_lower >> 24);
1873 		info->mac[3] = (u8)(shmem_info.mac_lower >> 16);
1874 		info->mac[4] = (u8)(shmem_info.mac_lower >> 8);
1875 		info->mac[5] = (u8)(shmem_info.mac_lower);
1876 
1877 		/* Store primary MAC for later possible WoL */
1878 		memcpy(&p_hwfn->cdev->wol_mac, info->mac, ETH_ALEN);
1879 	} else {
1880 		DP_NOTICE(p_hwfn, "MAC is 0 in shmem\n");
1881 	}
1882 
1883 	info->wwn_port = (u64)shmem_info.fcoe_wwn_port_name_lower |
1884 			 (((u64)shmem_info.fcoe_wwn_port_name_upper) << 32);
1885 	info->wwn_node = (u64)shmem_info.fcoe_wwn_node_name_lower |
1886 			 (((u64)shmem_info.fcoe_wwn_node_name_upper) << 32);
1887 
1888 	info->ovlan = (u16)(shmem_info.ovlan_stag & FUNC_MF_CFG_OV_STAG_MASK);
1889 
1890 	info->mtu = (u16)shmem_info.mtu_size;
1891 
1892 	p_hwfn->hw_info.b_wol_support = QED_WOL_SUPPORT_NONE;
1893 	p_hwfn->cdev->wol_config = (u8)QED_OV_WOL_DEFAULT;
1894 	if (qed_mcp_is_init(p_hwfn)) {
1895 		u32 resp = 0, param = 0;
1896 		int rc;
1897 
1898 		rc = qed_mcp_cmd(p_hwfn, p_ptt,
1899 				 DRV_MSG_CODE_OS_WOL, 0, &resp, &param);
1900 		if (rc)
1901 			return rc;
1902 		if (resp == FW_MSG_CODE_OS_WOL_SUPPORTED)
1903 			p_hwfn->hw_info.b_wol_support = QED_WOL_SUPPORT_PME;
1904 	}
1905 
1906 	DP_VERBOSE(p_hwfn, (QED_MSG_SP | NETIF_MSG_IFUP),
1907 		   "Read configuration from shmem: pause_on_host %02x protocol %02x BW [%02x - %02x] MAC %02x:%02x:%02x:%02x:%02x:%02x wwn port %llx node %llx ovlan %04x wol %02x\n",
1908 		info->pause_on_host, info->protocol,
1909 		info->bandwidth_min, info->bandwidth_max,
1910 		info->mac[0], info->mac[1], info->mac[2],
1911 		info->mac[3], info->mac[4], info->mac[5],
1912 		info->wwn_port, info->wwn_node,
1913 		info->ovlan, (u8)p_hwfn->hw_info.b_wol_support);
1914 
1915 	return 0;
1916 }
1917 
1918 struct qed_mcp_link_params
1919 *qed_mcp_get_link_params(struct qed_hwfn *p_hwfn)
1920 {
1921 	if (!p_hwfn || !p_hwfn->mcp_info)
1922 		return NULL;
1923 	return &p_hwfn->mcp_info->link_input;
1924 }
1925 
1926 struct qed_mcp_link_state
1927 *qed_mcp_get_link_state(struct qed_hwfn *p_hwfn)
1928 {
1929 	if (!p_hwfn || !p_hwfn->mcp_info)
1930 		return NULL;
1931 	return &p_hwfn->mcp_info->link_output;
1932 }
1933 
1934 struct qed_mcp_link_capabilities
1935 *qed_mcp_get_link_capabilities(struct qed_hwfn *p_hwfn)
1936 {
1937 	if (!p_hwfn || !p_hwfn->mcp_info)
1938 		return NULL;
1939 	return &p_hwfn->mcp_info->link_capabilities;
1940 }
1941 
1942 int qed_mcp_drain(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1943 {
1944 	u32 resp = 0, param = 0;
1945 	int rc;
1946 
1947 	rc = qed_mcp_cmd(p_hwfn, p_ptt,
1948 			 DRV_MSG_CODE_NIG_DRAIN, 1000, &resp, &param);
1949 
1950 	/* Wait for the drain to complete before returning */
1951 	msleep(1020);
1952 
1953 	return rc;
1954 }
1955 
1956 int qed_mcp_get_flash_size(struct qed_hwfn *p_hwfn,
1957 			   struct qed_ptt *p_ptt, u32 *p_flash_size)
1958 {
1959 	u32 flash_size;
1960 
1961 	if (IS_VF(p_hwfn->cdev))
1962 		return -EINVAL;
1963 
1964 	flash_size = qed_rd(p_hwfn, p_ptt, MCP_REG_NVM_CFG4);
1965 	flash_size = (flash_size & MCP_REG_NVM_CFG4_FLASH_SIZE) >>
1966 		      MCP_REG_NVM_CFG4_FLASH_SIZE_SHIFT;
1967 	flash_size = (1 << (flash_size + MCP_BYTES_PER_MBIT_SHIFT));
1968 
1969 	*p_flash_size = flash_size;
1970 
1971 	return 0;
1972 }
1973 
1974 static int
1975 qed_mcp_config_vf_msix_bb(struct qed_hwfn *p_hwfn,
1976 			  struct qed_ptt *p_ptt, u8 vf_id, u8 num)
1977 {
1978 	u32 resp = 0, param = 0, rc_param = 0;
1979 	int rc;
1980 
1981 	/* Only Leader can configure MSIX, and need to take CMT into account */
1982 	if (!IS_LEAD_HWFN(p_hwfn))
1983 		return 0;
1984 	num *= p_hwfn->cdev->num_hwfns;
1985 
1986 	param |= (vf_id << DRV_MB_PARAM_CFG_VF_MSIX_VF_ID_SHIFT) &
1987 		 DRV_MB_PARAM_CFG_VF_MSIX_VF_ID_MASK;
1988 	param |= (num << DRV_MB_PARAM_CFG_VF_MSIX_SB_NUM_SHIFT) &
1989 		 DRV_MB_PARAM_CFG_VF_MSIX_SB_NUM_MASK;
1990 
1991 	rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_CFG_VF_MSIX, param,
1992 			 &resp, &rc_param);
1993 
1994 	if (resp != FW_MSG_CODE_DRV_CFG_VF_MSIX_DONE) {
1995 		DP_NOTICE(p_hwfn, "VF[%d]: MFW failed to set MSI-X\n", vf_id);
1996 		rc = -EINVAL;
1997 	} else {
1998 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1999 			   "Requested 0x%02x MSI-x interrupts from VF 0x%02x\n",
2000 			   num, vf_id);
2001 	}
2002 
2003 	return rc;
2004 }
2005 
2006 static int
2007 qed_mcp_config_vf_msix_ah(struct qed_hwfn *p_hwfn,
2008 			  struct qed_ptt *p_ptt, u8 num)
2009 {
2010 	u32 resp = 0, param = num, rc_param = 0;
2011 	int rc;
2012 
2013 	rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_CFG_PF_VFS_MSIX,
2014 			 param, &resp, &rc_param);
2015 
2016 	if (resp != FW_MSG_CODE_DRV_CFG_PF_VFS_MSIX_DONE) {
2017 		DP_NOTICE(p_hwfn, "MFW failed to set MSI-X for VFs\n");
2018 		rc = -EINVAL;
2019 	} else {
2020 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2021 			   "Requested 0x%02x MSI-x interrupts for VFs\n", num);
2022 	}
2023 
2024 	return rc;
2025 }
