xref: /linux/drivers/net/ethernet/qlogic/qed/qed_init_fw_funcs.c (revision 2c684d892bb2ee31cc48f4a8b91e86a0f15e82f9)
1 /* QLogic qed NIC Driver
2  * Copyright (c) 2015 QLogic Corporation
3  *
4  * This software is available under the terms of the GNU General Public License
5  * (GPL) Version 2, available from the file COPYING in the main directory of
6  * this source tree.
7  */
8 
9 #include <linux/types.h>
10 #include <linux/delay.h>
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/string.h>
14 #include "qed_hsi.h"
15 #include "qed_hw.h"
16 #include "qed_init_ops.h"
17 #include "qed_reg_addr.h"
18 
19 enum cminterface {
20 	MCM_SEC,
21 	MCM_PRI,
22 	UCM_SEC,
23 	UCM_PRI,
24 	TCM_SEC,
25 	TCM_PRI,
26 	YCM_SEC,
27 	YCM_PRI,
28 	XCM_SEC,
29 	XCM_PRI,
30 	NUM_OF_CM_INTERFACES
31 };
32 
33 /* general constants */
34 #define QM_PQ_ELEMENT_SIZE                      4 /* in bytes */
35 #define QM_PQ_MEM_4KB(pq_size)	(pq_size ? DIV_ROUND_UP((pq_size + 1) *	\
36 							QM_PQ_ELEMENT_SIZE, \
37 							0x1000) : 0)
38 #define QM_PQ_SIZE_256B(pq_size)	(pq_size ? DIV_ROUND_UP(pq_size, \
39 								0x100) - 1 : 0)
40 #define QM_INVALID_PQ_ID                        0xffff
41 /* feature enable */
42 #define QM_BYPASS_EN                            1
43 #define QM_BYTE_CRD_EN                          1
44 /* other PQ constants */
45 #define QM_OTHER_PQS_PER_PF                     4
46 /* WFQ constants */
47 #define QM_WFQ_UPPER_BOUND		6250000
48 #define QM_WFQ_VP_PQ_VOQ_SHIFT          0
49 #define QM_WFQ_VP_PQ_PF_SHIFT           5
50 #define QM_WFQ_INC_VAL(weight)          ((weight) * 0x9000)
51 #define QM_WFQ_MAX_INC_VAL                      4375000
52 #define QM_WFQ_INIT_CRD(inc_val)        (2 * (inc_val))
53 /* RL constants */
54 #define QM_RL_UPPER_BOUND                       6250000
55 #define QM_RL_PERIOD                            5               /* in us */
56 #define QM_RL_PERIOD_CLK_25M            (25 * QM_RL_PERIOD)
57 #define QM_RL_INC_VAL(rate)		max_t(u32,	\
58 					      (((rate ? rate : 1000000)	\
59 						* QM_RL_PERIOD) / 8), 1)
60 #define QM_RL_MAX_INC_VAL                       4375000
61 /* AFullOprtnstcCrdMask constants */
62 #define QM_OPPOR_LINE_VOQ_DEF           1
63 #define QM_OPPOR_FW_STOP_DEF            0
64 #define QM_OPPOR_PQ_EMPTY_DEF           1
65 #define EAGLE_WORKAROUND_TC                     7
66 /* Command Queue constants */
67 #define PBF_CMDQ_PURE_LB_LINES                          150
68 #define PBF_CMDQ_EAGLE_WORKAROUND_LINES         8
69 #define PBF_CMDQ_LINES_RT_OFFSET(voq)           (		 \
70 		PBF_REG_YCMD_QS_NUM_LINES_VOQ0_RT_OFFSET + voq * \
71 		(PBF_REG_YCMD_QS_NUM_LINES_VOQ1_RT_OFFSET -	 \
72 		 PBF_REG_YCMD_QS_NUM_LINES_VOQ0_RT_OFFSET))
73 #define PBF_BTB_GUARANTEED_RT_OFFSET(voq)       (	      \
74 		PBF_REG_BTB_GUARANTEED_VOQ0_RT_OFFSET + voq * \
75 		(PBF_REG_BTB_GUARANTEED_VOQ1_RT_OFFSET -      \
76 		 PBF_REG_BTB_GUARANTEED_VOQ0_RT_OFFSET))
77 #define QM_VOQ_LINE_CRD(pbf_cmd_lines)          ((((pbf_cmd_lines) - \
78 						   4) *		     \
79 						  2) | QM_LINE_CRD_REG_SIGN_BIT)
80 /* BTB: blocks constants (block size = 256B) */
81 #define BTB_JUMBO_PKT_BLOCKS            38
82 #define BTB_HEADROOM_BLOCKS                     BTB_JUMBO_PKT_BLOCKS
83 #define BTB_EAGLE_WORKAROUND_BLOCKS     4
84 #define BTB_PURE_LB_FACTOR                      10
85 #define BTB_PURE_LB_RATIO                       7
86 /* QM stop command constants */
