xref: /linux/drivers/net/ethernet/qlogic/qed/qed_dev.c (revision 2b64b2ed277ff23e785fbdb65098ee7e1252d64f)
1 /* QLogic qed NIC Driver
2  * Copyright (c) 2015-2017  QLogic Corporation
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and /or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 #include <linux/types.h>
34 #include <asm/byteorder.h>
35 #include <linux/io.h>
36 #include <linux/delay.h>
37 #include <linux/dma-mapping.h>
38 #include <linux/errno.h>
39 #include <linux/kernel.h>
40 #include <linux/mutex.h>
41 #include <linux/pci.h>
42 #include <linux/slab.h>
43 #include <linux/string.h>
44 #include <linux/vmalloc.h>
45 #include <linux/etherdevice.h>
46 #include <linux/qed/qed_chain.h>
47 #include <linux/qed/qed_if.h>
48 #include "qed.h"
49 #include "qed_cxt.h"
50 #include "qed_dcbx.h"
51 #include "qed_dev_api.h"
52 #include "qed_fcoe.h"
53 #include "qed_hsi.h"
54 #include "qed_hw.h"
55 #include "qed_init_ops.h"
56 #include "qed_int.h"
57 #include "qed_iscsi.h"
58 #include "qed_ll2.h"
59 #include "qed_mcp.h"
60 #include "qed_ooo.h"
61 #include "qed_reg_addr.h"
62 #include "qed_sp.h"
63 #include "qed_sriov.h"
64 #include "qed_vf.h"
65 #include "qed_rdma.h"
66 
67 static DEFINE_SPINLOCK(qm_lock);
68 
69 /******************** Doorbell Recovery *******************/
70 /* The doorbell recovery mechanism consists of a list of entries which represent
71  * doorbelling entities (l2 queues, roce sq/rq/cqs, the slowpath spq, etc). Each
72  * entity needs to register with the mechanism and provide the parameters
73  * describing it's doorbell, including a location where last used doorbell data
74  * can be found. The doorbell execute function will traverse the list and
75  * doorbell all of the registered entries.
76  */
77 struct qed_db_recovery_entry {
78 	struct list_head list_entry;
79 	void __iomem *db_addr;
80 	void *db_data;
81 	enum qed_db_rec_width db_width;
82 	enum qed_db_rec_space db_space;
83 	u8 hwfn_idx;
84 };
85 
86 /* Display a single doorbell recovery entry */
87 static void qed_db_recovery_dp_entry(struct qed_hwfn *p_hwfn,
88 				     struct qed_db_recovery_entry *db_entry,
89 				     char *action)
90 {
91 	DP_VERBOSE(p_hwfn,
92 		   QED_MSG_SPQ,
93 		   "(%s: db_entry %p, addr %p, data %p, width %s, %s space, hwfn %d)\n",
94 		   action,
95 		   db_entry,
96 		   db_entry->db_addr,
97 		   db_entry->db_data,
98 		   db_entry->db_width == DB_REC_WIDTH_32B ? "32b" : "64b",
99 		   db_entry->db_space == DB_REC_USER ? "user" : "kernel",
100 		   db_entry->hwfn_idx);
101 }
102 
103 /* Doorbell address sanity (address within doorbell bar range) */
104 static bool qed_db_rec_sanity(struct qed_dev *cdev,
105 			      void __iomem *db_addr, void *db_data)
106 {
107 	/* Make sure doorbell address is within the doorbell bar */
108 	if (db_addr < cdev->doorbells ||
109 	    (u8 __iomem *)db_addr >
110 	    (u8 __iomem *)cdev->doorbells + cdev->db_size) {
111 		WARN(true,
112 		     "Illegal doorbell address: %p. Legal range for doorbell addresses is [%p..%p]\n",
113 		     db_addr,
114 		     cdev->doorbells,
115 		     (u8 __iomem *)cdev->doorbells + cdev->db_size);
116 		return false;
117 	}
118 
119 	/* ake sure doorbell data pointer is not null */
120 	if (!db_data) {
121 		WARN(true, "Illegal doorbell data pointer: %p", db_data);
122 		return false;
123 	}
124 
125 	return true;
126 }
127 
128 /* Find hwfn according to the doorbell address */
129 static struct qed_hwfn *qed_db_rec_find_hwfn(struct qed_dev *cdev,
130 					     void __iomem *db_addr)
131 {
132 	struct qed_hwfn *p_hwfn;
133 
134 	/* In CMT doorbell bar is split down the middle between engine 0 and enigne 1 */
135 	if (cdev->num_hwfns > 1)
136 		p_hwfn = db_addr < cdev->hwfns[1].doorbells ?
