xref: /linux/drivers/net/ethernet/qlogic/qed/qed_mcp.c (revision 7f71507851fc7764b36a3221839607d3a45c2025)
1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause)
2 /* QLogic qed NIC Driver
3  * Copyright (c) 2015-2017  QLogic Corporation
4  * Copyright (c) 2019-2020 Marvell International Ltd.
5  */
6 
7 #include <linux/types.h>
8 #include <asm/byteorder.h>
9 #include <linux/delay.h>
10 #include <linux/errno.h>
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/spinlock.h>
14 #include <linux/string.h>
15 #include <linux/etherdevice.h>
16 #include "qed.h"
17 #include "qed_cxt.h"
18 #include "qed_dcbx.h"
19 #include "qed_hsi.h"
20 #include "qed_mfw_hsi.h"
21 #include "qed_hw.h"
22 #include "qed_mcp.h"
23 #include "qed_reg_addr.h"
24 #include "qed_sriov.h"
25 
26 #define GRCBASE_MCP     0xe00000
27 
28 #define QED_MCP_RESP_ITER_US	10
29 
30 #define QED_DRV_MB_MAX_RETRIES	(500 * 1000)	/* Account for 5 sec */
31 #define QED_MCP_RESET_RETRIES	(50 * 1000)	/* Account for 500 msec */
32 
33 #define DRV_INNER_WR(_p_hwfn, _p_ptt, _ptr, _offset, _val)	     \
34 	qed_wr(_p_hwfn, _p_ptt, (_p_hwfn->mcp_info->_ptr + (_offset)), \
35 	       _val)
36 
37 #define DRV_INNER_RD(_p_hwfn, _p_ptt, _ptr, _offset) \
38 	qed_rd(_p_hwfn, _p_ptt, (_p_hwfn->mcp_info->_ptr + (_offset)))
39 
40 #define DRV_MB_WR(_p_hwfn, _p_ptt, _field, _val)  \
41 	DRV_INNER_WR(p_hwfn, _p_ptt, drv_mb_addr, \
42 		     offsetof(struct public_drv_mb, _field), _val)
43 
44 #define DRV_MB_RD(_p_hwfn, _p_ptt, _field)	   \
45 	DRV_INNER_RD(_p_hwfn, _p_ptt, drv_mb_addr, \
46 		     offsetof(struct public_drv_mb, _field))
47 
48 #define PDA_COMP (((FW_MAJOR_VERSION) + (FW_MINOR_VERSION << 8)) << \
49 		  DRV_ID_PDA_COMP_VER_SHIFT)
50 
51 #define MCP_BYTES_PER_MBIT_SHIFT 17
52 
53 bool qed_mcp_is_init(struct qed_hwfn *p_hwfn)
54 {
55 	if (!p_hwfn->mcp_info || !p_hwfn->mcp_info->public_base)
56 		return false;
57 	return true;
58 }
59 
60 void qed_mcp_cmd_port_init(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
61 {
62 	u32 addr = SECTION_OFFSIZE_ADDR(p_hwfn->mcp_info->public_base,
63 					PUBLIC_PORT);
64 	u32 mfw_mb_offsize = qed_rd(p_hwfn, p_ptt, addr);
65 
66 	p_hwfn->mcp_info->port_addr = SECTION_ADDR(mfw_mb_offsize,
67 						   MFW_PORT(p_hwfn));
68 	DP_VERBOSE(p_hwfn, QED_MSG_SP,
69 		   "port_addr = 0x%x, port_id 0x%02x\n",
70 		   p_hwfn->mcp_info->port_addr, MFW_PORT(p_hwfn));
71 }
72 
73 void qed_mcp_read_mb(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
74 {
75 	u32 length = MFW_DRV_MSG_MAX_DWORDS(p_hwfn->mcp_info->mfw_mb_length);
76 	u32 tmp, i;
77 
78 	if (!p_hwfn->mcp_info->public_base)
79 		return;
80 
81 	for (i = 0; i < length; i++) {
82 		tmp = qed_rd(p_hwfn, p_ptt,
83 			     p_hwfn->mcp_info->mfw_mb_addr +
84 			     (i << 2) + sizeof(u32));
85 
86 		/* The MB data is actually BE; Need to force it to cpu */
87 		((u32 *)p_hwfn->mcp_info->mfw_mb_cur)[i] =
88 			be32_to_cpu((__force __be32)tmp);
89 	}
90 }
91 
92 struct qed_mcp_cmd_elem {
93 	struct list_head list;
94 	struct qed_mcp_mb_params *p_mb_params;
95 	u16 expected_seq_num;
96 	bool b_is_completed;
97 };
98 
99 /* Must be called while cmd_lock is acquired */
100 static struct qed_mcp_cmd_elem *
101 qed_mcp_cmd_add_elem(struct qed_hwfn *p_hwfn,
102 		     struct qed_mcp_mb_params *p_mb_params,
103 		     u16 expected_seq_num)
104 {
105 	struct qed_mcp_cmd_elem *p_cmd_elem = NULL;
106 
107 	p_cmd_elem = kzalloc(sizeof(*p_cmd_elem), GFP_ATOMIC);
108 	if (!p_cmd_elem)
109 		goto out;
110 
111 	p_cmd_elem->p_mb_params = p_mb_params;
112 	p_cmd_elem->expected_seq_num = expected_seq_num;
113 	list_add(&p_cmd_elem->list, &p_hwfn->mcp_info->cmd_list);
114 out:
115 	return p_cmd_elem;
116 }
117 
118 /* Must be called while cmd_lock is acquired */
119 static void qed_mcp_cmd_del_elem(struct qed_hwfn *p_hwfn,
120 				 struct qed_mcp_cmd_elem *p_cmd_elem)
121 {
122 	list_del(&p_cmd_elem->list);
123 	kfree(p_cmd_elem);
124 }
125 
126 /* Must be called while cmd_lock is acquired */
127 static struct qed_mcp_cmd_elem *qed_mcp_cmd_get_elem(struct qed_hwfn *p_hwfn,
128 						     u16 seq_num)
129 {
130 	struct qed_mcp_cmd_elem *p_cmd_elem = NULL;
131 
132 	list_for_each_entry(p_cmd_elem, &p_hwfn->mcp_info->cmd_list, list) {
133 		if (p_cmd_elem->expected_seq_num == seq_num)
134 			return p_cmd_elem;
135 	}
136 
137 	return NULL;
138 }
139 
140 int qed_mcp_free(struct qed_hwfn *p_hwfn)
141 {
142 	if (p_hwfn->mcp_info) {
143 		struct qed_mcp_cmd_elem *p_cmd_elem = NULL, *p_tmp;
144 
145 		kfree(p_hwfn->mcp_info->mfw_mb_cur);
146 		kfree(p_hwfn->mcp_info->mfw_mb_shadow);
147 
148 		spin_lock_bh(&p_hwfn->mcp_info->cmd_lock);
149 		list_for_each_entry_safe(p_cmd_elem,
150 					 p_tmp,
151 					 &p_hwfn->mcp_info->cmd_list, list) {
152 			qed_mcp_cmd_del_elem(p_hwfn, p_cmd_elem);
153 		}
154 		spin_unlock_bh(&p_hwfn->mcp_info->cmd_lock);
155 	}
156 
157 	kfree(p_hwfn->mcp_info);
158 	p_hwfn->mcp_info = NULL;
159 
160 	return 0;
161 }
162 
163 /* Maximum of 1 sec to wait for the SHMEM ready indication */
164 #define QED_MCP_SHMEM_RDY_MAX_RETRIES	20
165 #define QED_MCP_SHMEM_RDY_ITER_MS	50
166 
167 static int qed_load_mcp_offsets(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
168 {
169 	struct qed_mcp_info *p_info = p_hwfn->mcp_info;
170 	u8 cnt = QED_MCP_SHMEM_RDY_MAX_RETRIES;
171 	u8 msec = QED_MCP_SHMEM_RDY_ITER_MS;
172 	u32 drv_mb_offsize, mfw_mb_offsize;
173 	u32 mcp_pf_id = MCP_PF_ID(p_hwfn);
174 
175 	p_info->public_base = qed_rd(p_hwfn, p_ptt, MISC_REG_SHARED_MEM_ADDR);
176 	if (!p_info->public_base) {
177 		DP_NOTICE(p_hwfn,
178 			  "The address of the MCP scratch-pad is not configured\n");
179 		return -EINVAL;
180 	}
181 
182 	p_info->public_base |= GRCBASE_MCP;
183 
184 	/* Get the MFW MB address and number of supported messages */
185 	mfw_mb_offsize = qed_rd(p_hwfn, p_ptt,
186 				SECTION_OFFSIZE_ADDR(p_info->public_base,
187 						     PUBLIC_MFW_MB));
188 	p_info->mfw_mb_addr = SECTION_ADDR(mfw_mb_offsize, mcp_pf_id);
189 	p_info->mfw_mb_length = (u16)qed_rd(p_hwfn, p_ptt,
190 					    p_info->mfw_mb_addr +
191 					    offsetof(struct public_mfw_mb,
192 						     sup_msgs));
193 
194 	/* The driver can notify that there was an MCP reset, and might read the
195 	 * SHMEM values before the MFW has completed initializing them.
196 	 * To avoid this, the "sup_msgs" field in the MFW mailbox is used as a
197 	 * data ready indication.
198 	 */
199 	while (!p_info->mfw_mb_length && --cnt) {
200 		msleep(msec);
201 		p_info->mfw_mb_length =
202 			(u16)qed_rd(p_hwfn, p_ptt,
203 				    p_info->mfw_mb_addr +
204 				    offsetof(struct public_mfw_mb, sup_msgs));
205 	}
206 
207 	if (!cnt) {
208 		DP_NOTICE(p_hwfn,
209 			  "Failed to get the SHMEM ready notification after %d msec\n",
210 			  QED_MCP_SHMEM_RDY_MAX_RETRIES * msec);
211 		return -EBUSY;
212 	}
213 
214 	/* Calculate the driver and MFW mailbox address */
215 	drv_mb_offsize = qed_rd(p_hwfn, p_ptt,
216 				SECTION_OFFSIZE_ADDR(p_info->public_base,
217 						     PUBLIC_DRV_MB));
218 	p_info->drv_mb_addr = SECTION_ADDR(drv_mb_offsize, mcp_pf_id);
219 	DP_VERBOSE(p_hwfn, QED_MSG_SP,
220 		   "drv_mb_offsiz = 0x%x, drv_mb_addr = 0x%x mcp_pf_id = 0x%x\n",
221 		   drv_mb_offsize, p_info->drv_mb_addr, mcp_pf_id);
222 
223 	/* Get the current driver mailbox sequence before sending
224 	 * the first command
225 	 */
226 	p_info->drv_mb_seq = DRV_MB_RD(p_hwfn, p_ptt, drv_mb_header) &
227 			     DRV_MSG_SEQ_NUMBER_MASK;
228 
229 	/* Get current FW pulse sequence */
230 	p_info->drv_pulse_seq = DRV_MB_RD(p_hwfn, p_ptt, drv_pulse_mb) &
231 				DRV_PULSE_SEQ_MASK;
232 
233 	p_info->mcp_hist = qed_rd(p_hwfn, p_ptt, MISCS_REG_GENERIC_POR_0);
234 
235 	return 0;
236 }
237 
238 int qed_mcp_cmd_init(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
239 {
240 	struct qed_mcp_info *p_info;
241 	u32 size;
242 
243 	/* Allocate mcp_info structure */
244 	p_hwfn->mcp_info = kzalloc(sizeof(*p_hwfn->mcp_info), GFP_KERNEL);
245 	if (!p_hwfn->mcp_info)
246 		goto err;
247 	p_info = p_hwfn->mcp_info;
248 
249 	/* Initialize the MFW spinlock */
250 	spin_lock_init(&p_info->cmd_lock);
251 	spin_lock_init(&p_info->link_lock);
252 	spin_lock_init(&p_info->unload_lock);
253 
254 	INIT_LIST_HEAD(&p_info->cmd_list);
255 
256 	if (qed_load_mcp_offsets(p_hwfn, p_ptt) != 0) {
257 		DP_NOTICE(p_hwfn, "MCP is not initialized\n");
258 		/* Do not free mcp_info here, since public_base indicate that
259 		 * the MCP is not initialized
260 		 */
261 		return 0;
262 	}
263 
264 	size = MFW_DRV_MSG_MAX_DWORDS(p_info->mfw_mb_length) * sizeof(u32);
265 	p_info->mfw_mb_cur = kzalloc(size, GFP_KERNEL);
266 	p_info->mfw_mb_shadow = kzalloc(size, GFP_KERNEL);
267 	if (!p_info->mfw_mb_cur || !p_info->mfw_mb_shadow)
268 		goto err;
269 
270 	return 0;
271 
272 err:
273 	qed_mcp_free(p_hwfn);
274 	return -ENOMEM;
275 }
276 
277 static void qed_mcp_reread_offsets(struct qed_hwfn *p_hwfn,
278 				   struct qed_ptt *p_ptt)
279 {
280 	u32 generic_por_0 = qed_rd(p_hwfn, p_ptt, MISCS_REG_GENERIC_POR_0);
281 
282 	/* Use MCP history register to check if MCP reset occurred between init
283 	 * time and now.
284 	 */
285 	if (p_hwfn->mcp_info->mcp_hist != generic_por_0) {
286 		DP_VERBOSE(p_hwfn,
287 			   QED_MSG_SP,
288 			   "Rereading MCP offsets [mcp_hist 0x%08x, generic_por_0 0x%08x]\n",
289 			   p_hwfn->mcp_info->mcp_hist, generic_por_0);
290 
291 		qed_load_mcp_offsets(p_hwfn, p_ptt);
292 		qed_mcp_cmd_port_init(p_hwfn, p_ptt);
293 	}
294 }
295 
296 int qed_mcp_reset(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
297 {
298 	u32 org_mcp_reset_seq, seq, delay = QED_MCP_RESP_ITER_US, cnt = 0;
299 	int rc = 0;
300 
301 	if (p_hwfn->mcp_info->b_block_cmd) {
302 		DP_NOTICE(p_hwfn,
303 			  "The MFW is not responsive. Avoid sending MCP_RESET mailbox command.\n");
304 		return -EBUSY;
305 	}
306 
307 	/* Ensure that only a single thread is accessing the mailbox */
308 	spin_lock_bh(&p_hwfn->mcp_info->cmd_lock);
309 
310 	org_mcp_reset_seq = qed_rd(p_hwfn, p_ptt, MISCS_REG_GENERIC_POR_0);
311 
312 	/* Set drv command along with the updated sequence */
313 	qed_mcp_reread_offsets(p_hwfn, p_ptt);
314 	seq = ++p_hwfn->mcp_info->drv_mb_seq;
315 	DRV_MB_WR(p_hwfn, p_ptt, drv_mb_header, (DRV_MSG_CODE_MCP_RESET | seq));
316 
317 	do {
318 		/* Wait for MFW response */
319 		udelay(delay);
320 		/* Give the FW up to 500 second (50*1000*10usec) */
321 	} while ((org_mcp_reset_seq == qed_rd(p_hwfn, p_ptt,
322 					      MISCS_REG_GENERIC_POR_0)) &&
323 		 (cnt++ < QED_MCP_RESET_RETRIES));
324 
325 	if (org_mcp_reset_seq !=
326 	    qed_rd(p_hwfn, p_ptt, MISCS_REG_GENERIC_POR_0)) {
327 		DP_VERBOSE(p_hwfn, QED_MSG_SP,
328 			   "MCP was reset after %d usec\n", cnt * delay);
329 	} else {
330 		DP_ERR(p_hwfn, "Failed to reset MCP\n");
331 		rc = -EAGAIN;
332 	}
333 
334 	spin_unlock_bh(&p_hwfn->mcp_info->cmd_lock);
335 
336 	return rc;
337 }
338 
339 /* Must be called while cmd_lock is acquired */
340 static bool qed_mcp_has_pending_cmd(struct qed_hwfn *p_hwfn)
341 {
342 	struct qed_mcp_cmd_elem *p_cmd_elem;
343 
344 	/* There is at most one pending command at a certain time, and if it
345 	 * exists - it is placed at the HEAD of the list.
346 	 */
347 	if (!list_empty(&p_hwfn->mcp_info->cmd_list)) {
348 		p_cmd_elem = list_first_entry(&p_hwfn->mcp_info->cmd_list,
349 					      struct qed_mcp_cmd_elem, list);
350 		return !p_cmd_elem->b_is_completed;
351 	}
352 
353 	return false;
354 }
355 
356 /* Must be called while cmd_lock is acquired */
357 static int
358 qed_mcp_update_pending_cmd(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
359 {
360 	struct qed_mcp_mb_params *p_mb_params;
361 	struct qed_mcp_cmd_elem *p_cmd_elem;
362 	u32 mcp_resp;
363 	u16 seq_num;
364 
365 	mcp_resp = DRV_MB_RD(p_hwfn, p_ptt, fw_mb_header);
366 	seq_num = (u16)(mcp_resp & FW_MSG_SEQ_NUMBER_MASK);
367 
368 	/* Return if no new non-handled response has been received */
369 	if (seq_num != p_hwfn->mcp_info->drv_mb_seq)
370 		return -EAGAIN;
371 
372 	p_cmd_elem = qed_mcp_cmd_get_elem(p_hwfn, seq_num);
373 	if (!p_cmd_elem) {
374 		DP_ERR(p_hwfn,
375 		       "Failed to find a pending mailbox cmd that expects sequence number %d\n",
376 		       seq_num);
377 		return -EINVAL;
378 	}
379 
380 	p_mb_params = p_cmd_elem->p_mb_params;
381 
382 	/* Get the MFW response along with the sequence number */
383 	p_mb_params->mcp_resp = mcp_resp;
384 
385 	/* Get the MFW param */
386 	p_mb_params->mcp_param = DRV_MB_RD(p_hwfn, p_ptt, fw_mb_param);
387 
388 	/* Get the union data */
389 	if (p_mb_params->p_data_dst && p_mb_params->data_dst_size) {
390 		u32 union_data_addr = p_hwfn->mcp_info->drv_mb_addr +
391 				      offsetof(struct public_drv_mb,
392 					       union_data);
393 		qed_memcpy_from(p_hwfn, p_ptt, p_mb_params->p_data_dst,
394 				union_data_addr, p_mb_params->data_dst_size);
395 	}
396 
397 	p_cmd_elem->b_is_completed = true;
398 
399 	return 0;
400 }
401 
402 /* Must be called while cmd_lock is acquired */
403 static void __qed_mcp_cmd_and_union(struct qed_hwfn *p_hwfn,
404 				    struct qed_ptt *p_ptt,
405 				    struct qed_mcp_mb_params *p_mb_params,
406 				    u16 seq_num)
407 {
408 	union drv_union_data union_data;
409 	u32 union_data_addr;
410 
411 	/* Set the union data */
412 	union_data_addr = p_hwfn->mcp_info->drv_mb_addr +
413 			  offsetof(struct public_drv_mb, union_data);
414 	memset(&union_data, 0, sizeof(union_data));
415 	if (p_mb_params->p_data_src && p_mb_params->data_src_size)
416 		memcpy(&union_data, p_mb_params->p_data_src,
417 		       p_mb_params->data_src_size);
418 	qed_memcpy_to(p_hwfn, p_ptt, union_data_addr, &union_data,
419 		      sizeof(union_data));
420 
421 	/* Set the drv param */
422 	DRV_MB_WR(p_hwfn, p_ptt, drv_mb_param, p_mb_params->param);
423 
424 	/* Set the drv command along with the sequence number */
425 	DRV_MB_WR(p_hwfn, p_ptt, drv_mb_header, (p_mb_params->cmd | seq_num));
426 
427 	DP_VERBOSE(p_hwfn, QED_MSG_SP,
428 		   "MFW mailbox: command 0x%08x param 0x%08x\n",
429 		   (p_mb_params->cmd | seq_num), p_mb_params->param);
430 }
431 
432 static void qed_mcp_cmd_set_blocking(struct qed_hwfn *p_hwfn, bool block_cmd)
433 {
434 	p_hwfn->mcp_info->b_block_cmd = block_cmd;
435 
436 	DP_INFO(p_hwfn, "%s sending of mailbox commands to the MFW\n",
437 		block_cmd ? "Block" : "Unblock");
438 }
439 
440 static void qed_mcp_print_cpu_info(struct qed_hwfn *p_hwfn,
441 				   struct qed_ptt *p_ptt)
442 {
443 	u32 cpu_mode, cpu_state, cpu_pc_0, cpu_pc_1, cpu_pc_2;
444 	u32 delay = QED_MCP_RESP_ITER_US;
445 
446 	cpu_mode = qed_rd(p_hwfn, p_ptt, MCP_REG_CPU_MODE);
447 	cpu_state = qed_rd(p_hwfn, p_ptt, MCP_REG_CPU_STATE);
448 	cpu_pc_0 = qed_rd(p_hwfn, p_ptt, MCP_REG_CPU_PROGRAM_COUNTER);
449 	udelay(delay);
450 	cpu_pc_1 = qed_rd(p_hwfn, p_ptt, MCP_REG_CPU_PROGRAM_COUNTER);
451 	udelay(delay);
452 	cpu_pc_2 = qed_rd(p_hwfn, p_ptt, MCP_REG_CPU_PROGRAM_COUNTER);
453 
454 	DP_NOTICE(p_hwfn,
455 		  "MCP CPU info: mode 0x%08x, state 0x%08x, pc {0x%08x, 0x%08x, 0x%08x}\n",
456 		  cpu_mode, cpu_state, cpu_pc_0, cpu_pc_1, cpu_pc_2);
457 }
458 
459 static int
460 _qed_mcp_cmd_and_union(struct qed_hwfn *p_hwfn,
461 		       struct qed_ptt *p_ptt,
462 		       struct qed_mcp_mb_params *p_mb_params)
463 {
464 	struct qed_mcp_cmd_elem *p_cmd_elem;
465 	u16 seq_num;
466 	u32 cnt = 0;
467 	int rc = 0;
468 
469 	/* Wait until the mailbox is non-occupied */
470 	do {
471 		/* Exit the loop if there is no pending command, or if the
472 		 * pending command is completed during this iteration.
473 		 * The spinlock stays locked until the command is sent.
474 		 */
475 
476 		spin_lock_bh(&p_hwfn->mcp_info->cmd_lock);
477 
478 		if (!qed_mcp_has_pending_cmd(p_hwfn))
479 			break;
480 
481 		rc = qed_mcp_update_pending_cmd(p_hwfn, p_ptt);
482 		if (!rc)
483 			break;
484 		else if (rc != -EAGAIN)
485 			goto err;
486 
487 		spin_unlock_bh(&p_hwfn->mcp_info->cmd_lock);
488 
489 		if (QED_MB_FLAGS_IS_SET(p_mb_params, CAN_SLEEP))
490 			usleep_range(QED_MCP_RESP_ITER_US,
491 				     QED_MCP_RESP_ITER_US * 2);
492 		else
493 			udelay(QED_MCP_RESP_ITER_US);
494 	} while (++cnt < QED_DRV_MB_MAX_RETRIES);
495 
496 	if (cnt >= QED_DRV_MB_MAX_RETRIES) {
497 		DP_NOTICE(p_hwfn,
498 			  "The MFW mailbox is occupied by an uncompleted command. Failed to send command 0x%08x [param 0x%08x].\n",
499 			  p_mb_params->cmd, p_mb_params->param);
500 		return -EAGAIN;
501 	}
502 
503 	/* Send the mailbox command */
504 	qed_mcp_reread_offsets(p_hwfn, p_ptt);
505 	seq_num = ++p_hwfn->mcp_info->drv_mb_seq;
506 	p_cmd_elem = qed_mcp_cmd_add_elem(p_hwfn, p_mb_params, seq_num);
507 	if (!p_cmd_elem) {
508 		rc = -ENOMEM;
509 		goto err;
510 	}
511 
512 	__qed_mcp_cmd_and_union(p_hwfn, p_ptt, p_mb_params, seq_num);
513 	spin_unlock_bh(&p_hwfn->mcp_info->cmd_lock);
514 
515 	/* Wait for the MFW response */
516 	do {
517 		/* Exit the loop if the command is already completed, or if the
518 		 * command is completed during this iteration.
519 		 * The spinlock stays locked until the list element is removed.