87 #define QM_STOP_PQ_MASK_WIDTH                   32
88 #define QM_STOP_CMD_ADDR                                0x2
89 #define QM_STOP_CMD_STRUCT_SIZE                 2
90 #define QM_STOP_CMD_PAUSE_MASK_OFFSET   0
91 #define QM_STOP_CMD_PAUSE_MASK_SHIFT    0
92 #define QM_STOP_CMD_PAUSE_MASK_MASK             -1
93 #define QM_STOP_CMD_GROUP_ID_OFFSET             1
94 #define QM_STOP_CMD_GROUP_ID_SHIFT              16
95 #define QM_STOP_CMD_GROUP_ID_MASK               15
96 #define QM_STOP_CMD_PQ_TYPE_OFFSET              1
97 #define QM_STOP_CMD_PQ_TYPE_SHIFT               24
98 #define QM_STOP_CMD_PQ_TYPE_MASK                1
99 #define QM_STOP_CMD_MAX_POLL_COUNT              100
100 #define QM_STOP_CMD_POLL_PERIOD_US              500
101 /* QM command macros */
102 #define QM_CMD_STRUCT_SIZE(cmd)			cmd ## \
103 	_STRUCT_SIZE
104 #define QM_CMD_SET_FIELD(var, cmd, field,				  \
105 			 value)        SET_FIELD(var[cmd ## _ ## field ## \
106 						     _OFFSET],		  \
107 						 cmd ## _ ## field,	  \
108 						 value)
109 /* QM: VOQ macros */
110 #define PHYS_VOQ(port, tc, max_phy_tcs_pr_port)	((port) *	\
111 						 (max_phy_tcs_pr_port) \
112 						 + (tc))
113 #define LB_VOQ(port)				( \
114 		MAX_PHYS_VOQS + (port))
115 #define VOQ(port, tc, max_phy_tcs_pr_port)	\
116 	((tc) <		\
117 	 LB_TC ? PHYS_VOQ(port,		\
118 			  tc,			 \
119 			  max_phy_tcs_pr_port) \
120 		: LB_VOQ(port))
121 /******************** INTERNAL IMPLEMENTATION *********************/
122 /* Prepare PF RL enable/disable runtime init values */
123 static void qed_enable_pf_rl(struct qed_hwfn *p_hwfn,
124 			     bool pf_rl_en)
125 {
126 	STORE_RT_REG(p_hwfn, QM_REG_RLPFENABLE_RT_OFFSET, pf_rl_en ? 1 : 0);
127 	if (pf_rl_en) {
128 		/* enable RLs for all VOQs */
129 		STORE_RT_REG(p_hwfn, QM_REG_RLPFVOQENABLE_RT_OFFSET,
130 			     (1 << MAX_NUM_VOQS) - 1);
131 		/* write RL period */
132 		STORE_RT_REG(p_hwfn,
133 			     QM_REG_RLPFPERIOD_RT_OFFSET,
134 			     QM_RL_PERIOD_CLK_25M);
135 		STORE_RT_REG(p_hwfn,
136 			     QM_REG_RLPFPERIODTIMER_RT_OFFSET,
137 			     QM_RL_PERIOD_CLK_25M);
138 		/* set credit threshold for QM bypass flow */
139 		if (QM_BYPASS_EN)
140 			STORE_RT_REG(p_hwfn,
141 				     QM_REG_AFULLQMBYPTHRPFRL_RT_OFFSET,
142 				     QM_RL_UPPER_BOUND);
143 	}
144 }
145 
146 /* Prepare PF WFQ enable/disable runtime init values */
147 static void qed_enable_pf_wfq(struct qed_hwfn *p_hwfn,
148 			      bool pf_wfq_en)
149 {
150 	STORE_RT_REG(p_hwfn, QM_REG_WFQPFENABLE_RT_OFFSET, pf_wfq_en ? 1 : 0);
151 	/* set credit threshold for QM bypass flow */
152 	if (pf_wfq_en && QM_BYPASS_EN)
153 		STORE_RT_REG(p_hwfn,
154 			     QM_REG_AFULLQMBYPTHRPFWFQ_RT_OFFSET,
155 			     QM_WFQ_UPPER_BOUND);
156 }
157 
158 /* Prepare VPORT RL enable/disable runtime init values */
159 static void qed_enable_vport_rl(struct qed_hwfn *p_hwfn,
160 				bool vport_rl_en)
161 {
162 	STORE_RT_REG(p_hwfn, QM_REG_RLGLBLENABLE_RT_OFFSET,
163 		     vport_rl_en ? 1 : 0);
164 	if (vport_rl_en) {
165 		/* write RL period (use timer 0 only) */
166 		STORE_RT_REG(p_hwfn,
167 			     QM_REG_RLGLBLPERIOD_0_RT_OFFSET,
168 			     QM_RL_PERIOD_CLK_25M);
169 		STORE_RT_REG(p_hwfn,
170 			     QM_REG_RLGLBLPERIODTIMER_0_RT_OFFSET,
171 			     QM_RL_PERIOD_CLK_25M);
172 		/* set credit threshold for QM bypass flow */
173 		if (QM_BYPASS_EN)
174 			STORE_RT_REG(p_hwfn,
175 				     QM_REG_AFULLQMBYPTHRGLBLRL_RT_OFFSET,
