xref: /linux/drivers/net/ethernet/qlogic/qed/qed_int.c (revision c8bfe3fad4f86a029da7157bae9699c816f0c309)
1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause)
2 /* QLogic qed NIC Driver
3  * Copyright (c) 2015-2017  QLogic Corporation
4  * Copyright (c) 2019-2020 Marvell International Ltd.
5  */
6 
7 #include <linux/types.h>
8 #include <asm/byteorder.h>
9 #include <linux/io.h>
10 #include <linux/bitops.h>
11 #include <linux/delay.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/errno.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel.h>
16 #include <linux/pci.h>
17 #include <linux/slab.h>
18 #include <linux/string.h>
19 #include "qed.h"
20 #include "qed_hsi.h"
21 #include "qed_hw.h"
22 #include "qed_init_ops.h"
23 #include "qed_int.h"
24 #include "qed_mcp.h"
25 #include "qed_reg_addr.h"
26 #include "qed_sp.h"
27 #include "qed_sriov.h"
28 #include "qed_vf.h"
29 
30 struct qed_pi_info {
31 	qed_int_comp_cb_t	comp_cb;
32 	void			*cookie;
33 };
34 
35 struct qed_sb_sp_info {
36 	struct qed_sb_info sb_info;
37 
38 	/* per protocol index data */
39 	struct qed_pi_info pi_info_arr[PIS_PER_SB];
40 };
41 
42 enum qed_attention_type {
43 	QED_ATTN_TYPE_ATTN,
44 	QED_ATTN_TYPE_PARITY,
45 };
46 
47 #define SB_ATTN_ALIGNED_SIZE(p_hwfn) \
48 	ALIGNED_TYPE_SIZE(struct atten_status_block, p_hwfn)
49 
50 struct aeu_invert_reg_bit {
51 	char bit_name[30];
52 
53 #define ATTENTION_PARITY                (1 << 0)
54 
55 #define ATTENTION_LENGTH_MASK           (0x00000ff0)
56 #define ATTENTION_LENGTH_SHIFT          (4)
57 #define ATTENTION_LENGTH(flags)         (((flags) & ATTENTION_LENGTH_MASK) >> \
58 					 ATTENTION_LENGTH_SHIFT)
59 #define ATTENTION_SINGLE                BIT(ATTENTION_LENGTH_SHIFT)
60 #define ATTENTION_PAR                   (ATTENTION_SINGLE | ATTENTION_PARITY)
61 #define ATTENTION_PAR_INT               ((2 << ATTENTION_LENGTH_SHIFT) | \
62 					 ATTENTION_PARITY)
63 
64 /* Multiple bits start with this offset */
65 #define ATTENTION_OFFSET_MASK           (0x000ff000)
66 #define ATTENTION_OFFSET_SHIFT          (12)
67 
68 #define ATTENTION_BB_MASK               (0x00700000)
69 #define ATTENTION_BB_SHIFT              (20)
70 #define ATTENTION_BB(value)             (value << ATTENTION_BB_SHIFT)
71 #define ATTENTION_BB_DIFFERENT          BIT(23)
72 
73 #define ATTENTION_CLEAR_ENABLE          BIT(28)
74 	unsigned int flags;
75 
76 	/* Callback to call if attention will be triggered */
77 	int (*cb)(struct qed_hwfn *p_hwfn);
78 
79 	enum block_id block_index;
80 };
81 
82 struct aeu_invert_reg {
83 	struct aeu_invert_reg_bit bits[32];
84 };
85 
86 #define MAX_ATTN_GRPS           (8)
87 #define NUM_ATTN_REGS           (9)
88 
89 /* Specific HW attention callbacks */
90 static int qed_mcp_attn_cb(struct qed_hwfn *p_hwfn)
91 {
92 	u32 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_STATE);
93 
94 	/* This might occur on certain instances; Log it once then mask it */
95 	DP_INFO(p_hwfn->cdev, "MCP_REG_CPU_STATE: %08x - Masking...\n",
96 		tmp);
97 	qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_EVENT_MASK,
98 	       0xffffffff);
99 
100 	return 0;
101 }
102 
103 #define QED_PSWHST_ATTENTION_INCORRECT_ACCESS		(0x1)
104 #define ATTENTION_INCORRECT_ACCESS_WR_MASK		(0x1)
105 #define ATTENTION_INCORRECT_ACCESS_WR_SHIFT		(0)
106 #define ATTENTION_INCORRECT_ACCESS_CLIENT_MASK		(0xf)
107 #define ATTENTION_INCORRECT_ACCESS_CLIENT_SHIFT		(1)
108 #define ATTENTION_INCORRECT_ACCESS_VF_VALID_MASK	(0x1)
109 #define ATTENTION_INCORRECT_ACCESS_VF_VALID_SHIFT	(5)
110 #define ATTENTION_INCORRECT_ACCESS_VF_ID_MASK		(0xff)
111 #define ATTENTION_INCORRECT_ACCESS_VF_ID_SHIFT		(6)
112 #define ATTENTION_INCORRECT_ACCESS_PF_ID_MASK		(0xf)
113 #define ATTENTION_INCORRECT_ACCESS_PF_ID_SHIFT		(14)
114 #define ATTENTION_INCORRECT_ACCESS_BYTE_EN_MASK		(0xff)
115 #define ATTENTION_INCORRECT_ACCESS_BYTE_EN_SHIFT	(18)
116 static int qed_pswhst_attn_cb(struct qed_hwfn *p_hwfn)
117 {
118 	u32 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
119 			 PSWHST_REG_INCORRECT_ACCESS_VALID);
120 
121 	if (tmp & QED_PSWHST_ATTENTION_INCORRECT_ACCESS) {
122 		u32 addr, data, length;
123 
124 		addr = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
125 			      PSWHST_REG_INCORRECT_ACCESS_ADDRESS);
126 		data = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
127 			      PSWHST_REG_INCORRECT_ACCESS_DATA);
128 		length = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
129 				PSWHST_REG_INCORRECT_ACCESS_LENGTH);
130 
131 		DP_INFO(p_hwfn->cdev,
132 			"Incorrect access to %08x of length %08x - PF [%02x] VF [%04x] [valid %02x] client [%02x] write [%02x] Byte-Enable [%04x] [%08x]\n",
133 			addr, length,
134 			(u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_PF_ID),
135 			(u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_VF_ID),
136 			(u8) GET_FIELD(data,
137 				       ATTENTION_INCORRECT_ACCESS_VF_VALID),
138 			(u8) GET_FIELD(data,
139 				       ATTENTION_INCORRECT_ACCESS_CLIENT),
140 			(u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_WR),
141 			(u8) GET_FIELD(data,
142 				       ATTENTION_INCORRECT_ACCESS_BYTE_EN),
143 			data);
144 	}
145 
146 	return 0;
147 }
148 
149 #define QED_GRC_ATTENTION_VALID_BIT	(1 << 0)
150 #define QED_GRC_ATTENTION_ADDRESS_MASK	(0x7fffff)
151 #define QED_GRC_ATTENTION_ADDRESS_SHIFT	(0)
152 #define QED_GRC_ATTENTION_RDWR_BIT	(1 << 23)
153 #define QED_GRC_ATTENTION_MASTER_MASK	(0xf)
154 #define QED_GRC_ATTENTION_MASTER_SHIFT	(24)
155 #define QED_GRC_ATTENTION_PF_MASK	(0xf)
156 #define QED_GRC_ATTENTION_PF_SHIFT	(0)
157 #define QED_GRC_ATTENTION_VF_MASK	(0xff)
158 #define QED_GRC_ATTENTION_VF_SHIFT	(4)
159 #define QED_GRC_ATTENTION_PRIV_MASK	(0x3)
160 #define QED_GRC_ATTENTION_PRIV_SHIFT	(14)
161 #define QED_GRC_ATTENTION_PRIV_VF	(0)
162 static const char *attn_master_to_str(u8 master)
163 {
164 	switch (master) {
165 	case 1: return "PXP";
166 	case 2: return "MCP";
167 	case 3: return "MSDM";
168 	case 4: return "PSDM";
169 	case 5: return "YSDM";
170 	case 6: return "USDM";
171 	case 7: return "TSDM";
172 	case 8: return "XSDM";
173 	case 9: return "DBU";
174 	case 10: return "DMAE";
175 	default:
176 		return "Unknown";
177 	}
178 }
179 
180 static int qed_grc_attn_cb(struct qed_hwfn *p_hwfn)
181 {
182 	u32 tmp, tmp2;
183 
184 	/* We've already cleared the timeout interrupt register, so we learn
185 	 * of interrupts via the validity register
186 	 */
187 	tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
188 		     GRC_REG_TIMEOUT_ATTN_ACCESS_VALID);
189 	if (!(tmp & QED_GRC_ATTENTION_VALID_BIT))
190 		goto out;
191 
192 	/* Read the GRC timeout information */
193 	tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
194 		     GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_0);
195 	tmp2 = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
196 		      GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_1);
197 
198 	DP_INFO(p_hwfn->cdev,
199 		"GRC timeout [%08x:%08x] - %s Address [%08x] [Master %s] [PF: %02x %s %02x]\n",
200 		tmp2, tmp,
201 		(tmp & QED_GRC_ATTENTION_RDWR_BIT) ? "Write to" : "Read from",
202 		GET_FIELD(tmp, QED_GRC_ATTENTION_ADDRESS) << 2,
203 		attn_master_to_str(GET_FIELD(tmp, QED_GRC_ATTENTION_MASTER)),
204 		GET_FIELD(tmp2, QED_GRC_ATTENTION_PF),
205 		(GET_FIELD(tmp2, QED_GRC_ATTENTION_PRIV) ==
206 		 QED_GRC_ATTENTION_PRIV_VF) ? "VF" : "(Irrelevant)",
207 		GET_FIELD(tmp2, QED_GRC_ATTENTION_VF));
208 
209 out:
210 	/* Regardles of anything else, clean the validity bit */
211 	qed_wr(p_hwfn, p_hwfn->p_dpc_ptt,
212 	       GRC_REG_TIMEOUT_ATTN_ACCESS_VALID, 0);
213 	return 0;
214 }
215 
216 #define PGLUE_ATTENTION_VALID			(1 << 29)
217 #define PGLUE_ATTENTION_RD_VALID		(1 << 26)
218 #define PGLUE_ATTENTION_DETAILS_PFID_MASK	(0xf)
219 #define PGLUE_ATTENTION_DETAILS_PFID_SHIFT	(20)
220 #define PGLUE_ATTENTION_DETAILS_VF_VALID_MASK	(0x1)
221 #define PGLUE_ATTENTION_DETAILS_VF_VALID_SHIFT	(19)
222 #define PGLUE_ATTENTION_DETAILS_VFID_MASK	(0xff)
223 #define PGLUE_ATTENTION_DETAILS_VFID_SHIFT	(24)
224 #define PGLUE_ATTENTION_DETAILS2_WAS_ERR_MASK	(0x1)
225 #define PGLUE_ATTENTION_DETAILS2_WAS_ERR_SHIFT	(21)
226 #define PGLUE_ATTENTION_DETAILS2_BME_MASK	(0x1)
227 #define PGLUE_ATTENTION_DETAILS2_BME_SHIFT	(22)
228 #define PGLUE_ATTENTION_DETAILS2_FID_EN_MASK	(0x1)
229 #define PGLUE_ATTENTION_DETAILS2_FID_EN_SHIFT	(23)
230 #define PGLUE_ATTENTION_ICPL_VALID		(1 << 23)
231 #define PGLUE_ATTENTION_ZLR_VALID		(1 << 25)
232 #define PGLUE_ATTENTION_ILT_VALID		(1 << 23)
233 
234 int qed_pglueb_rbc_attn_handler(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
235 				bool hw_init)
236 {
237 	char msg[256];
238 	u32 tmp;
239 
240 	tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_WR_DETAILS2);
241 	if (tmp & PGLUE_ATTENTION_VALID) {
242 		u32 addr_lo, addr_hi, details;
243 
244 		addr_lo = qed_rd(p_hwfn, p_ptt,
245 				 PGLUE_B_REG_TX_ERR_WR_ADD_31_0);
246 		addr_hi = qed_rd(p_hwfn, p_ptt,
247 				 PGLUE_B_REG_TX_ERR_WR_ADD_63_32);
248 		details = qed_rd(p_hwfn, p_ptt,
249 				 PGLUE_B_REG_TX_ERR_WR_DETAILS);
250 
251 		snprintf(msg, sizeof(msg),
252 			 "Illegal write by chip to [%08x:%08x] blocked.\n"
253 			 "Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x]\n"
254 			 "Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]",
255 			 addr_hi, addr_lo, details,
256 			 (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_PFID),
257 			 (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_VFID),
258 			 !!GET_FIELD(details, PGLUE_ATTENTION_DETAILS_VF_VALID),
259 			 tmp,
260 			 !!GET_FIELD(tmp, PGLUE_ATTENTION_DETAILS2_WAS_ERR),
261 			 !!GET_FIELD(tmp, PGLUE_ATTENTION_DETAILS2_BME),
262 			 !!GET_FIELD(tmp, PGLUE_ATTENTION_DETAILS2_FID_EN));
263 
264 		if (hw_init)
265 			DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "%s\n", msg);
266 		else
267 			DP_NOTICE(p_hwfn, "%s\n", msg);
268 	}
269 
270 	tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_RD_DETAILS2);
271 	if (tmp & PGLUE_ATTENTION_RD_VALID) {
272 		u32 addr_lo, addr_hi, details;
273 
274 		addr_lo = qed_rd(p_hwfn, p_ptt,