137 		    &cdev->hwfns[0] : &cdev->hwfns[1];
138 	else
139 		p_hwfn = QED_LEADING_HWFN(cdev);
140 
141 	return p_hwfn;
142 }
143 
144 /* Add a new entry to the doorbell recovery mechanism */
145 int qed_db_recovery_add(struct qed_dev *cdev,
146 			void __iomem *db_addr,
147 			void *db_data,
148 			enum qed_db_rec_width db_width,
149 			enum qed_db_rec_space db_space)
150 {
151 	struct qed_db_recovery_entry *db_entry;
152 	struct qed_hwfn *p_hwfn;
153 
154 	/* Shortcircuit VFs, for now */
155 	if (IS_VF(cdev)) {
156 		DP_VERBOSE(cdev,
157 			   QED_MSG_IOV, "db recovery - skipping VF doorbell\n");
158 		return 0;
159 	}
160 
161 	/* Sanitize doorbell address */
162 	if (!qed_db_rec_sanity(cdev, db_addr, db_data))
163 		return -EINVAL;
164 
165 	/* Obtain hwfn from doorbell address */
166 	p_hwfn = qed_db_rec_find_hwfn(cdev, db_addr);
167 
168 	/* Create entry */
169 	db_entry = kzalloc(sizeof(*db_entry), GFP_KERNEL);
170 	if (!db_entry) {
171 		DP_NOTICE(cdev, "Failed to allocate a db recovery entry\n");
172 		return -ENOMEM;
173 	}
174 
175 	/* Populate entry */
176 	db_entry->db_addr = db_addr;
177 	db_entry->db_data = db_data;
178 	db_entry->db_width = db_width;
179 	db_entry->db_space = db_space;
180 	db_entry->hwfn_idx = p_hwfn->my_id;
181 
182 	/* Display */
183 	qed_db_recovery_dp_entry(p_hwfn, db_entry, "Adding");
184 
185 	/* Protect the list */
186 	spin_lock_bh(&p_hwfn->db_recovery_info.lock);
187 	list_add_tail(&db_entry->list_entry, &p_hwfn->db_recovery_info.list);
188 	spin_unlock_bh(&p_hwfn->db_recovery_info.lock);
189 
190 	return 0;
191 }
192 
193 /* Remove an entry from the doorbell recovery mechanism */
194 int qed_db_recovery_del(struct qed_dev *cdev,
195 			void __iomem *db_addr, void *db_data)
196 {
197 	struct qed_db_recovery_entry *db_entry = NULL;
198 	struct qed_hwfn *p_hwfn;
199 	int rc = -EINVAL;
200 
201 	/* Shortcircuit VFs, for now */
202 	if (IS_VF(cdev)) {
203 		DP_VERBOSE(cdev,
204 			   QED_MSG_IOV, "db recovery - skipping VF doorbell\n");
205 		return 0;
206 	}
207 
208 	/* Sanitize doorbell address */
209 	if (!qed_db_rec_sanity(cdev, db_addr, db_data))
210 		return -EINVAL;
211 
212 	/* Obtain hwfn from doorbell address */
213 	p_hwfn = qed_db_rec_find_hwfn(cdev, db_addr);
214 
215 	/* Protect the list */
216 	spin_lock_bh(&p_hwfn->db_recovery_info.lock);
217 	list_for_each_entry(db_entry,
218 			    &p_hwfn->db_recovery_info.list, list_entry) {
219 		/* search according to db_data addr since db_addr is not unique (roce) */
220 		if (db_entry->db_data == db_data) {
221 			qed_db_recovery_dp_entry(p_hwfn, db_entry, "Deleting");
222 			list_del(&db_entry->list_entry);
223 			rc = 0;
224 			break;
225 		}
226 	}
227 
228 	spin_unlock_bh(&p_hwfn->db_recovery_info.lock);
229 
230 	if (rc == -EINVAL)
231 
232 		DP_NOTICE(p_hwfn,
233 			  "Failed to find element in list. Key (db_data addr) was %p. db_addr was %p\n",
234 			  db_data, db_addr);
235 	else
236 		kfree(db_entry);
237 
238 	return rc;
239 }
240 
241 /* Initialize the doorbell recovery mechanism */
242 static int qed_db_recovery_setup(struct qed_hwfn *p_hwfn)
243 {
244 	DP_VERBOSE(p_hwfn, QED_MSG_SPQ, "Setting up db recovery\n");
245 
246 	/* Make sure db_size was set in cdev */
247 	if (!p_hwfn->cdev->db_size) {
248 		DP_ERR(p_hwfn->cdev, "db_size not set\n");
249 		return -EINVAL;
250 	}
251 
252 	INIT_LIST_HEAD(&p_hwfn->db_recovery_info.list);
253 	spin_lock_init(&p_hwfn->db_recovery_info.lock);
254 	p_hwfn->db_recovery_info.db_recovery_counter = 0;
255 
256 	return 0;
257 }
258 
259 /* Destroy the doorbell recovery mechanism */
260 static void qed_db_recovery_teardown(struct qed_hwfn *p_hwfn)
261 {
262 	struct qed_db_recovery_entry *db_entry = NULL;
263 
264 	DP_VERBOSE(p_hwfn, QED_MSG_SPQ, "Tearing down db recovery\n");
265 	if (!list_empty(&p_hwfn->db_recovery_info.list)) {
266 		DP_VERBOSE(p_hwfn,
267 			   QED_MSG_SPQ,
268 			   "Doorbell Recovery teardown found the doorbell recovery list was not empty (Expected in disorderly driver unload (e.g. recovery) otherwise this probably means some flow forgot to db_recovery_del). Prepare to purge doorbell recovery list...\n");
269 		while (!list_empty(&p_hwfn->db_recovery_info.list)) {
270 			db_entry =
271 			    list_first_entry(&p_hwfn->db_recovery_info.list,
272 					     struct qed_db_recovery_entry,
273 					     list_entry);
274 			qed_db_recovery_dp_entry(p_hwfn, db_entry, "Purging");
275 			list_del(&db_entry->list_entry);
276 			kfree(db_entry);
277 		}
278 	}
279 	p_hwfn->db_recovery_info.db_recovery_counter = 0;
280 }
281 
282 /* Print the content of the doorbell recovery mechanism */
283 void qed_db_recovery_dp(struct qed_hwfn *p_hwfn)
284 {
285 	struct qed_db_recovery_entry *db_entry = NULL;
286 
287 	DP_NOTICE(p_hwfn,
288 		  "Displaying doorbell recovery database. Counter was %d\n",
289 		  p_hwfn->db_recovery_info.db_recovery_counter);
290 
291 	/* Protect the list */
292 	spin_lock_bh(&p_hwfn->db_recovery_info.lock);
293 	list_for_each_entry(db_entry,
294 			    &p_hwfn->db_recovery_info.list, list_entry) {
295 		qed_db_recovery_dp_entry(p_hwfn, db_entry, "Printing");
296 	}
297 
298 	spin_unlock_bh(&p_hwfn->db_recovery_info.lock);
299 }
300 
301 /* Ring the doorbell of a single doorbell recovery entry */
302 static void qed_db_recovery_ring(struct qed_hwfn *p_hwfn,
303 				 struct qed_db_recovery_entry *db_entry,
304 				 enum qed_db_rec_exec db_exec)
305 {
306 	if (db_exec != DB_REC_ONCE) {
307 		/* Print according to width */
308 		if (db_entry->db_width == DB_REC_WIDTH_32B) {
309 			DP_VERBOSE(p_hwfn, QED_MSG_SPQ,
310 				   "%s doorbell address %p data %x\n",
311 				   db_exec == DB_REC_DRY_RUN ?
312 				   "would have rung" : "ringing",
313 				   db_entry->db_addr,
314 				   *(u32 *)db_entry->db_data);
315 		} else {
316 			DP_VERBOSE(p_hwfn, QED_MSG_SPQ,
317 				   "%s doorbell address %p data %llx\n",
318 				   db_exec == DB_REC_DRY_RUN ?