176 				     QM_RL_UPPER_BOUND);
177 	}
178 }
179 
180 /* Prepare VPORT WFQ enable/disable runtime init values */
181 static void qed_enable_vport_wfq(struct qed_hwfn *p_hwfn,
182 				 bool vport_wfq_en)
183 {
184 	STORE_RT_REG(p_hwfn, QM_REG_WFQVPENABLE_RT_OFFSET,
185 		     vport_wfq_en ? 1 : 0);
186 	/* set credit threshold for QM bypass flow */
187 	if (vport_wfq_en && QM_BYPASS_EN)
188 		STORE_RT_REG(p_hwfn,
189 			     QM_REG_AFULLQMBYPTHRVPWFQ_RT_OFFSET,
190 			     QM_WFQ_UPPER_BOUND);
191 }
192 
193 /* Prepare runtime init values to allocate PBF command queue lines for
194  * the specified VOQ
195  */
196 static void qed_cmdq_lines_voq_rt_init(struct qed_hwfn *p_hwfn,
197 				       u8 voq,
198 				       u16 cmdq_lines)
199 {
200 	u32 qm_line_crd;
201 
202 	/* In A0 - Limit the size of pbf queue so that only 511 commands with
203 	 * the minimum size of 4 (FCoE minimum size)
204 	 */
205 	bool is_bb_a0 = QED_IS_BB_A0(p_hwfn->cdev);
206 
207 	if (is_bb_a0)
208 		cmdq_lines = min_t(u32, cmdq_lines, 1022);
209 	qm_line_crd = QM_VOQ_LINE_CRD(cmdq_lines);
210 	OVERWRITE_RT_REG(p_hwfn, PBF_CMDQ_LINES_RT_OFFSET(voq),
211 			 (u32)cmdq_lines);
212 	STORE_RT_REG(p_hwfn, QM_REG_VOQCRDLINE_RT_OFFSET + voq, qm_line_crd);
213 	STORE_RT_REG(p_hwfn, QM_REG_VOQINITCRDLINE_RT_OFFSET + voq,
214 		     qm_line_crd);
215 }
216 
217 /* Prepare runtime init values to allocate PBF command queue lines. */
218 static void qed_cmdq_lines_rt_init(
219 	struct qed_hwfn *p_hwfn,
220 	u8 max_ports_per_engine,
221 	u8 max_phys_tcs_per_port,
222 	struct init_qm_port_params port_params[MAX_NUM_PORTS])
223 {
224 	u8 tc, voq, port_id;
225 
226 	/* clear PBF lines for all VOQs */
227 	for (voq = 0; voq < MAX_NUM_VOQS; voq++)
228 		STORE_RT_REG(p_hwfn, PBF_CMDQ_LINES_RT_OFFSET(voq), 0);
229 	for (port_id = 0; port_id < max_ports_per_engine; port_id++) {
230 		if (port_params[port_id].active) {
231 			u16 phys_lines, phys_lines_per_tc;
232 			u8 phys_tcs = port_params[port_id].num_active_phys_tcs;
233 
234 			/* find #lines to divide between the active
235 			 * physical TCs.
236 			 */
237 			phys_lines = port_params[port_id].num_pbf_cmd_lines -
238 				     PBF_CMDQ_PURE_LB_LINES;
239 			/* find #lines per active physical TC */
240 			phys_lines_per_tc = phys_lines / phys_tcs;
241 			/* init registers per active TC */
242 			for (tc = 0; tc < phys_tcs; tc++) {
243 				voq = PHYS_VOQ(port_id, tc,
244 					       max_phys_tcs_per_port);
245 				qed_cmdq_lines_voq_rt_init(p_hwfn, voq,
246 							   phys_lines_per_tc);
247 			}
248 			/* init registers for pure LB TC */
249 			qed_cmdq_lines_voq_rt_init(p_hwfn, LB_VOQ(port_id),
250 						   PBF_CMDQ_PURE_LB_LINES);
251 		}
252 	}
253 }
254 
255 static void qed_btb_blocks_rt_init(
256 	struct qed_hwfn *p_hwfn,
257 	u8 max_ports_per_engine,
258 	u8 max_phys_tcs_per_port,
259 	struct init_qm_port_params port_params[MAX_NUM_PORTS])
260 {
261 	u32 usable_blocks, pure_lb_blocks, phys_blocks;
262 	u8 tc, voq, port_id;
263 
264 	for (port_id = 0; port_id < max_ports_per_engine; port_id++) {
265 		u32 temp;
266 		u8 phys_tcs;
267 
268 		if (!port_params[port_id].active)
269 			continue;
270 
271 		phys_tcs = port_params[port_id].num_active_phys_tcs;
272 
273 		/* subtract headroom blocks */
274 		usable_blocks = port_params[port_id].num_btb_blocks -
275 				BTB_HEADROOM_BLOCKS;
276 
277 		/* find blocks per physical TC. use factor to avoid
278 		 * floating arithmethic.