275 				 PGLUE_B_REG_TX_ERR_RD_ADD_31_0);
276 		addr_hi = qed_rd(p_hwfn, p_ptt,
277 				 PGLUE_B_REG_TX_ERR_RD_ADD_63_32);
278 		details = qed_rd(p_hwfn, p_ptt,
279 				 PGLUE_B_REG_TX_ERR_RD_DETAILS);
280 
281 		DP_NOTICE(p_hwfn,
282 			  "Illegal read by chip from [%08x:%08x] blocked.\n"
283 			  "Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x]\n"
284 			  "Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]\n",
285 			  addr_hi, addr_lo, details,
286 			  (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_PFID),
287 			  (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_VFID),
288 			  GET_FIELD(details,
289 				    PGLUE_ATTENTION_DETAILS_VF_VALID) ? 1 : 0,
290 			  tmp,
291 			  GET_FIELD(tmp,
292 				    PGLUE_ATTENTION_DETAILS2_WAS_ERR) ? 1 : 0,
293 			  GET_FIELD(tmp,
294 				    PGLUE_ATTENTION_DETAILS2_BME) ? 1 : 0,
295 			  GET_FIELD(tmp,
296 				    PGLUE_ATTENTION_DETAILS2_FID_EN) ? 1 : 0);
297 	}
298 
299 	tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_WR_DETAILS_ICPL);
300 	if (tmp & PGLUE_ATTENTION_ICPL_VALID) {
301 		snprintf(msg, sizeof(msg), "ICPL error - %08x", tmp);
302 
303 		if (hw_init)
304 			DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "%s\n", msg);
305 		else
306 			DP_NOTICE(p_hwfn, "%s\n", msg);
307 	}
308 
309 	tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_MASTER_ZLR_ERR_DETAILS);
310 	if (tmp & PGLUE_ATTENTION_ZLR_VALID) {
311 		u32 addr_hi, addr_lo;
312 
313 		addr_lo = qed_rd(p_hwfn, p_ptt,
314 				 PGLUE_B_REG_MASTER_ZLR_ERR_ADD_31_0);
315 		addr_hi = qed_rd(p_hwfn, p_ptt,
316 				 PGLUE_B_REG_MASTER_ZLR_ERR_ADD_63_32);
317 
318 		DP_NOTICE(p_hwfn, "ZLR error - %08x [Address %08x:%08x]\n",
319 			  tmp, addr_hi, addr_lo);
320 	}
321 
322 	tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_VF_ILT_ERR_DETAILS2);
323 	if (tmp & PGLUE_ATTENTION_ILT_VALID) {
324 		u32 addr_hi, addr_lo, details;
325 
326 		addr_lo = qed_rd(p_hwfn, p_ptt,
327 				 PGLUE_B_REG_VF_ILT_ERR_ADD_31_0);
328 		addr_hi = qed_rd(p_hwfn, p_ptt,
329 				 PGLUE_B_REG_VF_ILT_ERR_ADD_63_32);
330 		details = qed_rd(p_hwfn, p_ptt,
331 				 PGLUE_B_REG_VF_ILT_ERR_DETAILS);
332 
333 		DP_NOTICE(p_hwfn,
334 			  "ILT error - Details %08x Details2 %08x [Address %08x:%08x]\n",
335 			  details, tmp, addr_hi, addr_lo);
336 	}
337 
338 	/* Clear the indications */
339 	qed_wr(p_hwfn, p_ptt, PGLUE_B_REG_LATCHED_ERRORS_CLR, BIT(2));
340 
341 	return 0;
342 }
343 
344 static int qed_pglueb_rbc_attn_cb(struct qed_hwfn *p_hwfn)
345 {
346 	return qed_pglueb_rbc_attn_handler(p_hwfn, p_hwfn->p_dpc_ptt, false);
347 }
348 
349 static int qed_fw_assertion(struct qed_hwfn *p_hwfn)
350 {
351 	qed_hw_err_notify(p_hwfn, p_hwfn->p_dpc_ptt, QED_HW_ERR_FW_ASSERT,
352 			  "FW assertion!\n");
353 
354 	/* Clear assert indications */
355 	qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, MISC_REG_AEU_GENERAL_ATTN_32, 0);
356 
357 	return -EINVAL;
358 }
359 
360 static int qed_general_attention_35(struct qed_hwfn *p_hwfn)
361 {
362 	DP_INFO(p_hwfn, "General attention 35!\n");
363 
364 	return 0;
365 }
366 
367 #define QED_DORQ_ATTENTION_REASON_MASK  (0xfffff)
368 #define QED_DORQ_ATTENTION_OPAQUE_MASK  (0xffff)
369 #define QED_DORQ_ATTENTION_OPAQUE_SHIFT (0x0)
370 #define QED_DORQ_ATTENTION_SIZE_MASK            (0x7f)
371 #define QED_DORQ_ATTENTION_SIZE_SHIFT           (16)
372 
373 #define QED_DB_REC_COUNT                        1000
374 #define QED_DB_REC_INTERVAL                     100
375 
376 static int qed_db_rec_flush_queue(struct qed_hwfn *p_hwfn,
377 				  struct qed_ptt *p_ptt)
378 {
379 	u32 count = QED_DB_REC_COUNT;
380 	u32 usage = 1;
381 
382 	/* Flush any pending (e)dpms as they may never arrive */
383 	qed_wr(p_hwfn, p_ptt, DORQ_REG_DPM_FORCE_ABORT, 0x1);
384 
385 	/* wait for usage to zero or count to run out. This is necessary since
386 	 * EDPM doorbell transactions can take multiple 64b cycles, and as such
387 	 * can "split" over the pci. Possibly, the doorbell drop can happen with
388 	 * half an EDPM in the queue and other half dropped. Another EDPM
389 	 * doorbell to the same address (from doorbell recovery mechanism or
390 	 * from the doorbelling entity) could have first half dropped and second
391 	 * half interpreted as continuation of the first. To prevent such
392 	 * malformed doorbells from reaching the device, flush the queue before
393 	 * releasing the overflow sticky indication.
394 	 */
395 	while (count-- && usage) {
396 		usage = qed_rd(p_hwfn, p_ptt, DORQ_REG_PF_USAGE_CNT);
397 		udelay(QED_DB_REC_INTERVAL);
398 	}
399 
400 	/* should have been depleted by now */
401 	if (usage) {
402 		DP_NOTICE(p_hwfn->cdev,
403 			  "DB recovery: doorbell usage failed to zero after %d usec. usage was %x\n",
404 			  QED_DB_REC_INTERVAL * QED_DB_REC_COUNT, usage);
405 		return -EBUSY;
406 	}
407 
408 	return 0;
409 }
410 
411 int qed_db_rec_handler(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
412 {
413 	u32 attn_ovfl, cur_ovfl;
414 	int rc;
415 
416 	attn_ovfl = test_and_clear_bit(QED_OVERFLOW_BIT,
417 				       &p_hwfn->db_recovery_info.overflow);
418 	cur_ovfl = qed_rd(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY);
419 	if (!cur_ovfl && !attn_ovfl)
420 		return 0;
421 
422 	DP_NOTICE(p_hwfn, "PF Overflow sticky: attn %u current %u\n",
423 		  attn_ovfl, cur_ovfl);
424 
425 	if (cur_ovfl && !p_hwfn->db_bar_no_edpm) {
426 		rc = qed_db_rec_flush_queue(p_hwfn, p_ptt);
427 		if (rc)
428 			return rc;
429 	}
430 
431 	/* Release overflow sticky indication (stop silently dropping everything) */
432 	qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY, 0x0);
433 
434 	/* Repeat all last doorbells (doorbell drop recovery) */
435 	qed_db_recovery_execute(p_hwfn);
436 
437 	return 0;
438 }
439 
440 static void qed_dorq_attn_overflow(struct qed_hwfn *p_hwfn)
441 {
442 	struct qed_ptt *p_ptt = p_hwfn->p_dpc_ptt;
443 	u32 overflow;
444 	int rc;
445 
446 	overflow = qed_rd(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY);
447 	if (!overflow)
448 		goto out;
449 
450 	/* Run PF doorbell recovery in next periodic handler */
451 	set_bit(QED_OVERFLOW_BIT, &p_hwfn->db_recovery_info.overflow);
452 
453 	if (!p_hwfn->db_bar_no_edpm) {
454 		rc = qed_db_rec_flush_queue(p_hwfn, p_ptt);
455 		if (rc)
456 			goto out;
457 	}
458 
459 	qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY, 0x0);
460 out:
461 	/* Schedule the handler even if overflow was not detected */
462 	qed_periodic_db_rec_start(p_hwfn);
463 }
464 
465 static int qed_dorq_attn_int_sts(struct qed_hwfn *p_hwfn)
466 {
467 	u32 int_sts, first_drop_reason, details, address, all_drops_reason;
468 	struct qed_ptt *p_ptt = p_hwfn->p_dpc_ptt;
469 
470 	int_sts = qed_rd(p_hwfn, p_ptt, DORQ_REG_INT_STS);
471 	if (int_sts == 0xdeadbeaf) {
472 		DP_NOTICE(p_hwfn->cdev,
473 			  "DORQ is being reset, skipping int_sts handler\n");
474 
475 		return 0;
476 	}
477 
478 	/* int_sts may be zero since all PFs were interrupted for doorbell
479 	 * overflow but another one already handled it. Can abort here. If
480 	 * This PF also requires overflow recovery we will be interrupted again.
481 	 * The masked almost full indication may also be set. Ignoring.
482 	 */
483 	if (!(int_sts & ~DORQ_REG_INT_STS_DORQ_FIFO_AFULL))
484 		return 0;
485 
486 	DP_NOTICE(p_hwfn->cdev, "DORQ attention. int_sts was %x\n", int_sts);
487 
488 	/* check if db_drop or overflow happened */
489 	if (int_sts & (DORQ_REG_INT_STS_DB_DROP |
490 		       DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR)) {
491 		/* Obtain data about db drop/overflow */
492 		first_drop_reason = qed_rd(p_hwfn, p_ptt,
493 					   DORQ_REG_DB_DROP_REASON) &
494 		    QED_DORQ_ATTENTION_REASON_MASK;
495 		details = qed_rd(p_hwfn, p_ptt, DORQ_REG_DB_DROP_DETAILS);
496 		address = qed_rd(p_hwfn, p_ptt,
497 				 DORQ_REG_DB_DROP_DETAILS_ADDRESS);
498 		all_drops_reason = qed_rd(p_hwfn, p_ptt,
499 					  DORQ_REG_DB_DROP_DETAILS_REASON);
500 
501 		/* Log info */
502 		DP_NOTICE(p_hwfn->cdev,
503 			  "Doorbell drop occurred\n"
504 			  "Address\t\t0x%08x\t(second BAR address)\n"
505 			  "FID\t\t0x%04x\t\t(Opaque FID)\n"
506 			  "Size\t\t0x%04x\t\t(in bytes)\n"
507 			  "1st drop reason\t0x%08x\t(details on first drop since last handling)\n"
508 			  "Sticky reasons\t0x%08x\t(all drop reasons since last handling)\n",
509 			  address,
510 			  GET_FIELD(details, QED_DORQ_ATTENTION_OPAQUE),
511 			  GET_FIELD(details, QED_DORQ_ATTENTION_SIZE) * 4,
512 			  first_drop_reason, all_drops_reason);
513 
514 		/* Clear the doorbell drop details and prepare for next drop */
515 		qed_wr(p_hwfn, p_ptt, DORQ_REG_DB_DROP_DETAILS_REL, 0);
516 
517 		/* Mark interrupt as handled (note: even if drop was due to a different
518 		 * reason than overflow we mark as handled)
519 		 */
520 		qed_wr(p_hwfn,
521 		       p_ptt,
522 		       DORQ_REG_INT_STS_WR,
523 		       DORQ_REG_INT_STS_DB_DROP |
524 		       DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR);
525 
526 		/* If there are no indications other than drop indications, success */
527 		if ((int_sts & ~(DORQ_REG_INT_STS_DB_DROP |
528 				 DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR |
529 				 DORQ_REG_INT_STS_DORQ_FIFO_AFULL)) == 0)
530 			return 0;
531 	}
532 
533 	/* Some other indication was present - non recoverable */
534 	DP_INFO(p_hwfn, "DORQ fatal attention\n");
535 
536 	return -EINVAL;
537 }
538 
539 static int qed_dorq_attn_cb(struct qed_hwfn *p_hwfn)
540 {
541 	if (p_hwfn->cdev->recov_in_prog)
542 		return 0;
543 
544 	p_hwfn->db_recovery_info.dorq_attn = true;
545 	qed_dorq_attn_overflow(p_hwfn);
546 
547 	return qed_dorq_attn_int_sts(p_hwfn);
548 }
549 
550 static void qed_dorq_attn_handler(struct qed_hwfn *p_hwfn)
551 {
552 	if (p_hwfn->db_recovery_info.dorq_attn)
553 		goto out;
554 
555 	/* Call DORQ callback if the attention was missed */
556 	qed_dorq_attn_cb(p_hwfn);
557 out:
558 	p_hwfn->db_recovery_info.dorq_attn = false;
559 }
560 
561 /* Instead of major changes to the data-structure, we have a some 'special'
562  * identifiers for sources that changed meaning between adapters.
