xref: /linux/drivers/net/ethernet/qlogic/qed/qed_int.c (revision 9cfc5c90ad38c8fc11bfd39de42a107da00871ba)
1 /* QLogic qed NIC Driver
2  * Copyright (c) 2015 QLogic Corporation
3  *
4  * This software is available under the terms of the GNU General Public License
5  * (GPL) Version 2, available from the file COPYING in the main directory of
6  * this source tree.
7  */
8 
9 #include <linux/types.h>
10 #include <asm/byteorder.h>
11 #include <linux/io.h>
12 #include <linux/bitops.h>
13 #include <linux/delay.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/errno.h>
16 #include <linux/interrupt.h>
17 #include <linux/kernel.h>
18 #include <linux/pci.h>
19 #include <linux/slab.h>
20 #include <linux/string.h>
21 #include "qed.h"
22 #include "qed_hsi.h"
23 #include "qed_hw.h"
24 #include "qed_init_ops.h"
25 #include "qed_int.h"
26 #include "qed_mcp.h"
27 #include "qed_reg_addr.h"
28 #include "qed_sp.h"
29 
30 struct qed_pi_info {
31 	qed_int_comp_cb_t	comp_cb;
32 	void			*cookie;
33 };
34 
35 struct qed_sb_sp_info {
36 	struct qed_sb_info	sb_info;
37 
38 	/* per protocol index data */
39 	struct qed_pi_info	pi_info_arr[PIS_PER_SB];
40 };
41 
42 #define SB_ATTN_ALIGNED_SIZE(p_hwfn) \
43 	ALIGNED_TYPE_SIZE(struct atten_status_block, p_hwfn)
44 
45 #define ATTN_STATE_BITS (0xfff)
46 #define ATTN_BITS_MASKABLE      (0x3ff)
47 struct qed_sb_attn_info {
48 	/* Virtual & Physical address of the SB */
49 	struct atten_status_block       *sb_attn;
50 	dma_addr_t		      sb_phys;
51 
52 	/* Last seen running index */
53 	u16			     index;
54 
55 	/* Previously asserted attentions, which are still unasserted */
56 	u16			     known_attn;
57 
58 	/* Cleanup address for the link's general hw attention */
59 	u32			     mfw_attn_addr;
60 };
61 
62 static inline u16 qed_attn_update_idx(struct qed_hwfn *p_hwfn,
63 				      struct qed_sb_attn_info   *p_sb_desc)
64 {
65 	u16     rc = 0;
66 	u16     index;
67 
68 	/* Make certain HW write took affect */
69 	mmiowb();
70 
71 	index = le16_to_cpu(p_sb_desc->sb_attn->sb_index);
72 	if (p_sb_desc->index != index) {
73 		p_sb_desc->index	= index;
74 		rc		      = QED_SB_ATT_IDX;
75 	}
76 
77 	/* Make certain we got a consistent view with HW */
78 	mmiowb();
79 
80 	return rc;
81 }
82 
83 /**
84  *  @brief qed_int_assertion - handles asserted attention bits
85  *
86  *  @param p_hwfn
87  *  @param asserted_bits newly asserted bits
88  *  @return int
89  */
90 static int qed_int_assertion(struct qed_hwfn *p_hwfn,
91 			     u16 asserted_bits)
92 {
93 	struct qed_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
94 	u32 igu_mask;
95 
96 	/* Mask the source of the attention in the IGU */
97 	igu_mask = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
98 			  IGU_REG_ATTENTION_ENABLE);
99 	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "IGU mask: 0x%08x --> 0x%08x\n",
100 		   igu_mask, igu_mask & ~(asserted_bits & ATTN_BITS_MASKABLE));
101 	igu_mask &= ~(asserted_bits & ATTN_BITS_MASKABLE);
102 	qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, igu_mask);
103 
104 	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
105 		   "inner known ATTN state: 0x%04x --> 0x%04x\n",
106 		   sb_attn_sw->known_attn,
107 		   sb_attn_sw->known_attn | asserted_bits);
108 	sb_attn_sw->known_attn |= asserted_bits;
109 
110 	/* Handle MCP events */
111 	if (asserted_bits & 0x100) {
112 		qed_mcp_handle_events(p_hwfn, p_hwfn->p_dpc_ptt);
113 		/* Clean the MCP attention */
114 		qed_wr(p_hwfn, p_hwfn->p_dpc_ptt,
115 		       sb_attn_sw->mfw_attn_addr, 0);
116 	}
117 
118 	DIRECT_REG_WR((u8 __iomem *)p_hwfn->regview +
119 		      GTT_BAR0_MAP_REG_IGU_CMD +
120 		      ((IGU_CMD_ATTN_BIT_SET_UPPER -
121 			IGU_CMD_INT_ACK_BASE) << 3),
122 		      (u32)asserted_bits);
123 
124 	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "set cmd IGU: 0x%04x\n",
125 		   asserted_bits);
126 
127 	return 0;
128 }
129 
130 /**
131  * @brief - handles deassertion of previously asserted attentions.