279 		 */
280 		pure_lb_blocks = (usable_blocks * BTB_PURE_LB_FACTOR) /
281 				 (phys_tcs * BTB_PURE_LB_FACTOR +
282 				  BTB_PURE_LB_RATIO);
283 		pure_lb_blocks = max_t(u32, BTB_JUMBO_PKT_BLOCKS,
284 				       pure_lb_blocks / BTB_PURE_LB_FACTOR);
285 		phys_blocks = (usable_blocks - pure_lb_blocks) / phys_tcs;
286 
287 		/* init physical TCs */
288 		for (tc = 0; tc < phys_tcs; tc++) {
289 			voq = PHYS_VOQ(port_id, tc, max_phys_tcs_per_port);
290 			STORE_RT_REG(p_hwfn, PBF_BTB_GUARANTEED_RT_OFFSET(voq),
291 				     phys_blocks);
292 		}
293 
294 		/* init pure LB TC */
295 		temp = LB_VOQ(port_id);
296 		STORE_RT_REG(p_hwfn, PBF_BTB_GUARANTEED_RT_OFFSET(temp),
297 			     pure_lb_blocks);
298 	}
299 }
300 
301 /* Prepare Tx PQ mapping runtime init values for the specified PF */
302 static void qed_tx_pq_map_rt_init(
303 	struct qed_hwfn *p_hwfn,
304 	struct qed_ptt *p_ptt,
305 	struct qed_qm_pf_rt_init_params *p_params,
306 	u32 base_mem_addr_4kb)
307 {
308 	struct init_qm_vport_params *vport_params = p_params->vport_params;
309 	u16 num_pqs = p_params->num_pf_pqs + p_params->num_vf_pqs;
310 	u16 first_pq_group = p_params->start_pq / QM_PF_QUEUE_GROUP_SIZE;
311 	u16 last_pq_group = (p_params->start_pq + num_pqs - 1) /
312 			    QM_PF_QUEUE_GROUP_SIZE;
313 	bool is_bb_a0 = QED_IS_BB_A0(p_hwfn->cdev);
314 	u16 i, pq_id, pq_group;
315 
316 	/* a bit per Tx PQ indicating if the PQ is associated with a VF */
317 	u32 tx_pq_vf_mask[MAX_QM_TX_QUEUES / QM_PF_QUEUE_GROUP_SIZE] = { 0 };
318 	u32 tx_pq_vf_mask_width = is_bb_a0 ? 32 : QM_PF_QUEUE_GROUP_SIZE;
319 	u32 num_tx_pq_vf_masks = MAX_QM_TX_QUEUES / tx_pq_vf_mask_width;
320 	u32 pq_mem_4kb = QM_PQ_MEM_4KB(p_params->num_pf_cids);
321 	u32 vport_pq_mem_4kb = QM_PQ_MEM_4KB(p_params->num_vf_cids);
322 	u32 mem_addr_4kb = base_mem_addr_4kb;
323 
324 	/* set mapping from PQ group to PF */
325 	for (pq_group = first_pq_group; pq_group <= last_pq_group; pq_group++)
326 		STORE_RT_REG(p_hwfn, QM_REG_PQTX2PF_0_RT_OFFSET + pq_group,
327 			     (u32)(p_params->pf_id));
328 	/* set PQ sizes */
329 	STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_0_RT_OFFSET,
330 		     QM_PQ_SIZE_256B(p_params->num_pf_cids));
331 	STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_1_RT_OFFSET,
332 		     QM_PQ_SIZE_256B(p_params->num_vf_cids));
333 
334 	/* go over all Tx PQs */
335 	for (i = 0, pq_id = p_params->start_pq; i < num_pqs; i++, pq_id++) {
336 		u8 voq = VOQ(p_params->port_id, p_params->pq_params[i].tc_id,
337 			     p_params->max_phys_tcs_per_port);
338 		bool is_vf_pq = (i >= p_params->num_pf_pqs);
339 		struct qm_rf_pq_map tx_pq_map;
340 
341 		/* update first Tx PQ of VPORT/TC */
342 		u8 vport_id_in_pf = p_params->pq_params[i].vport_id -
343 				    p_params->start_vport;
344 		u16 *pq_ids = &vport_params[vport_id_in_pf].first_tx_pq_id[0];
345 		u16 first_tx_pq_id = pq_ids[p_params->pq_params[i].tc_id];
346 
347 		if (first_tx_pq_id == QM_INVALID_PQ_ID) {
348 			/* create new VP PQ */
349 			pq_ids[p_params->pq_params[i].tc_id] = pq_id;
350 			first_tx_pq_id = pq_id;
351 			/* map VP PQ to VOQ and PF */
352 			STORE_RT_REG(p_hwfn,
353 				     QM_REG_WFQVPMAP_RT_OFFSET +
354 				     first_tx_pq_id,
355 				     (voq << QM_WFQ_VP_PQ_VOQ_SHIFT) |
356 				     (p_params->pf_id <<
357 				      QM_WFQ_VP_PQ_PF_SHIFT));
358 		}
359 		/* fill PQ map entry */
360 		memset(&tx_pq_map, 0, sizeof(tx_pq_map));
361 		SET_FIELD(tx_pq_map.reg, QM_RF_PQ_MAP_PQ_VALID, 1);
362 		SET_FIELD(tx_pq_map.reg, QM_RF_PQ_MAP_RL_VALID,
363 			  is_vf_pq ? 1 : 0);
364 		SET_FIELD(tx_pq_map.reg, QM_RF_PQ_MAP_VP_PQ_ID, first_tx_pq_id);
365 		SET_FIELD(tx_pq_map.reg, QM_RF_PQ_MAP_RL_ID,
366 			  is_vf_pq ? p_params->pq_params[i].vport_id : 0);
367 		SET_FIELD(tx_pq_map.reg, QM_RF_PQ_MAP_VOQ, voq);
368 		SET_FIELD(tx_pq_map.reg, QM_RF_PQ_MAP_WRR_WEIGHT_GROUP,