2026 
2027 int qed_mcp_config_vf_msix(struct qed_hwfn *p_hwfn,
2028 			   struct qed_ptt *p_ptt, u8 vf_id, u8 num)
2029 {
2030 	if (QED_IS_BB(p_hwfn->cdev))
2031 		return qed_mcp_config_vf_msix_bb(p_hwfn, p_ptt, vf_id, num);
2032 	else
2033 		return qed_mcp_config_vf_msix_ah(p_hwfn, p_ptt, num);
2034 }
2035 
2036 int
2037 qed_mcp_send_drv_version(struct qed_hwfn *p_hwfn,
2038 			 struct qed_ptt *p_ptt,
2039 			 struct qed_mcp_drv_version *p_ver)
2040 {
2041 	struct qed_mcp_mb_params mb_params;
2042 	struct drv_version_stc drv_version;
2043 	__be32 val;
2044 	u32 i;
2045 	int rc;
2046 
2047 	memset(&drv_version, 0, sizeof(drv_version));
2048 	drv_version.version = p_ver->version;
2049 	for (i = 0; i < (MCP_DRV_VER_STR_SIZE - 4) / sizeof(u32); i++) {
2050 		val = cpu_to_be32(*((u32 *)&p_ver->name[i * sizeof(u32)]));
2051 		*(__be32 *)&drv_version.name[i * sizeof(u32)] = val;
2052 	}
2053 
2054 	memset(&mb_params, 0, sizeof(mb_params));
2055 	mb_params.cmd = DRV_MSG_CODE_SET_VERSION;
2056 	mb_params.p_data_src = &drv_version;
2057 	mb_params.data_src_size = sizeof(drv_version);
2058 	rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params);
2059 	if (rc)
2060 		DP_ERR(p_hwfn, "MCP response failure, aborting\n");
2061 
2062 	return rc;
2063 }
2064 
2065 int qed_mcp_halt(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2066 {
2067 	u32 resp = 0, param = 0;
2068 	int rc;
2069 
2070 	rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_MCP_HALT, 0, &resp,
2071 			 &param);
2072 	if (rc)
2073 		DP_ERR(p_hwfn, "MCP response failure, aborting\n");
2074 
2075 	return rc;
2076 }
2077 
2078 int qed_mcp_resume(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2079 {
2080 	u32 value, cpu_mode;
2081 
2082 	qed_wr(p_hwfn, p_ptt, MCP_REG_CPU_STATE, 0xffffffff);
2083 
2084 	value = qed_rd(p_hwfn, p_ptt, MCP_REG_CPU_MODE);
2085 	value &= ~MCP_REG_CPU_MODE_SOFT_HALT;
2086 	qed_wr(p_hwfn, p_ptt, MCP_REG_CPU_MODE, value);
2087 	cpu_mode = qed_rd(p_hwfn, p_ptt, MCP_REG_CPU_MODE);
2088 
2089 	return (cpu_mode & MCP_REG_CPU_MODE_SOFT_HALT) ? -EAGAIN : 0;
2090 }
2091 
2092 int qed_mcp_ov_update_current_config(struct qed_hwfn *p_hwfn,
2093 				     struct qed_ptt *p_ptt,
2094 				     enum qed_ov_client client)
2095 {
2096 	u32 resp = 0, param = 0;
2097 	u32 drv_mb_param;
2098 	int rc;
2099 
2100 	switch (client) {
2101 	case QED_OV_CLIENT_DRV:
2102 		drv_mb_param = DRV_MB_PARAM_OV_CURR_CFG_OS;
2103 		break;
2104 	case QED_OV_CLIENT_USER:
2105 		drv_mb_param = DRV_MB_PARAM_OV_CURR_CFG_OTHER;
2106 		break;
2107 	case QED_OV_CLIENT_VENDOR_SPEC:
2108 		drv_mb_param = DRV_MB_PARAM_OV_CURR_CFG_VENDOR_SPEC;
2109 		break;
2110 	default:
2111 		DP_NOTICE(p_hwfn, "Invalid client type %d\n", client);
2112 		return -EINVAL;
2113 	}
2114 
2115 	rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_OV_UPDATE_CURR_CFG,
2116 			 drv_mb_param, &resp, &param);
2117 	if (rc)
2118 		DP_ERR(p_hwfn, "MCP response failure, aborting\n");
2119 
2120 	return rc;
2121 }
2122 
2123 int qed_mcp_ov_update_driver_state(struct qed_hwfn *p_hwfn,
2124 				   struct qed_ptt *p_ptt,
2125 				   enum qed_ov_driver_state drv_state)
2126 {
2127 	u32 resp = 0, param = 0;
2128 	u32 drv_mb_param;
2129 	int rc;
2130 
2131 	switch (drv_state) {
2132 	case QED_OV_DRIVER_STATE_NOT_LOADED:
2133 		drv_mb_param = DRV_MSG_CODE_OV_UPDATE_DRIVER_STATE_NOT_LOADED;
2134 		break;
2135 	case QED_OV_DRIVER_STATE_DISABLED:
2136 		drv_mb_param = DRV_MSG_CODE_OV_UPDATE_DRIVER_STATE_DISABLED;
2137 		break;
2138 	case QED_OV_DRIVER_STATE_ACTIVE:
2139 		drv_mb_param = DRV_MSG_CODE_OV_UPDATE_DRIVER_STATE_ACTIVE;
2140 		break;
2141 	default:
2142 		DP_NOTICE(p_hwfn, "Invalid driver state %d\n", drv_state);
2143 		return -EINVAL;
2144 	}
2145 
2146 	rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_OV_UPDATE_DRIVER_STATE,
2147 			 drv_mb_param, &resp, &param);
2148 	if (rc)
2149 		DP_ERR(p_hwfn, "Failed to send driver state\n");
2150 
2151 	return rc;
2152 }
2153 
2154 int qed_mcp_ov_update_mtu(struct qed_hwfn *p_hwfn,
2155 			  struct qed_ptt *p_ptt, u16 mtu)
2156 {
2157 	u32 resp = 0, param = 0;
2158 	u32 drv_mb_param;
2159 	int rc;
2160 
2161 	drv_mb_param = (u32)mtu << DRV_MB_PARAM_OV_MTU_SIZE_SHIFT;
2162 	rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_OV_UPDATE_MTU,
2163 			 drv_mb_param, &resp, &param);
2164 	if (rc)
2165 		DP_ERR(p_hwfn, "Failed to send mtu value, rc = %d\n", rc);
2166 
2167 	return rc;
2168 }
2169 
2170 int qed_mcp_ov_update_mac(struct qed_hwfn *p_hwfn,
2171 			  struct qed_ptt *p_ptt, u8 *mac)
2172 {
2173 	struct qed_mcp_mb_params mb_params;
2174 	u32 mfw_mac[2];
2175 	int rc;
2176 
2177 	memset(&mb_params, 0, sizeof(mb_params));
2178 	mb_params.cmd = DRV_MSG_CODE_SET_VMAC;
2179 	mb_params.param = DRV_MSG_CODE_VMAC_TYPE_MAC <<
2180 			  DRV_MSG_CODE_VMAC_TYPE_SHIFT;
2181 	mb_params.param |= MCP_PF_ID(p_hwfn);
2182 
2183 	/* MCP is BE, and on LE platforms PCI would swap access to SHMEM
2184 	 * in 32-bit granularity.
