1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause) 2 /* QLogic qed NIC Driver 3 * Copyright (c) 2015-2017 QLogic Corporation 4 * Copyright (c) 2019-2020 Marvell International Ltd. 5 */ 6 7 #include <linux/types.h> 8 #include <asm/byteorder.h> 9 #include <linux/delay.h> 10 #include <linux/errno.h> 11 #include <linux/kernel.h> 12 #include <linux/slab.h> 13 #include <linux/spinlock.h> 14 #include <linux/string.h> 15 #include <linux/etherdevice.h> 16 #include "qed.h" 17 #include "qed_cxt.h" 18 #include "qed_dcbx.h" 19 #include "qed_hsi.h" 20 #include "qed_mfw_hsi.h" 21 #include "qed_hw.h" 22 #include "qed_mcp.h" 23 #include "qed_reg_addr.h" 24 #include "qed_sriov.h" 25 26 #define GRCBASE_MCP 0xe00000 27 28 #define QED_MCP_RESP_ITER_US 10 29 30 #define QED_DRV_MB_MAX_RETRIES (500 * 1000) /* Account for 5 sec */ 31 #define QED_MCP_RESET_RETRIES (50 * 1000) /* Account for 500 msec */ 32 33 #define DRV_INNER_WR(_p_hwfn, _p_ptt, _ptr, _offset, _val) \ 34 qed_wr(_p_hwfn, _p_ptt, (_p_hwfn->mcp_info->_ptr + (_offset)), \ 35 _val) 36 37 #define DRV_INNER_RD(_p_hwfn, _p_ptt, _ptr, _offset) \ 38 qed_rd(_p_hwfn, _p_ptt, (_p_hwfn->mcp_info->_ptr + (_offset))) 39 40 #define DRV_MB_WR(_p_hwfn, _p_ptt, _field, _val) \ 41 DRV_INNER_WR(p_hwfn, _p_ptt, drv_mb_addr, \ 42 offsetof(struct public_drv_mb, _field), _val) 43 44 #define DRV_MB_RD(_p_hwfn, _p_ptt, _field) \ 45 DRV_INNER_RD(_p_hwfn, _p_ptt, drv_mb_addr, \ 46 offsetof(struct public_drv_mb, _field)) 47 48 #define PDA_COMP (((FW_MAJOR_VERSION) + (FW_MINOR_VERSION << 8)) << \ 49 DRV_ID_PDA_COMP_VER_SHIFT) 50 51 #define MCP_BYTES_PER_MBIT_SHIFT 17 52 53 bool qed_mcp_is_init(struct qed_hwfn *p_hwfn) 54 { 55 if (!p_hwfn->mcp_info || !p_hwfn->mcp_info->public_base) 56 return false; 57 return true; 58 } 59 60 void qed_mcp_cmd_port_init(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 61 { 62 u32 addr = SECTION_OFFSIZE_ADDR(p_hwfn->mcp_info->public_base, 63 PUBLIC_PORT); 64 u32 mfw_mb_offsize = qed_rd(p_hwfn, p_ptt, addr); 65 66 p_hwfn->mcp_info->port_addr = SECTION_ADDR(mfw_mb_offsize, 67 MFW_PORT(p_hwfn)); 68 DP_VERBOSE(p_hwfn, QED_MSG_SP, 69 "port_addr = 0x%x, port_id 0x%02x\n", 70 p_hwfn->mcp_info->port_addr, MFW_PORT(p_hwfn)); 71 } 72 73 void qed_mcp_read_mb(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 74 { 75 u32 length = MFW_DRV_MSG_MAX_DWORDS(p_hwfn->mcp_info->mfw_mb_length); 76 u32 tmp, i; 77 78 if (!p_hwfn->mcp_info->public_base) 79 return; 80 81 for (i = 0; i < length; i++) { 82 tmp = qed_rd(p_hwfn, p_ptt, 83 p_hwfn->mcp_info->mfw_mb_addr + 84 (i << 2) + sizeof(u32)); 85 86 /* The MB data is actually BE; Need to force it to cpu */ 87 ((u32 *)p_hwfn->mcp_info->mfw_mb_cur)[i] = 88 be32_to_cpu((__force __be32)tmp); 89 } 90 } 91 92 struct qed_mcp_cmd_elem { 93 struct list_head list; 94 struct qed_mcp_mb_params *p_mb_params; 95 u16 expected_seq_num; 96 bool b_is_completed; 97 }; 98 99 /* Must be called while cmd_lock is acquired */ 100 static struct qed_mcp_cmd_elem * 101 qed_mcp_cmd_add_elem(struct qed_hwfn *p_hwfn, 102 struct qed_mcp_mb_params *p_mb_params, 103 u16 expected_seq_num) 104 { 105 struct qed_mcp_cmd_elem *p_cmd_elem = NULL; 106 107 p_cmd_elem = kzalloc(sizeof(*p_cmd_elem), GFP_ATOMIC); 108 if (!p_cmd_elem) 109 goto out; 110 111 p_cmd_elem->p_mb_params = p_mb_params; 112 p_cmd_elem->expected_seq_num = expected_seq_num; 113 list_add(&p_cmd_elem->list, &p_hwfn->mcp_info->cmd_list); 114 out: 115 return p_cmd_elem; 116 } 117 118 /* Must be called while cmd_lock is acquired */ 119 static void qed_mcp_cmd_del_elem(struct qed_hwfn *p_hwfn, 120 struct qed_mcp_cmd_elem *p_cmd_elem) 121 { 122 list_del(&p_cmd_elem->list); 123 kfree(p_cmd_elem); 124 } 125 126 /* Must be called while cmd_lock is acquired */ 127 static struct qed_mcp_cmd_elem *qed_mcp_cmd_get_elem(struct qed_hwfn *p_hwfn, 128 u16 seq_num) 129 { 130 struct qed_mcp_cmd_elem *p_cmd_elem = NULL; 131 132 list_for_each_entry(p_cmd_elem, &p_hwfn->mcp_info->cmd_list, list) { 133 if (p_cmd_elem->expected_seq_num == seq_num) 134 return p_cmd_elem; 135 } 136 137 return NULL; 138 } 139 140 int qed_mcp_free(struct qed_hwfn *p_hwfn) 141 { 142 if (p_hwfn->mcp_info) { 143 struct qed_mcp_cmd_elem *p_cmd_elem = NULL, *p_tmp; 144 145 kfree(p_hwfn->mcp_info->mfw_mb_cur); 146 kfree(p_hwfn->mcp_info->mfw_mb_shadow); 147 148 spin_lock_bh(&p_hwfn->mcp_info->cmd_lock); 149 list_for_each_entry_safe(p_cmd_elem, 150 p_tmp, 151 &p_hwfn->mcp_info->cmd_list, list) { 152 qed_mcp_cmd_del_elem(p_hwfn, p_cmd_elem); 153 } 154 spin_unlock_bh(&p_hwfn->mcp_info->cmd_lock); 155 } 156 157 kfree(p_hwfn->mcp_info); 158 p_hwfn->mcp_info = NULL; 159 160 return 0; 161 } 162 163 /* Maximum of 1 sec to wait for the SHMEM ready indication */ 164 #define QED_MCP_SHMEM_RDY_MAX_RETRIES 20 165 #define QED_MCP_SHMEM_RDY_ITER_MS 50 166 167 static int qed_load_mcp_offsets(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 168 { 169 struct qed_mcp_info *p_info = p_hwfn->mcp_info; 170 u8 cnt = QED_MCP_SHMEM_RDY_MAX_RETRIES; 171 u8 msec = QED_MCP_SHMEM_RDY_ITER_MS; 172 u32 drv_mb_offsize, mfw_mb_offsize; 173 u32 mcp_pf_id = MCP_PF_ID(p_hwfn); 174 175 p_info->public_base = qed_rd(p_hwfn, p_ptt, MISC_REG_SHARED_MEM_ADDR); 176 if (!p_info->public_base) { 177 DP_NOTICE(p_hwfn, 178 "The address of the MCP scratch-pad is not configured\n"); 179 return -EINVAL; 180 } 181 182 p_info->public_base |= GRCBASE_MCP; 183 184 /* Get the MFW MB address and number of supported messages */ 185 mfw_mb_offsize = qed_rd(p_hwfn, p_ptt, 186 SECTION_OFFSIZE_ADDR(p_info->public_base, 187 PUBLIC_MFW_MB)); 188 p_info->mfw_mb_addr = SECTION_ADDR(mfw_mb_offsize, mcp_pf_id); 189 p_info->mfw_mb_length = (u16)qed_rd(p_hwfn, p_ptt, 190 p_info->mfw_mb_addr + 191 offsetof(struct public_mfw_mb, 192 sup_msgs)); 193 194 /* The driver can notify that there was an MCP reset, and might read the 195 * SHMEM values before the MFW has completed initializing them. 196 * To avoid this, the "sup_msgs" field in the MFW mailbox is used as a 197 * data ready indication. 198 */ 199 while (!p_info->mfw_mb_length && --cnt) { 200 msleep(msec); 201 p_info->mfw_mb_length = 202 (u16)qed_rd(p_hwfn, p_ptt, 203 p_info->mfw_mb_addr + 204 offsetof(struct public_mfw_mb, sup_msgs)); 205 } 206 207 if (!cnt) { 208 DP_NOTICE(p_hwfn, 209 "Failed to get the SHMEM ready notification after %d msec\n", 210 QED_MCP_SHMEM_RDY_MAX_RETRIES * msec); 211 return -EBUSY; 212 } 213 214 /* Calculate the driver and MFW mailbox address */ 215 drv_mb_offsize = qed_rd(p_hwfn, p_ptt, 216 SECTION_OFFSIZE_ADDR(p_info->public_base, 217 PUBLIC_DRV_MB)); 218 p_info->drv_mb_addr = SECTION_ADDR(drv_mb_offsize, mcp_pf_id); 219 DP_VERBOSE(p_hwfn, QED_MSG_SP, 220 "drv_mb_offsiz = 0x%x, drv_mb_addr = 0x%x mcp_pf_id = 0x%x\n", 221 drv_mb_offsize, p_info->drv_mb_addr, mcp_pf_id); 222 223 /* Get the current driver mailbox sequence before sending 224 * the first command 225 */ 226 p_info->drv_mb_seq = DRV_MB_RD(p_hwfn, p_ptt, drv_mb_header) & 227 DRV_MSG_SEQ_NUMBER_MASK; 228 229 /* Get current FW pulse sequence */ 230 p_info->drv_pulse_seq = DRV_MB_RD(p_hwfn, p_ptt, drv_pulse_mb) & 231 DRV_PULSE_SEQ_MASK; 232 233 p_info->mcp_hist = qed_rd(p_hwfn, p_ptt, MISCS_REG_GENERIC_POR_0); 234 235 return 0; 236 } 237 238 int qed_mcp_cmd_init(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 239 { 240 struct qed_mcp_info *p_info; 241 u32 size; 242 243 /* Allocate mcp_info structure */ 244 p_hwfn->mcp_info = kzalloc(sizeof(*p_hwfn->mcp_info), GFP_KERNEL); 245 if (!p_hwfn->mcp_info) 246 goto err; 247 p_info = p_hwfn->mcp_info; 248 249 /* Initialize the MFW spinlock */ 250 spin_lock_init(&p_info->cmd_lock); 251 spin_lock_init(&p_info->link_lock); 252 spin_lock_init(&p_info->unload_lock); 253 254 INIT_LIST_HEAD(&p_info->cmd_list); 255 256 if (qed_load_mcp_offsets(p_hwfn, p_ptt) != 0) { 257 DP_NOTICE(p_hwfn, "MCP is not initialized\n"); 258 /* Do not free mcp_info here, since public_base indicate that 259 * the MCP is not initialized 260 */ 261 return 0; 262 } 263 264 size = MFW_DRV_MSG_MAX_DWORDS(p_info->mfw_mb_length) * sizeof(u32); 265 p_info->mfw_mb_cur = kzalloc(size, GFP_KERNEL); 266 p_info->mfw_mb_shadow = kzalloc(size, GFP_KERNEL); 267 if (!p_info->mfw_mb_cur || !p_info->mfw_mb_shadow) 268 goto err; 269 270 return 0; 271 272 err: 273 qed_mcp_free(p_hwfn); 274 return -ENOMEM; 275 } 276 277 static void qed_mcp_reread_offsets(struct qed_hwfn *p_hwfn, 278 struct qed_ptt *p_ptt) 279 { 280 u32 generic_por_0 = qed_rd(p_hwfn, p_ptt, MISCS_REG_GENERIC_POR_0); 281 282 /* Use MCP history register to check if MCP reset occurred between init 283 * time and now. 284 */ 285 if (p_hwfn->mcp_info->mcp_hist != generic_por_0) { 286 DP_VERBOSE(p_hwfn, 287 QED_MSG_SP, 288 "Rereading MCP offsets [mcp_hist 0x%08x, generic_por_0 0x%08x]\n", 289 p_hwfn->mcp_info->mcp_hist, generic_por_0); 290 291 qed_load_mcp_offsets(p_hwfn, p_ptt); 292 qed_mcp_cmd_port_init(p_hwfn, p_ptt); 293 } 294 } 295 296 int qed_mcp_reset(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 297 { 298 u32 org_mcp_reset_seq, seq, delay = QED_MCP_RESP_ITER_US, cnt = 0; 299 int rc = 0; 300 301 if (p_hwfn->mcp_info->b_block_cmd) { 302 DP_NOTICE(p_hwfn, 303 "The MFW is not responsive. Avoid sending MCP_RESET mailbox command.\n"); 304 return -EBUSY; 305 } 306 307 /* Ensure that only a single thread is accessing the mailbox */ 308 spin_lock_bh(&p_hwfn->mcp_info->cmd_lock); 309 310 org_mcp_reset_seq = qed_rd(p_hwfn, p_ptt, MISCS_REG_GENERIC_POR_0); 311 312 /* Set drv command along with the updated sequence */ 313 qed_mcp_reread_offsets(p_hwfn, p_ptt); 314 seq = ++p_hwfn->mcp_info->drv_mb_seq; 315 DRV_MB_WR(p_hwfn, p_ptt, drv_mb_header, (DRV_MSG_CODE_MCP_RESET | seq)); 316 317 do { 318 /* Wait for MFW response */ 319 udelay(delay); 320 /* Give the FW up to 500 second (50*1000*10usec) */ 321 } while ((org_mcp_reset_seq == qed_rd(p_hwfn, p_ptt, 322 MISCS_REG_GENERIC_POR_0)) && 323 (cnt++ < QED_MCP_RESET_RETRIES)); 324 325 if (org_mcp_reset_seq != 326 qed_rd(p_hwfn, p_ptt, MISCS_REG_GENERIC_POR_0)) { 327 DP_VERBOSE(p_hwfn, QED_MSG_SP, 328 "MCP was reset after %d usec\n", cnt * delay); 329 } else { 330 DP_ERR(p_hwfn, "Failed to reset MCP\n"); 331 rc = -EAGAIN; 332 } 333 334 spin_unlock_bh(&p_hwfn->mcp_info->cmd_lock); 335 336 return rc; 337 } 338 339 /* Must be called while cmd_lock is acquired */ 340 static bool qed_mcp_has_pending_cmd(struct qed_hwfn *p_hwfn) 341 { 342 struct qed_mcp_cmd_elem *p_cmd_elem; 343 344 /* There is at most one pending command at a certain time, and if it 345 * exists - it is placed at the HEAD of the list. 346 */ 347 if (!list_empty(&p_hwfn->mcp_info->cmd_list)) { 348 p_cmd_elem = list_first_entry(&p_hwfn->mcp_info->cmd_list, 349 struct qed_mcp_cmd_elem, list); 350 return !p_cmd_elem->b_is_completed; 351 } 352 353 return false; 354 } 355 356 /* Must be called while cmd_lock is acquired */ 357 static int 358 qed_mcp_update_pending_cmd(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 359 { 360 struct qed_mcp_mb_params *p_mb_params; 361 struct qed_mcp_cmd_elem *p_cmd_elem; 362 u32 mcp_resp; 363 u16 seq_num; 364 365 mcp_resp = DRV_MB_RD(p_hwfn, p_ptt, fw_mb_header); 366 seq_num = (u16)(mcp_resp & FW_MSG_SEQ_NUMBER_MASK); 367 368 /* Return if no new non-handled response has been received */ 369 if (seq_num != p_hwfn->mcp_info->drv_mb_seq) 370 return -EAGAIN; 371 372 p_cmd_elem = qed_mcp_cmd_get_elem(p_hwfn, seq_num); 373 if (!p_cmd_elem) { 374 DP_ERR(p_hwfn, 375 "Failed to find a pending mailbox cmd that expects sequence number %d\n", 376 seq_num); 377 return -EINVAL; 378 } 379 380 p_mb_params = p_cmd_elem->p_mb_params; 381 382 /* Get the MFW response along with the sequence number */ 383 p_mb_params->mcp_resp = mcp_resp; 384 385 /* Get the MFW param */ 386 p_mb_params->mcp_param = DRV_MB_RD(p_hwfn, p_ptt, fw_mb_param); 387 388 /* Get the union data */ 389 if (p_mb_params->p_data_dst && p_mb_params->data_dst_size) { 390 u32 union_data_addr = p_hwfn->mcp_info->drv_mb_addr + 391 offsetof(struct public_drv_mb, 392 union_data); 393 qed_memcpy_from(p_hwfn, p_ptt, p_mb_params->p_data_dst, 394 union_data_addr, p_mb_params->data_dst_size); 395 } 396 397 p_cmd_elem->b_is_completed = true; 398 399 return 0; 400 } 401 402 /* Must be called while cmd_lock is acquired */ 403 static void __qed_mcp_cmd_and_union(struct qed_hwfn *p_hwfn, 404 struct qed_ptt *p_ptt, 405 struct qed_mcp_mb_params *p_mb_params, 406 u16 seq_num) 407 { 408 union drv_union_data union_data; 409 u32 union_data_addr; 410 411 /* Set the union data */ 412 union_data_addr = p_hwfn->mcp_info->drv_mb_addr + 413 offsetof(struct public_drv_mb, union_data); 414 memset(&union_data, 0, sizeof(union_data)); 415 if (p_mb_params->p_data_src && p_mb_params->data_src_size) 416 memcpy(&union_data, p_mb_params->p_data_src, 417 p_mb_params->data_src_size); 418 qed_memcpy_to(p_hwfn, p_ptt, union_data_addr, &union_data, 419 sizeof(union_data)); 420 421 /* Set the drv param */ 422 DRV_MB_WR(p_hwfn, p_ptt, drv_mb_param, p_mb_params->param); 423 424 /* Set the drv command along with the sequence number */ 425 DRV_MB_WR(p_hwfn, p_ptt, drv_mb_header, (p_mb_params->cmd | seq_num)); 426 427 DP_VERBOSE(p_hwfn, QED_MSG_SP, 428 "MFW mailbox: command 0x%08x param 0x%08x\n", 429 (p_mb_params->cmd | seq_num), p_mb_params->param); 430 } 431 432 static void qed_mcp_cmd_set_blocking(struct qed_hwfn *p_hwfn, bool block_cmd) 433 { 434 p_hwfn->mcp_info->b_block_cmd = block_cmd; 435 436 DP_INFO(p_hwfn, "%s sending of mailbox commands to the MFW\n", 437 block_cmd ? "Block" : "Unblock"); 438 } 439 440 static void qed_mcp_print_cpu_info(struct qed_hwfn *p_hwfn, 441 struct qed_ptt *p_ptt) 442 { 443 u32 cpu_mode, cpu_state, cpu_pc_0, cpu_pc_1, cpu_pc_2; 444 u32 delay = QED_MCP_RESP_ITER_US; 445 446 cpu_mode = qed_rd(p_hwfn, p_ptt, MCP_REG_CPU_MODE); 447 cpu_state = qed_rd(p_hwfn, p_ptt, MCP_REG_CPU_STATE); 448 cpu_pc_0 = qed_rd(p_hwfn, p_ptt, MCP_REG_CPU_PROGRAM_COUNTER); 449 udelay(delay); 450 cpu_pc_1 = qed_rd(p_hwfn, p_ptt, MCP_REG_CPU_PROGRAM_COUNTER); 451 udelay(delay); 452 cpu_pc_2 = qed_rd(p_hwfn, p_ptt, MCP_REG_CPU_PROGRAM_COUNTER); 453 454 DP_NOTICE(p_hwfn, 455 "MCP CPU info: mode 0x%08x, state 0x%08x, pc {0x%08x, 0x%08x, 0x%08x}\n", 456 cpu_mode, cpu_state, cpu_pc_0, cpu_pc_1, cpu_pc_2); 457 } 458 459 static int 460 _qed_mcp_cmd_and_union(struct qed_hwfn *p_hwfn, 461 struct qed_ptt *p_ptt, 462 struct qed_mcp_mb_params *p_mb_params) 463 { 464 struct qed_mcp_cmd_elem *p_cmd_elem; 465 u16 seq_num; 466 u32 cnt = 0; 467 int rc = 0; 468 469 /* Wait until the mailbox is non-occupied */ 470 do { 471 /* Exit the loop if there is no pending command, or if the 472 * pending command is completed during this iteration. 473 * The spinlock stays locked until the command is sent. 474 */ 475 476 spin_lock_bh(&p_hwfn->mcp_info->cmd_lock); 477 478 if (!qed_mcp_has_pending_cmd(p_hwfn)) 479 break; 480 481 rc = qed_mcp_update_pending_cmd(p_hwfn, p_ptt); 482 if (!rc) 483 break; 484 else if (rc != -EAGAIN) 485 goto err; 486 487 spin_unlock_bh(&p_hwfn->mcp_info->cmd_lock); 488 489 if (QED_MB_FLAGS_IS_SET(p_mb_params, CAN_SLEEP)) 490 usleep_range(QED_MCP_RESP_ITER_US, 491 QED_MCP_RESP_ITER_US * 2); 492 else 493 udelay(QED_MCP_RESP_ITER_US); 494 } while (++cnt < QED_DRV_MB_MAX_RETRIES); 495 496 if (cnt >= QED_DRV_MB_MAX_RETRIES) { 497 DP_NOTICE(p_hwfn, 498 "The MFW mailbox is occupied by an uncompleted command. Failed to send command 0x%08x [param 0x%08x].\n", 499 p_mb_params->cmd, p_mb_params->param); 500 return -EAGAIN; 501 } 502 503 /* Send the mailbox command */ 504 qed_mcp_reread_offsets(p_hwfn, p_ptt); 505 seq_num = ++p_hwfn->mcp_info->drv_mb_seq; 506 p_cmd_elem = qed_mcp_cmd_add_elem(p_hwfn, p_mb_params, seq_num); 507 if (!p_cmd_elem) { 508 rc = -ENOMEM; 509 goto err; 510 } 511 512 __qed_mcp_cmd_and_union(p_hwfn, p_ptt, p_mb_params, seq_num); 513 spin_unlock_bh(&p_hwfn->mcp_info->cmd_lock); 514 515 /* Wait for the MFW response */ 516 do { 517 /* Exit the loop if the command is already completed, or if the 518 * command is completed during this iteration. 519 * The spinlock stays locked until the list element is removed. 520 */ 521 522 if (QED_MB_FLAGS_IS_SET(p_mb_params, CAN_SLEEP)) 523 usleep_range(QED_MCP_RESP_ITER_US, 524 QED_MCP_RESP_ITER_US * 2); 525 else 526 udelay(QED_MCP_RESP_ITER_US); 527 528 spin_lock_bh(&p_hwfn->mcp_info->cmd_lock); 529 530 if (p_cmd_elem->b_is_completed) 531 break; 532 533 rc = qed_mcp_update_pending_cmd(p_hwfn, p_ptt); 534 if (!rc) 535 break; 536 else if (rc != -EAGAIN) 537 goto err; 538 539 spin_unlock_bh(&p_hwfn->mcp_info->cmd_lock); 540 } while (++cnt < QED_DRV_MB_MAX_RETRIES); 541 542 if (cnt >= QED_DRV_MB_MAX_RETRIES) { 543 DP_NOTICE(p_hwfn, 544 "The MFW failed to respond to command 0x%08x [param 0x%08x].