520 		 */
521 
522 		if (QED_MB_FLAGS_IS_SET(p_mb_params, CAN_SLEEP))
523 			usleep_range(QED_MCP_RESP_ITER_US,
524 				     QED_MCP_RESP_ITER_US * 2);
525 		else
526 			udelay(QED_MCP_RESP_ITER_US);
527 
528 		spin_lock_bh(&p_hwfn->mcp_info->cmd_lock);
529 
530 		if (p_cmd_elem->b_is_completed)
531 			break;
532 
533 		rc = qed_mcp_update_pending_cmd(p_hwfn, p_ptt);
534 		if (!rc)
535 			break;
536 		else if (rc != -EAGAIN)
537 			goto err;
538 
539 		spin_unlock_bh(&p_hwfn->mcp_info->cmd_lock);
540 	} while (++cnt < QED_DRV_MB_MAX_RETRIES);
541 
542 	if (cnt >= QED_DRV_MB_MAX_RETRIES) {
543 		DP_NOTICE(p_hwfn,
544 			  "The MFW failed to respond to command 0x%08x [param 0x%08x].\n",
545 			  p_mb_params->cmd, p_mb_params->param);
546 		qed_mcp_print_cpu_info(p_hwfn, p_ptt);
547 
548 		spin_lock_bh(&p_hwfn->mcp_info->cmd_lock);
549 		qed_mcp_cmd_del_elem(p_hwfn, p_cmd_elem);
550 		spin_unlock_bh(&p_hwfn->mcp_info->cmd_lock);
551 
552 		if (!QED_MB_FLAGS_IS_SET(p_mb_params, AVOID_BLOCK))
553 			qed_mcp_cmd_set_blocking(p_hwfn, true);
554 
555 		qed_hw_err_notify(p_hwfn, p_ptt,
556 				  QED_HW_ERR_MFW_RESP_FAIL, NULL);
557 		return -EAGAIN;
558 	}
559 
560 	qed_mcp_cmd_del_elem(p_hwfn, p_cmd_elem);
561 	spin_unlock_bh(&p_hwfn->mcp_info->cmd_lock);
562 
563 	DP_VERBOSE(p_hwfn,
564 		   QED_MSG_SP,
565 		   "MFW mailbox: response 0x%08x param 0x%08x [after %d.%03d ms]\n",
566 		   p_mb_params->mcp_resp,
567 		   p_mb_params->mcp_param,
568 		   (cnt * QED_MCP_RESP_ITER_US) / 1000,
569 		   (cnt * QED_MCP_RESP_ITER_US) % 1000);
570 
571 	/* Clear the sequence number from the MFW response */
572 	p_mb_params->mcp_resp &= FW_MSG_CODE_MASK;
573 
574 	return 0;
575 
576 err:
577 	spin_unlock_bh(&p_hwfn->mcp_info->cmd_lock);
578 	return rc;
579 }
580 
581 static int qed_mcp_cmd_and_union(struct qed_hwfn *p_hwfn,
582 				 struct qed_ptt *p_ptt,
583 				 struct qed_mcp_mb_params *p_mb_params)
584 {
585 	size_t union_data_size = sizeof(union drv_union_data);
586 
587 	/* MCP not initialized */
588 	if (!qed_mcp_is_init(p_hwfn)) {
589 		DP_NOTICE(p_hwfn, "MFW is not initialized!\n");
590 		return -EBUSY;
591 	}
592 
593 	if (p_hwfn->mcp_info->b_block_cmd) {
594 		DP_NOTICE(p_hwfn,
595 			  "The MFW is not responsive. Avoid sending mailbox command 0x%08x [param 0x%08x].\n",
596 			  p_mb_params->cmd, p_mb_params->param);
597 		return -EBUSY;
598 	}
599 
600 	if (p_mb_params->data_src_size > union_data_size ||
601 	    p_mb_params->data_dst_size > union_data_size) {
602 		DP_ERR(p_hwfn,
603 		       "The provided size is larger than the union data size [src_size %u, dst_size %u, union_data_size %zu]\n",
604 		       p_mb_params->data_src_size,
605 		       p_mb_params->data_dst_size, union_data_size);
606 		return -EINVAL;
607 	}
608 
609 	return _qed_mcp_cmd_and_union(p_hwfn, p_ptt, p_mb_params);
610 }
611 
612 static int _qed_mcp_cmd(struct qed_hwfn *p_hwfn,
613 			struct qed_ptt *p_ptt,
614 			u32 cmd,
615 			u32 param,
616 			u32 *o_mcp_resp,
617 			u32 *o_mcp_param,
618 			bool can_sleep)
619 {
620 	struct qed_mcp_mb_params mb_params;
621 	int rc;
622 
623 	memset(&mb_params, 0, sizeof(mb_params));
624 	mb_params.cmd = cmd;
625 	mb_params.param = param;
626 	mb_params.flags = can_sleep ? QED_MB_FLAG_CAN_SLEEP : 0;
627 
628 	rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params);
629 	if (rc)
630 		return rc;
631 
632 	*o_mcp_resp = mb_params.mcp_resp;
633 	*o_mcp_param = mb_params.mcp_param;
634 
635 	return 0;
636 }
637 
638 int qed_mcp_cmd(struct qed_hwfn *p_hwfn,
639 		struct qed_ptt *p_ptt,
640 		u32 cmd,
641 		u32 param,
642 		u32 *o_mcp_resp,
643 		u32 *o_mcp_param)
644 {
645 	return (_qed_mcp_cmd(p_hwfn, p_ptt, cmd, param,
646 			     o_mcp_resp, o_mcp_param, true));
647 }
648 
649 int qed_mcp_cmd_nosleep(struct qed_hwfn *p_hwfn,
650 			struct qed_ptt *p_ptt,
651 			u32 cmd,
652 			u32 param,
653 			u32 *o_mcp_resp,
654 			u32 *o_mcp_param)
655 {
656 	return (_qed_mcp_cmd(p_hwfn, p_ptt, cmd, param,
657 			     o_mcp_resp, o_mcp_param, false));
658 }
659 
660 static int
661 qed_mcp_nvm_wr_cmd(struct qed_hwfn *p_hwfn,
662 		   struct qed_ptt *p_ptt,
663 		   u32 cmd,
664 		   u32 param,
665 		   u32 *o_mcp_resp,
666 		   u32 *o_mcp_param, u32 i_txn_size, u32 *i_buf)
667 {
668 	struct qed_mcp_mb_params mb_params;
669 	int rc;
670 
671 	memset(&mb_params, 0, sizeof(mb_params));
672 	mb_params.cmd = cmd;
673 	mb_params.param = param;
674 	mb_params.p_data_src = i_buf;
675 	mb_params.data_src_size = (u8)i_txn_size;
676 	rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params);
677 	if (rc)
678 		return rc;
679 
680 	*o_mcp_resp = mb_params.mcp_resp;
681 	*o_mcp_param = mb_params.mcp_param;
682 
683 	/* nvm_info needs to be updated */
684 	p_hwfn->nvm_info.valid = false;
685 
686 	return 0;
687 }
688 
689 int qed_mcp_nvm_rd_cmd(struct qed_hwfn *p_hwfn,
690 		       struct qed_ptt *p_ptt,
691 		       u32 cmd,
692 		       u32 param,
693 		       u32 *o_mcp_resp,
694 		       u32 *o_mcp_param,
695 		       u32 *o_txn_size, u32 *o_buf, bool b_can_sleep)
696 {
697 	struct qed_mcp_mb_params mb_params;
698 	u8 raw_data[MCP_DRV_NVM_BUF_LEN];
699 	int rc;
700 
701 	memset(&mb_params, 0, sizeof(mb_params));
702 	mb_params.cmd = cmd;
703 	mb_params.param = param;
704 	mb_params.p_data_dst = raw_data;
705 
706 	/* Use the maximal value since the actual one is part of the response */
707 	mb_params.data_dst_size = MCP_DRV_NVM_BUF_LEN;
708 	if (b_can_sleep)
709 		mb_params.flags = QED_MB_FLAG_CAN_SLEEP;
710 
711 	rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params);
712 	if (rc)
713 		return rc;
714 
715 	*o_mcp_resp = mb_params.mcp_resp;
716 	*o_mcp_param = mb_params.mcp_param;
717 
718 	*o_txn_size = *o_mcp_param;
719 	memcpy(o_buf, raw_data, *o_txn_size);
720 
721 	return 0;
722 }
723 
724 static bool
725 qed_mcp_can_force_load(u8 drv_role,
726 		       u8 exist_drv_role,
727 		       enum qed_override_force_load override_force_load)
728 {
729 	bool can_force_load = false;
730 
731 	switch (override_force_load) {
732 	case QED_OVERRIDE_FORCE_LOAD_ALWAYS:
733 		can_force_load = true;
734 		break;
735 	case QED_OVERRIDE_FORCE_LOAD_NEVER:
736 		can_force_load = false;
737 		break;
738 	default:
739 		can_force_load = (drv_role == DRV_ROLE_OS &&
740 				  exist_drv_role == DRV_ROLE_PREBOOT) ||
741 				 (drv_role == DRV_ROLE_KDUMP &&
742 				  exist_drv_role == DRV_ROLE_OS);
743 		break;
744 	}
745 
746 	return can_force_load;
747 }
748 
749 static int qed_mcp_cancel_load_req(struct qed_hwfn *p_hwfn,
750 				   struct qed_ptt *p_ptt)
751 {
752 	u32 resp = 0, param = 0;
753 	int rc;
754 
755 	rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_CANCEL_LOAD_REQ, 0,
756 			 &resp, &param);
757 	if (rc)
758 		DP_NOTICE(p_hwfn,
759 			  "Failed to send cancel load request, rc = %d\n", rc);
760 
761 	return rc;
762 }
763 
764 #define BITMAP_IDX_FOR_CONFIG_QEDE	BIT(0)
765 #define BITMAP_IDX_FOR_CONFIG_QED_SRIOV	BIT(1)
766 #define BITMAP_IDX_FOR_CONFIG_QEDR	BIT(2)
767 #define BITMAP_IDX_FOR_CONFIG_QEDF	BIT(4)
768 #define BITMAP_IDX_FOR_CONFIG_QEDI	BIT(5)
769 #define BITMAP_IDX_FOR_CONFIG_QED_LL2	BIT(6)
770 
771 static u32 qed_get_config_bitmap(void)
772 {
773 	u32 config_bitmap = 0x0;
774 
775 	if (IS_ENABLED(CONFIG_QEDE))
776 		config_bitmap |= BITMAP_IDX_FOR_CONFIG_QEDE;
777 
778 	if (IS_ENABLED(CONFIG_QED_SRIOV))
779 		config_bitmap |= BITMAP_IDX_FOR_CONFIG_QED_SRIOV;
780 
781 	if (IS_ENABLED(CONFIG_QED_RDMA))
782 		config_bitmap |= BITMAP_IDX_FOR_CONFIG_QEDR;
783 
784 	if (IS_ENABLED(CONFIG_QED_FCOE))
785 		config_bitmap |= BITMAP_IDX_FOR_CONFIG_QEDF;
786 
787 	if (IS_ENABLED(CONFIG_QED_ISCSI))
788 		config_bitmap |= BITMAP_IDX_FOR_CONFIG_QEDI;
789 
790 	if (IS_ENABLED(CONFIG_QED_LL2))
791 		config_bitmap |= BITMAP_IDX_FOR_CONFIG_QED_LL2;
792 
793 	return config_bitmap;
794 }
795 
796 struct qed_load_req_in_params {
797 	u8 hsi_ver;
798 #define QED_LOAD_REQ_HSI_VER_DEFAULT	0
799 #define QED_LOAD_REQ_HSI_VER_1		1
800 	u32 drv_ver_0;
801 	u32 drv_ver_1;
802 	u32 fw_ver;
803 	u8 drv_role;
804 	u8 timeout_val;
805 	u8 force_cmd;
806 	bool avoid_eng_reset;
807 };
808 
809 struct qed_load_req_out_params {
810 	u32 load_code;
811 	u32 exist_drv_ver_0;
812 	u32 exist_drv_ver_1;
813 	u32 exist_fw_ver;
814 	u8 exist_drv_role;
815 	u8 mfw_hsi_ver;
816 	bool drv_exists;
817 };
818 
819 static int
820 __qed_mcp_load_req(struct qed_hwfn *p_hwfn,
821 		   struct qed_ptt *p_ptt,
822 		   struct qed_load_req_in_params *p_in_params,
823 		   struct qed_load_req_out_params *p_out_params)
824 {
825 	struct qed_mcp_mb_params mb_params;
826 	struct load_req_stc load_req;
827 	struct load_rsp_stc load_rsp;
828 	u32 hsi_ver;
829 	int rc;
830 
831 	memset(&load_req, 0, sizeof(load_req));
832 	load_req.drv_ver_0 = p_in_params->drv_ver_0;
833 	load_req.drv_ver_1 = p_in_params->drv_ver_1;
834 	load_req.fw_ver = p_in_params->fw_ver;
835 	QED_MFW_SET_FIELD(load_req.misc0, LOAD_REQ_ROLE, p_in_params->drv_role);
836 	QED_MFW_SET_FIELD(load_req.misc0, LOAD_REQ_LOCK_TO,
837 			  p_in_params->timeout_val);
838 	QED_MFW_SET_FIELD(load_req.misc0, LOAD_REQ_FORCE,
839 			  p_in_params->force_cmd);
840 	QED_MFW_SET_FIELD(load_req.misc0, LOAD_REQ_FLAGS0,
841 			  p_in_params->avoid_eng_reset);
842 
843 	hsi_ver = (p_in_params->hsi_ver == QED_LOAD_REQ_HSI_VER_DEFAULT) ?
844 		  DRV_ID_MCP_HSI_VER_CURRENT :
845 		  (p_in_params->hsi_ver << DRV_ID_MCP_HSI_VER_SHIFT);
846 
847 	memset(&mb_params, 0, sizeof(mb_params));
848 	mb_params.cmd = DRV_MSG_CODE_LOAD_REQ;
849 	mb_params.param = PDA_COMP | hsi_ver | p_hwfn->cdev->drv_type;
850 	mb_params.p_data_src = &load_req;
851 	mb_params.data_src_size = sizeof(load_req);
852 	mb_params.p_data_dst = &load_rsp;
853 	mb_params.data_dst_size = sizeof(load_rsp);
854 	mb_params.flags = QED_MB_FLAG_CAN_SLEEP | QED_MB_FLAG_AVOID_BLOCK;
855 
856 	DP_VERBOSE(p_hwfn, QED_MSG_SP,
857 		   "Load Request: param 0x%08x [init_hw %d, drv_type %d, hsi_ver %d, pda 0x%04x]\n",
858 		   mb_params.param,
859 		   QED_MFW_GET_FIELD(mb_params.param, DRV_ID_DRV_INIT_HW),
860 		   QED_MFW_GET_FIELD(mb_params.param, DRV_ID_DRV_TYPE),
861 		   QED_MFW_GET_FIELD(mb_params.param, DRV_ID_MCP_HSI_VER),
862 		   QED_MFW_GET_FIELD(mb_params.param, DRV_ID_PDA_COMP_VER));
863 
864 	if (p_in_params->hsi_ver != QED_LOAD_REQ_HSI_VER_1) {
865 		DP_VERBOSE(p_hwfn, QED_MSG_SP,
866 			   "Load Request: drv_ver 0x%08x_0x%08x, fw_ver 0x%08x, misc0 0x%08x [role %d, timeout %d, force %d, flags0 0x%x]\n",
867 			   load_req.drv_ver_0,
868 			   load_req.drv_ver_1,
869 			   load_req.fw_ver,
870 			   load_req.misc0,
871 			   QED_MFW_GET_FIELD(load_req.misc0, LOAD_REQ_ROLE),
872 			   QED_MFW_GET_FIELD(load_req.misc0,
873 					     LOAD_REQ_LOCK_TO),
874 			   QED_MFW_GET_FIELD(load_req.misc0, LOAD_REQ_FORCE),
875 			   QED_MFW_GET_FIELD(load_req.misc0, LOAD_REQ_FLAGS0));
876 	}
877 
878 	rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params);
879 	if (rc) {
880 		DP_NOTICE(p_hwfn, "Failed to send load request, rc = %d\n", rc);
881 		return rc;
882 	}
883 
884 	DP_VERBOSE(p_hwfn, QED_MSG_SP,
885 		   "Load Response: resp 0x%08x\n", mb_params.mcp_resp);
886 	p_out_params->load_code = mb_params.mcp_resp;
887 
888 	if (p_in_params->hsi_ver != QED_LOAD_REQ_HSI_VER_1 &&
889 	    p_out_params->load_code != FW_MSG_CODE_DRV_LOAD_REFUSED_HSI_1) {
890 		DP_VERBOSE(p_hwfn,
891 			   QED_MSG_SP,
892 			   "Load Response: exist_drv_ver 0x%08x_0x%08x, exist_fw_ver 0x%08x, misc0 0x%08x [exist_role %d, mfw_hsi %d, flags0 0x%x]\n",
893 			   load_rsp.drv_ver_0,
894 			   load_rsp.drv_ver_1,
895 			   load_rsp.fw_ver,
896 			   load_rsp.misc0,
897 			   QED_MFW_GET_FIELD(load_rsp.misc0, LOAD_RSP_ROLE),
898 			   QED_MFW_GET_FIELD(load_rsp.misc0, LOAD_RSP_HSI),
899 			   QED_MFW_GET_FIELD(load_rsp.misc0, LOAD_RSP_FLAGS0));
900 
901 		p_out_params->exist_drv_ver_0 = load_rsp.drv_ver_0;
902 		p_out_params->exist_drv_ver_1 = load_rsp.drv_ver_1;
903 		p_out_params->exist_fw_ver = load_rsp.fw_ver;
904 		p_out_params->exist_drv_role =
905 		    QED_MFW_GET_FIELD(load_rsp.misc0, LOAD_RSP_ROLE);
906 		p_out_params->mfw_hsi_ver =
907 		    QED_MFW_GET_FIELD(load_rsp.misc0, LOAD_RSP_HSI);
908 		p_out_params->drv_exists =
909 		    QED_MFW_GET_FIELD(load_rsp.misc0, LOAD_RSP_FLAGS0) &
910 		    LOAD_RSP_FLAGS0_DRV_EXISTS;
911 	}
912 
913 	return 0;
914 }
915 
916 static int eocre_get_mfw_drv_role(struct qed_hwfn *p_hwfn,
917 				  enum qed_drv_role drv_role,
918 				  u8 *p_mfw_drv_role)
919 {
920 	switch (drv_role) {
921 	case QED_DRV_ROLE_OS:
922 		*p_mfw_drv_role = DRV_ROLE_OS;
923 		break;
924 	case QED_DRV_ROLE_KDUMP:
925 		*p_mfw_drv_role = DRV_ROLE_KDUMP;
926 		break;
927 	default:
928 		DP_ERR(p_hwfn, "Unexpected driver role %d\n", drv_role);
929 		return -EINVAL;
930 	}
931 
932 	return 0;
933 }
934 
935 enum qed_load_req_force {
936 	QED_LOAD_REQ_FORCE_NONE,
937 	QED_LOAD_REQ_FORCE_PF,
938 	QED_LOAD_REQ_FORCE_ALL,
939 };
940 
941 static void qed_get_mfw_force_cmd(struct qed_hwfn *p_hwfn,
942 				  enum qed_load_req_force force_cmd,
943 				  u8 *p_mfw_force_cmd)
944 {
945 	switch (force_cmd) {
946 	case QED_LOAD_REQ_FORCE_NONE:
947 		*p_mfw_force_cmd = LOAD_REQ_FORCE_NONE;
948 		break;
949 	case QED_LOAD_REQ_FORCE_PF:
950 		*p_mfw_force_cmd = LOAD_REQ_FORCE_PF;
951 		break;
952 	case QED_LOAD_REQ_FORCE_ALL:
953 		*p_mfw_force_cmd = LOAD_REQ_FORCE_ALL;
954 		break;
955 	}
956 }
957 
958 int qed_mcp_load_req(struct qed_hwfn *p_hwfn,
959 		     struct qed_ptt *p_ptt,
960 		     struct qed_load_req_params *p_params)
961 {
962 	struct qed_load_req_out_params out_params;
963 	struct qed_load_req_in_params in_params;
964 	u8 mfw_drv_role, mfw_force_cmd;
965 	int rc;
966 
967 	memset(&in_params, 0, sizeof(in_params));
968 	in_params.hsi_ver = QED_LOAD_REQ_HSI_VER_DEFAULT;
969 	in_params.drv_ver_1 = qed_get_config_bitmap();
970 	in_params.fw_ver = STORM_FW_VERSION;
971 	rc = eocre_get_mfw_drv_role(p_hwfn, p_params->drv_role, &mfw_drv_role);
972 	if (rc)
973 		return rc;
974 
975 	in_params.drv_role = mfw_drv_role;
976 	in_params.timeout_val = p_params->timeout_val;
977 	qed_get_mfw_force_cmd(p_hwfn,
978 			      QED_LOAD_REQ_FORCE_NONE, &mfw_force_cmd);
979 
980 	in_params.force_cmd = mfw_force_cmd;
981 	in_params.avoid_eng_reset = p_params->avoid_eng_reset;
982 
983 	memset(&out_params, 0, sizeof(out_params));
984 	rc = __qed_mcp_load_req(p_hwfn, p_ptt, &in_params, &out_params);
985 	if (rc)
986 		return rc;
987 
988 	/* First handle cases where another load request should/might be sent:
989 	 * - MFW expects the old interface [HSI version = 1]
990 	 * - MFW responds that a force load request is required
991 	 */
992 	if (out_params.load_code == FW_MSG_CODE_DRV_LOAD_REFUSED_HSI_1) {
993 		DP_INFO(p_hwfn,
994 			"MFW refused a load request due to HSI > 1. Resending with HSI = 1\n");
995 
996 		in_params.hsi_ver = QED_LOAD_REQ_HSI_VER_1;
997 		memset(&out_params, 0, sizeof(out_params));
998 		rc = __qed_mcp_load_req(p_hwfn, p_ptt, &in_params, &out_params);
999 		if (rc)
1000 			return rc;
1001 	} else if (out_params.load_code ==
1002 		   FW_MSG_CODE_DRV_LOAD_REFUSED_REQUIRES_FORCE) {
1003 		if (qed_mcp_can_force_load(in_params.drv_role,
1004 					   out_params.exist_drv_role,
1005 					   p_params->override_force_load)) {
1006 			DP_INFO(p_hwfn,
1007 				"A force load is required [{role, fw_ver, drv_ver}: loading={%d, 0x%08x, x%08x_0x%08x}, existing={%d, 0x%08x, 0x%08x_0x%08x}]\n",
1008 				in_params.drv_role, in_params.fw_ver,
1009 				in_params.drv_ver_0, in_params.drv_ver_1,
1010 				out_params.exist_drv_role,
1011 				out_params.exist_fw_ver,
1012 				out_params.exist_drv_ver_0,
1013 				out_params.exist_drv_ver_1);
1014 
1015 			qed_get_mfw_force_cmd(p_hwfn,
1016 					      QED_LOAD_REQ_FORCE_ALL,
1017 					      &mfw_force_cmd);
1018 
1019 			in_params.force_cmd = mfw_force_cmd;
1020 			memset(&out_params, 0, sizeof(out_params));
1021 			rc = __qed_mcp_load_req(p_hwfn, p_ptt, &in_params,
1022 						&out_params);
1023 			if (rc)
1024 				return rc;
1025 		} else {
1026 			DP_NOTICE(p_hwfn,
1027 				  "A force load is required [{role, fw_ver, drv_ver}: loading={%d, 0x%08x, x%08x_0x%08x}, existing={%d, 0x%08x, 0x%08x_0x%08x}] - Avoid\n",
1028 				  in_params.drv_role, in_params.fw_ver,
1029 				  in_params.drv_ver_0, in_params.drv_ver_1,
1030 				  out_params.exist_drv_role,
1031 				  out_params.exist_fw_ver,
1032 				  out_params.exist_drv_ver_0,
1033 				  out_params.exist_drv_ver_1);
1034 			DP_NOTICE(p_hwfn,
1035 				  "Avoid sending a force load request to prevent disruption of active PFs\n");
1036 
1037 			qed_mcp_cancel_load_req(p_hwfn, p_ptt);
1038 			return -EBUSY;
1039 		}
1040 	}
1041 
1042 	/* Now handle the other types of responses.
1043 	 * The "REFUSED_HSI_1" and "REFUSED_REQUIRES_FORCE" responses are not
1044 	 * expected here after the additional revised load requests were sent.
1045 	 */
1046 	switch (out_params.load_code) {
1047 	case FW_MSG_CODE_DRV_LOAD_ENGINE:
1048 	case FW_MSG_CODE_DRV_LOAD_PORT:
1049 	case FW_MSG_CODE_DRV_LOAD_FUNCTION:
1050 		if (out_params.mfw_hsi_ver != QED_LOAD_REQ_HSI_VER_1 &&
1051 		    out_params.drv_exists) {
1052 			/* The role and fw/driver version match, but the PF is
1053 			 * already loaded and has not been unloaded gracefully.
