xref: /linux/drivers/net/ethernet/qlogic/qed/qed_init_ops.c (revision 95298d63c67673c654c08952672d016212b26054)
1 /* QLogic qed NIC Driver
2  * Copyright (c) 2015-2017  QLogic Corporation
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and /or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 #include <linux/types.h>
34 #include <linux/io.h>
35 #include <linux/delay.h>
36 #include <linux/errno.h>
37 #include <linux/kernel.h>
38 #include <linux/slab.h>
39 #include <linux/string.h>
40 #include "qed.h"
41 #include "qed_hsi.h"
42 #include "qed_hw.h"
43 #include "qed_init_ops.h"
44 #include "qed_reg_addr.h"
45 #include "qed_sriov.h"
46 
47 #define QED_INIT_MAX_POLL_COUNT 100
48 #define QED_INIT_POLL_PERIOD_US 500
49 
50 static u32 pxp_global_win[] = {
51 	0,
52 	0,
53 	0x1c02, /* win 2: addr=0x1c02000, size=4096 bytes */
54 	0x1c80, /* win 3: addr=0x1c80000, size=4096 bytes */
55 	0x1d00, /* win 4: addr=0x1d00000, size=4096 bytes */
56 	0x1d01, /* win 5: addr=0x1d01000, size=4096 bytes */
57 	0x1d02, /* win 6: addr=0x1d02000, size=4096 bytes */
58 	0x1d80, /* win 7: addr=0x1d80000, size=4096 bytes */
59 	0x1d81, /* win 8: addr=0x1d81000, size=4096 bytes */
60 	0x1d82, /* win 9: addr=0x1d82000, size=4096 bytes */
61 	0x1e00, /* win 10: addr=0x1e00000, size=4096 bytes */
62 	0x1e01, /* win 11: addr=0x1e01000, size=4096 bytes */
63 	0x1e80, /* win 12: addr=0x1e80000, size=4096 bytes */
64 	0x1f00, /* win 13: addr=0x1f00000, size=4096 bytes */
65 	0x1c08, /* win 14: addr=0x1c08000, size=4096 bytes */
66 	0,
67 	0,
68 	0,
69 	0,
70 };
71 
72 void qed_init_iro_array(struct qed_dev *cdev)
73 {
74 	cdev->iro_arr = iro_arr;
75 }
76 
77 void qed_init_store_rt_reg(struct qed_hwfn *p_hwfn, u32 rt_offset, u32 val)
78 {
79 	p_hwfn->rt_data.init_val[rt_offset] = val;
80 	p_hwfn->rt_data.b_valid[rt_offset] = true;
81 }
82 
83 void qed_init_store_rt_agg(struct qed_hwfn *p_hwfn,
84 			   u32 rt_offset, u32 *p_val, size_t size)
85 {
86 	size_t i;
87 
88 	for (i = 0; i < size / sizeof(u32); i++) {
89 		p_hwfn->rt_data.init_val[rt_offset + i] = p_val[i];
90 		p_hwfn->rt_data.b_valid[rt_offset + i]	= true;
91 	}
92 }
93 
94 static int qed_init_rt(struct qed_hwfn	*p_hwfn,
95 		       struct qed_ptt *p_ptt,
96 		       u32 addr, u16 rt_offset, u16 size, bool b_must_dmae)
97 {
98 	u32 *p_init_val = &p_hwfn->rt_data.init_val[rt_offset];
99 	bool *p_valid = &p_hwfn->rt_data.b_valid[rt_offset];
100 	u16 i, j, segment;
101 	int rc = 0;
102 
103 	/* Since not all RT entries are initialized, go over the RT and
104 	 * for each segment of initialized values use DMA.
105 	 */
106 	for (i = 0; i < size; i++) {
107 		if (!p_valid[i])
108 			continue;
109 
110 		/* In case there isn't any wide-bus configuration here,
111 		 * simply write the data instead of using dmae.