\n", 545 p_mb_params->cmd, p_mb_params->param); 546 qed_mcp_print_cpu_info(p_hwfn, p_ptt); 547 548 spin_lock_bh(&p_hwfn->mcp_info->cmd_lock); 549 qed_mcp_cmd_del_elem(p_hwfn, p_cmd_elem); 550 spin_unlock_bh(&p_hwfn->mcp_info->cmd_lock); 551 552 if (!QED_MB_FLAGS_IS_SET(p_mb_params, AVOID_BLOCK)) 553 qed_mcp_cmd_set_blocking(p_hwfn, true); 554 555 qed_hw_err_notify(p_hwfn, p_ptt, 556 QED_HW_ERR_MFW_RESP_FAIL, NULL); 557 return -EAGAIN; 558 } 559 560 qed_mcp_cmd_del_elem(p_hwfn, p_cmd_elem); 561 spin_unlock_bh(&p_hwfn->mcp_info->cmd_lock); 562 563 DP_VERBOSE(p_hwfn, 564 QED_MSG_SP, 565 "MFW mailbox: response 0x%08x param 0x%08x [after %d.%03d ms]\n", 566 p_mb_params->mcp_resp, 567 p_mb_params->mcp_param, 568 (cnt * QED_MCP_RESP_ITER_US) / 1000, 569 (cnt * QED_MCP_RESP_ITER_US) % 1000); 570 571 /* Clear the sequence number from the MFW response */ 572 p_mb_params->mcp_resp &= FW_MSG_CODE_MASK; 573 574 return 0; 575 576 err: 577 spin_unlock_bh(&p_hwfn->mcp_info->cmd_lock); 578 return rc; 579 } 580 581 static int qed_mcp_cmd_and_union(struct qed_hwfn *p_hwfn, 582 struct qed_ptt *p_ptt, 583 struct qed_mcp_mb_params *p_mb_params) 584 { 585 size_t union_data_size = sizeof(union drv_union_data); 586 587 /* MCP not initialized */ 588 if (!qed_mcp_is_init(p_hwfn)) { 589 DP_NOTICE(p_hwfn, "MFW is not initialized!\n"); 590 return -EBUSY; 591 } 592 593 if (p_hwfn->mcp_info->b_block_cmd) { 594 DP_NOTICE(p_hwfn, 595 "The MFW is not responsive. Avoid sending mailbox command 0x%08x [param 0x%08x].\n", 596 p_mb_params->cmd, p_mb_params->param); 597 return -EBUSY; 598 } 599 600 if (p_mb_params->data_src_size > union_data_size || 601 p_mb_params->data_dst_size > union_data_size) { 602 DP_ERR(p_hwfn, 603 "The provided size is larger than the union data size [src_size %u, dst_size %u, union_data_size %zu]\n", 604 p_mb_params->data_src_size, 605 p_mb_params->data_dst_size, union_data_size); 606 return -EINVAL; 607 } 608 609 return _qed_mcp_cmd_and_union(p_hwfn, p_ptt, p_mb_params); 610 } 611 612 static int _qed_mcp_cmd(struct qed_hwfn *p_hwfn, 613 struct qed_ptt *p_ptt, 614 u32 cmd, 615 u32 param, 616 u32 *o_mcp_resp, 617 u32 *o_mcp_param, 618 bool can_sleep) 619 { 620 struct qed_mcp_mb_params mb_params; 621 int rc; 622 623 memset(&mb_params, 0, sizeof(mb_params)); 624 mb_params.cmd = cmd; 625 mb_params.param = param; 626 mb_params.flags = can_sleep ? QED_MB_FLAG_CAN_SLEEP : 0; 627 628 rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params); 629 if (rc) 630 return rc; 631 632 *o_mcp_resp = mb_params.mcp_resp; 633 *o_mcp_param = mb_params.mcp_param; 634 635 return 0; 636 } 637 638 int qed_mcp_cmd(struct qed_hwfn *p_hwfn, 639 struct qed_ptt *p_ptt, 640 u32 cmd, 641 u32 param, 642 u32 *o_mcp_resp, 643 u32 *o_mcp_param) 644 { 645 return (_qed_mcp_cmd(p_hwfn, p_ptt, cmd, param, 646 o_mcp_resp, o_mcp_param, true)); 647 } 648 649 int qed_mcp_cmd_nosleep(struct qed_hwfn *p_hwfn, 650 struct qed_ptt *p_ptt, 651 u32 cmd, 652 u32 param, 653 u32 *o_mcp_resp, 654 u32 *o_mcp_param) 655 { 656 return (_qed_mcp_cmd(p_hwfn, p_ptt, cmd, param, 657 o_mcp_resp, o_mcp_param, false)); 658 } 659 660 static int 661 qed_mcp_nvm_wr_cmd(struct qed_hwfn *p_hwfn, 662 struct qed_ptt *p_ptt, 663 u32 cmd, 664 u32 param, 665 u32 *o_mcp_resp, 666 u32 *o_mcp_param, u32 i_txn_size, u32 *i_buf) 667 { 668 struct qed_mcp_mb_params mb_params; 669 int rc; 670 671 memset(&mb_params, 0, sizeof(mb_params)); 672 mb_params.cmd = cmd; 673 mb_params.param = param; 674 mb_params.p_data_src = i_buf; 675 mb_params.data_src_size = (u8)i_txn_size; 676 rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params); 677 if (rc) 678 return rc; 679 680 *o_mcp_resp = mb_params.mcp_resp; 681 *o_mcp_param = mb_params.mcp_param; 682 683 /* nvm_info needs to be updated */ 684 p_hwfn->nvm_info.valid = false; 685 686 return 0; 687 } 688 689 int qed_mcp_nvm_rd_cmd(struct qed_hwfn *p_hwfn, 690 struct qed_ptt *p_ptt, 691 u32 cmd, 692 u32 param, 693 u32 *o_mcp_resp, 694 u32 *o_mcp_param, 695 u32 *o_txn_size, u32 *o_buf, bool b_can_sleep) 696 { 697 struct qed_mcp_mb_params mb_params; 698 u8 raw_data[MCP_DRV_NVM_BUF_LEN]; 699 int rc; 700 701 memset(&mb_params, 0, sizeof(mb_params)); 702 mb_params.cmd = cmd; 703 mb_params.param = param; 704 mb_params.p_data_dst = raw_data; 705 706 /* Use the maximal value since the actual one is part of the response */ 707 mb_params.data_dst_size = MCP_DRV_NVM_BUF_LEN; 708 if (b_can_sleep) 709 mb_params.flags = QED_MB_FLAG_CAN_SLEEP; 710 711 rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params); 712 if (rc) 713 return rc; 714 715 *o_mcp_resp = mb_params.mcp_resp; 716 *o_mcp_param = mb_params.mcp_param; 717 718 *o_txn_size = *o_mcp_param; 719 memcpy(o_buf, raw_data, *o_txn_size); 720 721 return 0; 722 } 723 724 static bool 725 qed_mcp_can_force_load(u8 drv_role, 726 u8 exist_drv_role, 727 enum qed_override_force_load override_force_load) 728 { 729 bool can_force_load = false; 730 731 switch (override_force_load) { 732 case QED_OVERRIDE_FORCE_LOAD_ALWAYS: 733 can_force_load = true; 734 break; 735 case QED_OVERRIDE_FORCE_LOAD_NEVER: 736 can_force_load = false; 737 break; 738 default: 739 can_force_load = (drv_role == DRV_ROLE_OS && 740 exist_drv_role == DRV_ROLE_PREBOOT) || 741 (drv_role == DRV_ROLE_KDUMP && 742 exist_drv_role == DRV_ROLE_OS); 743 break; 744 } 745 746 return can_force_load; 747 } 748 749 static int qed_mcp_cancel_load_req(struct qed_hwfn *p_hwfn, 750 struct qed_ptt *p_ptt) 751 { 752 u32 resp = 0, param = 0; 753 int rc; 754 755 rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_CANCEL_LOAD_REQ, 0, 756 &resp, ¶m); 757 if (rc) 758 DP_NOTICE(p_hwfn, 759 "Failed to send cancel load request, rc = %d\n", rc); 760 761 return rc; 762 } 763 764 #define BITMAP_IDX_FOR_CONFIG_QEDE BIT(0) 765 #define BITMAP_IDX_FOR_CONFIG_QED_SRIOV BIT(1) 766 #define BITMAP_IDX_FOR_CONFIG_QEDR BIT(2) 767 #define BITMAP_IDX_FOR_CONFIG_QEDF BIT(4) 768 #define BITMAP_IDX_FOR_CONFIG_QEDI BIT(5) 769 #define BITMAP_IDX_FOR_CONFIG_QED_LL2 BIT(6) 770 771 static u32 qed_get_config_bitmap(void) 772 { 773 u32 config_bitmap = 0x0; 774 775 if (IS_ENABLED(CONFIG_QEDE)) 776 config_bitmap |= BITMAP_IDX_FOR_CONFIG_QEDE; 777 778 if (IS_ENABLED(CONFIG_QED_SRIOV)) 779 config_bitmap |= BITMAP_IDX_FOR_CONFIG_QED_SRIOV; 780 781 if (IS_ENABLED(CONFIG_QED_RDMA)) 782 config_bitmap |= BITMAP_IDX_FOR_CONFIG_QEDR; 783 784 if (IS_ENABLED(CONFIG_QED_FCOE)) 785 config_bitmap |= BITMAP_IDX_FOR_CONFIG_QEDF; 786 787 if (IS_ENABLED(CONFIG_QED_ISCSI)) 788 config_bitmap |= BITMAP_IDX_FOR_CONFIG_QEDI; 789 790 if (IS_ENABLED(CONFIG_QED_LL2)) 791 config_bitmap |= BITMAP_IDX_FOR_CONFIG_QED_LL2; 792 793 return config_bitmap; 794 } 795 796 struct qed_load_req_in_params { 797 u8 hsi_ver; 798 #define QED_LOAD_REQ_HSI_VER_DEFAULT 0 799 #define QED_LOAD_REQ_HSI_VER_1 1 800 u32 drv_ver_0; 801 u32 drv_ver_1; 802 u32 fw_ver; 803 u8 drv_role; 804 u8 timeout_val; 805 u8 force_cmd; 806 bool avoid_eng_reset; 807 }; 808 809 struct qed_load_req_out_params { 810 u32 load_code; 811 u32 exist_drv_ver_0; 812 u32 exist_drv_ver_1; 813 u32 exist_fw_ver; 814 u8 exist_drv_role; 815 u8 mfw_hsi_ver; 816 bool drv_exists; 817 }; 818 819 static int 820 __qed_mcp_load_req(struct qed_hwfn *p_hwfn, 821 struct qed_ptt *p_ptt, 822 struct qed_load_req_in_params *p_in_params, 823 struct qed_load_req_out_params *p_out_params) 824 { 825 struct qed_mcp_mb_params mb_params; 826 struct load_req_stc load_req; 827 struct load_rsp_stc load_rsp; 828 u32 hsi_ver; 829 int rc; 830 831 memset(&load_req, 0, sizeof(load_req)); 832 load_req.drv_ver_0 = p_in_params->drv_ver_0; 833 load_req.drv_ver_1 = p_in_params->drv_ver_1; 834 load_req.fw_ver = p_in_params->fw_ver; 835 QED_MFW_SET_FIELD(load_req.misc0, LOAD_REQ_ROLE, p_in_params->drv_role); 836 QED_MFW_SET_FIELD(load_req.misc0, LOAD_REQ_LOCK_TO, 837 p_in_params->timeout_val); 838 QED_MFW_SET_FIELD(load_req.misc0, LOAD_REQ_FORCE, 839 p_in_params->force_cmd); 840 QED_MFW_SET_FIELD(load_req.misc0, LOAD_REQ_FLAGS0, 841 p_in_params->avoid_eng_reset); 842 843 hsi_ver = (p_in_params->hsi_ver == QED_LOAD_REQ_HSI_VER_DEFAULT) ? 844 DRV_ID_MCP_HSI_VER_CURRENT : 845 (p_in_params->hsi_ver << DRV_ID_MCP_HSI_VER_SHIFT); 846 847 memset(&mb_params, 0, sizeof(mb_params)); 848 mb_params.cmd = DRV_MSG_CODE_LOAD_REQ; 849 mb_params.param = PDA_COMP | hsi_ver | p_hwfn->cdev->drv_type; 850 mb_params.p_data_src = &load_req; 851 mb_params.data_src_size = sizeof(load_req); 852 mb_params.p_data_dst = &load_rsp; 853 mb_params.data_dst_size = sizeof(load_rsp); 854 mb_params.flags = QED_MB_FLAG_CAN_SLEEP | QED_MB_FLAG_AVOID_BLOCK; 855 856 DP_VERBOSE(p_hwfn, QED_MSG_SP, 857 "Load Request: param 0x%08x [init_hw %d, drv_type %d, hsi_ver %d, pda 0x%04x]\n", 858 mb_params.param, 859 QED_MFW_GET_FIELD(mb_params.param, DRV_ID_DRV_INIT_HW), 860 QED_MFW_GET_FIELD(mb_params.param, DRV_ID_DRV_TYPE), 861 QED_MFW_GET_FIELD(mb_params.param, DRV_ID_MCP_HSI_VER), 862 QED_MFW_GET_FIELD(mb_params.param, DRV_ID_PDA_COMP_VER)); 863 864 if (p_in_params->hsi_ver != QED_LOAD_REQ_HSI_VER_1) { 865 DP_VERBOSE(p_hwfn, QED_MSG_SP, 866 "Load Request: drv_ver 0x%08x_0x%08x, fw_ver 0x%08x, misc0 0x%08x [role %d, timeout %d, force %d, flags0 0x%x]\n", 867 load_req.drv_ver_0, 868 load_req.drv_ver_1, 869 load_req.fw_ver, 870 load_req.misc0, 871 QED_MFW_GET_FIELD(load_req.misc0, LOAD_REQ_ROLE), 872 QED_MFW_GET_FIELD(load_req.misc0, 873 LOAD_REQ_LOCK_TO), 874 QED_MFW_GET_FIELD(load_req.misc0, LOAD_REQ_FORCE), 875 QED_MFW_GET_FIELD(load_req.misc0, LOAD_REQ_FLAGS0)); 876 } 877 878 rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params); 879 if (rc) { 880 DP_NOTICE(p_hwfn, "Failed to send load request, rc = %d\n", rc); 881 return rc; 882 } 883 884 DP_VERBOSE(p_hwfn, QED_MSG_SP, 885 "Load Response: resp 0x%08x\n", mb_params.mcp_resp); 886 p_out_params->load_code = mb_params.mcp_resp; 887 888 if (p_in_params->hsi_ver != QED_LOAD_REQ_HSI_VER_1 && 889 p_out_params->load_code != FW_MSG_CODE_DRV_LOAD_REFUSED_HSI_1) { 890 DP_VERBOSE(p_hwfn, 891 QED_MSG_SP, 892 "Load Response: exist_drv_ver 0x%08x_0x%08x, exist_fw_ver 0x%08x, misc0 0x%08x [exist_role %d, mfw_hsi %d, flags0 0x%x]\n", 893 load_rsp.drv_ver_0, 894 load_rsp.drv_ver_1, 895 load_rsp.fw_ver, 896 load_rsp.misc0, 897 QED_MFW_GET_FIELD(load_rsp.misc0, LOAD_RSP_ROLE), 898 QED_MFW_GET_FIELD(load_rsp.misc0, LOAD_RSP_HSI), 899 QED_MFW_GET_FIELD(load_rsp.misc0, LOAD_RSP_FLAGS0)); 900 901 p_out_params->exist_drv_ver_0 = load_rsp.drv_ver_0; 902 p_out_params->exist_drv_ver_1 = load_rsp.drv_ver_1; 903 p_out_params->exist_fw_ver = load_rsp.fw_ver; 904 p_out_params->exist_drv_role = 905 QED_MFW_GET_FIELD(load_rsp.misc0, LOAD_RSP_ROLE); 906 p_out_params->mfw_hsi_ver = 907 QED_MFW_GET_FIELD(load_rsp.misc0, LOAD_RSP_HSI); 908 p_out_params->drv_exists = 909 QED_MFW_GET_FIELD(load_rsp.misc0, LOAD_RSP_FLAGS0) & 910 LOAD_RSP_FLAGS0_DRV_EXISTS; 911 } 912 913 return 0; 914 } 915 916 static int eocre_get_mfw_drv_role(struct qed_hwfn *p_hwfn, 917 enum qed_drv_role drv_role, 918 u8 *p_mfw_drv_role) 919 { 920 switch (drv_role) { 921 case QED_DRV_ROLE_OS: 922 *p_mfw_drv_role = DRV_ROLE_OS; 923 break; 924 case QED_DRV_ROLE_KDUMP: 925 *p_mfw_drv_role = DRV_ROLE_KDUMP; 926 break; 927 default: 928 DP_ERR(p_hwfn, "Unexpected driver role %d\n", drv_role); 929 return -EINVAL; 930 } 931 932 return 0; 933 } 934 935 enum qed_load_req_force { 936 QED_LOAD_REQ_FORCE_NONE, 937 QED_LOAD_REQ_FORCE_PF, 938 QED_LOAD_REQ_FORCE_ALL, 939 }; 940 941 static void qed_get_mfw_force_cmd(struct qed_hwfn *p_hwfn, 942 enum qed_load_req_force force_cmd, 943 u8 *p_mfw_force_cmd) 944 { 945 switch (force_cmd) { 946 case QED_LOAD_REQ_FORCE_NONE: 947 *p_mfw_force_cmd = LOAD_REQ_FORCE_NONE; 948 break; 949 case QED_LOAD_REQ_FORCE_PF: 950 *p_mfw_force_cmd = LOAD_REQ_FORCE_PF; 951 break; 952 case QED_LOAD_REQ_FORCE_ALL: 953 *p_mfw_force_cmd = LOAD_REQ_FORCE_ALL; 954 break; 955 } 956 } 957 958 int qed_mcp_load_req(struct qed_hwfn *p_hwfn, 959 struct qed_ptt *p_ptt, 960 struct qed_load_req_params *p_params) 961 { 962 struct qed_load_req_out_params out_params; 963 struct qed_load_req_in_params in_params; 964 u8 mfw_drv_role, mfw_force_cmd; 965 int rc; 966 967 memset(&in_params, 0, sizeof(in_params)); 968 in_params.hsi_ver = QED_LOAD_REQ_HSI_VER_DEFAULT; 969 in_params.drv_ver_1 = qed_get_config_bitmap(); 970 in_params.fw_ver = STORM_FW_VERSION; 971 rc = eocre_get_mfw_drv_role(p_hwfn, p_params->drv_role, &mfw_drv_role); 972 if (rc) 973 return rc; 974 975 in_params.drv_role = mfw_drv_role; 976 in_params.timeout_val = p_params->timeout_val; 977 qed_get_mfw_force_cmd(p_hwfn, 978 QED_LOAD_REQ_FORCE_NONE, &mfw_force_cmd); 979 980 in_params.force_cmd = mfw_force_cmd; 981 in_params.avoid_eng_reset = p_params->avoid_eng_reset; 982 983 memset(&out_params, 0, sizeof(out_params)); 984 rc = __qed_mcp_load_req(p_hwfn, p_ptt, &in_params, &out_params); 985 if (rc) 986 return rc; 987 988 /* First handle cases where another load request should/might be sent: 989 * - MFW expects the old interface [HSI version = 1] 990 * - MFW responds that a force load request is required 991 */ 992 if (out_params.load_code == FW_MSG_CODE_DRV_LOAD_REFUSED_HSI_1) { 993 DP_INFO(p_hwfn, 994 "MFW refused a load request due to HSI > 1. Resending with HSI = 1\n"); 995 996 in_params.hsi_ver = QED_LOAD_REQ_HSI_VER_1; 997 memset(&out_params, 0, sizeof(out_params)); 998 rc = __qed_mcp_load_req(p_hwfn, p_ptt, &in_params, &out_params); 999 if (rc) 1000 return rc; 1001 } else if (out_params.load_code == 1002 FW_MSG_CODE_DRV_LOAD_REFUSED_REQUIRES_FORCE) { 1003 if (qed_mcp_can_force_load(in_params.drv_role, 1004 out_params.exist_drv_role, 1005 p_params->override_force_load)) { 1006 DP_INFO(p_hwfn, 1007 "A force load is required [{role, fw_ver, drv_ver}: loading={%d, 0x%08x, x%08x_0x%08x}, existing={%d, 0x%08x, 0x%08x_0x%08x}]\n", 1008 in_params.drv_role, in_params.fw_ver, 1009 in_params.drv_ver_0, in_params.drv_ver_1, 1010 out_params.exist_drv_role, 1011 out_params.exist_fw_ver, 1012 out_params.exist_drv_ver_0, 1013 out_params.exist_drv_ver_1); 1014 1015 qed_get_mfw_force_cmd(p_hwfn, 1016 QED_LOAD_REQ_FORCE_ALL, 1017 &mfw_force_cmd); 1018 1019 in_params.force_cmd = mfw_force_cmd; 1020 memset(&out_params, 0, sizeof(out_params)); 1021 rc = __qed_mcp_load_req(p_hwfn, p_ptt, &in_params, 1022 &out_params); 1023 if (rc) 1024 return rc; 1025 } else { 1026 DP_NOTICE(p_hwfn, 1027 "A force load is required [{role, fw_ver, drv_ver}: loading={%d, 0x%08x, x%08x_0x%08x}, existing={%d, 0x%08x, 0x%08x_0x%08x}] - Avoid\n", 1028 in_params.drv_role, in_params.fw_ver, 1029 in_params.drv_ver_0, in_params.drv_ver_1, 1030 out_params.exist_drv_role, 1031 out_params.exist_fw_ver, 1032 out_params.exist_drv_ver_0, 1033 out_params.exist_drv_ver_1); 1034 DP_NOTICE(p_hwfn, 1035 "Avoid sending a force load request to prevent disruption of active PFs\n"); 1036 1037 qed_mcp_cancel_load_req(p_hwfn, p_ptt); 1038 return -EBUSY; 1039 } 1040 } 1041 1042 /* Now handle the other types of responses. 1043 * The "REFUSED_HSI_1" and "REFUSED_REQUIRES_FORCE" responses are not 1044 * expected here after the additional revised load requests were sent. 1045 */ 1046 switch (out_params.load_code) { 1047 case FW_MSG_CODE_DRV_LOAD_ENGINE: 1048 case FW_MSG_CODE_DRV_LOAD_PORT: 1049 case FW_MSG_CODE_DRV_LOAD_FUNCTION: 1050 if (out_params.mfw_hsi_ver != QED_LOAD_REQ_HSI_VER_1 && 1051 out_params.drv_exists) { 1052 /* The role and fw/driver version match, but the PF is 1053 * already loaded and has not been unloaded gracefully. 1054 */ 1055 DP_NOTICE(p_hwfn, 1056 "PF is already loaded\n"); 1057 return -EINVAL; 1058 } 1059 break; 1060 default: 1061 DP_NOTICE(p_hwfn, 1062 "Unexpected refusal to load request [resp 0x%08x]. Aborting.\n", 1063 out_params.load_code); 1064 return -EBUSY; 1065 } 1066 1067 p_params->load_code = out_params.load_code; 1068 1069 return 0; 1070 } 1071 1072 int qed_mcp_load_done(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 1073 { 1074 u32 resp = 0, param = 0; 1075 int rc; 1076 1077 rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_LOAD_DONE, 0, &resp, 1078 ¶m); 1079 if (rc) { 1080 DP_NOTICE(p_hwfn, 1081 "Failed to send a LOAD_DONE command, rc = %d\n", rc); 1082 return rc; 1083 } 1084 1085 /* Check if there is a DID mismatch between nvm-cfg/efuse */ 1086 if (param & FW_MB_PARAM_LOAD_DONE_DID_EFUSE_ERROR) 1087 DP_NOTICE(p_hwfn, 1088 "warning: device configuration is not supported on this board type. The device may not function as expected.