2185 	 * So the MAC has to be set in native order [and not byte order],
2186 	 * otherwise it would be read incorrectly by MFW after swap.
2187 	 */
2188 	mfw_mac[0] = mac[0] << 24 | mac[1] << 16 | mac[2] << 8 | mac[3];
2189 	mfw_mac[1] = mac[4] << 24 | mac[5] << 16;
2190 
2191 	mb_params.p_data_src = (u8 *)mfw_mac;
2192 	mb_params.data_src_size = 8;
2193 	rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params);
2194 	if (rc)
2195 		DP_ERR(p_hwfn, "Failed to send mac address, rc = %d\n", rc);
2196 
2197 	/* Store primary MAC for later possible WoL */
2198 	memcpy(p_hwfn->cdev->wol_mac, mac, ETH_ALEN);
2199 
2200 	return rc;
2201 }
2202 
2203 int qed_mcp_ov_update_wol(struct qed_hwfn *p_hwfn,
2204 			  struct qed_ptt *p_ptt, enum qed_ov_wol wol)
2205 {
2206 	u32 resp = 0, param = 0;
2207 	u32 drv_mb_param;
2208 	int rc;
2209 
2210 	if (p_hwfn->hw_info.b_wol_support == QED_WOL_SUPPORT_NONE) {
2211 		DP_VERBOSE(p_hwfn, QED_MSG_SP,
2212 			   "Can't change WoL configuration when WoL isn't supported\n");
2213 		return -EINVAL;
2214 	}
2215 
2216 	switch (wol) {
2217 	case QED_OV_WOL_DEFAULT:
2218 		drv_mb_param = DRV_MB_PARAM_WOL_DEFAULT;
2219 		break;
2220 	case QED_OV_WOL_DISABLED:
2221 		drv_mb_param = DRV_MB_PARAM_WOL_DISABLED;
2222 		break;
2223 	case QED_OV_WOL_ENABLED:
2224 		drv_mb_param = DRV_MB_PARAM_WOL_ENABLED;
2225 		break;
2226 	default:
2227 		DP_ERR(p_hwfn, "Invalid wol state %d\n", wol);
2228 		return -EINVAL;
2229 	}
2230 
2231 	rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_OV_UPDATE_WOL,
2232 			 drv_mb_param, &resp, &param);
2233 	if (rc)
2234 		DP_ERR(p_hwfn, "Failed to send wol mode, rc = %d\n", rc);
2235 
2236 	/* Store the WoL update for a future unload */
2237 	p_hwfn->cdev->wol_config = (u8)wol;
2238 
2239 	return rc;
2240 }
2241 
2242 int qed_mcp_ov_update_eswitch(struct qed_hwfn *p_hwfn,
2243 			      struct qed_ptt *p_ptt,
2244 			      enum qed_ov_eswitch eswitch)
2245 {
2246 	u32 resp = 0, param = 0;
2247 	u32 drv_mb_param;
2248 	int rc;
2249 
2250 	switch (eswitch) {
2251 	case QED_OV_ESWITCH_NONE:
2252 		drv_mb_param = DRV_MB_PARAM_ESWITCH_MODE_NONE;
2253 		break;
2254 	case QED_OV_ESWITCH_VEB:
2255 		drv_mb_param = DRV_MB_PARAM_ESWITCH_MODE_VEB;
2256 		break;
2257 	case QED_OV_ESWITCH_VEPA:
2258 		drv_mb_param = DRV_MB_PARAM_ESWITCH_MODE_VEPA;
2259 		break;
2260 	default:
2261 		DP_ERR(p_hwfn, "Invalid eswitch mode %d\n", eswitch);
2262 		return -EINVAL;
2263 	}
2264 
2265 	rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_OV_UPDATE_ESWITCH_MODE,
2266 			 drv_mb_param, &resp, &param);
2267 	if (rc)
2268 		DP_ERR(p_hwfn, "Failed to send eswitch mode, rc = %d\n", rc);
2269 
2270 	return rc;
2271 }
2272 
2273 int qed_mcp_set_led(struct qed_hwfn *p_hwfn,
2274 		    struct qed_ptt *p_ptt, enum qed_led_mode mode)
2275 {
2276 	u32 resp = 0, param = 0, drv_mb_param;
2277 	int rc;
2278 
2279 	switch (mode) {
2280 	case QED_LED_MODE_ON:
2281 		drv_mb_param = DRV_MB_PARAM_SET_LED_MODE_ON;
2282 		break;
2283 	case QED_LED_MODE_OFF:
2284 		drv_mb_param = DRV_MB_PARAM_SET_LED_MODE_OFF;
2285 		break;
2286 	case QED_LED_MODE_RESTORE:
2287 		drv_mb_param = DRV_MB_PARAM_SET_LED_MODE_OPER;
2288 		break;
2289 	default:
2290 		DP_NOTICE(p_hwfn, "Invalid LED mode %d\n", mode);
2291 		return -EINVAL;
2292 	}
2293 
2294 	rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_SET_LED_MODE,
2295 			 drv_mb_param, &resp, &param);
2296 
2297 	return rc;
2298 }
2299 
2300 int qed_mcp_mask_parities(struct qed_hwfn *p_hwfn,
2301 			  struct qed_ptt *p_ptt, u32 mask_parities)
2302 {
2303 	u32 resp = 0, param = 0;
2304 	int rc;
2305 
2306 	rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_MASK_PARITIES,
2307 			 mask_parities, &resp, &param);
2308 
2309 	if (rc) {
2310 		DP_ERR(p_hwfn,
2311 		       "MCP response failure for mask parities, aborting\n");
2312 	} else if (resp != FW_MSG_CODE_OK) {
2313 		DP_ERR(p_hwfn,
2314 		       "MCP did not acknowledge mask parity request. Old MFW?\n");
2315 		rc = -EINVAL;
2316 	}
2317 
2318 	return rc;
2319 }
2320 
2321 int qed_mcp_nvm_read(struct qed_dev *cdev, u32 addr, u8 *p_buf, u32 len)
2322 {
2323 	u32 bytes_left = len, offset = 0, bytes_to_copy, read_len = 0;
2324 	struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
2325 	u32 resp = 0, resp_param = 0;
2326 	struct qed_ptt *p_ptt;
2327 	int rc = 0;
2328 
2329 	p_ptt = qed_ptt_acquire(p_hwfn);
2330 	if (!p_ptt)
2331 		return -EBUSY;
2332 
2333 	while (bytes_left > 0) {
2334 		bytes_to_copy = min_t(u32, bytes_left, MCP_DRV_NVM_BUF_LEN);
2335 
2336 		rc = qed_mcp_nvm_rd_cmd(p_hwfn, p_ptt,
2337 					DRV_MSG_CODE_NVM_READ_NVRAM,
2338 					addr + offset +
2339 					(bytes_to_copy <<
2340 					 DRV_MB_PARAM_NVM_LEN_OFFSET),
2341 					&resp, &resp_param,
2342 					&read_len,
2343 					(u32 *)(p_buf + offset));
2344 
2345 		if (rc || (resp != FW_MSG_CODE_NVM_OK)) {
2346 			DP_NOTICE(cdev, "MCP command rc = %d\n", rc);
2347 			break;
2348 		}
2349 
2350 		/* This can be a lengthy process, and it's possible scheduler
2351 		 * isn't preemptable. Sleep a bit to prevent CPU hogging.