112 		 */
113 		if (!b_must_dmae) {
114 			qed_wr(p_hwfn, p_ptt, addr + (i << 2), p_init_val[i]);
115 			p_valid[i] = false;
116 			continue;
117 		}
118 
119 		/* Start of a new segment */
120 		for (segment = 1; i + segment < size; segment++)
121 			if (!p_valid[i + segment])
122 				break;
123 
124 		rc = qed_dmae_host2grc(p_hwfn, p_ptt,
125 				       (uintptr_t)(p_init_val + i),
126 				       addr + (i << 2), segment, NULL);
127 		if (rc)
128 			return rc;
129 
130 		/* invalidate after writing */
131 		for (j = i; j < i + segment; j++)
132 			p_valid[j] = false;
133 
134 		/* Jump over the entire segment, including invalid entry */
135 		i += segment;
136 	}
137 
138 	return rc;
139 }
140 
141 int qed_init_alloc(struct qed_hwfn *p_hwfn)
142 {
143 	struct qed_rt_data *rt_data = &p_hwfn->rt_data;
144 
145 	if (IS_VF(p_hwfn->cdev))
146 		return 0;
147 
148 	rt_data->b_valid = kcalloc(RUNTIME_ARRAY_SIZE, sizeof(bool),
149 				   GFP_KERNEL);
150 	if (!rt_data->b_valid)
151 		return -ENOMEM;
152 
153 	rt_data->init_val = kcalloc(RUNTIME_ARRAY_SIZE, sizeof(u32),
154 				    GFP_KERNEL);
155 	if (!rt_data->init_val) {
156 		kfree(rt_data->b_valid);
157 		rt_data->b_valid = NULL;
158 		return -ENOMEM;
159 	}
160 
161 	return 0;
162 }
163 
164 void qed_init_free(struct qed_hwfn *p_hwfn)
165 {
166 	kfree(p_hwfn->rt_data.init_val);
167 	p_hwfn->rt_data.init_val = NULL;
168 	kfree(p_hwfn->rt_data.b_valid);
169 	p_hwfn->rt_data.b_valid = NULL;
170 }
171 
172 static int qed_init_array_dmae(struct qed_hwfn *p_hwfn,
173 			       struct qed_ptt *p_ptt,
174 			       u32 addr,
175 			       u32 dmae_data_offset,
176 			       u32 size,
177 			       const u32 *buf,
178 			       bool b_must_dmae,
179 			       bool b_can_dmae)
180 {
181 	int rc = 0;
182 
183 	/* Perform DMAE only for lengthy enough sections or for wide-bus */
184 	if (!b_can_dmae || (!b_must_dmae && (size < 16))) {
185 		const u32 *data = buf + dmae_data_offset;
186 		u32 i;
187 
188 		for (i = 0; i < size; i++)
189 			qed_wr(p_hwfn, p_ptt, addr + (i << 2), data[i]);
190 	} else {
191 		rc = qed_dmae_host2grc(p_hwfn, p_ptt,
192 				       (uintptr_t)(buf + dmae_data_offset),
193 				       addr, size, NULL);
194 	}
195 
196 	return rc;
197 }
198 
199 static int qed_init_fill_dmae(struct qed_hwfn *p_hwfn,
200 			      struct qed_ptt *p_ptt,
201 			      u32 addr, u32 fill, u32 fill_count)
202 {
203 	static u32 zero_buffer[DMAE_MAX_RW_SIZE];
204 	struct qed_dmae_params params = {};
205 
206 	memset(zero_buffer, 0, sizeof(u32) * DMAE_MAX_RW_SIZE);
207 
208 	/* invoke the DMAE virtual/physical buffer API with
209 	 * 1. DMAE init channel
210 	 * 2. addr,
211 	 * 3. p_hwfb->temp_data,
212 	 * 4. fill_count
213 	 */
214 	SET_FIELD(params.flags, QED_DMAE_PARAMS_RW_REPL_SRC, 0x1);
215 	return qed_dmae_host2grc(p_hwfn, p_ptt,