\n"); 1089 1090 return 0; 1091 } 1092 1093 #define MFW_COMPLETION_MAX_ITER 5000 1094 #define MFW_COMPLETION_INTERVAL_MS 1 1095 1096 int qed_mcp_unload_req(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 1097 { 1098 struct qed_mcp_mb_params mb_params; 1099 u32 cnt = MFW_COMPLETION_MAX_ITER; 1100 u32 wol_param; 1101 int rc; 1102 1103 switch (p_hwfn->cdev->wol_config) { 1104 case QED_OV_WOL_DISABLED: 1105 wol_param = DRV_MB_PARAM_UNLOAD_WOL_DISABLED; 1106 break; 1107 case QED_OV_WOL_ENABLED: 1108 wol_param = DRV_MB_PARAM_UNLOAD_WOL_ENABLED; 1109 break; 1110 default: 1111 DP_NOTICE(p_hwfn, 1112 "Unknown WoL configuration %02x\n", 1113 p_hwfn->cdev->wol_config); 1114 fallthrough; 1115 case QED_OV_WOL_DEFAULT: 1116 wol_param = DRV_MB_PARAM_UNLOAD_WOL_MCP; 1117 } 1118 1119 memset(&mb_params, 0, sizeof(mb_params)); 1120 mb_params.cmd = DRV_MSG_CODE_UNLOAD_REQ; 1121 mb_params.param = wol_param; 1122 mb_params.flags = QED_MB_FLAG_CAN_SLEEP | QED_MB_FLAG_AVOID_BLOCK; 1123 1124 spin_lock_bh(&p_hwfn->mcp_info->unload_lock); 1125 set_bit(QED_MCP_BYPASS_PROC_BIT, 1126 &p_hwfn->mcp_info->mcp_handling_status); 1127 spin_unlock_bh(&p_hwfn->mcp_info->unload_lock); 1128 1129 rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params); 1130 1131 while (test_bit(QED_MCP_IN_PROCESSING_BIT, 1132 &p_hwfn->mcp_info->mcp_handling_status) && --cnt) 1133 msleep(MFW_COMPLETION_INTERVAL_MS); 1134 1135 if (!cnt) 1136 DP_NOTICE(p_hwfn, 1137 "Failed to wait MFW event completion after %d msec\n", 1138 MFW_COMPLETION_MAX_ITER * MFW_COMPLETION_INTERVAL_MS); 1139 1140 return rc; 1141 } 1142 1143 int qed_mcp_unload_done(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 1144 { 1145 struct qed_mcp_mb_params mb_params; 1146 struct mcp_mac wol_mac; 1147 1148 memset(&mb_params, 0, sizeof(mb_params)); 1149 mb_params.cmd = DRV_MSG_CODE_UNLOAD_DONE; 1150 1151 /* Set the primary MAC if WoL is enabled */ 1152 if (p_hwfn->cdev->wol_config == QED_OV_WOL_ENABLED) { 1153 u8 *p_mac = p_hwfn->cdev->wol_mac; 1154 1155 memset(&wol_mac, 0, sizeof(wol_mac)); 1156 wol_mac.mac_upper = p_mac[0] << 8 | p_mac[1]; 1157 wol_mac.mac_lower = p_mac[2] << 24 | p_mac[3] << 16 | 1158 p_mac[4] << 8 | p_mac[5]; 1159 1160 DP_VERBOSE(p_hwfn, 1161 (QED_MSG_SP | NETIF_MSG_IFDOWN), 1162 "Setting WoL MAC: %pM --> [%08x,%08x]\n", 1163 p_mac, wol_mac.mac_upper, wol_mac.mac_lower); 1164 1165 mb_params.p_data_src = &wol_mac; 1166 mb_params.data_src_size = sizeof(wol_mac); 1167 } 1168 1169 return qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params); 1170 } 1171 1172 static void qed_mcp_handle_vf_flr(struct qed_hwfn *p_hwfn, 1173 struct qed_ptt *p_ptt) 1174 { 1175 u32 addr = SECTION_OFFSIZE_ADDR(p_hwfn->mcp_info->public_base, 1176 PUBLIC_PATH); 1177 u32 mfw_path_offsize = qed_rd(p_hwfn, p_ptt, addr); 1178 u32 path_addr = SECTION_ADDR(mfw_path_offsize, 1179 QED_PATH_ID(p_hwfn)); 1180 u32 disabled_vfs[VF_MAX_STATIC / 32]; 1181 int i; 1182 1183 DP_VERBOSE(p_hwfn, 1184 QED_MSG_SP, 1185 "Reading Disabled VF information from [offset %08x], path_addr %08x\n", 1186 mfw_path_offsize, path_addr); 1187 1188 for (i = 0; i < (VF_MAX_STATIC / 32); i++) { 1189 disabled_vfs[i] = qed_rd(p_hwfn, p_ptt, 1190 path_addr + 1191 offsetof(struct public_path, 1192 mcp_vf_disabled) + 1193 sizeof(u32) * i); 1194 DP_VERBOSE(p_hwfn, (QED_MSG_SP | QED_MSG_IOV), 1195 "FLR-ed VFs [%08x,...,%08x] - %08x\n", 1196 i * 32, (i + 1) * 32 - 1, disabled_vfs[i]); 1197 } 1198 1199 if (qed_iov_mark_vf_flr(p_hwfn, disabled_vfs)) 1200 qed_schedule_iov(p_hwfn, QED_IOV_WQ_FLR_FLAG); 1201 } 1202 1203 int qed_mcp_ack_vf_flr(struct qed_hwfn *p_hwfn, 1204 struct qed_ptt *p_ptt, u32 *vfs_to_ack) 1205 { 1206 u32 addr = SECTION_OFFSIZE_ADDR(p_hwfn->mcp_info->public_base, 1207 PUBLIC_FUNC); 1208 u32 mfw_func_offsize = qed_rd(p_hwfn, p_ptt, addr); 1209 u32 func_addr = SECTION_ADDR(mfw_func_offsize, 1210 MCP_PF_ID(p_hwfn)); 1211 struct qed_mcp_mb_params mb_params; 1212 int rc; 1213 int i; 1214 1215 for (i = 0; i < (VF_MAX_STATIC / 32); i++) 1216 DP_VERBOSE(p_hwfn, (QED_MSG_SP | QED_MSG_IOV), 1217 "Acking VFs [%08x,...,%08x] - %08x\n", 1218 i * 32, (i + 1) * 32 - 1, vfs_to_ack[i]); 1219 1220 memset(&mb_params, 0, sizeof(mb_params)); 1221 mb_params.cmd = DRV_MSG_CODE_VF_DISABLED_DONE; 1222 mb_params.p_data_src = vfs_to_ack; 1223 mb_params.data_src_size = VF_MAX_STATIC / 8; 1224 rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params); 1225 if (rc) { 1226 DP_NOTICE(p_hwfn, "Failed to pass ACK for VF flr to MFW\n"); 1227 return -EBUSY; 1228 } 1229 1230 /* Clear the ACK bits */ 1231 for (i = 0; i < (VF_MAX_STATIC / 32); i++) 1232 qed_wr(p_hwfn, p_ptt, 1233 func_addr + 1234 offsetof(struct public_func, drv_ack_vf_disabled) + 1235 i * sizeof(u32), 0); 1236 1237 return rc; 1238 } 1239 1240 static void qed_mcp_handle_transceiver_change(struct qed_hwfn *p_hwfn, 1241 struct qed_ptt *p_ptt) 1242 { 1243 u32 transceiver_state; 1244 1245 transceiver_state = qed_rd(p_hwfn, p_ptt, 1246 p_hwfn->mcp_info->port_addr + 1247 offsetof(struct public_port, 1248 transceiver_data)); 1249 1250 DP_VERBOSE(p_hwfn, 1251 (NETIF_MSG_HW | QED_MSG_SP), 1252 "Received transceiver state update [0x%08x] from mfw [Addr 0x%x]\n", 1253 transceiver_state, 1254 (u32)(p_hwfn->mcp_info->port_addr + 1255 offsetof(struct public_port, transceiver_data))); 1256 1257 transceiver_state = GET_FIELD(transceiver_state, 1258 ETH_TRANSCEIVER_STATE); 1259 1260 if (transceiver_state == ETH_TRANSCEIVER_STATE_PRESENT) 1261 DP_NOTICE(p_hwfn, "Transceiver is present.\n"); 1262 else 1263 DP_NOTICE(p_hwfn, "Transceiver is unplugged.\n"); 1264 } 1265 1266 static void qed_mcp_read_eee_config(struct qed_hwfn *p_hwfn, 1267 struct qed_ptt *p_ptt, 1268 struct qed_mcp_link_state *p_link) 1269 { 1270 u32 eee_status, val; 1271 1272 p_link->eee_adv_caps = 0; 1273 p_link->eee_lp_adv_caps = 0; 1274 eee_status = qed_rd(p_hwfn, 1275 p_ptt, 1276 p_hwfn->mcp_info->port_addr + 1277 offsetof(struct public_port, eee_status)); 1278 p_link->eee_active = !!(eee_status & EEE_ACTIVE_BIT); 1279 val = (eee_status & EEE_LD_ADV_STATUS_MASK) >> EEE_LD_ADV_STATUS_OFFSET; 1280 if (val & EEE_1G_ADV) 1281 p_link->eee_adv_caps |= QED_EEE_1G_ADV; 1282 if (val & EEE_10G_ADV) 1283 p_link->eee_adv_caps |= QED_EEE_10G_ADV; 1284 val = (eee_status & EEE_LP_ADV_STATUS_MASK) >> EEE_LP_ADV_STATUS_OFFSET; 1285 if (val & EEE_1G_ADV) 1286 p_link->eee_lp_adv_caps |= QED_EEE_1G_ADV; 1287 if (val & EEE_10G_ADV) 1288 p_link->eee_lp_adv_caps |= QED_EEE_10G_ADV; 1289 } 1290 1291 static u32 qed_mcp_get_shmem_func(struct qed_hwfn *p_hwfn, 1292 struct qed_ptt *p_ptt, 1293 struct public_func *p_data, int pfid) 1294 { 1295 u32 addr = SECTION_OFFSIZE_ADDR(p_hwfn->mcp_info->public_base, 1296 PUBLIC_FUNC); 1297 u32 mfw_path_offsize = qed_rd(p_hwfn, p_ptt, addr); 1298 u32 func_addr; 1299 u32 i, size; 1300 1301 func_addr = SECTION_ADDR(mfw_path_offsize, pfid); 1302 memset(p_data, 0, sizeof(*p_data)); 1303 1304 size = min_t(u32, sizeof(*p_data), QED_SECTION_SIZE(mfw_path_offsize)); 1305 for (i = 0; i < size / sizeof(u32); i++) 1306 ((u32 *)p_data)[i] = qed_rd(p_hwfn, p_ptt, 1307 func_addr + (i << 2)); 1308 return size; 1309 } 1310 1311 static void qed_read_pf_bandwidth(struct qed_hwfn *p_hwfn, 1312 struct public_func *p_shmem_info) 1313 { 1314 struct qed_mcp_function_info *p_info; 1315 1316 p_info = &p_hwfn->mcp_info->func_info; 1317 1318 p_info->bandwidth_min = QED_MFW_GET_FIELD(p_shmem_info->config, 1319 FUNC_MF_CFG_MIN_BW); 1320 if (p_info->bandwidth_min < 1 || p_info->bandwidth_min > 100) { 1321 DP_INFO(p_hwfn, 1322 "bandwidth minimum out of bounds [%02x]. Set to 1\n", 1323 p_info->bandwidth_min); 1324 p_info->bandwidth_min = 1; 1325 } 1326 1327 p_info->bandwidth_max = QED_MFW_GET_FIELD(p_shmem_info->config, 1328 FUNC_MF_CFG_MAX_BW); 1329 if (p_info->bandwidth_max < 1 || p_info->bandwidth_max > 100) { 1330 DP_INFO(p_hwfn, 1331 "bandwidth maximum out of bounds [%02x]. Set to 100\n", 1332 p_info->bandwidth_max); 1333 p_info->bandwidth_max = 100; 1334 } 1335 } 1336 1337 static void qed_mcp_handle_link_change(struct qed_hwfn *p_hwfn, 1338 struct qed_ptt *p_ptt, bool b_reset) 1339 { 1340 struct qed_mcp_link_state *p_link; 1341 u8 max_bw, min_bw; 1342 u32 status = 0; 1343 1344 /* Prevent SW/attentions from doing this at the same time */ 1345 spin_lock_bh(&p_hwfn->mcp_info->link_lock); 1346 1347 p_link = &p_hwfn->mcp_info->link_output; 1348 memset(p_link, 0, sizeof(*p_link)); 1349 if (!b_reset) { 1350 status = qed_rd(p_hwfn, p_ptt, 1351 p_hwfn->mcp_info->port_addr + 1352 offsetof(struct public_port, link_status)); 1353 DP_VERBOSE(p_hwfn, (NETIF_MSG_LINK | QED_MSG_SP), 1354 "Received link update [0x%08x] from mfw [Addr 0x%x]\n", 1355 status, 1356 (u32)(p_hwfn->mcp_info->port_addr + 1357 offsetof(struct public_port, link_status))); 1358 } else { 1359 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK, 1360 "Resetting link indications\n"); 1361 goto out; 1362 } 1363 1364 if (p_hwfn->b_drv_link_init) { 1365 /* Link indication with modern MFW arrives as per-PF 1366 * indication. 1367 */ 1368 if (p_hwfn->mcp_info->capabilities & 1369 FW_MB_PARAM_FEATURE_SUPPORT_VLINK) { 1370 struct public_func shmem_info; 1371 1372 qed_mcp_get_shmem_func(p_hwfn, p_ptt, &shmem_info, 1373 MCP_PF_ID(p_hwfn)); 1374 p_link->link_up = !!(shmem_info.status & 1375 FUNC_STATUS_VIRTUAL_LINK_UP); 1376 qed_read_pf_bandwidth(p_hwfn, &shmem_info); 1377 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK, 1378 "Virtual link_up = %d\n", p_link->link_up); 1379 } else { 1380 p_link->link_up = !!(status & LINK_STATUS_LINK_UP); 1381 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK, 1382 "Physical link_up = %d\n", p_link->link_up); 1383 } 1384 } else { 1385 p_link->link_up = false; 1386 } 1387 1388 p_link->full_duplex = true; 1389 switch ((status & LINK_STATUS_SPEED_AND_DUPLEX_MASK)) { 1390 case LINK_STATUS_SPEED_AND_DUPLEX_100G: 1391 p_link->speed = 100000; 1392 break; 1393 case LINK_STATUS_SPEED_AND_DUPLEX_50G: 1394 p_link->speed = 50000; 1395 break; 1396 case LINK_STATUS_SPEED_AND_DUPLEX_40G: 1397 p_link->speed = 40000; 1398 break; 1399 case LINK_STATUS_SPEED_AND_DUPLEX_25G: 1400 p_link->speed = 25000; 1401 break; 1402 case LINK_STATUS_SPEED_AND_DUPLEX_20G: 1403 p_link->speed = 20000; 1404 break; 1405 case LINK_STATUS_SPEED_AND_DUPLEX_10G: 1406 p_link->speed = 10000; 1407 break; 1408 case LINK_STATUS_SPEED_AND_DUPLEX_1000THD: 1409 p_link->full_duplex = false; 1410 fallthrough; 1411 case LINK_STATUS_SPEED_AND_DUPLEX_1000TFD: 1412 p_link->speed = 1000; 1413 break; 1414 default: 1415 p_link->speed = 0; 1416 p_link->link_up = 0; 1417 } 1418 1419 if (p_link->link_up && p_link->speed) 1420 p_link->line_speed = p_link->speed; 1421 else 1422 p_link->line_speed = 0; 1423 1424 max_bw = p_hwfn->mcp_info->func_info.bandwidth_max; 1425 min_bw = p_hwfn->mcp_info->func_info.bandwidth_min; 1426 1427 /* Max bandwidth configuration */ 1428 __qed_configure_pf_max_bandwidth(p_hwfn, p_ptt, p_link, max_bw); 1429 1430 /* Min bandwidth configuration */ 1431 __qed_configure_pf_min_bandwidth(p_hwfn, p_ptt, p_link, min_bw); 1432 qed_configure_vp_wfq_on_link_change(p_hwfn->cdev, p_ptt, 1433 p_link->min_pf_rate); 1434 1435 p_link->an = !!(status & LINK_STATUS_AUTO_NEGOTIATE_ENABLED); 1436 p_link->an_complete = !!(status & 1437 LINK_STATUS_AUTO_NEGOTIATE_COMPLETE); 1438 p_link->parallel_detection = !!(status & 1439 LINK_STATUS_PARALLEL_DETECTION_USED); 1440 p_link->pfc_enabled = !!(status & LINK_STATUS_PFC_ENABLED); 1441 1442 p_link->partner_adv_speed |= 1443 (status & LINK_STATUS_LINK_PARTNER_1000TFD_CAPABLE) ? 1444 QED_LINK_PARTNER_SPEED_1G_FD : 0; 1445 p_link->partner_adv_speed |= 1446 (status & LINK_STATUS_LINK_PARTNER_1000THD_CAPABLE) ? 1447 QED_LINK_PARTNER_SPEED_1G_HD : 0; 1448 p_link->partner_adv_speed |= 1449 (status & LINK_STATUS_LINK_PARTNER_10G_CAPABLE) ? 1450 QED_LINK_PARTNER_SPEED_10G : 0; 1451 p_link->partner_adv_speed |= 1452 (status & LINK_STATUS_LINK_PARTNER_20G_CAPABLE) ? 1453 QED_LINK_PARTNER_SPEED_20G : 0; 1454 p_link->partner_adv_speed |= 1455 (status & LINK_STATUS_LINK_PARTNER_25G_CAPABLE) ? 1456 QED_LINK_PARTNER_SPEED_25G : 0; 1457 p_link->partner_adv_speed |= 1458 (status & LINK_STATUS_LINK_PARTNER_40G_CAPABLE) ? 1459 QED_LINK_PARTNER_SPEED_40G : 0; 1460 p_link->partner_adv_speed |= 1461 (status & LINK_STATUS_LINK_PARTNER_50G_CAPABLE) ? 1462 QED_LINK_PARTNER_SPEED_50G : 0; 1463 p_link->partner_adv_speed |= 1464 (status & LINK_STATUS_LINK_PARTNER_100G_CAPABLE) ? 1465 QED_LINK_PARTNER_SPEED_100G : 0; 1466 1467 p_link->partner_tx_flow_ctrl_en = 1468 !!(status & LINK_STATUS_TX_FLOW_CONTROL_ENABLED); 1469 p_link->partner_rx_flow_ctrl_en = 1470 !!(status & LINK_STATUS_RX_FLOW_CONTROL_ENABLED); 1471 1472 switch (status & LINK_STATUS_LINK_PARTNER_FLOW_CONTROL_MASK) { 1473 case LINK_STATUS_LINK_PARTNER_SYMMETRIC_PAUSE: 1474 p_link->partner_adv_pause = QED_LINK_PARTNER_SYMMETRIC_PAUSE; 1475 break; 1476 case LINK_STATUS_LINK_PARTNER_ASYMMETRIC_PAUSE: 1477 p_link->partner_adv_pause = QED_LINK_PARTNER_ASYMMETRIC_PAUSE; 1478 break; 1479 case LINK_STATUS_LINK_PARTNER_BOTH_PAUSE: 1480 p_link->partner_adv_pause = QED_LINK_PARTNER_BOTH_PAUSE; 1481 break; 1482 default: 1483 p_link->partner_adv_pause = 0; 1484 } 1485 1486 p_link->sfp_tx_fault = !!(status & LINK_STATUS_SFP_TX_FAULT); 1487 1488 if (p_hwfn->mcp_info->capabilities & FW_MB_PARAM_FEATURE_SUPPORT_EEE) 1489 qed_mcp_read_eee_config(p_hwfn, p_ptt, p_link); 1490 1491 if (p_hwfn->mcp_info->capabilities & 1492 FW_MB_PARAM_FEATURE_SUPPORT_FEC_CONTROL) { 1493 switch (status & LINK_STATUS_FEC_MODE_MASK) { 1494 case LINK_STATUS_FEC_MODE_NONE: 1495 p_link->fec_active = QED_FEC_MODE_NONE; 1496 break; 1497 case LINK_STATUS_FEC_MODE_FIRECODE_CL74: 1498 p_link->fec_active = QED_FEC_MODE_FIRECODE; 1499 break; 1500 case LINK_STATUS_FEC_MODE_RS_CL91: 1501 p_link->fec_active = QED_FEC_MODE_RS; 1502 break; 1503 default: 1504 p_link->fec_active = QED_FEC_MODE_AUTO; 1505 } 1506 } else { 1507 p_link->fec_active = QED_FEC_MODE_UNSUPPORTED; 1508 } 1509 1510 qed_link_update(p_hwfn, p_ptt); 1511 out: 1512 spin_unlock_bh(&p_hwfn->mcp_info->link_lock); 1513 } 1514 1515 int qed_mcp_set_link(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, bool b_up) 1516 { 1517 struct qed_mcp_link_params *params = &p_hwfn->mcp_info->link_input; 1518 struct qed_mcp_mb_params mb_params; 1519 struct eth_phy_cfg phy_cfg; 1520 u32 cmd, fec_bit = 0; 1521 u32 val, ext_speed; 1522 int rc = 0; 1523 1524 /* Set the shmem configuration according to params */ 1525 memset(&phy_cfg, 0, sizeof(phy_cfg)); 1526 cmd = b_up ? DRV_MSG_CODE_INIT_PHY : DRV_MSG_CODE_LINK_RESET; 1527 if (!params->speed.autoneg) 1528 phy_cfg.speed = params->speed.forced_speed; 1529 phy_cfg.pause |= (params->pause.autoneg) ? ETH_PAUSE_AUTONEG : 0; 1530 phy_cfg.pause |= (params->pause.forced_rx) ? ETH_PAUSE_RX : 0; 1531 phy_cfg.pause |= (params->pause.forced_tx) ? ETH_PAUSE_TX : 0; 1532 phy_cfg.adv_speed = params->speed.advertised_speeds; 1533 phy_cfg.loopback_mode = params->loopback_mode; 1534 1535 /* There are MFWs that share this capability regardless of whether 1536 * this is feasible or not. And given that at the very least adv_caps 1537 * would be set internally by qed, we want to make sure LFA would 1538 * still work. 1539 */ 1540 if ((p_hwfn->mcp_info->capabilities & 1541 FW_MB_PARAM_FEATURE_SUPPORT_EEE) && params->eee.enable) { 1542 phy_cfg.eee_cfg |= EEE_CFG_EEE_ENABLED; 1543 if (params->eee.tx_lpi_enable) 1544 phy_cfg.eee_cfg |= EEE_CFG_TX_LPI; 1545 if (params->eee.adv_caps & QED_EEE_1G_ADV) 1546 phy_cfg.eee_cfg |= EEE_CFG_ADV_SPEED_1G; 1547 if (params->eee.adv_caps & QED_EEE_10G_ADV) 1548 phy_cfg.eee_cfg |= EEE_CFG_ADV_SPEED_10G; 1549 phy_cfg.eee_cfg |= (params->eee.tx_lpi_timer << 1550 EEE_TX_TIMER_USEC_OFFSET) & 1551 EEE_TX_TIMER_USEC_MASK; 1552 } 1553 1554 if (p_hwfn->mcp_info->capabilities & 1555 FW_MB_PARAM_FEATURE_SUPPORT_FEC_CONTROL) { 1556 if (params->fec & QED_FEC_MODE_NONE) 1557 fec_bit |= FEC_FORCE_MODE_NONE; 1558 else if (params->fec & QED_FEC_MODE_FIRECODE) 1559 fec_bit |= FEC_FORCE_MODE_FIRECODE; 1560 else if (params->fec & QED_FEC_MODE_RS) 1561 fec_bit |= FEC_FORCE_MODE_RS; 1562 else if (params->fec & QED_FEC_MODE_AUTO) 1563 fec_bit |= FEC_FORCE_MODE_AUTO; 1564 1565 SET_MFW_FIELD(phy_cfg.fec_mode, FEC_FORCE_MODE, fec_bit); 1566 } 1567 1568 if (p_hwfn->mcp_info->capabilities & 1569 FW_MB_PARAM_FEATURE_SUPPORT_EXT_SPEED_FEC_CONTROL) { 1570 ext_speed = 0; 1571 if (params->ext_speed.autoneg) 1572 ext_speed |= ETH_EXT_SPEED_NONE; 1573 1574 val = params->ext_speed.forced_speed; 1575 if (val & QED_EXT_SPEED_1G) 1576 ext_speed |= ETH_EXT_SPEED_1G; 1577 if (val & QED_EXT_SPEED_10G) 1578 ext_speed |= ETH_EXT_SPEED_10G; 1579 if (val & QED_EXT_SPEED_25G) 1580 ext_speed |= ETH_EXT_SPEED_25G; 1581 if (val & QED_EXT_SPEED_40G) 1582 ext_speed |= ETH_EXT_SPEED_40G; 1583 if (val & QED_EXT_SPEED_50G_R) 1584 ext_speed |= ETH_EXT_SPEED_50G_BASE_R; 1585 if (val & QED_EXT_SPEED_50G_R2) 1586 ext_speed |= ETH_EXT_SPEED_50G_BASE_R2; 1587 if (val & QED_EXT_SPEED_100G_R2) 1588 ext_speed |= ETH_EXT_SPEED_100G_BASE_R2; 1589 if (val & QED_EXT_SPEED_100G_R4) 1590 ext_speed |= ETH_EXT_SPEED_100G_BASE_R4; 1591 if (val & QED_EXT_SPEED_100G_P4) 1592 ext_speed |= ETH_EXT_SPEED_100G_BASE_P4; 1593 1594 SET_MFW_FIELD(phy_cfg.extended_speed, ETH_EXT_SPEED, 1595 ext_speed); 1596 1597 ext_speed = 0; 1598 1599 val = params->ext_speed.advertised_speeds; 1600 if (val & QED_EXT_SPEED_MASK_1G) 1601 ext_speed |= ETH_EXT_ADV_SPEED_1G; 1602 if (val & QED_EXT_SPEED_MASK_10G) 1603 ext_speed |= ETH_EXT_ADV_SPEED_10G; 1604 if (val & QED_EXT_SPEED_MASK_25G) 1605 ext_speed |= ETH_EXT_ADV_SPEED_25G; 1606 if (val & QED_EXT_SPEED_MASK_40G) 1607 ext_speed |= ETH_EXT_ADV_SPEED_40G; 1608 if (val & QED_EXT_SPEED_MASK_50G_R) 1609 ext_speed |= ETH_EXT_ADV_SPEED_50G_BASE_R; 1610 if (val & QED_EXT_SPEED_MASK_50G_R2) 1611 ext_speed |= ETH_EXT_ADV_SPEED_50G_BASE_R2; 1612 if (val & QED_EXT_SPEED_MASK_100G_R2) 1613 ext_speed |= ETH_EXT_ADV_SPEED_100G_BASE_R2; 1614 if (val & QED_EXT_SPEED_MASK_100G_R4) 1615 ext_speed |= ETH_EXT_ADV_SPEED_100G_BASE_R4; 1616 if (val & QED_EXT_SPEED_MASK_100G_P4) 1617 ext_speed |= ETH_EXT_ADV_SPEED_100G_BASE_P4; 1618 1619 phy_cfg.extended_speed |= ext_speed; 1620 1621 SET_MFW_FIELD(phy_cfg.fec_mode, FEC_EXTENDED_MODE, 1622 params->ext_fec_mode); 1623 } 1624 1625 p_hwfn->b_drv_link_init = b_up; 1626 1627 if (b_up) { 1628 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK, 1629 "Configuring Link: Speed 0x%08x, Pause 0x%08x, Adv. Speed 0x%08x, Loopback 0x%08x, FEC 0x%08x, Ext. Speed 0x%08x\n", 1630 phy_cfg.speed, phy_cfg.pause, phy_cfg.adv_speed, 1631 phy_cfg.loopback_mode, phy_cfg.fec_mode, 1632 phy_cfg.extended_speed); 1633 } else { 1634 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK, "Resetting link\n"); 1635 } 1636 1637 memset(&mb_params, 0, sizeof(mb_params)); 1638 mb_params.cmd = cmd; 1639 mb_params.p_data_src = &phy_cfg; 1640 mb_params.data_src_size = sizeof(phy_cfg); 1641 rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params); 1642 1643 /* if mcp fails to respond we must abort */ 1644 if (rc) { 1645 DP_ERR(p_hwfn, "MCP response failure, aborting\n"); 1646 return rc; 1647 } 1648 1649 /* Mimic link-change attention, done for several reasons: 1650 * - On reset, there's no guarantee MFW would trigger 1651 * an attention. 1652 * - On initialization, older MFWs might not indicate link change 1653 * during LFA, so we'll never get an UP indication. 1654 */ 1655 qed_mcp_handle_link_change(p_hwfn, p_ptt, !b_up); 1656 1657 return 0; 1658 } 1659 1660 u32 qed_get_process_kill_counter(struct qed_hwfn *p_hwfn, 1661 struct qed_ptt *p_ptt) 1662 { 1663 u32 path_offsize_addr, path_offsize, path_addr, proc_kill_cnt; 1664 1665 if (IS_VF(p_hwfn->cdev)) 1666 return -EINVAL; 1667 1668 path_offsize_addr = SECTION_OFFSIZE_ADDR(p_hwfn->mcp_info->public_base, 1669 PUBLIC_PATH); 1670 path_offsize = qed_rd(p_hwfn, p_ptt, path_offsize_addr); 1671 path_addr = SECTION_ADDR(path_offsize, QED_PATH_ID(p_hwfn)); 1672 1673 proc_kill_cnt = qed_rd(p_hwfn, p_ptt, 1674 path_addr + 1675 offsetof(struct public_path, process_kill)) & 1676 PROCESS_KILL_COUNTER_MASK; 1677 1678 return proc_kill_cnt; 1679 } 1680 1681 static void qed_mcp_handle_process_kill(struct qed_hwfn *p_hwfn, 1682 struct qed_ptt *p_ptt) 1683 { 1684 struct qed_dev *cdev = p_hwfn->cdev; 1685 u32 proc_kill_cnt; 1686 1687 /* Prevent possible attentions/interrupts during the recovery handling 1688 * and till its load phase, during which they will be re-enabled. 1689 */ 1690 qed_int_igu_disable_int(p_hwfn, p_ptt); 1691 1692 DP_NOTICE(p_hwfn, "Received a process kill indication\n"); 1693 1694 /* The following operations should be done once, and thus in CMT mode 1695 * are carried out by only the first HW function. 1696 */ 1697 if (p_hwfn != QED_LEADING_HWFN(cdev)) 1698 return; 1699 1700 if (cdev->recov_in_prog) { 1701 DP_NOTICE(p_hwfn, 1702 "Ignoring the indication since a recovery process is already in progress\n"); 1703 return; 1704 } 1705 1706 cdev->recov_in_prog = true; 1707 1708 proc_kill_cnt = qed_get_process_kill_counter(p_hwfn, p_ptt); 1709 DP_NOTICE(p_hwfn, "Process kill counter: %d\n", proc_kill_cnt); 1710 1711 qed_schedule_recovery_handler(p_hwfn); 1712 } 1713 1714 static void qed_mcp_send_protocol_stats(struct qed_hwfn *p_hwfn, 1715 struct qed_ptt *p_ptt, 1716 enum MFW_DRV_MSG_TYPE type) 1717 { 1718 enum qed_mcp_protocol_type stats_type; 1719 union qed_mcp_protocol_stats stats; 1720 struct qed_mcp_mb_params mb_params; 1721 u32 hsi_param; 1722 1723 switch (type) { 1724 case MFW_DRV_MSG_GET_LAN_STATS: 1725 stats_type = QED_MCP_LAN_STATS; 1726 hsi_param = DRV_MSG_CODE_STATS_TYPE_LAN; 1727 break; 1728 case MFW_DRV_MSG_GET_FCOE_STATS: 1729 stats_type = QED_MCP_FCOE_STATS; 1730 hsi_param = DRV_MSG_CODE_STATS_TYPE_FCOE; 1731 break; 1732 case MFW_DRV_MSG_GET_ISCSI_STATS: 1733 stats_type = QED_MCP_ISCSI_STATS; 1734 hsi_param = DRV_MSG_CODE_STATS_TYPE_ISCSI; 1735 break; 1736 case MFW_DRV_MSG_GET_RDMA_STATS: 1737 stats_type = QED_MCP_RDMA_STATS; 1738 hsi_param = DRV_MSG_CODE_STATS_TYPE_RDMA; 1739 break; 1740 default: 1741 DP_NOTICE(p_hwfn, "Invalid protocol type %d\n", type); 1742 return; 1743 } 1744 1745 qed_get_protocol_stats(p_hwfn->cdev, stats_type, &stats); 1746 1747 memset(&mb_params, 0, sizeof(mb_params)); 1748 mb_params.cmd = DRV_MSG_CODE_GET_STATS; 1749 mb_params.param = hsi_param; 1750 mb_params.p_data_src = &stats; 1751 mb_params.data_src_size = sizeof(stats); 1752 qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params); 1753 } 1754 1755 static void qed_mcp_update_bw(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 1756 { 1757 struct qed_mcp_function_info *p_info; 1758 struct public_func shmem_info; 1759 u32 resp = 0, param = 0; 1760 1761 qed_mcp_get_shmem_func(p_hwfn, p_ptt, &shmem_info, MCP_PF_ID(p_hwfn)); 1762 1763 qed_read_pf_bandwidth(p_hwfn, &shmem_info); 1764 1765 p_info = &p_hwfn->mcp_info->func_info; 1766 1767 qed_configure_pf_min_bandwidth(p_hwfn->cdev, p_info->bandwidth_min); 1768 qed_configure_pf_max_bandwidth(p_hwfn->cdev, p_info->bandwidth_max); 1769 1770 /* Acknowledge the MFW */ 1771 qed_mcp_cmd_nosleep(p_hwfn, p_ptt, DRV_MSG_CODE_BW_UPDATE_ACK, 0, &resp, 1772 ¶m); 1773 } 1774 1775 static void qed_mcp_update_stag(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 1776 { 1777 struct public_func shmem_info; 1778 u32 resp = 0, param = 0; 1779 1780 qed_mcp_get_shmem_func(p_hwfn, p_ptt, &shmem_info, MCP_PF_ID(p_hwfn)); 1781 1782 p_hwfn->mcp_info->func_info.ovlan = (u16)shmem_info.ovlan_stag & 1783 FUNC_MF_CFG_OV_STAG_MASK; 1784 p_hwfn->hw_info.ovlan = p_hwfn->mcp_info->func_info.ovlan; 1785 if (test_bit(QED_MF_OVLAN_CLSS, &p_hwfn->cdev->mf_bits)) { 1786 if (p_hwfn->hw_info.ovlan != QED_MCP_VLAN_UNSET) { 1787 qed_wr(p_hwfn, p_ptt, NIG_REG_LLH_FUNC_TAG_VALUE, 1788 p_hwfn->hw_info.ovlan); 1789 qed_wr(p_hwfn, p_ptt, NIG_REG_LLH_FUNC_TAG_EN, 1); 1790 1791 /* Configure DB to add external vlan to EDPM packets */ 1792 qed_wr(p_hwfn, p_ptt, DORQ_REG_TAG1_OVRD_MODE, 1); 1793 qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_EXT_VID_BB_K2, 1794 p_hwfn->hw_info.ovlan); 1795 } else { 1796 qed_wr(p_hwfn, p_ptt, NIG_REG_LLH_FUNC_TAG_EN, 0); 1797 qed_wr(p_hwfn, p_ptt, NIG_REG_LLH_FUNC_TAG_VALUE, 0); 1798 qed_wr(p_hwfn, p_ptt, DORQ_REG_TAG1_OVRD_MODE, 0); 1799 qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_EXT_VID_BB_K2, 0); 1800 } 1801 1802 qed_sp_pf_update_stag(p_hwfn); 1803 } 1804 1805 DP_VERBOSE(p_hwfn, QED_MSG_SP, "ovlan = %d hw_mode = 0x%x\n", 1806 p_hwfn->mcp_info->func_info.ovlan, p_hwfn->hw_info.hw_mode); 1807 1808 /* Acknowledge the MFW */ 1809 qed_mcp_cmd_nosleep(p_hwfn, p_ptt, DRV_MSG_CODE_S_TAG_UPDATE_ACK, 0, 1810 &resp, ¶m); 1811 } 1812 1813 static void qed_mcp_handle_fan_failure(struct qed_hwfn *p_hwfn, 1814 struct qed_ptt *p_ptt) 1815 { 1816 /* A single notification should be sent to upper driver in CMT mode */ 1817 if (p_hwfn != QED_LEADING_HWFN(p_hwfn->cdev)) 1818 return; 1819 1820 qed_hw_err_notify(p_hwfn, p_ptt, QED_HW_ERR_FAN_FAIL, 1821 "Fan failure was detected on the network interface card and it's going to be shut down.\n"); 1822 } 1823 1824 struct qed_mdump_cmd_params { 1825 u32 cmd; 1826 void *p_data_src; 1827 u8 data_src_size; 1828 void *p_data_dst; 1829 u8 data_dst_size; 1830 u32 mcp_resp; 1831 }; 1832 1833 static int 1834 qed_mcp_mdump_cmd(struct qed_hwfn *p_hwfn, 1835 struct qed_ptt *p_ptt, 1836 struct qed_mdump_cmd_params *p_mdump_cmd_params) 1837 { 1838 struct qed_mcp_mb_params mb_params; 1839 int rc; 1840 1841 memset(&mb_params, 0, sizeof(mb_params)); 1842 mb_params.cmd = DRV_MSG_CODE_MDUMP_CMD; 1843 mb_params.param = p_mdump_cmd_params->cmd; 1844 mb_params.p_data_src = p_mdump_cmd_params->p_data_src; 1845 mb_params.data_src_size = p_mdump_cmd_params->data_src_size; 1846 mb_params.p_data_dst = p_mdump_cmd_params->p_data_dst; 1847 mb_params.data_dst_size = p_mdump_cmd_params->data_dst_size; 1848 rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params); 1849 if (rc) 1850 return rc; 1851 1852 p_mdump_cmd_params->mcp_resp = mb_params.mcp_resp; 1853 1854 if (p_mdump_cmd_params->mcp_resp == FW_MSG_CODE_MDUMP_INVALID_CMD) { 1855 DP_INFO(p_hwfn, 1856 "The mdump sub command is unsupported by the MFW [mdump_cmd 0x%x]\n", 1857 p_mdump_cmd_params->cmd); 1858 rc = -EOPNOTSUPP; 1859 } else if (p_mdump_cmd_params->mcp_resp == FW_MSG_CODE_UNSUPPORTED) { 1860 DP_INFO(p_hwfn, 1861 "The mdump command is not supported by the MFW\n"); 1862 rc = -EOPNOTSUPP; 1863 } 1864 1865 return rc; 1866 } 1867 1868 static int qed_mcp_mdump_ack(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 1869 { 1870 struct qed_mdump_cmd_params mdump_cmd_params; 1871 1872 memset(&mdump_cmd_params, 0, sizeof(mdump_cmd_params)); 1873 mdump_cmd_params.cmd = DRV_MSG_CODE_MDUMP_ACK; 1874 1875 return qed_mcp_mdump_cmd(p_hwfn, p_ptt, &mdump_cmd_params); 1876 } 1877 1878 int 1879 qed_mcp_mdump_get_retain(struct qed_hwfn *p_hwfn, 1880 struct qed_ptt *p_ptt, 1881 struct mdump_retain_data_stc *p_mdump_retain) 1882 { 1883 struct qed_mdump_cmd_params mdump_cmd_params; 1884 int rc; 1885 1886 memset(&mdump_cmd_params, 0, sizeof(mdump_cmd_params)); 1887 mdump_cmd_params.cmd = DRV_MSG_CODE_MDUMP_GET_RETAIN; 1888 mdump_cmd_params.p_data_dst = p_mdump_retain; 1889 mdump_cmd_params.data_dst_size = sizeof(*p_mdump_retain); 1890 1891 rc = qed_mcp_mdump_cmd(p_hwfn, p_ptt, &mdump_cmd_params); 1892 if (rc) 1893 return rc; 1894 1895 if (mdump_cmd_params.mcp_resp != FW_MSG_CODE_OK) { 1896 DP_INFO(p_hwfn, 1897 "Failed to get the mdump retained data [mcp_resp 0x%x]\n", 1898 mdump_cmd_params.mcp_resp); 1899 return -EINVAL; 1900 } 1901 1902 return 0; 1903 } 1904 1905 static void qed_mcp_handle_critical_error(struct qed_hwfn *p_hwfn, 1906 struct qed_ptt *p_ptt) 1907 { 1908 struct mdump_retain_data_stc mdump_retain; 1909 int rc; 1910 1911 /* In CMT mode - no need for more than a single acknowledgment to the 1912 * MFW, and no more than a single notification to the upper driver. 1913 */ 1914 if (p_hwfn != QED_LEADING_HWFN(p_hwfn->cdev)) 1915 return; 1916 1917 rc = qed_mcp_mdump_get_retain(p_hwfn, p_ptt, &mdump_retain); 1918 if (rc == 0 && mdump_retain.valid) 1919 DP_NOTICE(p_hwfn, 1920 "The MFW notified that a critical error occurred in the device [epoch 0x%08x, pf 0x%x, status 0x%08x]\n", 1921 mdump_retain.epoch, 1922 mdump_retain.pf, mdump_retain.status); 1923 else 1924 DP_NOTICE(p_hwfn, 1925 "The MFW notified that a critical error occurred in the device\n"); 1926 1927 DP_NOTICE(p_hwfn, 1928 "Acknowledging the notification to not allow the MFW crash dump [driver debug data collection is preferable]\n"); 1929 qed_mcp_mdump_ack(p_hwfn, p_ptt); 1930 1931 qed_hw_err_notify(p_hwfn, p_ptt, QED_HW_ERR_HW_ATTN, NULL); 1932 } 1933 1934 void qed_mcp_read_ufp_config(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 1935 { 1936 struct public_func shmem_info; 1937 u32 port_cfg, val; 1938 1939 if (!test_bit(QED_MF_UFP_SPECIFIC, &p_hwfn->cdev->mf_bits)) 1940 return; 1941 1942 memset(&p_hwfn->ufp_info, 0, sizeof(p_hwfn->ufp_info)); 1943 port_cfg = qed_rd(p_hwfn, p_ptt, p_hwfn->mcp_info->port_addr + 1944 offsetof(struct public_port, oem_cfg_port)); 1945 val = (port_cfg & OEM_CFG_CHANNEL_TYPE_MASK) >> 1946 OEM_CFG_CHANNEL_TYPE_OFFSET; 1947 if (val != OEM_CFG_CHANNEL_TYPE_STAGGED) 1948 DP_NOTICE(p_hwfn, 1949 "Incorrect UFP Channel type %d port_id 0x%02x\n", 1950 val, MFW_PORT(p_hwfn)); 1951 1952 val = (port_cfg & OEM_CFG_SCHED_TYPE_MASK) >> OEM_CFG_SCHED_TYPE_OFFSET; 1953 if (val == OEM_CFG_SCHED_TYPE_ETS) { 1954 p_hwfn->ufp_info.mode = QED_UFP_MODE_ETS; 1955 } else if (val == OEM_CFG_SCHED_TYPE_VNIC_BW) { 1956 p_hwfn->ufp_info.mode = QED_UFP_MODE_VNIC_BW; 1957 } else { 1958 p_hwfn->ufp_info.mode = QED_UFP_MODE_UNKNOWN; 1959 DP_NOTICE(p_hwfn, 1960 "Unknown UFP scheduling mode %d port_id 0x%02x\n", 1961 val, MFW_PORT(p_hwfn)); 1962 } 1963 1964 qed_mcp_get_shmem_func(p_hwfn, p_ptt, &shmem_info, MCP_PF_ID(p_hwfn)); 1965 val = (shmem_info.oem_cfg_func & OEM_CFG_FUNC_TC_MASK) >> 1966 OEM_CFG_FUNC_TC_OFFSET; 1967 p_hwfn->ufp_info.tc = (u8)val; 1968 val = (shmem_info.oem_cfg_func & OEM_CFG_FUNC_HOST_PRI_CTRL_MASK) >> 1969 OEM_CFG_FUNC_HOST_PRI_CTRL_OFFSET; 1970 if (val == OEM_CFG_FUNC_HOST_PRI_CTRL_VNIC) { 1971 p_hwfn->ufp_info.pri_type = QED_UFP_PRI_VNIC; 1972 } else if (val == OEM_CFG_FUNC_HOST_PRI_CTRL_OS) { 1973 p_hwfn->ufp_info.pri_type = QED_UFP_PRI_OS; 1974 } else { 1975 p_hwfn->ufp_info.pri_type = QED_UFP_PRI_UNKNOWN; 1976 DP_NOTICE(p_hwfn, 1977 "Unknown Host priority control %d port_id 0x%02x\n", 1978 val, MFW_PORT(p_hwfn)); 1979 } 1980 1981 DP_NOTICE(p_hwfn, 1982 "UFP shmem config: mode = %d tc = %d pri_type = %d port_id 0x%02x\n", 1983 p_hwfn->ufp_info.mode, p_hwfn->ufp_info.tc, 1984 p_hwfn->ufp_info.pri_type, MFW_PORT(p_hwfn)); 1985 } 1986 1987 static int 1988 qed_mcp_handle_ufp_event(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 1989 { 1990 qed_mcp_read_ufp_config(p_hwfn, p_ptt); 1991 1992 if (p_hwfn->ufp_info.mode == QED_UFP_MODE_VNIC_BW) { 1993 p_hwfn->qm_info.ooo_tc = p_hwfn->ufp_info.tc; 1994 qed_hw_info_set_offload_tc(&p_hwfn->hw_info, 1995 p_hwfn->ufp_info.tc); 1996 1997 qed_qm_reconf(p_hwfn, p_ptt); 1998 } else if (p_hwfn->ufp_info.mode == QED_UFP_MODE_ETS) { 1999 /* Merge UFP TC with the dcbx TC data */ 2000 qed_dcbx_mib_update_event(p_hwfn, p_ptt, 2001 QED_DCBX_OPERATIONAL_MIB); 2002 } else { 2003 DP_ERR(p_hwfn, "Invalid sched type, discard the UFP config\n"); 2004 return -EINVAL; 2005 } 2006 2007 /* update storm FW with negotiation results */ 2008 qed_sp_pf_update_ufp(p_hwfn); 2009 2010 /* update stag pcp value */ 2011 qed_sp_pf_update_stag(p_hwfn); 2012 2013 return 0; 2014 } 2015 2016 int qed_mcp_handle_events(struct qed_hwfn *p_hwfn, 2017 struct qed_ptt *p_ptt) 2018 { 2019 struct qed_mcp_info *info = p_hwfn->mcp_info; 2020 int rc = 0; 2021 bool found = false; 2022 u16 i; 2023 2024 DP_VERBOSE(p_hwfn, QED_MSG_SP, "Received message from MFW\n"); 2025 2026 /* Read Messages from MFW */ 2027 qed_mcp_read_mb(p_hwfn, p_ptt); 2028 2029 /* Compare current messages to old ones */ 2030 for (i = 0; i < info->mfw_mb_length; i++) { 2031 if (info->mfw_mb_cur[i] == info->mfw_mb_shadow[i]) 2032 continue; 2033 2034 found = true; 2035 2036 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK, 2037 "Msg [%d] - old CMD 0x%02x, new CMD 0x%02x\n", 2038 i, info->mfw_mb_shadow[i], info->mfw_mb_cur[i]); 2039 2040 spin_lock_bh(&p_hwfn->mcp_info->unload_lock); 2041 if (test_bit(QED_MCP_BYPASS_PROC_BIT, 2042 &p_hwfn->mcp_info->mcp_handling_status)) { 2043 spin_unlock_bh(&p_hwfn->mcp_info->unload_lock); 2044 DP_INFO(p_hwfn, 2045 "Msg [%d] is bypassed on unload flow\n", i); 2046 continue; 2047 } 2048 2049 set_bit(QED_MCP_IN_PROCESSING_BIT, 2050 &p_hwfn->mcp_info->mcp_handling_status); 2051 spin_unlock_bh(&p_hwfn->mcp_info->unload_lock); 2052 2053 switch (i) { 2054 case MFW_DRV_MSG_LINK_CHANGE: 2055 qed_mcp_handle_link_change(p_hwfn, p_ptt, false); 2056 break; 2057 case MFW_DRV_MSG_VF_DISABLED: 2058 qed_mcp_handle_vf_flr(p_hwfn, p_ptt); 2059 break; 2060 case MFW_DRV_MSG_LLDP_DATA_UPDATED: 2061 qed_dcbx_mib_update_event(p_hwfn, p_ptt, 2062 QED_DCBX_REMOTE_LLDP_MIB); 2063 break; 2064 case MFW_DRV_MSG_DCBX_REMOTE_MIB_UPDATED: 2065 qed_dcbx_mib_update_event(p_hwfn, p_ptt, 2066 QED_DCBX_REMOTE_MIB); 2067 break; 2068 case MFW_DRV_MSG_DCBX_OPERATIONAL_MIB_UPDATED: 2069 qed_dcbx_mib_update_event(p_hwfn, p_ptt, 2070 QED_DCBX_OPERATIONAL_MIB); 2071 break; 2072 case MFW_DRV_MSG_OEM_CFG_UPDATE: 2073 qed_mcp_handle_ufp_event(p_hwfn, p_ptt); 2074 break; 2075 case MFW_DRV_MSG_TRANSCEIVER_STATE_CHANGE: 2076 qed_mcp_handle_transceiver_change(p_hwfn, p_ptt); 2077 break; 2078 case MFW_DRV_MSG_ERROR_RECOVERY: 2079 qed_mcp_handle_process_kill(p_hwfn, p_ptt); 2080 break; 2081 case MFW_DRV_MSG_GET_LAN_STATS: 2082 case MFW_DRV_MSG_GET_FCOE_STATS: 2083 case MFW_DRV_MSG_GET_ISCSI_STATS: 2084 case MFW_DRV_MSG_GET_RDMA_STATS: 2085 qed_mcp_send_protocol_stats(p_hwfn, p_ptt, i); 2086 break; 2087 case MFW_DRV_MSG_BW_UPDATE: 2088 qed_mcp_update_bw(p_hwfn, p_ptt); 2089 break; 2090 case MFW_DRV_MSG_S_TAG_UPDATE: 2091 qed_mcp_update_stag(p_hwfn, p_ptt); 2092 break; 2093 case MFW_DRV_MSG_FAILURE_DETECTED: 2094 qed_mcp_handle_fan_failure(p_hwfn, p_ptt); 2095 break; 2096 case MFW_DRV_MSG_CRITICAL_ERROR_OCCURRED: 2097 qed_mcp_handle_critical_error(p_hwfn, p_ptt); 2098 break; 2099 case MFW_DRV_MSG_GET_TLV_REQ: 2100 qed_mfw_tlv_req(p_hwfn); 2101 break; 2102 default: 2103 DP_INFO(p_hwfn, "Unimplemented MFW message %d\n", i); 2104 rc = -EINVAL; 2105 } 2106 2107 clear_bit(QED_MCP_IN_PROCESSING_BIT, 2108 &p_hwfn->mcp_info->mcp_handling_status); 2109 } 2110 2111 /* ACK everything */ 2112 for (i = 0; i < MFW_DRV_MSG_MAX_DWORDS(info->mfw_mb_length); i++) { 2113 __be32 val = cpu_to_be32(((u32 *)info->mfw_mb_cur)[i]); 2114 2115 /* MFW expect answer in BE, so we force write in that format */ 2116 qed_wr(p_hwfn, p_ptt, 2117 info->mfw_mb_addr + sizeof(u32) + 2118 MFW_DRV_MSG_MAX_DWORDS(info->mfw_mb_length) * 2119 sizeof(u32) + i * sizeof(u32), 2120 (__force u32)val); 2121 } 2122 2123 if (!found) { 2124 DP_NOTICE(p_hwfn, 2125 "Received an MFW message indication but no new message!