563  */
564 enum aeu_invert_reg_special_type {
565 	AEU_INVERT_REG_SPECIAL_CNIG_0,
566 	AEU_INVERT_REG_SPECIAL_CNIG_1,
567 	AEU_INVERT_REG_SPECIAL_CNIG_2,
568 	AEU_INVERT_REG_SPECIAL_CNIG_3,
569 	AEU_INVERT_REG_SPECIAL_MAX,
570 };
571 
572 static struct aeu_invert_reg_bit
573 aeu_descs_special[AEU_INVERT_REG_SPECIAL_MAX] = {
574 	{"CNIG port 0", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
575 	{"CNIG port 1", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
576 	{"CNIG port 2", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
577 	{"CNIG port 3", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
578 };
579 
580 /* Notice aeu_invert_reg must be defined in the same order of bits as HW;  */
581 static struct aeu_invert_reg aeu_descs[NUM_ATTN_REGS] = {
582 	{
583 		{       /* After Invert 1 */
584 			{"GPIO0 function%d",
585 			 (32 << ATTENTION_LENGTH_SHIFT), NULL, MAX_BLOCK_ID},
586 		}
587 	},
588 
589 	{
590 		{       /* After Invert 2 */
591 			{"PGLUE config_space", ATTENTION_SINGLE,
592 			 NULL, MAX_BLOCK_ID},
593 			{"PGLUE misc_flr", ATTENTION_SINGLE,
594 			 NULL, MAX_BLOCK_ID},
595 			{"PGLUE B RBC", ATTENTION_PAR_INT,
596 			 qed_pglueb_rbc_attn_cb, BLOCK_PGLUE_B},
597 			{"PGLUE misc_mctp", ATTENTION_SINGLE,
598 			 NULL, MAX_BLOCK_ID},
599 			{"Flash event", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID},
600 			{"SMB event", ATTENTION_SINGLE,	NULL, MAX_BLOCK_ID},
601 			{"Main Power", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID},
602 			{"SW timers #%d", (8 << ATTENTION_LENGTH_SHIFT) |
603 					  (1 << ATTENTION_OFFSET_SHIFT),
604 			 NULL, MAX_BLOCK_ID},
605 			{"PCIE glue/PXP VPD %d",
606 			 (16 << ATTENTION_LENGTH_SHIFT), NULL, BLOCK_PGLCS},
607 		}
608 	},
609 
610 	{
611 		{       /* After Invert 3 */
612 			{"General Attention %d",
613 			 (32 << ATTENTION_LENGTH_SHIFT), NULL, MAX_BLOCK_ID},
614 		}
615 	},
616 
617 	{
618 		{       /* After Invert 4 */
619 			{"General Attention 32", ATTENTION_SINGLE |
620 			 ATTENTION_CLEAR_ENABLE, qed_fw_assertion,
621 			 MAX_BLOCK_ID},
622 			{"General Attention %d",
623 			 (2 << ATTENTION_LENGTH_SHIFT) |
624 			 (33 << ATTENTION_OFFSET_SHIFT), NULL, MAX_BLOCK_ID},
625 			{"General Attention 35", ATTENTION_SINGLE |
626 			 ATTENTION_CLEAR_ENABLE, qed_general_attention_35,
627 			 MAX_BLOCK_ID},
628 			{"NWS Parity",
629 			 ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
630 			 ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_0),
631 			 NULL, BLOCK_NWS},
632 			{"NWS Interrupt",
633 			 ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
634 			 ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_1),
635 			 NULL, BLOCK_NWS},
636 			{"NWM Parity",
637 			 ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
638 			 ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_2),
639 			 NULL, BLOCK_NWM},
640 			{"NWM Interrupt",
641 			 ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
642 			 ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_3),
643 			 NULL, BLOCK_NWM},
644 			{"MCP CPU", ATTENTION_SINGLE,
645 			 qed_mcp_attn_cb, MAX_BLOCK_ID},
646 			{"MCP Watchdog timer", ATTENTION_SINGLE,
647 			 NULL, MAX_BLOCK_ID},
648 			{"MCP M2P", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID},
649 			{"AVS stop status ready", ATTENTION_SINGLE,
650 			 NULL, MAX_BLOCK_ID},
651 			{"MSTAT", ATTENTION_PAR_INT, NULL, MAX_BLOCK_ID},
652 			{"MSTAT per-path", ATTENTION_PAR_INT,
653 			 NULL, MAX_BLOCK_ID},
654 			{"Reserved %d", (6 << ATTENTION_LENGTH_SHIFT),
655 			 NULL, MAX_BLOCK_ID},
656 			{"NIG", ATTENTION_PAR_INT, NULL, BLOCK_NIG},
657 			{"BMB/OPTE/MCP", ATTENTION_PAR_INT, NULL, BLOCK_BMB},
658 			{"BTB",	ATTENTION_PAR_INT, NULL, BLOCK_BTB},
659 			{"BRB",	ATTENTION_PAR_INT, NULL, BLOCK_BRB},
660 			{"PRS",	ATTENTION_PAR_INT, NULL, BLOCK_PRS},
661 		}
662 	},
663 
664 	{
665 		{       /* After Invert 5 */
666 			{"SRC", ATTENTION_PAR_INT, NULL, BLOCK_SRC},
667 			{"PB Client1", ATTENTION_PAR_INT, NULL, BLOCK_PBF_PB1},
668 			{"PB Client2", ATTENTION_PAR_INT, NULL, BLOCK_PBF_PB2},
669 			{"RPB", ATTENTION_PAR_INT, NULL, BLOCK_RPB},
670 			{"PBF", ATTENTION_PAR_INT, NULL, BLOCK_PBF},
671 			{"QM", ATTENTION_PAR_INT, NULL, BLOCK_QM},
672 			{"TM", ATTENTION_PAR_INT, NULL, BLOCK_TM},
673 			{"MCM",  ATTENTION_PAR_INT, NULL, BLOCK_MCM},
674 			{"MSDM", ATTENTION_PAR_INT, NULL, BLOCK_MSDM},
675 			{"MSEM", ATTENTION_PAR_INT, NULL, BLOCK_MSEM},
676 			{"PCM", ATTENTION_PAR_INT, NULL, BLOCK_PCM},
677 			{"PSDM", ATTENTION_PAR_INT, NULL, BLOCK_PSDM},
678 			{"PSEM", ATTENTION_PAR_INT, NULL, BLOCK_PSEM},
679 			{"TCM", ATTENTION_PAR_INT, NULL, BLOCK_TCM},
680 			{"TSDM", ATTENTION_PAR_INT, NULL, BLOCK_TSDM},
681 			{"TSEM", ATTENTION_PAR_INT, NULL, BLOCK_TSEM},
682 		}
683 	},
684 
685 	{
686 		{       /* After Invert 6 */
687 			{"UCM", ATTENTION_PAR_INT, NULL, BLOCK_UCM},
688 			{"USDM", ATTENTION_PAR_INT, NULL, BLOCK_USDM},
689 			{"USEM", ATTENTION_PAR_INT, NULL, BLOCK_USEM},
690 			{"XCM",	ATTENTION_PAR_INT, NULL, BLOCK_XCM},
691 			{"XSDM", ATTENTION_PAR_INT, NULL, BLOCK_XSDM},
692 			{"XSEM", ATTENTION_PAR_INT, NULL, BLOCK_XSEM},
693 			{"YCM",	ATTENTION_PAR_INT, NULL, BLOCK_YCM},
694 			{"YSDM", ATTENTION_PAR_INT, NULL, BLOCK_YSDM},
695 			{"YSEM", ATTENTION_PAR_INT, NULL, BLOCK_YSEM},
696 			{"XYLD", ATTENTION_PAR_INT, NULL, BLOCK_XYLD},
697 			{"TMLD", ATTENTION_PAR_INT, NULL, BLOCK_TMLD},
698 			{"MYLD", ATTENTION_PAR_INT, NULL, BLOCK_MULD},
699 			{"YULD", ATTENTION_PAR_INT, NULL, BLOCK_YULD},
700 			{"DORQ", ATTENTION_PAR_INT,
701 			 qed_dorq_attn_cb, BLOCK_DORQ},
702 			{"DBG", ATTENTION_PAR_INT, NULL, BLOCK_DBG},
703 			{"IPC",	ATTENTION_PAR_INT, NULL, BLOCK_IPC},
704 		}
705 	},
706 
707 	{
708 		{       /* After Invert 7 */
709 			{"CCFC", ATTENTION_PAR_INT, NULL, BLOCK_CCFC},
710 			{"CDU", ATTENTION_PAR_INT, NULL, BLOCK_CDU},
711 			{"DMAE", ATTENTION_PAR_INT, NULL, BLOCK_DMAE},
712 			{"IGU", ATTENTION_PAR_INT, NULL, BLOCK_IGU},
713 			{"ATC", ATTENTION_PAR_INT, NULL, MAX_BLOCK_ID},
714 			{"CAU", ATTENTION_PAR_INT, NULL, BLOCK_CAU},
715 			{"PTU", ATTENTION_PAR_INT, NULL, BLOCK_PTU},
716 			{"PRM", ATTENTION_PAR_INT, NULL, BLOCK_PRM},
717 			{"TCFC", ATTENTION_PAR_INT, NULL, BLOCK_TCFC},
718 			{"RDIF", ATTENTION_PAR_INT, NULL, BLOCK_RDIF},
719 			{"TDIF", ATTENTION_PAR_INT, NULL, BLOCK_TDIF},
720 			{"RSS", ATTENTION_PAR_INT, NULL, BLOCK_RSS},
721 			{"MISC", ATTENTION_PAR_INT, NULL, BLOCK_MISC},
722 			{"MISCS", ATTENTION_PAR_INT, NULL, BLOCK_MISCS},
723 			{"PCIE", ATTENTION_PAR, NULL, BLOCK_PCIE},
724 			{"Vaux PCI core", ATTENTION_SINGLE, NULL, BLOCK_PGLCS},
725 			{"PSWRQ", ATTENTION_PAR_INT, NULL, BLOCK_PSWRQ},
726 		}
727 	},
728 
729 	{
730 		{       /* After Invert 8 */
731 			{"PSWRQ (pci_clk)", ATTENTION_PAR_INT,
732 			 NULL, BLOCK_PSWRQ2},
733 			{"PSWWR", ATTENTION_PAR_INT, NULL, BLOCK_PSWWR},
734 			{"PSWWR (pci_clk)", ATTENTION_PAR_INT,
735 			 NULL, BLOCK_PSWWR2},
736 			{"PSWRD", ATTENTION_PAR_INT, NULL, BLOCK_PSWRD},
737 			{"PSWRD (pci_clk)", ATTENTION_PAR_INT,
738 			 NULL, BLOCK_PSWRD2},
739 			{"PSWHST", ATTENTION_PAR_INT,
740 			 qed_pswhst_attn_cb, BLOCK_PSWHST},
741 			{"PSWHST (pci_clk)", ATTENTION_PAR_INT,
742 			 NULL, BLOCK_PSWHST2},
743 			{"GRC",	ATTENTION_PAR_INT,
744 			 qed_grc_attn_cb, BLOCK_GRC},
745 			{"CPMU", ATTENTION_PAR_INT, NULL, BLOCK_CPMU},
746 			{"NCSI", ATTENTION_PAR_INT, NULL, BLOCK_NCSI},
747 			{"MSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
748 			{"PSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
749 			{"TSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
750 			{"USEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
751 			{"XSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
752 			{"YSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
753 			{"pxp_misc_mps", ATTENTION_PAR, NULL, BLOCK_PGLCS},
754 			{"PCIE glue/PXP Exp. ROM", ATTENTION_SINGLE,
755 			 NULL, BLOCK_PGLCS},
756 			{"PERST_B assertion", ATTENTION_SINGLE,
757 			 NULL, MAX_BLOCK_ID},
758 			{"PERST_B deassertion", ATTENTION_SINGLE,
759 			 NULL, MAX_BLOCK_ID},
760 			{"Reserved %d", (2 << ATTENTION_LENGTH_SHIFT),
761 			 NULL, MAX_BLOCK_ID},
762 		}
763 	},
764 
765 	{
766 		{       /* After Invert 9 */
767 			{"MCP Latched memory", ATTENTION_PAR,
768 			 NULL, MAX_BLOCK_ID},
769 			{"MCP Latched scratchpad cache", ATTENTION_SINGLE,
770 			 NULL, MAX_BLOCK_ID},
771 			{"MCP Latched ump_tx", ATTENTION_PAR,
772 			 NULL, MAX_BLOCK_ID},
773 			{"MCP Latched scratchpad", ATTENTION_PAR,
774 			 NULL, MAX_BLOCK_ID},
775 			{"Reserved %d", (28 << ATTENTION_LENGTH_SHIFT),
776 			 NULL, MAX_BLOCK_ID},
777 		}
778 	},
779 };
780 
781 static struct aeu_invert_reg_bit *
782 qed_int_aeu_translate(struct qed_hwfn *p_hwfn,
783 		      struct aeu_invert_reg_bit *p_bit)
784 {
785 	if (!QED_IS_BB(p_hwfn->cdev))
786 		return p_bit;
787 
788 	if (!(p_bit->flags & ATTENTION_BB_DIFFERENT))
789 		return p_bit;
790 
791 	return &aeu_descs_special[(p_bit->flags & ATTENTION_BB_MASK) >>
792 				  ATTENTION_BB_SHIFT];
793 }
794 
795 static bool qed_int_is_parity_flag(struct qed_hwfn *p_hwfn,
796 				   struct aeu_invert_reg_bit *p_bit)
797 {
798 	return !!(qed_int_aeu_translate(p_hwfn, p_bit)->flags &
799 		   ATTENTION_PARITY);
800 }
801 
802 #define ATTN_STATE_BITS         (0xfff)
803 #define ATTN_BITS_MASKABLE      (0x3ff)
804 struct qed_sb_attn_info {
805 	/* Virtual & Physical address of the SB */
806 	struct atten_status_block       *sb_attn;
807 	dma_addr_t			sb_phys;
808 
809 	/* Last seen running index */
810 	u16				index;
811 
812 	/* A mask of the AEU bits resulting in a parity error */
813 	u32				parity_mask[NUM_ATTN_REGS];
814 
815 	/* A pointer to the attention description structure */
816 	struct aeu_invert_reg		*p_aeu_desc;
817 
818 	/* Previously asserted attentions, which are still unasserted */
819 	u16				known_attn;
820 
821 	/* Cleanup address for the link's general hw attention */
822 	u32				mfw_attn_addr;
823 };
824 
825 static inline u16 qed_attn_update_idx(struct qed_hwfn *p_hwfn,
826 				      struct qed_sb_attn_info *p_sb_desc)
827 {
828 	u16 rc = 0, index;
829 
830 	index = le16_to_cpu(p_sb_desc->sb_attn->sb_index);
831 	if (p_sb_desc->index != index) {
832 		p_sb_desc->index	= index;
833 		rc		      = QED_SB_ATT_IDX;
834 	}
835 
836 	return rc;
837 }
838 
839 /**
840  * qed_int_assertion() - Handle asserted attention bits.