1054 			 */
1055 			DP_NOTICE(p_hwfn,
1056 				  "PF is already loaded\n");
1057 			return -EINVAL;
1058 		}
1059 		break;
1060 	default:
1061 		DP_NOTICE(p_hwfn,
1062 			  "Unexpected refusal to load request [resp 0x%08x]. Aborting.\n",
1063 			  out_params.load_code);
1064 		return -EBUSY;
1065 	}
1066 
1067 	p_params->load_code = out_params.load_code;
1068 
1069 	return 0;
1070 }
1071 
1072 int qed_mcp_load_done(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1073 {
1074 	u32 resp = 0, param = 0;
1075 	int rc;
1076 
1077 	rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_LOAD_DONE, 0, &resp,
1078 			 &param);
1079 	if (rc) {
1080 		DP_NOTICE(p_hwfn,
1081 			  "Failed to send a LOAD_DONE command, rc = %d\n", rc);
1082 		return rc;
1083 	}
1084 
1085 	/* Check if there is a DID mismatch between nvm-cfg/efuse */
1086 	if (param & FW_MB_PARAM_LOAD_DONE_DID_EFUSE_ERROR)
1087 		DP_NOTICE(p_hwfn,
1088 			  "warning: device configuration is not supported on this board type. The device may not function as expected.\n");
1089 
1090 	return 0;
1091 }
1092 
1093 #define MFW_COMPLETION_MAX_ITER 5000
1094 #define MFW_COMPLETION_INTERVAL_MS 1
1095 
1096 int qed_mcp_unload_req(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1097 {
1098 	struct qed_mcp_mb_params mb_params;
1099 	u32 cnt = MFW_COMPLETION_MAX_ITER;
1100 	u32 wol_param;
1101 	int rc;
1102 
1103 	switch (p_hwfn->cdev->wol_config) {
1104 	case QED_OV_WOL_DISABLED:
1105 		wol_param = DRV_MB_PARAM_UNLOAD_WOL_DISABLED;
1106 		break;
1107 	case QED_OV_WOL_ENABLED:
1108 		wol_param = DRV_MB_PARAM_UNLOAD_WOL_ENABLED;
1109 		break;
1110 	default:
1111 		DP_NOTICE(p_hwfn,
1112 			  "Unknown WoL configuration %02x\n",
1113 			  p_hwfn->cdev->wol_config);
1114 		fallthrough;
1115 	case QED_OV_WOL_DEFAULT:
1116 		wol_param = DRV_MB_PARAM_UNLOAD_WOL_MCP;
1117 	}
1118 
1119 	memset(&mb_params, 0, sizeof(mb_params));
1120 	mb_params.cmd = DRV_MSG_CODE_UNLOAD_REQ;
1121 	mb_params.param = wol_param;
1122 	mb_params.flags = QED_MB_FLAG_CAN_SLEEP | QED_MB_FLAG_AVOID_BLOCK;
1123 
1124 	spin_lock_bh(&p_hwfn->mcp_info->unload_lock);
1125 	set_bit(QED_MCP_BYPASS_PROC_BIT,
1126 		&p_hwfn->mcp_info->mcp_handling_status);
1127 	spin_unlock_bh(&p_hwfn->mcp_info->unload_lock);
1128 
1129 	rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params);
1130 
1131 	while (test_bit(QED_MCP_IN_PROCESSING_BIT,
1132 			&p_hwfn->mcp_info->mcp_handling_status) && --cnt)
1133 		msleep(MFW_COMPLETION_INTERVAL_MS);
1134 
1135 	if (!cnt)
1136 		DP_NOTICE(p_hwfn,
1137 			  "Failed to wait MFW event completion after %d msec\n",
1138 			  MFW_COMPLETION_MAX_ITER * MFW_COMPLETION_INTERVAL_MS);
1139 
1140 	return rc;
1141 }
1142 
1143 int qed_mcp_unload_done(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1144 {
1145 	struct qed_mcp_mb_params mb_params;
1146 	struct mcp_mac wol_mac;
1147 
1148 	memset(&mb_params, 0, sizeof(mb_params));
1149 	mb_params.cmd = DRV_MSG_CODE_UNLOAD_DONE;
1150 
1151 	/* Set the primary MAC if WoL is enabled */
1152 	if (p_hwfn->cdev->wol_config == QED_OV_WOL_ENABLED) {
1153 		u8 *p_mac = p_hwfn->cdev->wol_mac;
1154 
1155 		memset(&wol_mac, 0, sizeof(wol_mac));
1156 		wol_mac.mac_upper = p_mac[0] << 8 | p_mac[1];
1157 		wol_mac.mac_lower = p_mac[2] << 24 | p_mac[3] << 16 |
1158 				    p_mac[4] << 8 | p_mac[5];
1159 
1160 		DP_VERBOSE(p_hwfn,
1161 			   (QED_MSG_SP | NETIF_MSG_IFDOWN),
1162 			   "Setting WoL MAC: %pM --> [%08x,%08x]\n",
1163 			   p_mac, wol_mac.mac_upper, wol_mac.mac_lower);
1164 
1165 		mb_params.p_data_src = &wol_mac;
1166 		mb_params.data_src_size = sizeof(wol_mac);
1167 	}
1168 
1169 	return qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params);
1170 }
1171 
1172 static void qed_mcp_handle_vf_flr(struct qed_hwfn *p_hwfn,
1173 				  struct qed_ptt *p_ptt)
1174 {
1175 	u32 addr = SECTION_OFFSIZE_ADDR(p_hwfn->mcp_info->public_base,
1176 					PUBLIC_PATH);
1177 	u32 mfw_path_offsize = qed_rd(p_hwfn, p_ptt, addr);
1178 	u32 path_addr = SECTION_ADDR(mfw_path_offsize,
1179 				     QED_PATH_ID(p_hwfn));
1180 	u32 disabled_vfs[VF_MAX_STATIC / 32];
1181 	int i;
1182 
1183 	DP_VERBOSE(p_hwfn,
1184 		   QED_MSG_SP,
1185 		   "Reading Disabled VF information from [offset %08x], path_addr %08x\n",
1186 		   mfw_path_offsize, path_addr);
1187 
1188 	for (i = 0; i < (VF_MAX_STATIC / 32); i++) {
1189 		disabled_vfs[i] = qed_rd(p_hwfn, p_ptt,
1190 					 path_addr +
1191 					 offsetof(struct public_path,
1192 						  mcp_vf_disabled) +
1193 					 sizeof(u32) * i);
1194 		DP_VERBOSE(p_hwfn, (QED_MSG_SP | QED_MSG_IOV),
1195 			   "FLR-ed VFs [%08x,...,%08x] - %08x\n",
1196 			   i * 32, (i + 1) * 32 - 1, disabled_vfs[i]);
1197 	}
1198 
1199 	if (qed_iov_mark_vf_flr(p_hwfn, disabled_vfs))
1200 		qed_schedule_iov(p_hwfn, QED_IOV_WQ_FLR_FLAG);
1201 }
1202 
1203 int qed_mcp_ack_vf_flr(struct qed_hwfn *p_hwfn,
1204 		       struct qed_ptt *p_ptt, u32 *vfs_to_ack)
1205 {
1206 	u32 addr = SECTION_OFFSIZE_ADDR(p_hwfn->mcp_info->public_base,
1207 					PUBLIC_FUNC);
1208 	u32 mfw_func_offsize = qed_rd(p_hwfn, p_ptt, addr);
1209 	u32 func_addr = SECTION_ADDR(mfw_func_offsize,
1210 				     MCP_PF_ID(p_hwfn));
1211 	struct qed_mcp_mb_params mb_params;
1212 	int rc;
1213 	int i;
1214 
1215 	for (i = 0; i < (VF_MAX_STATIC / 32); i++)
1216 		DP_VERBOSE(p_hwfn, (QED_MSG_SP | QED_MSG_IOV),
1217 			   "Acking VFs [%08x,...,%08x] - %08x\n",
1218 			   i * 32, (i + 1) * 32 - 1, vfs_to_ack[i]);
1219 
1220 	memset(&mb_params, 0, sizeof(mb_params));
1221 	mb_params.cmd = DRV_MSG_CODE_VF_DISABLED_DONE;
1222 	mb_params.p_data_src = vfs_to_ack;
1223 	mb_params.data_src_size = VF_MAX_STATIC / 8;
1224 	rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params);
1225 	if (rc) {
1226 		DP_NOTICE(p_hwfn, "Failed to pass ACK for VF flr to MFW\n");
1227 		return -EBUSY;
1228 	}
1229 
1230 	/* Clear the ACK bits */
1231 	for (i = 0; i < (VF_MAX_STATIC / 32); i++)
1232 		qed_wr(p_hwfn, p_ptt,
1233 		       func_addr +
1234 		       offsetof(struct public_func, drv_ack_vf_disabled) +
1235 		       i * sizeof(u32), 0);
1236 
1237 	return rc;
1238 }
1239 
1240 static void qed_mcp_handle_transceiver_change(struct qed_hwfn *p_hwfn,
1241 					      struct qed_ptt *p_ptt)
1242 {
1243 	u32 transceiver_state;
1244 
1245 	transceiver_state = qed_rd(p_hwfn, p_ptt,
1246 				   p_hwfn->mcp_info->port_addr +
1247 				   offsetof(struct public_port,
1248 					    transceiver_data));
1249 
1250 	DP_VERBOSE(p_hwfn,
1251 		   (NETIF_MSG_HW | QED_MSG_SP),
1252 		   "Received transceiver state update [0x%08x] from mfw [Addr 0x%x]\n",
1253 		   transceiver_state,
1254 		   (u32)(p_hwfn->mcp_info->port_addr +
1255 			  offsetof(struct public_port, transceiver_data)));
1256 
1257 	transceiver_state = GET_FIELD(transceiver_state,
1258 				      ETH_TRANSCEIVER_STATE);
1259 
1260 	if (transceiver_state == ETH_TRANSCEIVER_STATE_PRESENT)
1261 		DP_NOTICE(p_hwfn, "Transceiver is present.\n");
1262 	else
1263 		DP_NOTICE(p_hwfn, "Transceiver is unplugged.\n");
1264 }
1265 
1266 static void qed_mcp_read_eee_config(struct qed_hwfn *p_hwfn,
1267 				    struct qed_ptt *p_ptt,
1268 				    struct qed_mcp_link_state *p_link)
1269 {
1270 	u32 eee_status, val;
1271 
1272 	p_link->eee_adv_caps = 0;
1273 	p_link->eee_lp_adv_caps = 0;
1274 	eee_status = qed_rd(p_hwfn,
1275 			    p_ptt,
1276 			    p_hwfn->mcp_info->port_addr +
1277 			    offsetof(struct public_port, eee_status));
1278 	p_link->eee_active = !!(eee_status & EEE_ACTIVE_BIT);
1279 	val = (eee_status & EEE_LD_ADV_STATUS_MASK) >> EEE_LD_ADV_STATUS_OFFSET;
1280 	if (val & EEE_1G_ADV)
1281 		p_link->eee_adv_caps |= QED_EEE_1G_ADV;
1282 	if (val & EEE_10G_ADV)
1283 		p_link->eee_adv_caps |= QED_EEE_10G_ADV;
1284 	val = (eee_status & EEE_LP_ADV_STATUS_MASK) >> EEE_LP_ADV_STATUS_OFFSET;
1285 	if (val & EEE_1G_ADV)
1286 		p_link->eee_lp_adv_caps |= QED_EEE_1G_ADV;
1287 	if (val & EEE_10G_ADV)
1288 		p_link->eee_lp_adv_caps |= QED_EEE_10G_ADV;
1289 }
1290 
1291 static u32 qed_mcp_get_shmem_func(struct qed_hwfn *p_hwfn,
1292 				  struct qed_ptt *p_ptt,
1293 				  struct public_func *p_data, int pfid)
1294 {
1295 	u32 addr = SECTION_OFFSIZE_ADDR(p_hwfn->mcp_info->public_base,
1296 					PUBLIC_FUNC);
1297 	u32 mfw_path_offsize = qed_rd(p_hwfn, p_ptt, addr);
1298 	u32 func_addr;
1299 	u32 i, size;
1300 
1301 	func_addr = SECTION_ADDR(mfw_path_offsize, pfid);
1302 	memset(p_data, 0, sizeof(*p_data));
1303 
1304 	size = min_t(u32, sizeof(*p_data), QED_SECTION_SIZE(mfw_path_offsize));
1305 	for (i = 0; i < size / sizeof(u32); i++)
1306 		((u32 *)p_data)[i] = qed_rd(p_hwfn, p_ptt,
1307 					    func_addr + (i << 2));
1308 	return size;
1309 }
1310 
1311 static void qed_read_pf_bandwidth(struct qed_hwfn *p_hwfn,
1312 				  struct public_func *p_shmem_info)
1313 {
1314 	struct qed_mcp_function_info *p_info;
1315 
1316 	p_info = &p_hwfn->mcp_info->func_info;
1317 
1318 	p_info->bandwidth_min = QED_MFW_GET_FIELD(p_shmem_info->config,
1319 						  FUNC_MF_CFG_MIN_BW);
1320 	if (p_info->bandwidth_min < 1 || p_info->bandwidth_min > 100) {
1321 		DP_INFO(p_hwfn,
1322 			"bandwidth minimum out of bounds [%02x]. Set to 1\n",
1323 			p_info->bandwidth_min);
1324 		p_info->bandwidth_min = 1;
1325 	}
1326 
1327 	p_info->bandwidth_max = QED_MFW_GET_FIELD(p_shmem_info->config,
1328 						  FUNC_MF_CFG_MAX_BW);
1329 	if (p_info->bandwidth_max < 1 || p_info->bandwidth_max > 100) {
1330 		DP_INFO(p_hwfn,
1331 			"bandwidth maximum out of bounds [%02x]. Set to 100\n",
1332 			p_info->bandwidth_max);
1333 		p_info->bandwidth_max = 100;
1334 	}
1335 }
1336 
1337 static void qed_mcp_handle_link_change(struct qed_hwfn *p_hwfn,
1338 				       struct qed_ptt *p_ptt, bool b_reset)
1339 {
1340 	struct qed_mcp_link_state *p_link;
1341 	u8 max_bw, min_bw;
1342 	u32 status = 0;
1343 
1344 	/* Prevent SW/attentions from doing this at the same time */
1345 	spin_lock_bh(&p_hwfn->mcp_info->link_lock);
1346 
1347 	p_link = &p_hwfn->mcp_info->link_output;
1348 	memset(p_link, 0, sizeof(*p_link));
1349 	if (!b_reset) {
1350 		status = qed_rd(p_hwfn, p_ptt,
1351 				p_hwfn->mcp_info->port_addr +
1352 				offsetof(struct public_port, link_status));
1353 		DP_VERBOSE(p_hwfn, (NETIF_MSG_LINK | QED_MSG_SP),
1354 			   "Received link update [0x%08x] from mfw [Addr 0x%x]\n",
1355 			   status,
1356 			   (u32)(p_hwfn->mcp_info->port_addr +
1357 				 offsetof(struct public_port, link_status)));
1358 	} else {
1359 		DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
1360 			   "Resetting link indications\n");
1361 		goto out;
1362 	}
1363 
1364 	if (p_hwfn->b_drv_link_init) {
1365 		/* Link indication with modern MFW arrives as per-PF
1366 		 * indication.
1367 		 */
1368 		if (p_hwfn->mcp_info->capabilities &
1369 		    FW_MB_PARAM_FEATURE_SUPPORT_VLINK) {
1370 			struct public_func shmem_info;
1371 
1372 			qed_mcp_get_shmem_func(p_hwfn, p_ptt, &shmem_info,
1373 					       MCP_PF_ID(p_hwfn));
1374 			p_link->link_up = !!(shmem_info.status &
1375 					     FUNC_STATUS_VIRTUAL_LINK_UP);
1376 			qed_read_pf_bandwidth(p_hwfn, &shmem_info);
1377 			DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
1378 				   "Virtual link_up = %d\n", p_link->link_up);
1379 		} else {
1380 			p_link->link_up = !!(status & LINK_STATUS_LINK_UP);
1381 			DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
1382 				   "Physical link_up = %d\n", p_link->link_up);
1383 		}
1384 	} else {
1385 		p_link->link_up = false;
1386 	}
1387 
1388 	p_link->full_duplex = true;
1389 	switch ((status & LINK_STATUS_SPEED_AND_DUPLEX_MASK)) {
1390 	case LINK_STATUS_SPEED_AND_DUPLEX_100G:
1391 		p_link->speed = 100000;
1392 		break;
1393 	case LINK_STATUS_SPEED_AND_DUPLEX_50G:
1394 		p_link->speed = 50000;
1395 		break;
1396 	case LINK_STATUS_SPEED_AND_DUPLEX_40G:
1397 		p_link->speed = 40000;
1398 		break;
1399 	case LINK_STATUS_SPEED_AND_DUPLEX_25G:
1400 		p_link->speed = 25000;
1401 		break;
1402 	case LINK_STATUS_SPEED_AND_DUPLEX_20G:
1403 		p_link->speed = 20000;
1404 		break;
1405 	case LINK_STATUS_SPEED_AND_DUPLEX_10G:
1406 		p_link->speed = 10000;
1407 		break;
1408 	case LINK_STATUS_SPEED_AND_DUPLEX_1000THD:
1409 		p_link->full_duplex = false;
1410 		fallthrough;
1411 	case LINK_STATUS_SPEED_AND_DUPLEX_1000TFD:
1412 		p_link->speed = 1000;
1413 		break;
1414 	default:
1415 		p_link->speed = 0;
1416 		p_link->link_up = 0;
1417 	}
1418 
1419 	if (p_link->link_up && p_link->speed)
1420 		p_link->line_speed = p_link->speed;
1421 	else
1422 		p_link->line_speed = 0;
1423 
1424 	max_bw = p_hwfn->mcp_info->func_info.bandwidth_max;
1425 	min_bw = p_hwfn->mcp_info->func_info.bandwidth_min;
1426 
1427 	/* Max bandwidth configuration */
1428 	__qed_configure_pf_max_bandwidth(p_hwfn, p_ptt, p_link, max_bw);
1429 
1430 	/* Min bandwidth configuration */
1431 	__qed_configure_pf_min_bandwidth(p_hwfn, p_ptt, p_link, min_bw);
1432 	qed_configure_vp_wfq_on_link_change(p_hwfn->cdev, p_ptt,
1433 					    p_link->min_pf_rate);
1434 
1435 	p_link->an = !!(status & LINK_STATUS_AUTO_NEGOTIATE_ENABLED);
1436 	p_link->an_complete = !!(status &
1437 				 LINK_STATUS_AUTO_NEGOTIATE_COMPLETE);
1438 	p_link->parallel_detection = !!(status &
1439 					LINK_STATUS_PARALLEL_DETECTION_USED);
1440 	p_link->pfc_enabled = !!(status & LINK_STATUS_PFC_ENABLED);
1441 
1442 	p_link->partner_adv_speed |=
1443 		(status & LINK_STATUS_LINK_PARTNER_1000TFD_CAPABLE) ?
1444 		QED_LINK_PARTNER_SPEED_1G_FD : 0;
1445 	p_link->partner_adv_speed |=
1446 		(status & LINK_STATUS_LINK_PARTNER_1000THD_CAPABLE) ?
1447 		QED_LINK_PARTNER_SPEED_1G_HD : 0;
1448 	p_link->partner_adv_speed |=
1449 		(status & LINK_STATUS_LINK_PARTNER_10G_CAPABLE) ?
1450 		QED_LINK_PARTNER_SPEED_10G : 0;
1451 	p_link->partner_adv_speed |=
1452 		(status & LINK_STATUS_LINK_PARTNER_20G_CAPABLE) ?
1453 		QED_LINK_PARTNER_SPEED_20G : 0;
1454 	p_link->partner_adv_speed |=
1455 		(status & LINK_STATUS_LINK_PARTNER_25G_CAPABLE) ?
1456 		QED_LINK_PARTNER_SPEED_25G : 0;
1457 	p_link->partner_adv_speed |=
1458 		(status & LINK_STATUS_LINK_PARTNER_40G_CAPABLE) ?
1459 		QED_LINK_PARTNER_SPEED_40G : 0;
1460 	p_link->partner_adv_speed |=
1461 		(status & LINK_STATUS_LINK_PARTNER_50G_CAPABLE) ?
1462 		QED_LINK_PARTNER_SPEED_50G : 0;
1463 	p_link->partner_adv_speed |=
1464 		(status & LINK_STATUS_LINK_PARTNER_100G_CAPABLE) ?
1465 		QED_LINK_PARTNER_SPEED_100G : 0;
1466 
1467 	p_link->partner_tx_flow_ctrl_en =
1468 		!!(status & LINK_STATUS_TX_FLOW_CONTROL_ENABLED);
1469 	p_link->partner_rx_flow_ctrl_en =
1470 		!!(status & LINK_STATUS_RX_FLOW_CONTROL_ENABLED);
1471 
1472 	switch (status & LINK_STATUS_LINK_PARTNER_FLOW_CONTROL_MASK) {
1473 	case LINK_STATUS_LINK_PARTNER_SYMMETRIC_PAUSE:
1474 		p_link->partner_adv_pause = QED_LINK_PARTNER_SYMMETRIC_PAUSE;
1475 		break;
1476 	case LINK_STATUS_LINK_PARTNER_ASYMMETRIC_PAUSE:
1477 		p_link->partner_adv_pause = QED_LINK_PARTNER_ASYMMETRIC_PAUSE;
1478 		break;
1479 	case LINK_STATUS_LINK_PARTNER_BOTH_PAUSE:
1480 		p_link->partner_adv_pause = QED_LINK_PARTNER_BOTH_PAUSE;
1481 		break;
1482 	default:
1483 		p_link->partner_adv_pause = 0;
1484 	}
1485 
1486 	p_link->sfp_tx_fault = !!(status & LINK_STATUS_SFP_TX_FAULT);
1487 
1488 	if (p_hwfn->mcp_info->capabilities & FW_MB_PARAM_FEATURE_SUPPORT_EEE)
1489 		qed_mcp_read_eee_config(p_hwfn, p_ptt, p_link);
1490 
1491 	if (p_hwfn->mcp_info->capabilities &
1492 	    FW_MB_PARAM_FEATURE_SUPPORT_FEC_CONTROL) {
1493 		switch (status & LINK_STATUS_FEC_MODE_MASK) {
1494 		case LINK_STATUS_FEC_MODE_NONE:
1495 			p_link->fec_active = QED_FEC_MODE_NONE;
1496 			break;
1497 		case LINK_STATUS_FEC_MODE_FIRECODE_CL74:
1498 			p_link->fec_active = QED_FEC_MODE_FIRECODE;
1499 			break;
1500 		case LINK_STATUS_FEC_MODE_RS_CL91:
1501 			p_link->fec_active = QED_FEC_MODE_RS;
1502 			break;
1503 		default:
1504 			p_link->fec_active = QED_FEC_MODE_AUTO;
1505 		}
1506 	} else {
1507 		p_link->fec_active = QED_FEC_MODE_UNSUPPORTED;
1508 	}
1509 
1510 	qed_link_update(p_hwfn, p_ptt);
1511 out:
1512 	spin_unlock_bh(&p_hwfn->mcp_info->link_lock);
1513 }
1514 
1515 int qed_mcp_set_link(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, bool b_up)
1516 {
1517 	struct qed_mcp_link_params *params = &p_hwfn->mcp_info->link_input;
1518 	struct qed_mcp_mb_params mb_params;
1519 	struct eth_phy_cfg phy_cfg;
1520 	u32 cmd, fec_bit = 0;
1521 	u32 val, ext_speed;
1522 	int rc = 0;
1523 
1524 	/* Set the shmem configuration according to params */
1525 	memset(&phy_cfg, 0, sizeof(phy_cfg));
1526 	cmd = b_up ? DRV_MSG_CODE_INIT_PHY : DRV_MSG_CODE_LINK_RESET;
1527 	if (!params->speed.autoneg)
1528 		phy_cfg.speed = params->speed.forced_speed;
1529 	phy_cfg.pause |= (params->pause.autoneg) ? ETH_PAUSE_AUTONEG : 0;
1530 	phy_cfg.pause |= (params->pause.forced_rx) ? ETH_PAUSE_RX : 0;
1531 	phy_cfg.pause |= (params->pause.forced_tx) ? ETH_PAUSE_TX : 0;
1532 	phy_cfg.adv_speed = params->speed.advertised_speeds;
1533 	phy_cfg.loopback_mode = params->loopback_mode;
1534 
1535 	/* There are MFWs that share this capability regardless of whether
1536 	 * this is feasible or not. And given that at the very least adv_caps
1537 	 * would be set internally by qed, we want to make sure LFA would
1538 	 * still work.