132  *
133  * @param p_hwfn
134  * @param deasserted_bits - newly deasserted bits
135  * @return int
136  *
137  */
138 static int qed_int_deassertion(struct qed_hwfn  *p_hwfn,
139 			       u16 deasserted_bits)
140 {
141 	struct qed_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
142 	u32 aeu_mask;
143 
144 	if (deasserted_bits != 0x100)
145 		DP_ERR(p_hwfn, "Unexpected - non-link deassertion\n");
146 
147 	/* Clear IGU indication for the deasserted bits */
148 	DIRECT_REG_WR((u8 __iomem *)p_hwfn->regview +
149 		      GTT_BAR0_MAP_REG_IGU_CMD +
150 		      ((IGU_CMD_ATTN_BIT_CLR_UPPER -
151 			IGU_CMD_INT_ACK_BASE) << 3),
152 		      ~((u32)deasserted_bits));
153 
154 	/* Unmask deasserted attentions in IGU */
155 	aeu_mask = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
156 			  IGU_REG_ATTENTION_ENABLE);
157 	aeu_mask |= (deasserted_bits & ATTN_BITS_MASKABLE);
158 	qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, aeu_mask);
159 
160 	/* Clear deassertion from inner state */
161 	sb_attn_sw->known_attn &= ~deasserted_bits;
162 
163 	return 0;
164 }
165 
166 static int qed_int_attentions(struct qed_hwfn *p_hwfn)
167 {
168 	struct qed_sb_attn_info *p_sb_attn_sw = p_hwfn->p_sb_attn;
169 	struct atten_status_block *p_sb_attn = p_sb_attn_sw->sb_attn;
170 	u32 attn_bits = 0, attn_acks = 0;
171 	u16 asserted_bits, deasserted_bits;
172 	__le16 index;
173 	int rc = 0;
174 
175 	/* Read current attention bits/acks - safeguard against attentions
176 	 * by guaranting work on a synchronized timeframe
177 	 */
178 	do {
179 		index = p_sb_attn->sb_index;
180 		attn_bits = le32_to_cpu(p_sb_attn->atten_bits);
181 		attn_acks = le32_to_cpu(p_sb_attn->atten_ack);
182 	} while (index != p_sb_attn->sb_index);
183 	p_sb_attn->sb_index = index;
184 
185 	/* Attention / Deassertion are meaningful (and in correct state)
186 	 * only when they differ and consistent with known state - deassertion
187 	 * when previous attention & current ack, and assertion when current
188 	 * attention with no previous attention
189 	 */
190 	asserted_bits = (attn_bits & ~attn_acks & ATTN_STATE_BITS) &
191 		~p_sb_attn_sw->known_attn;
192 	deasserted_bits = (~attn_bits & attn_acks & ATTN_STATE_BITS) &
193 		p_sb_attn_sw->known_attn;
194 
195 	if ((asserted_bits & ~0x100) || (deasserted_bits & ~0x100)) {
196 		DP_INFO(p_hwfn,
197 			"Attention: Index: 0x%04x, Bits: 0x%08x, Acks: 0x%08x, asserted: 0x%04x, De-asserted 0x%04x [Prev. known: 0x%04x]\n",
198 			index, attn_bits, attn_acks, asserted_bits,
199 			deasserted_bits, p_sb_attn_sw->known_attn);
200 	} else if (asserted_bits == 0x100) {
201 		DP_INFO(p_hwfn,
202 			"MFW indication via attention\n");
203 	} else {
204 		DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
205 			   "MFW indication [deassertion]\n");
206 	}
207 
208 	if (asserted_bits) {
209 		rc = qed_int_assertion(p_hwfn, asserted_bits);
210 		if (rc)
211 			return rc;
212 	}
213 
214 	if (deasserted_bits) {
215 		rc = qed_int_deassertion(p_hwfn, deasserted_bits);
216 		if (rc)
217 			return rc;
218 	}
219 
220 	return rc;
221 }
222 
223 static void qed_sb_ack_attn(struct qed_hwfn *p_hwfn,
224 			    void __iomem *igu_addr,
225 			    u32 ack_cons)
226 {
227 	struct igu_prod_cons_update igu_ack = { 0 };
228 
229 	igu_ack.sb_id_and_flags =
230 		((ack_cons << IGU_PROD_CONS_UPDATE_SB_INDEX_SHIFT) |
231 		 (1 << IGU_PROD_CONS_UPDATE_UPDATE_FLAG_SHIFT) |
232 		 (IGU_INT_NOP << IGU_PROD_CONS_UPDATE_ENABLE_INT_SHIFT) |
233 		 (IGU_SEG_ACCESS_ATTN <<
234 		  IGU_PROD_CONS_UPDATE_SEGMENT_ACCESS_SHIFT));
235 
236 	DIRECT_REG_WR(igu_addr, igu_ack.sb_id_and_flags);
237 
238 	/* Both segments (interrupts & acks) are written to same place address;
239 	 * Need to guarantee all commands will be received (in-order) by HW.
240 	 */
241 	mmiowb();
242 	barrier();
243 }
244 
245 void qed_int_sp_dpc(unsigned long hwfn_cookie)
246 {
247 	struct qed_hwfn *p_hwfn = (struct qed_hwfn *)hwfn_cookie;
248 	struct qed_pi_info *pi_info = NULL;
249 	struct qed_sb_attn_info *sb_attn;
250 	struct qed_sb_info *sb_info;
251 	int arr_size;
252 	u16 rc = 0;
253 
254 	if (!p_hwfn->p_sp_sb) {
255 		DP_ERR(p_hwfn->cdev, "DPC called - no p_sp_sb\n");
256 		return;
257 	}
258 
259 	sb_info = &p_hwfn->p_sp_sb->sb_info;
260 	arr_size = ARRAY_SIZE(p_hwfn->p_sp_sb->pi_info_arr);
261 	if (!sb_info) {
262 		DP_ERR(p_hwfn->cdev,
263 		       "Status block is NULL - cannot ack interrupts\n");
264 		return;
265 	}
266 
267 	if (!p_hwfn->p_sb_attn) {
268 		DP_ERR(p_hwfn->cdev, "DPC called - no p_sb_attn");
269 		return;
270 	}
271 	sb_attn = p_hwfn->p_sb_attn;
272 
273 	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "DPC Called! (hwfn %p %d)\n",
274 		   p_hwfn, p_hwfn->my_id);
275 
276 	/* Disable ack for def status block. Required both for msix +
277 	 * inta in non-mask mode, in inta does no harm.