\n"); 2126 rc = -EINVAL; 2127 } 2128 2129 /* Copy the new mfw messages into the shadow */ 2130 memcpy(info->mfw_mb_shadow, info->mfw_mb_cur, info->mfw_mb_length); 2131 2132 return rc; 2133 } 2134 2135 int qed_mcp_get_mfw_ver(struct qed_hwfn *p_hwfn, 2136 struct qed_ptt *p_ptt, 2137 u32 *p_mfw_ver, u32 *p_running_bundle_id) 2138 { 2139 u32 global_offsize, public_base; 2140 2141 if (IS_VF(p_hwfn->cdev)) { 2142 if (p_hwfn->vf_iov_info) { 2143 struct pfvf_acquire_resp_tlv *p_resp; 2144 2145 p_resp = &p_hwfn->vf_iov_info->acquire_resp; 2146 *p_mfw_ver = p_resp->pfdev_info.mfw_ver; 2147 return 0; 2148 } else { 2149 DP_VERBOSE(p_hwfn, 2150 QED_MSG_IOV, 2151 "VF requested MFW version prior to ACQUIRE\n"); 2152 return -EINVAL; 2153 } 2154 } 2155 2156 public_base = p_hwfn->mcp_info->public_base; 2157 global_offsize = qed_rd(p_hwfn, p_ptt, 2158 SECTION_OFFSIZE_ADDR(public_base, 2159 PUBLIC_GLOBAL)); 2160 *p_mfw_ver = 2161 qed_rd(p_hwfn, p_ptt, 2162 SECTION_ADDR(global_offsize, 2163 0) + offsetof(struct public_global, mfw_ver)); 2164 2165 if (p_running_bundle_id) { 2166 *p_running_bundle_id = qed_rd(p_hwfn, p_ptt, 2167 SECTION_ADDR(global_offsize, 0) + 2168 offsetof(struct public_global, 2169 running_bundle_id)); 2170 } 2171 2172 return 0; 2173 } 2174 2175 int qed_mcp_get_mbi_ver(struct qed_hwfn *p_hwfn, 2176 struct qed_ptt *p_ptt, u32 *p_mbi_ver) 2177 { 2178 u32 nvm_cfg_addr, nvm_cfg1_offset, mbi_ver_addr; 2179 2180 if (IS_VF(p_hwfn->cdev)) 2181 return -EINVAL; 2182 2183 /* Read the address of the nvm_cfg */ 2184 nvm_cfg_addr = qed_rd(p_hwfn, p_ptt, MISC_REG_GEN_PURP_CR0); 2185 if (!nvm_cfg_addr) { 2186 DP_NOTICE(p_hwfn, "Shared memory not initialized\n"); 2187 return -EINVAL; 2188 } 2189 2190 /* Read the offset of nvm_cfg1 */ 2191 nvm_cfg1_offset = qed_rd(p_hwfn, p_ptt, nvm_cfg_addr + 4); 2192 2193 mbi_ver_addr = MCP_REG_SCRATCH + nvm_cfg1_offset + 2194 offsetof(struct nvm_cfg1, glob) + 2195 offsetof(struct nvm_cfg1_glob, mbi_version); 2196 *p_mbi_ver = qed_rd(p_hwfn, p_ptt, 2197 mbi_ver_addr) & 2198 (NVM_CFG1_GLOB_MBI_VERSION_0_MASK | 2199 NVM_CFG1_GLOB_MBI_VERSION_1_MASK | 2200 NVM_CFG1_GLOB_MBI_VERSION_2_MASK); 2201 2202 return 0; 2203 } 2204 2205 int qed_mcp_get_media_type(struct qed_hwfn *p_hwfn, 2206 struct qed_ptt *p_ptt, u32 *p_media_type) 2207 { 2208 *p_media_type = MEDIA_UNSPECIFIED; 2209 2210 if (IS_VF(p_hwfn->cdev)) 2211 return -EINVAL; 2212 2213 if (!qed_mcp_is_init(p_hwfn)) { 2214 DP_NOTICE(p_hwfn, "MFW is not initialized!\n"); 2215 return -EBUSY; 2216 } 2217 2218 if (!p_ptt) { 2219 *p_media_type = MEDIA_UNSPECIFIED; 2220 return -EINVAL; 2221 } 2222 2223 *p_media_type = qed_rd(p_hwfn, p_ptt, 2224 p_hwfn->mcp_info->port_addr + 2225 offsetof(struct public_port, 2226 media_type)); 2227 2228 return 0; 2229 } 2230 2231 int qed_mcp_get_transceiver_data(struct qed_hwfn *p_hwfn, 2232 struct qed_ptt *p_ptt, 2233 u32 *p_transceiver_state, 2234 u32 *p_transceiver_type) 2235 { 2236 u32 transceiver_info; 2237 2238 *p_transceiver_type = ETH_TRANSCEIVER_TYPE_NONE; 2239 *p_transceiver_state = ETH_TRANSCEIVER_STATE_UPDATING; 2240 2241 if (IS_VF(p_hwfn->cdev)) 2242 return -EINVAL; 2243 2244 if (!qed_mcp_is_init(p_hwfn)) { 2245 DP_NOTICE(p_hwfn, "MFW is not initialized!\n"); 2246 return -EBUSY; 2247 } 2248 2249 transceiver_info = qed_rd(p_hwfn, p_ptt, 2250 p_hwfn->mcp_info->port_addr + 2251 offsetof(struct public_port, 2252 transceiver_data)); 2253 2254 *p_transceiver_state = (transceiver_info & 2255 ETH_TRANSCEIVER_STATE_MASK) >> 2256 ETH_TRANSCEIVER_STATE_OFFSET; 2257 2258 if (*p_transceiver_state == ETH_TRANSCEIVER_STATE_PRESENT) 2259 *p_transceiver_type = (transceiver_info & 2260 ETH_TRANSCEIVER_TYPE_MASK) >> 2261 ETH_TRANSCEIVER_TYPE_OFFSET; 2262 else 2263 *p_transceiver_type = ETH_TRANSCEIVER_TYPE_UNKNOWN; 2264 2265 return 0; 2266 } 2267 2268 static bool qed_is_transceiver_ready(u32 transceiver_state, 2269 u32 transceiver_type) 2270 { 2271 if ((transceiver_state & ETH_TRANSCEIVER_STATE_PRESENT) && 2272 ((transceiver_state & ETH_TRANSCEIVER_STATE_UPDATING) == 0x0) && 2273 (transceiver_type != ETH_TRANSCEIVER_TYPE_NONE)) 2274 return true; 2275 2276 return false; 2277 } 2278 2279 int qed_mcp_trans_speed_mask(struct qed_hwfn *p_hwfn, 2280 struct qed_ptt *p_ptt, u32 *p_speed_mask) 2281 { 2282 u32 transceiver_type, transceiver_state; 2283 int ret; 2284 2285 ret = qed_mcp_get_transceiver_data(p_hwfn, p_ptt, &transceiver_state, 2286 &transceiver_type); 2287 if (ret) 2288 return ret; 2289 2290 if (qed_is_transceiver_ready(transceiver_state, transceiver_type) == 2291 false) 2292 return -EINVAL; 2293 2294 switch (transceiver_type) { 2295 case ETH_TRANSCEIVER_TYPE_1G_LX: 2296 case ETH_TRANSCEIVER_TYPE_1G_SX: 2297 case ETH_TRANSCEIVER_TYPE_1G_PCC: 2298 case ETH_TRANSCEIVER_TYPE_1G_ACC: 2299 case ETH_TRANSCEIVER_TYPE_1000BASET: 2300 *p_speed_mask = NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_1G; 2301 break; 2302 case ETH_TRANSCEIVER_TYPE_10G_SR: 2303 case ETH_TRANSCEIVER_TYPE_10G_LR: 2304 case ETH_TRANSCEIVER_TYPE_10G_LRM: 2305 case ETH_TRANSCEIVER_TYPE_10G_ER: 2306 case ETH_TRANSCEIVER_TYPE_10G_PCC: 2307 case ETH_TRANSCEIVER_TYPE_10G_ACC: 2308 case ETH_TRANSCEIVER_TYPE_4x10G: 2309 *p_speed_mask = NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_10G; 2310 break; 2311 case ETH_TRANSCEIVER_TYPE_40G_LR4: 2312 case ETH_TRANSCEIVER_TYPE_40G_SR4: 2313 case ETH_TRANSCEIVER_TYPE_MULTI_RATE_10G_40G_SR: 2314 case ETH_TRANSCEIVER_TYPE_MULTI_RATE_10G_40G_LR: 2315 *p_speed_mask = NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_40G | 2316 NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_10G; 2317 break; 2318 case ETH_TRANSCEIVER_TYPE_100G_AOC: 2319 case ETH_TRANSCEIVER_TYPE_100G_SR4: 2320 case ETH_TRANSCEIVER_TYPE_100G_LR4: 2321 case ETH_TRANSCEIVER_TYPE_100G_ER4: 2322 case ETH_TRANSCEIVER_TYPE_100G_ACC: 2323 *p_speed_mask = 2324 NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_BB_100G | 2325 NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_25G; 2326 break; 2327 case ETH_TRANSCEIVER_TYPE_25G_SR: 2328 case ETH_TRANSCEIVER_TYPE_25G_LR: 2329 case ETH_TRANSCEIVER_TYPE_25G_AOC: 2330 case ETH_TRANSCEIVER_TYPE_25G_ACC_S: 2331 case ETH_TRANSCEIVER_TYPE_25G_ACC_M: 2332 case ETH_TRANSCEIVER_TYPE_25G_ACC_L: 2333 *p_speed_mask = NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_25G; 2334 break; 2335 case ETH_TRANSCEIVER_TYPE_25G_CA_N: 2336 case ETH_TRANSCEIVER_TYPE_25G_CA_S: 2337 case ETH_TRANSCEIVER_TYPE_25G_CA_L: 2338 case ETH_TRANSCEIVER_TYPE_4x25G_CR: 2339 *p_speed_mask = NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_25G | 2340 NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_10G | 2341 NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_1G; 2342 break; 2343 case ETH_TRANSCEIVER_TYPE_MULTI_RATE_10G_25G_SR: 2344 case ETH_TRANSCEIVER_TYPE_MULTI_RATE_10G_25G_LR: 2345 *p_speed_mask = NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_25G | 2346 NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_10G; 2347 break; 2348 case ETH_TRANSCEIVER_TYPE_40G_CR4: 2349 case ETH_TRANSCEIVER_TYPE_MULTI_RATE_10G_40G_CR: 2350 *p_speed_mask = NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_40G | 2351 NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_10G | 2352 NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_1G; 2353 break; 2354 case ETH_TRANSCEIVER_TYPE_100G_CR4: 2355 case ETH_TRANSCEIVER_TYPE_MULTI_RATE_40G_100G_CR: 2356 *p_speed_mask = 2357 NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_BB_100G | 2358 NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_50G | 2359 NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_40G | 2360 NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_25G | 2361 NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_20G | 2362 NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_10G | 2363 NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_1G; 2364 break; 2365 case ETH_TRANSCEIVER_TYPE_MULTI_RATE_40G_100G_SR: 2366 case ETH_TRANSCEIVER_TYPE_MULTI_RATE_40G_100G_LR: 2367 case ETH_TRANSCEIVER_TYPE_MULTI_RATE_40G_100G_AOC: 2368 *p_speed_mask = 2369 NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_BB_100G | 2370 NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_40G | 2371 NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_25G | 2372 NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_10G; 2373 break; 2374 case ETH_TRANSCEIVER_TYPE_XLPPI: 2375 *p_speed_mask = NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_40G; 2376 break; 2377 case ETH_TRANSCEIVER_TYPE_10G_BASET: 2378 case ETH_TRANSCEIVER_TYPE_MULTI_RATE_1G_10G_SR: 2379 case ETH_TRANSCEIVER_TYPE_MULTI_RATE_1G_10G_LR: 2380 *p_speed_mask = NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_10G | 2381 NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_1G; 2382 break; 2383 default: 2384 DP_INFO(p_hwfn, "Unknown transceiver type 0x%x\n", 2385 transceiver_type); 2386 *p_speed_mask = 0xff; 2387 break; 2388 } 2389 2390 return 0; 2391 } 2392 2393 int qed_mcp_get_board_config(struct qed_hwfn *p_hwfn, 2394 struct qed_ptt *p_ptt, u32 *p_board_config) 2395 { 2396 u32 nvm_cfg_addr, nvm_cfg1_offset, port_cfg_addr; 2397 2398 if (IS_VF(p_hwfn->cdev)) 2399 return -EINVAL; 2400 2401 if (!qed_mcp_is_init(p_hwfn)) { 2402 DP_NOTICE(p_hwfn, "MFW is not initialized!\n"); 2403 return -EBUSY; 2404 } 2405 if (!p_ptt) { 2406 *p_board_config = NVM_CFG1_PORT_PORT_TYPE_UNDEFINED; 2407 return -EINVAL; 2408 } 2409 2410 nvm_cfg_addr = qed_rd(p_hwfn, p_ptt, MISC_REG_GEN_PURP_CR0); 2411 nvm_cfg1_offset = qed_rd(p_hwfn, p_ptt, nvm_cfg_addr + 4); 2412 port_cfg_addr = MCP_REG_SCRATCH + nvm_cfg1_offset + 2413 offsetof(struct nvm_cfg1, port[MFW_PORT(p_hwfn)]); 2414 *p_board_config = qed_rd(p_hwfn, p_ptt, 2415 port_cfg_addr + 2416 offsetof(struct nvm_cfg1_port, 2417 board_cfg)); 2418 2419 return 0; 2420 } 2421 2422 /* Old MFW has a global configuration for all PFs regarding RDMA support */ 2423 static void 2424 qed_mcp_get_shmem_proto_legacy(struct qed_hwfn *p_hwfn, 2425 enum qed_pci_personality *p_proto) 2426 { 2427 /* There wasn't ever a legacy MFW that published iwarp. 2428 * So at this point, this is either plain l2 or RoCE. 2429 */ 2430 if (test_bit(QED_DEV_CAP_ROCE, &p_hwfn->hw_info.device_capabilities)) 2431 *p_proto = QED_PCI_ETH_ROCE; 2432 else 2433 *p_proto = QED_PCI_ETH; 2434 2435 DP_VERBOSE(p_hwfn, NETIF_MSG_IFUP, 2436 "According to Legacy capabilities, L2 personality is %08x\n", 2437 (u32)*p_proto); 2438 } 2439 2440 static int 2441 qed_mcp_get_shmem_proto_mfw(struct qed_hwfn *p_hwfn, 2442 struct qed_ptt *p_ptt, 2443 enum qed_pci_personality *p_proto) 2444 { 2445 u32 resp = 0, param = 0; 2446 int rc; 2447 2448 rc = qed_mcp_cmd(p_hwfn, p_ptt, 2449 DRV_MSG_CODE_GET_PF_RDMA_PROTOCOL, 0, &resp, ¶m); 2450 if (rc) 2451 return rc; 2452 if (resp != FW_MSG_CODE_OK) { 2453 DP_VERBOSE(p_hwfn, NETIF_MSG_IFUP, 2454 "MFW lacks support for command; Returns %08x\n", 2455 resp); 2456 return -EINVAL; 2457 } 2458 2459 switch (param) { 2460 case FW_MB_PARAM_GET_PF_RDMA_NONE: 2461 *p_proto = QED_PCI_ETH; 2462 break; 2463 case FW_MB_PARAM_GET_PF_RDMA_ROCE: 2464 *p_proto = QED_PCI_ETH_ROCE; 2465 break; 2466 case FW_MB_PARAM_GET_PF_RDMA_IWARP: 2467 *p_proto = QED_PCI_ETH_IWARP; 2468 break; 2469 case FW_MB_PARAM_GET_PF_RDMA_BOTH: 2470 *p_proto = QED_PCI_ETH_RDMA; 2471 break; 2472 default: 2473 DP_NOTICE(p_hwfn, 2474 "MFW answers GET_PF_RDMA_PROTOCOL but param is %08x\n", 2475 param); 2476 return -EINVAL; 2477 } 2478 2479 DP_VERBOSE(p_hwfn, 2480 NETIF_MSG_IFUP, 2481 "According to capabilities, L2 personality is %08x [resp %08x param %08x]\n", 2482 (u32)*p_proto, resp, param); 2483 return 0; 2484 } 2485 2486 static int 2487 qed_mcp_get_shmem_proto(struct qed_hwfn *p_hwfn, 2488 struct public_func *p_info, 2489 struct qed_ptt *p_ptt, 2490 enum qed_pci_personality *p_proto) 2491 { 2492 int rc = 0; 2493 2494 switch (p_info->config & FUNC_MF_CFG_PROTOCOL_MASK) { 2495 case FUNC_MF_CFG_PROTOCOL_ETHERNET: 2496 if (!IS_ENABLED(CONFIG_QED_RDMA)) 2497 *p_proto = QED_PCI_ETH; 2498 else if (qed_mcp_get_shmem_proto_mfw(p_hwfn, p_ptt, p_proto)) 2499 qed_mcp_get_shmem_proto_legacy(p_hwfn, p_proto); 2500 break; 2501 case FUNC_MF_CFG_PROTOCOL_ISCSI: 2502 *p_proto = QED_PCI_ISCSI; 2503 break; 2504 case FUNC_MF_CFG_PROTOCOL_FCOE: 2505 *p_proto = QED_PCI_FCOE; 2506 break; 2507 case FUNC_MF_CFG_PROTOCOL_ROCE: 2508 DP_NOTICE(p_hwfn, "RoCE personality is not a valid value!\n"); 2509 fallthrough; 2510 default: 2511 rc = -EINVAL; 2512 } 2513 2514 return rc; 2515 } 2516 2517 int qed_mcp_fill_shmem_func_info(struct qed_hwfn *p_hwfn, 2518 struct qed_ptt *p_ptt) 2519 { 2520 struct qed_mcp_function_info *info; 2521 struct public_func shmem_info; 2522 2523 qed_mcp_get_shmem_func(p_hwfn, p_ptt, &shmem_info, MCP_PF_ID(p_hwfn)); 2524 info = &p_hwfn->mcp_info->func_info; 2525 2526 info->pause_on_host = (shmem_info.config & 2527 FUNC_MF_CFG_PAUSE_ON_HOST_RING) ? 