1539 	 */
1540 	if ((p_hwfn->mcp_info->capabilities &
1541 	     FW_MB_PARAM_FEATURE_SUPPORT_EEE) && params->eee.enable) {
1542 		phy_cfg.eee_cfg |= EEE_CFG_EEE_ENABLED;
1543 		if (params->eee.tx_lpi_enable)
1544 			phy_cfg.eee_cfg |= EEE_CFG_TX_LPI;
1545 		if (params->eee.adv_caps & QED_EEE_1G_ADV)
1546 			phy_cfg.eee_cfg |= EEE_CFG_ADV_SPEED_1G;
1547 		if (params->eee.adv_caps & QED_EEE_10G_ADV)
1548 			phy_cfg.eee_cfg |= EEE_CFG_ADV_SPEED_10G;
1549 		phy_cfg.eee_cfg |= (params->eee.tx_lpi_timer <<
1550 				    EEE_TX_TIMER_USEC_OFFSET) &
1551 				   EEE_TX_TIMER_USEC_MASK;
1552 	}
1553 
1554 	if (p_hwfn->mcp_info->capabilities &
1555 	    FW_MB_PARAM_FEATURE_SUPPORT_FEC_CONTROL) {
1556 		if (params->fec & QED_FEC_MODE_NONE)
1557 			fec_bit |= FEC_FORCE_MODE_NONE;
1558 		else if (params->fec & QED_FEC_MODE_FIRECODE)
1559 			fec_bit |= FEC_FORCE_MODE_FIRECODE;
1560 		else if (params->fec & QED_FEC_MODE_RS)
1561 			fec_bit |= FEC_FORCE_MODE_RS;
1562 		else if (params->fec & QED_FEC_MODE_AUTO)
1563 			fec_bit |= FEC_FORCE_MODE_AUTO;
1564 
1565 		SET_MFW_FIELD(phy_cfg.fec_mode, FEC_FORCE_MODE, fec_bit);
1566 	}
1567 
1568 	if (p_hwfn->mcp_info->capabilities &
1569 	    FW_MB_PARAM_FEATURE_SUPPORT_EXT_SPEED_FEC_CONTROL) {
1570 		ext_speed = 0;
1571 		if (params->ext_speed.autoneg)
1572 			ext_speed |= ETH_EXT_SPEED_NONE;
1573 
1574 		val = params->ext_speed.forced_speed;
1575 		if (val & QED_EXT_SPEED_1G)
1576 			ext_speed |= ETH_EXT_SPEED_1G;
1577 		if (val & QED_EXT_SPEED_10G)
1578 			ext_speed |= ETH_EXT_SPEED_10G;
1579 		if (val & QED_EXT_SPEED_25G)
1580 			ext_speed |= ETH_EXT_SPEED_25G;
1581 		if (val & QED_EXT_SPEED_40G)
1582 			ext_speed |= ETH_EXT_SPEED_40G;
1583 		if (val & QED_EXT_SPEED_50G_R)
1584 			ext_speed |= ETH_EXT_SPEED_50G_BASE_R;
1585 		if (val & QED_EXT_SPEED_50G_R2)
1586 			ext_speed |= ETH_EXT_SPEED_50G_BASE_R2;
1587 		if (val & QED_EXT_SPEED_100G_R2)
1588 			ext_speed |= ETH_EXT_SPEED_100G_BASE_R2;
1589 		if (val & QED_EXT_SPEED_100G_R4)
1590 			ext_speed |= ETH_EXT_SPEED_100G_BASE_R4;
1591 		if (val & QED_EXT_SPEED_100G_P4)
1592 			ext_speed |= ETH_EXT_SPEED_100G_BASE_P4;
1593 
1594 		SET_MFW_FIELD(phy_cfg.extended_speed, ETH_EXT_SPEED,
1595 			      ext_speed);
1596 
1597 		ext_speed = 0;
1598 
1599 		val = params->ext_speed.advertised_speeds;
1600 		if (val & QED_EXT_SPEED_MASK_1G)
1601 			ext_speed |= ETH_EXT_ADV_SPEED_1G;
1602 		if (val & QED_EXT_SPEED_MASK_10G)
1603 			ext_speed |= ETH_EXT_ADV_SPEED_10G;
1604 		if (val & QED_EXT_SPEED_MASK_25G)
1605 			ext_speed |= ETH_EXT_ADV_SPEED_25G;
1606 		if (val & QED_EXT_SPEED_MASK_40G)
1607 			ext_speed |= ETH_EXT_ADV_SPEED_40G;
1608 		if (val & QED_EXT_SPEED_MASK_50G_R)
1609 			ext_speed |= ETH_EXT_ADV_SPEED_50G_BASE_R;
1610 		if (val & QED_EXT_SPEED_MASK_50G_R2)
1611 			ext_speed |= ETH_EXT_ADV_SPEED_50G_BASE_R2;
1612 		if (val & QED_EXT_SPEED_MASK_100G_R2)
1613 			ext_speed |= ETH_EXT_ADV_SPEED_100G_BASE_R2;
1614 		if (val & QED_EXT_SPEED_MASK_100G_R4)
1615 			ext_speed |= ETH_EXT_ADV_SPEED_100G_BASE_R4;
1616 		if (val & QED_EXT_SPEED_MASK_100G_P4)
1617 			ext_speed |= ETH_EXT_ADV_SPEED_100G_BASE_P4;
1618 
1619 		phy_cfg.extended_speed |= ext_speed;
1620 
1621 		SET_MFW_FIELD(phy_cfg.fec_mode, FEC_EXTENDED_MODE,
1622 			      params->ext_fec_mode);
1623 	}
1624 
1625 	p_hwfn->b_drv_link_init = b_up;
1626 
1627 	if (b_up) {
1628 		DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
1629 			   "Configuring Link: Speed 0x%08x, Pause 0x%08x, Adv. Speed 0x%08x, Loopback 0x%08x, FEC 0x%08x, Ext. Speed 0x%08x\n",
1630 			   phy_cfg.speed, phy_cfg.pause, phy_cfg.adv_speed,
1631 			   phy_cfg.loopback_mode, phy_cfg.fec_mode,
1632 			   phy_cfg.extended_speed);
1633 	} else {
1634 		DP_VERBOSE(p_hwfn, NETIF_MSG_LINK, "Resetting link\n");
1635 	}
1636 
1637 	memset(&mb_params, 0, sizeof(mb_params));
1638 	mb_params.cmd = cmd;
1639 	mb_params.p_data_src = &phy_cfg;
1640 	mb_params.data_src_size = sizeof(phy_cfg);
1641 	rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params);
1642 
1643 	/* if mcp fails to respond we must abort */
1644 	if (rc) {
1645 		DP_ERR(p_hwfn, "MCP response failure, aborting\n");
1646 		return rc;
1647 	}
1648 
1649 	/* Mimic link-change attention, done for several reasons:
1650 	 *  - On reset, there's no guarantee MFW would trigger
1651 	 *    an attention.
1652 	 *  - On initialization, older MFWs might not indicate link change
1653 	 *    during LFA, so we'll never get an UP indication.
1654 	 */
1655 	qed_mcp_handle_link_change(p_hwfn, p_ptt, !b_up);
1656 
1657 	return 0;
1658 }
1659 
1660 u32 qed_get_process_kill_counter(struct qed_hwfn *p_hwfn,
1661 				 struct qed_ptt *p_ptt)
1662 {
1663 	u32 path_offsize_addr, path_offsize, path_addr, proc_kill_cnt;
1664 
1665 	if (IS_VF(p_hwfn->cdev))
1666 		return -EINVAL;
1667 
1668 	path_offsize_addr = SECTION_OFFSIZE_ADDR(p_hwfn->mcp_info->public_base,
1669 						 PUBLIC_PATH);
1670 	path_offsize = qed_rd(p_hwfn, p_ptt, path_offsize_addr);
1671 	path_addr = SECTION_ADDR(path_offsize, QED_PATH_ID(p_hwfn));
1672 
1673 	proc_kill_cnt = qed_rd(p_hwfn, p_ptt,
1674 			       path_addr +
1675 			       offsetof(struct public_path, process_kill)) &
1676 			PROCESS_KILL_COUNTER_MASK;
1677 
1678 	return proc_kill_cnt;
1679 }
1680 
1681 static void qed_mcp_handle_process_kill(struct qed_hwfn *p_hwfn,
1682 					struct qed_ptt *p_ptt)
1683 {
1684 	struct qed_dev *cdev = p_hwfn->cdev;
1685 	u32 proc_kill_cnt;
1686 
1687 	/* Prevent possible attentions/interrupts during the recovery handling
1688 	 * and till its load phase, during which they will be re-enabled.
1689 	 */
1690 	qed_int_igu_disable_int(p_hwfn, p_ptt);
1691 
1692 	DP_NOTICE(p_hwfn, "Received a process kill indication\n");
1693 
1694 	/* The following operations should be done once, and thus in CMT mode
1695 	 * are carried out by only the first HW function.
1696 	 */
1697 	if (p_hwfn != QED_LEADING_HWFN(cdev))
1698 		return;
1699 
1700 	if (cdev->recov_in_prog) {
1701 		DP_NOTICE(p_hwfn,
1702 			  "Ignoring the indication since a recovery process is already in progress\n");
1703 		return;
1704 	}
1705 
1706 	cdev->recov_in_prog = true;
1707 
1708 	proc_kill_cnt = qed_get_process_kill_counter(p_hwfn, p_ptt);
1709 	DP_NOTICE(p_hwfn, "Process kill counter: %d\n", proc_kill_cnt);
1710 
1711 	qed_schedule_recovery_handler(p_hwfn);
1712 }
1713 
1714 static void qed_mcp_send_protocol_stats(struct qed_hwfn *p_hwfn,
1715 					struct qed_ptt *p_ptt,
1716 					enum MFW_DRV_MSG_TYPE type)
1717 {
1718 	enum qed_mcp_protocol_type stats_type;
1719 	union qed_mcp_protocol_stats stats;
1720 	struct qed_mcp_mb_params mb_params;
1721 	u32 hsi_param;
1722 
1723 	switch (type) {
1724 	case MFW_DRV_MSG_GET_LAN_STATS:
1725 		stats_type = QED_MCP_LAN_STATS;
1726 		hsi_param = DRV_MSG_CODE_STATS_TYPE_LAN;
1727 		break;
1728 	case MFW_DRV_MSG_GET_FCOE_STATS:
1729 		stats_type = QED_MCP_FCOE_STATS;
1730 		hsi_param = DRV_MSG_CODE_STATS_TYPE_FCOE;
1731 		break;
1732 	case MFW_DRV_MSG_GET_ISCSI_STATS:
1733 		stats_type = QED_MCP_ISCSI_STATS;
1734 		hsi_param = DRV_MSG_CODE_STATS_TYPE_ISCSI;
1735 		break;
1736 	case MFW_DRV_MSG_GET_RDMA_STATS:
1737 		stats_type = QED_MCP_RDMA_STATS;
1738 		hsi_param = DRV_MSG_CODE_STATS_TYPE_RDMA;
1739 		break;
1740 	default:
1741 		DP_NOTICE(p_hwfn, "Invalid protocol type %d\n", type);
1742 		return;
1743 	}
1744 
1745 	qed_get_protocol_stats(p_hwfn->cdev, stats_type, &stats);
1746 
1747 	memset(&mb_params, 0, sizeof(mb_params));
1748 	mb_params.cmd = DRV_MSG_CODE_GET_STATS;
1749 	mb_params.param = hsi_param;
1750 	mb_params.p_data_src = &stats;
1751 	mb_params.data_src_size = sizeof(stats);
1752 	qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params);
1753 }
1754 
1755 static void qed_mcp_update_bw(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1756 {
1757 	struct qed_mcp_function_info *p_info;
1758 	struct public_func shmem_info;
1759 	u32 resp = 0, param = 0;
1760 
1761 	qed_mcp_get_shmem_func(p_hwfn, p_ptt, &shmem_info, MCP_PF_ID(p_hwfn));
1762 
1763 	qed_read_pf_bandwidth(p_hwfn, &shmem_info);
1764 
1765 	p_info = &p_hwfn->mcp_info->func_info;
1766 
1767 	qed_configure_pf_min_bandwidth(p_hwfn->cdev, p_info->bandwidth_min);
1768 	qed_configure_pf_max_bandwidth(p_hwfn->cdev, p_info->bandwidth_max);
1769 
1770 	/* Acknowledge the MFW */
1771 	qed_mcp_cmd_nosleep(p_hwfn, p_ptt, DRV_MSG_CODE_BW_UPDATE_ACK, 0, &resp,
1772 			    &param);
1773 }
1774 
1775 static void qed_mcp_update_stag(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1776 {
1777 	struct public_func shmem_info;
1778 	u32 resp = 0, param = 0;
1779 
1780 	qed_mcp_get_shmem_func(p_hwfn, p_ptt, &shmem_info, MCP_PF_ID(p_hwfn));
1781 
1782 	p_hwfn->mcp_info->func_info.ovlan = (u16)shmem_info.ovlan_stag &
1783 						 FUNC_MF_CFG_OV_STAG_MASK;
1784 	p_hwfn->hw_info.ovlan = p_hwfn->mcp_info->func_info.ovlan;
1785 	if (test_bit(QED_MF_OVLAN_CLSS, &p_hwfn->cdev->mf_bits)) {
1786 		if (p_hwfn->hw_info.ovlan != QED_MCP_VLAN_UNSET) {
1787 			qed_wr(p_hwfn, p_ptt, NIG_REG_LLH_FUNC_TAG_VALUE,
1788 			       p_hwfn->hw_info.ovlan);
1789 			qed_wr(p_hwfn, p_ptt, NIG_REG_LLH_FUNC_TAG_EN, 1);
1790 
1791 			/* Configure DB to add external vlan to EDPM packets */
1792 			qed_wr(p_hwfn, p_ptt, DORQ_REG_TAG1_OVRD_MODE, 1);
1793 			qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_EXT_VID_BB_K2,
1794 			       p_hwfn->hw_info.ovlan);
1795 		} else {
1796 			qed_wr(p_hwfn, p_ptt, NIG_REG_LLH_FUNC_TAG_EN, 0);
1797 			qed_wr(p_hwfn, p_ptt, NIG_REG_LLH_FUNC_TAG_VALUE, 0);
1798 			qed_wr(p_hwfn, p_ptt, DORQ_REG_TAG1_OVRD_MODE, 0);
1799 			qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_EXT_VID_BB_K2, 0);
1800 		}
1801 
1802 		qed_sp_pf_update_stag(p_hwfn);
1803 	}
1804 
1805 	DP_VERBOSE(p_hwfn, QED_MSG_SP, "ovlan = %d hw_mode = 0x%x\n",
1806 		   p_hwfn->mcp_info->func_info.ovlan, p_hwfn->hw_info.hw_mode);
1807 
1808 	/* Acknowledge the MFW */
1809 	qed_mcp_cmd_nosleep(p_hwfn, p_ptt, DRV_MSG_CODE_S_TAG_UPDATE_ACK, 0,
1810 			    &resp, &param);
1811 }
1812 
1813 static void qed_mcp_handle_fan_failure(struct qed_hwfn *p_hwfn,
1814 				       struct qed_ptt *p_ptt)
1815 {
1816 	/* A single notification should be sent to upper driver in CMT mode */
1817 	if (p_hwfn != QED_LEADING_HWFN(p_hwfn->cdev))
1818 		return;
1819 
1820 	qed_hw_err_notify(p_hwfn, p_ptt, QED_HW_ERR_FAN_FAIL,
1821 			  "Fan failure was detected on the network interface card and it's going to be shut down.\n");
1822 }
1823 
1824 struct qed_mdump_cmd_params {
1825 	u32 cmd;
1826 	void *p_data_src;
1827 	u8 data_src_size;
1828 	void *p_data_dst;
1829 	u8 data_dst_size;
1830 	u32 mcp_resp;
1831 };
1832 
1833 static int
1834 qed_mcp_mdump_cmd(struct qed_hwfn *p_hwfn,
1835 		  struct qed_ptt *p_ptt,
1836 		  struct qed_mdump_cmd_params *p_mdump_cmd_params)
1837 {
1838 	struct qed_mcp_mb_params mb_params;
1839 	int rc;
1840 
1841 	memset(&mb_params, 0, sizeof(mb_params));
1842 	mb_params.cmd = DRV_MSG_CODE_MDUMP_CMD;
1843 	mb_params.param = p_mdump_cmd_params->cmd;
1844 	mb_params.p_data_src = p_mdump_cmd_params->p_data_src;
1845 	mb_params.data_src_size = p_mdump_cmd_params->data_src_size;
1846 	mb_params.p_data_dst = p_mdump_cmd_params->p_data_dst;
1847 	mb_params.data_dst_size = p_mdump_cmd_params->data_dst_size;
1848 	rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params);
1849 	if (rc)
1850 		return rc;
1851 
1852 	p_mdump_cmd_params->mcp_resp = mb_params.mcp_resp;
1853 
1854 	if (p_mdump_cmd_params->mcp_resp == FW_MSG_CODE_MDUMP_INVALID_CMD) {
1855 		DP_INFO(p_hwfn,
1856 			"The mdump sub command is unsupported by the MFW [mdump_cmd 0x%x]\n",
1857 			p_mdump_cmd_params->cmd);
1858 		rc = -EOPNOTSUPP;
1859 	} else if (p_mdump_cmd_params->mcp_resp == FW_MSG_CODE_UNSUPPORTED) {
1860 		DP_INFO(p_hwfn,
1861 			"The mdump command is not supported by the MFW\n");
1862 		rc = -EOPNOTSUPP;
1863 	}
1864 
1865 	return rc;
1866 }
1867 
1868 static int qed_mcp_mdump_ack(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1869 {
1870 	struct qed_mdump_cmd_params mdump_cmd_params;
1871 
1872 	memset(&mdump_cmd_params, 0, sizeof(mdump_cmd_params));
1873 	mdump_cmd_params.cmd = DRV_MSG_CODE_MDUMP_ACK;
1874 
1875 	return qed_mcp_mdump_cmd(p_hwfn, p_ptt, &mdump_cmd_params);
1876 }
1877 
1878 int
1879 qed_mcp_mdump_get_retain(struct qed_hwfn *p_hwfn,
1880 			 struct qed_ptt *p_ptt,
1881 			 struct mdump_retain_data_stc *p_mdump_retain)
1882 {
1883 	struct qed_mdump_cmd_params mdump_cmd_params;
1884 	int rc;
1885 
1886 	memset(&mdump_cmd_params, 0, sizeof(mdump_cmd_params));
1887 	mdump_cmd_params.cmd = DRV_MSG_CODE_MDUMP_GET_RETAIN;
1888 	mdump_cmd_params.p_data_dst = p_mdump_retain;
1889 	mdump_cmd_params.data_dst_size = sizeof(*p_mdump_retain);
1890 
1891 	rc = qed_mcp_mdump_cmd(p_hwfn, p_ptt, &mdump_cmd_params);
1892 	if (rc)
1893 		return rc;
1894 
1895 	if (mdump_cmd_params.mcp_resp != FW_MSG_CODE_OK) {
1896 		DP_INFO(p_hwfn,
1897 			"Failed to get the mdump retained data [mcp_resp 0x%x]\n",
1898 			mdump_cmd_params.mcp_resp);
1899 		return -EINVAL;
1900 	}
1901 
1902 	return 0;
1903 }
1904 
1905 static void qed_mcp_handle_critical_error(struct qed_hwfn *p_hwfn,
1906 					  struct qed_ptt *p_ptt)
1907 {
1908 	struct mdump_retain_data_stc mdump_retain;
1909 	int rc;
1910 
1911 	/* In CMT mode - no need for more than a single acknowledgment to the
1912 	 * MFW, and no more than a single notification to the upper driver.
1913 	 */
1914 	if (p_hwfn != QED_LEADING_HWFN(p_hwfn->cdev))
1915 		return;
1916 
1917 	rc = qed_mcp_mdump_get_retain(p_hwfn, p_ptt, &mdump_retain);
1918 	if (rc == 0 && mdump_retain.valid)
1919 		DP_NOTICE(p_hwfn,
1920 			  "The MFW notified that a critical error occurred in the device [epoch 0x%08x, pf 0x%x, status 0x%08x]\n",
1921 			  mdump_retain.epoch,
1922 			  mdump_retain.pf, mdump_retain.status);
1923 	else
1924 		DP_NOTICE(p_hwfn,
1925 			  "The MFW notified that a critical error occurred in the device\n");
1926 
1927 	DP_NOTICE(p_hwfn,
1928 		  "Acknowledging the notification to not allow the MFW crash dump [driver debug data collection is preferable]\n");
1929 	qed_mcp_mdump_ack(p_hwfn, p_ptt);
1930 
1931 	qed_hw_err_notify(p_hwfn, p_ptt, QED_HW_ERR_HW_ATTN, NULL);
1932 }
1933 
1934 void qed_mcp_read_ufp_config(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1935 {
1936 	struct public_func shmem_info;
1937 	u32 port_cfg, val;
1938 
1939 	if (!test_bit(QED_MF_UFP_SPECIFIC, &p_hwfn->cdev->mf_bits))
1940 		return;
1941 
1942 	memset(&p_hwfn->ufp_info, 0, sizeof(p_hwfn->ufp_info));
1943 	port_cfg = qed_rd(p_hwfn, p_ptt, p_hwfn->mcp_info->port_addr +
1944 			  offsetof(struct public_port, oem_cfg_port));
1945 	val = (port_cfg & OEM_CFG_CHANNEL_TYPE_MASK) >>
1946 		OEM_CFG_CHANNEL_TYPE_OFFSET;
1947 	if (val != OEM_CFG_CHANNEL_TYPE_STAGGED)
1948 		DP_NOTICE(p_hwfn,
1949 			  "Incorrect UFP Channel type  %d port_id 0x%02x\n",
1950 			  val, MFW_PORT(p_hwfn));
1951 
1952 	val = (port_cfg & OEM_CFG_SCHED_TYPE_MASK) >> OEM_CFG_SCHED_TYPE_OFFSET;
1953 	if (val == OEM_CFG_SCHED_TYPE_ETS) {
1954 		p_hwfn->ufp_info.mode = QED_UFP_MODE_ETS;
1955 	} else if (val == OEM_CFG_SCHED_TYPE_VNIC_BW) {
1956 		p_hwfn->ufp_info.mode = QED_UFP_MODE_VNIC_BW;
1957 	} else {
1958 		p_hwfn->ufp_info.mode = QED_UFP_MODE_UNKNOWN;
1959 		DP_NOTICE(p_hwfn,
1960 			  "Unknown UFP scheduling mode %d port_id 0x%02x\n",
1961 			  val, MFW_PORT(p_hwfn));
1962 	}
1963 
1964 	qed_mcp_get_shmem_func(p_hwfn, p_ptt, &shmem_info, MCP_PF_ID(p_hwfn));
1965 	val = (shmem_info.oem_cfg_func & OEM_CFG_FUNC_TC_MASK) >>
1966 		OEM_CFG_FUNC_TC_OFFSET;
1967 	p_hwfn->ufp_info.tc = (u8)val;
1968 	val = (shmem_info.oem_cfg_func & OEM_CFG_FUNC_HOST_PRI_CTRL_MASK) >>
1969 		OEM_CFG_FUNC_HOST_PRI_CTRL_OFFSET;
1970 	if (val == OEM_CFG_FUNC_HOST_PRI_CTRL_VNIC) {
1971 		p_hwfn->ufp_info.pri_type = QED_UFP_PRI_VNIC;
1972 	} else if (val == OEM_CFG_FUNC_HOST_PRI_CTRL_OS) {
1973 		p_hwfn->ufp_info.pri_type = QED_UFP_PRI_OS;
1974 	} else {