278 	 */
279 	qed_sb_ack(sb_info, IGU_INT_DISABLE, 0);
280 
281 	/* Gather Interrupts/Attentions information */
282 	if (!sb_info->sb_virt) {
283 		DP_ERR(
284 			p_hwfn->cdev,
285 			"Interrupt Status block is NULL - cannot check for new interrupts!\n");
286 	} else {
287 		u32 tmp_index = sb_info->sb_ack;
288 
289 		rc = qed_sb_update_sb_idx(sb_info);
290 		DP_VERBOSE(p_hwfn->cdev, NETIF_MSG_INTR,
291 			   "Interrupt indices: 0x%08x --> 0x%08x\n",
292 			   tmp_index, sb_info->sb_ack);
293 	}
294 
295 	if (!sb_attn || !sb_attn->sb_attn) {
296 		DP_ERR(
297 			p_hwfn->cdev,
298 			"Attentions Status block is NULL - cannot check for new attentions!\n");
299 	} else {
300 		u16 tmp_index = sb_attn->index;
301 
302 		rc |= qed_attn_update_idx(p_hwfn, sb_attn);
303 		DP_VERBOSE(p_hwfn->cdev, NETIF_MSG_INTR,
304 			   "Attention indices: 0x%08x --> 0x%08x\n",
305 			   tmp_index, sb_attn->index);
306 	}
307 
308 	/* Check if we expect interrupts at this time. if not just ack them */
309 	if (!(rc & QED_SB_EVENT_MASK)) {
310 		qed_sb_ack(sb_info, IGU_INT_ENABLE, 1);
311 		return;
312 	}
313 
314 	/* Check the validity of the DPC ptt. If not ack interrupts and fail */
315 	if (!p_hwfn->p_dpc_ptt) {
316 		DP_NOTICE(p_hwfn->cdev, "Failed to allocate PTT\n");
317 		qed_sb_ack(sb_info, IGU_INT_ENABLE, 1);
318 		return;
319 	}
320 
321 	if (rc & QED_SB_ATT_IDX)
322 		qed_int_attentions(p_hwfn);
323 
324 	if (rc & QED_SB_IDX) {
325 		int pi;
326 
327 		/* Look for a free index */
328 		for (pi = 0; pi < arr_size; pi++) {
329 			pi_info = &p_hwfn->p_sp_sb->pi_info_arr[pi];
330 			if (pi_info->comp_cb)
331 				pi_info->comp_cb(p_hwfn, pi_info->cookie);
332 		}
333 	}
334 
335 	if (sb_attn && (rc & QED_SB_ATT_IDX))
336 		/* This should be done before the interrupts are enabled,
337 		 * since otherwise a new attention will be generated.
338 		 */
339 		qed_sb_ack_attn(p_hwfn, sb_info->igu_addr, sb_attn->index);
340 
341 	qed_sb_ack(sb_info, IGU_INT_ENABLE, 1);
342 }
343 
344 static void qed_int_sb_attn_free(struct qed_hwfn *p_hwfn)
345 {
346 	struct qed_dev *cdev   = p_hwfn->cdev;
347 	struct qed_sb_attn_info *p_sb   = p_hwfn->p_sb_attn;
348 
349 	if (p_sb) {
350 		if (p_sb->sb_attn)
351 			dma_free_coherent(&cdev->pdev->dev,
352 					  SB_ATTN_ALIGNED_SIZE(p_hwfn),
353 					  p_sb->sb_attn,
354 					  p_sb->sb_phys);
355 		kfree(p_sb);
356 	}
357 }
358 
359 static void qed_int_sb_attn_setup(struct qed_hwfn *p_hwfn,
360 				  struct qed_ptt *p_ptt)
361 {
362 	struct qed_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
363 
364 	memset(sb_info->sb_attn, 0, sizeof(*sb_info->sb_attn));
365 
366 	sb_info->index = 0;
367 	sb_info->known_attn = 0;
368 
369 	/* Configure Attention Status Block in IGU */
370 	qed_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_L,
371 	       lower_32_bits(p_hwfn->p_sb_attn->sb_phys));
372 	qed_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_H,
373 	       upper_32_bits(p_hwfn->p_sb_attn->sb_phys));
374 }
375 
376 static void qed_int_sb_attn_init(struct qed_hwfn *p_hwfn,
377 				 struct qed_ptt *p_ptt,
378 				 void *sb_virt_addr,
379 				 dma_addr_t sb_phy_addr)
380 {
381 	struct qed_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
382 
383 	sb_info->sb_attn = sb_virt_addr;
384 	sb_info->sb_phys = sb_phy_addr;
385 
386 	/* Set the address of cleanup for the mcp attention */
387 	sb_info->mfw_attn_addr = (p_hwfn->rel_pf_id << 3) +
388 				 MISC_REG_AEU_GENERAL_ATTN_0;
389 
390 	qed_int_sb_attn_setup(p_hwfn, p_ptt);
391 }
392 
393 static int qed_int_sb_attn_alloc(struct qed_hwfn *p_hwfn,
394 				 struct qed_ptt *p_ptt)
395 {
396 	struct qed_dev *cdev = p_hwfn->cdev;
397 	struct qed_sb_attn_info *p_sb;
398 	void *p_virt;
399 	dma_addr_t p_phys = 0;
400 
401 	/* SB struct */
402 	p_sb = kmalloc(sizeof(*p_sb), GFP_ATOMIC);
403 	if (!p_sb) {
404 		DP_NOTICE(cdev, "Failed to allocate `struct qed_sb_attn_info'\n");
405 		return -ENOMEM;
406 	}
407 
408 	/* SB ring  */
409 	p_virt = dma_alloc_coherent(&cdev->pdev->dev,
410 				    SB_ATTN_ALIGNED_SIZE(p_hwfn),
411 				    &p_phys, GFP_KERNEL);
412 
413 	if (!p_virt) {
414 		DP_NOTICE(cdev, "Failed to allocate status block (attentions)\n");
415 		kfree(p_sb);
416 		return -ENOMEM;
417 	}
418 