319 				   "would have rung" : "ringing",
320 				   db_entry->db_addr,
321 				   *(u64 *)(db_entry->db_data));
322 		}
323 	}
324 
325 	/* Sanity */
326 	if (!qed_db_rec_sanity(p_hwfn->cdev, db_entry->db_addr,
327 			       db_entry->db_data))
328 		return;
329 
330 	/* Flush the write combined buffer. Since there are multiple doorbelling
331 	 * entities using the same address, if we don't flush, a transaction
332 	 * could be lost.
333 	 */
334 	wmb();
335 
336 	/* Ring the doorbell */
337 	if (db_exec == DB_REC_REAL_DEAL || db_exec == DB_REC_ONCE) {
338 		if (db_entry->db_width == DB_REC_WIDTH_32B)
339 			DIRECT_REG_WR(db_entry->db_addr,
340 				      *(u32 *)(db_entry->db_data));
341 		else
342 			DIRECT_REG_WR64(db_entry->db_addr,
343 					*(u64 *)(db_entry->db_data));
344 	}
345 
346 	/* Flush the write combined buffer. Next doorbell may come from a
347 	 * different entity to the same address...
348 	 */
349 	wmb();
350 }
351 
352 /* Traverse the doorbell recovery entry list and ring all the doorbells */
353 void qed_db_recovery_execute(struct qed_hwfn *p_hwfn,
354 			     enum qed_db_rec_exec db_exec)
355 {
356 	struct qed_db_recovery_entry *db_entry = NULL;
357 
358 	if (db_exec != DB_REC_ONCE) {
359 		DP_NOTICE(p_hwfn,
360 			  "Executing doorbell recovery. Counter was %d\n",
361 			  p_hwfn->db_recovery_info.db_recovery_counter);
362 
363 		/* Track amount of times recovery was executed */
364 		p_hwfn->db_recovery_info.db_recovery_counter++;
365 	}
366 
367 	/* Protect the list */
368 	spin_lock_bh(&p_hwfn->db_recovery_info.lock);
369 	list_for_each_entry(db_entry,
370 			    &p_hwfn->db_recovery_info.list, list_entry) {
371 		qed_db_recovery_ring(p_hwfn, db_entry, db_exec);
372 		if (db_exec == DB_REC_ONCE)
373 			break;
374 	}
375 
376 	spin_unlock_bh(&p_hwfn->db_recovery_info.lock);
377 }
378 
379 /******************** Doorbell Recovery end ****************/
380 
381 #define QED_MIN_DPIS            (4)
382 #define QED_MIN_PWM_REGION      (QED_WID_SIZE * QED_MIN_DPIS)
383 
384 static u32 qed_hw_bar_size(struct qed_hwfn *p_hwfn,
385 			   struct qed_ptt *p_ptt, enum BAR_ID bar_id)
386 {
387 	u32 bar_reg = (bar_id == BAR_ID_0 ?
388 		       PGLUE_B_REG_PF_BAR0_SIZE : PGLUE_B_REG_PF_BAR1_SIZE);
389 	u32 val;
390 
391 	if (IS_VF(p_hwfn->cdev))
392 		return qed_vf_hw_bar_size(p_hwfn, bar_id);
393 
394 	val = qed_rd(p_hwfn, p_ptt, bar_reg);
395 	if (val)
396 		return 1 << (val + 15);
397 
398 	/* Old MFW initialized above registered only conditionally */
399 	if (p_hwfn->cdev->num_hwfns > 1) {
400 		DP_INFO(p_hwfn,
401 			"BAR size not configured. Assuming BAR size of 256kB for GRC and 512kB for DB\n");
402 			return BAR_ID_0 ? 256 * 1024 : 512 * 1024;
403 	} else {
404 		DP_INFO(p_hwfn,
405 			"BAR size not configured. Assuming BAR size of 512kB for GRC and 512kB for DB\n");
406 			return 512 * 1024;
407 	}
408 }
409 
410 void qed_init_dp(struct qed_dev *cdev, u32 dp_module, u8 dp_level)
411 {
412 	u32 i;
413 
414 	cdev->dp_level = dp_level;
415 	cdev->dp_module = dp_module;
416 	for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) {
417 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
418 
419 		p_hwfn->dp_level = dp_level;
420 		p_hwfn->dp_module = dp_module;
421 	}
422 }
423 
424 void qed_init_struct(struct qed_dev *cdev)
425 {
426 	u8 i;
427 
428 	for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) {
429 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
430 
431 		p_hwfn->cdev = cdev;
432 		p_hwfn->my_id = i;
433 		p_hwfn->b_active = false;
434 
435 		mutex_init(&p_hwfn->dmae_info.mutex);
436 	}
437 
438 	/* hwfn 0 is always active */
439 	cdev->hwfns[0].b_active = true;
440 
441 	/* set the default cache alignment to 128 */
442 	cdev->cache_shift = 7;
443 }
444 
445 static void qed_qm_info_free(struct qed_hwfn *p_hwfn)
446 {
447 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
448 
449 	kfree(qm_info->qm_pq_params);
450 	qm_info->qm_pq_params = NULL;
451 	kfree(qm_info->qm_vport_params);
452 	qm_info->qm_vport_params = NULL;
453 	kfree(qm_info->qm_port_params);
454 	qm_info->qm_port_params = NULL;
455 	kfree(qm_info->wfq_data);
456 	qm_info->wfq_data = NULL;
457 }
458 
459 static void qed_dbg_user_data_free(struct qed_hwfn *p_hwfn)
460 {
461 	kfree(p_hwfn->dbg_user_info);
462 	p_hwfn->dbg_user_info = NULL;
463 }
464 
465 void qed_resc_free(struct qed_dev *cdev)
466 {
467 	int i;
468 
469 	if (IS_VF(cdev)) {
470 		for_each_hwfn(cdev, i)
471 			qed_l2_free(&cdev->hwfns[i]);
472 		return;
473 	}
474 
475 	kfree(cdev->fw_data);
476 	cdev->fw_data = NULL;
477 
478 	kfree(cdev->reset_stats);
479 	cdev->reset_stats = NULL;
480 
481 	for_each_hwfn(cdev, i) {
482 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
483 
484 		qed_cxt_mngr_free(p_hwfn);
485 		qed_qm_info_free(p_hwfn);
486 		qed_spq_free(p_hwfn);
487 		qed_eq_free(p_hwfn);
488 		qed_consq_free(p_hwfn);
489 		qed_int_free(p_hwfn);
490 #ifdef CONFIG_QED_LL2
491 		qed_ll2_free(p_hwfn);
492 #endif
493 		if (p_hwfn->hw_info.personality == QED_PCI_FCOE)