1 : 0; 2528 2529 if (qed_mcp_get_shmem_proto(p_hwfn, &shmem_info, p_ptt, 2530 &info->protocol)) { 2531 DP_ERR(p_hwfn, "Unknown personality %08x\n", 2532 (u32)(shmem_info.config & FUNC_MF_CFG_PROTOCOL_MASK)); 2533 return -EINVAL; 2534 } 2535 2536 qed_read_pf_bandwidth(p_hwfn, &shmem_info); 2537 2538 if (shmem_info.mac_upper || shmem_info.mac_lower) { 2539 info->mac[0] = (u8)(shmem_info.mac_upper >> 8); 2540 info->mac[1] = (u8)(shmem_info.mac_upper); 2541 info->mac[2] = (u8)(shmem_info.mac_lower >> 24); 2542 info->mac[3] = (u8)(shmem_info.mac_lower >> 16); 2543 info->mac[4] = (u8)(shmem_info.mac_lower >> 8); 2544 info->mac[5] = (u8)(shmem_info.mac_lower); 2545 2546 /* Store primary MAC for later possible WoL */ 2547 memcpy(&p_hwfn->cdev->wol_mac, info->mac, ETH_ALEN); 2548 } else { 2549 DP_NOTICE(p_hwfn, "MAC is 0 in shmem\n"); 2550 } 2551 2552 info->wwn_port = (u64)shmem_info.fcoe_wwn_port_name_lower | 2553 (((u64)shmem_info.fcoe_wwn_port_name_upper) << 32); 2554 info->wwn_node = (u64)shmem_info.fcoe_wwn_node_name_lower | 2555 (((u64)shmem_info.fcoe_wwn_node_name_upper) << 32); 2556 2557 info->ovlan = (u16)(shmem_info.ovlan_stag & FUNC_MF_CFG_OV_STAG_MASK); 2558 2559 info->mtu = (u16)shmem_info.mtu_size; 2560 2561 p_hwfn->hw_info.b_wol_support = QED_WOL_SUPPORT_NONE; 2562 p_hwfn->cdev->wol_config = (u8)QED_OV_WOL_DEFAULT; 2563 if (qed_mcp_is_init(p_hwfn)) { 2564 u32 resp = 0, param = 0; 2565 int rc; 2566 2567 rc = qed_mcp_cmd(p_hwfn, p_ptt, 2568 DRV_MSG_CODE_OS_WOL, 0, &resp, ¶m); 2569 if (rc) 2570 return rc; 2571 if (resp == FW_MSG_CODE_OS_WOL_SUPPORTED) 2572 p_hwfn->hw_info.b_wol_support = QED_WOL_SUPPORT_PME; 2573 } 2574 2575 DP_VERBOSE(p_hwfn, (QED_MSG_SP | NETIF_MSG_IFUP), 2576 "Read configuration from shmem: pause_on_host %02x protocol %02x BW [%02x - %02x] MAC %pM wwn port %llx node %llx ovlan %04x wol %02x\n", 2577 info->pause_on_host, info->protocol, 2578 info->bandwidth_min, info->bandwidth_max, 2579 info->mac, 2580 info->wwn_port, info->wwn_node, 2581 info->ovlan, (u8)p_hwfn->hw_info.b_wol_support); 2582 2583 return 0; 2584 } 2585 2586 struct qed_mcp_link_params 2587 *qed_mcp_get_link_params(struct qed_hwfn *p_hwfn) 2588 { 2589 if (!p_hwfn || !p_hwfn->mcp_info) 2590 return NULL; 2591 return &p_hwfn->mcp_info->link_input; 2592 } 2593 2594 struct qed_mcp_link_state 2595 *qed_mcp_get_link_state(struct qed_hwfn *p_hwfn) 2596 { 2597 if (!p_hwfn || !p_hwfn->mcp_info) 2598 return NULL; 2599 return &p_hwfn->mcp_info->link_output; 2600 } 2601 2602 struct qed_mcp_link_capabilities 2603 *qed_mcp_get_link_capabilities(struct qed_hwfn *p_hwfn) 2604 { 2605 if (!p_hwfn || !p_hwfn->mcp_info) 2606 return NULL; 2607 return &p_hwfn->mcp_info->link_capabilities; 2608 } 2609 2610 int qed_mcp_drain(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 2611 { 2612 u32 resp = 0, param = 0; 2613 int rc; 2614 2615 rc = qed_mcp_cmd(p_hwfn, p_ptt, 2616 DRV_MSG_CODE_NIG_DRAIN, 1000, &resp, ¶m); 2617 2618 /* Wait for the drain to complete before returning */ 2619 msleep(1020); 2620 2621 return rc; 2622 } 2623 2624 int qed_mcp_get_flash_size(struct qed_hwfn *p_hwfn, 2625 struct qed_ptt *p_ptt, u32 *p_flash_size) 2626 { 2627 u32 flash_size; 2628 2629 if (IS_VF(p_hwfn->cdev)) 2630 return -EINVAL; 2631 2632 flash_size = qed_rd(p_hwfn, p_ptt, MCP_REG_NVM_CFG4); 2633 flash_size = (flash_size & MCP_REG_NVM_CFG4_FLASH_SIZE) >> 2634 MCP_REG_NVM_CFG4_FLASH_SIZE_SHIFT; 2635 flash_size = (1 << (flash_size + MCP_BYTES_PER_MBIT_SHIFT)); 2636 2637 *p_flash_size = flash_size; 2638 2639 return 0; 2640 } 2641 2642 int qed_start_recovery_process(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 2643 { 2644 struct qed_dev *cdev = p_hwfn->cdev; 2645 2646 if (cdev->recov_in_prog) { 2647 DP_NOTICE(p_hwfn, 2648 "Avoid triggering a recovery since such a process is already in progress\n"); 2649 return -EAGAIN; 2650 } 2651 2652 DP_NOTICE(p_hwfn, "Triggering a recovery process\n"); 2653 qed_wr(p_hwfn, p_ptt, MISC_REG_AEU_GENERAL_ATTN_35, 0x1); 2654 2655 return 0; 2656 } 2657 2658 #define QED_RECOVERY_PROLOG_SLEEP_MS 100 2659 2660 int qed_recovery_prolog(struct qed_dev *cdev) 2661 { 2662 struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev); 2663 struct qed_ptt *p_ptt = p_hwfn->p_main_ptt; 2664 int rc; 2665 2666 /* Allow ongoing PCIe transactions to complete */ 2667 msleep(QED_RECOVERY_PROLOG_SLEEP_MS); 2668 2669 /* Clear the PF's internal FID_enable in the PXP */ 2670 rc = qed_pglueb_set_pfid_enable(p_hwfn, p_ptt, false); 2671 if (rc) 2672 DP_NOTICE(p_hwfn, 2673 "qed_pglueb_set_pfid_enable() failed. rc = %d.\n", 2674 rc); 2675 2676 return rc; 2677 } 2678 2679 static int 2680 qed_mcp_config_vf_msix_bb(struct qed_hwfn *p_hwfn, 2681 struct qed_ptt *p_ptt, u8 vf_id, u8 num) 2682 { 2683 u32 resp = 0, param = 0, rc_param = 0; 2684 int rc; 2685 2686 /* Only Leader can configure MSIX, and need to take CMT into account */ 2687 if (!IS_LEAD_HWFN(p_hwfn)) 2688 return 0; 2689 num *= p_hwfn->cdev->num_hwfns; 2690 2691 param |= (vf_id << DRV_MB_PARAM_CFG_VF_MSIX_VF_ID_SHIFT) & 2692 DRV_MB_PARAM_CFG_VF_MSIX_VF_ID_MASK; 2693 param |= (num << DRV_MB_PARAM_CFG_VF_MSIX_SB_NUM_SHIFT) & 2694 DRV_MB_PARAM_CFG_VF_MSIX_SB_NUM_MASK; 2695 2696 rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_CFG_VF_MSIX, param, 2697 &resp, &rc_param); 2698 2699 if (resp != FW_MSG_CODE_DRV_CFG_VF_MSIX_DONE) { 2700 DP_NOTICE(p_hwfn, "VF[%d]: MFW failed to set MSI-X\n", vf_id); 2701 rc = -EINVAL; 2702 } else { 2703 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 2704 "Requested 0x%02x MSI-x interrupts from VF 0x%02x\n", 2705 num, vf_id); 2706 } 2707 2708 return rc; 2709 } 2710 2711 static int 2712 qed_mcp_config_vf_msix_ah(struct qed_hwfn *p_hwfn, 2713 struct qed_ptt *p_ptt, u8 num) 2714 { 2715 u32 resp = 0, param = num, rc_param = 0; 2716 int rc; 2717 2718 rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_CFG_PF_VFS_MSIX, 2719 param, &resp, &rc_param); 2720 2721 if (resp != FW_MSG_CODE_DRV_CFG_PF_VFS_MSIX_DONE) { 2722 DP_NOTICE(p_hwfn, "MFW failed to set MSI-X for VFs\n"); 2723 rc = -EINVAL; 2724 } else { 2725 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 2726 "Requested 0x%02x MSI-x interrupts for VFs\n", num); 2727 } 2728 2729 return rc; 2730 } 2731 2732 int qed_mcp_config_vf_msix(struct qed_hwfn *p_hwfn, 2733 struct qed_ptt *p_ptt, u8 vf_id, u8 num) 2734 { 2735 if (QED_IS_BB(p_hwfn->cdev)) 2736 return qed_mcp_config_vf_msix_bb(p_hwfn, p_ptt, vf_id, num); 2737 else 2738 return qed_mcp_config_vf_msix_ah(p_hwfn, p_ptt, num); 2739 } 2740 2741 int 2742 qed_mcp_send_drv_version(struct qed_hwfn *p_hwfn, 2743 struct qed_ptt *p_ptt, 2744 struct qed_mcp_drv_version *p_ver) 2745 { 2746 struct qed_mcp_mb_params mb_params; 2747 struct drv_version_stc drv_version; 2748 __be32 val; 2749 u32 i; 2750 int rc; 2751 2752 memset(&drv_version, 0, sizeof(drv_version)); 2753 drv_version.version = p_ver->version; 2754 for (i = 0; i < (MCP_DRV_VER_STR_SIZE - 4) / sizeof(u32); i++) { 2755 val = cpu_to_be32(*((u32 *)&p_ver->name[i * sizeof(u32)])); 2756 *(__be32 *)&drv_version.name[i * sizeof(u32)] = val; 2757 } 2758 2759 memset(&mb_params, 0, sizeof(mb_params)); 2760 mb_params.cmd = DRV_MSG_CODE_SET_VERSION; 2761 mb_params.p_data_src = &drv_version; 2762 mb_params.data_src_size = sizeof(drv_version); 2763 rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params); 2764 if (rc) 2765 DP_ERR(p_hwfn, "MCP response failure, aborting\n"); 2766 2767 return rc; 2768 } 2769 2770 /* A maximal 100 msec waiting time for the MCP to halt */ 2771 #define QED_MCP_HALT_SLEEP_MS 10 2772 #define QED_MCP_HALT_MAX_RETRIES 10 2773 2774 int qed_mcp_halt(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 2775 { 2776 u32 resp = 0, param = 0, cpu_state, cnt = 0; 2777 int rc; 2778 2779 rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_MCP_HALT, 0, &resp, 2780 ¶m); 2781 if (rc) { 2782 DP_ERR(p_hwfn, "MCP response failure, aborting\n"); 2783 return rc; 2784 } 2785 2786 do { 2787 msleep(QED_MCP_HALT_SLEEP_MS); 2788 cpu_state = qed_rd(p_hwfn, p_ptt, MCP_REG_CPU_STATE); 2789 if (cpu_state & MCP_REG_CPU_STATE_SOFT_HALTED) 2790 break; 2791 } while (++cnt < QED_MCP_HALT_MAX_RETRIES); 2792 2793 if (cnt == QED_MCP_HALT_MAX_RETRIES) { 2794 DP_NOTICE(p_hwfn, 2795 "Failed to halt the MCP [CPU_MODE = 0x%08x, CPU_STATE = 0x%08x]\n", 2796 qed_rd(p_hwfn, p_ptt, MCP_REG_CPU_MODE), cpu_state); 2797 return -EBUSY; 2798 } 2799 2800 qed_mcp_cmd_set_blocking(p_hwfn, true); 2801 2802 return 0; 2803 } 2804 2805 #define QED_MCP_RESUME_SLEEP_MS 10 2806 2807 int qed_mcp_resume(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 2808 { 2809 u32 cpu_mode, cpu_state; 2810 2811 qed_wr(p_hwfn, p_ptt, MCP_REG_CPU_STATE, 0xffffffff); 2812 2813 cpu_mode = qed_rd(p_hwfn, p_ptt, MCP_REG_CPU_MODE); 2814 cpu_mode &= ~MCP_REG_CPU_MODE_SOFT_HALT; 2815 qed_wr(p_hwfn, p_ptt, MCP_REG_CPU_MODE, cpu_mode); 2816 msleep(QED_MCP_RESUME_SLEEP_MS); 2817 cpu_state = qed_rd(p_hwfn, p_ptt, MCP_REG_CPU_STATE); 2818 2819 if (cpu_state & MCP_REG_CPU_STATE_SOFT_HALTED) { 2820 DP_NOTICE(p_hwfn, 2821 "Failed to resume the MCP [CPU_MODE = 0x%08x, CPU_STATE = 0x%08x]\n", 2822 cpu_mode, cpu_state); 2823 return -EBUSY; 2824 } 2825 2826 qed_mcp_cmd_set_blocking(p_hwfn, false); 2827 2828 return 0; 2829 } 2830 2831 int qed_mcp_ov_update_current_config(struct qed_hwfn *p_hwfn, 2832 struct qed_ptt *p_ptt, 2833 enum qed_ov_client client) 2834 { 2835 u32 resp = 0, param = 0; 2836 u32 drv_mb_param; 2837 int rc; 2838 2839 switch (client) { 2840 case QED_OV_CLIENT_DRV: 2841 drv_mb_param = DRV_MB_PARAM_OV_CURR_CFG_OS; 2842 break; 2843 case QED_OV_CLIENT_USER: 2844 drv_mb_param = DRV_MB_PARAM_OV_CURR_CFG_OTHER; 2845 break; 2846 case QED_OV_CLIENT_VENDOR_SPEC: 2847 drv_mb_param = DRV_MB_PARAM_OV_CURR_CFG_VENDOR_SPEC; 2848 break; 2849 default: 2850 DP_NOTICE(p_hwfn, "Invalid client type %d\n", client); 2851 return -EINVAL; 2852 } 2853 2854 rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_OV_UPDATE_CURR_CFG, 2855 drv_mb_param, &resp, ¶m); 2856 if (rc) 2857 DP_ERR(p_hwfn, "MCP response failure, aborting\n"); 2858 2859 return rc; 2860 } 2861 2862 int qed_mcp_ov_update_driver_state(struct qed_hwfn *p_hwfn, 2863 struct qed_ptt *p_ptt, 2864 enum qed_ov_driver_state drv_state) 2865 { 2866 u32 resp = 0, param = 0; 2867 u32 drv_mb_param; 2868 int rc; 2869 2870 switch (drv_state) { 2871 case QED_OV_DRIVER_STATE_NOT_LOADED: 2872 drv_mb_param = DRV_MSG_CODE_OV_UPDATE_DRIVER_STATE_NOT_LOADED; 2873 break; 2874 case QED_OV_DRIVER_STATE_DISABLED: 2875 drv_mb_param = DRV_MSG_CODE_OV_UPDATE_DRIVER_STATE_DISABLED; 2876 break; 2877 case QED_OV_DRIVER_STATE_ACTIVE: 2878 drv_mb_param = DRV_MSG_CODE_OV_UPDATE_DRIVER_STATE_ACTIVE; 2879 break; 2880 default: 2881 DP_NOTICE(p_hwfn, "Invalid driver state %d\n", drv_state); 2882 return -EINVAL; 2883 } 2884 2885 rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_OV_UPDATE_DRIVER_STATE, 2886 drv_mb_param, &resp, ¶m); 2887 if (rc) 2888 DP_ERR(p_hwfn, "Failed to send driver state\n"); 2889 2890 return rc; 2891 } 2892 2893 int qed_mcp_ov_update_mtu(struct qed_hwfn *p_hwfn, 2894 struct qed_ptt *p_ptt, u16 mtu) 2895 { 2896 u32 resp = 0, param = 0; 2897 u32 drv_mb_param; 2898 int rc; 2899 2900 drv_mb_param = (u32)mtu << DRV_MB_PARAM_OV_MTU_SIZE_SHIFT; 2901 rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_OV_UPDATE_MTU, 2902 drv_mb_param, &resp, ¶m); 2903 if (rc) 2904 DP_ERR(p_hwfn, "Failed to send mtu value, rc = %d\n", rc); 2905 2906 return rc; 2907 } 2908 2909 int qed_mcp_ov_update_mac(struct qed_hwfn *p_hwfn, 2910 struct qed_ptt *p_ptt, const u8 *mac) 2911 { 2912 struct qed_mcp_mb_params mb_params; 2913 u32 mfw_mac[2]; 2914 int rc; 2915 2916 memset(&mb_params, 0, sizeof(mb_params)); 2917 mb_params.cmd = DRV_MSG_CODE_SET_VMAC; 2918 mb_params.param = DRV_MSG_CODE_VMAC_TYPE_MAC << 2919 DRV_MSG_CODE_VMAC_TYPE_SHIFT; 2920 mb_params.param |= MCP_PF_ID(p_hwfn); 2921 2922 /* MCP is BE, and on LE platforms PCI would swap access to SHMEM 2923 * in 32-bit granularity. 2924 * So the MAC has to be set in native order [and not byte order], 2925 * otherwise it would be read incorrectly by MFW after swap. 2926 */ 2927 mfw_mac[0] = mac[0] << 24 | mac[1] << 16 | mac[2] << 8 | mac[3]; 2928 mfw_mac[1] = mac[4] << 24 | mac[5] << 16; 2929 2930 mb_params.p_data_src = (u8 *)mfw_mac; 2931 mb_params.data_src_size = 8; 2932 rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params); 2933 if (rc) 2934 DP_ERR(p_hwfn, "Failed to send mac address, rc = %d\n", rc); 2935 2936 /* Store primary MAC for later possible WoL */ 2937 memcpy(p_hwfn->cdev->wol_mac, mac, ETH_ALEN); 2938 2939 return rc; 2940 } 2941 2942 int qed_mcp_ov_update_wol(struct qed_hwfn *p_hwfn, 2943 struct qed_ptt *p_ptt, enum qed_ov_wol wol) 2944 { 2945 u32 resp = 0, param = 0; 2946 u32 drv_mb_param; 2947 int rc; 2948 2949 if (p_hwfn->hw_info.b_wol_support == QED_WOL_SUPPORT_NONE) { 2950 DP_VERBOSE(p_hwfn, QED_MSG_SP, 2951 "Can't change WoL configuration when WoL isn't supported\n"); 2952 return -EINVAL; 2953 } 2954 2955 switch (wol) { 2956 case QED_OV_WOL_DEFAULT: 2957 drv_mb_param = DRV_MB_PARAM_WOL_DEFAULT; 2958 break; 2959 case QED_OV_WOL_DISABLED: 2960 drv_mb_param = DRV_MB_PARAM_WOL_DISABLED; 2961 break; 2962 case QED_OV_WOL_ENABLED: 2963 drv_mb_param = DRV_MB_PARAM_WOL_ENABLED; 2964 break; 2965 default: 2966 DP_ERR(p_hwfn, "Invalid wol state %d\n", wol); 2967 return -EINVAL; 2968 } 2969 2970 rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_OV_UPDATE_WOL, 2971 drv_mb_param, &resp, ¶m); 2972 if (rc) 2973 DP_ERR(p_hwfn, "Failed to send wol mode, rc = %d\n", rc); 2974 2975 /* Store the WoL update for a future unload */ 2976 p_hwfn->cdev->wol_config = (u8)wol; 2977 2978 return rc; 2979 } 2980 2981 int qed_mcp_ov_update_eswitch(struct qed_hwfn *p_hwfn, 2982 struct qed_ptt *p_ptt, 2983 enum qed_ov_eswitch eswitch) 2984 { 2985 u32 resp = 0, param = 0; 2986 u32 drv_mb_param; 2987 int rc; 2988 2989 switch (eswitch) { 2990 case QED_OV_ESWITCH_NONE: 2991 drv_mb_param = DRV_MB_PARAM_ESWITCH_MODE_NONE; 2992 break; 2993 case QED_OV_ESWITCH_VEB: 2994 drv_mb_param = DRV_MB_PARAM_ESWITCH_MODE_VEB; 2995 break; 2996 case QED_OV_ESWITCH_VEPA: 2997 drv_mb_param = DRV_MB_PARAM_ESWITCH_MODE_VEPA; 2998 break; 2999 default: 3000 DP_ERR(p_hwfn, "Invalid eswitch mode %d\n", eswitch); 3001 return -EINVAL; 3002 } 3003 3004 rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_OV_UPDATE_ESWITCH_MODE, 3005 drv_mb_param, &resp, ¶m); 3006 if (rc) 3007 DP_ERR(p_hwfn, "Failed to send eswitch mode, rc = %d\n", rc); 3008 3009 return rc; 3010 } 3011 3012 int qed_mcp_set_led(struct qed_hwfn *p_hwfn, 3013 struct qed_ptt *p_ptt, enum qed_led_mode mode) 3014 { 3015 u32 resp = 0, param = 0, drv_mb_param; 3016 int rc; 3017 3018 switch (mode) { 3019 case QED_LED_MODE_ON: 3020 drv_mb_param = DRV_MB_PARAM_SET_LED_MODE_ON; 3021 break; 3022 case QED_LED_MODE_OFF: 3023 drv_mb_param = DRV_MB_PARAM_SET_LED_MODE_OFF; 3024 break; 3025 case QED_LED_MODE_RESTORE: 3026 drv_mb_param = DRV_MB_PARAM_SET_LED_MODE_OPER; 3027 break; 3028 default: 3029 DP_NOTICE(p_hwfn, "Invalid LED mode %d\n", mode); 3030 return -EINVAL; 3031 } 3032 3033 rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_SET_LED_MODE, 3034 drv_mb_param, &resp, ¶m); 3035 3036 return rc; 3037 } 3038 3039 int qed_mcp_mask_parities(struct qed_hwfn *p_hwfn, 3040 struct qed_ptt *p_ptt, u32 mask_parities) 3041 { 3042 u32 resp = 0, param = 0; 3043 int rc; 3044 3045 rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_MASK_PARITIES, 3046 mask_parities, &resp, ¶m); 3047 3048 if (rc) { 3049 DP_ERR(p_hwfn, 3050 "MCP response failure for mask parities, aborting\n"); 3051 } else if (resp != FW_MSG_CODE_OK) { 3052 DP_ERR(p_hwfn, 3053 "MCP did not acknowledge mask parity request. Old MFW?\n"); 3054 rc = -EINVAL; 3055 } 3056 3057 return rc; 3058 } 3059 3060 int qed_mcp_nvm_read(struct qed_dev *cdev, u32 addr, u8 *p_buf, u32 len) 3061 { 3062 u32 bytes_left = len, offset = 0, bytes_to_copy, read_len = 0; 3063 struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev); 3064 u32 resp = 0, resp_param = 0; 3065 struct qed_ptt *p_ptt; 3066 int rc = 0; 3067 3068 p_ptt = qed_ptt_acquire(p_hwfn); 3069 if (!p_ptt) 3070 return -EBUSY; 3071 3072 while (bytes_left > 0) { 3073 bytes_to_copy = min_t(u32, bytes_left, MCP_DRV_NVM_BUF_LEN); 3074 3075 rc = qed_mcp_nvm_rd_cmd(p_hwfn, p_ptt, 3076 DRV_MSG_CODE_NVM_READ_NVRAM, 3077 addr + offset + 3078 (bytes_to_copy << 3079 DRV_MB_PARAM_NVM_LEN_OFFSET), 3080 &resp, &resp_param, 3081 &read_len, 3082 (u32 *)(p_buf + offset), true); 3083 3084 if (rc || (resp != FW_MSG_CODE_NVM_OK)) { 3085 DP_NOTICE(cdev, "MCP command rc = %d\n", rc); 3086 break; 3087 } 3088 3089 offset += read_len; 3090 bytes_left -= read_len; 3091 } 3092 3093 cdev->mcp_nvm_resp = resp; 3094 qed_ptt_release(p_hwfn, p_ptt); 3095 3096 return rc; 3097 } 3098 3099 int qed_mcp_nvm_resp(struct qed_dev *cdev, u8 *p_buf) 3100 { 3101 struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev); 3102 struct qed_ptt *p_ptt; 3103 3104 p_ptt = qed_ptt_acquire(p_hwfn); 3105 if (!p_ptt) 3106 return -EBUSY; 3107 3108 memcpy(p_buf, &cdev->mcp_nvm_resp, sizeof(cdev->mcp_nvm_resp)); 3109 qed_ptt_release(p_hwfn, p_ptt); 3110 3111 return 0; 3112 } 3113 3114 int qed_mcp_nvm_write(struct qed_dev *cdev, 3115 u32 cmd, u32 addr, u8 *p_buf, u32 len) 3116 { 3117 u32 buf_idx = 0, buf_size, nvm_cmd, nvm_offset, resp = 0, param; 3118 struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev); 3119 struct qed_ptt *p_ptt; 3120 int rc = -EINVAL; 3121 3122 p_ptt = qed_ptt_acquire(p_hwfn); 3123 if (!p_ptt) 3124 return -EBUSY; 3125 3126 switch (cmd) { 3127 case QED_PUT_FILE_BEGIN: 3128 nvm_cmd = DRV_MSG_CODE_NVM_PUT_FILE_BEGIN; 3129 break; 3130 case QED_PUT_FILE_DATA: 3131 nvm_cmd = DRV_MSG_CODE_NVM_PUT_FILE_DATA; 3132 break; 3133 case QED_NVM_WRITE_NVRAM: 3134 nvm_cmd = DRV_MSG_CODE_NVM_WRITE_NVRAM; 3135 break; 3136 default: 3137 DP_NOTICE(p_hwfn, "Invalid nvm write command 0x%x\n", cmd); 3138 rc = -EINVAL; 3139 goto out; 3140 } 3141 3142 buf_size = min_t(u32, (len - buf_idx), MCP_DRV_NVM_BUF_LEN); 3143 while (buf_idx < len) { 3144 if (cmd == QED_PUT_FILE_BEGIN) 3145 nvm_offset = addr; 3146 else 3147 nvm_offset = ((buf_size << 3148 DRV_MB_PARAM_NVM_LEN_OFFSET) | addr) + 3149 buf_idx; 3150 rc = qed_mcp_nvm_wr_cmd(p_hwfn, p_ptt, nvm_cmd, nvm_offset, 3151 &resp, ¶m, buf_size, 3152 (u32 *)&p_buf[buf_idx]); 3153 if (rc) { 3154 DP_NOTICE(cdev, "nvm write failed, rc = %d\n", rc); 3155 resp = FW_MSG_CODE_ERROR; 3156 break; 3157 } 3158 3159 if (resp != FW_MSG_CODE_OK && 3160 resp != FW_MSG_CODE_NVM_OK && 3161 resp != FW_MSG_CODE_NVM_PUT_FILE_FINISH_OK) { 3162 DP_NOTICE(cdev, 3163 "nvm write failed, resp = 0x%08x\n", resp); 3164 rc = -EINVAL; 3165 break; 3166 } 3167 3168 /* This can be a lengthy process, and it's possible scheduler 3169 * isn't pre-emptable. Sleep a bit to prevent CPU hogging. 