841  *
842  * @p_hwfn: HW device data.
843  * @asserted_bits: Newly asserted bits.
844  *
845  * Return: Zero value.
846  */
847 static int qed_int_assertion(struct qed_hwfn *p_hwfn, u16 asserted_bits)
848 {
849 	struct qed_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
850 	u32 igu_mask;
851 
852 	/* Mask the source of the attention in the IGU */
853 	igu_mask = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE);
854 	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "IGU mask: 0x%08x --> 0x%08x\n",
855 		   igu_mask, igu_mask & ~(asserted_bits & ATTN_BITS_MASKABLE));
856 	igu_mask &= ~(asserted_bits & ATTN_BITS_MASKABLE);
857 	qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, igu_mask);
858 
859 	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
860 		   "inner known ATTN state: 0x%04x --> 0x%04x\n",
861 		   sb_attn_sw->known_attn,
862 		   sb_attn_sw->known_attn | asserted_bits);
863 	sb_attn_sw->known_attn |= asserted_bits;
864 
865 	/* Handle MCP events */
866 	if (asserted_bits & 0x100) {
867 		qed_mcp_handle_events(p_hwfn, p_hwfn->p_dpc_ptt);
868 		/* Clean the MCP attention */
869 		qed_wr(p_hwfn, p_hwfn->p_dpc_ptt,
870 		       sb_attn_sw->mfw_attn_addr, 0);
871 	}
872 
873 	DIRECT_REG_WR((u8 __iomem *)p_hwfn->regview +
874 		      GTT_BAR0_MAP_REG_IGU_CMD +
875 		      ((IGU_CMD_ATTN_BIT_SET_UPPER -
876 			IGU_CMD_INT_ACK_BASE) << 3),
877 		      (u32)asserted_bits);
878 
879 	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "set cmd IGU: 0x%04x\n",
880 		   asserted_bits);
881 
882 	return 0;
883 }
884 
885 static void qed_int_attn_print(struct qed_hwfn *p_hwfn,
886 			       enum block_id id,
887 			       enum dbg_attn_type type, bool b_clear)
888 {
889 	struct dbg_attn_block_result attn_results;
890 	enum dbg_status status;
891 
892 	memset(&attn_results, 0, sizeof(attn_results));
893 
894 	status = qed_dbg_read_attn(p_hwfn, p_hwfn->p_dpc_ptt, id, type,
895 				   b_clear, &attn_results);
896 	if (status != DBG_STATUS_OK)
897 		DP_NOTICE(p_hwfn,
898 			  "Failed to parse attention information [status: %s]\n",
899 			  qed_dbg_get_status_str(status));
900 	else
901 		qed_dbg_parse_attn(p_hwfn, &attn_results);
902 }
903 
904 /**
905  * qed_int_deassertion_aeu_bit() - Handles the effects of a single
906  * cause of the attention.
907  *
908  * @p_hwfn: HW device data.
909  * @p_aeu: Descriptor of an AEU bit which caused the attention.
910  * @aeu_en_reg: Register offset of the AEU enable reg. which configured
911  *              this bit to this group.
912  * @p_bit_name: AEU bit description for logging purposes.
913  * @bitmask: Index of this bit in the aeu_en_reg.
914  *
915  * Return: Zero on success, negative errno otherwise.
916  */
917 static int
918 qed_int_deassertion_aeu_bit(struct qed_hwfn *p_hwfn,
919 			    struct aeu_invert_reg_bit *p_aeu,
920 			    u32 aeu_en_reg,
921 			    const char *p_bit_name, u32 bitmask)
922 {
923 	bool b_fatal = false;
924 	int rc = -EINVAL;
925 	u32 val;
926 
927 	DP_INFO(p_hwfn, "Deasserted attention `%s'[%08x]\n",
928 		p_bit_name, bitmask);
929 
930 	/* Call callback before clearing the interrupt status */
931 	if (p_aeu->cb) {
932 		DP_INFO(p_hwfn, "`%s (attention)': Calling Callback function\n",
933 			p_bit_name);
934 		rc = p_aeu->cb(p_hwfn);
935 	}
936 
937 	if (rc)
938 		b_fatal = true;
939 
940 	/* Print HW block interrupt registers */
941 	if (p_aeu->block_index != MAX_BLOCK_ID)
942 		qed_int_attn_print(p_hwfn, p_aeu->block_index,
943 				   ATTN_TYPE_INTERRUPT, !b_fatal);
944 
945 	/* Reach assertion if attention is fatal */
946 	if (b_fatal)
947 		qed_hw_err_notify(p_hwfn, p_hwfn->p_dpc_ptt, QED_HW_ERR_HW_ATTN,
948 				  "`%s': Fatal attention\n",
949 				  p_bit_name);
950 	else /* If the attention is benign, no need to prevent it */
951 		goto out;
952 
953 	/* Prevent this Attention from being asserted in the future */
954 	val = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
955 	qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, (val & ~bitmask));
956 	DP_INFO(p_hwfn, "`%s' - Disabled future attentions\n",
957 		p_bit_name);
958 
959 	/* Re-enable FW aassertion (Gen 32) interrupts */
960 	val = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
961 		     MISC_REG_AEU_ENABLE4_IGU_OUT_0);
962 	val |= MISC_REG_AEU_ENABLE4_IGU_OUT_0_GENERAL_ATTN32;
963 	qed_wr(p_hwfn, p_hwfn->p_dpc_ptt,
964 	       MISC_REG_AEU_ENABLE4_IGU_OUT_0, val);
965 
966 out:
967 	return rc;
968 }
969 
970 /**
971  * qed_int_deassertion_parity() - Handle a single parity AEU source.
972  *
973  * @p_hwfn: HW device data.
974  * @p_aeu: Descriptor of an AEU bit which caused the parity.
975  * @aeu_en_reg: Address of the AEU enable register.
976  * @bit_index: Index (0-31) of an AEU bit.
977  */
978 static void qed_int_deassertion_parity(struct qed_hwfn *p_hwfn,
979 				       struct aeu_invert_reg_bit *p_aeu,
980 				       u32 aeu_en_reg, u8 bit_index)
981 {
982 	u32 block_id = p_aeu->block_index, mask, val;
983 
984 	DP_NOTICE(p_hwfn->cdev,
985 		  "%s parity attention is set [address 0x%08x, bit %d]\n",
986 		  p_aeu->bit_name, aeu_en_reg, bit_index);
987 
988 	if (block_id != MAX_BLOCK_ID) {
989 		qed_int_attn_print(p_hwfn, block_id, ATTN_TYPE_PARITY, false);
990 
991 		/* In BB, there's a single parity bit for several blocks */
992 		if (block_id == BLOCK_BTB) {
993 			qed_int_attn_print(p_hwfn, BLOCK_OPTE,
994 					   ATTN_TYPE_PARITY, false);
995 			qed_int_attn_print(p_hwfn, BLOCK_MCP,
996 					   ATTN_TYPE_PARITY, false);
997 		}
998 	}
999 
1000 	/* Prevent this parity error from being re-asserted */
1001 	mask = ~BIT(bit_index);
1002 	val = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
1003 	qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, val & mask);
1004 	DP_INFO(p_hwfn, "`%s' - Disabled future parity errors\n",
1005 		p_aeu->bit_name);
1006 }
1007 
1008 /**
1009  * qed_int_deassertion() - Handle deassertion of previously asserted
1010  * attentions.
1011  *
1012  * @p_hwfn: HW device data.
1013  * @deasserted_bits: newly deasserted bits.
1014  *
1015  * Return: Zero value.
1016  */
1017 static int qed_int_deassertion(struct qed_hwfn  *p_hwfn,
1018 			       u16 deasserted_bits)
1019 {
1020 	struct qed_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
1021 	u32 aeu_inv_arr[NUM_ATTN_REGS], aeu_mask, aeu_en, en;
1022 	u8 i, j, k, bit_idx;
1023 	int rc = 0;
1024 
1025 	/* Read the attention registers in the AEU */
1026 	for (i = 0; i < NUM_ATTN_REGS; i++) {
1027 		aeu_inv_arr[i] = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
1028 					MISC_REG_AEU_AFTER_INVERT_1_IGU +
1029 					i * 0x4);
1030 		DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1031 			   "Deasserted bits [%d]: %08x\n",
1032 			   i, aeu_inv_arr[i]);
1033 	}
1034 
1035 	/* Find parity attentions first */
1036 	for (i = 0; i < NUM_ATTN_REGS; i++) {
1037 		struct aeu_invert_reg *p_aeu = &sb_attn_sw->p_aeu_desc[i];
1038 		u32 parities;
1039 
1040 		aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 + i * sizeof(u32);
1041 		en = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
1042 
1043 		/* Skip register in which no parity bit is currently set */
1044 		parities = sb_attn_sw->parity_mask[i] & aeu_inv_arr[i] & en;
1045 		if (!parities)
1046 			continue;
1047 
1048 		for (j = 0, bit_idx = 0; bit_idx < 32 && j < 32; j++) {
1049 			struct aeu_invert_reg_bit *p_bit = &p_aeu->bits[j];
1050 
1051 			if (qed_int_is_parity_flag(p_hwfn, p_bit) &&
1052 			    !!(parities & BIT(bit_idx)))
1053 				qed_int_deassertion_parity(p_hwfn, p_bit,
1054 							   aeu_en, bit_idx);
1055 
1056 			bit_idx += ATTENTION_LENGTH(p_bit->flags);
1057 		}
1058 	}
1059 
1060 	/* Find non-parity cause for attention and act */
1061 	for (k = 0; k < MAX_ATTN_GRPS; k++) {
1062 		struct aeu_invert_reg_bit *p_aeu;
1063 
1064 		/* Handle only groups whose attention is currently deasserted */
1065 		if (!(deasserted_bits & (1 << k)))
1066 			continue;
1067 
1068 		for (i = 0; i < NUM_ATTN_REGS; i++) {
1069 			u32 bits;
1070 
1071 			aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 +
1072 				 i * sizeof(u32) +
1073 				 k * sizeof(u32) * NUM_ATTN_REGS;
1074 
1075 			en = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
1076 			bits = aeu_inv_arr[i] & en;
1077 
1078 			/* Skip if no bit from this group is currently set */
1079 			if (!bits)
1080 				continue;
1081 
1082 			/* Find all set bits from current register which belong
1083 			 * to current group, making them responsible for the
1084 			 * previous assertion.
1085 			 */
1086 			for (j = 0, bit_idx = 0; bit_idx < 32 && j < 32; j++) {
1087 				long unsigned int bitmask;
1088 				u8 bit, bit_len;
1089 
1090 				p_aeu = &sb_attn_sw->p_aeu_desc[i].bits[j];
1091 				p_aeu = qed_int_aeu_translate(p_hwfn, p_aeu);
1092 
1093 				bit = bit_idx;
1094 				bit_len = ATTENTION_LENGTH(p_aeu->flags);
1095 				if (qed_int_is_parity_flag(p_hwfn, p_aeu)) {
1096 					/* Skip Parity */
1097 					bit++;
1098 					bit_len--;
1099 				}
1100 
1101 				bitmask = bits & (((1 << bit_len) - 1) << bit);
1102 				bitmask >>= bit;
1103 
1104 				if (bitmask) {
1105 					u32 flags = p_aeu->flags;
1106 					char bit_name[30];
1107 					u8 num;
1108 
1109 					num = (u8)find_first_bit(&bitmask,
1110 								 bit_len);
1111 
1112 					/* Some bits represent more than a
1113 					 * single interrupt. Correctly print
1114 					 * their name.
1115 					 */
1116 					if (ATTENTION_LENGTH(flags) > 2 ||
1117 					    ((flags & ATTENTION_PAR_INT) &&
1118 					     ATTENTION_LENGTH(flags) > 1))
1119 						snprintf(bit_name, 30,
1120 							 p_aeu->bit_name, num);
1121 					else
1122 						strscpy(bit_name,
1123 							p_aeu->bit_name, 30);
1124 
1125 					/* We now need to pass bitmask in its
1126 					 * correct position.