216 				 (uintptr_t)(&zero_buffer[0]),
217 				 addr, fill_count, &params);
218 }
219 
220 static void qed_init_fill(struct qed_hwfn *p_hwfn,
221 			  struct qed_ptt *p_ptt,
222 			  u32 addr, u32 fill, u32 fill_count)
223 {
224 	u32 i;
225 
226 	for (i = 0; i < fill_count; i++, addr += sizeof(u32))
227 		qed_wr(p_hwfn, p_ptt, addr, fill);
228 }
229 
230 static int qed_init_cmd_array(struct qed_hwfn *p_hwfn,
231 			      struct qed_ptt *p_ptt,
232 			      struct init_write_op *cmd,
233 			      bool b_must_dmae, bool b_can_dmae)
234 {
235 	u32 dmae_array_offset = le32_to_cpu(cmd->args.array_offset);
236 	u32 data = le32_to_cpu(cmd->data);
237 	u32 addr = GET_FIELD(data, INIT_WRITE_OP_ADDRESS) << 2;
238 
239 	u32 offset, output_len, input_len, max_size;
240 	struct qed_dev *cdev = p_hwfn->cdev;
241 	union init_array_hdr *hdr;
242 	const u32 *array_data;
243 	int rc = 0;
244 	u32 size;
245 
246 	array_data = cdev->fw_data->arr_data;
247 
248 	hdr = (union init_array_hdr *)(array_data + dmae_array_offset);
249 	data = le32_to_cpu(hdr->raw.data);
250 	switch (GET_FIELD(data, INIT_ARRAY_RAW_HDR_TYPE)) {
251 	case INIT_ARR_ZIPPED:
252 		offset = dmae_array_offset + 1;
253 		input_len = GET_FIELD(data,
254 				      INIT_ARRAY_ZIPPED_HDR_ZIPPED_SIZE);
255 		max_size = MAX_ZIPPED_SIZE * 4;
256 		memset(p_hwfn->unzip_buf, 0, max_size);
257 
258 		output_len = qed_unzip_data(p_hwfn, input_len,
259 					    (u8 *)&array_data[offset],
260 					    max_size, (u8 *)p_hwfn->unzip_buf);
261 		if (output_len) {
262 			rc = qed_init_array_dmae(p_hwfn, p_ptt, addr, 0,
263 						 output_len,
264 						 p_hwfn->unzip_buf,
265 						 b_must_dmae, b_can_dmae);
266 		} else {
267 			DP_NOTICE(p_hwfn, "Failed to unzip dmae data\n");
268 			rc = -EINVAL;
269 		}
270 		break;
271 	case INIT_ARR_PATTERN:
272 	{
273 		u32 repeats = GET_FIELD(data,
274 					INIT_ARRAY_PATTERN_HDR_REPETITIONS);
275 		u32 i;
276 
277 		size = GET_FIELD(data, INIT_ARRAY_PATTERN_HDR_PATTERN_SIZE);
278 
279 		for (i = 0; i < repeats; i++, addr += size << 2) {
280 			rc = qed_init_array_dmae(p_hwfn, p_ptt, addr,
281 						 dmae_array_offset + 1,
282 						 size, array_data,
283 						 b_must_dmae, b_can_dmae);
284 			if (rc)
285 				break;
286 		}
287 		break;
288 	}
289 	case INIT_ARR_STANDARD:
290 		size = GET_FIELD(data, INIT_ARRAY_STANDARD_HDR_SIZE);
291 		rc = qed_init_array_dmae(p_hwfn, p_ptt, addr,
292 					 dmae_array_offset + 1,
293 					 size, array_data,
294 					 b_must_dmae, b_can_dmae);
295 		break;
296 	}
297 
298 	return rc;
299 }
300 
301 /* init_ops write command */
302 static int qed_init_cmd_wr(struct qed_hwfn *p_hwfn,
303 			   struct qed_ptt *p_ptt,
304 			   struct init_write_op *p_cmd, bool b_can_dmae)
305 {
306 	u32 data = le32_to_cpu(p_cmd->data);
307 	bool b_must_dmae = GET_FIELD(data, INIT_WRITE_OP_WIDE_BUS);