3170 */ 3171 if (buf_idx % 0x1000 > (buf_idx + buf_size) % 0x1000) 3172 usleep_range(1000, 2000); 3173 3174 /* For MBI upgrade, MFW response includes the next buffer offset 3175 * to be delivered to MFW. 3176 */ 3177 if (param && cmd == QED_PUT_FILE_DATA) { 3178 buf_idx = 3179 QED_MFW_GET_FIELD(param, 3180 FW_MB_PARAM_NVM_PUT_FILE_REQ_OFFSET); 3181 buf_size = 3182 QED_MFW_GET_FIELD(param, 3183 FW_MB_PARAM_NVM_PUT_FILE_REQ_SIZE); 3184 } else { 3185 buf_idx += buf_size; 3186 buf_size = min_t(u32, (len - buf_idx), 3187 MCP_DRV_NVM_BUF_LEN); 3188 } 3189 } 3190 3191 cdev->mcp_nvm_resp = resp; 3192 out: 3193 qed_ptt_release(p_hwfn, p_ptt); 3194 3195 return rc; 3196 } 3197 3198 int qed_mcp_phy_sfp_read(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, 3199 u32 port, u32 addr, u32 offset, u32 len, u8 *p_buf) 3200 { 3201 u32 bytes_left, bytes_to_copy, buf_size, nvm_offset = 0; 3202 u32 resp, param; 3203 int rc; 3204 3205 nvm_offset |= (port << DRV_MB_PARAM_TRANSCEIVER_PORT_OFFSET) & 3206 DRV_MB_PARAM_TRANSCEIVER_PORT_MASK; 3207 nvm_offset |= (addr << DRV_MB_PARAM_TRANSCEIVER_I2C_ADDRESS_OFFSET) & 3208 DRV_MB_PARAM_TRANSCEIVER_I2C_ADDRESS_MASK; 3209 3210 addr = offset; 3211 offset = 0; 3212 bytes_left = len; 3213 while (bytes_left > 0) { 3214 bytes_to_copy = min_t(u32, bytes_left, 3215 MAX_I2C_TRANSACTION_SIZE); 3216 nvm_offset &= (DRV_MB_PARAM_TRANSCEIVER_I2C_ADDRESS_MASK | 3217 DRV_MB_PARAM_TRANSCEIVER_PORT_MASK); 3218 nvm_offset |= ((addr + offset) << 3219 DRV_MB_PARAM_TRANSCEIVER_OFFSET_OFFSET) & 3220 DRV_MB_PARAM_TRANSCEIVER_OFFSET_MASK; 3221 nvm_offset |= (bytes_to_copy << 3222 DRV_MB_PARAM_TRANSCEIVER_SIZE_OFFSET) & 3223 DRV_MB_PARAM_TRANSCEIVER_SIZE_MASK; 3224 rc = qed_mcp_nvm_rd_cmd(p_hwfn, p_ptt, 3225 DRV_MSG_CODE_TRANSCEIVER_READ, 3226 nvm_offset, &resp, ¶m, &buf_size, 3227 (u32 *)(p_buf + offset), true); 3228 if (rc) { 3229 DP_NOTICE(p_hwfn, 3230 "Failed to send a transceiver read command to the MFW. rc = %d.\n", 3231 rc); 3232 return rc; 3233 } 3234 3235 if (resp == FW_MSG_CODE_TRANSCEIVER_NOT_PRESENT) 3236 return -ENODEV; 3237 else if (resp != FW_MSG_CODE_TRANSCEIVER_DIAG_OK) 3238 return -EINVAL; 3239 3240 offset += buf_size; 3241 bytes_left -= buf_size; 3242 } 3243 3244 return 0; 3245 } 3246 3247 int qed_mcp_bist_register_test(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 3248 { 3249 u32 drv_mb_param = 0, rsp, param; 3250 int rc = 0; 3251 3252 drv_mb_param = (DRV_MB_PARAM_BIST_REGISTER_TEST << 3253 DRV_MB_PARAM_BIST_TEST_INDEX_SHIFT); 3254 3255 rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_BIST_TEST, 3256 drv_mb_param, &rsp, ¶m); 3257 3258 if (rc) 3259 return rc; 3260 3261 if (((rsp & FW_MSG_CODE_MASK) != FW_MSG_CODE_OK) || 3262 (param != DRV_MB_PARAM_BIST_RC_PASSED)) 3263 rc = -EAGAIN; 3264 3265 return rc; 3266 } 3267 3268 int qed_mcp_bist_clock_test(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 3269 { 3270 u32 drv_mb_param, rsp, param; 3271 int rc = 0; 3272 3273 drv_mb_param = (DRV_MB_PARAM_BIST_CLOCK_TEST << 3274 DRV_MB_PARAM_BIST_TEST_INDEX_SHIFT); 3275 3276 rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_BIST_TEST, 3277 drv_mb_param, &rsp, ¶m); 3278 3279 if (rc) 3280 return rc; 3281 3282 if (((rsp & FW_MSG_CODE_MASK) != FW_MSG_CODE_OK) || 3283 (param != DRV_MB_PARAM_BIST_RC_PASSED)) 3284 rc = -EAGAIN; 3285 3286 return rc; 3287 } 3288 3289 int qed_mcp_bist_nvm_get_num_images(struct qed_hwfn *p_hwfn, 3290 struct qed_ptt *p_ptt, 3291 u32 *num_images) 3292 { 3293 u32 drv_mb_param = 0, rsp; 3294 int rc = 0; 3295 3296 drv_mb_param = (DRV_MB_PARAM_BIST_NVM_TEST_NUM_IMAGES << 3297 DRV_MB_PARAM_BIST_TEST_INDEX_SHIFT); 3298 3299 rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_BIST_TEST, 3300 drv_mb_param, &rsp, num_images); 3301 if (rc) 3302 return rc; 3303 3304 if (((rsp & FW_MSG_CODE_MASK) == FW_MSG_CODE_UNSUPPORTED)) 3305 rc = -EOPNOTSUPP; 3306 else if (((rsp & FW_MSG_CODE_MASK) != FW_MSG_CODE_OK)) 3307 rc = -EINVAL; 3308 3309 return rc; 3310 } 3311 3312 int qed_mcp_bist_nvm_get_image_att(struct qed_hwfn *p_hwfn, 3313 struct qed_ptt *p_ptt, 3314 struct bist_nvm_image_att *p_image_att, 3315 u32 image_index) 3316 { 3317 u32 buf_size = 0, param, resp = 0, resp_param = 0; 3318 int rc; 3319 3320 param = DRV_MB_PARAM_BIST_NVM_TEST_IMAGE_BY_INDEX << 3321 DRV_MB_PARAM_BIST_TEST_INDEX_SHIFT; 3322 param |= image_index << DRV_MB_PARAM_BIST_TEST_IMAGE_INDEX_SHIFT; 3323 3324 rc = qed_mcp_nvm_rd_cmd(p_hwfn, p_ptt, 3325 DRV_MSG_CODE_BIST_TEST, param, 3326 &resp, &resp_param, 3327 &buf_size, 3328 (u32 *)p_image_att, false); 3329 if (rc) 3330 return rc; 3331 3332 if (((resp & FW_MSG_CODE_MASK) != FW_MSG_CODE_OK) || 3333 (p_image_att->return_code != 1)) 3334 rc = -EINVAL; 3335 3336 return rc; 3337 } 3338 3339 int qed_mcp_nvm_info_populate(struct qed_hwfn *p_hwfn) 3340 { 3341 struct qed_nvm_image_info nvm_info; 3342 struct qed_ptt *p_ptt; 3343 int rc; 3344 u32 i; 3345 3346 if (p_hwfn->nvm_info.valid) 3347 return 0; 3348 3349 p_ptt = qed_ptt_acquire(p_hwfn); 3350 if (!p_ptt) { 3351 DP_ERR(p_hwfn, "failed to acquire ptt\n"); 3352 return -EBUSY; 3353 } 3354 3355 /* Acquire from MFW the amount of available images */ 3356 nvm_info.num_images = 0; 3357 rc = qed_mcp_bist_nvm_get_num_images(p_hwfn, 3358 p_ptt, &nvm_info.num_images); 3359 if (rc == -EOPNOTSUPP) { 3360 DP_INFO(p_hwfn, "DRV_MSG_CODE_BIST_TEST is not supported\n"); 3361 nvm_info.num_images = 0; 3362 goto out; 3363 } else if (rc || !nvm_info.num_images) { 3364 DP_ERR(p_hwfn, "Failed getting number of images\n"); 3365 goto err0; 3366 } 3367 3368 nvm_info.image_att = kmalloc_array(nvm_info.num_images, 3369 sizeof(struct bist_nvm_image_att), 3370 GFP_KERNEL); 3371 if (!nvm_info.image_att) { 3372 rc = -ENOMEM; 3373 goto err0; 3374 } 3375 3376 /* Iterate over images and get their attributes */ 3377 for (i = 0; i < nvm_info.num_images; i++) { 3378 rc = qed_mcp_bist_nvm_get_image_att(p_hwfn, p_ptt, 3379 &nvm_info.image_att[i], i); 3380 if (rc) { 3381 DP_ERR(p_hwfn, 3382 "Failed getting image index %d attributes\n", i); 3383 goto err1; 3384 } 3385 3386 DP_VERBOSE(p_hwfn, QED_MSG_SP, "image index %d, size %x\n", i, 3387 nvm_info.image_att[i].len); 3388 } 3389 out: 3390 /* Update hwfn's nvm_info */ 3391 if (nvm_info.num_images) { 3392 p_hwfn->nvm_info.num_images = nvm_info.num_images; 3393 kfree(p_hwfn->nvm_info.image_att); 3394 p_hwfn->nvm_info.image_att = nvm_info.image_att; 3395 p_hwfn->nvm_info.valid = true; 3396 } 3397 3398 qed_ptt_release(p_hwfn, p_ptt); 3399 return 0; 3400 3401 err1: 3402 kfree(nvm_info.image_att); 3403 err0: 3404 qed_ptt_release(p_hwfn, p_ptt); 3405 return rc; 3406 } 3407 3408 void qed_mcp_nvm_info_free(struct qed_hwfn *p_hwfn) 3409 { 3410 kfree(p_hwfn->nvm_info.image_att); 3411 p_hwfn->nvm_info.image_att = NULL; 3412 p_hwfn->nvm_info.valid = false; 3413 } 3414 3415 int 3416 qed_mcp_get_nvm_image_att(struct qed_hwfn *p_hwfn, 3417 enum qed_nvm_images image_id, 3418 struct qed_nvm_image_att *p_image_att) 3419 { 3420 enum nvm_image_type type; 3421 int rc; 3422 u32 i; 3423 3424 /* Translate image_id into MFW definitions */ 3425 switch (image_id) { 3426 case QED_NVM_IMAGE_ISCSI_CFG: 3427 type = NVM_TYPE_ISCSI_CFG; 3428 break; 3429 case QED_NVM_IMAGE_FCOE_CFG: 3430 type = NVM_TYPE_FCOE_CFG; 3431 break; 3432 case QED_NVM_IMAGE_MDUMP: 3433 type = NVM_TYPE_MDUMP; 3434 break; 3435 case QED_NVM_IMAGE_NVM_CFG1: 3436 type = NVM_TYPE_NVM_CFG1; 3437 break; 3438 case QED_NVM_IMAGE_DEFAULT_CFG: 3439 type = NVM_TYPE_DEFAULT_CFG; 3440 break; 3441 case QED_NVM_IMAGE_NVM_META: 3442 type = NVM_TYPE_NVM_META; 3443 break; 3444 default: 3445 DP_NOTICE(p_hwfn, "Unknown request of image_id %08x\n", 3446 image_id); 3447 return -EINVAL; 3448 } 3449 3450 rc = qed_mcp_nvm_info_populate(p_hwfn); 3451 if (rc) 3452 return rc; 3453 3454 for (i = 0; i < p_hwfn->nvm_info.num_images; i++) 3455 if (type == p_hwfn->nvm_info.image_att[i].image_type) 3456 break; 3457 if (i == p_hwfn->nvm_info.num_images) { 3458 DP_VERBOSE(p_hwfn, QED_MSG_STORAGE, 3459 "Failed to find nvram image of type %08x\n", 3460 image_id); 3461 return -ENOENT; 3462 } 3463 3464 p_image_att->start_addr = p_hwfn->nvm_info.image_att[i].nvm_start_addr; 3465 p_image_att->length = p_hwfn->nvm_info.image_att[i].len; 3466 3467 return 0; 3468 } 3469 3470 int qed_mcp_get_nvm_image(struct qed_hwfn *p_hwfn, 3471 enum qed_nvm_images image_id, 3472 u8 *p_buffer, u32 buffer_len) 3473 { 3474 struct qed_nvm_image_att image_att; 3475 int rc; 3476 3477 memset(p_buffer, 0, buffer_len); 3478 3479 rc = qed_mcp_get_nvm_image_att(p_hwfn, image_id, &image_att); 3480 if (rc) 3481 return rc; 3482 3483 /* Validate sizes - both the image's and the supplied buffer's */ 3484 if (image_att.length <= 4) { 3485 DP_VERBOSE(p_hwfn, QED_MSG_STORAGE, 3486 "Image [%d] is too small - only %d bytes\n", 3487 image_id, image_att.length); 3488 return -EINVAL; 3489 } 3490 3491 if (image_att.length > buffer_len) { 3492 DP_VERBOSE(p_hwfn, 3493 QED_MSG_STORAGE, 3494 "Image [%d] is too big - %08x bytes where only %08x are available\n", 3495 image_id, image_att.length, buffer_len); 3496 return -ENOMEM; 3497 } 3498 3499 return qed_mcp_nvm_read(p_hwfn->cdev, image_att.start_addr, 3500 p_buffer, image_att.length); 3501 } 3502 3503 static enum resource_id_enum qed_mcp_get_mfw_res_id(enum qed_resources res_id) 3504 { 3505 enum resource_id_enum mfw_res_id = RESOURCE_NUM_INVALID; 3506 3507 switch (res_id) { 3508 case QED_SB: 3509 mfw_res_id = RESOURCE_NUM_SB_E; 3510 break; 3511 case QED_L2_QUEUE: 3512 mfw_res_id = RESOURCE_NUM_L2_QUEUE_E; 3513 break; 3514 case QED_VPORT: 3515 mfw_res_id = RESOURCE_NUM_VPORT_E; 3516 break; 3517 case QED_RSS_ENG: 3518 mfw_res_id = RESOURCE_NUM_RSS_ENGINES_E; 3519 break; 3520 case QED_PQ: 3521 mfw_res_id = RESOURCE_NUM_PQ_E; 3522 break; 3523 case QED_RL: 3524 mfw_res_id = RESOURCE_NUM_RL_E; 3525 break; 3526 case QED_MAC: 3527 case QED_VLAN: 3528 /* Each VFC resource can accommodate both a MAC and a VLAN */ 3529 mfw_res_id = RESOURCE_VFC_FILTER_E; 3530 break; 3531 case QED_ILT: 3532 mfw_res_id = RESOURCE_ILT_E; 3533 break; 3534 case QED_LL2_RAM_QUEUE: 3535 mfw_res_id = RESOURCE_LL2_QUEUE_E; 3536 break; 3537 case QED_LL2_CTX_QUEUE: 3538 mfw_res_id = RESOURCE_LL2_CQS_E; 3539 break; 3540 case QED_RDMA_CNQ_RAM: 3541 case QED_CMDQS_CQS: 3542 /* CNQ/CMDQS are the same resource */ 3543 mfw_res_id = RESOURCE_CQS_E; 3544 break; 3545 case QED_RDMA_STATS_QUEUE: 3546 mfw_res_id = RESOURCE_RDMA_STATS_QUEUE_E; 3547 break; 3548 case QED_BDQ: 3549 mfw_res_id = RESOURCE_BDQ_E; 3550 break; 3551 default: 3552 break; 3553 } 3554 3555 return mfw_res_id; 3556 } 3557 3558 #define QED_RESC_ALLOC_VERSION_MAJOR 2 3559 #define QED_RESC_ALLOC_VERSION_MINOR 0 3560 #define QED_RESC_ALLOC_VERSION \ 3561 ((QED_RESC_ALLOC_VERSION_MAJOR << \ 3562 DRV_MB_PARAM_RESOURCE_ALLOC_VERSION_MAJOR_SHIFT) | \ 3563 (QED_RESC_ALLOC_VERSION_MINOR << \ 3564 DRV_MB_PARAM_RESOURCE_ALLOC_VERSION_MINOR_SHIFT)) 3565 3566 struct qed_resc_alloc_in_params { 3567 u32 cmd; 3568 enum qed_resources res_id; 3569 u32 resc_max_val; 3570 }; 3571 3572 struct qed_resc_alloc_out_params { 3573 u32 mcp_resp; 3574 u32 mcp_param; 3575 u32 resc_num; 3576 u32 resc_start; 3577 u32 vf_resc_num; 3578 u32 vf_resc_start; 3579 u32 flags; 3580 }; 3581 3582 static int 3583 qed_mcp_resc_allocation_msg(struct qed_hwfn *p_hwfn, 3584 struct qed_ptt *p_ptt, 3585 struct qed_resc_alloc_in_params *p_in_params, 3586 struct qed_resc_alloc_out_params *p_out_params) 3587 { 3588 struct qed_mcp_mb_params mb_params; 3589 struct resource_info mfw_resc_info; 3590 int rc; 3591 3592 memset(&mfw_resc_info, 0, sizeof(mfw_resc_info)); 3593 3594 mfw_resc_info.res_id = qed_mcp_get_mfw_res_id(p_in_params->res_id); 3595 if (mfw_resc_info.res_id == RESOURCE_NUM_INVALID) { 3596 DP_ERR(p_hwfn, 3597 "Failed to match resource %d [%s] with the MFW resources\n", 3598 p_in_params->res_id, 3599 qed_hw_get_resc_name(p_in_params->res_id)); 3600 return -EINVAL; 3601 } 3602 3603 switch (p_in_params->cmd) { 3604 case DRV_MSG_SET_RESOURCE_VALUE_MSG: 3605 mfw_resc_info.size = p_in_params->resc_max_val; 3606 fallthrough; 3607 case DRV_MSG_GET_RESOURCE_ALLOC_MSG: 3608 break; 3609 default: 3610 DP_ERR(p_hwfn, "Unexpected resource alloc command [0x%08x]\n", 3611 p_in_params->cmd); 3612 return -EINVAL; 3613 } 3614 3615 memset(&mb_params, 0, sizeof(mb_params)); 3616 mb_params.cmd = p_in_params->cmd; 3617 mb_params.param = QED_RESC_ALLOC_VERSION; 3618 mb_params.p_data_src = &mfw_resc_info; 3619 mb_params.data_src_size = sizeof(mfw_resc_info); 3620 mb_params.p_data_dst = mb_params.p_data_src; 3621 mb_params.data_dst_size = mb_params.data_src_size; 3622 3623 DP_VERBOSE(p_hwfn, 3624 QED_MSG_SP, 3625 "Resource message request: cmd 0x%08x, res_id %d [%s], hsi_version %d.%d, val 0x%x\n", 3626 p_in_params->cmd, 3627 p_in_params->res_id, 3628 qed_hw_get_resc_name(p_in_params->res_id), 3629 QED_MFW_GET_FIELD(mb_params.param, 3630 DRV_MB_PARAM_RESOURCE_ALLOC_VERSION_MAJOR), 3631 QED_MFW_GET_FIELD(mb_params.param, 3632 DRV_MB_PARAM_RESOURCE_ALLOC_VERSION_MINOR), 3633 p_in_params->resc_max_val); 3634 3635 rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params); 3636 if (rc) 3637 return rc; 3638 3639 p_out_params->mcp_resp = mb_params.mcp_resp; 3640 p_out_params->mcp_param = mb_params.mcp_param; 3641 p_out_params->resc_num = mfw_resc_info.size; 3642 p_out_params->resc_start = mfw_resc_info.offset; 3643 p_out_params->vf_resc_num = mfw_resc_info.vf_size; 3644 p_out_params->vf_resc_start = mfw_resc_info.vf_offset; 3645 p_out_params->flags = mfw_resc_info.flags; 3646 3647 DP_VERBOSE(p_hwfn, 3648 QED_MSG_SP, 3649 "Resource message response: mfw_hsi_version %d.