419 	/* Attention setup */
420 	p_hwfn->p_sb_attn = p_sb;
421 	qed_int_sb_attn_init(p_hwfn, p_ptt, p_virt, p_phys);
422 
423 	return 0;
424 }
425 
426 /* coalescing timeout = timeset << (timer_res + 1) */
427 #define QED_CAU_DEF_RX_USECS 24
428 #define QED_CAU_DEF_TX_USECS 48
429 
430 void qed_init_cau_sb_entry(struct qed_hwfn *p_hwfn,
431 			   struct cau_sb_entry *p_sb_entry,
432 			   u8 pf_id,
433 			   u16 vf_number,
434 			   u8 vf_valid)
435 {
436 	u32 cau_state;
437 
438 	memset(p_sb_entry, 0, sizeof(*p_sb_entry));
439 
440 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_PF_NUMBER, pf_id);
441 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_VF_NUMBER, vf_number);
442 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_VF_VALID, vf_valid);
443 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_SB_TIMESET0, 0x7F);
444 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_SB_TIMESET1, 0x7F);
445 
446 	/* setting the time resultion to a fixed value ( = 1) */
447 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_TIMER_RES0,
448 		  QED_CAU_DEF_RX_TIMER_RES);
449 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_TIMER_RES1,
450 		  QED_CAU_DEF_TX_TIMER_RES);
451 
452 	cau_state = CAU_HC_DISABLE_STATE;
453 
454 	if (p_hwfn->cdev->int_coalescing_mode == QED_COAL_MODE_ENABLE) {
455 		cau_state = CAU_HC_ENABLE_STATE;
456 		if (!p_hwfn->cdev->rx_coalesce_usecs)
457 			p_hwfn->cdev->rx_coalesce_usecs =
458 				QED_CAU_DEF_RX_USECS;
459 		if (!p_hwfn->cdev->tx_coalesce_usecs)
460 			p_hwfn->cdev->tx_coalesce_usecs =
461 				QED_CAU_DEF_TX_USECS;
462 	}
463 
464 	SET_FIELD(p_sb_entry->data, CAU_SB_ENTRY_STATE0, cau_state);
465 	SET_FIELD(p_sb_entry->data, CAU_SB_ENTRY_STATE1, cau_state);
466 }
467 
468 void qed_int_cau_conf_sb(struct qed_hwfn *p_hwfn,
469 			 struct qed_ptt *p_ptt,
470 			 dma_addr_t sb_phys,
471 			 u16 igu_sb_id,
472 			 u16 vf_number,
473 			 u8 vf_valid)
474 {
475 	struct cau_sb_entry sb_entry;
476 	u32 val;
477 
478 	qed_init_cau_sb_entry(p_hwfn, &sb_entry, p_hwfn->rel_pf_id,
479 			      vf_number, vf_valid);
480 
481 	if (p_hwfn->hw_init_done) {
482 		val = CAU_REG_SB_ADDR_MEMORY + igu_sb_id * sizeof(u64);
483 		qed_wr(p_hwfn, p_ptt, val, lower_32_bits(sb_phys));
484 		qed_wr(p_hwfn, p_ptt, val + sizeof(u32),
485 		       upper_32_bits(sb_phys));
486 
487 		val = CAU_REG_SB_VAR_MEMORY + igu_sb_id * sizeof(u64);
488 		qed_wr(p_hwfn, p_ptt, val, sb_entry.data);
489 		qed_wr(p_hwfn, p_ptt, val + sizeof(u32), sb_entry.params);
490 	} else {
491 		/* Initialize Status Block Address */
492 		STORE_RT_REG_AGG(p_hwfn,
493 				 CAU_REG_SB_ADDR_MEMORY_RT_OFFSET +
494 				 igu_sb_id * 2,
495 				 sb_phys);
496 
497 		STORE_RT_REG_AGG(p_hwfn,
498 				 CAU_REG_SB_VAR_MEMORY_RT_OFFSET +
499 				 igu_sb_id * 2,
500 				 sb_entry);
501 	}
502 
503 	/* Configure pi coalescing if set */
504 	if (p_hwfn->cdev->int_coalescing_mode == QED_COAL_MODE_ENABLE) {
505 		u8 timeset = p_hwfn->cdev->rx_coalesce_usecs >>
506 			     (QED_CAU_DEF_RX_TIMER_RES + 1);
507 		u8 num_tc = 1, i;
508 
509 		qed_int_cau_conf_pi(p_hwfn, p_ptt, igu_sb_id, RX_PI,
510 				    QED_COAL_RX_STATE_MACHINE,
511 				    timeset);
512 
513 		timeset = p_hwfn->cdev->tx_coalesce_usecs >>
514 			  (QED_CAU_DEF_TX_TIMER_RES + 1);
515 
516 		for (i = 0; i < num_tc; i++) {
517 			qed_int_cau_conf_pi(p_hwfn, p_ptt,
518 					    igu_sb_id, TX_PI(i),
519 					    QED_COAL_TX_STATE_MACHINE,
520 					    timeset);
521 		}
522 	}
523 }
524 
525 void qed_int_cau_conf_pi(struct qed_hwfn *p_hwfn,
526 			 struct qed_ptt *p_ptt,
527 			 u16 igu_sb_id,
528 			 u32 pi_index,
529 			 enum qed_coalescing_fsm coalescing_fsm,
530 			 u8 timeset)
531 {
532 	struct cau_pi_entry pi_entry;
533 	u32 sb_offset;
534 	u32 pi_offset;
535 
536 	sb_offset = igu_sb_id * PIS_PER_SB;
537 	memset(&pi_entry, 0, sizeof(struct cau_pi_entry));
538 
539 	SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_PI_TIMESET, timeset);
540 	if (coalescing_fsm == QED_COAL_RX_STATE_MACHINE)
541 		SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_FSM_SEL, 0);
542 	else
543 		SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_FSM_SEL, 1);
544 
545 	pi_offset = sb_offset + pi_index;
546 	if (p_hwfn->hw_init_done) {
547 		qed_wr(p_hwfn, p_ptt,