1975 		p_hwfn->ufp_info.pri_type = QED_UFP_PRI_UNKNOWN;
1976 		DP_NOTICE(p_hwfn,
1977 			  "Unknown Host priority control %d port_id 0x%02x\n",
1978 			  val, MFW_PORT(p_hwfn));
1979 	}
1980 
1981 	DP_NOTICE(p_hwfn,
1982 		  "UFP shmem config: mode = %d tc = %d pri_type = %d port_id 0x%02x\n",
1983 		  p_hwfn->ufp_info.mode, p_hwfn->ufp_info.tc,
1984 		  p_hwfn->ufp_info.pri_type, MFW_PORT(p_hwfn));
1985 }
1986 
1987 static int
1988 qed_mcp_handle_ufp_event(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1989 {
1990 	qed_mcp_read_ufp_config(p_hwfn, p_ptt);
1991 
1992 	if (p_hwfn->ufp_info.mode == QED_UFP_MODE_VNIC_BW) {
1993 		p_hwfn->qm_info.ooo_tc = p_hwfn->ufp_info.tc;
1994 		qed_hw_info_set_offload_tc(&p_hwfn->hw_info,
1995 					   p_hwfn->ufp_info.tc);
1996 
1997 		qed_qm_reconf(p_hwfn, p_ptt);
1998 	} else if (p_hwfn->ufp_info.mode == QED_UFP_MODE_ETS) {
1999 		/* Merge UFP TC with the dcbx TC data */
2000 		qed_dcbx_mib_update_event(p_hwfn, p_ptt,
2001 					  QED_DCBX_OPERATIONAL_MIB);
2002 	} else {
2003 		DP_ERR(p_hwfn, "Invalid sched type, discard the UFP config\n");
2004 		return -EINVAL;
2005 	}
2006 
2007 	/* update storm FW with negotiation results */
2008 	qed_sp_pf_update_ufp(p_hwfn);
2009 
2010 	/* update stag pcp value */
2011 	qed_sp_pf_update_stag(p_hwfn);
2012 
2013 	return 0;
2014 }
2015 
2016 int qed_mcp_handle_events(struct qed_hwfn *p_hwfn,
2017 			  struct qed_ptt *p_ptt)
2018 {
2019 	struct qed_mcp_info *info = p_hwfn->mcp_info;
2020 	int rc = 0;
2021 	bool found = false;
2022 	u16 i;
2023 
2024 	DP_VERBOSE(p_hwfn, QED_MSG_SP, "Received message from MFW\n");
2025 
2026 	/* Read Messages from MFW */
2027 	qed_mcp_read_mb(p_hwfn, p_ptt);
2028 
2029 	/* Compare current messages to old ones */
2030 	for (i = 0; i < info->mfw_mb_length; i++) {
2031 		if (info->mfw_mb_cur[i] == info->mfw_mb_shadow[i])
2032 			continue;
2033 
2034 		found = true;
2035 
2036 		DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
2037 			   "Msg [%d] - old CMD 0x%02x, new CMD 0x%02x\n",
2038 			   i, info->mfw_mb_shadow[i], info->mfw_mb_cur[i]);
2039 
2040 		spin_lock_bh(&p_hwfn->mcp_info->unload_lock);
2041 		if (test_bit(QED_MCP_BYPASS_PROC_BIT,
2042 			     &p_hwfn->mcp_info->mcp_handling_status)) {
2043 			spin_unlock_bh(&p_hwfn->mcp_info->unload_lock);
2044 			DP_INFO(p_hwfn,
2045 				"Msg [%d] is bypassed on unload flow\n", i);
2046 			continue;
2047 		}
2048 
2049 		set_bit(QED_MCP_IN_PROCESSING_BIT,
2050 			&p_hwfn->mcp_info->mcp_handling_status);
2051 		spin_unlock_bh(&p_hwfn->mcp_info->unload_lock);
2052 
2053 		switch (i) {
2054 		case MFW_DRV_MSG_LINK_CHANGE:
2055 			qed_mcp_handle_link_change(p_hwfn, p_ptt, false);
2056 			break;
2057 		case MFW_DRV_MSG_VF_DISABLED:
2058 			qed_mcp_handle_vf_flr(p_hwfn, p_ptt);
2059 			break;
2060 		case MFW_DRV_MSG_LLDP_DATA_UPDATED:
2061 			qed_dcbx_mib_update_event(p_hwfn, p_ptt,
2062 						  QED_DCBX_REMOTE_LLDP_MIB);
2063 			break;
2064 		case MFW_DRV_MSG_DCBX_REMOTE_MIB_UPDATED:
2065 			qed_dcbx_mib_update_event(p_hwfn, p_ptt,
2066 						  QED_DCBX_REMOTE_MIB);
2067 			break;
2068 		case MFW_DRV_MSG_DCBX_OPERATIONAL_MIB_UPDATED:
2069 			qed_dcbx_mib_update_event(p_hwfn, p_ptt,
2070 						  QED_DCBX_OPERATIONAL_MIB);
2071 			break;
2072 		case MFW_DRV_MSG_OEM_CFG_UPDATE:
2073 			qed_mcp_handle_ufp_event(p_hwfn, p_ptt);
2074 			break;
2075 		case MFW_DRV_MSG_TRANSCEIVER_STATE_CHANGE:
2076 			qed_mcp_handle_transceiver_change(p_hwfn, p_ptt);
2077 			break;
2078 		case MFW_DRV_MSG_ERROR_RECOVERY:
2079 			qed_mcp_handle_process_kill(p_hwfn, p_ptt);
2080 			break;
2081 		case MFW_DRV_MSG_GET_LAN_STATS:
2082 		case MFW_DRV_MSG_GET_FCOE_STATS:
2083 		case MFW_DRV_MSG_GET_ISCSI_STATS:
2084 		case MFW_DRV_MSG_GET_RDMA_STATS:
2085 			qed_mcp_send_protocol_stats(p_hwfn, p_ptt, i);
2086 			break;
2087 		case MFW_DRV_MSG_BW_UPDATE:
2088 			qed_mcp_update_bw(p_hwfn, p_ptt);
2089 			break;
2090 		case MFW_DRV_MSG_S_TAG_UPDATE:
2091 			qed_mcp_update_stag(p_hwfn, p_ptt);
2092 			break;
2093 		case MFW_DRV_MSG_FAILURE_DETECTED:
2094 			qed_mcp_handle_fan_failure(p_hwfn, p_ptt);
2095 			break;
2096 		case MFW_DRV_MSG_CRITICAL_ERROR_OCCURRED:
2097 			qed_mcp_handle_critical_error(p_hwfn, p_ptt);
2098 			break;
2099 		case MFW_DRV_MSG_GET_TLV_REQ:
2100 			qed_mfw_tlv_req(p_hwfn);
2101 			break;
2102 		default:
2103 			DP_INFO(p_hwfn, "Unimplemented MFW message %d\n", i);
2104 			rc = -EINVAL;
2105 		}
2106 
2107 		clear_bit(QED_MCP_IN_PROCESSING_BIT,
2108 			  &p_hwfn->mcp_info->mcp_handling_status);
2109 	}
2110 
2111 	/* ACK everything */
2112 	for (i = 0; i < MFW_DRV_MSG_MAX_DWORDS(info->mfw_mb_length); i++) {
2113 		__be32 val = cpu_to_be32(((u32 *)info->mfw_mb_cur)[i]);
2114 
2115 		/* MFW expect answer in BE, so we force write in that format */
2116 		qed_wr(p_hwfn, p_ptt,
2117 		       info->mfw_mb_addr + sizeof(u32) +
2118 		       MFW_DRV_MSG_MAX_DWORDS(info->mfw_mb_length) *
2119 		       sizeof(u32) + i * sizeof(u32),
2120 		       (__force u32)val);
2121 	}
2122 
2123 	if (!found) {
2124 		DP_NOTICE(p_hwfn,
2125 			  "Received an MFW message indication but no new message!\n");
2126 		rc = -EINVAL;
2127 	}
2128 
2129 	/* Copy the new mfw messages into the shadow */
2130 	memcpy(info->mfw_mb_shadow, info->mfw_mb_cur, info->mfw_mb_length);
2131 
2132 	return rc;
2133 }
2134 
2135 int qed_mcp_get_mfw_ver(struct qed_hwfn *p_hwfn,
2136 			struct qed_ptt *p_ptt,
2137 			u32 *p_mfw_ver, u32 *p_running_bundle_id)
2138 {
2139 	u32 global_offsize, public_base;
2140 
2141 	if (IS_VF(p_hwfn->cdev)) {
2142 		if (p_hwfn->vf_iov_info) {
2143 			struct pfvf_acquire_resp_tlv *p_resp;
2144 
2145 			p_resp = &p_hwfn->vf_iov_info->acquire_resp;
2146 			*p_mfw_ver = p_resp->pfdev_info.mfw_ver;
2147 			return 0;
2148 		} else {
2149 			DP_VERBOSE(p_hwfn,
2150 				   QED_MSG_IOV,
2151 				   "VF requested MFW version prior to ACQUIRE\n");
2152 			return -EINVAL;
2153 		}
2154 	}
2155 
2156 	public_base = p_hwfn->mcp_info->public_base;
2157 	global_offsize = qed_rd(p_hwfn, p_ptt,
2158 				SECTION_OFFSIZE_ADDR(public_base,
2159 						     PUBLIC_GLOBAL));
2160 	*p_mfw_ver =
2161 	    qed_rd(p_hwfn, p_ptt,
2162 		   SECTION_ADDR(global_offsize,
2163 				0) + offsetof(struct public_global, mfw_ver));
2164 
2165 	if (p_running_bundle_id) {
2166 		*p_running_bundle_id = qed_rd(p_hwfn, p_ptt,
2167 					      SECTION_ADDR(global_offsize, 0) +
2168 					      offsetof(struct public_global,
2169 						       running_bundle_id));
2170 	}
2171 
2172 	return 0;
2173 }
2174 
2175 int qed_mcp_get_mbi_ver(struct qed_hwfn *p_hwfn,
2176 			struct qed_ptt *p_ptt, u32 *p_mbi_ver)
2177 {
2178 	u32 nvm_cfg_addr, nvm_cfg1_offset, mbi_ver_addr;
2179 
2180 	if (IS_VF(p_hwfn->cdev))
2181 		return -EINVAL;
2182 
2183 	/* Read the address of the nvm_cfg */
2184 	nvm_cfg_addr = qed_rd(p_hwfn, p_ptt, MISC_REG_GEN_PURP_CR0);
2185 	if (!nvm_cfg_addr) {
2186 		DP_NOTICE(p_hwfn, "Shared memory not initialized\n");
2187 		return -EINVAL;
2188 	}
2189 
2190 	/* Read the offset of nvm_cfg1 */
2191 	nvm_cfg1_offset = qed_rd(p_hwfn, p_ptt, nvm_cfg_addr + 4);
2192 
2193 	mbi_ver_addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
2194 		       offsetof(struct nvm_cfg1, glob) +
2195 		       offsetof(struct nvm_cfg1_glob, mbi_version);
2196 	*p_mbi_ver = qed_rd(p_hwfn, p_ptt,
2197 			    mbi_ver_addr) &
2198 		     (NVM_CFG1_GLOB_MBI_VERSION_0_MASK |
2199 		      NVM_CFG1_GLOB_MBI_VERSION_1_MASK |
2200 		      NVM_CFG1_GLOB_MBI_VERSION_2_MASK);
2201 
2202 	return 0;
2203 }
2204 
2205 int qed_mcp_get_media_type(struct qed_hwfn *p_hwfn,
2206 			   struct qed_ptt *p_ptt, u32 *p_media_type)
2207 {
2208 	*p_media_type = MEDIA_UNSPECIFIED;
2209 
2210 	if (IS_VF(p_hwfn->cdev))
2211 		return -EINVAL;
2212 
2213 	if (!qed_mcp_is_init(p_hwfn)) {
2214 		DP_NOTICE(p_hwfn, "MFW is not initialized!\n");
2215 		return -EBUSY;
2216 	}
2217 
2218 	if (!p_ptt) {
2219 		*p_media_type = MEDIA_UNSPECIFIED;
2220 		return -EINVAL;
2221 	}
2222 
2223 	*p_media_type = qed_rd(p_hwfn, p_ptt,
2224 			       p_hwfn->mcp_info->port_addr +
2225 			       offsetof(struct public_port,
2226 					media_type));
2227 
2228 	return 0;
2229 }
2230 
2231 int qed_mcp_get_transceiver_data(struct qed_hwfn *p_hwfn,
2232 				 struct qed_ptt *p_ptt,
2233 				 u32 *p_transceiver_state,
2234 				 u32 *p_transceiver_type)
2235 {
2236 	u32 transceiver_info;
2237 
2238 	*p_transceiver_type = ETH_TRANSCEIVER_TYPE_NONE;
2239 	*p_transceiver_state = ETH_TRANSCEIVER_STATE_UPDATING;
2240 
2241 	if (IS_VF(p_hwfn->cdev))
2242 		return -EINVAL;
2243 
2244 	if (!qed_mcp_is_init(p_hwfn)) {
2245 		DP_NOTICE(p_hwfn, "MFW is not initialized!\n");
2246 		return -EBUSY;
2247 	}
2248 
2249 	transceiver_info = qed_rd(p_hwfn, p_ptt,
2250 				  p_hwfn->mcp_info->port_addr +
2251 				  offsetof(struct public_port,
2252 					   transceiver_data));
2253 
2254 	*p_transceiver_state = (transceiver_info &
2255 				ETH_TRANSCEIVER_STATE_MASK) >>
2256 				ETH_TRANSCEIVER_STATE_OFFSET;
2257 
2258 	if (*p_transceiver_state == ETH_TRANSCEIVER_STATE_PRESENT)
2259 		*p_transceiver_type = (transceiver_info &
2260 				       ETH_TRANSCEIVER_TYPE_MASK) >>
2261 				       ETH_TRANSCEIVER_TYPE_OFFSET;
2262 	else
2263 		*p_transceiver_type = ETH_TRANSCEIVER_TYPE_UNKNOWN;
2264 
2265 	return 0;
2266 }
2267 
2268 static bool qed_is_transceiver_ready(u32 transceiver_state,
2269 				     u32 transceiver_type)
2270 {
2271 	if ((transceiver_state & ETH_TRANSCEIVER_STATE_PRESENT) &&
2272 	    ((transceiver_state & ETH_TRANSCEIVER_STATE_UPDATING) == 0x0) &&
2273 	    (transceiver_type != ETH_TRANSCEIVER_TYPE_NONE))
2274 		return true;
2275 
2276 	return false;
2277 }
2278 
2279 int qed_mcp_trans_speed_mask(struct qed_hwfn *p_hwfn,
2280 			     struct qed_ptt *p_ptt, u32 *p_speed_mask)
2281 {
2282 	u32 transceiver_type, transceiver_state;
2283 	int ret;
2284 
2285 	ret = qed_mcp_get_transceiver_data(p_hwfn, p_ptt, &transceiver_state,
2286 					   &transceiver_type);
2287 	if (ret)
2288 		return ret;
2289 
2290 	if (qed_is_transceiver_ready(transceiver_state, transceiver_type) ==
2291 				     false)
2292 		return -EINVAL;
2293 
2294 	switch (transceiver_type) {
2295 	case ETH_TRANSCEIVER_TYPE_1G_LX:
2296 	case ETH_TRANSCEIVER_TYPE_1G_SX:
2297 	case ETH_TRANSCEIVER_TYPE_1G_PCC:
2298 	case ETH_TRANSCEIVER_TYPE_1G_ACC:
2299 	case ETH_TRANSCEIVER_TYPE_1000BASET:
2300 		*p_speed_mask = NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_1G;
2301 		break;
2302 	case ETH_TRANSCEIVER_TYPE_10G_SR:
2303 	case ETH_TRANSCEIVER_TYPE_10G_LR:
2304 	case ETH_TRANSCEIVER_TYPE_10G_LRM:
2305 	case ETH_TRANSCEIVER_TYPE_10G_ER:
2306 	case ETH_TRANSCEIVER_TYPE_10G_PCC:
2307 	case ETH_TRANSCEIVER_TYPE_10G_ACC:
2308 	case ETH_TRANSCEIVER_TYPE_4x10G:
2309 		*p_speed_mask = NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_10G;
2310 		break;
2311 	case ETH_TRANSCEIVER_TYPE_40G_LR4:
2312 	case ETH_TRANSCEIVER_TYPE_40G_SR4:
2313 	case ETH_TRANSCEIVER_TYPE_MULTI_RATE_10G_40G_SR:
2314 	case ETH_TRANSCEIVER_TYPE_MULTI_RATE_10G_40G_LR:
2315 		*p_speed_mask = NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_40G |
2316 		    NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_10G;
2317 		break;
2318 	case ETH_TRANSCEIVER_TYPE_100G_AOC:
2319 	case ETH_TRANSCEIVER_TYPE_100G_SR4:
2320 	case ETH_TRANSCEIVER_TYPE_100G_LR4:
2321 	case ETH_TRANSCEIVER_TYPE_100G_ER4:
2322 	case ETH_TRANSCEIVER_TYPE_100G_ACC:
2323 		*p_speed_mask =
2324 		    NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_BB_100G |
2325 		    NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_25G;
2326 		break;
2327 	case ETH_TRANSCEIVER_TYPE_25G_SR:
2328 	case ETH_TRANSCEIVER_TYPE_25G_LR:
2329 	case ETH_TRANSCEIVER_TYPE_25G_AOC:
2330 	case ETH_TRANSCEIVER_TYPE_25G_ACC_S:
2331 	case ETH_TRANSCEIVER_TYPE_25G_ACC_M:
2332 	case ETH_TRANSCEIVER_TYPE_25G_ACC_L:
2333 		*p_speed_mask = NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_25G;
2334 		break;
2335 	case ETH_TRANSCEIVER_TYPE_25G_CA_N:
2336 	case ETH_TRANSCEIVER_TYPE_25G_CA_S:
2337 	case ETH_TRANSCEIVER_TYPE_25G_CA_L:
2338 	case ETH_TRANSCEIVER_TYPE_4x25G_CR:
2339 		*p_speed_mask = NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_25G |
2340 		    NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_10G |
2341 		    NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_1G;
2342 		break;
2343 	case ETH_TRANSCEIVER_TYPE_MULTI_RATE_10G_25G_SR:
2344 	case ETH_TRANSCEIVER_TYPE_MULTI_RATE_10G_25G_LR:
2345 		*p_speed_mask = NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_25G |
2346 				NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_10G;
2347 		break;
2348 	case ETH_TRANSCEIVER_TYPE_40G_CR4:
2349 	case ETH_TRANSCEIVER_TYPE_MULTI_RATE_10G_40G_CR:
2350 		*p_speed_mask = NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_40G |
2351 		    NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_10G |
2352 		    NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_1G;
2353 		break;
2354 	case ETH_TRANSCEIVER_TYPE_100G_CR4:
2355 	case ETH_TRANSCEIVER_TYPE_MULTI_RATE_40G_100G_CR:
2356 		*p_speed_mask =
2357 		    NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_BB_100G |
2358 		    NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_50G |
2359 		    NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_40G |
2360 		    NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_25G |
2361 		    NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_20G |
2362 		    NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_10G |
2363 		    NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_1G;
2364 		break;
2365 	case ETH_TRANSCEIVER_TYPE_MULTI_RATE_40G_100G_SR:
2366 	case ETH_TRANSCEIVER_TYPE_MULTI_RATE_40G_100G_LR:
2367 	case ETH_TRANSCEIVER_TYPE_MULTI_RATE_40G_100G_AOC:
2368 		*p_speed_mask =
2369 		    NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_BB_100G |
2370 		    NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_40G |
2371 		    NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_25G |
2372 		    NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_10G;
2373 		break;
2374 	case ETH_TRANSCEIVER_TYPE_XLPPI:
2375 		*p_speed_mask = NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_40G;
2376 		break;
2377 	case ETH_TRANSCEIVER_TYPE_10G_BASET:
2378 	case ETH_TRANSCEIVER_TYPE_MULTI_RATE_1G_10G_SR:
2379 	case ETH_TRANSCEIVER_TYPE_MULTI_RATE_1G_10G_LR:
2380 		*p_speed_mask = NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_10G |
2381 				NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_1G;
2382 		break;
2383 	default:
2384 		DP_INFO(p_hwfn, "Unknown transceiver type 0x%x\n",
2385 			transceiver_type);
2386 		*p_speed_mask = 0xff;
2387 		break;
2388 	}
2389 
2390 	return 0;
2391 }
2392 
2393 int qed_mcp_get_board_config(struct qed_hwfn *p_hwfn,
2394 			     struct qed_ptt *p_ptt, u32 *p_board_config)
2395 {
2396 	u32 nvm_cfg_addr, nvm_cfg1_offset, port_cfg_addr;
2397 
2398 	if (IS_VF(p_hwfn->cdev))
2399 		return -EINVAL;
2400 
2401 	if (!qed_mcp_is_init(p_hwfn)) {
2402 		DP_NOTICE(p_hwfn, "MFW is not initialized!\n");
2403 		return -EBUSY;
2404 	}
2405 	if (!p_ptt) {
2406 		*p_board_config = NVM_CFG1_PORT_PORT_TYPE_UNDEFINED;
2407 		return -EINVAL;
2408 	}
2409 
2410 	nvm_cfg_addr = qed_rd(p_hwfn, p_ptt, MISC_REG_GEN_PURP_CR0);
2411 	nvm_cfg1_offset = qed_rd(p_hwfn, p_ptt, nvm_cfg_addr + 4);
2412 	port_cfg_addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
2413 			offsetof(struct nvm_cfg1, port[MFW_PORT(p_hwfn)]);
2414 	*p_board_config = qed_rd(p_hwfn, p_ptt,
2415 				 port_cfg_addr +
2416 				 offsetof(struct nvm_cfg1_port,
2417 					  board_cfg));
2418 
2419 	return 0;
2420 }
2421 
2422 /* Old MFW has a global configuration for all PFs regarding RDMA support */
2423 static void
2424 qed_mcp_get_shmem_proto_legacy(struct qed_hwfn *p_hwfn,
2425 			       enum qed_pci_personality *p_proto)
2426 {
2427 	/* There wasn't ever a legacy MFW that published iwarp.
2428 	 * So at this point, this is either plain l2 or RoCE.