369 			  p_params->pq_params[i].wrr_group);
370 		/* write PQ map entry to CAM */
371 		STORE_RT_REG(p_hwfn, QM_REG_TXPQMAP_RT_OFFSET + pq_id,
372 			     *((u32 *)&tx_pq_map));
373 		/* set base address */
374 		STORE_RT_REG(p_hwfn,
375 			     QM_REG_BASEADDRTXPQ_RT_OFFSET + pq_id,
376 			     mem_addr_4kb);
377 		/* check if VF PQ */
378 		if (is_vf_pq) {
379 			/* if PQ is associated with a VF, add indication
380 			 * to PQ VF mask
381 			 */
382 			tx_pq_vf_mask[pq_id / tx_pq_vf_mask_width] |=
383 				(1 << (pq_id % tx_pq_vf_mask_width));
384 			mem_addr_4kb += vport_pq_mem_4kb;
385 		} else {
386 			mem_addr_4kb += pq_mem_4kb;
387 		}
388 	}
389 
390 	/* store Tx PQ VF mask to size select register */
391 	for (i = 0; i < num_tx_pq_vf_masks; i++) {
392 		if (tx_pq_vf_mask[i]) {
393 			if (is_bb_a0) {
394 				u32 curr_mask = 0, addr;
395 
396 				addr = QM_REG_MAXPQSIZETXSEL_0 + (i * 4);
397 				if (!p_params->is_first_pf)
398 					curr_mask = qed_rd(p_hwfn, p_ptt,
399 							   addr);
400 
401 				addr = QM_REG_MAXPQSIZETXSEL_0_RT_OFFSET + i;
402 
403 				STORE_RT_REG(p_hwfn, addr,
404 					     curr_mask | tx_pq_vf_mask[i]);
405 			} else {
406 				u32 addr;
407 
408 				addr = QM_REG_MAXPQSIZETXSEL_0_RT_OFFSET + i;
409 				STORE_RT_REG(p_hwfn, addr,
410 					     tx_pq_vf_mask[i]);
411 			}
412 		}
413 	}
414 }
415 
416 /* Prepare Other PQ mapping runtime init values for the specified PF */
417 static void qed_other_pq_map_rt_init(struct qed_hwfn *p_hwfn,
418 				     u8 port_id,
419 				     u8 pf_id,
420 				     u32 num_pf_cids,
421 				     u32 num_tids,
422 				     u32 base_mem_addr_4kb)
423 {
424 	u16 i, pq_id;
425 
426 	/* a single other PQ group is used in each PF,
427 	 * where PQ group i is used in PF i.
428 	 */
429 	u16 pq_group = pf_id;
430 	u32 pq_size = num_pf_cids + num_tids;
431 	u32 pq_mem_4kb = QM_PQ_MEM_4KB(pq_size);
432 	u32 mem_addr_4kb = base_mem_addr_4kb;
433 
434 	/* map PQ group to PF */
435 	STORE_RT_REG(p_hwfn, QM_REG_PQOTHER2PF_0_RT_OFFSET + pq_group,
436 		     (u32)(pf_id));
437 	/* set PQ sizes */
438 	STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_2_RT_OFFSET,
439 		     QM_PQ_SIZE_256B(pq_size));
440 	/* set base address */
441 	for (i = 0, pq_id = pf_id * QM_PF_QUEUE_GROUP_SIZE;
442 	     i < QM_OTHER_PQS_PER_PF; i++, pq_id++) {
443 		STORE_RT_REG(p_hwfn,
444 			     QM_REG_BASEADDROTHERPQ_RT_OFFSET + pq_id,
445 			     mem_addr_4kb);
446 		mem_addr_4kb += pq_mem_4kb;
447 	}
448 }
449 
450 /* Prepare PF WFQ runtime init values for the specified PF.
451  * Return -1 on error.
452  */
453 static int qed_pf_wfq_rt_init(struct qed_hwfn *p_hwfn,
454 			      struct qed_qm_pf_rt_init_params *p_params)
455 {
456 	u16 num_tx_pqs = p_params->num_pf_pqs + p_params->num_vf_pqs;
457 	u32 crd_reg_offset;
458 	u32 inc_val;
459 	u16 i;
460 
461 	if (p_params->pf_id < MAX_NUM_PFS_BB)
462 		crd_reg_offset = QM_REG_WFQPFCRD_RT_OFFSET;
463 	else
464 		crd_reg_offset = QM_REG_WFQPFCRD_MSB_RT_OFFSET +
465 				 (p_params->pf_id % MAX_NUM_PFS_BB);
466 
467 	inc_val = QM_WFQ_INC_VAL(p_params->pf_wfq);
468 	if (inc_val > QM_WFQ_MAX_INC_VAL) {
469 		DP_NOTICE(p_hwfn, "Invalid PF WFQ weight configuration");
470 		return -1;
471 	}
472 	STORE_RT_REG(p_hwfn, QM_REG_WFQPFWEIGHT_RT_OFFSET + p_params->pf_id,
473 		     inc_val);
474 	STORE_RT_REG(p_hwfn,
475 		     QM_REG_WFQPFUPPERBOUND_RT_OFFSET + p_params->pf_id,
476 		     QM_WFQ_UPPER_BOUND | QM_WFQ_CRD_REG_SIGN_BIT);
477 
478 	for (i = 0; i < num_tx_pqs; i++) {
479 		u8 voq = VOQ(p_params->port_id, p_params->pq_params[i].tc_id,
480 			     p_params->max_phys_tcs_per_port);
481 
482 		OVERWRITE_RT_REG(p_hwfn,
483 				 crd_reg_offset + voq * MAX_NUM_PFS_BB,
484 				 QM_WFQ_INIT_CRD(inc_val) |
485 				 QM_WFQ_CRD_REG_SIGN_BIT);
486 	}
487 
488 	return 0;
489 }
490 
491 /* Prepare PF RL runtime init values for the specified PF.