494 			qed_fcoe_free(p_hwfn);
495 
496 		if (p_hwfn->hw_info.personality == QED_PCI_ISCSI) {
497 			qed_iscsi_free(p_hwfn);
498 			qed_ooo_free(p_hwfn);
499 		}
500 
501 		if (QED_IS_RDMA_PERSONALITY(p_hwfn))
502 			qed_rdma_info_free(p_hwfn);
503 
504 		qed_iov_free(p_hwfn);
505 		qed_l2_free(p_hwfn);
506 		qed_dmae_info_free(p_hwfn);
507 		qed_dcbx_info_free(p_hwfn);
508 		qed_dbg_user_data_free(p_hwfn);
509 
510 		/* Destroy doorbell recovery mechanism */
511 		qed_db_recovery_teardown(p_hwfn);
512 	}
513 }
514 
515 /******************** QM initialization *******************/
516 #define ACTIVE_TCS_BMAP 0x9f
517 #define ACTIVE_TCS_BMAP_4PORT_K2 0xf
518 
519 /* determines the physical queue flags for a given PF. */
520 static u32 qed_get_pq_flags(struct qed_hwfn *p_hwfn)
521 {
522 	u32 flags;
523 
524 	/* common flags */
525 	flags = PQ_FLAGS_LB;
526 
527 	/* feature flags */
528 	if (IS_QED_SRIOV(p_hwfn->cdev))
529 		flags |= PQ_FLAGS_VFS;
530 
531 	/* protocol flags */
532 	switch (p_hwfn->hw_info.personality) {
533 	case QED_PCI_ETH:
534 		flags |= PQ_FLAGS_MCOS;
535 		break;
536 	case QED_PCI_FCOE:
537 		flags |= PQ_FLAGS_OFLD;
538 		break;
539 	case QED_PCI_ISCSI:
540 		flags |= PQ_FLAGS_ACK | PQ_FLAGS_OOO | PQ_FLAGS_OFLD;
541 		break;
542 	case QED_PCI_ETH_ROCE:
543 		flags |= PQ_FLAGS_MCOS | PQ_FLAGS_OFLD | PQ_FLAGS_LLT;
544 		if (IS_QED_MULTI_TC_ROCE(p_hwfn))
545 			flags |= PQ_FLAGS_MTC;
546 		break;
547 	case QED_PCI_ETH_IWARP:
548 		flags |= PQ_FLAGS_MCOS | PQ_FLAGS_ACK | PQ_FLAGS_OOO |
549 		    PQ_FLAGS_OFLD;
550 		break;
551 	default:
552 		DP_ERR(p_hwfn,
553 		       "unknown personality %d\n", p_hwfn->hw_info.personality);
554 		return 0;
555 	}
556 
557 	return flags;
558 }
559 
560 /* Getters for resource amounts necessary for qm initialization */
561 static u8 qed_init_qm_get_num_tcs(struct qed_hwfn *p_hwfn)
562 {
563 	return p_hwfn->hw_info.num_hw_tc;
564 }
565 
566 static u16 qed_init_qm_get_num_vfs(struct qed_hwfn *p_hwfn)
567 {
568 	return IS_QED_SRIOV(p_hwfn->cdev) ?
569 	       p_hwfn->cdev->p_iov_info->total_vfs : 0;
570 }
571 
572 static u8 qed_init_qm_get_num_mtc_tcs(struct qed_hwfn *p_hwfn)
573 {
574 	u32 pq_flags = qed_get_pq_flags(p_hwfn);
575 
576 	if (!(PQ_FLAGS_MTC & pq_flags))
577 		return 1;
578 
579 	return qed_init_qm_get_num_tcs(p_hwfn);
580 }
581 
582 #define NUM_DEFAULT_RLS 1
583 
584 static u16 qed_init_qm_get_num_pf_rls(struct qed_hwfn *p_hwfn)
585 {
586 	u16 num_pf_rls, num_vfs = qed_init_qm_get_num_vfs(p_hwfn);
587 
588 	/* num RLs can't exceed resource amount of rls or vports */
589 	num_pf_rls = (u16) min_t(u32, RESC_NUM(p_hwfn, QED_RL),
590 				 RESC_NUM(p_hwfn, QED_VPORT));
591 
592 	/* Make sure after we reserve there's something left */
593 	if (num_pf_rls < num_vfs + NUM_DEFAULT_RLS)
594 		return 0;
595 
596 	/* subtract rls necessary for VFs and one default one for the PF */
597 	num_pf_rls -= num_vfs + NUM_DEFAULT_RLS;
598 
599 	return num_pf_rls;
600 }
601 
602 static u16 qed_init_qm_get_num_vports(struct qed_hwfn *p_hwfn)
603 {
604 	u32 pq_flags = qed_get_pq_flags(p_hwfn);
605 
606 	/* all pqs share the same vport, except for vfs and pf_rl pqs */
607 	return (!!(PQ_FLAGS_RLS & pq_flags)) *
608 	       qed_init_qm_get_num_pf_rls(p_hwfn) +
609 	       (!!(PQ_FLAGS_VFS & pq_flags)) *
610 	       qed_init_qm_get_num_vfs(p_hwfn) + 1;
611 }
612 
613 /* calc amount of PQs according to the requested flags */
614 static u16 qed_init_qm_get_num_pqs(struct qed_hwfn *p_hwfn)
615 {
616 	u32 pq_flags = qed_get_pq_flags(p_hwfn);
617 
618 	return (!!(PQ_FLAGS_RLS & pq_flags)) *
619 	       qed_init_qm_get_num_pf_rls(p_hwfn) +
620 	       (!!(PQ_FLAGS_MCOS & pq_flags)) *
621 	       qed_init_qm_get_num_tcs(p_hwfn) +
622 	       (!!(PQ_FLAGS_LB & pq_flags)) + (!!(PQ_FLAGS_OOO & pq_flags)) +
623 	       (!!(PQ_FLAGS_ACK & pq_flags)) +
624 	       (!!(PQ_FLAGS_OFLD & pq_flags)) *
625 	       qed_init_qm_get_num_mtc_tcs(p_hwfn) +
626 	       (!!(PQ_FLAGS_LLT & pq_flags)) *
627 	       qed_init_qm_get_num_mtc_tcs(p_hwfn) +
628 	       (!!(PQ_FLAGS_VFS & pq_flags)) * qed_init_qm_get_num_vfs(p_hwfn);
629 }
630 
631 /* initialize the top level QM params */
632 static void qed_init_qm_params(struct qed_hwfn *p_hwfn)
633 {
634 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
635 	bool four_port;
636 
637 	/* pq and vport bases for this PF */
638 	qm_info->start_pq = (u16) RESC_START(p_hwfn, QED_PQ);
639 	qm_info->start_vport = (u8) RESC_START(p_hwfn, QED_VPORT);
640 
641 	/* rate limiting and weighted fair queueing are always enabled */
642 	qm_info->vport_rl_en = true;
643 	qm_info->vport_wfq_en = true;
644 
645 	/* TC config is different for AH 4 port */
646 	four_port = p_hwfn->cdev->num_ports_in_engine == MAX_NUM_PORTS_K2;
647 
648 	/* in AH 4 port we have fewer TCs per port */
649 	qm_info->max_phys_tcs_per_port = four_port ? NUM_PHYS_TCS_4PORT_K2 :
650 						     NUM_OF_PHYS_TCS;
651 
652 	/* unless MFW indicated otherwise, ooo_tc == 3 for
653 	 * AH 4-port and 4 otherwise.