308 	u32 addr = GET_FIELD(data, INIT_WRITE_OP_ADDRESS) << 2;
309 	union init_write_args *arg = &p_cmd->args;
310 	int rc = 0;
311 
312 	/* Sanitize */
313 	if (b_must_dmae && !b_can_dmae) {
314 		DP_NOTICE(p_hwfn,
315 			  "Need to write to %08x for Wide-bus but DMAE isn't allowed\n",
316 			  addr);
317 		return -EINVAL;
318 	}
319 
320 	switch (GET_FIELD(data, INIT_WRITE_OP_SOURCE)) {
321 	case INIT_SRC_INLINE:
322 		data = le32_to_cpu(p_cmd->args.inline_val);
323 		qed_wr(p_hwfn, p_ptt, addr, data);
324 		break;
325 	case INIT_SRC_ZEROS:
326 		data = le32_to_cpu(p_cmd->args.zeros_count);
327 		if (b_must_dmae || (b_can_dmae && (data >= 64)))
328 			rc = qed_init_fill_dmae(p_hwfn, p_ptt, addr, 0, data);
329 		else
330 			qed_init_fill(p_hwfn, p_ptt, addr, 0, data);
331 		break;
332 	case INIT_SRC_ARRAY:
333 		rc = qed_init_cmd_array(p_hwfn, p_ptt, p_cmd,
334 					b_must_dmae, b_can_dmae);
335 		break;
336 	case INIT_SRC_RUNTIME:
337 		qed_init_rt(p_hwfn, p_ptt, addr,
338 			    le16_to_cpu(arg->runtime.offset),
339 			    le16_to_cpu(arg->runtime.size),
340 			    b_must_dmae);
341 		break;
342 	}
343 
344 	return rc;
345 }
346 
347 static inline bool comp_eq(u32 val, u32 expected_val)
348 {
349 	return val == expected_val;
350 }
351 
352 static inline bool comp_and(u32 val, u32 expected_val)
353 {
354 	return (val & expected_val) == expected_val;
355 }
356 
357 static inline bool comp_or(u32 val, u32 expected_val)
358 {
359 	return (val | expected_val) > 0;
360 }
361 
362 /* init_ops read/poll commands */
363 static void qed_init_cmd_rd(struct qed_hwfn *p_hwfn,
364 			    struct qed_ptt *p_ptt, struct init_read_op *cmd)
365 {
366 	bool (*comp_check)(u32 val, u32 expected_val);
367 	u32 delay = QED_INIT_POLL_PERIOD_US, val;
368 	u32 data, addr, poll;
369 	int i;
370 
371 	data = le32_to_cpu(cmd->op_data);
372 	addr = GET_FIELD(data, INIT_READ_OP_ADDRESS) << 2;
373 	poll = GET_FIELD(data, INIT_READ_OP_POLL_TYPE);
374 
375 
376 	val = qed_rd(p_hwfn, p_ptt, addr);
377 
378 	if (poll == INIT_POLL_NONE)
379 		return;
380 
381 	switch (poll) {
382 	case INIT_POLL_EQ:
383 		comp_check = comp_eq;
384 		break;
385 	case INIT_POLL_OR:
386 		comp_check = comp_or;
387 		break;
388 	case INIT_POLL_AND:
389 		comp_check = comp_and;
390 		break;
391 	default:
392 		DP_ERR(p_hwfn, "Invalid poll comparison type %08x\n",
393 		       cmd->op_data);
394 		return;
395 	}
396 
397 	data = le32_to_cpu(cmd->expected_val);
398 	for (i = 0;
399 	     i < QED_INIT_MAX_POLL_COUNT && !comp_check(val, data);
400 	     i++) {
401 		udelay(delay);
402 		val = qed_rd(p_hwfn, p_ptt, addr);
403 	}
404 
405 	if (i == QED_INIT_MAX_POLL_COUNT) {
406 		DP_ERR(p_hwfn,
407 		       "Timeout when polling reg: 0x%08x [ Waiting-for: %08x Got: %08x (comparison %08x)]\n",
408 		       addr, le32_to_cpu(cmd->expected_val),