1127 					 */
1128 					bitmask <<= bit;
1129 
1130 					/* Handle source of the attention */
1131 					qed_int_deassertion_aeu_bit(p_hwfn,
1132 								    p_aeu,
1133 								    aeu_en,
1134 								    bit_name,
1135 								    bitmask);
1136 				}
1137 
1138 				bit_idx += ATTENTION_LENGTH(p_aeu->flags);
1139 			}
1140 		}
1141 	}
1142 
1143 	/* Handle missed DORQ attention */
1144 	qed_dorq_attn_handler(p_hwfn);
1145 
1146 	/* Clear IGU indication for the deasserted bits */
1147 	DIRECT_REG_WR((u8 __iomem *)p_hwfn->regview +
1148 				    GTT_BAR0_MAP_REG_IGU_CMD +
1149 				    ((IGU_CMD_ATTN_BIT_CLR_UPPER -
1150 				      IGU_CMD_INT_ACK_BASE) << 3),
1151 				    ~((u32)deasserted_bits));
1152 
1153 	/* Unmask deasserted attentions in IGU */
1154 	aeu_mask = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE);
1155 	aeu_mask |= (deasserted_bits & ATTN_BITS_MASKABLE);
1156 	qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, aeu_mask);
1157 
1158 	/* Clear deassertion from inner state */
1159 	sb_attn_sw->known_attn &= ~deasserted_bits;
1160 
1161 	return rc;
1162 }
1163 
1164 static int qed_int_attentions(struct qed_hwfn *p_hwfn)
1165 {
1166 	struct qed_sb_attn_info *p_sb_attn_sw = p_hwfn->p_sb_attn;
1167 	struct atten_status_block *p_sb_attn = p_sb_attn_sw->sb_attn;
1168 	u32 attn_bits = 0, attn_acks = 0;
1169 	u16 asserted_bits, deasserted_bits;
1170 	__le16 index;
1171 	int rc = 0;
1172 
1173 	/* Read current attention bits/acks - safeguard against attentions
1174 	 * by guaranting work on a synchronized timeframe
1175 	 */
1176 	do {
1177 		index = p_sb_attn->sb_index;
1178 		/* finish reading index before the loop condition */
1179 		dma_rmb();
1180 		attn_bits = le32_to_cpu(p_sb_attn->atten_bits);
1181 		attn_acks = le32_to_cpu(p_sb_attn->atten_ack);
1182 	} while (index != p_sb_attn->sb_index);
1183 	p_sb_attn->sb_index = index;
1184 
1185 	/* Attention / Deassertion are meaningful (and in correct state)
1186 	 * only when they differ and consistent with known state - deassertion
1187 	 * when previous attention & current ack, and assertion when current
1188 	 * attention with no previous attention
1189 	 */
1190 	asserted_bits = (attn_bits & ~attn_acks & ATTN_STATE_BITS) &
1191 		~p_sb_attn_sw->known_attn;
1192 	deasserted_bits = (~attn_bits & attn_acks & ATTN_STATE_BITS) &
1193 		p_sb_attn_sw->known_attn;
1194 
1195 	if ((asserted_bits & ~0x100) || (deasserted_bits & ~0x100)) {
1196 		DP_INFO(p_hwfn,
1197 			"Attention: Index: 0x%04x, Bits: 0x%08x, Acks: 0x%08x, asserted: 0x%04x, De-asserted 0x%04x [Prev. known: 0x%04x]\n",
1198 			index, attn_bits, attn_acks, asserted_bits,
1199 			deasserted_bits, p_sb_attn_sw->known_attn);
1200 	} else if (asserted_bits == 0x100) {
1201 		DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1202 			   "MFW indication via attention\n");
1203 	} else {
1204 		DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1205 			   "MFW indication [deassertion]\n");
1206 	}
1207 
1208 	if (asserted_bits) {
1209 		rc = qed_int_assertion(p_hwfn, asserted_bits);
1210 		if (rc)
1211 			return rc;
1212 	}
1213 
1214 	if (deasserted_bits)
1215 		rc = qed_int_deassertion(p_hwfn, deasserted_bits);
1216 
1217 	return rc;
1218 }
1219 
1220 static void qed_sb_ack_attn(struct qed_hwfn *p_hwfn,
1221 			    void __iomem *igu_addr, u32 ack_cons)
1222 {
1223 	u32 igu_ack;
1224 
1225 	igu_ack = ((ack_cons << IGU_PROD_CONS_UPDATE_SB_INDEX_SHIFT) |
1226 		   (1 << IGU_PROD_CONS_UPDATE_UPDATE_FLAG_SHIFT) |
1227 		   (IGU_INT_NOP << IGU_PROD_CONS_UPDATE_ENABLE_INT_SHIFT) |
1228 		   (IGU_SEG_ACCESS_ATTN <<
1229 		    IGU_PROD_CONS_UPDATE_SEGMENT_ACCESS_SHIFT));
1230 
1231 	DIRECT_REG_WR(igu_addr, igu_ack);
1232 
1233 	/* Both segments (interrupts & acks) are written to same place address;
1234 	 * Need to guarantee all commands will be received (in-order) by HW.
1235 	 */
1236 	barrier();
1237 }
1238 
1239 void qed_int_sp_dpc(struct tasklet_struct *t)
1240 {
1241 	struct qed_hwfn *p_hwfn = from_tasklet(p_hwfn, t, sp_dpc);
1242 	struct qed_pi_info *pi_info = NULL;
1243 	struct qed_sb_attn_info *sb_attn;
1244 	struct qed_sb_info *sb_info;
1245 	int arr_size;
1246 	u16 rc = 0;
1247 
1248 	if (!p_hwfn->p_sp_sb) {
1249 		DP_ERR(p_hwfn->cdev, "DPC called - no p_sp_sb\n");
1250 		return;
1251 	}
1252 
1253 	sb_info = &p_hwfn->p_sp_sb->sb_info;
1254 	arr_size = ARRAY_SIZE(p_hwfn->p_sp_sb->pi_info_arr);
1255 	if (!sb_info) {
1256 		DP_ERR(p_hwfn->cdev,
1257 		       "Status block is NULL - cannot ack interrupts\n");
1258 		return;
1259 	}
1260 
1261 	if (!p_hwfn->p_sb_attn) {
1262 		DP_ERR(p_hwfn->cdev, "DPC called - no p_sb_attn");
1263 		return;
1264 	}
1265 	sb_attn = p_hwfn->p_sb_attn;
1266 
1267 	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "DPC Called! (hwfn %p %d)\n",
1268 		   p_hwfn, p_hwfn->my_id);
1269 
1270 	/* Disable ack for def status block. Required both for msix +
1271 	 * inta in non-mask mode, in inta does no harm.
1272 	 */
1273 	qed_sb_ack(sb_info, IGU_INT_DISABLE, 0);
1274 
1275 	/* Gather Interrupts/Attentions information */
1276 	if (!sb_info->sb_virt) {
1277 		DP_ERR(p_hwfn->cdev,
1278 		       "Interrupt Status block is NULL - cannot check for new interrupts!\n");
1279 	} else {
1280 		u32 tmp_index = sb_info->sb_ack;
1281 
1282 		rc = qed_sb_update_sb_idx(sb_info);
1283 		DP_VERBOSE(p_hwfn->cdev, NETIF_MSG_INTR,
1284 			   "Interrupt indices: 0x%08x --> 0x%08x\n",
1285 			   tmp_index, sb_info->sb_ack);
1286 	}
1287 
1288 	if (!sb_attn || !sb_attn->sb_attn) {
1289 		DP_ERR(p_hwfn->cdev,
1290 		       "Attentions Status block is NULL - cannot check for new attentions!\n");
1291 	} else {
1292 		u16 tmp_index = sb_attn->index;
1293 
1294 		rc |= qed_attn_update_idx(p_hwfn, sb_attn);
1295 		DP_VERBOSE(p_hwfn->cdev, NETIF_MSG_INTR,
1296 			   "Attention indices: 0x%08x --> 0x%08x\n",
1297 			   tmp_index, sb_attn->index);
1298 	}
1299 
1300 	/* Check if we expect interrupts at this time. if not just ack them */
1301 	if (!(rc & QED_SB_EVENT_MASK)) {
1302 		qed_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1303 		return;
1304 	}
1305 
1306 	/* Check the validity of the DPC ptt. If not ack interrupts and fail */
1307 	if (!p_hwfn->p_dpc_ptt) {
1308 		DP_NOTICE(p_hwfn->cdev, "Failed to allocate PTT\n");
1309 		qed_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1310 		return;
1311 	}
1312 
1313 	if (rc & QED_SB_ATT_IDX)
1314 		qed_int_attentions(p_hwfn);
1315 
1316 	if (rc & QED_SB_IDX) {
1317 		int pi;
1318 
1319 		/* Look for a free index */
1320 		for (pi = 0; pi < arr_size; pi++) {
1321 			pi_info = &p_hwfn->p_sp_sb->pi_info_arr[pi];
1322 			if (pi_info->comp_cb)
1323 				pi_info->comp_cb(p_hwfn, pi_info->cookie);
1324 		}
1325 	}
1326 
1327 	if (sb_attn && (rc & QED_SB_ATT_IDX))
1328 		/* This should be done before the interrupts are enabled,
1329 		 * since otherwise a new attention will be generated.
1330 		 */
1331 		qed_sb_ack_attn(p_hwfn, sb_info->igu_addr, sb_attn->index);
1332 
1333 	qed_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1334 }
1335 
1336 static void qed_int_sb_attn_free(struct qed_hwfn *p_hwfn)
1337 {
1338 	struct qed_sb_attn_info *p_sb = p_hwfn->p_sb_attn;
1339 
1340 	if (!p_sb)
1341 		return;
1342 
1343 	if (p_sb->sb_attn)
1344 		dma_free_coherent(&p_hwfn->cdev->pdev->dev,
1345 				  SB_ATTN_ALIGNED_SIZE(p_hwfn),
1346 				  p_sb->sb_attn, p_sb->sb_phys);
1347 	kfree(p_sb);
1348 	p_hwfn->p_sb_attn = NULL;
1349 }
1350 
1351 static void qed_int_sb_attn_setup(struct qed_hwfn *p_hwfn,
1352 				  struct qed_ptt *p_ptt)
1353 {
1354 	struct qed_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
1355 
1356 	memset(sb_info->sb_attn, 0, sizeof(*sb_info->sb_attn));
1357 
1358 	sb_info->index = 0;
1359 	sb_info->known_attn = 0;
1360 
1361 	/* Configure Attention Status Block in IGU */
1362 	qed_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_L,
1363 	       lower_32_bits(p_hwfn->p_sb_attn->sb_phys));
1364 	qed_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_H,
1365 	       upper_32_bits(p_hwfn->p_sb_attn->sb_phys));
1366 }
1367 
1368 static void qed_int_sb_attn_init(struct qed_hwfn *p_hwfn,
1369 				 struct qed_ptt *p_ptt,
1370 				 void *sb_virt_addr, dma_addr_t sb_phy_addr)
1371 {
1372 	struct qed_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
1373 	int i, j, k;
1374 
1375 	sb_info->sb_attn = sb_virt_addr;
1376 	sb_info->sb_phys = sb_phy_addr;
1377 
1378 	/* Set the pointer to the AEU descriptors */
1379 	sb_info->p_aeu_desc = aeu_descs;
1380 
1381 	/* Calculate Parity Masks */
1382 	memset(sb_info->parity_mask, 0, sizeof(u32) * NUM_ATTN_REGS);
1383 	for (i = 0; i < NUM_ATTN_REGS; i++) {
1384 		/* j is array index, k is bit index */
1385 		for (j = 0, k = 0; k < 32 && j < 32; j++) {
1386 			struct aeu_invert_reg_bit *p_aeu;
1387 
1388 			p_aeu = &aeu_descs[i].bits[j];
1389 			if (qed_int_is_parity_flag(p_hwfn, p_aeu))
1390 				sb_info->parity_mask[i] |= 1 << k;
1391 
1392 			k += ATTENTION_LENGTH(p_aeu->flags);
1393 		}
1394 		DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1395 			   "Attn Mask [Reg %d]: 0x%08x\n",
1396 			   i, sb_info->parity_mask[i]);
1397 	}
1398 
1399 	/* Set the address of cleanup for the mcp attention */
1400 	sb_info->mfw_attn_addr = (p_hwfn->rel_pf_id << 3) +
1401 				 MISC_REG_AEU_GENERAL_ATTN_0;
1402 
1403 	qed_int_sb_attn_setup(p_hwfn, p_ptt);
1404 }
1405 
1406 static int qed_int_sb_attn_alloc(struct qed_hwfn *p_hwfn,
1407 				 struct qed_ptt *p_ptt)
1408 {
1409 	struct qed_dev *cdev = p_hwfn->cdev;
1410 	struct qed_sb_attn_info *p_sb;
1411 	dma_addr_t p_phys = 0;
1412 	void *p_virt;
1413 
1414 	/* SB struct */
1415 	p_sb = kmalloc(sizeof(*p_sb), GFP_KERNEL);
1416 	if (!p_sb)
1417 		return -ENOMEM;
1418 
1419 	/* SB ring  */
1420 	p_virt = dma_alloc_coherent(&cdev->pdev->dev,
1421 				    SB_ATTN_ALIGNED_SIZE(p_hwfn),
1422 				    &p_phys, GFP_KERNEL);
1423 
1424 	if (!p_virt) {
1425 		kfree(p_sb);
1426 		return -ENOMEM;
1427 	}
1428 
1429 	/* Attention setup */
1430 	p_hwfn->p_sb_attn = p_sb;
1431 	qed_int_sb_attn_init(p_hwfn, p_ptt, p_virt, p_phys);
1432 
1433 	return 0;
1434 }
1435 
1436 /* coalescing timeout = timeset << (timer_res + 1) */
1437 #define QED_CAU_DEF_RX_USECS 24
1438 #define QED_CAU_DEF_TX_USECS 48
1439 
1440 void qed_init_cau_sb_entry(struct qed_hwfn *p_hwfn,
1441 			   struct cau_sb_entry *p_sb_entry,
1442 			   u8 pf_id, u16 vf_number, u8 vf_valid)
1443 {
1444 	struct qed_dev *cdev = p_hwfn->cdev;