548 		       CAU_REG_PI_MEMORY + pi_offset * sizeof(u32),
549 		       *((u32 *)&(pi_entry)));
550 	} else {
551 		STORE_RT_REG(p_hwfn,
552 			     CAU_REG_PI_MEMORY_RT_OFFSET + pi_offset,
553 			     *((u32 *)&(pi_entry)));
554 	}
555 }
556 
557 void qed_int_sb_setup(struct qed_hwfn *p_hwfn,
558 		      struct qed_ptt *p_ptt,
559 		      struct qed_sb_info *sb_info)
560 {
561 	/* zero status block and ack counter */
562 	sb_info->sb_ack = 0;
563 	memset(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
564 
565 	qed_int_cau_conf_sb(p_hwfn, p_ptt, sb_info->sb_phys,
566 			    sb_info->igu_sb_id, 0, 0);
567 }
568 
569 /**
570  * @brief qed_get_igu_sb_id - given a sw sb_id return the
571  *        igu_sb_id
572  *
573  * @param p_hwfn
574  * @param sb_id
575  *
576  * @return u16
577  */
578 static u16 qed_get_igu_sb_id(struct qed_hwfn *p_hwfn,
579 			     u16 sb_id)
580 {
581 	u16 igu_sb_id;
582 
583 	/* Assuming continuous set of IGU SBs dedicated for given PF */
584 	if (sb_id == QED_SP_SB_ID)
585 		igu_sb_id = p_hwfn->hw_info.p_igu_info->igu_dsb_id;
586 	else
587 		igu_sb_id = sb_id + p_hwfn->hw_info.p_igu_info->igu_base_sb;
588 
589 	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "SB [%s] index is 0x%04x\n",
590 		   (sb_id == QED_SP_SB_ID) ? "DSB" : "non-DSB", igu_sb_id);
591 
592 	return igu_sb_id;
593 }
594 
595 int qed_int_sb_init(struct qed_hwfn *p_hwfn,
596 		    struct qed_ptt *p_ptt,
597 		    struct qed_sb_info *sb_info,
598 		    void *sb_virt_addr,
599 		    dma_addr_t sb_phy_addr,
600 		    u16 sb_id)
601 {
602 	sb_info->sb_virt = sb_virt_addr;
603 	sb_info->sb_phys = sb_phy_addr;
604 
605 	sb_info->igu_sb_id = qed_get_igu_sb_id(p_hwfn, sb_id);
606 
607 	if (sb_id != QED_SP_SB_ID) {
608 		p_hwfn->sbs_info[sb_id] = sb_info;
609 		p_hwfn->num_sbs++;
610 	}
611 
612 	sb_info->cdev = p_hwfn->cdev;
613 
614 	/* The igu address will hold the absolute address that needs to be
615 	 * written to for a specific status block
616 	 */
617 	sb_info->igu_addr = (u8 __iomem *)p_hwfn->regview +
618 					  GTT_BAR0_MAP_REG_IGU_CMD +
619 					  (sb_info->igu_sb_id << 3);
620 
621 	sb_info->flags |= QED_SB_INFO_INIT;
622 
623 	qed_int_sb_setup(p_hwfn, p_ptt, sb_info);
624 
625 	return 0;
626 }
627 
628 int qed_int_sb_release(struct qed_hwfn *p_hwfn,
629 		       struct qed_sb_info *sb_info,
630 		       u16 sb_id)
631 {
632 	if (sb_id == QED_SP_SB_ID) {
633 		DP_ERR(p_hwfn, "Do Not free sp sb using this function");
634 		return -EINVAL;
635 	}
636 
637 	/* zero status block and ack counter */
638 	sb_info->sb_ack = 0;
639 	memset(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
640 
641 	p_hwfn->sbs_info[sb_id] = NULL;
642 	p_hwfn->num_sbs--;
643 
644 	return 0;
645 }
646 
647 static void qed_int_sp_sb_free(struct qed_hwfn *p_hwfn)
648 {
649 	struct qed_sb_sp_info *p_sb = p_hwfn->p_sp_sb;
650 
651 	if (p_sb) {
652 		if (p_sb->sb_info.sb_virt)
653 			dma_free_coherent(&p_hwfn->cdev->pdev->dev,
654 					  SB_ALIGNED_SIZE(p_hwfn),
655 					  p_sb->sb_info.sb_virt,
656 					  p_sb->sb_info.sb_phys);
657 		kfree(p_sb);
658 	}
659 }
660 
661 static int qed_int_sp_sb_alloc(struct qed_hwfn *p_hwfn,
662 			       struct qed_ptt *p_ptt)
663 {
664 	struct qed_sb_sp_info *p_sb;
665 	dma_addr_t p_phys = 0;
666 	void *p_virt;
667 
668 	/* SB struct */
669 	p_sb = kmalloc(sizeof(*p_sb), GFP_ATOMIC);
670 	if (!p_sb) {
671 		DP_NOTICE(p_hwfn, "Failed to allocate `struct qed_sb_info'\n");
672 		return -ENOMEM;
673 	}
674 
675 	/* SB ring  */
676 	p_virt = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
677 				    SB_ALIGNED_SIZE(p_hwfn),
678 				    &p_phys, GFP_KERNEL);
679 	if (!p_virt) {
680 		DP_NOTICE(p_hwfn, "Failed to allocate status block\n");
681 		kfree(p_sb);
682 		return -ENOMEM;
683 	}
684 
685 	/* Status Block setup */
686 	p_hwfn->p_sp_sb = p_sb;
687 	qed_int_sb_init(p_hwfn, p_ptt, &p_sb->sb_info, p_virt,
688 			p_phys, QED_SP_SB_ID);
689 
690 	memset(p_sb->pi_info_arr, 0, sizeof(p_sb->pi_info_arr));
691 
692 	return 0;
693 }
694 
695 static void qed_int_sp_sb_setup(struct qed_hwfn *p_hwfn,
696 				struct qed_ptt *p_ptt)
697 {
698 	if (!p_hwfn)
699 		return;
700 
701 	if (p_hwfn->p_sp_sb)
702 		qed_int_sb_setup(p_hwfn, p_ptt, &p_hwfn->p_sp_sb->sb_info);
703 	else