2352 		 */
2353 		if (bytes_left % 0x1000 <
2354 		    (bytes_left - read_len) % 0x1000)
2355 			usleep_range(1000, 2000);
2356 
2357 		offset += read_len;
2358 		bytes_left -= read_len;
2359 	}
2360 
2361 	cdev->mcp_nvm_resp = resp;
2362 	qed_ptt_release(p_hwfn, p_ptt);
2363 
2364 	return rc;
2365 }
2366 
2367 int qed_mcp_nvm_resp(struct qed_dev *cdev, u8 *p_buf)
2368 {
2369 	struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
2370 	struct qed_ptt *p_ptt;
2371 
2372 	p_ptt = qed_ptt_acquire(p_hwfn);
2373 	if (!p_ptt)
2374 		return -EBUSY;
2375 
2376 	memcpy(p_buf, &cdev->mcp_nvm_resp, sizeof(cdev->mcp_nvm_resp));
2377 	qed_ptt_release(p_hwfn, p_ptt);
2378 
2379 	return 0;
2380 }
2381 
2382 int qed_mcp_nvm_put_file_begin(struct qed_dev *cdev, u32 addr)
2383 {
2384 	struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
2385 	struct qed_ptt *p_ptt;
2386 	u32 resp, param;
2387 	int rc;
2388 
2389 	p_ptt = qed_ptt_acquire(p_hwfn);
2390 	if (!p_ptt)
2391 		return -EBUSY;
2392 	rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_NVM_PUT_FILE_BEGIN, addr,
2393 			 &resp, &param);
2394 	cdev->mcp_nvm_resp = resp;
2395 	qed_ptt_release(p_hwfn, p_ptt);
2396 
2397 	return rc;
2398 }
2399 
2400 int qed_mcp_nvm_write(struct qed_dev *cdev,
2401 		      u32 cmd, u32 addr, u8 *p_buf, u32 len)
2402 {
2403 	u32 buf_idx = 0, buf_size, nvm_cmd, nvm_offset, resp = 0, param;
2404 	struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
2405 	struct qed_ptt *p_ptt;
2406 	int rc = -EINVAL;
2407 
2408 	p_ptt = qed_ptt_acquire(p_hwfn);
2409 	if (!p_ptt)
2410 		return -EBUSY;
2411 
2412 	switch (cmd) {
2413 	case QED_PUT_FILE_DATA:
2414 		nvm_cmd = DRV_MSG_CODE_NVM_PUT_FILE_DATA;
2415 		break;
2416 	case QED_NVM_WRITE_NVRAM:
2417 		nvm_cmd = DRV_MSG_CODE_NVM_WRITE_NVRAM;
2418 		break;
2419 	default:
2420 		DP_NOTICE(p_hwfn, "Invalid nvm write command 0x%x\n", cmd);
2421 		rc = -EINVAL;
2422 		goto out;
2423 	}
2424 
2425 	while (buf_idx < len) {
2426 		buf_size = min_t(u32, (len - buf_idx), MCP_DRV_NVM_BUF_LEN);
2427 		nvm_offset = ((buf_size << DRV_MB_PARAM_NVM_LEN_OFFSET) |
2428 			      addr) + buf_idx;
2429 		rc = qed_mcp_nvm_wr_cmd(p_hwfn, p_ptt, nvm_cmd, nvm_offset,
2430 					&resp, &param, buf_size,
2431 					(u32 *)&p_buf[buf_idx]);
2432 		if (rc) {
2433 			DP_NOTICE(cdev, "nvm write failed, rc = %d\n", rc);
2434 			resp = FW_MSG_CODE_ERROR;
2435 			break;
2436 		}
2437 
2438 		if (resp != FW_MSG_CODE_OK &&
2439 		    resp != FW_MSG_CODE_NVM_OK &&
2440 		    resp != FW_MSG_CODE_NVM_PUT_FILE_FINISH_OK) {
2441 			DP_NOTICE(cdev,
2442 				  "nvm write failed, resp = 0x%08x\n", resp);
2443 			rc = -EINVAL;
2444 			break;
2445 		}
2446 
2447 		/* This can be a lengthy process, and it's possible scheduler
2448 		 * isn't pre-emptable. Sleep a bit to prevent CPU hogging.