2429 	 */
2430 	if (test_bit(QED_DEV_CAP_ROCE, &p_hwfn->hw_info.device_capabilities))
2431 		*p_proto = QED_PCI_ETH_ROCE;
2432 	else
2433 		*p_proto = QED_PCI_ETH;
2434 
2435 	DP_VERBOSE(p_hwfn, NETIF_MSG_IFUP,
2436 		   "According to Legacy capabilities, L2 personality is %08x\n",
2437 		   (u32)*p_proto);
2438 }
2439 
2440 static int
2441 qed_mcp_get_shmem_proto_mfw(struct qed_hwfn *p_hwfn,
2442 			    struct qed_ptt *p_ptt,
2443 			    enum qed_pci_personality *p_proto)
2444 {
2445 	u32 resp = 0, param = 0;
2446 	int rc;
2447 
2448 	rc = qed_mcp_cmd(p_hwfn, p_ptt,
2449 			 DRV_MSG_CODE_GET_PF_RDMA_PROTOCOL, 0, &resp, &param);
2450 	if (rc)
2451 		return rc;
2452 	if (resp != FW_MSG_CODE_OK) {
2453 		DP_VERBOSE(p_hwfn, NETIF_MSG_IFUP,
2454 			   "MFW lacks support for command; Returns %08x\n",
2455 			   resp);
2456 		return -EINVAL;
2457 	}
2458 
2459 	switch (param) {
2460 	case FW_MB_PARAM_GET_PF_RDMA_NONE:
2461 		*p_proto = QED_PCI_ETH;
2462 		break;
2463 	case FW_MB_PARAM_GET_PF_RDMA_ROCE:
2464 		*p_proto = QED_PCI_ETH_ROCE;
2465 		break;
2466 	case FW_MB_PARAM_GET_PF_RDMA_IWARP:
2467 		*p_proto = QED_PCI_ETH_IWARP;
2468 		break;
2469 	case FW_MB_PARAM_GET_PF_RDMA_BOTH:
2470 		*p_proto = QED_PCI_ETH_RDMA;
2471 		break;
2472 	default:
2473 		DP_NOTICE(p_hwfn,
2474 			  "MFW answers GET_PF_RDMA_PROTOCOL but param is %08x\n",
2475 			  param);
2476 		return -EINVAL;
2477 	}
2478 
2479 	DP_VERBOSE(p_hwfn,
2480 		   NETIF_MSG_IFUP,
2481 		   "According to capabilities, L2 personality is %08x [resp %08x param %08x]\n",
2482 		   (u32)*p_proto, resp, param);
2483 	return 0;
2484 }
2485 
2486 static int
2487 qed_mcp_get_shmem_proto(struct qed_hwfn *p_hwfn,
2488 			struct public_func *p_info,
2489 			struct qed_ptt *p_ptt,
2490 			enum qed_pci_personality *p_proto)
2491 {
2492 	int rc = 0;
2493 
2494 	switch (p_info->config & FUNC_MF_CFG_PROTOCOL_MASK) {
2495 	case FUNC_MF_CFG_PROTOCOL_ETHERNET:
2496 		if (!IS_ENABLED(CONFIG_QED_RDMA))
2497 			*p_proto = QED_PCI_ETH;
2498 		else if (qed_mcp_get_shmem_proto_mfw(p_hwfn, p_ptt, p_proto))
2499 			qed_mcp_get_shmem_proto_legacy(p_hwfn, p_proto);
2500 		break;
2501 	case FUNC_MF_CFG_PROTOCOL_ISCSI:
2502 		*p_proto = QED_PCI_ISCSI;
2503 		break;
2504 	case FUNC_MF_CFG_PROTOCOL_FCOE:
2505 		*p_proto = QED_PCI_FCOE;
2506 		break;
2507 	case FUNC_MF_CFG_PROTOCOL_ROCE:
2508 		DP_NOTICE(p_hwfn, "RoCE personality is not a valid value!\n");
2509 		fallthrough;
2510 	default:
2511 		rc = -EINVAL;
2512 	}
2513 
2514 	return rc;
2515 }
2516 
2517 int qed_mcp_fill_shmem_func_info(struct qed_hwfn *p_hwfn,
2518 				 struct qed_ptt *p_ptt)
2519 {
2520 	struct qed_mcp_function_info *info;
2521 	struct public_func shmem_info;
2522 
2523 	qed_mcp_get_shmem_func(p_hwfn, p_ptt, &shmem_info, MCP_PF_ID(p_hwfn));
2524 	info = &p_hwfn->mcp_info->func_info;
2525 
2526 	info->pause_on_host = (shmem_info.config &
2527 			       FUNC_MF_CFG_PAUSE_ON_HOST_RING) ? 1 : 0;
2528 
2529 	if (qed_mcp_get_shmem_proto(p_hwfn, &shmem_info, p_ptt,
2530 				    &info->protocol)) {
2531 		DP_ERR(p_hwfn, "Unknown personality %08x\n",
2532 		       (u32)(shmem_info.config & FUNC_MF_CFG_PROTOCOL_MASK));
2533 		return -EINVAL;
2534 	}
2535 
2536 	qed_read_pf_bandwidth(p_hwfn, &shmem_info);
2537 
2538 	if (shmem_info.mac_upper || shmem_info.mac_lower) {
2539 		info->mac[0] = (u8)(shmem_info.mac_upper >> 8);
2540 		info->mac[1] = (u8)(shmem_info.mac_upper);
2541 		info->mac[2] = (u8)(shmem_info.mac_lower >> 24);
2542 		info->mac[3] = (u8)(shmem_info.mac_lower >> 16);
2543 		info->mac[4] = (u8)(shmem_info.mac_lower >> 8);
2544 		info->mac[5] = (u8)(shmem_info.mac_lower);
2545 
2546 		/* Store primary MAC for later possible WoL */
2547 		memcpy(&p_hwfn->cdev->wol_mac, info->mac, ETH_ALEN);
2548 	} else {
2549 		DP_NOTICE(p_hwfn, "MAC is 0 in shmem\n");
2550 	}
2551 
2552 	info->wwn_port = (u64)shmem_info.fcoe_wwn_port_name_lower |
2553 			 (((u64)shmem_info.fcoe_wwn_port_name_upper) << 32);
2554 	info->wwn_node = (u64)shmem_info.fcoe_wwn_node_name_lower |
2555 			 (((u64)shmem_info.fcoe_wwn_node_name_upper) << 32);
2556 
2557 	info->ovlan = (u16)(shmem_info.ovlan_stag & FUNC_MF_CFG_OV_STAG_MASK);
2558 
2559 	info->mtu = (u16)shmem_info.mtu_size;
2560 
2561 	p_hwfn->hw_info.b_wol_support = QED_WOL_SUPPORT_NONE;
2562 	p_hwfn->cdev->wol_config = (u8)QED_OV_WOL_DEFAULT;
2563 	if (qed_mcp_is_init(p_hwfn)) {
2564 		u32 resp = 0, param = 0;
2565 		int rc;
2566 
2567 		rc = qed_mcp_cmd(p_hwfn, p_ptt,
2568 				 DRV_MSG_CODE_OS_WOL, 0, &resp, &param);
2569 		if (rc)
2570 			return rc;
2571 		if (resp == FW_MSG_CODE_OS_WOL_SUPPORTED)
2572 			p_hwfn->hw_info.b_wol_support = QED_WOL_SUPPORT_PME;
2573 	}
2574 
2575 	DP_VERBOSE(p_hwfn, (QED_MSG_SP | NETIF_MSG_IFUP),
2576 		   "Read configuration from shmem: pause_on_host %02x protocol %02x BW [%02x - %02x] MAC %pM wwn port %llx node %llx ovlan %04x wol %02x\n",
2577 		info->pause_on_host, info->protocol,
2578 		info->bandwidth_min, info->bandwidth_max,
2579 		info->mac,
2580 		info->wwn_port, info->wwn_node,
2581 		info->ovlan, (u8)p_hwfn->hw_info.b_wol_support);
2582 
2583 	return 0;
2584 }
2585 
2586 struct qed_mcp_link_params
2587 *qed_mcp_get_link_params(struct qed_hwfn *p_hwfn)
2588 {
2589 	if (!p_hwfn || !p_hwfn->mcp_info)
2590 		return NULL;
2591 	return &p_hwfn->mcp_info->link_input;
2592 }
2593 
2594 struct qed_mcp_link_state
2595 *qed_mcp_get_link_state(struct qed_hwfn *p_hwfn)
2596 {
2597 	if (!p_hwfn || !p_hwfn->mcp_info)
2598 		return NULL;
2599 	return &p_hwfn->mcp_info->link_output;
2600 }
2601 
2602 struct qed_mcp_link_capabilities
2603 *qed_mcp_get_link_capabilities(struct qed_hwfn *p_hwfn)
2604 {
2605 	if (!p_hwfn || !p_hwfn->mcp_info)
2606 		return NULL;
2607 	return &p_hwfn->mcp_info->link_capabilities;
2608 }
2609 
2610 int qed_mcp_drain(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2611 {
2612 	u32 resp = 0, param = 0;
2613 	int rc;
2614 
2615 	rc = qed_mcp_cmd(p_hwfn, p_ptt,
2616 			 DRV_MSG_CODE_NIG_DRAIN, 1000, &resp, &param);
2617 
2618 	/* Wait for the drain to complete before returning */
2619 	msleep(1020);
2620 
2621 	return rc;
2622 }
2623 
2624 int qed_mcp_get_flash_size(struct qed_hwfn *p_hwfn,
2625 			   struct qed_ptt *p_ptt, u32 *p_flash_size)
2626 {
2627 	u32 flash_size;
2628 
2629 	if (IS_VF(p_hwfn->cdev))
2630 		return -EINVAL;
2631 
2632 	flash_size = qed_rd(p_hwfn, p_ptt, MCP_REG_NVM_CFG4);
2633 	flash_size = (flash_size & MCP_REG_NVM_CFG4_FLASH_SIZE) >>
2634 		      MCP_REG_NVM_CFG4_FLASH_SIZE_SHIFT;
2635 	flash_size = (1 << (flash_size + MCP_BYTES_PER_MBIT_SHIFT));
2636 
2637 	*p_flash_size = flash_size;
2638 
2639 	return 0;
2640 }
2641 
2642 int qed_start_recovery_process(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2643 {
2644 	struct qed_dev *cdev = p_hwfn->cdev;
2645 
2646 	if (cdev->recov_in_prog) {
2647 		DP_NOTICE(p_hwfn,
2648 			  "Avoid triggering a recovery since such a process is already in progress\n");
2649 		return -EAGAIN;
2650 	}
2651 
2652 	DP_NOTICE(p_hwfn, "Triggering a recovery process\n");
2653 	qed_wr(p_hwfn, p_ptt, MISC_REG_AEU_GENERAL_ATTN_35, 0x1);
2654 
2655 	return 0;
2656 }
2657 
2658 #define QED_RECOVERY_PROLOG_SLEEP_MS    100
2659 
2660 int qed_recovery_prolog(struct qed_dev *cdev)
2661 {
2662 	struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
2663 	struct qed_ptt *p_ptt = p_hwfn->p_main_ptt;
2664 	int rc;
2665 
2666 	/* Allow ongoing PCIe transactions to complete */
2667 	msleep(QED_RECOVERY_PROLOG_SLEEP_MS);
2668 
2669 	/* Clear the PF's internal FID_enable in the PXP */
2670 	rc = qed_pglueb_set_pfid_enable(p_hwfn, p_ptt, false);
2671 	if (rc)
2672 		DP_NOTICE(p_hwfn,
2673 			  "qed_pglueb_set_pfid_enable() failed. rc = %d.\n",
2674 			  rc);
2675 
2676 	return rc;
2677 }
2678 
2679 static int
2680 qed_mcp_config_vf_msix_bb(struct qed_hwfn *p_hwfn,
2681 			  struct qed_ptt *p_ptt, u8 vf_id, u8 num)
2682 {
2683 	u32 resp = 0, param = 0, rc_param = 0;
2684 	int rc;
2685 
2686 	/* Only Leader can configure MSIX, and need to take CMT into account */
2687 	if (!IS_LEAD_HWFN(p_hwfn))
2688 		return 0;
2689 	num *= p_hwfn->cdev->num_hwfns;
2690 
2691 	param |= (vf_id << DRV_MB_PARAM_CFG_VF_MSIX_VF_ID_SHIFT) &
2692 		 DRV_MB_PARAM_CFG_VF_MSIX_VF_ID_MASK;
2693 	param |= (num << DRV_MB_PARAM_CFG_VF_MSIX_SB_NUM_SHIFT) &
2694 		 DRV_MB_PARAM_CFG_VF_MSIX_SB_NUM_MASK;
2695 
2696 	rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_CFG_VF_MSIX, param,
2697 			 &resp, &rc_param);
2698 
2699 	if (resp != FW_MSG_CODE_DRV_CFG_VF_MSIX_DONE) {
2700 		DP_NOTICE(p_hwfn, "VF[%d]: MFW failed to set MSI-X\n", vf_id);
2701 		rc = -EINVAL;
2702 	} else {
2703 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2704 			   "Requested 0x%02x MSI-x interrupts from VF 0x%02x\n",
2705 			   num, vf_id);
2706 	}
2707 
2708 	return rc;
2709 }
2710 
2711 static int
2712 qed_mcp_config_vf_msix_ah(struct qed_hwfn *p_hwfn,
2713 			  struct qed_ptt *p_ptt, u8 num)
2714 {
2715 	u32 resp = 0, param = num, rc_param = 0;
2716 	int rc;
2717 
2718 	rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_CFG_PF_VFS_MSIX,
2719 			 param, &resp, &rc_param);
2720 
2721 	if (resp != FW_MSG_CODE_DRV_CFG_PF_VFS_MSIX_DONE) {
2722 		DP_NOTICE(p_hwfn, "MFW failed to set MSI-X for VFs\n");
2723 		rc = -EINVAL;
2724 	} else {
2725 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2726 			   "Requested 0x%02x MSI-x interrupts for VFs\n", num);
2727 	}
2728 
2729 	return rc;
2730 }
2731 
2732 int qed_mcp_config_vf_msix(struct qed_hwfn *p_hwfn,
2733 			   struct qed_ptt *p_ptt, u8 vf_id, u8 num)
2734 {
2735 	if (QED_IS_BB(p_hwfn->cdev))
2736 		return qed_mcp_config_vf_msix_bb(p_hwfn, p_ptt, vf_id, num);
2737 	else
2738 		return qed_mcp_config_vf_msix_ah(p_hwfn, p_ptt, num);
2739 }
2740 
2741 int
2742 qed_mcp_send_drv_version(struct qed_hwfn *p_hwfn,
2743 			 struct qed_ptt *p_ptt,
2744 			 struct qed_mcp_drv_version *p_ver)
2745 {
2746 	struct qed_mcp_mb_params mb_params;
2747 	struct drv_version_stc drv_version;
2748 	__be32 val;
2749 	u32 i;
2750 	int rc;
2751 
2752 	memset(&drv_version, 0, sizeof(drv_version));
2753 	drv_version.version = p_ver->version;
2754 	for (i = 0; i < (MCP_DRV_VER_STR_SIZE - 4) / sizeof(u32); i++) {
2755 		val = cpu_to_be32(*((u32 *)&p_ver->name[i * sizeof(u32)]));
2756 		*(__be32 *)&drv_version.name[i * sizeof(u32)] = val;
2757 	}
2758 
2759 	memset(&mb_params, 0, sizeof(mb_params));
2760 	mb_params.cmd = DRV_MSG_CODE_SET_VERSION;
2761 	mb_params.p_data_src = &drv_version;
2762 	mb_params.data_src_size = sizeof(drv_version);
2763 	rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params);
2764 	if (rc)
2765 		DP_ERR(p_hwfn, "MCP response failure, aborting\n");
2766 
2767 	return rc;
2768 }
2769 
2770 /* A maximal 100 msec waiting time for the MCP to halt */
2771 #define QED_MCP_HALT_SLEEP_MS		10
2772 #define QED_MCP_HALT_MAX_RETRIES	10
2773 
2774 int qed_mcp_halt(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2775 {
2776 	u32 resp = 0, param = 0, cpu_state, cnt = 0;
2777 	int rc;
2778 
2779 	rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_MCP_HALT, 0, &resp,
2780 			 &param);
2781 	if (rc) {
2782 		DP_ERR(p_hwfn, "MCP response failure, aborting\n");
2783 		return rc;
2784 	}
2785 
2786 	do {
2787 		msleep(QED_MCP_HALT_SLEEP_MS);
2788 		cpu_state = qed_rd(p_hwfn, p_ptt, MCP_REG_CPU_STATE);
2789 		if (cpu_state & MCP_REG_CPU_STATE_SOFT_HALTED)
2790 			break;
2791 	} while (++cnt < QED_MCP_HALT_MAX_RETRIES);
2792 
2793 	if (cnt == QED_MCP_HALT_MAX_RETRIES) {
2794 		DP_NOTICE(p_hwfn,
2795 			  "Failed to halt the MCP [CPU_MODE = 0x%08x, CPU_STATE = 0x%08x]\n",
2796 			  qed_rd(p_hwfn, p_ptt, MCP_REG_CPU_MODE), cpu_state);
2797 		return -EBUSY;
2798 	}
2799 
2800 	qed_mcp_cmd_set_blocking(p_hwfn, true);
2801 
2802 	return 0;
2803 }
2804 
2805 #define QED_MCP_RESUME_SLEEP_MS	10
2806 
2807 int qed_mcp_resume(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2808 {
2809 	u32 cpu_mode, cpu_state;
2810 
2811 	qed_wr(p_hwfn, p_ptt, MCP_REG_CPU_STATE, 0xffffffff);
2812 
2813 	cpu_mode = qed_rd(p_hwfn, p_ptt, MCP_REG_CPU_MODE);
2814 	cpu_mode &= ~MCP_REG_CPU_MODE_SOFT_HALT;
2815 	qed_wr(p_hwfn, p_ptt, MCP_REG_CPU_MODE, cpu_mode);
2816 	msleep(QED_MCP_RESUME_SLEEP_MS);
2817 	cpu_state = qed_rd(p_hwfn, p_ptt, MCP_REG_CPU_STATE);
2818 
2819 	if (cpu_state & MCP_REG_CPU_STATE_SOFT_HALTED) {
2820 		DP_NOTICE(p_hwfn,
2821 			  "Failed to resume the MCP [CPU_MODE = 0x%08x, CPU_STATE = 0x%08x]\n",
2822 			  cpu_mode, cpu_state);
2823 		return -EBUSY;
2824 	}
2825 
2826 	qed_mcp_cmd_set_blocking(p_hwfn, false);
2827 
2828 	return 0;
2829 }
2830 
2831 int qed_mcp_ov_update_current_config(struct qed_hwfn *p_hwfn,
2832 				     struct qed_ptt *p_ptt,
2833 				     enum qed_ov_client client)
2834 {
2835 	u32 resp = 0, param = 0;
2836 	u32 drv_mb_param;
2837 	int rc;
2838 
2839 	switch (client) {
2840 	case QED_OV_CLIENT_DRV:
2841 		drv_mb_param = DRV_MB_PARAM_OV_CURR_CFG_OS;
2842 		break;
2843 	case QED_OV_CLIENT_USER:
2844 		drv_mb_param = DRV_MB_PARAM_OV_CURR_CFG_OTHER;
2845 		break;
2846 	case QED_OV_CLIENT_VENDOR_SPEC:
2847 		drv_mb_param = DRV_MB_PARAM_OV_CURR_CFG_VENDOR_SPEC;
2848 		break;
2849 	default:
2850 		DP_NOTICE(p_hwfn, "Invalid client type %d\n", client);
2851 		return -EINVAL;
2852 	}
2853 
2854 	rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_OV_UPDATE_CURR_CFG,
2855 			 drv_mb_param, &resp, &param);
2856 	if (rc)
2857 		DP_ERR(p_hwfn, "MCP response failure, aborting\n");
2858 
2859 	return rc;
2860 }
2861 
2862 int qed_mcp_ov_update_driver_state(struct qed_hwfn *p_hwfn,
2863 				   struct qed_ptt *p_ptt,
2864 				   enum qed_ov_driver_state drv_state)
2865 {
2866 	u32 resp = 0, param = 0;
2867 	u32 drv_mb_param;
2868 	int rc;
2869 
2870 	switch (drv_state) {
2871 	case QED_OV_DRIVER_STATE_NOT_LOADED:
2872 		drv_mb_param = DRV_MSG_CODE_OV_UPDATE_DRIVER_STATE_NOT_LOADED;
2873 		break;
2874 	case QED_OV_DRIVER_STATE_DISABLED:
2875 		drv_mb_param = DRV_MSG_CODE_OV_UPDATE_DRIVER_STATE_DISABLED;
2876 		break;
2877 	case QED_OV_DRIVER_STATE_ACTIVE:
2878 		drv_mb_param = DRV_MSG_CODE_OV_UPDATE_DRIVER_STATE_ACTIVE;
2879 		break;
2880 	default:
2881 		DP_NOTICE(p_hwfn, "Invalid driver state %d\n", drv_state);
2882 		return -EINVAL;
2883 	}
2884 
2885 	rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_OV_UPDATE_DRIVER_STATE,
2886 			 drv_mb_param, &resp, &param);
2887 	if (rc)
2888 		DP_ERR(p_hwfn, "Failed to send driver state\n");
2889 
2890 	return rc;
2891 }
2892 
2893 int qed_mcp_ov_update_mtu(struct qed_hwfn *p_hwfn,
2894 			  struct qed_ptt *p_ptt, u16 mtu)
2895 {
2896 	u32 resp = 0, param = 0;
2897 	u32 drv_mb_param;
2898 	int rc;
2899 
2900 	drv_mb_param = (u32)mtu << DRV_MB_PARAM_OV_MTU_SIZE_SHIFT;
2901 	rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_OV_UPDATE_MTU,
2902 			 drv_mb_param, &resp, &param);
2903 	if (rc)
2904 		DP_ERR(p_hwfn, "Failed to send mtu value, rc = %d\n", rc);
2905 
2906 	return rc;
2907 }
2908 
2909 int qed_mcp_ov_update_mac(struct qed_hwfn *p_hwfn,
2910 			  struct qed_ptt *p_ptt, const u8 *mac)
2911 {
2912 	struct qed_mcp_mb_params mb_params;
2913 	u32 mfw_mac[2];
2914 	int rc;
2915 
2916 	memset(&mb_params, 0, sizeof(mb_params));
2917 	mb_params.cmd = DRV_MSG_CODE_SET_VMAC;
2918 	mb_params.param = DRV_MSG_CODE_VMAC_TYPE_MAC <<
2919 			  DRV_MSG_CODE_VMAC_TYPE_SHIFT;
2920 	mb_params.param |= MCP_PF_ID(p_hwfn);
2921 
2922 	/* MCP is BE, and on LE platforms PCI would swap access to SHMEM
2923 	 * in 32-bit granularity.
2924 	 * So the MAC has to be set in native order [and not byte order],
2925 	 * otherwise it would be read incorrectly by MFW after swap.
2926 	 */
2927 	mfw_mac[0] = mac[0] << 24 | mac[1] << 16 | mac[2] << 8 | mac[3];
2928 	mfw_mac[1] = mac[4] << 24 | mac[5] << 16;
2929 
2930 	mb_params.p_data_src = (u8 *)mfw_mac;
2931 	mb_params.data_src_size = 8;
2932 	rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params);
2933 	if (rc)
2934 		DP_ERR(p_hwfn, "Failed to send mac address, rc = %d\n", rc);
2935 
2936 	/* Store primary MAC for later possible WoL */
2937 	memcpy(p_hwfn->cdev->wol_mac, mac, ETH_ALEN);
2938 
2939 	return rc;
2940 }
2941 
2942 int qed_mcp_ov_update_wol(struct qed_hwfn *p_hwfn,
2943 			  struct qed_ptt *p_ptt, enum qed_ov_wol wol)
2944 {
2945 	u32 resp = 0, param = 0;
2946 	u32 drv_mb_param;
2947 	int rc;
2948 
2949 	if (p_hwfn->hw_info.b_wol_support == QED_WOL_SUPPORT_NONE) {
2950 		DP_VERBOSE(p_hwfn, QED_MSG_SP,
2951 			   "Can't change WoL configuration when WoL isn't supported\n");
2952 		return -EINVAL;
2953 	}
2954 
2955 	switch (wol) {
2956 	case QED_OV_WOL_DEFAULT:
2957 		drv_mb_param = DRV_MB_PARAM_WOL_DEFAULT;
2958 		break;
2959 	case QED_OV_WOL_DISABLED:
2960 		drv_mb_param = DRV_MB_PARAM_WOL_DISABLED;
2961 		break;
2962 	case QED_OV_WOL_ENABLED:
2963 		drv_mb_param = DRV_MB_PARAM_WOL_ENABLED;
2964 		break;
2965 	default:
2966 		DP_ERR(p_hwfn, "Invalid wol state %d\n", wol);
2967 		return -EINVAL;
2968 	}
2969 
2970 	rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_OV_UPDATE_WOL,
2971 			 drv_mb_param, &resp, &param);
2972 	if (rc)
2973 		DP_ERR(p_hwfn, "Failed to send wol mode, rc = %d\n", rc);
2974 
2975 	/* Store the WoL update for a future unload */
2976 	p_hwfn->cdev->wol_config = (u8)wol;
2977 
2978 	return rc;
2979 }
2980 
2981 int qed_mcp_ov_update_eswitch(struct qed_hwfn *p_hwfn,
2982 			      struct qed_ptt *p_ptt,
2983 			      enum qed_ov_eswitch eswitch)
2984 {
2985 	u32 resp = 0, param = 0;
2986 	u32 drv_mb_param;
2987 	int rc;
2988 
2989 	switch (eswitch) {
2990 	case QED_OV_ESWITCH_NONE:
2991 		drv_mb_param = DRV_MB_PARAM_ESWITCH_MODE_NONE;
2992 		break;
2993 	case QED_OV_ESWITCH_VEB:
2994 		drv_mb_param = DRV_MB_PARAM_ESWITCH_MODE_VEB;
2995 		break;
2996 	case QED_OV_ESWITCH_VEPA:
2997 		drv_mb_param = DRV_MB_PARAM_ESWITCH_MODE_VEPA;
2998 		break;
2999 	default:
3000 		DP_ERR(p_hwfn, "Invalid eswitch mode %d\n", eswitch);
3001 		return -EINVAL;
3002 	}
3003 
3004 	rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_OV_UPDATE_ESWITCH_MODE,
3005 			 drv_mb_param, &resp, &param);
3006 	if (rc)
3007 		DP_ERR(p_hwfn, "Failed to send eswitch mode, rc = %d\n", rc);
3008 
3009 	return rc;
3010 }
3011 
3012 int qed_mcp_set_led(struct qed_hwfn *p_hwfn,
3013 		    struct qed_ptt *p_ptt, enum qed_led_mode mode)
3014 {
3015 	u32 resp = 0, param = 0, drv_mb_param;
3016 	int rc;
3017 
3018 	switch (mode) {
3019 	case QED_LED_MODE_ON:
3020 		drv_mb_param = DRV_MB_PARAM_SET_LED_MODE_ON;
3021 		break;
3022 	case QED_LED_MODE_OFF:
3023 		drv_mb_param = DRV_MB_PARAM_SET_LED_MODE_OFF;
3024 		break;
3025 	case QED_LED_MODE_RESTORE:
3026 		drv_mb_param = DRV_MB_PARAM_SET_LED_MODE_OPER;
3027 		break;
3028 	default:
3029 		DP_NOTICE(p_hwfn, "Invalid LED mode %d\n", mode);
3030 		return -EINVAL;
3031 	}
3032 
3033 	rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_SET_LED_MODE,
3034 			 drv_mb_param, &resp, &param);
3035 
3036 	return rc;
3037 }
3038 
3039 int qed_mcp_mask_parities(struct qed_hwfn *p_hwfn,
3040 			  struct qed_ptt *p_ptt, u32 mask_parities)
3041 {
3042 	u32 resp = 0, param = 0;
3043 	int rc;
3044 
3045 	rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_MASK_PARITIES,
3046 			 mask_parities, &resp, &param);
3047 
3048 	if (rc) {
3049 		DP_ERR(p_hwfn,
3050 		       "MCP response failure for mask parities, aborting\n");
3051 	} else if (resp != FW_MSG_CODE_OK) {
3052 		DP_ERR(p_hwfn,
3053 		       "MCP did not acknowledge mask parity request. Old MFW?\n");
3054 		rc = -EINVAL;
3055 	}
3056 
3057 	return rc;
3058 }
3059 
3060 int qed_mcp_nvm_read(struct qed_dev *cdev, u32 addr, u8 *p_buf, u32 len)
3061 {
3062 	u32 bytes_left = len, offset = 0, bytes_to_copy, read_len = 0;
3063 	struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
3064 	u32 resp = 0, resp_param = 0;
3065 	struct qed_ptt *p_ptt;
3066 	int rc = 0;
3067 
3068 	p_ptt = qed_ptt_acquire(p_hwfn);
3069 	if (!p_ptt)
3070 		return -EBUSY;
3071 
3072 	while (bytes_left > 0) {
3073 		bytes_to_copy = min_t(u32, bytes_left, MCP_DRV_NVM_BUF_LEN);
3074 
3075 		rc = qed_mcp_nvm_rd_cmd(p_hwfn, p_ptt,
3076 					DRV_MSG_CODE_NVM_READ_NVRAM,
3077 					addr + offset +
3078 					(bytes_to_copy <<
3079 					 DRV_MB_PARAM_NVM_LEN_OFFSET),
3080 					&resp, &resp_param,
3081 					&read_len,
3082 					(u32 *)(p_buf + offset), true);
3083 
3084 		if (rc || (resp != FW_MSG_CODE_NVM_OK)) {
3085 			DP_NOTICE(cdev, "MCP command rc = %d\n", rc);
3086 			break;
3087 		}
3088 
3089 		offset += read_len;
3090 		bytes_left -= read_len;
3091 	}
3092 
3093 	cdev->mcp_nvm_resp = resp;
3094 	qed_ptt_release(p_hwfn, p_ptt);
3095 
3096 	return rc;
3097 }
3098 
3099 int qed_mcp_nvm_resp(struct qed_dev *cdev, u8 *p_buf)
3100 {
3101 	struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
3102 	struct qed_ptt *p_ptt;
3103 
3104 	p_ptt = qed_ptt_acquire(p_hwfn);
3105 	if (!p_ptt)
3106 		return -EBUSY;
3107 
3108 	memcpy(p_buf, &cdev->mcp_nvm_resp, sizeof(cdev->mcp_nvm_resp));
3109 	qed_ptt_release(p_hwfn, p_ptt);
3110 
3111 	return 0;
3112 }
3113 
3114 int qed_mcp_nvm_write(struct qed_dev *cdev,
3115 		      u32 cmd, u32 addr, u8 *p_buf, u32 len)
3116 {
3117 	u32 buf_idx = 0, buf_size, nvm_cmd, nvm_offset, resp = 0, param;
3118 	struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
3119 	struct qed_ptt *p_ptt;
3120 	int rc = -EINVAL;
3121 
3122 	p_ptt = qed_ptt_acquire(p_hwfn);
3123 	if (!p_ptt)
3124 		return -EBUSY;
3125 
3126 	switch (cmd) {
3127 	case QED_PUT_FILE_BEGIN:
3128 		nvm_cmd = DRV_MSG_CODE_NVM_PUT_FILE_BEGIN;
3129 		break;
3130 	case QED_PUT_FILE_DATA:
3131 		nvm_cmd = DRV_MSG_CODE_NVM_PUT_FILE_DATA;
3132 		break;
3133 	case QED_NVM_WRITE_NVRAM:
3134 		nvm_cmd = DRV_MSG_CODE_NVM_WRITE_NVRAM;
3135 		break;
3136 	default:
3137 		DP_NOTICE(p_hwfn, "Invalid nvm write command 0x%x\n", cmd);
3138 		rc = -EINVAL;
3139 		goto out;
3140 	}
3141 
3142 	buf_size = min_t(u32, (len - buf_idx), MCP_DRV_NVM_BUF_LEN);
3143 	while (buf_idx < len) {
3144 		if (cmd == QED_PUT_FILE_BEGIN)
3145 			nvm_offset = addr;
3146 		else
3147 			nvm_offset = ((buf_size <<
3148 				       DRV_MB_PARAM_NVM_LEN_OFFSET) | addr) +
3149 				       buf_idx;
3150 		rc = qed_mcp_nvm_wr_cmd(p_hwfn, p_ptt, nvm_cmd, nvm_offset,
3151 					&resp, &param, buf_size,
3152 					(u32 *)&p_buf[buf_idx]);
3153 		if (rc) {
3154 			DP_NOTICE(cdev, "nvm write failed, rc = %d\n", rc);
3155 			resp = FW_MSG_CODE_ERROR;
3156 			break;
3157 		}
3158 
3159 		if (resp != FW_MSG_CODE_OK &&
3160 		    resp != FW_MSG_CODE_NVM_OK &&
3161 		    resp != FW_MSG_CODE_NVM_PUT_FILE_FINISH_OK) {
3162 			DP_NOTICE(cdev,
3163 				  "nvm write failed, resp = 0x%08x\n", resp);
3164 			rc = -EINVAL;
3165 			break;
3166 		}
3167 
3168 		/* This can be a lengthy process, and it's possible scheduler
3169 		 * isn't pre-emptable. Sleep a bit to prevent CPU hogging.