704 		DP_NOTICE(p_hwfn->cdev,
705 			  "Failed to setup Slow path status block - NULL pointer\n");
706 
707 	if (p_hwfn->p_sb_attn)
708 		qed_int_sb_attn_setup(p_hwfn, p_ptt);
709 	else
710 		DP_NOTICE(p_hwfn->cdev,
711 			  "Failed to setup attentions status block - NULL pointer\n");
712 }
713 
714 int qed_int_register_cb(struct qed_hwfn *p_hwfn,
715 			qed_int_comp_cb_t comp_cb,
716 			void *cookie,
717 			u8 *sb_idx,
718 			__le16 **p_fw_cons)
719 {
720 	struct qed_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
721 	int qed_status = -ENOMEM;
722 	u8 pi;
723 
724 	/* Look for a free index */
725 	for (pi = 0; pi < ARRAY_SIZE(p_sp_sb->pi_info_arr); pi++) {
726 		if (!p_sp_sb->pi_info_arr[pi].comp_cb) {
727 			p_sp_sb->pi_info_arr[pi].comp_cb = comp_cb;
728 			p_sp_sb->pi_info_arr[pi].cookie = cookie;
729 			*sb_idx = pi;
730 			*p_fw_cons = &p_sp_sb->sb_info.sb_virt->pi_array[pi];
731 			qed_status = 0;
732 			break;
733 		}
734 	}
735 
736 	return qed_status;
737 }
738 
739 int qed_int_unregister_cb(struct qed_hwfn *p_hwfn, u8 pi)
740 {
741 	struct qed_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
742 	int qed_status = -ENOMEM;
743 
744 	if (p_sp_sb->pi_info_arr[pi].comp_cb) {
745 		p_sp_sb->pi_info_arr[pi].comp_cb = NULL;
746 		p_sp_sb->pi_info_arr[pi].cookie = NULL;
747 		qed_status = 0;
748 	}
749 
750 	return qed_status;
751 }
752 
753 u16 qed_int_get_sp_sb_id(struct qed_hwfn *p_hwfn)
754 {
755 	return p_hwfn->p_sp_sb->sb_info.igu_sb_id;
756 }
757 
758 void qed_int_igu_enable_int(struct qed_hwfn *p_hwfn,
759 			    struct qed_ptt *p_ptt,
760 			    enum qed_int_mode int_mode)
761 {
762 	u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN | IGU_PF_CONF_ATTN_BIT_EN;
763 
764 	p_hwfn->cdev->int_mode = int_mode;
765 	switch (p_hwfn->cdev->int_mode) {
766 	case QED_INT_MODE_INTA:
767 		igu_pf_conf |= IGU_PF_CONF_INT_LINE_EN;
768 		igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
769 		break;
770 
771 	case QED_INT_MODE_MSI:
772 		igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
773 		igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
774 		break;
775 
776 	case QED_INT_MODE_MSIX:
777 		igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
778 		break;
779 	case QED_INT_MODE_POLL:
780 		break;
781 	}
782 
783 	qed_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, igu_pf_conf);
784 }
785 
786 void qed_int_igu_enable(struct qed_hwfn *p_hwfn,
787 			struct qed_ptt *p_ptt,
788 			enum qed_int_mode int_mode)
789 {
790 	int i;
791 
792 	p_hwfn->b_int_enabled = 1;
793 
794 	/* Mask non-link attentions */
795 	for (i = 0; i < 9; i++)
796 		qed_wr(p_hwfn, p_ptt,
797 		       MISC_REG_AEU_ENABLE1_IGU_OUT_0 + (i << 2), 0);
798 
799 	/* Enable interrupt Generation */
800 	qed_int_igu_enable_int(p_hwfn, p_ptt, int_mode);
801 
802 	/* Configure AEU signal change to produce attentions for link */
803 	qed_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0xfff);
804 	qed_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0xfff);
805 
806 	/* Flush the writes to IGU */
807 	mmiowb();
808 
809 	/* Unmask AEU signals toward IGU */
810 	qed_wr(p_hwfn, p_ptt, MISC_REG_AEU_MASK_ATTN_IGU, 0xff);
811 }
812 
813 void qed_int_igu_disable_int(struct qed_hwfn *p_hwfn,
814 			     struct qed_ptt *p_ptt)
815 {
816 	p_hwfn->b_int_enabled = 0;
817 
818 	qed_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, 0);
819 }
820 
821 #define IGU_CLEANUP_SLEEP_LENGTH                (1000)
822 void qed_int_igu_cleanup_sb(struct qed_hwfn *p_hwfn,
823 			    struct qed_ptt *p_ptt,
824 			    u32 sb_id,
825 			    bool cleanup_set,
826 			    u16 opaque_fid
827 			    )
828 {
829 	u32 pxp_addr = IGU_CMD_INT_ACK_BASE + sb_id;
830 	u32 sleep_cnt = IGU_CLEANUP_SLEEP_LENGTH;
831 	u32 data = 0;
832 	u32 cmd_ctrl = 0;
833 	u32 val = 0;
834 	u32 sb_bit = 0;
835 	u32 sb_bit_addr = 0;
836 
837 	/* Set the data field */
838 	SET_FIELD(data, IGU_CLEANUP_CLEANUP_SET, cleanup_set ? 1 : 0);
839 	SET_FIELD(data, IGU_CLEANUP_CLEANUP_TYPE, 0);
840 	SET_FIELD(data, IGU_CLEANUP_COMMAND_TYPE, IGU_COMMAND_TYPE_SET);
841 
842 	/* Set the control register */
843 	SET_FIELD(cmd_ctrl, IGU_CTRL_REG_PXP_ADDR, pxp_addr);
844 	SET_FIELD(cmd_ctrl, IGU_CTRL_REG_FID, opaque_fid);