2449 		 */
2450 		if (buf_idx % 0x1000 > (buf_idx + buf_size) % 0x1000)
2451 			usleep_range(1000, 2000);
2452 
2453 		buf_idx += buf_size;
2454 	}
2455 
2456 	cdev->mcp_nvm_resp = resp;
2457 out:
2458 	qed_ptt_release(p_hwfn, p_ptt);
2459 
2460 	return rc;
2461 }
2462 
2463 int qed_mcp_bist_register_test(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2464 {
2465 	u32 drv_mb_param = 0, rsp, param;
2466 	int rc = 0;
2467 
2468 	drv_mb_param = (DRV_MB_PARAM_BIST_REGISTER_TEST <<
2469 			DRV_MB_PARAM_BIST_TEST_INDEX_SHIFT);
2470 
2471 	rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_BIST_TEST,
2472 			 drv_mb_param, &rsp, &param);
2473 
2474 	if (rc)
2475 		return rc;
2476 
2477 	if (((rsp & FW_MSG_CODE_MASK) != FW_MSG_CODE_OK) ||
2478 	    (param != DRV_MB_PARAM_BIST_RC_PASSED))
2479 		rc = -EAGAIN;
2480 
2481 	return rc;
2482 }
2483 
2484 int qed_mcp_bist_clock_test(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2485 {
2486 	u32 drv_mb_param, rsp, param;
2487 	int rc = 0;
2488 
2489 	drv_mb_param = (DRV_MB_PARAM_BIST_CLOCK_TEST <<
2490 			DRV_MB_PARAM_BIST_TEST_INDEX_SHIFT);
2491 
2492 	rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_BIST_TEST,
2493 			 drv_mb_param, &rsp, &param);
2494 
2495 	if (rc)
2496 		return rc;
2497 
2498 	if (((rsp & FW_MSG_CODE_MASK) != FW_MSG_CODE_OK) ||
2499 	    (param != DRV_MB_PARAM_BIST_RC_PASSED))
2500 		rc = -EAGAIN;
2501 
2502 	return rc;
2503 }
2504 
2505 int qed_mcp_bist_nvm_get_num_images(struct qed_hwfn *p_hwfn,
2506 				    struct qed_ptt *p_ptt,
2507 				    u32 *num_images)
2508 {
2509 	u32 drv_mb_param = 0, rsp;
2510 	int rc = 0;
2511 
2512 	drv_mb_param = (DRV_MB_PARAM_BIST_NVM_TEST_NUM_IMAGES <<
2513 			DRV_MB_PARAM_BIST_TEST_INDEX_SHIFT);
2514 
2515 	rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_BIST_TEST,
2516 			 drv_mb_param, &rsp, num_images);
2517 	if (rc)
2518 		return rc;
2519 
2520 	if (((rsp & FW_MSG_CODE_MASK) != FW_MSG_CODE_OK))
2521 		rc = -EINVAL;
2522 
2523 	return rc;
2524 }
2525 
2526 int qed_mcp_bist_nvm_get_image_att(struct qed_hwfn *p_hwfn,
2527 				   struct qed_ptt *p_ptt,
2528 				   struct bist_nvm_image_att *p_image_att,
2529 				   u32 image_index)
2530 {
2531 	u32 buf_size = 0, param, resp = 0, resp_param = 0;
2532 	int rc;
2533 
2534 	param = DRV_MB_PARAM_BIST_NVM_TEST_IMAGE_BY_INDEX <<
2535 		DRV_MB_PARAM_BIST_TEST_INDEX_SHIFT;
2536 	param |= image_index << DRV_MB_PARAM_BIST_TEST_IMAGE_INDEX_SHIFT;
2537 
2538 	rc = qed_mcp_nvm_rd_cmd(p_hwfn, p_ptt,
2539 				DRV_MSG_CODE_BIST_TEST, param,
2540 				&resp, &resp_param,
2541 				&buf_size,
2542 				(u32 *)p_image_att);
2543 	if (rc)
2544 		return rc;
2545 
2546 	if (((resp & FW_MSG_CODE_MASK) != FW_MSG_CODE_OK) ||
2547 	    (p_image_att->return_code != 1))
2548 		rc = -EINVAL;
2549 
2550 	return rc;
2551 }
2552 
2553 int qed_mcp_nvm_info_populate(struct qed_hwfn *p_hwfn)
2554 {
2555 	struct qed_nvm_image_info *nvm_info = &p_hwfn->nvm_info;
2556 	struct qed_ptt *p_ptt;
2557 	int rc;
2558 	u32 i;
2559 
2560 	p_ptt = qed_ptt_acquire(p_hwfn);
2561 	if (!p_ptt) {
2562 		DP_ERR(p_hwfn, "failed to acquire ptt\n");
2563 		return -EBUSY;
2564 	}
2565 
2566 	/* Acquire from MFW the amount of available images */
2567 	nvm_info->num_images = 0;
2568 	rc = qed_mcp_bist_nvm_get_num_images(p_hwfn,
2569 					     p_ptt, &nvm_info->num_images);
2570 	if (rc == -EOPNOTSUPP) {
2571 		DP_INFO(p_hwfn, "DRV_MSG_CODE_BIST_TEST is not supported\n");
2572 		goto out;
2573 	} else if (rc || !nvm_info->num_images) {
2574 		DP_ERR(p_hwfn, "Failed getting number of images\n");
2575 		goto err0;
2576 	}
2577 
2578 	nvm_info->image_att = kmalloc(nvm_info->num_images *
2579 				      sizeof(struct bist_nvm_image_att),
2580 				      GFP_KERNEL);
2581 	if (!nvm_info->image_att) {
2582 		rc = -ENOMEM;
2583 		goto err0;
2584 	}
2585 
2586 	/* Iterate over images and get their attributes */
2587 	for (i = 0; i < nvm_info->num_images; i++) {
2588 		rc = qed_mcp_bist_nvm_get_image_att(p_hwfn, p_ptt,
2589 						    &nvm_info->image_att[i], i);
2590 		if (rc) {
2591 			DP_ERR(p_hwfn,
2592 			       "Failed getting image index %d attributes\n", i);
2593 			goto err1;
2594 		}
2595 
2596 		DP_VERBOSE(p_hwfn, QED_MSG_SP, "image index %d, size %x\n", i,
2597 			   nvm_info->image_att[i].len);
2598 	}
2599 out:
2600 	qed_ptt_release(p_hwfn, p_ptt);
2601 	return 0;
2602 
2603 err1:
2604 	kfree(nvm_info->image_att);
2605 err0:
2606 	qed_ptt_release(p_hwfn, p_ptt);
2607 	return rc;
2608 }
2609 
2610 int
2611 qed_mcp_get_nvm_image_att(struct qed_hwfn *p_hwfn,
2612 			  enum qed_nvm_images image_id,
2613 			  struct qed_nvm_image_att *p_image_att)
2614 {
2615 	enum nvm_image_type type;
2616 	u32 i;
2617 
2618 	/* Translate image_id into MFW definitions */
2619 	switch (image_id) {
2620 	case QED_NVM_IMAGE_ISCSI_CFG:
2621 		type = NVM_TYPE_ISCSI_CFG;
2622 		break;
2623 	case QED_NVM_IMAGE_FCOE_CFG:
2624 		type = NVM_TYPE_FCOE_CFG;
2625 		break;
2626 	case QED_NVM_IMAGE_NVM_CFG1:
2627 		type = NVM_TYPE_NVM_CFG1;
2628 		break;
2629 	case QED_NVM_IMAGE_DEFAULT_CFG:
2630 		type = NVM_TYPE_DEFAULT_CFG;
2631 		break;
2632 	case QED_NVM_IMAGE_NVM_META:
2633 		type = NVM_TYPE_META;
2634 		break;
2635 	default:
2636 		DP_NOTICE(p_hwfn, "Unknown request of image_id %08x\n",
2637 			  image_id);
2638 		return -EINVAL;
2639 	}
2640 
2641 	for (i = 0; i < p_hwfn->nvm_info.num_images; i++)
2642 		if (type == p_hwfn->nvm_info.image_att[i].image_type)
2643 			break;
2644 	if (i == p_hwfn->nvm_info.num_images) {
2645 		DP_VERBOSE(p_hwfn, QED_MSG_STORAGE,
2646 			   "Failed to find nvram image of type %08x\n",
2647 			   image_id);
2648 		return -ENOENT;
2649 	}
2650 
2651 	p_image_att->start_addr = p_hwfn->nvm_info.image_att[i].nvm_start_addr;
2652 	p_image_att->length = p_hwfn->nvm_info.image_att[i].len;
2653 
2654 	return 0;
2655 }
2656 
2657 int qed_mcp_get_nvm_image(struct qed_hwfn *p_hwfn,
2658 			  enum qed_nvm_images image_id,
2659 			  u8 *p_buffer, u32 buffer_len)
2660 {
2661 	struct qed_nvm_image_att image_att;
2662 	int rc;
2663 
2664 	memset(p_buffer, 0, buffer_len);
2665 
2666 	rc = qed_mcp_get_nvm_image_att(p_hwfn, image_id, &image_att);
2667 	if (rc)
2668 		return rc;
2669 
2670 	/* Validate sizes - both the image's and the supplied buffer's */
2671 	if (image_att.length <= 4) {
2672 		DP_VERBOSE(p_hwfn, QED_MSG_STORAGE,
2673 			   "Image [%d] is too small - only %d bytes\n",
2674 			   image_id, image_att.length);
2675 		return -EINVAL;
2676 	}
2677 
2678 	if (image_att.length > buffer_len) {
2679 		DP_VERBOSE(p_hwfn,
2680 			   QED_MSG_STORAGE,
2681 			   "Image [%d] is too big - %08x bytes where only %08x are available\n",
2682 			   image_id, image_att.length, buffer_len);
2683 		return -ENOMEM;
2684 	}
2685 
2686 	return qed_mcp_nvm_read(p_hwfn->cdev, image_att.start_addr,
2687 				p_buffer, image_att.length);
2688 }
2689 
2690 static enum resource_id_enum qed_mcp_get_mfw_res_id(enum qed_resources res_id)
2691 {
2692 	enum resource_id_enum mfw_res_id = RESOURCE_NUM_INVALID;
2693 
2694 	switch (res_id) {
2695 	case QED_SB:
2696 		mfw_res_id = RESOURCE_NUM_SB_E;
2697 		break;
2698 	case QED_L2_QUEUE:
2699 		mfw_res_id = RESOURCE_NUM_L2_QUEUE_E;
2700 		break;
2701 	case QED_VPORT:
2702 		mfw_res_id = RESOURCE_NUM_VPORT_E;
2703 		break;
2704 	case QED_RSS_ENG:
2705 		mfw_res_id = RESOURCE_NUM_RSS_ENGINES_E;
2706 		break;
2707 	case QED_PQ:
2708 		mfw_res_id = RESOURCE_NUM_PQ_E;
2709 		break;
2710 	case QED_RL:
2711 		mfw_res_id = RESOURCE_NUM_RL_E;
2712 		break;
2713 	case QED_MAC:
2714 	case QED_VLAN:
2715 		/* Each VFC resource can accommodate both a MAC and a VLAN */
2716 		mfw_res_id = RESOURCE_VFC_FILTER_E;
2717 		break;
2718 	case QED_ILT:
2719 		mfw_res_id = RESOURCE_ILT_E;
2720 		break;
2721 	case QED_LL2_QUEUE:
2722 		mfw_res_id = RESOURCE_LL2_QUEUE_E;
2723 		break;
2724 	case QED_RDMA_CNQ_RAM:
2725 	case QED_CMDQS_CQS:
2726 		/* CNQ/CMDQS are the same resource */
2727 		mfw_res_id = RESOURCE_CQS_E;
2728 		break;
2729 	case QED_RDMA_STATS_QUEUE:
2730 		mfw_res_id = RESOURCE_RDMA_STATS_QUEUE_E;
2731 		break;
2732 	case QED_BDQ:
2733 		mfw_res_id = RESOURCE_BDQ_E;
2734 		break;
2735 	default:
2736 		break;
2737 	}
2738 
2739 	return mfw_res_id;
2740 }
2741 
2742 #define QED_RESC_ALLOC_VERSION_MAJOR    2
2743 #define QED_RESC_ALLOC_VERSION_MINOR    0
2744 #define QED_RESC_ALLOC_VERSION				     \
2745 	((QED_RESC_ALLOC_VERSION_MAJOR <<		     \
2746 	  DRV_MB_PARAM_RESOURCE_ALLOC_VERSION_MAJOR_SHIFT) | \
2747 	 (QED_RESC_ALLOC_VERSION_MINOR <<		     \
2748 	  DRV_MB_PARAM_RESOURCE_ALLOC_VERSION_MINOR_SHIFT))
2749 
2750 struct qed_resc_alloc_in_params {
2751 	u32 cmd;
2752 	enum qed_resources res_id;
2753 	u32 resc_max_val;
2754 };
2755 
2756 struct qed_resc_alloc_out_params {
2757 	u32 mcp_resp;
2758 	u32 mcp_param;
2759 	u32 resc_num;
2760 	u32 resc_start;
2761 	u32 vf_resc_num;
2762 	u32 vf_resc_start;
2763 	u32 flags;
2764 };
2765 
2766 static int
2767 qed_mcp_resc_allocation_msg(struct qed_hwfn *p_hwfn,
2768 			    struct qed_ptt *p_ptt,
2769 			    struct qed_resc_alloc_in_params *p_in_params,
2770 			    struct qed_resc_alloc_out_params *p_out_params)
2771 {
2772 	struct qed_mcp_mb_params mb_params;
2773 	struct resource_info mfw_resc_info;
2774 	int rc;
2775 
2776 	memset(&mfw_resc_info, 0, sizeof(mfw_resc_info));
2777 
2778 	mfw_resc_info.res_id = qed_mcp_get_mfw_res_id(p_in_params->res_id);
2779 	if (mfw_resc_info.res_id == RESOURCE_NUM_INVALID) {
2780 		DP_ERR(p_hwfn,
2781 		       "Failed to match resource %d [%s] with the MFW resources\n",
2782 		       p_in_params->res_id,
2783 		       qed_hw_get_resc_name(p_in_params->res_id));
2784 		return -EINVAL;
2785 	}
2786 
2787 	switch (p_in_params->cmd) {
2788 	case DRV_MSG_SET_RESOURCE_VALUE_MSG:
2789 		mfw_resc_info.size = p_in_params->resc_max_val;
2790 		/* Fallthrough */
2791 	case DRV_MSG_GET_RESOURCE_ALLOC_MSG:
2792 		break;
2793 	default:
2794 		DP_ERR(p_hwfn, "Unexpected resource alloc command [0x%08x]\n",
2795 		       p_in_params->cmd);
2796 		return -EINVAL;
2797 	}
2798 
2799 	memset(&mb_params, 0, sizeof(mb_params));
2800 	mb_params.cmd = p_in_params->cmd;
2801 	mb_params.param = QED_RESC_ALLOC_VERSION;
2802 	mb_params.p_data_src = &mfw_resc_info;
2803 	mb_params.data_src_size = sizeof(mfw_resc_info);
2804 	mb_params.p_data_dst = mb_params.p_data_src;
2805 	mb_params.data_dst_size = mb_params.data_src_size;
2806 
2807 	DP_VERBOSE(p_hwfn,
2808 		   QED_MSG_SP,