1445 	u32 cau_state, params = 0, data = 0;
1446 	u8 timer_res;
1447 
1448 	memset(p_sb_entry, 0, sizeof(*p_sb_entry));
1449 
1450 	SET_FIELD(params, CAU_SB_ENTRY_PF_NUMBER, pf_id);
1451 	SET_FIELD(params, CAU_SB_ENTRY_VF_NUMBER, vf_number);
1452 	SET_FIELD(params, CAU_SB_ENTRY_VF_VALID, vf_valid);
1453 	SET_FIELD(params, CAU_SB_ENTRY_SB_TIMESET0, 0x7F);
1454 	SET_FIELD(params, CAU_SB_ENTRY_SB_TIMESET1, 0x7F);
1455 
1456 	cau_state = CAU_HC_DISABLE_STATE;
1457 
1458 	if (cdev->int_coalescing_mode == QED_COAL_MODE_ENABLE) {
1459 		cau_state = CAU_HC_ENABLE_STATE;
1460 		if (!cdev->rx_coalesce_usecs)
1461 			cdev->rx_coalesce_usecs = QED_CAU_DEF_RX_USECS;
1462 		if (!cdev->tx_coalesce_usecs)
1463 			cdev->tx_coalesce_usecs = QED_CAU_DEF_TX_USECS;
1464 	}
1465 
1466 	/* Coalesce = (timeset << timer-res), timeset is 7bit wide */
1467 	if (cdev->rx_coalesce_usecs <= 0x7F)
1468 		timer_res = 0;
1469 	else if (cdev->rx_coalesce_usecs <= 0xFF)
1470 		timer_res = 1;
1471 	else
1472 		timer_res = 2;
1473 
1474 	SET_FIELD(params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
1475 
1476 	if (cdev->tx_coalesce_usecs <= 0x7F)
1477 		timer_res = 0;
1478 	else if (cdev->tx_coalesce_usecs <= 0xFF)
1479 		timer_res = 1;
1480 	else
1481 		timer_res = 2;
1482 
1483 	SET_FIELD(params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
1484 	p_sb_entry->params = cpu_to_le32(params);
1485 
1486 	SET_FIELD(data, CAU_SB_ENTRY_STATE0, cau_state);
1487 	SET_FIELD(data, CAU_SB_ENTRY_STATE1, cau_state);
1488 	p_sb_entry->data = cpu_to_le32(data);
1489 }
1490 
1491 static void qed_int_cau_conf_pi(struct qed_hwfn *p_hwfn,
1492 				struct qed_ptt *p_ptt,
1493 				u16 igu_sb_id,
1494 				u32 pi_index,
1495 				enum qed_coalescing_fsm coalescing_fsm,
1496 				u8 timeset)
1497 {
1498 	u32 sb_offset, pi_offset;
1499 	u32 prod = 0;
1500 
1501 	if (IS_VF(p_hwfn->cdev))
1502 		return;
1503 
1504 	SET_FIELD(prod, CAU_PI_ENTRY_PI_TIMESET, timeset);
1505 	if (coalescing_fsm == QED_COAL_RX_STATE_MACHINE)
1506 		SET_FIELD(prod, CAU_PI_ENTRY_FSM_SEL, 0);
1507 	else
1508 		SET_FIELD(prod, CAU_PI_ENTRY_FSM_SEL, 1);
1509 
1510 	sb_offset = igu_sb_id * PIS_PER_SB;
1511 	pi_offset = sb_offset + pi_index;
1512 
1513 	if (p_hwfn->hw_init_done)
1514 		qed_wr(p_hwfn, p_ptt,
1515 		       CAU_REG_PI_MEMORY + pi_offset * sizeof(u32), prod);
1516 	else
1517 		STORE_RT_REG(p_hwfn, CAU_REG_PI_MEMORY_RT_OFFSET + pi_offset,
1518 			     prod);
1519 }
1520 
1521 void qed_int_cau_conf_sb(struct qed_hwfn *p_hwfn,
1522 			 struct qed_ptt *p_ptt,
1523 			 dma_addr_t sb_phys,
1524 			 u16 igu_sb_id, u16 vf_number, u8 vf_valid)
1525 {
1526 	struct cau_sb_entry sb_entry;
1527 
1528 	qed_init_cau_sb_entry(p_hwfn, &sb_entry, p_hwfn->rel_pf_id,
1529 			      vf_number, vf_valid);
1530 
1531 	if (p_hwfn->hw_init_done) {
1532 		/* Wide-bus, initialize via DMAE */
1533 		u64 phys_addr = (u64)sb_phys;
1534 
1535 		qed_dmae_host2grc(p_hwfn, p_ptt, (u64)(uintptr_t)&phys_addr,
1536 				  CAU_REG_SB_ADDR_MEMORY +
1537 				  igu_sb_id * sizeof(u64), 2, NULL);
1538 		qed_dmae_host2grc(p_hwfn, p_ptt, (u64)(uintptr_t)&sb_entry,
1539 				  CAU_REG_SB_VAR_MEMORY +
1540 				  igu_sb_id * sizeof(u64), 2, NULL);
1541 	} else {
1542 		/* Initialize Status Block Address */
1543 		STORE_RT_REG_AGG(p_hwfn,
1544 				 CAU_REG_SB_ADDR_MEMORY_RT_OFFSET +
1545 				 igu_sb_id * 2,
1546 				 sb_phys);
1547 
1548 		STORE_RT_REG_AGG(p_hwfn,
1549 				 CAU_REG_SB_VAR_MEMORY_RT_OFFSET +
1550 				 igu_sb_id * 2,
1551 				 sb_entry);
1552 	}
1553 
1554 	/* Configure pi coalescing if set */
1555 	if (p_hwfn->cdev->int_coalescing_mode == QED_COAL_MODE_ENABLE) {
1556 		u8 num_tc = p_hwfn->hw_info.num_hw_tc;
1557 		u8 timeset, timer_res;
1558 		u8 i;
1559 
1560 		/* timeset = (coalesce >> timer-res), timeset is 7bit wide */
1561 		if (p_hwfn->cdev->rx_coalesce_usecs <= 0x7F)
1562 			timer_res = 0;
1563 		else if (p_hwfn->cdev->rx_coalesce_usecs <= 0xFF)
1564 			timer_res = 1;
1565 		else
1566 			timer_res = 2;
1567 		timeset = (u8)(p_hwfn->cdev->rx_coalesce_usecs >> timer_res);
1568 		qed_int_cau_conf_pi(p_hwfn, p_ptt, igu_sb_id, RX_PI,
1569 				    QED_COAL_RX_STATE_MACHINE, timeset);
1570 
1571 		if (p_hwfn->cdev->tx_coalesce_usecs <= 0x7F)
1572 			timer_res = 0;
1573 		else if (p_hwfn->cdev->tx_coalesce_usecs <= 0xFF)
1574 			timer_res = 1;
1575 		else
1576 			timer_res = 2;
1577 		timeset = (u8)(p_hwfn->cdev->tx_coalesce_usecs >> timer_res);
1578 		for (i = 0; i < num_tc; i++) {
1579 			qed_int_cau_conf_pi(p_hwfn, p_ptt,
1580 					    igu_sb_id, TX_PI(i),
1581 					    QED_COAL_TX_STATE_MACHINE,
1582 					    timeset);
1583 		}
1584 	}
1585 }
1586 
1587 void qed_int_sb_setup(struct qed_hwfn *p_hwfn,
1588 		      struct qed_ptt *p_ptt, struct qed_sb_info *sb_info)
1589 {
1590 	/* zero status block and ack counter */
1591 	sb_info->sb_ack = 0;
1592 	memset(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
1593 
1594 	if (IS_PF(p_hwfn->cdev))
1595 		qed_int_cau_conf_sb(p_hwfn, p_ptt, sb_info->sb_phys,
1596 				    sb_info->igu_sb_id, 0, 0);
1597 }
1598 
1599 struct qed_igu_block *qed_get_igu_free_sb(struct qed_hwfn *p_hwfn, bool b_is_pf)
1600 {
1601 	struct qed_igu_block *p_block;
1602 	u16 igu_id;
1603 
1604 	for (igu_id = 0; igu_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev);
1605 	     igu_id++) {
1606 		p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id];
1607 
1608 		if (!(p_block->status & QED_IGU_STATUS_VALID) ||
1609 		    !(p_block->status & QED_IGU_STATUS_FREE))
1610 			continue;
1611 
1612 		if (!!(p_block->status & QED_IGU_STATUS_PF) == b_is_pf)
1613 			return p_block;
1614 	}
1615 
1616 	return NULL;
1617 }
1618 
1619 static u16 qed_get_pf_igu_sb_id(struct qed_hwfn *p_hwfn, u16 vector_id)
1620 {
1621 	struct qed_igu_block *p_block;
1622 	u16 igu_id;
1623 
1624 	for (igu_id = 0; igu_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev);
1625 	     igu_id++) {
1626 		p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id];
1627 
1628 		if (!(p_block->status & QED_IGU_STATUS_VALID) ||
1629 		    !p_block->is_pf ||
1630 		    p_block->vector_number != vector_id)
1631 			continue;
1632 
1633 		return igu_id;
1634 	}
1635 
1636 	return QED_SB_INVALID_IDX;
1637 }
1638 
1639 u16 qed_get_igu_sb_id(struct qed_hwfn *p_hwfn, u16 sb_id)
1640 {
1641 	u16 igu_sb_id;
1642 
1643 	/* Assuming continuous set of IGU SBs dedicated for given PF */
1644 	if (sb_id == QED_SP_SB_ID)
1645 		igu_sb_id = p_hwfn->hw_info.p_igu_info->igu_dsb_id;
1646 	else if (IS_PF(p_hwfn->cdev))
1647 		igu_sb_id = qed_get_pf_igu_sb_id(p_hwfn, sb_id + 1);
1648 	else
1649 		igu_sb_id = qed_vf_get_igu_sb_id(p_hwfn, sb_id);
1650 
1651 	if (sb_id == QED_SP_SB_ID)
1652 		DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1653 			   "Slowpath SB index in IGU is 0x%04x\n", igu_sb_id);
1654 	else
1655 		DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1656 			   "SB [%04x] <--> IGU SB [%04x]\n", sb_id, igu_sb_id);
1657 
1658 	return igu_sb_id;
1659 }
1660 
1661 int qed_int_sb_init(struct qed_hwfn *p_hwfn,
1662 		    struct qed_ptt *p_ptt,
1663 		    struct qed_sb_info *sb_info,
1664 		    void *sb_virt_addr, dma_addr_t sb_phy_addr, u16 sb_id)
1665 {
1666 	sb_info->sb_virt = sb_virt_addr;
1667 	sb_info->sb_phys = sb_phy_addr;
1668 
1669 	sb_info->igu_sb_id = qed_get_igu_sb_id(p_hwfn, sb_id);
1670 
1671 	if (sb_id != QED_SP_SB_ID) {
1672 		if (IS_PF(p_hwfn->cdev)) {
1673 			struct qed_igu_info *p_info;
1674 			struct qed_igu_block *p_block;
1675 
1676 			p_info = p_hwfn->hw_info.p_igu_info;
1677 			p_block = &p_info->entry[sb_info->igu_sb_id];
1678 
1679 			p_block->sb_info = sb_info;
1680 			p_block->status &= ~QED_IGU_STATUS_FREE;
1681 			p_info->usage.free_cnt--;
1682 		} else {
1683 			qed_vf_set_sb_info(p_hwfn, sb_id, sb_info);
1684 		}
1685 	}
1686 
1687 	sb_info->cdev = p_hwfn->cdev;
1688 
1689 	/* The igu address will hold the absolute address that needs to be
1690 	 * written to for a specific status block
1691 	 */
1692 	if (IS_PF(p_hwfn->cdev)) {
1693 		sb_info->igu_addr = (u8 __iomem *)p_hwfn->regview +
1694 						  GTT_BAR0_MAP_REG_IGU_CMD +
1695 						  (sb_info->igu_sb_id << 3);
1696 	} else {
1697 		sb_info->igu_addr = (u8 __iomem *)p_hwfn->regview +
1698 						  PXP_VF_BAR0_START_IGU +
1699 						  ((IGU_CMD_INT_ACK_BASE +
1700 						    sb_info->igu_sb_id) << 3);
1701 	}
1702 
1703 	sb_info->flags |= QED_SB_INFO_INIT;
1704 
1705 	qed_int_sb_setup(p_hwfn, p_ptt, sb_info);
1706 
1707 	return 0;
1708 }
1709 
1710 int qed_int_sb_release(struct qed_hwfn *p_hwfn,
1711 		       struct qed_sb_info *sb_info, u16 sb_id)
1712 {
1713 	struct qed_igu_block *p_block;
1714 	struct qed_igu_info *p_info;
1715 
1716 	if (!sb_info)
1717 		return 0;
1718 
1719 	/* zero status block and ack counter */
1720 	sb_info->sb_ack = 0;
1721 	memset(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
1722 
1723 	if (IS_VF(p_hwfn->cdev)) {
1724 		qed_vf_set_sb_info(p_hwfn, sb_id, NULL);
1725 		return 0;
1726 	}
1727 
1728 	p_info = p_hwfn->hw_info.p_igu_info;
1729 	p_block = &p_info->entry[sb_info->igu_sb_id];
1730 
1731 	/* Vector 0 is reserved to Default SB */
1732 	if (!p_block->vector_number) {
1733 		DP_ERR(p_hwfn, "Do Not free sp sb using this function");
1734 		return -EINVAL;
1735 	}
1736 
1737 	/* Lose reference to client's SB info, and fix counters */
1738 	p_block->sb_info = NULL;
1739 	p_block->status |= QED_IGU_STATUS_FREE;
1740 	p_info->usage.free_cnt++;
1741 
1742 	return 0;
1743 }
1744 
1745 static void qed_int_sp_sb_free(struct qed_hwfn *p_hwfn)
1746 {
1747 	struct qed_sb_sp_info *p_sb = p_hwfn->p_sp_sb;
1748 
1749 	if (!p_sb)
1750 		return;
1751 
1752 	if (p_sb->sb_info.sb_virt)
1753 		dma_free_coherent(&p_hwfn->cdev->pdev->dev,
1754 				  SB_ALIGNED_SIZE(p_hwfn),
1755 				  p_sb->sb_info.sb_virt,
1756 				  p_sb->sb_info.sb_phys);
1757 	kfree(p_sb);
1758 	p_hwfn->p_sp_sb = NULL;
1759 }
1760 
1761 static int qed_int_sp_sb_alloc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1762 {
1763 	struct qed_sb_sp_info *p_sb;
1764 	dma_addr_t p_phys = 0;
1765 	void *p_virt;
1766 
1767 	/* SB struct */
1768 	p_sb = kmalloc(sizeof(*p_sb), GFP_KERNEL);
1769 	if (!p_sb)
1770 		return -ENOMEM;
1771 
1772 	/* SB ring  */
1773 	p_virt = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
1774 				    SB_ALIGNED_SIZE(p_hwfn),
1775 				    &p_phys, GFP_KERNEL);
1776 	if (!p_virt) {
1777 		kfree(p_sb);
1778 		return -ENOMEM;
1779 	}
1780 
1781 	/* Status Block setup */