492  * Return -1 on error.
493  */
494 static int qed_pf_rl_rt_init(struct qed_hwfn *p_hwfn,
495 			     u8 pf_id,
496 			     u32 pf_rl)
497 {
498 	u32 inc_val = QM_RL_INC_VAL(pf_rl);
499 
500 	if (inc_val > QM_RL_MAX_INC_VAL) {
501 		DP_NOTICE(p_hwfn, "Invalid PF rate limit configuration");
502 		return -1;
503 	}
504 	STORE_RT_REG(p_hwfn, QM_REG_RLPFCRD_RT_OFFSET + pf_id,
505 		     QM_RL_CRD_REG_SIGN_BIT);
506 	STORE_RT_REG(p_hwfn, QM_REG_RLPFUPPERBOUND_RT_OFFSET + pf_id,
507 		     QM_RL_UPPER_BOUND | QM_RL_CRD_REG_SIGN_BIT);
508 	STORE_RT_REG(p_hwfn, QM_REG_RLPFINCVAL_RT_OFFSET + pf_id, inc_val);
509 	return 0;
510 }
511 
512 /* Prepare VPORT WFQ runtime init values for the specified VPORTs.
513  * Return -1 on error.
514  */
515 static int qed_vp_wfq_rt_init(struct qed_hwfn *p_hwfn,
516 			      u8 start_vport,
517 			      u8 num_vports,
518 			      struct init_qm_vport_params *vport_params)
519 {
520 	u8 tc, i, vport_id;
521 	u32 inc_val;
522 
523 	/* go over all PF VPORTs */
524 	for (i = 0, vport_id = start_vport; i < num_vports; i++, vport_id++) {
525 		u32 temp = QM_REG_WFQVPUPPERBOUND_RT_OFFSET;
526 		u16 *pq_ids = &vport_params[i].first_tx_pq_id[0];
527 
528 		if (!vport_params[i].vport_wfq)
529 			continue;
530 
531 		inc_val = QM_WFQ_INC_VAL(vport_params[i].vport_wfq);
532 		if (inc_val > QM_WFQ_MAX_INC_VAL) {
533 			DP_NOTICE(p_hwfn,
534 				  "Invalid VPORT WFQ weight configuration");
535 			return -1;
536 		}
537 
538 		/* each VPORT can have several VPORT PQ IDs for
539 		 * different TCs
540 		 */
541 		for (tc = 0; tc < NUM_OF_TCS; tc++) {
542 			u16 vport_pq_id = pq_ids[tc];
543 
544 			if (vport_pq_id != QM_INVALID_PQ_ID) {
545 				STORE_RT_REG(p_hwfn,
546 					     QM_REG_WFQVPWEIGHT_RT_OFFSET +
547 					     vport_pq_id, inc_val);
548 				STORE_RT_REG(p_hwfn, temp + vport_pq_id,
549 					     QM_WFQ_UPPER_BOUND |
550 					     QM_WFQ_CRD_REG_SIGN_BIT);
551 				STORE_RT_REG(p_hwfn,
552 					     QM_REG_WFQVPCRD_RT_OFFSET +
553 					     vport_pq_id,
554 					     QM_WFQ_INIT_CRD(inc_val) |
555 					     QM_WFQ_CRD_REG_SIGN_BIT);
556 			}
557 		}
558 	}
559 
560 	return 0;
561 }
562 
563 static int qed_vport_rl_rt_init(struct qed_hwfn *p_hwfn,
564 				u8 start_vport,
565 				u8 num_vports,
566 				struct init_qm_vport_params *vport_params)
567 {
568 	u8 i, vport_id;
569 
570 	/* go over all PF VPORTs */
571 	for (i = 0, vport_id = start_vport; i < num_vports; i++, vport_id++) {
572 		u32 inc_val = QM_RL_INC_VAL(vport_params[i].vport_rl);
573 
574 		if (inc_val > QM_RL_MAX_INC_VAL) {
575 			DP_NOTICE(p_hwfn,
576 				  "Invalid VPORT rate-limit configuration");
577 			return -1;
578 		}
579 
580 		STORE_RT_REG(p_hwfn,
581 			     QM_REG_RLGLBLCRD_RT_OFFSET + vport_id,
582 			     QM_RL_CRD_REG_SIGN_BIT);
583 		STORE_RT_REG(p_hwfn,
584 			     QM_REG_RLGLBLUPPERBOUND_RT_OFFSET + vport_id,
585 			     QM_RL_UPPER_BOUND | QM_RL_CRD_REG_SIGN_BIT);
586 		STORE_RT_REG(p_hwfn,
587 			     QM_REG_RLGLBLINCVAL_RT_OFFSET + vport_id,
588 			     inc_val);
589 	}
590 
591 	return 0;
592 }
593 
594 static bool qed_poll_on_qm_cmd_ready(struct qed_hwfn *p_hwfn,
595 				     struct qed_ptt *p_ptt)
596 {
597 	u32 reg_val, i;
598 
599 	for (i = 0, reg_val = 0; i < QM_STOP_CMD_MAX_POLL_COUNT && reg_val == 0;
600 	     i++) {