%d, num 0x%x, start 0x%x, vf_num 0x%x, vf_start 0x%x, flags 0x%08x\n", 3650 QED_MFW_GET_FIELD(p_out_params->mcp_param, 3651 FW_MB_PARAM_RESOURCE_ALLOC_VERSION_MAJOR), 3652 QED_MFW_GET_FIELD(p_out_params->mcp_param, 3653 FW_MB_PARAM_RESOURCE_ALLOC_VERSION_MINOR), 3654 p_out_params->resc_num, 3655 p_out_params->resc_start, 3656 p_out_params->vf_resc_num, 3657 p_out_params->vf_resc_start, p_out_params->flags); 3658 3659 return 0; 3660 } 3661 3662 int 3663 qed_mcp_set_resc_max_val(struct qed_hwfn *p_hwfn, 3664 struct qed_ptt *p_ptt, 3665 enum qed_resources res_id, 3666 u32 resc_max_val, u32 *p_mcp_resp) 3667 { 3668 struct qed_resc_alloc_out_params out_params; 3669 struct qed_resc_alloc_in_params in_params; 3670 int rc; 3671 3672 memset(&in_params, 0, sizeof(in_params)); 3673 in_params.cmd = DRV_MSG_SET_RESOURCE_VALUE_MSG; 3674 in_params.res_id = res_id; 3675 in_params.resc_max_val = resc_max_val; 3676 memset(&out_params, 0, sizeof(out_params)); 3677 rc = qed_mcp_resc_allocation_msg(p_hwfn, p_ptt, &in_params, 3678 &out_params); 3679 if (rc) 3680 return rc; 3681 3682 *p_mcp_resp = out_params.mcp_resp; 3683 3684 return 0; 3685 } 3686 3687 int 3688 qed_mcp_get_resc_info(struct qed_hwfn *p_hwfn, 3689 struct qed_ptt *p_ptt, 3690 enum qed_resources res_id, 3691 u32 *p_mcp_resp, u32 *p_resc_num, u32 *p_resc_start) 3692 { 3693 struct qed_resc_alloc_out_params out_params; 3694 struct qed_resc_alloc_in_params in_params; 3695 int rc; 3696 3697 memset(&in_params, 0, sizeof(in_params)); 3698 in_params.cmd = DRV_MSG_GET_RESOURCE_ALLOC_MSG; 3699 in_params.res_id = res_id; 3700 memset(&out_params, 0, sizeof(out_params)); 3701 rc = qed_mcp_resc_allocation_msg(p_hwfn, p_ptt, &in_params, 3702 &out_params); 3703 if (rc) 3704 return rc; 3705 3706 *p_mcp_resp = out_params.mcp_resp; 3707 3708 if (*p_mcp_resp == FW_MSG_CODE_RESOURCE_ALLOC_OK) { 3709 *p_resc_num = out_params.resc_num; 3710 *p_resc_start = out_params.resc_start; 3711 } 3712 3713 return 0; 3714 } 3715 3716 int qed_mcp_initiate_pf_flr(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 3717 { 3718 u32 mcp_resp, mcp_param; 3719 3720 return qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_INITIATE_PF_FLR, 0, 3721 &mcp_resp, &mcp_param); 3722 } 3723 3724 static int qed_mcp_resource_cmd(struct qed_hwfn *p_hwfn, 3725 struct qed_ptt *p_ptt, 3726 u32 param, u32 *p_mcp_resp, u32 *p_mcp_param) 3727 { 3728 int rc; 3729 3730 rc = qed_mcp_cmd_nosleep(p_hwfn, p_ptt, DRV_MSG_CODE_RESOURCE_CMD, 3731 param, p_mcp_resp, p_mcp_param); 3732 if (rc) 3733 return rc; 3734 3735 if (*p_mcp_resp == FW_MSG_CODE_UNSUPPORTED) { 3736 DP_INFO(p_hwfn, 3737 "The resource command is unsupported by the MFW\n"); 3738 return -EINVAL; 3739 } 3740 3741 if (*p_mcp_param == RESOURCE_OPCODE_UNKNOWN_CMD) { 3742 u8 opcode = QED_MFW_GET_FIELD(param, RESOURCE_CMD_REQ_OPCODE); 3743 3744 DP_NOTICE(p_hwfn, 3745 "The resource command is unknown to the MFW [param 0x%08x, opcode %d]\n", 3746 param, opcode); 3747 return -EINVAL; 3748 } 3749 3750 return rc; 3751 } 3752 3753 static int 3754 __qed_mcp_resc_lock(struct qed_hwfn *p_hwfn, 3755 struct qed_ptt *p_ptt, 3756 struct qed_resc_lock_params *p_params) 3757 { 3758 u32 param = 0, mcp_resp, mcp_param; 3759 u8 opcode; 3760 int rc; 3761 3762 switch (p_params->timeout) { 3763 case QED_MCP_RESC_LOCK_TO_DEFAULT: 3764 opcode = RESOURCE_OPCODE_REQ; 3765 p_params->timeout = 0; 3766 break; 3767 case QED_MCP_RESC_LOCK_TO_NONE: 3768 opcode = RESOURCE_OPCODE_REQ_WO_AGING; 3769 p_params->timeout = 0; 3770 break; 3771 default: 3772 opcode = RESOURCE_OPCODE_REQ_W_AGING; 3773 break; 3774 } 3775 3776 QED_MFW_SET_FIELD(param, RESOURCE_CMD_REQ_RESC, p_params->resource); 3777 QED_MFW_SET_FIELD(param, RESOURCE_CMD_REQ_OPCODE, opcode); 3778 QED_MFW_SET_FIELD(param, RESOURCE_CMD_REQ_AGE, p_params->timeout); 3779 3780 DP_VERBOSE(p_hwfn, 3781 QED_MSG_SP, 3782 "Resource lock request: param 0x%08x [age %d, opcode %d, resource %d]\n", 3783 param, p_params->timeout, opcode, p_params->resource); 3784 3785 /* Attempt to acquire the resource */ 3786 rc = qed_mcp_resource_cmd(p_hwfn, p_ptt, param, &mcp_resp, &mcp_param); 3787 if (rc) 3788 return rc; 3789 3790 /* Analyze the response */ 3791 p_params->owner = QED_MFW_GET_FIELD(mcp_param, RESOURCE_CMD_RSP_OWNER); 3792 opcode = QED_MFW_GET_FIELD(mcp_param, RESOURCE_CMD_RSP_OPCODE); 3793 3794 DP_VERBOSE(p_hwfn, 3795 QED_MSG_SP, 3796 "Resource lock response: mcp_param 0x%08x [opcode %d, owner %d]\n", 3797 mcp_param, opcode, p_params->owner); 3798 3799 switch (opcode) { 3800 case RESOURCE_OPCODE_GNT: 3801 p_params->b_granted = true; 3802 break; 3803 case RESOURCE_OPCODE_BUSY: 3804 p_params->b_granted = false; 3805 break; 3806 default: 3807 DP_NOTICE(p_hwfn, 3808 "Unexpected opcode in resource lock response [mcp_param 0x%08x, opcode %d]\n", 3809 mcp_param, opcode); 3810 return -EINVAL; 3811 } 3812 3813 return 0; 3814 } 3815 3816 int 3817 qed_mcp_resc_lock(struct qed_hwfn *p_hwfn, 3818 struct qed_ptt *p_ptt, struct qed_resc_lock_params *p_params) 3819 { 3820 u32 retry_cnt = 0; 3821 int rc; 3822 3823 do { 3824 /* No need for an interval before the first iteration */ 3825 if (retry_cnt) { 3826 if (p_params->sleep_b4_retry) { 3827 u16 retry_interval_in_ms = 3828 DIV_ROUND_UP(p_params->retry_interval, 3829 1000); 3830 3831 msleep(retry_interval_in_ms); 3832 } else { 3833 udelay(p_params->retry_interval); 3834 } 3835 } 3836 3837 rc = __qed_mcp_resc_lock(p_hwfn, p_ptt, p_params); 3838 if (rc) 3839 return rc; 3840 3841 if (p_params->b_granted) 3842 break; 3843 } while (retry_cnt++ < p_params->retry_num); 3844 3845 return 0; 3846 } 3847 3848 int 3849 qed_mcp_resc_unlock(struct qed_hwfn *p_hwfn, 3850 struct qed_ptt *p_ptt, 3851 struct qed_resc_unlock_params *p_params) 3852 { 3853 u32 param = 0, mcp_resp, mcp_param; 3854 u8 opcode; 3855 int rc; 3856 3857 opcode = p_params->b_force ? RESOURCE_OPCODE_FORCE_RELEASE 3858 : RESOURCE_OPCODE_RELEASE; 3859 QED_MFW_SET_FIELD(param, RESOURCE_CMD_REQ_RESC, p_params->resource); 3860 QED_MFW_SET_FIELD(param, RESOURCE_CMD_REQ_OPCODE, opcode); 3861 3862 DP_VERBOSE(p_hwfn, QED_MSG_SP, 3863 "Resource unlock request: param 0x%08x [opcode %d, resource %d]\n", 3864 param, opcode, p_params->resource); 3865 3866 /* Attempt to release the resource */ 3867 rc = qed_mcp_resource_cmd(p_hwfn, p_ptt, param, &mcp_resp, &mcp_param); 3868 if (rc) 3869 return rc; 3870 3871 /* Analyze the response */ 3872 opcode = QED_MFW_GET_FIELD(mcp_param, RESOURCE_CMD_RSP_OPCODE); 3873 3874 DP_VERBOSE(p_hwfn, QED_MSG_SP, 3875 "Resource unlock response: mcp_param 0x%08x [opcode %d]\n", 3876 mcp_param, opcode); 3877 3878 switch (opcode) { 3879 case RESOURCE_OPCODE_RELEASED_PREVIOUS: 3880 DP_INFO(p_hwfn, 3881 "Resource unlock request for an already released resource [%d]\n", 3882 p_params->resource); 3883 fallthrough; 3884 case RESOURCE_OPCODE_RELEASED: 3885 p_params->b_released = true; 3886 break; 3887 case RESOURCE_OPCODE_WRONG_OWNER: 3888 p_params->b_released = false; 3889 break; 3890 default: 3891 DP_NOTICE(p_hwfn, 3892 "Unexpected opcode in resource unlock response [mcp_param 0x%08x, opcode %d]\n", 3893 mcp_param, opcode); 3894 return -EINVAL; 3895 } 3896 3897 return 0; 3898 } 3899 3900 void qed_mcp_resc_lock_default_init(struct qed_resc_lock_params *p_lock, 3901 struct qed_resc_unlock_params *p_unlock, 3902 enum qed_resc_lock 3903 resource, bool b_is_permanent) 3904 { 3905 if (p_lock) { 3906 memset(p_lock, 0, sizeof(*p_lock)); 3907 3908 /* Permanent resources don't require aging, and there's no 3909 * point in trying to acquire them more than once since it's 3910 * unexpected another entity would release them. 3911 */ 3912 if (b_is_permanent) { 3913 p_lock->timeout = QED_MCP_RESC_LOCK_TO_NONE; 3914 } else { 3915 p_lock->retry_num = QED_MCP_RESC_LOCK_RETRY_CNT_DFLT; 3916 p_lock->retry_interval = 3917 QED_MCP_RESC_LOCK_RETRY_VAL_DFLT; 3918 p_lock->sleep_b4_retry = true; 3919 } 3920 3921 p_lock->resource = resource; 3922 } 3923 3924 if (p_unlock) { 3925 memset(p_unlock, 0, sizeof(*p_unlock)); 3926 p_unlock->resource = resource; 3927 } 3928 } 3929 3930 bool qed_mcp_is_smart_an_supported(struct qed_hwfn *p_hwfn) 3931 { 3932 return !!(p_hwfn->mcp_info->capabilities & 3933 FW_MB_PARAM_FEATURE_SUPPORT_SMARTLINQ); 3934 } 3935 3936 int qed_mcp_get_capabilities(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 3937 { 3938 u32 mcp_resp; 3939 int rc; 3940 3941 rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_GET_MFW_FEATURE_SUPPORT, 3942 0, &mcp_resp, &p_hwfn->mcp_info->capabilities); 3943 if (!rc) 3944 DP_VERBOSE(p_hwfn, (QED_MSG_SP | NETIF_MSG_PROBE), 3945 "MFW supported features: %08x\n", 3946 p_hwfn->mcp_info->capabilities); 3947 3948 return rc; 3949 } 3950 3951 int qed_mcp_set_capabilities(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 3952 { 3953 u32 mcp_resp, mcp_param, features; 3954 3955 features = DRV_MB_PARAM_FEATURE_SUPPORT_PORT_EEE | 3956 DRV_MB_PARAM_FEATURE_SUPPORT_FUNC_VLINK | 3957 DRV_MB_PARAM_FEATURE_SUPPORT_PORT_FEC_CONTROL; 3958 3959 return qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_FEATURE_SUPPORT, 3960 features, &mcp_resp, &mcp_param); 3961 } 3962 3963 int qed_mcp_get_engine_config(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 3964 { 3965 struct qed_mcp_mb_params mb_params = {0}; 3966 struct qed_dev *cdev = p_hwfn->cdev; 3967 u8 fir_valid, l2_valid; 3968 int rc; 3969 3970 mb_params.cmd = DRV_MSG_CODE_GET_ENGINE_CONFIG; 3971 rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params); 3972 if (rc) 3973 return rc; 3974 3975 if (mb_params.mcp_resp == FW_MSG_CODE_UNSUPPORTED) { 3976 DP_INFO(p_hwfn, 3977 "The get_engine_config command is unsupported by the MFW\n"); 3978 return -EOPNOTSUPP; 3979 } 3980 3981 fir_valid = QED_MFW_GET_FIELD(mb_params.mcp_param, 3982 FW_MB_PARAM_ENG_CFG_FIR_AFFIN_VALID); 3983 if (fir_valid) 3984 cdev->fir_affin = 3985 QED_MFW_GET_FIELD(mb_params.mcp_param, 3986 FW_MB_PARAM_ENG_CFG_FIR_AFFIN_VALUE); 3987 3988 l2_valid = QED_MFW_GET_FIELD(mb_params.mcp_param, 3989 FW_MB_PARAM_ENG_CFG_L2_AFFIN_VALID); 3990 if (l2_valid) 3991 cdev->l2_affin_hint = 3992 QED_MFW_GET_FIELD(mb_params.mcp_param, 3993 FW_MB_PARAM_ENG_CFG_L2_AFFIN_VALUE); 3994 3995 DP_INFO(p_hwfn, 3996 "Engine affinity config: FIR={valid %hhd, value %hhd}, L2_hint={valid %hhd, value %hhd}\n", 3997 fir_valid, cdev->fir_affin, l2_valid, cdev->l2_affin_hint); 3998 3999 return 0; 4000 } 4001 4002 int qed_mcp_get_ppfid_bitmap(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 4003 { 4004 struct qed_mcp_mb_params mb_params = {0}; 4005 struct qed_dev *cdev = p_hwfn->cdev; 4006 int rc; 4007 4008 mb_params.cmd = DRV_MSG_CODE_GET_PPFID_BITMAP; 4009 rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params); 4010 if (rc) 4011 return rc; 4012 4013 if (mb_params.mcp_resp == FW_MSG_CODE_UNSUPPORTED) { 4014 DP_INFO(p_hwfn, 4015 "The get_ppfid_bitmap command is unsupported by the MFW\n"); 4016 return -EOPNOTSUPP; 4017 } 4018 4019 cdev->ppfid_bitmap = QED_MFW_GET_FIELD(mb_params.mcp_param, 4020 FW_MB_PARAM_PPFID_BITMAP); 4021 4022 DP_VERBOSE(p_hwfn, QED_MSG_SP, "PPFID bitmap 0x%hhx\n", 4023 cdev->ppfid_bitmap); 4024 4025 return 0; 4026 } 4027 4028 int qed_mcp_nvm_get_cfg(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, 4029 u16 option_id, u8 entity_id, u16 flags, u8 *p_buf, 4030 u32 *p_len) 4031 { 4032 u32 mb_param = 0, resp, param; 4033 int rc; 4034 4035 QED_MFW_SET_FIELD(mb_param, DRV_MB_PARAM_NVM_CFG_OPTION_ID, option_id); 4036 if (flags & QED_NVM_CFG_OPTION_INIT) 4037 QED_MFW_SET_FIELD(mb_param, 4038 DRV_MB_PARAM_NVM_CFG_OPTION_INIT, 1); 4039 if (flags & QED_NVM_CFG_OPTION_FREE) 4040 QED_MFW_SET_FIELD(mb_param, 4041 DRV_MB_PARAM_NVM_CFG_OPTION_FREE, 1); 4042 if (flags & QED_NVM_CFG_OPTION_ENTITY_SEL) { 4043 QED_MFW_SET_FIELD(mb_param, 4044 DRV_MB_PARAM_NVM_CFG_OPTION_ENTITY_SEL, 1); 4045 QED_MFW_SET_FIELD(mb_param, 4046 DRV_MB_PARAM_NVM_CFG_OPTION_ENTITY_ID, 4047 entity_id); 4048 } 4049 4050 rc = qed_mcp_nvm_rd_cmd(p_hwfn, p_ptt, 4051 DRV_MSG_CODE_GET_NVM_CFG_OPTION, 4052 mb_param, &resp, ¶m, p_len, 4053 (u32 *)p_buf, false); 4054 4055 return rc; 4056 } 4057 4058 int qed_mcp_nvm_set_cfg(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, 4059 u16 option_id, u8 entity_id, u16 flags, u8 *p_buf, 4060 u32 len) 4061 { 4062 u32 mb_param = 0, resp, param; 4063 4064 QED_MFW_SET_FIELD(mb_param, DRV_MB_PARAM_NVM_CFG_OPTION_ID, option_id); 4065 if (flags & QED_NVM_CFG_OPTION_ALL) 4066 QED_MFW_SET_FIELD(mb_param, 4067 DRV_MB_PARAM_NVM_CFG_OPTION_ALL, 1); 4068 if (flags & QED_NVM_CFG_OPTION_INIT) 4069 QED_MFW_SET_FIELD(mb_param, 4070 DRV_MB_PARAM_NVM_CFG_OPTION_INIT, 1); 4071 if (flags & QED_NVM_CFG_OPTION_COMMIT) 4072 QED_MFW_SET_FIELD(mb_param, 4073 DRV_MB_PARAM_NVM_CFG_OPTION_COMMIT, 1); 4074 if (flags & QED_NVM_CFG_OPTION_FREE) 4075 QED_MFW_SET_FIELD(mb_param, 4076 DRV_MB_PARAM_NVM_CFG_OPTION_FREE, 1); 4077 if (flags & QED_NVM_CFG_OPTION_ENTITY_SEL) { 4078 QED_MFW_SET_FIELD(mb_param, 4079 DRV_MB_PARAM_NVM_CFG_OPTION_ENTITY_SEL, 1); 4080 QED_MFW_SET_FIELD(mb_param, 4081 DRV_MB_PARAM_NVM_CFG_OPTION_ENTITY_ID, 4082 entity_id); 4083 } 4084 4085 return qed_mcp_nvm_wr_cmd(p_hwfn, p_ptt, 4086 DRV_MSG_CODE_SET_NVM_CFG_OPTION, 4087 mb_param, &resp, ¶m, len, (u32 *)p_buf); 4088 } 4089 4090 #define QED_MCP_DBG_DATA_MAX_SIZE MCP_DRV_NVM_BUF_LEN 4091 #define QED_MCP_DBG_DATA_MAX_HEADER_SIZE sizeof(u32) 4092 #define QED_MCP_DBG_DATA_MAX_PAYLOAD_SIZE \ 4093 (QED_MCP_DBG_DATA_MAX_SIZE - QED_MCP_DBG_DATA_MAX_HEADER_SIZE) 4094 4095 static int 4096 __qed_mcp_send_debug_data(struct qed_hwfn *p_hwfn, 4097 struct qed_ptt *p_ptt, u8 *p_buf, u8 size) 4098 { 4099 struct qed_mcp_mb_params mb_params; 4100 int rc; 4101 4102 if (size > QED_MCP_DBG_DATA_MAX_SIZE) { 4103 DP_ERR(p_hwfn, 4104 "Debug data size is %d while it should not exceed %d\n", 4105 size, QED_MCP_DBG_DATA_MAX_SIZE); 4106 return -EINVAL; 4107 } 4108 4109 memset(&mb_params, 0, sizeof(mb_params)); 4110 mb_params.cmd = DRV_MSG_CODE_DEBUG_DATA_SEND; 4111 SET_MFW_FIELD(mb_params.param, DRV_MSG_CODE_DEBUG_DATA_SEND_SIZE, size); 4112 mb_params.p_data_src = p_buf; 4113 mb_params.data_src_size = size; 4114 rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params); 4115 if (rc) 4116 return rc; 4117 4118 if (mb_params.mcp_resp == FW_MSG_CODE_UNSUPPORTED) { 4119 DP_INFO(p_hwfn, 4120 "The DEBUG_DATA_SEND command is unsupported by the MFW\n"); 4121 return -EOPNOTSUPP; 4122 } else if (mb_params.mcp_resp == (u32)FW_MSG_CODE_DEBUG_NOT_ENABLED) { 4123 DP_INFO(p_hwfn, "The DEBUG_DATA_SEND command is not enabled\n"); 4124 return -EBUSY; 4125 } else if (mb_params.mcp_resp != (u32)FW_MSG_CODE_DEBUG_DATA_SEND_OK) { 4126 DP_NOTICE(p_hwfn, 4127 "Failed to send debug data to the MFW [resp 0x%08x]\n", 4128 mb_params.mcp_resp); 4129 return -EINVAL; 4130 } 4131 4132 return 0; 4133 } 4134 4135 enum qed_mcp_dbg_data_type { 4136 QED_MCP_DBG_DATA_TYPE_RAW, 4137 }; 4138 4139 /* Header format: [31:28] PFID, [27:20] flags, [19:12] type, [11:0] S/N */ 4140 #define QED_MCP_DBG_DATA_HDR_SN_OFFSET 0 4141 #define QED_MCP_DBG_DATA_HDR_SN_MASK 0x00000fff 4142 #define QED_MCP_DBG_DATA_HDR_TYPE_OFFSET 12 4143 #define QED_MCP_DBG_DATA_HDR_TYPE_MASK 0x000ff000 4144 #define QED_MCP_DBG_DATA_HDR_FLAGS_OFFSET 20 4145 #define QED_MCP_DBG_DATA_HDR_FLAGS_MASK 0x0ff00000 4146 #define QED_MCP_DBG_DATA_HDR_PF_OFFSET 28 4147 #define QED_MCP_DBG_DATA_HDR_PF_MASK 0xf0000000 4148 4149 #define QED_MCP_DBG_DATA_HDR_FLAGS_FIRST 0x1 4150 #define QED_MCP_DBG_DATA_HDR_FLAGS_LAST 0x2 4151 4152 static int 4153 qed_mcp_send_debug_data(struct qed_hwfn *p_hwfn, 4154 struct qed_ptt *p_ptt, 4155 enum qed_mcp_dbg_data_type type, u8 *p_buf, u32 size) 4156 { 4157 u8 raw_data[QED_MCP_DBG_DATA_MAX_SIZE], *p_tmp_buf = p_buf; 4158 u32 tmp_size = size, *p_header, *p_payload; 4159 u8 flags = 0; 4160 u16 seq; 4161 int rc; 4162 4163 p_header = (u32 *)raw_data; 4164 p_payload = (u32 *)(raw_data + QED_MCP_DBG_DATA_MAX_HEADER_SIZE); 4165 4166 seq = (u16)atomic_inc_return(&p_hwfn->mcp_info->dbg_data_seq); 4167 4168 /* First chunk is marked as 'first' */ 4169 flags |= QED_MCP_DBG_DATA_HDR_FLAGS_FIRST; 4170 4171 *p_header = 0; 4172 SET_MFW_FIELD(*p_header, QED_MCP_DBG_DATA_HDR_SN, seq); 4173 SET_MFW_FIELD(*p_header, QED_MCP_DBG_DATA_HDR_TYPE, type); 4174 SET_MFW_FIELD(*p_header, QED_MCP_DBG_DATA_HDR_FLAGS, flags); 4175 SET_MFW_FIELD(*p_header, QED_MCP_DBG_DATA_HDR_PF, p_hwfn->abs_pf_id); 4176 4177 while (tmp_size > QED_MCP_DBG_DATA_MAX_PAYLOAD_SIZE) { 4178 memcpy(p_payload, p_tmp_buf, QED_MCP_DBG_DATA_MAX_PAYLOAD_SIZE); 4179 rc = __qed_mcp_send_debug_data(p_hwfn, p_ptt, raw_data, 4180 QED_MCP_DBG_DATA_MAX_SIZE); 4181 if (rc) 4182 return rc; 4183 4184 /* Clear the 'first' marking after sending the first chunk */ 4185 if (p_tmp_buf == p_buf) { 4186 flags &= ~QED_MCP_DBG_DATA_HDR_FLAGS_FIRST; 4187 SET_MFW_FIELD(*p_header, QED_MCP_DBG_DATA_HDR_FLAGS, 4188 flags); 4189 } 4190 4191 p_tmp_buf += QED_MCP_DBG_DATA_MAX_PAYLOAD_SIZE; 4192 tmp_size -= QED_MCP_DBG_DATA_MAX_PAYLOAD_SIZE; 4193 } 4194 4195 /* Last chunk is marked as 'last' */ 4196 flags |= QED_MCP_DBG_DATA_HDR_FLAGS_LAST; 4197 SET_MFW_FIELD(*p_header, QED_MCP_DBG_DATA_HDR_FLAGS, flags); 4198 memcpy(p_payload, p_tmp_buf, tmp_size); 4199 4200 /* Casting the left size to u8 is ok since at this point it is <= 32 */ 4201 return __qed_mcp_send_debug_data(p_hwfn, p_ptt, raw_data, 4202 (u8)(QED_MCP_DBG_DATA_MAX_HEADER_SIZE + 4203 tmp_size)); 4204 } 4205 4206 int 4207 qed_mcp_send_raw_debug_data(struct qed_hwfn *p_hwfn, 4208 struct qed_ptt *p_ptt, u8 *p_buf, u32 size) 4209 { 4210 return qed_mcp_send_debug_data(p_hwfn, p_ptt, 4211 QED_MCP_DBG_DATA_TYPE_RAW, p_buf, size); 4212 } 4213 4214 bool qed_mcp_is_esl_supported(struct qed_hwfn *p_hwfn) 4215 { 4216 return !!(p_hwfn->mcp_info->capabilities & 4217 FW_MB_PARAM_FEATURE_SUPPORT_ENHANCED_SYS_LCK); 4218 } 4219 4220 int qed_mcp_get_esl_status(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, bool *active) 4221 { 4222 u32 resp = 0, param = 0; 4223 int rc; 4224 4225 rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_GET_MANAGEMENT_STATUS, 0, &resp, ¶m); 4226 if (rc) { 4227 DP_NOTICE(p_hwfn, "Failed to send ESL command, rc = %d\n", rc); 4228 return rc; 4229 } 4230 4231 *active = !!(param & FW_MB_PARAM_MANAGEMENT_STATUS_LOCKDOWN_ENABLED); 4232 4233 return 0; 4234 } 4235