845 	SET_FIELD(cmd_ctrl, IGU_CTRL_REG_TYPE, IGU_CTRL_CMD_TYPE_WR);
846 
847 	qed_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_32LSB_DATA, data);
848 
849 	barrier();
850 
851 	qed_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_CTRL, cmd_ctrl);
852 
853 	/* Flush the write to IGU */
854 	mmiowb();
855 
856 	/* calculate where to read the status bit from */
857 	sb_bit = 1 << (sb_id % 32);
858 	sb_bit_addr = sb_id / 32 * sizeof(u32);
859 
860 	sb_bit_addr += IGU_REG_CLEANUP_STATUS_0;
861 
862 	/* Now wait for the command to complete */
863 	do {
864 		val = qed_rd(p_hwfn, p_ptt, sb_bit_addr);
865 
866 		if ((val & sb_bit) == (cleanup_set ? sb_bit : 0))
867 			break;
868 
869 		usleep_range(5000, 10000);
870 	} while (--sleep_cnt);
871 
872 	if (!sleep_cnt)
873 		DP_NOTICE(p_hwfn,
874 			  "Timeout waiting for clear status 0x%08x [for sb %d]\n",
875 			  val, sb_id);
876 }
877 
878 void qed_int_igu_init_pure_rt_single(struct qed_hwfn *p_hwfn,
879 				     struct qed_ptt *p_ptt,
880 				     u32 sb_id,
881 				     u16 opaque,
882 				     bool b_set)
883 {
884 	int pi;
885 
886 	/* Set */
887 	if (b_set)
888 		qed_int_igu_cleanup_sb(p_hwfn, p_ptt, sb_id, 1, opaque);
889 
890 	/* Clear */
891 	qed_int_igu_cleanup_sb(p_hwfn, p_ptt, sb_id, 0, opaque);
892 
893 	/* Clear the CAU for the SB */
894 	for (pi = 0; pi < 12; pi++)
895 		qed_wr(p_hwfn, p_ptt,
896 		       CAU_REG_PI_MEMORY + (sb_id * 12 + pi) * 4, 0);
897 }
898 
899 void qed_int_igu_init_pure_rt(struct qed_hwfn *p_hwfn,
900 			      struct qed_ptt *p_ptt,
901 			      bool b_set,
902 			      bool b_slowpath)
903 {
904 	u32 igu_base_sb = p_hwfn->hw_info.p_igu_info->igu_base_sb;
905 	u32 igu_sb_cnt = p_hwfn->hw_info.p_igu_info->igu_sb_cnt;
906 	u32 sb_id = 0;
907 	u32 val = 0;
908 
909 	val = qed_rd(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION);
910 	val |= IGU_REG_BLOCK_CONFIGURATION_VF_CLEANUP_EN;
911 	val &= ~IGU_REG_BLOCK_CONFIGURATION_PXP_TPH_INTERFACE_EN;
912 	qed_wr(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION, val);
913 
914 	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
915 		   "IGU cleaning SBs [%d,...,%d]\n",
916 		   igu_base_sb, igu_base_sb + igu_sb_cnt - 1);
917 
918 	for (sb_id = igu_base_sb; sb_id < igu_base_sb + igu_sb_cnt; sb_id++)
919 		qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt, sb_id,
920 						p_hwfn->hw_info.opaque_fid,
921 						b_set);
922 
923 	if (b_slowpath) {
924 		sb_id = p_hwfn->hw_info.p_igu_info->igu_dsb_id;
925 		DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
926 			   "IGU cleaning slowpath SB [%d]\n", sb_id);
927 		qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt, sb_id,
928 						p_hwfn->hw_info.opaque_fid,
929 						b_set);
930 	}
931 }
932 
933 int qed_int_igu_read_cam(struct qed_hwfn *p_hwfn,
934 			 struct qed_ptt *p_ptt)
935 {
936 	struct qed_igu_info *p_igu_info;
937 	struct qed_igu_block *blk;
938 	u32 val;
939 	u16 sb_id;
940 	u16 prev_sb_id = 0xFF;
941 
942 	p_hwfn->hw_info.p_igu_info = kzalloc(sizeof(*p_igu_info), GFP_ATOMIC);
943 
944 	if (!p_hwfn->hw_info.p_igu_info)
945 		return -ENOMEM;
946 
947 	p_igu_info = p_hwfn->hw_info.p_igu_info;
948 
949 	/* Initialize base sb / sb cnt for PFs */
950 	p_igu_info->igu_base_sb		= 0xffff;
951 	p_igu_info->igu_sb_cnt		= 0;
952 	p_igu_info->igu_dsb_id		= 0xffff;
953 	p_igu_info->igu_base_sb_iov	= 0xffff;
954 
955 	for (sb_id = 0; sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev);
956 	     sb_id++) {
957 		blk = &p_igu_info->igu_map.igu_blocks[sb_id];
958 
959 		val = qed_rd(p_hwfn, p_ptt,
960 			     IGU_REG_MAPPING_MEMORY + sizeof(u32) * sb_id);
961 
962 		/* stop scanning when hit first invalid PF entry */
963 		if (!GET_FIELD(val, IGU_MAPPING_LINE_VALID) &&
964 		    GET_FIELD(val, IGU_MAPPING_LINE_PF_VALID))
965 			break;
966 
967 		blk->status = QED_IGU_STATUS_VALID;
968 		blk->function_id = GET_FIELD(val,
969 					     IGU_MAPPING_LINE_FUNCTION_NUMBER);
970 		blk->is_pf = GET_FIELD(val, IGU_MAPPING_LINE_PF_VALID);
971 		blk->vector_number = GET_FIELD(val,
972 					       IGU_MAPPING_LINE_VECTOR_NUMBER);
973 
974 		DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
975 			   "IGU_BLOCK[sb_id]:%x:func_id = %d is_pf = %d vector_num = 0x%x\n",
976 			   val, blk->function_id, blk->is_pf,