601 		udelay(QM_STOP_CMD_POLL_PERIOD_US);
602 		reg_val = qed_rd(p_hwfn, p_ptt, QM_REG_SDMCMDREADY);
603 	}
604 
605 	/* check if timeout while waiting for SDM command ready */
606 	if (i == QM_STOP_CMD_MAX_POLL_COUNT) {
607 		DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
608 			   "Timeout when waiting for QM SDM command ready signal\n");
609 		return false;
610 	}
611 
612 	return true;
613 }
614 
615 static bool qed_send_qm_cmd(struct qed_hwfn *p_hwfn,
616 			    struct qed_ptt *p_ptt,
617 			    u32 cmd_addr,
618 			    u32 cmd_data_lsb,
619 			    u32 cmd_data_msb)
620 {
621 	if (!qed_poll_on_qm_cmd_ready(p_hwfn, p_ptt))
622 		return false;
623 
624 	qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDADDR, cmd_addr);
625 	qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDDATALSB, cmd_data_lsb);
626 	qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDDATAMSB, cmd_data_msb);
627 	qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDGO, 1);
628 	qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDGO, 0);
629 
630 	return qed_poll_on_qm_cmd_ready(p_hwfn, p_ptt);
631 }
632 
633 /******************** INTERFACE IMPLEMENTATION *********************/
634 u32 qed_qm_pf_mem_size(u8 pf_id,
635 		       u32 num_pf_cids,
636 		       u32 num_vf_cids,
637 		       u32 num_tids,
638 		       u16 num_pf_pqs,
639 		       u16 num_vf_pqs)
640 {
641 	return QM_PQ_MEM_4KB(num_pf_cids) * num_pf_pqs +
642 	       QM_PQ_MEM_4KB(num_vf_cids) * num_vf_pqs +
643 	       QM_PQ_MEM_4KB(num_pf_cids + num_tids) * QM_OTHER_PQS_PER_PF;
644 }
645 
646 int qed_qm_common_rt_init(
647 	struct qed_hwfn *p_hwfn,
648 	struct qed_qm_common_rt_init_params *p_params)
649 {
650 	/* init AFullOprtnstcCrdMask */
651 	u32 mask = (QM_OPPOR_LINE_VOQ_DEF <<
652 		    QM_RF_OPPORTUNISTIC_MASK_LINEVOQ_SHIFT) |
653 		   (QM_BYTE_CRD_EN << QM_RF_OPPORTUNISTIC_MASK_BYTEVOQ_SHIFT) |
654 		   (p_params->pf_wfq_en <<
655 		    QM_RF_OPPORTUNISTIC_MASK_PFWFQ_SHIFT) |
656 		   (p_params->vport_wfq_en <<
657 		    QM_RF_OPPORTUNISTIC_MASK_VPWFQ_SHIFT) |
658 		   (p_params->pf_rl_en <<
659 		    QM_RF_OPPORTUNISTIC_MASK_PFRL_SHIFT) |
660 		   (p_params->vport_rl_en <<
661 		    QM_RF_OPPORTUNISTIC_MASK_VPQCNRL_SHIFT) |
662 		   (QM_OPPOR_FW_STOP_DEF <<
663 		    QM_RF_OPPORTUNISTIC_MASK_FWPAUSE_SHIFT) |
664 		   (QM_OPPOR_PQ_EMPTY_DEF <<
665 		    QM_RF_OPPORTUNISTIC_MASK_QUEUEEMPTY_SHIFT);
666 
667 	STORE_RT_REG(p_hwfn, QM_REG_AFULLOPRTNSTCCRDMASK_RT_OFFSET, mask);
668 	qed_enable_pf_rl(p_hwfn, p_params->pf_rl_en);
669 	qed_enable_pf_wfq(p_hwfn, p_params->pf_wfq_en);
670 	qed_enable_vport_rl(p_hwfn, p_params->vport_rl_en);
671 	qed_enable_vport_wfq(p_hwfn, p_params->vport_wfq_en);
672 	qed_cmdq_lines_rt_init(p_hwfn,
673 			       p_params->max_ports_per_engine,
674 			       p_params->max_phys_tcs_per_port,
675 			       p_params->port_params);
676 	qed_btb_blocks_rt_init(p_hwfn,
677 			       p_params->max_ports_per_engine,
678 			       p_params->max_phys_tcs_per_port,
679 			       p_params->port_params);
680 	return 0;
681 }
682 
683 int qed_qm_pf_rt_init(struct qed_hwfn *p_hwfn,
684 		      struct qed_ptt *p_ptt,
685 		      struct qed_qm_pf_rt_init_params *p_params)
686 {
687 	struct init_qm_vport_params *vport_params = p_params->vport_params;
688 	u32 other_mem_size_4kb = QM_PQ_MEM_4KB(p_params->num_pf_cids +