3170 		 */
3171 		if (buf_idx % 0x1000 > (buf_idx + buf_size) % 0x1000)
3172 			usleep_range(1000, 2000);
3173 
3174 		/* For MBI upgrade, MFW response includes the next buffer offset
3175 		 * to be delivered to MFW.
3176 		 */
3177 		if (param && cmd == QED_PUT_FILE_DATA) {
3178 			buf_idx =
3179 			QED_MFW_GET_FIELD(param,
3180 					  FW_MB_PARAM_NVM_PUT_FILE_REQ_OFFSET);
3181 			buf_size =
3182 			QED_MFW_GET_FIELD(param,
3183 					  FW_MB_PARAM_NVM_PUT_FILE_REQ_SIZE);
3184 		} else {
3185 			buf_idx += buf_size;
3186 			buf_size = min_t(u32, (len - buf_idx),
3187 					 MCP_DRV_NVM_BUF_LEN);
3188 		}
3189 	}
3190 
3191 	cdev->mcp_nvm_resp = resp;
3192 out:
3193 	qed_ptt_release(p_hwfn, p_ptt);
3194 
3195 	return rc;
3196 }
3197 
3198 int qed_mcp_phy_sfp_read(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
3199 			 u32 port, u32 addr, u32 offset, u32 len, u8 *p_buf)
3200 {
3201 	u32 bytes_left, bytes_to_copy, buf_size, nvm_offset = 0;
3202 	u32 resp, param;
3203 	int rc;
3204 
3205 	nvm_offset |= (port << DRV_MB_PARAM_TRANSCEIVER_PORT_OFFSET) &
3206 		       DRV_MB_PARAM_TRANSCEIVER_PORT_MASK;
3207 	nvm_offset |= (addr << DRV_MB_PARAM_TRANSCEIVER_I2C_ADDRESS_OFFSET) &
3208 		       DRV_MB_PARAM_TRANSCEIVER_I2C_ADDRESS_MASK;
3209 
3210 	addr = offset;
3211 	offset = 0;
3212 	bytes_left = len;
3213 	while (bytes_left > 0) {
3214 		bytes_to_copy = min_t(u32, bytes_left,
3215 				      MAX_I2C_TRANSACTION_SIZE);
3216 		nvm_offset &= (DRV_MB_PARAM_TRANSCEIVER_I2C_ADDRESS_MASK |
3217 			       DRV_MB_PARAM_TRANSCEIVER_PORT_MASK);
3218 		nvm_offset |= ((addr + offset) <<
3219 			       DRV_MB_PARAM_TRANSCEIVER_OFFSET_OFFSET) &
3220 			       DRV_MB_PARAM_TRANSCEIVER_OFFSET_MASK;
3221 		nvm_offset |= (bytes_to_copy <<
3222 			       DRV_MB_PARAM_TRANSCEIVER_SIZE_OFFSET) &
3223 			       DRV_MB_PARAM_TRANSCEIVER_SIZE_MASK;
3224 		rc = qed_mcp_nvm_rd_cmd(p_hwfn, p_ptt,
3225 					DRV_MSG_CODE_TRANSCEIVER_READ,
3226 					nvm_offset, &resp, &param, &buf_size,
3227 					(u32 *)(p_buf + offset), true);
3228 		if (rc) {
3229 			DP_NOTICE(p_hwfn,
3230 				  "Failed to send a transceiver read command to the MFW. rc = %d.\n",
3231 				  rc);
3232 			return rc;
3233 		}
3234 
3235 		if (resp == FW_MSG_CODE_TRANSCEIVER_NOT_PRESENT)
3236 			return -ENODEV;
3237 		else if (resp != FW_MSG_CODE_TRANSCEIVER_DIAG_OK)
3238 			return -EINVAL;
3239 
3240 		offset += buf_size;
3241 		bytes_left -= buf_size;
3242 	}
3243 
3244 	return 0;
3245 }
3246 
3247 int qed_mcp_bist_register_test(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
3248 {
3249 	u32 drv_mb_param = 0, rsp, param;
3250 	int rc = 0;
3251 
3252 	drv_mb_param = (DRV_MB_PARAM_BIST_REGISTER_TEST <<
3253 			DRV_MB_PARAM_BIST_TEST_INDEX_SHIFT);
3254 
3255 	rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_BIST_TEST,
3256 			 drv_mb_param, &rsp, &param);
3257 
3258 	if (rc)
3259 		return rc;
3260 
3261 	if (((rsp & FW_MSG_CODE_MASK) != FW_MSG_CODE_OK) ||
3262 	    (param != DRV_MB_PARAM_BIST_RC_PASSED))
3263 		rc = -EAGAIN;
3264 
3265 	return rc;
3266 }
3267 
3268 int qed_mcp_bist_clock_test(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
3269 {
3270 	u32 drv_mb_param, rsp, param;
3271 	int rc = 0;
3272 
3273 	drv_mb_param = (DRV_MB_PARAM_BIST_CLOCK_TEST <<
3274 			DRV_MB_PARAM_BIST_TEST_INDEX_SHIFT);
3275 
3276 	rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_BIST_TEST,
3277 			 drv_mb_param, &rsp, &param);
3278 
3279 	if (rc)
3280 		return rc;
3281 
3282 	if (((rsp & FW_MSG_CODE_MASK) != FW_MSG_CODE_OK) ||
3283 	    (param != DRV_MB_PARAM_BIST_RC_PASSED))
3284 		rc = -EAGAIN;
3285 
3286 	return rc;
3287 }
3288 
3289 int qed_mcp_bist_nvm_get_num_images(struct qed_hwfn *p_hwfn,
3290 				    struct qed_ptt *p_ptt,
3291 				    u32 *num_images)
3292 {
3293 	u32 drv_mb_param = 0, rsp;
3294 	int rc = 0;
3295 
3296 	drv_mb_param = (DRV_MB_PARAM_BIST_NVM_TEST_NUM_IMAGES <<
3297 			DRV_MB_PARAM_BIST_TEST_INDEX_SHIFT);
3298 
3299 	rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_BIST_TEST,
3300 			 drv_mb_param, &rsp, num_images);
3301 	if (rc)
3302 		return rc;
3303 
3304 	if (((rsp & FW_MSG_CODE_MASK) != FW_MSG_CODE_OK))
3305 		rc = -EINVAL;
3306 
3307 	return rc;
3308 }
3309 
3310 int qed_mcp_bist_nvm_get_image_att(struct qed_hwfn *p_hwfn,
3311 				   struct qed_ptt *p_ptt,
3312 				   struct bist_nvm_image_att *p_image_att,
3313 				   u32 image_index)
3314 {
3315 	u32 buf_size = 0, param, resp = 0, resp_param = 0;
3316 	int rc;
3317 
3318 	param = DRV_MB_PARAM_BIST_NVM_TEST_IMAGE_BY_INDEX <<
3319 		DRV_MB_PARAM_BIST_TEST_INDEX_SHIFT;
3320 	param |= image_index << DRV_MB_PARAM_BIST_TEST_IMAGE_INDEX_SHIFT;
3321 
3322 	rc = qed_mcp_nvm_rd_cmd(p_hwfn, p_ptt,
3323 				DRV_MSG_CODE_BIST_TEST, param,
3324 				&resp, &resp_param,
3325 				&buf_size,
3326 				(u32 *)p_image_att, false);
3327 	if (rc)
3328 		return rc;
3329 
3330 	if (((resp & FW_MSG_CODE_MASK) != FW_MSG_CODE_OK) ||
3331 	    (p_image_att->return_code != 1))
3332 		rc = -EINVAL;
3333 
3334 	return rc;
3335 }
3336 
3337 int qed_mcp_nvm_info_populate(struct qed_hwfn *p_hwfn)
3338 {
3339 	struct qed_nvm_image_info nvm_info;
3340 	struct qed_ptt *p_ptt;
3341 	int rc;
3342 	u32 i;
3343 
3344 	if (p_hwfn->nvm_info.valid)
3345 		return 0;
3346 
3347 	p_ptt = qed_ptt_acquire(p_hwfn);
3348 	if (!p_ptt) {
3349 		DP_ERR(p_hwfn, "failed to acquire ptt\n");
3350 		return -EBUSY;
3351 	}
3352 
3353 	/* Acquire from MFW the amount of available images */
3354 	nvm_info.num_images = 0;
3355 	rc = qed_mcp_bist_nvm_get_num_images(p_hwfn,
3356 					     p_ptt, &nvm_info.num_images);
3357 	if (rc == -EOPNOTSUPP) {
3358 		DP_INFO(p_hwfn, "DRV_MSG_CODE_BIST_TEST is not supported\n");
3359 		goto out;
3360 	} else if (rc || !nvm_info.num_images) {
3361 		DP_ERR(p_hwfn, "Failed getting number of images\n");
3362 		goto err0;
3363 	}
3364 
3365 	nvm_info.image_att = kmalloc_array(nvm_info.num_images,
3366 					   sizeof(struct bist_nvm_image_att),
3367 					   GFP_KERNEL);
3368 	if (!nvm_info.image_att) {
3369 		rc = -ENOMEM;
3370 		goto err0;
3371 	}
3372 
3373 	/* Iterate over images and get their attributes */
3374 	for (i = 0; i < nvm_info.num_images; i++) {
3375 		rc = qed_mcp_bist_nvm_get_image_att(p_hwfn, p_ptt,
3376 						    &nvm_info.image_att[i], i);
3377 		if (rc) {
3378 			DP_ERR(p_hwfn,
3379 			       "Failed getting image index %d attributes\n", i);
3380 			goto err1;
3381 		}
3382 
3383 		DP_VERBOSE(p_hwfn, QED_MSG_SP, "image index %d, size %x\n", i,
3384 			   nvm_info.image_att[i].len);
3385 	}
3386 out:
3387 	/* Update hwfn's nvm_info */
3388 	if (nvm_info.num_images) {
3389 		p_hwfn->nvm_info.num_images = nvm_info.num_images;
3390 		kfree(p_hwfn->nvm_info.image_att);
3391 		p_hwfn->nvm_info.image_att = nvm_info.image_att;
3392 		p_hwfn->nvm_info.valid = true;
3393 	}
3394 
3395 	qed_ptt_release(p_hwfn, p_ptt);
3396 	return 0;
3397 
3398 err1:
3399 	kfree(nvm_info.image_att);
3400 err0:
3401 	qed_ptt_release(p_hwfn, p_ptt);
3402 	return rc;
3403 }
3404 
3405 void qed_mcp_nvm_info_free(struct qed_hwfn *p_hwfn)
3406 {
3407 	kfree(p_hwfn->nvm_info.image_att);
3408 	p_hwfn->nvm_info.image_att = NULL;
3409 	p_hwfn->nvm_info.valid = false;
3410 }
3411 
3412 int
3413 qed_mcp_get_nvm_image_att(struct qed_hwfn *p_hwfn,
3414 			  enum qed_nvm_images image_id,
3415 			  struct qed_nvm_image_att *p_image_att)
3416 {
3417 	enum nvm_image_type type;
3418 	int rc;
3419 	u32 i;
3420 
3421 	/* Translate image_id into MFW definitions */
3422 	switch (image_id) {
3423 	case QED_NVM_IMAGE_ISCSI_CFG:
3424 		type = NVM_TYPE_ISCSI_CFG;
3425 		break;
3426 	case QED_NVM_IMAGE_FCOE_CFG:
3427 		type = NVM_TYPE_FCOE_CFG;
3428 		break;
3429 	case QED_NVM_IMAGE_MDUMP:
3430 		type = NVM_TYPE_MDUMP;
3431 		break;
3432 	case QED_NVM_IMAGE_NVM_CFG1:
3433 		type = NVM_TYPE_NVM_CFG1;
3434 		break;
3435 	case QED_NVM_IMAGE_DEFAULT_CFG:
3436 		type = NVM_TYPE_DEFAULT_CFG;
3437 		break;
3438 	case QED_NVM_IMAGE_NVM_META:
3439 		type = NVM_TYPE_NVM_META;
3440 		break;
3441 	default:
3442 		DP_NOTICE(p_hwfn, "Unknown request of image_id %08x\n",
3443 			  image_id);
3444 		return -EINVAL;
3445 	}
3446 
3447 	rc = qed_mcp_nvm_info_populate(p_hwfn);
3448 	if (rc)
3449 		return rc;
3450 
3451 	for (i = 0; i < p_hwfn->nvm_info.num_images; i++)
3452 		if (type == p_hwfn->nvm_info.image_att[i].image_type)
3453 			break;
3454 	if (i == p_hwfn->nvm_info.num_images) {
3455 		DP_VERBOSE(p_hwfn, QED_MSG_STORAGE,
3456 			   "Failed to find nvram image of type %08x\n",
3457 			   image_id);
3458 		return -ENOENT;
3459 	}
3460 
3461 	p_image_att->start_addr = p_hwfn->nvm_info.image_att[i].nvm_start_addr;
3462 	p_image_att->length = p_hwfn->nvm_info.image_att[i].len;
3463 
3464 	return 0;
3465 }
3466 
3467 int qed_mcp_get_nvm_image(struct qed_hwfn *p_hwfn,
3468 			  enum qed_nvm_images image_id,
3469 			  u8 *p_buffer, u32 buffer_len)
3470 {
3471 	struct qed_nvm_image_att image_att;
3472 	int rc;
3473 
3474 	memset(p_buffer, 0, buffer_len);
3475 
3476 	rc = qed_mcp_get_nvm_image_att(p_hwfn, image_id, &image_att);
3477 	if (rc)
3478 		return rc;
3479 
3480 	/* Validate sizes - both the image's and the supplied buffer's */
3481 	if (image_att.length <= 4) {
3482 		DP_VERBOSE(p_hwfn, QED_MSG_STORAGE,
3483 			   "Image [%d] is too small - only %d bytes\n",
3484 			   image_id, image_att.length);
3485 		return -EINVAL;
3486 	}
3487 
3488 	if (image_att.length > buffer_len) {
3489 		DP_VERBOSE(p_hwfn,
3490 			   QED_MSG_STORAGE,
3491 			   "Image [%d] is too big - %08x bytes where only %08x are available\n",
3492 			   image_id, image_att.length, buffer_len);
3493 		return -ENOMEM;
3494 	}
3495 
3496 	return qed_mcp_nvm_read(p_hwfn->cdev, image_att.start_addr,
3497 				p_buffer, image_att.length);
3498 }
3499 
3500 static enum resource_id_enum qed_mcp_get_mfw_res_id(enum qed_resources res_id)
3501 {
3502 	enum resource_id_enum mfw_res_id = RESOURCE_NUM_INVALID;
3503 
3504 	switch (res_id) {
3505 	case QED_SB:
3506 		mfw_res_id = RESOURCE_NUM_SB_E;
3507 		break;
3508 	case QED_L2_QUEUE:
3509 		mfw_res_id = RESOURCE_NUM_L2_QUEUE_E;
3510 		break;
3511 	case QED_VPORT:
3512 		mfw_res_id = RESOURCE_NUM_VPORT_E;
3513 		break;
3514 	case QED_RSS_ENG:
3515 		mfw_res_id = RESOURCE_NUM_RSS_ENGINES_E;
3516 		break;
3517 	case QED_PQ:
3518 		mfw_res_id = RESOURCE_NUM_PQ_E;
3519 		break;
3520 	case QED_RL:
3521 		mfw_res_id = RESOURCE_NUM_RL_E;
3522 		break;
3523 	case QED_MAC:
3524 	case QED_VLAN:
3525 		/* Each VFC resource can accommodate both a MAC and a VLAN */
3526 		mfw_res_id = RESOURCE_VFC_FILTER_E;
3527 		break;
3528 	case QED_ILT:
3529 		mfw_res_id = RESOURCE_ILT_E;
3530 		break;
3531 	case QED_LL2_RAM_QUEUE:
3532 		mfw_res_id = RESOURCE_LL2_QUEUE_E;
3533 		break;
3534 	case QED_LL2_CTX_QUEUE:
3535 		mfw_res_id = RESOURCE_LL2_CQS_E;
3536 		break;
3537 	case QED_RDMA_CNQ_RAM:
3538 	case QED_CMDQS_CQS:
3539 		/* CNQ/CMDQS are the same resource */
3540 		mfw_res_id = RESOURCE_CQS_E;
3541 		break;
3542 	case QED_RDMA_STATS_QUEUE:
3543 		mfw_res_id = RESOURCE_RDMA_STATS_QUEUE_E;
3544 		break;
3545 	case QED_BDQ:
3546 		mfw_res_id = RESOURCE_BDQ_E;
3547 		break;
3548 	default:
3549 		break;
3550 	}
3551 
3552 	return mfw_res_id;
3553 }
3554 
3555 #define QED_RESC_ALLOC_VERSION_MAJOR    2
3556 #define QED_RESC_ALLOC_VERSION_MINOR    0
3557 #define QED_RESC_ALLOC_VERSION				     \
3558 	((QED_RESC_ALLOC_VERSION_MAJOR <<		     \
3559 	  DRV_MB_PARAM_RESOURCE_ALLOC_VERSION_MAJOR_SHIFT) | \
3560 	 (QED_RESC_ALLOC_VERSION_MINOR <<		     \
3561 	  DRV_MB_PARAM_RESOURCE_ALLOC_VERSION_MINOR_SHIFT))
3562 
3563 struct qed_resc_alloc_in_params {
3564 	u32 cmd;
3565 	enum qed_resources res_id;
3566 	u32 resc_max_val;
3567 };
3568 
3569 struct qed_resc_alloc_out_params {
3570 	u32 mcp_resp;
3571 	u32 mcp_param;
3572 	u32 resc_num;
3573 	u32 resc_start;
3574 	u32 vf_resc_num;
3575 	u32 vf_resc_start;
3576 	u32 flags;
3577 };
3578 
3579 static int
3580 qed_mcp_resc_allocation_msg(struct qed_hwfn *p_hwfn,
3581 			    struct qed_ptt *p_ptt,
3582 			    struct qed_resc_alloc_in_params *p_in_params,
3583 			    struct qed_resc_alloc_out_params *p_out_params)
3584 {
3585 	struct qed_mcp_mb_params mb_params;
3586 	struct resource_info mfw_resc_info;
3587 	int rc;
3588 
3589 	memset(&mfw_resc_info, 0, sizeof(mfw_resc_info));
3590 
3591 	mfw_resc_info.res_id = qed_mcp_get_mfw_res_id(p_in_params->res_id);
3592 	if (mfw_resc_info.res_id == RESOURCE_NUM_INVALID) {
3593 		DP_ERR(p_hwfn,
3594 		       "Failed to match resource %d [%s] with the MFW resources\n",
3595 		       p_in_params->res_id,
3596 		       qed_hw_get_resc_name(p_in_params->res_id));
3597 		return -EINVAL;
3598 	}
3599 
3600 	switch (p_in_params->cmd) {
3601 	case DRV_MSG_SET_RESOURCE_VALUE_MSG:
3602 		mfw_resc_info.size = p_in_params->resc_max_val;
3603 		fallthrough;
3604 	case DRV_MSG_GET_RESOURCE_ALLOC_MSG:
3605 		break;
3606 	default:
3607 		DP_ERR(p_hwfn, "Unexpected resource alloc command [0x%08x]\n",
3608 		       p_in_params->cmd);
3609 		return -EINVAL;
3610 	}
3611 
3612 	memset(&mb_params, 0, sizeof(mb_params));
3613 	mb_params.cmd = p_in_params->cmd;
3614 	mb_params.param = QED_RESC_ALLOC_VERSION;
3615 	mb_params.p_data_src = &mfw_resc_info;
3616 	mb_params.data_src_size = sizeof(mfw_resc_info);
3617 	mb_params.p_data_dst = mb_params.p_data_src;
3618 	mb_params.data_dst_size = mb_params.data_src_size;
3619 
3620 	DP_VERBOSE(p_hwfn,
3621 		   QED_MSG_SP,
3622 		   "Resource message request: cmd 0x%08x, res_id %d [%s], hsi_version %d.%d, val 0x%x\n",
3623 		   p_in_params->cmd,
3624 		   p_in_params->res_id,
3625 		   qed_hw_get_resc_name(p_in_params->res_id),
3626 		   QED_MFW_GET_FIELD(mb_params.param,
3627 				     DRV_MB_PARAM_RESOURCE_ALLOC_VERSION_MAJOR),
3628 		   QED_MFW_GET_FIELD(mb_params.param,
3629 				     DRV_MB_PARAM_RESOURCE_ALLOC_VERSION_MINOR),
3630 		   p_in_params->resc_max_val);
3631 
3632 	rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params);
3633 	if (rc)
3634 		return rc;
3635 
3636 	p_out_params->mcp_resp = mb_params.mcp_resp;
3637 	p_out_params->mcp_param = mb_params.mcp_param;
3638 	p_out_params->resc_num = mfw_resc_info.size;
3639 	p_out_params->resc_start = mfw_resc_info.offset;
3640 	p_out_params->vf_resc_num = mfw_resc_info.vf_size;
3641 	p_out_params->vf_resc_start = mfw_resc_info.vf_offset;
3642 	p_out_params->flags = mfw_resc_info.flags;
3643 
3644 	DP_VERBOSE(p_hwfn,
3645 		   QED_MSG_SP,
3646 		   "Resource message response: mfw_hsi_version %d.%d, num 0x%x, start 0x%x, vf_num 0x%x, vf_start 0x%x, flags 0x%08x\n",
3647 		   QED_MFW_GET_FIELD(p_out_params->mcp_param,
3648 				     FW_MB_PARAM_RESOURCE_ALLOC_VERSION_MAJOR),
3649 		   QED_MFW_GET_FIELD(p_out_params->mcp_param,
3650 				     FW_MB_PARAM_RESOURCE_ALLOC_VERSION_MINOR),
3651 		   p_out_params->resc_num,
3652 		   p_out_params->resc_start,
3653 		   p_out_params->vf_resc_num,
3654 		   p_out_params->vf_resc_start, p_out_params->flags);
3655 
3656 	return 0;
3657 }
3658 
3659 int
3660 qed_mcp_set_resc_max_val(struct qed_hwfn *p_hwfn,
3661 			 struct qed_ptt *p_ptt,
3662 			 enum qed_resources res_id,
3663 			 u32 resc_max_val, u32 *p_mcp_resp)
3664 {
3665 	struct qed_resc_alloc_out_params out_params;
3666 	struct qed_resc_alloc_in_params in_params;
3667 	int rc;
3668 
3669 	memset(&in_params, 0, sizeof(in_params));
3670 	in_params.cmd = DRV_MSG_SET_RESOURCE_VALUE_MSG;
3671 	in_params.res_id = res_id;
3672 	in_params.resc_max_val = resc_max_val;
3673 	memset(&out_params, 0, sizeof(out_params));
3674 	rc = qed_mcp_resc_allocation_msg(p_hwfn, p_ptt, &in_params,
3675 					 &out_params);
3676 	if (rc)
3677 		return rc;
3678 
3679 	*p_mcp_resp = out_params.mcp_resp;
3680 
3681 	return 0;
3682 }
3683 
3684 int
3685 qed_mcp_get_resc_info(struct qed_hwfn *p_hwfn,
3686 		      struct qed_ptt *p_ptt,
3687 		      enum qed_resources res_id,
3688 		      u32 *p_mcp_resp, u32 *p_resc_num, u32 *p_resc_start)
3689 {
3690 	struct qed_resc_alloc_out_params out_params;
3691 	struct qed_resc_alloc_in_params in_params;
3692 	int rc;
3693 
3694 	memset(&in_params, 0, sizeof(in_params));
3695 	in_params.cmd = DRV_MSG_GET_RESOURCE_ALLOC_MSG;
3696 	in_params.res_id = res_id;
3697 	memset(&out_params, 0, sizeof(out_params));
3698 	rc = qed_mcp_resc_allocation_msg(p_hwfn, p_ptt, &in_params,
3699 					 &out_params);
3700 	if (rc)
3701 		return rc;
3702 
3703 	*p_mcp_resp = out_params.mcp_resp;
3704 
3705 	if (*p_mcp_resp == FW_MSG_CODE_RESOURCE_ALLOC_OK) {
3706 		*p_resc_num = out_params.resc_num;
3707 		*p_resc_start = out_params.resc_start;
3708 	}
3709 
3710 	return 0;
3711 }
3712 
3713 int qed_mcp_initiate_pf_flr(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
3714 {
3715 	u32 mcp_resp, mcp_param;
3716 
3717 	return qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_INITIATE_PF_FLR, 0,
3718 			   &mcp_resp, &mcp_param);
3719 }
3720 
3721 static int qed_mcp_resource_cmd(struct qed_hwfn *p_hwfn,
3722 				struct qed_ptt *p_ptt,