654 	 */
655 	if (!qm_info->ooo_tc)
656 		qm_info->ooo_tc = four_port ? DCBX_TCP_OOO_K2_4PORT_TC :
657 					      DCBX_TCP_OOO_TC;
658 }
659 
660 /* initialize qm vport params */
661 static void qed_init_qm_vport_params(struct qed_hwfn *p_hwfn)
662 {
663 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
664 	u8 i;
665 
666 	/* all vports participate in weighted fair queueing */
667 	for (i = 0; i < qed_init_qm_get_num_vports(p_hwfn); i++)
668 		qm_info->qm_vport_params[i].vport_wfq = 1;
669 }
670 
671 /* initialize qm port params */
672 static void qed_init_qm_port_params(struct qed_hwfn *p_hwfn)
673 {
674 	/* Initialize qm port parameters */
675 	u8 i, active_phys_tcs, num_ports = p_hwfn->cdev->num_ports_in_engine;
676 
677 	/* indicate how ooo and high pri traffic is dealt with */
678 	active_phys_tcs = num_ports == MAX_NUM_PORTS_K2 ?
679 			  ACTIVE_TCS_BMAP_4PORT_K2 :
680 			  ACTIVE_TCS_BMAP;
681 
682 	for (i = 0; i < num_ports; i++) {
683 		struct init_qm_port_params *p_qm_port =
684 		    &p_hwfn->qm_info.qm_port_params[i];
685 
686 		p_qm_port->active = 1;
687 		p_qm_port->active_phys_tcs = active_phys_tcs;
688 		p_qm_port->num_pbf_cmd_lines = PBF_MAX_CMD_LINES / num_ports;
689 		p_qm_port->num_btb_blocks = BTB_MAX_BLOCKS / num_ports;
690 	}
691 }
692 
693 /* Reset the params which must be reset for qm init. QM init may be called as
694  * a result of flows other than driver load (e.g. dcbx renegotiation). Other
695  * params may be affected by the init but would simply recalculate to the same
696  * values. The allocations made for QM init, ports, vports, pqs and vfqs are not
697  * affected as these amounts stay the same.
698  */
699 static void qed_init_qm_reset_params(struct qed_hwfn *p_hwfn)
700 {
701 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
702 
703 	qm_info->num_pqs = 0;
704 	qm_info->num_vports = 0;
705 	qm_info->num_pf_rls = 0;
706 	qm_info->num_vf_pqs = 0;
707 	qm_info->first_vf_pq = 0;
708 	qm_info->first_mcos_pq = 0;
709 	qm_info->first_rl_pq = 0;
710 }
711 
712 static void qed_init_qm_advance_vport(struct qed_hwfn *p_hwfn)
713 {
714 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
715 
716 	qm_info->num_vports++;
717 
718 	if (qm_info->num_vports > qed_init_qm_get_num_vports(p_hwfn))
719 		DP_ERR(p_hwfn,
720 		       "vport overflow! qm_info->num_vports %d, qm_init_get_num_vports() %d\n",
721 		       qm_info->num_vports, qed_init_qm_get_num_vports(p_hwfn));
722 }
723 
724 /* initialize a single pq and manage qm_info resources accounting.
725  * The pq_init_flags param determines whether the PQ is rate limited
726  * (for VF or PF) and whether a new vport is allocated to the pq or not
727  * (i.e. vport will be shared).