689 					       p_params->num_tids) *
690 				 QM_OTHER_PQS_PER_PF;
691 	u8 tc, i;
692 
693 	/* clear first Tx PQ ID array for each VPORT */
694 	for (i = 0; i < p_params->num_vports; i++)
695 		for (tc = 0; tc < NUM_OF_TCS; tc++)
696 			vport_params[i].first_tx_pq_id[tc] = QM_INVALID_PQ_ID;
697 
698 	/* map Other PQs (if any) */
699 	qed_other_pq_map_rt_init(p_hwfn, p_params->port_id, p_params->pf_id,
700 				 p_params->num_pf_cids, p_params->num_tids, 0);
701 
702 	/* map Tx PQs */
703 	qed_tx_pq_map_rt_init(p_hwfn, p_ptt, p_params, other_mem_size_4kb);
704 
705 	if (p_params->pf_wfq)
706 		if (qed_pf_wfq_rt_init(p_hwfn, p_params))
707 			return -1;
708 
709 	if (qed_pf_rl_rt_init(p_hwfn, p_params->pf_id, p_params->pf_rl))
710 		return -1;
711 
712 	if (qed_vp_wfq_rt_init(p_hwfn, p_params->start_vport,
713 			       p_params->num_vports, vport_params))
714 		return -1;
715 
716 	if (qed_vport_rl_rt_init(p_hwfn, p_params->start_vport,
717 				 p_params->num_vports, vport_params))
718 		return -1;
719 
720 	return 0;
721 }
722 
723 int qed_init_pf_rl(struct qed_hwfn *p_hwfn,
724 		   struct qed_ptt *p_ptt,
725 		   u8 pf_id,
726 		   u32 pf_rl)
727 {
728 	u32 inc_val = QM_RL_INC_VAL(pf_rl);
729 
730 	if (inc_val > QM_RL_MAX_INC_VAL) {
731 		DP_NOTICE(p_hwfn, "Invalid PF rate limit configuration");
732 		return -1;
733 	}
734 
735 	qed_wr(p_hwfn, p_ptt,
736 	       QM_REG_RLPFCRD + pf_id * 4,
737 	       QM_RL_CRD_REG_SIGN_BIT);
738 	qed_wr(p_hwfn, p_ptt, QM_REG_RLPFINCVAL + pf_id * 4, inc_val);
739 
740 	return 0;
741 }
742 
743 int qed_init_vport_rl(struct qed_hwfn *p_hwfn,
744 		      struct qed_ptt *p_ptt,
745 		      u8 vport_id,
746 		      u32 vport_rl)
747 {
748 	u32 inc_val = QM_RL_INC_VAL(vport_rl);
749 
750 	if (inc_val > QM_RL_MAX_INC_VAL) {
751 		DP_NOTICE(p_hwfn, "Invalid VPORT rate-limit configuration");
752 		return -1;
753 	}
754 
755 	qed_wr(p_hwfn, p_ptt,
756 	       QM_REG_RLGLBLCRD + vport_id * 4,
757 	       QM_RL_CRD_REG_SIGN_BIT);
758 	qed_wr(p_hwfn, p_ptt, QM_REG_RLGLBLINCVAL + vport_id * 4, inc_val);
759 
760 	return 0;
761 }
762 
763 bool qed_send_qm_stop_cmd(struct qed_hwfn *p_hwfn,
764 			  struct qed_ptt *p_ptt,
765 			  bool is_release_cmd,
766 			  bool is_tx_pq,
767 			  u16 start_pq,
768 			  u16 num_pqs)
769 {
770 	u32 cmd_arr[QM_CMD_STRUCT_SIZE(QM_STOP_CMD)] = { 0 };
771 	u32 pq_mask = 0, last_pq = start_pq + num_pqs - 1, pq_id;
772 
773 	/* set command's PQ type */
774 	QM_CMD_SET_FIELD(cmd_arr, QM_STOP_CMD, PQ_TYPE, is_tx_pq ? 0 : 1);
775 
776 	for (pq_id = start_pq; pq_id <= last_pq; pq_id++) {
777 		/* set PQ bit in mask (stop command only) */
778 		if (!is_release_cmd)
779 			pq_mask |= (1 << (pq_id % QM_STOP_PQ_MASK_WIDTH));
780 
781 		/* if last PQ or end of PQ mask, write command */
782 		if ((pq_id == last_pq) ||
783 		    (pq_id % QM_STOP_PQ_MASK_WIDTH ==
784 		     (QM_STOP_PQ_MASK_WIDTH - 1))) {
785 			QM_CMD_SET_FIELD(cmd_arr, QM_STOP_CMD,
786 					 PAUSE_MASK, pq_mask);
787 			QM_CMD_SET_FIELD(cmd_arr, QM_STOP_CMD,
788 					 GROUP_ID,
789 					 pq_id / QM_STOP_PQ_MASK_WIDTH);
790 			if (!qed_send_qm_cmd(p_hwfn, p_ptt, QM_STOP_CMD_ADDR,
791 					     cmd_arr[0], cmd_arr[1]))
792 				return false;
793 			pq_mask = 0;
794 		}
795 	}
796 
797 	return true;
798 }
799