2809 		   "Resource message request: cmd 0x%08x, res_id %d [%s], hsi_version %d.%d, val 0x%x\n",
2810 		   p_in_params->cmd,
2811 		   p_in_params->res_id,
2812 		   qed_hw_get_resc_name(p_in_params->res_id),
2813 		   QED_MFW_GET_FIELD(mb_params.param,
2814 				     DRV_MB_PARAM_RESOURCE_ALLOC_VERSION_MAJOR),
2815 		   QED_MFW_GET_FIELD(mb_params.param,
2816 				     DRV_MB_PARAM_RESOURCE_ALLOC_VERSION_MINOR),
2817 		   p_in_params->resc_max_val);
2818 
2819 	rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params);
2820 	if (rc)
2821 		return rc;
2822 
2823 	p_out_params->mcp_resp = mb_params.mcp_resp;
2824 	p_out_params->mcp_param = mb_params.mcp_param;
2825 	p_out_params->resc_num = mfw_resc_info.size;
2826 	p_out_params->resc_start = mfw_resc_info.offset;
2827 	p_out_params->vf_resc_num = mfw_resc_info.vf_size;
2828 	p_out_params->vf_resc_start = mfw_resc_info.vf_offset;
2829 	p_out_params->flags = mfw_resc_info.flags;
2830 
2831 	DP_VERBOSE(p_hwfn,
2832 		   QED_MSG_SP,
2833 		   "Resource message response: mfw_hsi_version %d.%d, num 0x%x, start 0x%x, vf_num 0x%x, vf_start 0x%x, flags 0x%08x\n",
2834 		   QED_MFW_GET_FIELD(p_out_params->mcp_param,
2835 				     FW_MB_PARAM_RESOURCE_ALLOC_VERSION_MAJOR),
2836 		   QED_MFW_GET_FIELD(p_out_params->mcp_param,
2837 				     FW_MB_PARAM_RESOURCE_ALLOC_VERSION_MINOR),
2838 		   p_out_params->resc_num,
2839 		   p_out_params->resc_start,
2840 		   p_out_params->vf_resc_num,
2841 		   p_out_params->vf_resc_start, p_out_params->flags);
2842 
2843 	return 0;
2844 }
2845 
2846 int
2847 qed_mcp_set_resc_max_val(struct qed_hwfn *p_hwfn,
2848 			 struct qed_ptt *p_ptt,
2849 			 enum qed_resources res_id,
2850 			 u32 resc_max_val, u32 *p_mcp_resp)
2851 {
2852 	struct qed_resc_alloc_out_params out_params;
2853 	struct qed_resc_alloc_in_params in_params;
2854 	int rc;
2855 
2856 	memset(&in_params, 0, sizeof(in_params));
2857 	in_params.cmd = DRV_MSG_SET_RESOURCE_VALUE_MSG;
2858 	in_params.res_id = res_id;
2859 	in_params.resc_max_val = resc_max_val;
2860 	memset(&out_params, 0, sizeof(out_params));
2861 	rc = qed_mcp_resc_allocation_msg(p_hwfn, p_ptt, &in_params,
2862 					 &out_params);
2863 	if (rc)
2864 		return rc;
2865 
2866 	*p_mcp_resp = out_params.mcp_resp;
2867 
2868 	return 0;
2869 }
2870 
2871 int
2872 qed_mcp_get_resc_info(struct qed_hwfn *p_hwfn,
2873 		      struct qed_ptt *p_ptt,
2874 		      enum qed_resources res_id,
2875 		      u32 *p_mcp_resp, u32 *p_resc_num, u32 *p_resc_start)
2876 {
2877 	struct qed_resc_alloc_out_params out_params;
2878 	struct qed_resc_alloc_in_params in_params;
2879 	int rc;
2880 
2881 	memset(&in_params, 0, sizeof(in_params));
2882 	in_params.cmd = DRV_MSG_GET_RESOURCE_ALLOC_MSG;
2883 	in_params.res_id = res_id;
2884 	memset(&out_params, 0, sizeof(out_params));
2885 	rc = qed_mcp_resc_allocation_msg(p_hwfn, p_ptt, &in_params,
2886 					 &out_params);
2887 	if (rc)
2888 		return rc;
2889 
2890 	*p_mcp_resp = out_params.mcp_resp;
2891 
2892 	if (*p_mcp_resp == FW_MSG_CODE_RESOURCE_ALLOC_OK) {
2893 		*p_resc_num = out_params.resc_num;
2894 		*p_resc_start = out_params.resc_start;
2895 	}
2896 
2897 	return 0;
2898 }
2899 
2900 int qed_mcp_initiate_pf_flr(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2901 {
2902 	u32 mcp_resp, mcp_param;
2903 
2904 	return qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_INITIATE_PF_FLR, 0,
2905 			   &mcp_resp, &mcp_param);
2906 }
2907 
2908 static int qed_mcp_resource_cmd(struct qed_hwfn *p_hwfn,
2909 				struct qed_ptt *p_ptt,
2910 				u32 param, u32 *p_mcp_resp, u32 *p_mcp_param)
2911 {
2912 	int rc;
2913 
2914 	rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_RESOURCE_CMD, param,
2915 			 p_mcp_resp, p_mcp_param);
2916 	if (rc)
2917 		return rc;
2918 
2919 	if (*p_mcp_resp == FW_MSG_CODE_UNSUPPORTED) {
2920 		DP_INFO(p_hwfn,
2921 			"The resource command is unsupported by the MFW\n");
2922 		return -EINVAL;
2923 	}
2924 
2925 	if (*p_mcp_param == RESOURCE_OPCODE_UNKNOWN_CMD) {
2926 		u8 opcode = QED_MFW_GET_FIELD(param, RESOURCE_CMD_REQ_OPCODE);
2927 
2928 		DP_NOTICE(p_hwfn,
2929 			  "The resource command is unknown to the MFW [param 0x%08x, opcode %d]\n",
2930 			  param, opcode);
2931 		return -EINVAL;
2932 	}
2933 
2934 	return rc;
2935 }
2936 
2937 int
2938 __qed_mcp_resc_lock(struct qed_hwfn *p_hwfn,
2939 		    struct qed_ptt *p_ptt,
2940 		    struct qed_resc_lock_params *p_params)
2941 {
2942 	u32 param = 0, mcp_resp, mcp_param;
2943 	u8 opcode;
2944 	int rc;
2945 
2946 	switch (p_params->timeout) {
2947 	case QED_MCP_RESC_LOCK_TO_DEFAULT:
2948 		opcode = RESOURCE_OPCODE_REQ;
2949 		p_params->timeout = 0;
2950 		break;
2951 	case QED_MCP_RESC_LOCK_TO_NONE:
2952 		opcode = RESOURCE_OPCODE_REQ_WO_AGING;
2953 		p_params->timeout = 0;
2954 		break;
2955 	default:
2956 		opcode = RESOURCE_OPCODE_REQ_W_AGING;
2957 		break;
2958 	}
2959 
2960 	QED_MFW_SET_FIELD(param, RESOURCE_CMD_REQ_RESC, p_params->resource);
2961 	QED_MFW_SET_FIELD(param, RESOURCE_CMD_REQ_OPCODE, opcode);
2962 	QED_MFW_SET_FIELD(param, RESOURCE_CMD_REQ_AGE, p_params->timeout);
2963 
2964 	DP_VERBOSE(p_hwfn,
2965 		   QED_MSG_SP,
2966 		   "Resource lock request: param 0x%08x [age %d, opcode %d, resource %d]\n",