728  */
729 
730 /* flags for pq init */
731 #define PQ_INIT_SHARE_VPORT     (1 << 0)
732 #define PQ_INIT_PF_RL           (1 << 1)
733 #define PQ_INIT_VF_RL           (1 << 2)
734 
735 /* defines for pq init */
736 #define PQ_INIT_DEFAULT_WRR_GROUP       1
737 #define PQ_INIT_DEFAULT_TC              0
738 
739 void qed_hw_info_set_offload_tc(struct qed_hw_info *p_info, u8 tc)
740 {
741 	p_info->offload_tc = tc;
742 	p_info->offload_tc_set = true;
743 }
744 
745 static bool qed_is_offload_tc_set(struct qed_hwfn *p_hwfn)
746 {
747 	return p_hwfn->hw_info.offload_tc_set;
748 }
749 
750 static u32 qed_get_offload_tc(struct qed_hwfn *p_hwfn)
751 {
752 	if (qed_is_offload_tc_set(p_hwfn))
753 		return p_hwfn->hw_info.offload_tc;
754 
755 	return PQ_INIT_DEFAULT_TC;
756 }
757 
758 static void qed_init_qm_pq(struct qed_hwfn *p_hwfn,
759 			   struct qed_qm_info *qm_info,
760 			   u8 tc, u32 pq_init_flags)
761 {
762 	u16 pq_idx = qm_info->num_pqs, max_pq = qed_init_qm_get_num_pqs(p_hwfn);
763 
764 	if (pq_idx > max_pq)
765 		DP_ERR(p_hwfn,
766 		       "pq overflow! pq %d, max pq %d\n", pq_idx, max_pq);
767 
768 	/* init pq params */
769 	qm_info->qm_pq_params[pq_idx].port_id = p_hwfn->port_id;
770 	qm_info->qm_pq_params[pq_idx].vport_id = qm_info->start_vport +
771 	    qm_info->num_vports;
772 	qm_info->qm_pq_params[pq_idx].tc_id = tc;
773 	qm_info->qm_pq_params[pq_idx].wrr_group = PQ_INIT_DEFAULT_WRR_GROUP;
774 	qm_info->qm_pq_params[pq_idx].rl_valid =
775 	    (pq_init_flags & PQ_INIT_PF_RL || pq_init_flags & PQ_INIT_VF_RL);
776 
777 	/* qm params accounting */
778 	qm_info->num_pqs++;
779 	if (!(pq_init_flags & PQ_INIT_SHARE_VPORT))
780 		qm_info->num_vports++;
781 
782 	if (pq_init_flags & PQ_INIT_PF_RL)
783 		qm_info->num_pf_rls++;
784 
785 	if (qm_info->num_vports > qed_init_qm_get_num_vports(p_hwfn))
786 		DP_ERR(p_hwfn,
787 		       "vport overflow! qm_info->num_vports %d, qm_init_get_num_vports() %d\n",
788 		       qm_info->num_vports, qed_init_qm_get_num_vports(p_hwfn));
789 
790 	if (qm_info->num_pf_rls > qed_init_qm_get_num_pf_rls(p_hwfn))
791 		DP_ERR(p_hwfn,
792 		       "rl overflow! qm_info->num_pf_rls %d, qm_init_get_num_pf_rls() %d\n",
793 		       qm_info->num_pf_rls, qed_init_qm_get_num_pf_rls(p_hwfn));
794 }
795 
796 /* get pq index according to PQ_FLAGS */
797 static u16 *qed_init_qm_get_idx_from_flags(struct qed_hwfn *p_hwfn,
798 					   unsigned long pq_flags)
799 {
800 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
801 
802 	/* Can't have multiple flags set here */
803 	if (bitmap_weight(&pq_flags,
804 			  sizeof(pq_flags) * BITS_PER_BYTE) > 1) {
805 		DP_ERR(p_hwfn, "requested multiple pq flags 0x%lx\n", pq_flags);
806 		goto err;
807 	}
808 
809 	if (!(qed_get_pq_flags(p_hwfn) & pq_flags)) {
810 		DP_ERR(p_hwfn, "pq flag 0x%lx is not set\n", pq_flags);
811 		goto err;
812 	}
813 
814 	switch (pq_flags) {
815 	case PQ_FLAGS_RLS:
816 		return &qm_info->first_rl_pq;
817 	case PQ_FLAGS_MCOS:
818 		return &qm_info->first_mcos_pq;
819 	case PQ_FLAGS_LB:
820 		return &qm_info->pure_lb_pq;
821 	case PQ_FLAGS_OOO:
822 		return &qm_info->ooo_pq;
823 	case PQ_FLAGS_ACK:
824 		return &qm_info->pure_ack_pq;
825 	case PQ_FLAGS_OFLD:
826 		return &qm_info->first_ofld_pq;
827 	case PQ_FLAGS_LLT:
828 		return &qm_info->first_llt_pq;
829 	case PQ_FLAGS_VFS:
830 		return &qm_info->first_vf_pq;
831 	default:
832 		goto err;
833 	}
834 
835 err:
836 	return &qm_info->start_pq;
837 }
838 
839 /* save pq index in qm info */
840 static void qed_init_qm_set_idx(struct qed_hwfn *p_hwfn,
841 				u32 pq_flags, u16 pq_val)
842 {
843 	u16 *base_pq_idx = qed_init_qm_get_idx_from_flags(p_hwfn, pq_flags);
844 
845 	*base_pq_idx = p_hwfn->qm_info.start_pq + pq_val;
846 }
847 
848 /* get tx pq index, with the PQ TX base already set (ready for context init) */
849 u16 qed_get_cm_pq_idx(struct qed_hwfn *p_hwfn, u32 pq_flags)
850 {
851 	u16 *base_pq_idx = qed_init_qm_get_idx_from_flags(p_hwfn, pq_flags);
852 
853 	return *base_pq_idx + CM_TX_PQ_BASE;
854 }
855 
856 u16 qed_get_cm_pq_idx_mcos(struct qed_hwfn *p_hwfn, u8 tc)
857 {
858 	u8 max_tc = qed_init_qm_get_num_tcs(p_hwfn);
859 
860 	if (max_tc == 0) {
861 		DP_ERR(p_hwfn, "pq with flag 0x%lx do not exist\n",
862 		       PQ_FLAGS_MCOS);
863 		return p_hwfn->qm_info.start_pq;
864 	}
865 
866 	if (tc > max_tc)
867 		DP_ERR(p_hwfn, "tc %d must be smaller than %d\n", tc, max_tc);
868 
869 	return qed_get_cm_pq_idx(p_hwfn, PQ_FLAGS_MCOS) + (tc % max_tc);
870 }
871 
872 u16 qed_get_cm_pq_idx_vf(struct qed_hwfn *p_hwfn, u16 vf)
873 {
874 	u16 max_vf = qed_init_qm_get_num_vfs(p_hwfn);
875 
876 	if (max_vf == 0) {
877 		DP_ERR(p_hwfn, "pq with flag 0x%lx do not exist\n",
878 		       PQ_FLAGS_VFS);
879 		return p_hwfn->qm_info.start_pq;
880 	}
881 
882 	if (vf > max_vf)
883 		DP_ERR(p_hwfn, "vf %d must be smaller than %d\n", vf, max_vf);
884 
885 	return qed_get_cm_pq_idx(p_hwfn, PQ_FLAGS_VFS) + (vf % max_vf);
886 }
887 
888 u16 qed_get_cm_pq_idx_ofld_mtc(struct qed_hwfn *p_hwfn, u8 tc)
889 {
890 	u16 first_ofld_pq, pq_offset;
891 
892 	first_ofld_pq = qed_get_cm_pq_idx(p_hwfn, PQ_FLAGS_OFLD);
893 	pq_offset = (tc < qed_init_qm_get_num_mtc_tcs(p_hwfn)) ?