1782 	p_hwfn->p_sp_sb = p_sb;
1783 	qed_int_sb_init(p_hwfn, p_ptt, &p_sb->sb_info, p_virt,
1784 			p_phys, QED_SP_SB_ID);
1785 
1786 	memset(p_sb->pi_info_arr, 0, sizeof(p_sb->pi_info_arr));
1787 
1788 	return 0;
1789 }
1790 
1791 int qed_int_register_cb(struct qed_hwfn *p_hwfn,
1792 			qed_int_comp_cb_t comp_cb,
1793 			void *cookie, u8 *sb_idx, __le16 **p_fw_cons)
1794 {
1795 	struct qed_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
1796 	int rc = -ENOMEM;
1797 	u8 pi;
1798 
1799 	/* Look for a free index */
1800 	for (pi = 0; pi < ARRAY_SIZE(p_sp_sb->pi_info_arr); pi++) {
1801 		if (p_sp_sb->pi_info_arr[pi].comp_cb)
1802 			continue;
1803 
1804 		p_sp_sb->pi_info_arr[pi].comp_cb = comp_cb;
1805 		p_sp_sb->pi_info_arr[pi].cookie = cookie;
1806 		*sb_idx = pi;
1807 		*p_fw_cons = &p_sp_sb->sb_info.sb_virt->pi_array[pi];
1808 		rc = 0;
1809 		break;
1810 	}
1811 
1812 	return rc;
1813 }
1814 
1815 int qed_int_unregister_cb(struct qed_hwfn *p_hwfn, u8 pi)
1816 {
1817 	struct qed_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
1818 
1819 	if (p_sp_sb->pi_info_arr[pi].comp_cb == NULL)
1820 		return -ENOMEM;
1821 
1822 	p_sp_sb->pi_info_arr[pi].comp_cb = NULL;
1823 	p_sp_sb->pi_info_arr[pi].cookie = NULL;
1824 
1825 	return 0;
1826 }
1827 
1828 u16 qed_int_get_sp_sb_id(struct qed_hwfn *p_hwfn)
1829 {
1830 	return p_hwfn->p_sp_sb->sb_info.igu_sb_id;
1831 }
1832 
1833 void qed_int_igu_enable_int(struct qed_hwfn *p_hwfn,
1834 			    struct qed_ptt *p_ptt, enum qed_int_mode int_mode)
1835 {
1836 	u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN | IGU_PF_CONF_ATTN_BIT_EN;
1837 
1838 	p_hwfn->cdev->int_mode = int_mode;
1839 	switch (p_hwfn->cdev->int_mode) {
1840 	case QED_INT_MODE_INTA:
1841 		igu_pf_conf |= IGU_PF_CONF_INT_LINE_EN;
1842 		igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
1843 		break;
1844 
1845 	case QED_INT_MODE_MSI:
1846 		igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
1847 		igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
1848 		break;
1849 
1850 	case QED_INT_MODE_MSIX:
1851 		igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
1852 		break;
1853 	case QED_INT_MODE_POLL:
1854 		break;
1855 	}
1856 
1857 	qed_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, igu_pf_conf);
1858 }
1859 
1860 static void qed_int_igu_enable_attn(struct qed_hwfn *p_hwfn,
1861 				    struct qed_ptt *p_ptt)
1862 {
1863 
1864 	/* Configure AEU signal change to produce attentions */
1865 	qed_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0);
1866 	qed_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0xfff);
1867 	qed_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0xfff);
1868 	qed_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0xfff);
1869 
1870 	/* Unmask AEU signals toward IGU */
1871 	qed_wr(p_hwfn, p_ptt, MISC_REG_AEU_MASK_ATTN_IGU, 0xff);
1872 }
1873 
1874 int
1875 qed_int_igu_enable(struct qed_hwfn *p_hwfn,
1876 		   struct qed_ptt *p_ptt, enum qed_int_mode int_mode)
1877 {
1878 	int rc = 0;
1879 
1880 	qed_int_igu_enable_attn(p_hwfn, p_ptt);
1881 
1882 	if ((int_mode != QED_INT_MODE_INTA) || IS_LEAD_HWFN(p_hwfn)) {
1883 		rc = qed_slowpath_irq_req(p_hwfn);
1884 		if (rc) {
1885 			DP_NOTICE(p_hwfn, "Slowpath IRQ request failed\n");
1886 			return -EINVAL;
1887 		}
1888 		p_hwfn->b_int_requested = true;
1889 	}
1890 	/* Enable interrupt Generation */
1891 	qed_int_igu_enable_int(p_hwfn, p_ptt, int_mode);
1892 	p_hwfn->b_int_enabled = 1;
1893 
1894 	return rc;
1895 }
1896 
1897 void qed_int_igu_disable_int(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1898 {
1899 	p_hwfn->b_int_enabled = 0;
1900 
1901 	if (IS_VF(p_hwfn->cdev))
1902 		return;
1903 
1904 	qed_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, 0);
1905 }
1906 
1907 #define IGU_CLEANUP_SLEEP_LENGTH                (1000)
1908 static void qed_int_igu_cleanup_sb(struct qed_hwfn *p_hwfn,
1909 				   struct qed_ptt *p_ptt,
1910 				   u16 igu_sb_id,
1911 				   bool cleanup_set, u16 opaque_fid)
1912 {
1913 	u32 cmd_ctrl = 0, val = 0, sb_bit = 0, sb_bit_addr = 0, data = 0;
1914 	u32 pxp_addr = IGU_CMD_INT_ACK_BASE + igu_sb_id;
1915 	u32 sleep_cnt = IGU_CLEANUP_SLEEP_LENGTH;
1916 
1917 	/* Set the data field */
1918 	SET_FIELD(data, IGU_CLEANUP_CLEANUP_SET, cleanup_set ? 1 : 0);
1919 	SET_FIELD(data, IGU_CLEANUP_CLEANUP_TYPE, 0);
1920 	SET_FIELD(data, IGU_CLEANUP_COMMAND_TYPE, IGU_COMMAND_TYPE_SET);
1921 
1922 	/* Set the control register */
1923 	SET_FIELD(cmd_ctrl, IGU_CTRL_REG_PXP_ADDR, pxp_addr);
1924 	SET_FIELD(cmd_ctrl, IGU_CTRL_REG_FID, opaque_fid);
1925 	SET_FIELD(cmd_ctrl, IGU_CTRL_REG_TYPE, IGU_CTRL_CMD_TYPE_WR);
1926 
1927 	qed_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_32LSB_DATA, data);
1928 
1929 	barrier();
1930 
1931 	qed_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_CTRL, cmd_ctrl);
1932 
1933 	/* calculate where to read the status bit from */
1934 	sb_bit = 1 << (igu_sb_id % 32);
1935 	sb_bit_addr = igu_sb_id / 32 * sizeof(u32);
1936 
1937 	sb_bit_addr += IGU_REG_CLEANUP_STATUS_0;
1938 
1939 	/* Now wait for the command to complete */
1940 	do {
1941 		val = qed_rd(p_hwfn, p_ptt, sb_bit_addr);
1942 
1943 		if ((val & sb_bit) == (cleanup_set ? sb_bit : 0))
1944 			break;
1945 
1946 		usleep_range(5000, 10000);
1947 	} while (--sleep_cnt);
1948 
1949 	if (!sleep_cnt)
1950 		DP_NOTICE(p_hwfn,
1951 			  "Timeout waiting for clear status 0x%08x [for sb %d]\n",
1952 			  val, igu_sb_id);
1953 }
1954 
1955 void qed_int_igu_init_pure_rt_single(struct qed_hwfn *p_hwfn,
1956 				     struct qed_ptt *p_ptt,
1957 				     u16 igu_sb_id, u16 opaque, bool b_set)
1958 {
1959 	struct qed_igu_block *p_block;
1960 	int pi, i;
1961 
1962 	p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id];
1963 	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1964 		   "Cleaning SB [%04x]: func_id= %d is_pf = %d vector_num = 0x%0x\n",
1965 		   igu_sb_id,
1966 		   p_block->function_id,
1967 		   p_block->is_pf, p_block->vector_number);
1968 
1969 	/* Set */
1970 	if (b_set)
1971 		qed_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 1, opaque);
1972 
1973 	/* Clear */
1974 	qed_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 0, opaque);
1975 
1976 	/* Wait for the IGU SB to cleanup */
1977 	for (i = 0; i < IGU_CLEANUP_SLEEP_LENGTH; i++) {
1978 		u32 val;
1979 
1980 		val = qed_rd(p_hwfn, p_ptt,
1981 			     IGU_REG_WRITE_DONE_PENDING +
1982 			     ((igu_sb_id / 32) * 4));
1983 		if (val & BIT((igu_sb_id % 32)))
1984 			usleep_range(10, 20);
1985 		else
1986 			break;
1987 	}
1988 	if (i == IGU_CLEANUP_SLEEP_LENGTH)
1989 		DP_NOTICE(p_hwfn,
1990 			  "Failed SB[0x%08x] still appearing in WRITE_DONE_PENDING\n",
1991 			  igu_sb_id);
1992 
1993 	/* Clear the CAU for the SB */
1994 	for (pi = 0; pi < 12; pi++)
1995 		qed_wr(p_hwfn, p_ptt,
1996 		       CAU_REG_PI_MEMORY + (igu_sb_id * 12 + pi) * 4, 0);
1997 }
1998 
1999 void qed_int_igu_init_pure_rt(struct qed_hwfn *p_hwfn,
2000 			      struct qed_ptt *p_ptt,
2001 			      bool b_set, bool b_slowpath)
2002 {
2003 	struct qed_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
2004 	struct qed_igu_block *p_block;
2005 	u16 igu_sb_id = 0;
2006 	u32 val = 0;
2007 
2008 	val = qed_rd(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION);
2009 	val |= IGU_REG_BLOCK_CONFIGURATION_VF_CLEANUP_EN;
2010 	val &= ~IGU_REG_BLOCK_CONFIGURATION_PXP_TPH_INTERFACE_EN;
2011 	qed_wr(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION, val);
2012 
2013 	for (igu_sb_id = 0;
2014 	     igu_sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); igu_sb_id++) {
2015 		p_block = &p_info->entry[igu_sb_id];
2016 
2017 		if (!(p_block->status & QED_IGU_STATUS_VALID) ||
2018 		    !p_block->is_pf ||
2019 		    (p_block->status & QED_IGU_STATUS_DSB))
2020 			continue;
2021 
2022 		qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt, igu_sb_id,
2023 						p_hwfn->hw_info.opaque_fid,
2024 						b_set);
2025 	}
2026 
2027 	if (b_slowpath)
2028 		qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt,
2029 						p_info->igu_dsb_id,
2030 						p_hwfn->hw_info.opaque_fid,
2031 						b_set);
2032 }
2033 
2034 int qed_int_igu_reset_cam(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2035 {
2036 	struct qed_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
2037 	struct qed_igu_block *p_block;
2038 	int pf_sbs, vf_sbs;
2039 	u16 igu_sb_id;
2040 	u32 val, rval;
2041 
2042 	if (!RESC_NUM(p_hwfn, QED_SB)) {
2043 		p_info->b_allow_pf_vf_change = false;
2044 	} else {
2045 		/* Use the numbers the MFW have provided -
2046 		 * don't forget MFW accounts for the default SB as well.
2047 		 */
2048 		p_info->b_allow_pf_vf_change = true;
2049 
2050 		if (p_info->usage.cnt != RESC_NUM(p_hwfn, QED_SB) - 1) {
2051 			DP_INFO(p_hwfn,
2052 				"MFW notifies of 0x%04x PF SBs; IGU indicates of only 0x%04x\n",
2053 				RESC_NUM(p_hwfn, QED_SB) - 1,
2054 				p_info->usage.cnt);
2055 			p_info->usage.cnt = RESC_NUM(p_hwfn, QED_SB) - 1;
2056 		}
2057 
2058 		if (IS_PF_SRIOV(p_hwfn)) {
2059 			u16 vfs = p_hwfn->cdev->p_iov_info->total_vfs;
2060 
2061 			if (vfs != p_info->usage.iov_cnt)
2062 				DP_VERBOSE(p_hwfn,
2063 					   NETIF_MSG_INTR,
2064 					   "0x%04x VF SBs in IGU CAM != PCI configuration 0x%04x\n",
2065 					   p_info->usage.iov_cnt, vfs);
2066 
2067 			/* At this point we know how many SBs we have totally
2068 			 * in IGU + number of PF SBs. So we can validate that
2069 			 * we'd have sufficient for VF.
2070 			 */
2071 			if (vfs > p_info->usage.free_cnt +
2072 			    p_info->usage.free_cnt_iov - p_info->usage.cnt) {
2073 				DP_NOTICE(p_hwfn,
2074 					  "Not enough SBs for VFs - 0x%04x SBs, from which %04x PFs and %04x are required\n",
2075 					  p_info->usage.free_cnt +
2076 					  p_info->usage.free_cnt_iov,
2077 					  p_info->usage.cnt, vfs);
2078 				return -EINVAL;
2079 			}
2080 
2081 			/* Currently cap the number of VFs SBs by the
2082 			 * number of VFs.
2083 			 */
2084 			p_info->usage.iov_cnt = vfs;
2085 		}
2086 	}
2087 
2088 	/* Mark all SBs as free, now in the right PF/VFs division */
2089 	p_info->usage.free_cnt = p_info->usage.cnt;
2090 	p_info->usage.free_cnt_iov = p_info->usage.iov_cnt;
2091 	p_info->usage.orig = p_info->usage.cnt;
2092 	p_info->usage.iov_orig = p_info->usage.iov_cnt;
2093 
2094 	/* We now proceed to re-configure the IGU cam to reflect the initial
2095 	 * configuration. We can start with the Default SB.