409 		       val, le32_to_cpu(cmd->op_data));
410 	}
411 }
412 
413 /* init_ops callbacks entry point */
414 static int qed_init_cmd_cb(struct qed_hwfn *p_hwfn,
415 			   struct qed_ptt *p_ptt,
416 			   struct init_callback_op *p_cmd)
417 {
418 	int rc;
419 
420 	switch (p_cmd->callback_id) {
421 	case DMAE_READY_CB:
422 		rc = qed_dmae_sanity(p_hwfn, p_ptt, "engine_phase");
423 		break;
424 	default:
425 		DP_NOTICE(p_hwfn, "Unexpected init op callback ID %d\n",
426 			  p_cmd->callback_id);
427 		return -EINVAL;
428 	}
429 
430 	return rc;
431 }
432 
433 static u8 qed_init_cmd_mode_match(struct qed_hwfn *p_hwfn,
434 				  u16 *p_offset, int modes)
435 {
436 	struct qed_dev *cdev = p_hwfn->cdev;
437 	const u8 *modes_tree_buf;
438 	u8 arg1, arg2, tree_val;
439 
440 	modes_tree_buf = cdev->fw_data->modes_tree_buf;
441 	tree_val = modes_tree_buf[(*p_offset)++];
442 	switch (tree_val) {
443 	case INIT_MODE_OP_NOT:
444 		return qed_init_cmd_mode_match(p_hwfn, p_offset, modes) ^ 1;
445 	case INIT_MODE_OP_OR:
446 		arg1 = qed_init_cmd_mode_match(p_hwfn, p_offset, modes);
447 		arg2 = qed_init_cmd_mode_match(p_hwfn, p_offset, modes);
448 		return arg1 | arg2;
449 	case INIT_MODE_OP_AND:
450 		arg1 = qed_init_cmd_mode_match(p_hwfn, p_offset, modes);
451 		arg2 = qed_init_cmd_mode_match(p_hwfn, p_offset, modes);
452 		return arg1 & arg2;
453 	default:
454 		tree_val -= MAX_INIT_MODE_OPS;
455 		return (modes & BIT(tree_val)) ? 1 : 0;
456 	}
457 }
458 
459 static u32 qed_init_cmd_mode(struct qed_hwfn *p_hwfn,
460 			     struct init_if_mode_op *p_cmd, int modes)
461 {
462 	u16 offset = le16_to_cpu(p_cmd->modes_buf_offset);
463 
464 	if (qed_init_cmd_mode_match(p_hwfn, &offset, modes))
465 		return 0;
466 	else
467 		return GET_FIELD(le32_to_cpu(p_cmd->op_data),
468 				 INIT_IF_MODE_OP_CMD_OFFSET);
469 }
470 
471 static u32 qed_init_cmd_phase(struct qed_hwfn *p_hwfn,
472 			      struct init_if_phase_op *p_cmd,
473 			      u32 phase, u32 phase_id)
474 {
475 	u32 data = le32_to_cpu(p_cmd->phase_data);
476 	u32 op_data = le32_to_cpu(p_cmd->op_data);
477 
478 	if (!(GET_FIELD(data, INIT_IF_PHASE_OP_PHASE) == phase &&
479 	      (GET_FIELD(data, INIT_IF_PHASE_OP_PHASE_ID) == ANY_PHASE_ID ||
480 	       GET_FIELD(data, INIT_IF_PHASE_OP_PHASE_ID) == phase_id)))
481 		return GET_FIELD(op_data, INIT_IF_PHASE_OP_CMD_OFFSET);
482 	else
483 		return 0;
484 }
485 
486 int qed_init_run(struct qed_hwfn *p_hwfn,
487 		 struct qed_ptt *p_ptt, int phase, int phase_id, int modes)
488 {
489 	bool b_dmae = (phase != PHASE_ENGINE);
490 	struct qed_dev *cdev = p_hwfn->cdev;
491 	u32 cmd_num, num_init_ops;
492 	union init_op *init_ops;
493 	int rc = 0;
494 
495 	num_init_ops = cdev->fw_data->init_ops_size;
496 	init_ops = cdev->fw_data->init_ops;
497 
498 	p_hwfn->unzip_buf = kzalloc(MAX_ZIPPED_SIZE * 4, GFP_ATOMIC);