894 		    tc : PQ_INIT_DEFAULT_TC;
895 
896 	return first_ofld_pq + pq_offset;
897 }
898 
899 u16 qed_get_cm_pq_idx_llt_mtc(struct qed_hwfn *p_hwfn, u8 tc)
900 {
901 	u16 first_llt_pq, pq_offset;
902 
903 	first_llt_pq = qed_get_cm_pq_idx(p_hwfn, PQ_FLAGS_LLT);
904 	pq_offset = (tc < qed_init_qm_get_num_mtc_tcs(p_hwfn)) ?
905 		    tc : PQ_INIT_DEFAULT_TC;
906 
907 	return first_llt_pq + pq_offset;
908 }
909 
910 /* Functions for creating specific types of pqs */
911 static void qed_init_qm_lb_pq(struct qed_hwfn *p_hwfn)
912 {
913 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
914 
915 	if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_LB))
916 		return;
917 
918 	qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_LB, qm_info->num_pqs);
919 	qed_init_qm_pq(p_hwfn, qm_info, PURE_LB_TC, PQ_INIT_SHARE_VPORT);
920 }
921 
922 static void qed_init_qm_ooo_pq(struct qed_hwfn *p_hwfn)
923 {
924 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
925 
926 	if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_OOO))
927 		return;
928 
929 	qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_OOO, qm_info->num_pqs);
930 	qed_init_qm_pq(p_hwfn, qm_info, qm_info->ooo_tc, PQ_INIT_SHARE_VPORT);
931 }
932 
933 static void qed_init_qm_pure_ack_pq(struct qed_hwfn *p_hwfn)
934 {
935 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
936 
937 	if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_ACK))
938 		return;
939 
940 	qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_ACK, qm_info->num_pqs);
941 	qed_init_qm_pq(p_hwfn, qm_info, qed_get_offload_tc(p_hwfn),
942 		       PQ_INIT_SHARE_VPORT);
943 }
944 
945 static void qed_init_qm_mtc_pqs(struct qed_hwfn *p_hwfn)
946 {
947 	u8 num_tcs = qed_init_qm_get_num_mtc_tcs(p_hwfn);
948 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
949 	u8 tc;
950 
951 	/* override pq's TC if offload TC is set */
952 	for (tc = 0; tc < num_tcs; tc++)
953 		qed_init_qm_pq(p_hwfn, qm_info,
954 			       qed_is_offload_tc_set(p_hwfn) ?
955 			       p_hwfn->hw_info.offload_tc : tc,
956 			       PQ_INIT_SHARE_VPORT);
957 }
958 
959 static void qed_init_qm_offload_pq(struct qed_hwfn *p_hwfn)
960 {
961 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
962 
963 	if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_OFLD))
964 		return;
965 
966 	qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_OFLD, qm_info->num_pqs);
967 	qed_init_qm_mtc_pqs(p_hwfn);
968 }
969 
970 static void qed_init_qm_low_latency_pq(struct qed_hwfn *p_hwfn)
971 {
972 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
973 
974 	if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_LLT))
975 		return;
976 
977 	qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_LLT, qm_info->num_pqs);
978 	qed_init_qm_mtc_pqs(p_hwfn);
979 }
980 
981 static void qed_init_qm_mcos_pqs(struct qed_hwfn *p_hwfn)
982 {
983 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
984 	u8 tc_idx;
985 
986 	if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_MCOS))
987 		return;
988 
989 	qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_MCOS, qm_info->num_pqs);
990 	for (tc_idx = 0; tc_idx < qed_init_qm_get_num_tcs(p_hwfn); tc_idx++)
991 		qed_init_qm_pq(p_hwfn, qm_info, tc_idx, PQ_INIT_SHARE_VPORT);
992 }
993 
994 static void qed_init_qm_vf_pqs(struct qed_hwfn *p_hwfn)
995 {
996 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
997 	u16 vf_idx, num_vfs = qed_init_qm_get_num_vfs(p_hwfn);
998 
999 	if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_VFS))
1000 		return;
1001 
1002 	qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_VFS, qm_info->num_pqs);
1003 	qm_info->num_vf_pqs = num_vfs;
1004 	for (vf_idx = 0; vf_idx < num_vfs; vf_idx++)
1005 		qed_init_qm_pq(p_hwfn,
1006 			       qm_info, PQ_INIT_DEFAULT_TC, PQ_INIT_VF_RL);
1007 }
1008 
1009 static void qed_init_qm_rl_pqs(struct qed_hwfn *p_hwfn)
1010 {
1011 	u16 pf_rls_idx, num_pf_rls = qed_init_qm_get_num_pf_rls(p_hwfn);
1012 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
1013 
1014 	if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_RLS))
1015 		return;
1016 
1017 	qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_RLS, qm_info->num_pqs);
1018 	for (pf_rls_idx = 0; pf_rls_idx < num_pf_rls; pf_rls_idx++)
1019 		qed_init_qm_pq(p_hwfn, qm_info, qed_get_offload_tc(p_hwfn),
1020 			       PQ_INIT_PF_RL);
1021 }
1022 
1023 static void qed_init_qm_pq_params(struct qed_hwfn *p_hwfn)
1024 {
1025 	/* rate limited pqs, must come first (FW assumption) */
1026 	qed_init_qm_rl_pqs(p_hwfn);
1027 
1028 	/* pqs for multi cos */
1029 	qed_init_qm_mcos_pqs(p_hwfn);
1030 