3723 				u32 param, u32 *p_mcp_resp, u32 *p_mcp_param)
3724 {
3725 	int rc;
3726 
3727 	rc = qed_mcp_cmd_nosleep(p_hwfn, p_ptt, DRV_MSG_CODE_RESOURCE_CMD,
3728 				 param, p_mcp_resp, p_mcp_param);
3729 	if (rc)
3730 		return rc;
3731 
3732 	if (*p_mcp_resp == FW_MSG_CODE_UNSUPPORTED) {
3733 		DP_INFO(p_hwfn,
3734 			"The resource command is unsupported by the MFW\n");
3735 		return -EINVAL;
3736 	}
3737 
3738 	if (*p_mcp_param == RESOURCE_OPCODE_UNKNOWN_CMD) {
3739 		u8 opcode = QED_MFW_GET_FIELD(param, RESOURCE_CMD_REQ_OPCODE);
3740 
3741 		DP_NOTICE(p_hwfn,
3742 			  "The resource command is unknown to the MFW [param 0x%08x, opcode %d]\n",
3743 			  param, opcode);
3744 		return -EINVAL;
3745 	}
3746 
3747 	return rc;
3748 }
3749 
3750 static int
3751 __qed_mcp_resc_lock(struct qed_hwfn *p_hwfn,
3752 		    struct qed_ptt *p_ptt,
3753 		    struct qed_resc_lock_params *p_params)
3754 {
3755 	u32 param = 0, mcp_resp, mcp_param;
3756 	u8 opcode;
3757 	int rc;
3758 
3759 	switch (p_params->timeout) {
3760 	case QED_MCP_RESC_LOCK_TO_DEFAULT:
3761 		opcode = RESOURCE_OPCODE_REQ;
3762 		p_params->timeout = 0;
3763 		break;
3764 	case QED_MCP_RESC_LOCK_TO_NONE:
3765 		opcode = RESOURCE_OPCODE_REQ_WO_AGING;
3766 		p_params->timeout = 0;
3767 		break;
3768 	default:
3769 		opcode = RESOURCE_OPCODE_REQ_W_AGING;
3770 		break;
3771 	}
3772 
3773 	QED_MFW_SET_FIELD(param, RESOURCE_CMD_REQ_RESC, p_params->resource);
3774 	QED_MFW_SET_FIELD(param, RESOURCE_CMD_REQ_OPCODE, opcode);
3775 	QED_MFW_SET_FIELD(param, RESOURCE_CMD_REQ_AGE, p_params->timeout);
3776 
3777 	DP_VERBOSE(p_hwfn,
3778 		   QED_MSG_SP,
3779 		   "Resource lock request: param 0x%08x [age %d, opcode %d, resource %d]\n",
3780 		   param, p_params->timeout, opcode, p_params->resource);
3781 
3782 	/* Attempt to acquire the resource */
3783 	rc = qed_mcp_resource_cmd(p_hwfn, p_ptt, param, &mcp_resp, &mcp_param);
3784 	if (rc)
3785 		return rc;
3786 
3787 	/* Analyze the response */
3788 	p_params->owner = QED_MFW_GET_FIELD(mcp_param, RESOURCE_CMD_RSP_OWNER);
3789 	opcode = QED_MFW_GET_FIELD(mcp_param, RESOURCE_CMD_RSP_OPCODE);
3790 
3791 	DP_VERBOSE(p_hwfn,
3792 		   QED_MSG_SP,
3793 		   "Resource lock response: mcp_param 0x%08x [opcode %d, owner %d]\n",
3794 		   mcp_param, opcode, p_params->owner);
3795 
3796 	switch (opcode) {
3797 	case RESOURCE_OPCODE_GNT:
3798 		p_params->b_granted = true;
3799 		break;
3800 	case RESOURCE_OPCODE_BUSY:
3801 		p_params->b_granted = false;
3802 		break;
3803 	default:
3804 		DP_NOTICE(p_hwfn,
3805 			  "Unexpected opcode in resource lock response [mcp_param 0x%08x, opcode %d]\n",
3806 			  mcp_param, opcode);
3807 		return -EINVAL;
3808 	}
3809 
3810 	return 0;
3811 }
3812 
3813 int
3814 qed_mcp_resc_lock(struct qed_hwfn *p_hwfn,
3815 		  struct qed_ptt *p_ptt, struct qed_resc_lock_params *p_params)
3816 {
3817 	u32 retry_cnt = 0;
3818 	int rc;
3819 
3820 	do {
3821 		/* No need for an interval before the first iteration */
3822 		if (retry_cnt) {
3823 			if (p_params->sleep_b4_retry) {
3824 				u16 retry_interval_in_ms =
3825 				    DIV_ROUND_UP(p_params->retry_interval,
3826 						 1000);
3827 
3828 				msleep(retry_interval_in_ms);
3829 			} else {
3830 				udelay(p_params->retry_interval);
3831 			}
3832 		}
3833 
3834 		rc = __qed_mcp_resc_lock(p_hwfn, p_ptt, p_params);
3835 		if (rc)
3836 			return rc;
3837 
3838 		if (p_params->b_granted)
3839 			break;
3840 	} while (retry_cnt++ < p_params->retry_num);
3841 
3842 	return 0;
3843 }
3844 
3845 int
3846 qed_mcp_resc_unlock(struct qed_hwfn *p_hwfn,
3847 		    struct qed_ptt *p_ptt,
3848 		    struct qed_resc_unlock_params *p_params)
3849 {
3850 	u32 param = 0, mcp_resp, mcp_param;
3851 	u8 opcode;
3852 	int rc;
3853 
3854 	opcode = p_params->b_force ? RESOURCE_OPCODE_FORCE_RELEASE
3855 				   : RESOURCE_OPCODE_RELEASE;
3856 	QED_MFW_SET_FIELD(param, RESOURCE_CMD_REQ_RESC, p_params->resource);
3857 	QED_MFW_SET_FIELD(param, RESOURCE_CMD_REQ_OPCODE, opcode);
3858 
3859 	DP_VERBOSE(p_hwfn, QED_MSG_SP,
3860 		   "Resource unlock request: param 0x%08x [opcode %d, resource %d]\n",
3861 		   param, opcode, p_params->resource);
3862 
3863 	/* Attempt to release the resource */
3864 	rc = qed_mcp_resource_cmd(p_hwfn, p_ptt, param, &mcp_resp, &mcp_param);
3865 	if (rc)
3866 		return rc;
3867 
3868 	/* Analyze the response */
3869 	opcode = QED_MFW_GET_FIELD(mcp_param, RESOURCE_CMD_RSP_OPCODE);
3870 
3871 	DP_VERBOSE(p_hwfn, QED_MSG_SP,
3872 		   "Resource unlock response: mcp_param 0x%08x [opcode %d]\n",
3873 		   mcp_param, opcode);
3874 
3875 	switch (opcode) {
3876 	case RESOURCE_OPCODE_RELEASED_PREVIOUS:
3877 		DP_INFO(p_hwfn,
3878 			"Resource unlock request for an already released resource [%d]\n",
3879 			p_params->resource);
3880 		fallthrough;
3881 	case RESOURCE_OPCODE_RELEASED:
3882 		p_params->b_released = true;
3883 		break;
3884 	case RESOURCE_OPCODE_WRONG_OWNER:
3885 		p_params->b_released = false;
3886 		break;
3887 	default:
3888 		DP_NOTICE(p_hwfn,
3889 			  "Unexpected opcode in resource unlock response [mcp_param 0x%08x, opcode %d]\n",
3890 			  mcp_param, opcode);
3891 		return -EINVAL;
3892 	}
3893 
3894 	return 0;
3895 }
3896 
3897 void qed_mcp_resc_lock_default_init(struct qed_resc_lock_params *p_lock,
3898 				    struct qed_resc_unlock_params *p_unlock,
3899 				    enum qed_resc_lock
3900 				    resource, bool b_is_permanent)
3901 {
3902 	if (p_lock) {
3903 		memset(p_lock, 0, sizeof(*p_lock));
3904 
3905 		/* Permanent resources don't require aging, and there's no
3906 		 * point in trying to acquire them more than once since it's
3907 		 * unexpected another entity would release them.
3908 		 */
3909 		if (b_is_permanent) {
3910 			p_lock->timeout = QED_MCP_RESC_LOCK_TO_NONE;
3911 		} else {
3912 			p_lock->retry_num = QED_MCP_RESC_LOCK_RETRY_CNT_DFLT;
3913 			p_lock->retry_interval =
3914 			    QED_MCP_RESC_LOCK_RETRY_VAL_DFLT;
3915 			p_lock->sleep_b4_retry = true;
3916 		}
3917 
3918 		p_lock->resource = resource;
3919 	}
3920 
3921 	if (p_unlock) {
3922 		memset(p_unlock, 0, sizeof(*p_unlock));
3923 		p_unlock->resource = resource;
3924 	}
3925 }
3926 
3927 bool qed_mcp_is_smart_an_supported(struct qed_hwfn *p_hwfn)
3928 {
3929 	return !!(p_hwfn->mcp_info->capabilities &
3930 		  FW_MB_PARAM_FEATURE_SUPPORT_SMARTLINQ);
3931 }
3932 
3933 int qed_mcp_get_capabilities(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
3934 {
3935 	u32 mcp_resp;
3936 	int rc;
3937 
3938 	rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_GET_MFW_FEATURE_SUPPORT,
3939 			 0, &mcp_resp, &p_hwfn->mcp_info->capabilities);
3940 	if (!rc)
3941 		DP_VERBOSE(p_hwfn, (QED_MSG_SP | NETIF_MSG_PROBE),
3942 			   "MFW supported features: %08x\n",
3943 			   p_hwfn->mcp_info->capabilities);
3944 
3945 	return rc;
3946 }
3947 
3948 int qed_mcp_set_capabilities(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
3949 {
3950 	u32 mcp_resp, mcp_param, features;
3951 
3952 	features = DRV_MB_PARAM_FEATURE_SUPPORT_PORT_EEE |
3953 		   DRV_MB_PARAM_FEATURE_SUPPORT_FUNC_VLINK |
3954 		   DRV_MB_PARAM_FEATURE_SUPPORT_PORT_FEC_CONTROL;
3955 
3956 	return qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_FEATURE_SUPPORT,
3957 			   features, &mcp_resp, &mcp_param);
3958 }
3959 
3960 int qed_mcp_get_engine_config(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
3961 {
3962 	struct qed_mcp_mb_params mb_params = {0};
3963 	struct qed_dev *cdev = p_hwfn->cdev;
3964 	u8 fir_valid, l2_valid;
3965 	int rc;
3966 
3967 	mb_params.cmd = DRV_MSG_CODE_GET_ENGINE_CONFIG;
3968 	rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params);
3969 	if (rc)
3970 		return rc;
3971 
3972 	if (mb_params.mcp_resp == FW_MSG_CODE_UNSUPPORTED) {
3973 		DP_INFO(p_hwfn,
3974 			"The get_engine_config command is unsupported by the MFW\n");
3975 		return -EOPNOTSUPP;
3976 	}
3977 
3978 	fir_valid = QED_MFW_GET_FIELD(mb_params.mcp_param,
3979 				      FW_MB_PARAM_ENG_CFG_FIR_AFFIN_VALID);
3980 	if (fir_valid)
3981 		cdev->fir_affin =
3982 		    QED_MFW_GET_FIELD(mb_params.mcp_param,
3983 				      FW_MB_PARAM_ENG_CFG_FIR_AFFIN_VALUE);
3984 
3985 	l2_valid = QED_MFW_GET_FIELD(mb_params.mcp_param,
3986 				     FW_MB_PARAM_ENG_CFG_L2_AFFIN_VALID);
3987 	if (l2_valid)
3988 		cdev->l2_affin_hint =
3989 		    QED_MFW_GET_FIELD(mb_params.mcp_param,
3990 				      FW_MB_PARAM_ENG_CFG_L2_AFFIN_VALUE);
3991 
3992 	DP_INFO(p_hwfn,
3993 		"Engine affinity config: FIR={valid %hhd, value %hhd}, L2_hint={valid %hhd, value %hhd}\n",
3994 		fir_valid, cdev->fir_affin, l2_valid, cdev->l2_affin_hint);
3995 
3996 	return 0;
3997 }
3998 
3999 int qed_mcp_get_ppfid_bitmap(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
4000 {
4001 	struct qed_mcp_mb_params mb_params = {0};
4002 	struct qed_dev *cdev = p_hwfn->cdev;
4003 	int rc;
4004 
4005 	mb_params.cmd = DRV_MSG_CODE_GET_PPFID_BITMAP;
4006 	rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params);
4007 	if (rc)
4008 		return rc;
4009 
4010 	if (mb_params.mcp_resp == FW_MSG_CODE_UNSUPPORTED) {
4011 		DP_INFO(p_hwfn,
4012 			"The get_ppfid_bitmap command is unsupported by the MFW\n");
4013 		return -EOPNOTSUPP;
4014 	}
4015 
4016 	cdev->ppfid_bitmap = QED_MFW_GET_FIELD(mb_params.mcp_param,
4017 					       FW_MB_PARAM_PPFID_BITMAP);
4018 
4019 	DP_VERBOSE(p_hwfn, QED_MSG_SP, "PPFID bitmap 0x%hhx\n",
4020 		   cdev->ppfid_bitmap);
4021 
4022 	return 0;
4023 }
4024 
4025 int qed_mcp_nvm_get_cfg(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
4026 			u16 option_id, u8 entity_id, u16 flags, u8 *p_buf,
4027 			u32 *p_len)
4028 {
4029 	u32 mb_param = 0, resp, param;
4030 	int rc;
4031 
4032 	QED_MFW_SET_FIELD(mb_param, DRV_MB_PARAM_NVM_CFG_OPTION_ID, option_id);
4033 	if (flags & QED_NVM_CFG_OPTION_INIT)
4034 		QED_MFW_SET_FIELD(mb_param,
4035 				  DRV_MB_PARAM_NVM_CFG_OPTION_INIT, 1);
4036 	if (flags & QED_NVM_CFG_OPTION_FREE)
4037 		QED_MFW_SET_FIELD(mb_param,
4038 				  DRV_MB_PARAM_NVM_CFG_OPTION_FREE, 1);
4039 	if (flags & QED_NVM_CFG_OPTION_ENTITY_SEL) {
4040 		QED_MFW_SET_FIELD(mb_param,
4041 				  DRV_MB_PARAM_NVM_CFG_OPTION_ENTITY_SEL, 1);
4042 		QED_MFW_SET_FIELD(mb_param,
4043 				  DRV_MB_PARAM_NVM_CFG_OPTION_ENTITY_ID,
4044 				  entity_id);
4045 	}
4046 
4047 	rc = qed_mcp_nvm_rd_cmd(p_hwfn, p_ptt,
4048 				DRV_MSG_CODE_GET_NVM_CFG_OPTION,
4049 				mb_param, &resp, &param, p_len,
4050 				(u32 *)p_buf, false);
4051 
4052 	return rc;
4053 }
4054 
4055 int qed_mcp_nvm_set_cfg(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
4056 			u16 option_id, u8 entity_id, u16 flags, u8 *p_buf,
4057 			u32 len)
4058 {
4059 	u32 mb_param = 0, resp, param;
4060 
4061 	QED_MFW_SET_FIELD(mb_param, DRV_MB_PARAM_NVM_CFG_OPTION_ID, option_id);
4062 	if (flags & QED_NVM_CFG_OPTION_ALL)
4063 		QED_MFW_SET_FIELD(mb_param,
4064 				  DRV_MB_PARAM_NVM_CFG_OPTION_ALL, 1);
4065 	if (flags & QED_NVM_CFG_OPTION_INIT)
4066 		QED_MFW_SET_FIELD(mb_param,
4067 				  DRV_MB_PARAM_NVM_CFG_OPTION_INIT, 1);
4068 	if (flags & QED_NVM_CFG_OPTION_COMMIT)
4069 		QED_MFW_SET_FIELD(mb_param,
4070 				  DRV_MB_PARAM_NVM_CFG_OPTION_COMMIT, 1);
4071 	if (flags & QED_NVM_CFG_OPTION_FREE)
4072 		QED_MFW_SET_FIELD(mb_param,
4073 				  DRV_MB_PARAM_NVM_CFG_OPTION_FREE, 1);
4074 	if (flags & QED_NVM_CFG_OPTION_ENTITY_SEL) {
4075 		QED_MFW_SET_FIELD(mb_param,
4076 				  DRV_MB_PARAM_NVM_CFG_OPTION_ENTITY_SEL, 1);
4077 		QED_MFW_SET_FIELD(mb_param,
4078 				  DRV_MB_PARAM_NVM_CFG_OPTION_ENTITY_ID,
4079 				  entity_id);
4080 	}
4081 
4082 	return qed_mcp_nvm_wr_cmd(p_hwfn, p_ptt,
4083 				  DRV_MSG_CODE_SET_NVM_CFG_OPTION,
4084 				  mb_param, &resp, &param, len, (u32 *)p_buf);
4085 }
4086 
4087 #define QED_MCP_DBG_DATA_MAX_SIZE               MCP_DRV_NVM_BUF_LEN
4088 #define QED_MCP_DBG_DATA_MAX_HEADER_SIZE        sizeof(u32)
4089 #define QED_MCP_DBG_DATA_MAX_PAYLOAD_SIZE \
4090 	(QED_MCP_DBG_DATA_MAX_SIZE - QED_MCP_DBG_DATA_MAX_HEADER_SIZE)
4091 
4092 static int
4093 __qed_mcp_send_debug_data(struct qed_hwfn *p_hwfn,
4094 			  struct qed_ptt *p_ptt, u8 *p_buf, u8 size)
4095 {
4096 	struct qed_mcp_mb_params mb_params;
4097 	int rc;
4098 
4099 	if (size > QED_MCP_DBG_DATA_MAX_SIZE) {
4100 		DP_ERR(p_hwfn,
4101 		       "Debug data size is %d while it should not exceed %d\n",
4102 		       size, QED_MCP_DBG_DATA_MAX_SIZE);
4103 		return -EINVAL;
4104 	}
4105 
4106 	memset(&mb_params, 0, sizeof(mb_params));
4107 	mb_params.cmd = DRV_MSG_CODE_DEBUG_DATA_SEND;
4108 	SET_MFW_FIELD(mb_params.param, DRV_MSG_CODE_DEBUG_DATA_SEND_SIZE, size);
4109 	mb_params.p_data_src = p_buf;
4110 	mb_params.data_src_size = size;
4111 	rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params);
4112 	if (rc)
4113 		return rc;
4114 
4115 	if (mb_params.mcp_resp == FW_MSG_CODE_UNSUPPORTED) {
4116 		DP_INFO(p_hwfn,
4117 			"The DEBUG_DATA_SEND command is unsupported by the MFW\n");
4118 		return -EOPNOTSUPP;
4119 	} else if (mb_params.mcp_resp == (u32)FW_MSG_CODE_DEBUG_NOT_ENABLED) {
4120 		DP_INFO(p_hwfn, "The DEBUG_DATA_SEND command is not enabled\n");
4121 		return -EBUSY;
4122 	} else if (mb_params.mcp_resp != (u32)FW_MSG_CODE_DEBUG_DATA_SEND_OK) {
4123 		DP_NOTICE(p_hwfn,
4124 			  "Failed to send debug data to the MFW [resp 0x%08x]\n",
4125 			  mb_params.mcp_resp);
4126 		return -EINVAL;
4127 	}
4128 
4129 	return 0;
4130 }
4131 
4132 enum qed_mcp_dbg_data_type {
4133 	QED_MCP_DBG_DATA_TYPE_RAW,
4134 };
4135 
4136 /* Header format: [31:28] PFID, [27:20] flags, [19:12] type, [11:0] S/N */
4137 #define QED_MCP_DBG_DATA_HDR_SN_OFFSET  0
4138 #define QED_MCP_DBG_DATA_HDR_SN_MASK            0x00000fff
4139 #define QED_MCP_DBG_DATA_HDR_TYPE_OFFSET        12
4140 #define QED_MCP_DBG_DATA_HDR_TYPE_MASK  0x000ff000
4141 #define QED_MCP_DBG_DATA_HDR_FLAGS_OFFSET       20
4142 #define QED_MCP_DBG_DATA_HDR_FLAGS_MASK 0x0ff00000
4143 #define QED_MCP_DBG_DATA_HDR_PF_OFFSET  28
4144 #define QED_MCP_DBG_DATA_HDR_PF_MASK            0xf0000000
4145 
4146 #define QED_MCP_DBG_DATA_HDR_FLAGS_FIRST        0x1
4147 #define QED_MCP_DBG_DATA_HDR_FLAGS_LAST 0x2
4148 
4149 static int
4150 qed_mcp_send_debug_data(struct qed_hwfn *p_hwfn,
4151 			struct qed_ptt *p_ptt,
4152 			enum qed_mcp_dbg_data_type type, u8 *p_buf, u32 size)
4153 {
4154 	u8 raw_data[QED_MCP_DBG_DATA_MAX_SIZE], *p_tmp_buf = p_buf;
4155 	u32 tmp_size = size, *p_header, *p_payload;
4156 	u8 flags = 0;
4157 	u16 seq;
4158 	int rc;
4159 
4160 	p_header = (u32 *)raw_data;
4161 	p_payload = (u32 *)(raw_data + QED_MCP_DBG_DATA_MAX_HEADER_SIZE);
4162 
4163 	seq = (u16)atomic_inc_return(&p_hwfn->mcp_info->dbg_data_seq);
4164 
4165 	/* First chunk is marked as 'first' */
4166 	flags |= QED_MCP_DBG_DATA_HDR_FLAGS_FIRST;
4167 
4168 	*p_header = 0;
4169 	SET_MFW_FIELD(*p_header, QED_MCP_DBG_DATA_HDR_SN, seq);
4170 	SET_MFW_FIELD(*p_header, QED_MCP_DBG_DATA_HDR_TYPE, type);
4171 	SET_MFW_FIELD(*p_header, QED_MCP_DBG_DATA_HDR_FLAGS, flags);
4172 	SET_MFW_FIELD(*p_header, QED_MCP_DBG_DATA_HDR_PF, p_hwfn->abs_pf_id);
4173 
4174 	while (tmp_size > QED_MCP_DBG_DATA_MAX_PAYLOAD_SIZE) {
4175 		memcpy(p_payload, p_tmp_buf, QED_MCP_DBG_DATA_MAX_PAYLOAD_SIZE);
4176 		rc = __qed_mcp_send_debug_data(p_hwfn, p_ptt, raw_data,
4177 					       QED_MCP_DBG_DATA_MAX_SIZE);
4178 		if (rc)
4179 			return rc;
4180 
4181 		/* Clear the 'first' marking after sending the first chunk */
4182 		if (p_tmp_buf == p_buf) {
4183 			flags &= ~QED_MCP_DBG_DATA_HDR_FLAGS_FIRST;
4184 			SET_MFW_FIELD(*p_header, QED_MCP_DBG_DATA_HDR_FLAGS,
4185 				      flags);
4186 		}
4187 
4188 		p_tmp_buf += QED_MCP_DBG_DATA_MAX_PAYLOAD_SIZE;
4189 		tmp_size -= QED_MCP_DBG_DATA_MAX_PAYLOAD_SIZE;
4190 	}
4191 
4192 	/* Last chunk is marked as 'last' */
4193 	flags |= QED_MCP_DBG_DATA_HDR_FLAGS_LAST;
4194 	SET_MFW_FIELD(*p_header, QED_MCP_DBG_DATA_HDR_FLAGS, flags);
4195 	memcpy(p_payload, p_tmp_buf, tmp_size);
4196 
4197 	/* Casting the left size to u8 is ok since at this point it is <= 32 */
4198 	return __qed_mcp_send_debug_data(p_hwfn, p_ptt, raw_data,
4199 					 (u8)(QED_MCP_DBG_DATA_MAX_HEADER_SIZE +
4200 					 tmp_size));
4201 }
4202 
4203 int
4204 qed_mcp_send_raw_debug_data(struct qed_hwfn *p_hwfn,
4205 			    struct qed_ptt *p_ptt, u8 *p_buf, u32 size)
4206 {
4207 	return qed_mcp_send_debug_data(p_hwfn, p_ptt,
4208 				       QED_MCP_DBG_DATA_TYPE_RAW, p_buf, size);
4209 }
4210 
4211 bool qed_mcp_is_esl_supported(struct qed_hwfn *p_hwfn)
4212 {
4213 	return !!(p_hwfn->mcp_info->capabilities &
4214 		  FW_MB_PARAM_FEATURE_SUPPORT_ENHANCED_SYS_LCK);
4215 }
4216 
4217 int qed_mcp_get_esl_status(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, bool *active)
4218 {
4219 	u32 resp = 0, param = 0;
4220 	int rc;
4221 
4222 	rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_GET_MANAGEMENT_STATUS, 0, &resp, &param);
4223 	if (rc) {
4224 		DP_NOTICE(p_hwfn, "Failed to send ESL command, rc = %d\n", rc);
4225 		return rc;
4226 	}
4227 
4228 	*active = !!(param & FW_MB_PARAM_MANAGEMENT_STATUS_LOCKDOWN_ENABLED);
4229 
4230 	return 0;
4231 }
4232