499 	if (!p_hwfn->unzip_buf)
500 		return -ENOMEM;
501 
502 	for (cmd_num = 0; cmd_num < num_init_ops; cmd_num++) {
503 		union init_op *cmd = &init_ops[cmd_num];
504 		u32 data = le32_to_cpu(cmd->raw.op_data);
505 
506 		switch (GET_FIELD(data, INIT_CALLBACK_OP_OP)) {
507 		case INIT_OP_WRITE:
508 			rc = qed_init_cmd_wr(p_hwfn, p_ptt, &cmd->write,
509 					     b_dmae);
510 			break;
511 		case INIT_OP_READ:
512 			qed_init_cmd_rd(p_hwfn, p_ptt, &cmd->read);
513 			break;
514 		case INIT_OP_IF_MODE:
515 			cmd_num += qed_init_cmd_mode(p_hwfn, &cmd->if_mode,
516 						     modes);
517 			break;
518 		case INIT_OP_IF_PHASE:
519 			cmd_num += qed_init_cmd_phase(p_hwfn, &cmd->if_phase,
520 						      phase, phase_id);
521 			break;
522 		case INIT_OP_DELAY:
523 			/* qed_init_run is always invoked from
524 			 * sleep-able context
525 			 */
526 			udelay(le32_to_cpu(cmd->delay.delay));
527 			break;
528 
529 		case INIT_OP_CALLBACK:
530 			rc = qed_init_cmd_cb(p_hwfn, p_ptt, &cmd->callback);
531 			if (phase == PHASE_ENGINE &&
532 			    cmd->callback.callback_id == DMAE_READY_CB)
533 				b_dmae = true;
534 			break;
535 		}
536 
537 		if (rc)
538 			break;
539 	}
540 
541 	kfree(p_hwfn->unzip_buf);
542 	p_hwfn->unzip_buf = NULL;
543 	return rc;
544 }
545 
546 void qed_gtt_init(struct qed_hwfn *p_hwfn)
547 {
548 	u32 gtt_base;
549 	u32 i;
550 
551 	/* Set the global windows */
552 	gtt_base = PXP_PF_WINDOW_ADMIN_START + PXP_PF_WINDOW_ADMIN_GLOBAL_START;
553 
554 	for (i = 0; i < ARRAY_SIZE(pxp_global_win); i++)
555 		if (pxp_global_win[i])
556 			REG_WR(p_hwfn, gtt_base + i * PXP_GLOBAL_ENTRY_SIZE,
557 			       pxp_global_win[i]);
558 }
559 
560 int qed_init_fw_data(struct qed_dev *cdev, const u8 *data)
561 {
562 	struct qed_fw_data *fw = cdev->fw_data;
563 	struct bin_buffer_hdr *buf_hdr;
564 	u32 offset, len;
565 
566 	if (!data) {
567 		DP_NOTICE(cdev, "Invalid fw data\n");
568 		return -EINVAL;
569 	}
570 
571 	/* First Dword contains metadata and should be skipped */
572 	buf_hdr = (struct bin_buffer_hdr *)data;
573 
574 	offset = buf_hdr[BIN_BUF_INIT_FW_VER_INFO].offset;
575 	fw->fw_ver_info = (struct fw_ver_info *)(data + offset);
576 
577 	offset = buf_hdr[BIN_BUF_INIT_CMD].offset;
578 	fw->init_ops = (union init_op *)(data + offset);
579 
580 	offset = buf_hdr[BIN_BUF_INIT_VAL].offset;
581 	fw->arr_data = (u32 *)(data + offset);
582 
583 	offset = buf_hdr[BIN_BUF_INIT_MODE_TREE].offset;
584 	fw->modes_tree_buf = (u8 *)(data + offset);
585 	len = buf_hdr[BIN_BUF_INIT_CMD].length;
586 	fw->init_ops_size = len / sizeof(struct init_raw_op);
587 
588 	offset = buf_hdr[BIN_BUF_INIT_OVERLAYS].offset;
589 	fw->fw_overlays = (u32 *)(data + offset);
590 	len = buf_hdr[BIN_BUF_INIT_OVERLAYS].length;
591 	fw->fw_overlays_len = len;
592 
593 	return 0;
594 }
595