977 			   blk->vector_number);
978 
979 		if (blk->is_pf) {
980 			if (blk->function_id == p_hwfn->rel_pf_id) {
981 				blk->status |= QED_IGU_STATUS_PF;
982 
983 				if (blk->vector_number == 0) {
984 					if (p_igu_info->igu_dsb_id == 0xffff)
985 						p_igu_info->igu_dsb_id = sb_id;
986 				} else {
987 					if (p_igu_info->igu_base_sb ==
988 					    0xffff) {
989 						p_igu_info->igu_base_sb = sb_id;
990 					} else if (prev_sb_id != sb_id - 1) {
991 						DP_NOTICE(p_hwfn->cdev,
992 							  "consecutive igu vectors for HWFN %x broken",
993 							  p_hwfn->rel_pf_id);
994 						break;
995 					}
996 					prev_sb_id = sb_id;
997 					/* we don't count the default */
998 					(p_igu_info->igu_sb_cnt)++;
999 				}
1000 			}
1001 		}
1002 	}
1003 
1004 	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1005 		   "IGU igu_base_sb=0x%x igu_sb_cnt=%d igu_dsb_id=0x%x\n",
1006 		   p_igu_info->igu_base_sb,
1007 		   p_igu_info->igu_sb_cnt,
1008 		   p_igu_info->igu_dsb_id);
1009 
1010 	if (p_igu_info->igu_base_sb == 0xffff ||
1011 	    p_igu_info->igu_dsb_id == 0xffff ||
1012 	    p_igu_info->igu_sb_cnt == 0) {
1013 		DP_NOTICE(p_hwfn,
1014 			  "IGU CAM returned invalid values igu_base_sb=0x%x igu_sb_cnt=%d igu_dsb_id=0x%x\n",
1015 			   p_igu_info->igu_base_sb,
1016 			   p_igu_info->igu_sb_cnt,
1017 			   p_igu_info->igu_dsb_id);
1018 		return -EINVAL;
1019 	}
1020 
1021 	return 0;
1022 }
1023 
1024 /**
1025  * @brief Initialize igu runtime registers
1026  *
1027  * @param p_hwfn
1028  */
1029 void qed_int_igu_init_rt(struct qed_hwfn *p_hwfn)
1030 {
1031 	u32 igu_pf_conf = 0;
1032 
1033 	igu_pf_conf |= IGU_PF_CONF_FUNC_EN;
1034 
1035 	STORE_RT_REG(p_hwfn, IGU_REG_PF_CONFIGURATION_RT_OFFSET, igu_pf_conf);
1036 }
1037 
1038 u64 qed_int_igu_read_sisr_reg(struct qed_hwfn *p_hwfn)
1039 {
1040 	u64 intr_status = 0;
1041 	u32 intr_status_lo = 0;
1042 	u32 intr_status_hi = 0;
1043 	u32 lsb_igu_cmd_addr = IGU_REG_SISR_MDPC_WMASK_LSB_UPPER -
1044 			       IGU_CMD_INT_ACK_BASE;
1045 	u32 msb_igu_cmd_addr = IGU_REG_SISR_MDPC_WMASK_MSB_UPPER -
1046 			       IGU_CMD_INT_ACK_BASE;
1047 
1048 	intr_status_lo = REG_RD(p_hwfn,
1049 				GTT_BAR0_MAP_REG_IGU_CMD +
1050 				lsb_igu_cmd_addr * 8);
1051 	intr_status_hi = REG_RD(p_hwfn,
1052 				GTT_BAR0_MAP_REG_IGU_CMD +
1053 				msb_igu_cmd_addr * 8);
1054 	intr_status = ((u64)intr_status_hi << 32) + (u64)intr_status_lo;
1055 
1056 	return intr_status;
1057 }
1058 
1059 static void qed_int_sp_dpc_setup(struct qed_hwfn *p_hwfn)
1060 {
1061 	tasklet_init(p_hwfn->sp_dpc,
1062 		     qed_int_sp_dpc, (unsigned long)p_hwfn);
1063 	p_hwfn->b_sp_dpc_enabled = true;
1064 }
1065 
1066 static int qed_int_sp_dpc_alloc(struct qed_hwfn *p_hwfn)
1067 {
1068 	p_hwfn->sp_dpc = kmalloc(sizeof(*p_hwfn->sp_dpc), GFP_ATOMIC);
1069 	if (!p_hwfn->sp_dpc)
1070 		return -ENOMEM;
1071 
1072 	return 0;
1073 }
1074 
1075 static void qed_int_sp_dpc_free(struct qed_hwfn *p_hwfn)
1076 {
1077 	kfree(p_hwfn->sp_dpc);
1078 }
1079 
1080 int qed_int_alloc(struct qed_hwfn *p_hwfn,
1081 		  struct qed_ptt *p_ptt)
1082 {
1083 	int rc = 0;
1084 
1085 	rc = qed_int_sp_dpc_alloc(p_hwfn);
1086 	if (rc) {
1087 		DP_ERR(p_hwfn->cdev, "Failed to allocate sp dpc mem\n");
1088 		return rc;
1089 	}
1090 	rc = qed_int_sp_sb_alloc(p_hwfn, p_ptt);
1091 	if (rc) {
1092 		DP_ERR(p_hwfn->cdev, "Failed to allocate sp sb mem\n");
1093 		return rc;
1094 	}
1095 	rc = qed_int_sb_attn_alloc(p_hwfn, p_ptt);
1096 	if (rc) {
1097 		DP_ERR(p_hwfn->cdev, "Failed to allocate sb attn mem\n");
1098 		return rc;
1099 	}
1100 	return rc;
1101 }
1102 
1103 void qed_int_free(struct qed_hwfn *p_hwfn)
1104 {
1105 	qed_int_sp_sb_free(p_hwfn);
1106 	qed_int_sb_attn_free(p_hwfn);
1107 	qed_int_sp_dpc_free(p_hwfn);
1108 }
1109 
1110 void qed_int_setup(struct qed_hwfn *p_hwfn,
1111 		   struct qed_ptt *p_ptt)
1112 {
1113 	qed_int_sp_sb_setup(p_hwfn, p_ptt);
1114 	qed_int_sp_dpc_setup(p_hwfn);
1115 }
1116 
1117 int qed_int_get_num_sbs(struct qed_hwfn *p_hwfn,
1118 			int *p_iov_blks)
1119 {
1120 	struct qed_igu_info *info = p_hwfn->hw_info.p_igu_info;
1121 
1122 	if (!info)
1123 		return 0;
1124 
1125 	if (p_iov_blks)
1126 		*p_iov_blks = info->free_blks;
1127 
1128 	return info->igu_sb_cnt;
1129 }
1130