2967 		   param, p_params->timeout, opcode, p_params->resource);
2968 
2969 	/* Attempt to acquire the resource */
2970 	rc = qed_mcp_resource_cmd(p_hwfn, p_ptt, param, &mcp_resp, &mcp_param);
2971 	if (rc)
2972 		return rc;
2973 
2974 	/* Analyze the response */
2975 	p_params->owner = QED_MFW_GET_FIELD(mcp_param, RESOURCE_CMD_RSP_OWNER);
2976 	opcode = QED_MFW_GET_FIELD(mcp_param, RESOURCE_CMD_RSP_OPCODE);
2977 
2978 	DP_VERBOSE(p_hwfn,
2979 		   QED_MSG_SP,
2980 		   "Resource lock response: mcp_param 0x%08x [opcode %d, owner %d]\n",
2981 		   mcp_param, opcode, p_params->owner);
2982 
2983 	switch (opcode) {
2984 	case RESOURCE_OPCODE_GNT:
2985 		p_params->b_granted = true;
2986 		break;
2987 	case RESOURCE_OPCODE_BUSY:
2988 		p_params->b_granted = false;
2989 		break;
2990 	default:
2991 		DP_NOTICE(p_hwfn,
2992 			  "Unexpected opcode in resource lock response [mcp_param 0x%08x, opcode %d]\n",
2993 			  mcp_param, opcode);
2994 		return -EINVAL;
2995 	}
2996 
2997 	return 0;
2998 }
2999 
3000 int
3001 qed_mcp_resc_lock(struct qed_hwfn *p_hwfn,
3002 		  struct qed_ptt *p_ptt, struct qed_resc_lock_params *p_params)
3003 {
3004 	u32 retry_cnt = 0;
3005 	int rc;
3006 
3007 	do {
3008 		/* No need for an interval before the first iteration */
3009 		if (retry_cnt) {
3010 			if (p_params->sleep_b4_retry) {
3011 				u16 retry_interval_in_ms =
3012 				    DIV_ROUND_UP(p_params->retry_interval,
3013 						 1000);
3014 
3015 				msleep(retry_interval_in_ms);
3016 			} else {
3017 				udelay(p_params->retry_interval);
3018 			}
3019 		}
3020 
3021 		rc = __qed_mcp_resc_lock(p_hwfn, p_ptt, p_params);
3022 		if (rc)
3023 			return rc;
3024 
3025 		if (p_params->b_granted)
3026 			break;
3027 	} while (retry_cnt++ < p_params->retry_num);
3028 
3029 	return 0;
3030 }
3031 
3032 int
3033 qed_mcp_resc_unlock(struct qed_hwfn *p_hwfn,
3034 		    struct qed_ptt *p_ptt,
3035 		    struct qed_resc_unlock_params *p_params)
3036 {
3037 	u32 param = 0, mcp_resp, mcp_param;
3038 	u8 opcode;
3039 	int rc;
3040 
3041 	opcode = p_params->b_force ? RESOURCE_OPCODE_FORCE_RELEASE
3042 				   : RESOURCE_OPCODE_RELEASE;
3043 	QED_MFW_SET_FIELD(param, RESOURCE_CMD_REQ_RESC, p_params->resource);
3044 	QED_MFW_SET_FIELD(param, RESOURCE_CMD_REQ_OPCODE, opcode);
3045 
3046 	DP_VERBOSE(p_hwfn, QED_MSG_SP,
3047 		   "Resource unlock request: param 0x%08x [opcode %d, resource %d]\n",
3048 		   param, opcode, p_params->resource);
3049 
3050 	/* Attempt to release the resource */
3051 	rc = qed_mcp_resource_cmd(p_hwfn, p_ptt, param, &mcp_resp, &mcp_param);
3052 	if (rc)
3053 		return rc;
3054 
3055 	/* Analyze the response */
3056 	opcode = QED_MFW_GET_FIELD(mcp_param, RESOURCE_CMD_RSP_OPCODE);
3057 
3058 	DP_VERBOSE(p_hwfn, QED_MSG_SP,
3059 		   "Resource unlock response: mcp_param 0x%08x [opcode %d]\n",
3060 		   mcp_param, opcode);
3061 
3062 	switch (opcode) {
3063 	case RESOURCE_OPCODE_RELEASED_PREVIOUS:
3064 		DP_INFO(p_hwfn,
3065 			"Resource unlock request for an already released resource [%d]\n",
3066 			p_params->resource);
3067 		/* Fallthrough */
3068 	case RESOURCE_OPCODE_RELEASED:
3069 		p_params->b_released = true;
3070 		break;
3071 	case RESOURCE_OPCODE_WRONG_OWNER:
3072 		p_params->b_released = false;
3073 		break;
3074 	default:
3075 		DP_NOTICE(p_hwfn,
3076 			  "Unexpected opcode in resource unlock response [mcp_param 0x%08x, opcode %d]\n",
3077 			  mcp_param, opcode);
3078 		return -EINVAL;
3079 	}
3080 
3081 	return 0;
3082 }
3083 
3084 void qed_mcp_resc_lock_default_init(struct qed_resc_lock_params *p_lock,
3085 				    struct qed_resc_unlock_params *p_unlock,
3086 				    enum qed_resc_lock
3087 				    resource, bool b_is_permanent)
3088 {
3089 	if (p_lock) {
3090 		memset(p_lock, 0, sizeof(*p_lock));
3091 
3092 		/* Permanent resources don't require aging, and there's no
3093 		 * point in trying to acquire them more than once since it's
3094 		 * unexpected another entity would release them.
3095 		 */
3096 		if (b_is_permanent) {
3097 			p_lock->timeout = QED_MCP_RESC_LOCK_TO_NONE;
3098 		} else {
3099 			p_lock->retry_num = QED_MCP_RESC_LOCK_RETRY_CNT_DFLT;
3100 			p_lock->retry_interval =
3101 			    QED_MCP_RESC_LOCK_RETRY_VAL_DFLT;
3102 			p_lock->sleep_b4_retry = true;
3103 		}
3104 
3105 		p_lock->resource = resource;
3106 	}
3107 
3108 	if (p_unlock) {
3109 		memset(p_unlock, 0, sizeof(*p_unlock));
3110 		p_unlock->resource = resource;
3111 	}
3112 }
3113 
3114 int qed_mcp_get_capabilities(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
3115 {
3116 	u32 mcp_resp;
3117 	int rc;
3118 
3119 	rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_GET_MFW_FEATURE_SUPPORT,
3120 			 0, &mcp_resp, &p_hwfn->mcp_info->capabilities);
3121 	if (!rc)
3122 		DP_VERBOSE(p_hwfn, (QED_MSG_SP | NETIF_MSG_PROBE),
3123 			   "MFW supported features: %08x\n",
3124 			   p_hwfn->mcp_info->capabilities);
3125 
3126 	return rc;
3127 }
3128 
3129 int qed_mcp_set_capabilities(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
3130 {
3131 	u32 mcp_resp, mcp_param, features;
3132 
3133 	features = DRV_MB_PARAM_FEATURE_SUPPORT_PORT_EEE;
3134 
3135 	return qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_FEATURE_SUPPORT,
3136 			   features, &mcp_resp, &mcp_param);
3137 }
3138