2096 	 */
2097 	pf_sbs = p_info->usage.cnt;
2098 	vf_sbs = p_info->usage.iov_cnt;
2099 
2100 	for (igu_sb_id = p_info->igu_dsb_id;
2101 	     igu_sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); igu_sb_id++) {
2102 		p_block = &p_info->entry[igu_sb_id];
2103 		val = 0;
2104 
2105 		if (!(p_block->status & QED_IGU_STATUS_VALID))
2106 			continue;
2107 
2108 		if (p_block->status & QED_IGU_STATUS_DSB) {
2109 			p_block->function_id = p_hwfn->rel_pf_id;
2110 			p_block->is_pf = 1;
2111 			p_block->vector_number = 0;
2112 			p_block->status = QED_IGU_STATUS_VALID |
2113 					  QED_IGU_STATUS_PF |
2114 					  QED_IGU_STATUS_DSB;
2115 		} else if (pf_sbs) {
2116 			pf_sbs--;
2117 			p_block->function_id = p_hwfn->rel_pf_id;
2118 			p_block->is_pf = 1;
2119 			p_block->vector_number = p_info->usage.cnt - pf_sbs;
2120 			p_block->status = QED_IGU_STATUS_VALID |
2121 					  QED_IGU_STATUS_PF |
2122 					  QED_IGU_STATUS_FREE;
2123 		} else if (vf_sbs) {
2124 			p_block->function_id =
2125 			    p_hwfn->cdev->p_iov_info->first_vf_in_pf +
2126 			    p_info->usage.iov_cnt - vf_sbs;
2127 			p_block->is_pf = 0;
2128 			p_block->vector_number = 0;
2129 			p_block->status = QED_IGU_STATUS_VALID |
2130 					  QED_IGU_STATUS_FREE;
2131 			vf_sbs--;
2132 		} else {
2133 			p_block->function_id = 0;
2134 			p_block->is_pf = 0;
2135 			p_block->vector_number = 0;
2136 		}
2137 
2138 		SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER,
2139 			  p_block->function_id);
2140 		SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, p_block->is_pf);
2141 		SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER,
2142 			  p_block->vector_number);
2143 
2144 		/* VF entries would be enabled when VF is initializaed */
2145 		SET_FIELD(val, IGU_MAPPING_LINE_VALID, p_block->is_pf);
2146 
2147 		rval = qed_rd(p_hwfn, p_ptt,
2148 			      IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id);
2149 
2150 		if (rval != val) {
2151 			qed_wr(p_hwfn, p_ptt,
2152 			       IGU_REG_MAPPING_MEMORY +
2153 			       sizeof(u32) * igu_sb_id, val);
2154 
2155 			DP_VERBOSE(p_hwfn,
2156 				   NETIF_MSG_INTR,
2157 				   "IGU reset: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x [%08x -> %08x]\n",
2158 				   igu_sb_id,
2159 				   p_block->function_id,
2160 				   p_block->is_pf,
2161 				   p_block->vector_number, rval, val);
2162 		}
2163 	}
2164 
2165 	return 0;
2166 }
2167 
2168 static void qed_int_igu_read_cam_block(struct qed_hwfn *p_hwfn,
2169 				       struct qed_ptt *p_ptt, u16 igu_sb_id)
2170 {
2171 	u32 val = qed_rd(p_hwfn, p_ptt,
2172 			 IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id);
2173 	struct qed_igu_block *p_block;
2174 
2175 	p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id];
2176 
2177 	/* Fill the block information */
2178 	p_block->function_id = GET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER);
2179 	p_block->is_pf = GET_FIELD(val, IGU_MAPPING_LINE_PF_VALID);
2180 	p_block->vector_number = GET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER);
2181 	p_block->igu_sb_id = igu_sb_id;
2182 }
2183 
2184 int qed_int_igu_read_cam(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2185 {
2186 	struct qed_igu_info *p_igu_info;
2187 	struct qed_igu_block *p_block;
2188 	u32 min_vf = 0, max_vf = 0;
2189 	u16 igu_sb_id;
2190 
2191 	p_hwfn->hw_info.p_igu_info = kzalloc(sizeof(*p_igu_info), GFP_KERNEL);
2192 	if (!p_hwfn->hw_info.p_igu_info)
2193 		return -ENOMEM;
2194 
2195 	p_igu_info = p_hwfn->hw_info.p_igu_info;
2196 
2197 	/* Distinguish between existent and non-existent default SB */
2198 	p_igu_info->igu_dsb_id = QED_SB_INVALID_IDX;
2199 
2200 	/* Find the range of VF ids whose SB belong to this PF */
2201 	if (p_hwfn->cdev->p_iov_info) {
2202 		struct qed_hw_sriov_info *p_iov = p_hwfn->cdev->p_iov_info;
2203 
2204 		min_vf	= p_iov->first_vf_in_pf;
2205 		max_vf	= p_iov->first_vf_in_pf + p_iov->total_vfs;
2206 	}
2207 
2208 	for (igu_sb_id = 0;
2209 	     igu_sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); igu_sb_id++) {
2210 		/* Read current entry; Notice it might not belong to this PF */
2211 		qed_int_igu_read_cam_block(p_hwfn, p_ptt, igu_sb_id);
2212 		p_block = &p_igu_info->entry[igu_sb_id];
2213 
2214 		if ((p_block->is_pf) &&
2215 		    (p_block->function_id == p_hwfn->rel_pf_id)) {
2216 			p_block->status = QED_IGU_STATUS_PF |
2217 					  QED_IGU_STATUS_VALID |
2218 					  QED_IGU_STATUS_FREE;
2219 
2220 			if (p_igu_info->igu_dsb_id != QED_SB_INVALID_IDX)
2221 				p_igu_info->usage.cnt++;
2222 		} else if (!(p_block->is_pf) &&
2223 			   (p_block->function_id >= min_vf) &&
2224 			   (p_block->function_id < max_vf)) {
2225 			/* Available for VFs of this PF */
2226 			p_block->status = QED_IGU_STATUS_VALID |
2227 					  QED_IGU_STATUS_FREE;
2228 
2229 			if (p_igu_info->igu_dsb_id != QED_SB_INVALID_IDX)
2230 				p_igu_info->usage.iov_cnt++;
2231 		}
2232 
2233 		/* Mark the First entry belonging to the PF or its VFs
2234 		 * as the default SB [we'll reset IGU prior to first usage].
2235 		 */
2236 		if ((p_block->status & QED_IGU_STATUS_VALID) &&
2237 		    (p_igu_info->igu_dsb_id == QED_SB_INVALID_IDX)) {
2238 			p_igu_info->igu_dsb_id = igu_sb_id;
2239 			p_block->status |= QED_IGU_STATUS_DSB;
2240 		}
2241 
2242 		/* limit number of prints by having each PF print only its
2243 		 * entries with the exception of PF0 which would print
2244 		 * everything.
2245 		 */
2246 		if ((p_block->status & QED_IGU_STATUS_VALID) ||
2247 		    (p_hwfn->abs_pf_id == 0)) {
2248 			DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
2249 				   "IGU_BLOCK: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x\n",
2250 				   igu_sb_id, p_block->function_id,
2251 				   p_block->is_pf, p_block->vector_number);
2252 		}
2253 	}
2254 
2255 	if (p_igu_info->igu_dsb_id == QED_SB_INVALID_IDX) {
2256 		DP_NOTICE(p_hwfn,
2257 			  "IGU CAM returned invalid values igu_dsb_id=0x%x\n",
2258 			  p_igu_info->igu_dsb_id);
2259 		return -EINVAL;
2260 	}
2261 
2262 	/* All non default SB are considered free at this point */
2263 	p_igu_info->usage.free_cnt = p_igu_info->usage.cnt;
2264 	p_igu_info->usage.free_cnt_iov = p_igu_info->usage.iov_cnt;
2265 
2266 	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
2267 		   "igu_dsb_id=0x%x, num Free SBs - PF: %04x VF: %04x [might change after resource allocation]\n",
2268 		   p_igu_info->igu_dsb_id,
2269 		   p_igu_info->usage.cnt, p_igu_info->usage.iov_cnt);
2270 
2271 	return 0;
2272 }
2273 
2274 /**
2275  * qed_int_igu_init_rt() - Initialize IGU runtime registers.
2276  *
2277  * @p_hwfn: HW device data.
2278  */
2279 void qed_int_igu_init_rt(struct qed_hwfn *p_hwfn)
2280 {
2281 	u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN;
2282 
2283 	STORE_RT_REG(p_hwfn, IGU_REG_PF_CONFIGURATION_RT_OFFSET, igu_pf_conf);
2284 }
2285 
2286 u64 qed_int_igu_read_sisr_reg(struct qed_hwfn *p_hwfn)
2287 {
2288 	u32 lsb_igu_cmd_addr = IGU_REG_SISR_MDPC_WMASK_LSB_UPPER -
2289 			       IGU_CMD_INT_ACK_BASE;
2290 	u32 msb_igu_cmd_addr = IGU_REG_SISR_MDPC_WMASK_MSB_UPPER -
2291 			       IGU_CMD_INT_ACK_BASE;
2292 	u32 intr_status_hi = 0, intr_status_lo = 0;
2293 	u64 intr_status = 0;
2294 
2295 	intr_status_lo = REG_RD(p_hwfn,
2296 				GTT_BAR0_MAP_REG_IGU_CMD +
2297 				lsb_igu_cmd_addr * 8);
2298 	intr_status_hi = REG_RD(p_hwfn,
2299 				GTT_BAR0_MAP_REG_IGU_CMD +
2300 				msb_igu_cmd_addr * 8);
2301 	intr_status = ((u64)intr_status_hi << 32) + (u64)intr_status_lo;
2302 
2303 	return intr_status;
2304 }
2305 
2306 static void qed_int_sp_dpc_setup(struct qed_hwfn *p_hwfn)
2307 {
2308 	tasklet_setup(&p_hwfn->sp_dpc, qed_int_sp_dpc);
2309 	p_hwfn->b_sp_dpc_enabled = true;
2310 }
2311 
2312 int qed_int_alloc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2313 {
2314 	int rc = 0;
2315 
2316 	rc = qed_int_sp_sb_alloc(p_hwfn, p_ptt);
2317 	if (rc)
2318 		return rc;
2319 
2320 	rc = qed_int_sb_attn_alloc(p_hwfn, p_ptt);
2321 
2322 	return rc;
2323 }
2324 
2325 void qed_int_free(struct qed_hwfn *p_hwfn)
2326 {
2327 	qed_int_sp_sb_free(p_hwfn);
2328 	qed_int_sb_attn_free(p_hwfn);
2329 }
2330 
2331 void qed_int_setup(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2332 {
2333 	qed_int_sb_setup(p_hwfn, p_ptt, &p_hwfn->p_sp_sb->sb_info);
2334 	qed_int_sb_attn_setup(p_hwfn, p_ptt);
2335 	qed_int_sp_dpc_setup(p_hwfn);
2336 }
2337 
2338 void qed_int_get_num_sbs(struct qed_hwfn	*p_hwfn,
2339 			 struct qed_sb_cnt_info *p_sb_cnt_info)
2340 {
2341 	struct qed_igu_info *info = p_hwfn->hw_info.p_igu_info;
2342 
2343 	if (!info || !p_sb_cnt_info)
2344 		return;
2345 
2346 	memcpy(p_sb_cnt_info, &info->usage, sizeof(*p_sb_cnt_info));
2347 }
2348 
2349 void qed_int_disable_post_isr_release(struct qed_dev *cdev)
2350 {
2351 	int i;
2352 
2353 	for_each_hwfn(cdev, i)
2354 		cdev->hwfns[i].b_int_requested = false;
2355 }
2356 
2357 void qed_int_attn_clr_enable(struct qed_dev *cdev, bool clr_enable)
2358 {
2359 	cdev->attn_clr_en = clr_enable;
2360 }
2361 
2362 int qed_int_set_timer_res(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
2363 			  u8 timer_res, u16 sb_id, bool tx)
2364 {
2365 	struct cau_sb_entry sb_entry;
2366 	u32 params;
2367 	int rc;
2368 
2369 	if (!p_hwfn->hw_init_done) {
2370 		DP_ERR(p_hwfn, "hardware not initialized yet\n");
2371 		return -EINVAL;
2372 	}
2373 
2374 	rc = qed_dmae_grc2host(p_hwfn, p_ptt, CAU_REG_SB_VAR_MEMORY +
2375 			       sb_id * sizeof(u64),
2376 			       (u64)(uintptr_t)&sb_entry, 2, NULL);
2377 	if (rc) {
2378 		DP_ERR(p_hwfn, "dmae_grc2host failed %d\n", rc);
2379 		return rc;
2380 	}
2381 
2382 	params = le32_to_cpu(sb_entry.params);
2383 
2384 	if (tx)
2385 		SET_FIELD(params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
2386 	else
2387 		SET_FIELD(params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
2388 
2389 	sb_entry.params = cpu_to_le32(params);
2390 
2391 	rc = qed_dmae_host2grc(p_hwfn, p_ptt,
2392 			       (u64)(uintptr_t)&sb_entry,
2393 			       CAU_REG_SB_VAR_MEMORY +
2394 			       sb_id * sizeof(u64), 2, NULL);
2395 	if (rc) {
2396 		DP_ERR(p_hwfn, "dmae_host2grc failed %d\n", rc);
2397 		return rc;
2398 	}
2399 
2400 	return rc;
2401 }
2402 
2403 int qed_int_get_sb_dbg(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
2404 		       struct qed_sb_info *p_sb, struct qed_sb_info_dbg *p_info)
2405 {
2406 	u16 sbid = p_sb->igu_sb_id;
2407 	u32 i;
2408 
2409 	if (IS_VF(p_hwfn->cdev))
2410 		return -EINVAL;
2411 
2412 	if (sbid >= NUM_OF_SBS(p_hwfn->cdev))
2413 		return -EINVAL;
2414 
2415 	p_info->igu_prod = qed_rd(p_hwfn, p_ptt, IGU_REG_PRODUCER_MEMORY + sbid * 4);
2416 	p_info->igu_cons = qed_rd(p_hwfn, p_ptt, IGU_REG_CONSUMER_MEM + sbid * 4);
2417 
2418 	for (i = 0; i < PIS_PER_SB; i++)
2419 		p_info->pi[i] = (u16)qed_rd(p_hwfn, p_ptt,
2420 					    CAU_REG_PI_MEMORY + sbid * 4 * PIS_PER_SB + i * 4);
2421 
2422 	return 0;
2423 }
2424