1031 	/* pure loopback pq */
1032 	qed_init_qm_lb_pq(p_hwfn);
1033 
1034 	/* out of order pq */
1035 	qed_init_qm_ooo_pq(p_hwfn);
1036 
1037 	/* pure ack pq */
1038 	qed_init_qm_pure_ack_pq(p_hwfn);
1039 
1040 	/* pq for offloaded protocol */
1041 	qed_init_qm_offload_pq(p_hwfn);
1042 
1043 	/* low latency pq */
1044 	qed_init_qm_low_latency_pq(p_hwfn);
1045 
1046 	/* done sharing vports */
1047 	qed_init_qm_advance_vport(p_hwfn);
1048 
1049 	/* pqs for vfs */
1050 	qed_init_qm_vf_pqs(p_hwfn);
1051 }
1052 
1053 /* compare values of getters against resources amounts */
1054 static int qed_init_qm_sanity(struct qed_hwfn *p_hwfn)
1055 {
1056 	if (qed_init_qm_get_num_vports(p_hwfn) > RESC_NUM(p_hwfn, QED_VPORT)) {
1057 		DP_ERR(p_hwfn, "requested amount of vports exceeds resource\n");
1058 		return -EINVAL;
1059 	}
1060 
1061 	if (qed_init_qm_get_num_pqs(p_hwfn) <= RESC_NUM(p_hwfn, QED_PQ))
1062 		return 0;
1063 
1064 	if (QED_IS_ROCE_PERSONALITY(p_hwfn)) {
1065 		p_hwfn->hw_info.multi_tc_roce_en = 0;
1066 		DP_NOTICE(p_hwfn,
1067 			  "multi-tc roce was disabled to reduce requested amount of pqs\n");
1068 		if (qed_init_qm_get_num_pqs(p_hwfn) <= RESC_NUM(p_hwfn, QED_PQ))
1069 			return 0;
1070 	}
1071 
1072 	DP_ERR(p_hwfn, "requested amount of pqs exceeds resource\n");
1073 	return -EINVAL;
1074 }
1075 
1076 static void qed_dp_init_qm_params(struct qed_hwfn *p_hwfn)
1077 {
1078 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
1079 	struct init_qm_vport_params *vport;
1080 	struct init_qm_port_params *port;
1081 	struct init_qm_pq_params *pq;
1082 	int i, tc;
1083 
1084 	/* top level params */
1085 	DP_VERBOSE(p_hwfn,
1086 		   NETIF_MSG_HW,
1087 		   "qm init top level params: start_pq %d, start_vport %d, pure_lb_pq %d, offload_pq %d, llt_pq %d, pure_ack_pq %d\n",
1088 		   qm_info->start_pq,
1089 		   qm_info->start_vport,
1090 		   qm_info->pure_lb_pq,
1091 		   qm_info->first_ofld_pq,
1092 		   qm_info->first_llt_pq,
1093 		   qm_info->pure_ack_pq);
1094 	DP_VERBOSE(p_hwfn,
1095 		   NETIF_MSG_HW,
1096 		   "ooo_pq %d, first_vf_pq %d, num_pqs %d, num_vf_pqs %d, num_vports %d, max_phys_tcs_per_port %d\n",
1097 		   qm_info->ooo_pq,
1098 		   qm_info->first_vf_pq,
1099 		   qm_info->num_pqs,
1100 		   qm_info->num_vf_pqs,
1101 		   qm_info->num_vports, qm_info->max_phys_tcs_per_port);
1102 	DP_VERBOSE(p_hwfn,
1103 		   NETIF_MSG_HW,
1104 		   "pf_rl_en %d, pf_wfq_en %d, vport_rl_en %d, vport_wfq_en %d, pf_wfq %d, pf_rl %d, num_pf_rls %d, pq_flags %x\n",
1105 		   qm_info->pf_rl_en,
1106 		   qm_info->pf_wfq_en,
1107 		   qm_info->vport_rl_en,
1108 		   qm_info->vport_wfq_en,
1109 		   qm_info->pf_wfq,
1110 		   qm_info->pf_rl,
1111 		   qm_info->num_pf_rls, qed_get_pq_flags(p_hwfn));
1112 
1113 	/* port table */
1114 	for (i = 0; i < p_hwfn->cdev->num_ports_in_engine; i++) {
1115 		port = &(qm_info->qm_port_params[i]);
1116 		DP_VERBOSE(p_hwfn,
1117 			   NETIF_MSG_HW,
1118 			   "port idx %d, active %d, active_phys_tcs %d, num_pbf_cmd_lines %d, num_btb_blocks %d, reserved %d\n",
1119 			   i,
1120 			   port->active,
1121 			   port->active_phys_tcs,
1122 			   port->num_pbf_cmd_lines,
1123 			   port->num_btb_blocks, port->reserved);
1124 	}
1125 
1126 	/* vport table */
1127 	for (i = 0; i < qm_info->num_vports; i++) {
1128 		vport = &(qm_info->qm_vport_params[i]);
1129 		DP_VERBOSE(p_hwfn,
1130 			   NETIF_MSG_HW,
1131 			   "vport idx %d, vport_rl %d, wfq %d, first_tx_pq_id [ ",
1132 			   qm_info->start_vport + i,
1133 			   vport->vport_rl, vport->vport_wfq);
1134 		for (tc = 0; tc < NUM_OF_TCS; tc++)
1135 			DP_VERBOSE(p_hwfn,
1136 				   NETIF_MSG_HW,
1137 				   "%d ", vport->first_tx_pq_id[tc]);
1138 		DP_VERBOSE(p_hwfn, NETIF_MSG_HW, "]\n");
1139 	}
1140 
1141 	/* pq table */
1142 	for (i = 0; i < qm_info->num_pqs; i++) {
1143 		pq = &(qm_info->qm_pq_params[i]);
1144 		DP_VERBOSE(p_hwfn,
1145 			   NETIF_MSG_HW,
1146 			   "pq idx %d, port %d, vport_id %d, tc %d, wrr_grp %d, rl_valid %d\n",
1147 			   qm_info->start_pq + i,
1148 			   pq->port_id,
1149 			   pq->vport_id,
1150 			   pq->tc_id, pq->wrr_group, pq->rl_valid);
1151 	}
1152 }
1153 
1154 static void qed_init_qm_info(struct qed_hwfn *p_hwfn)
1155 {
1156 	/* reset params required for init run */
1157 	qed_init_qm_reset_params(p_hwfn);
1158 
1159 	/* init QM top level params */
1160 	qed_init_qm_params(p_hwfn);
1161 
1162 	/* init QM port params */
1163 	qed_init_qm_port_params(p_hwfn);
1164 
1165 	/* init QM vport params */
1166 	qed_init_qm_vport_params(p_hwfn);
1167 
1168 	/* init QM physical queue params */
1169 	qed_init_qm_pq_params(p_hwfn);
1170 
1171 	/* display all that init */
1172 	qed_dp_init_qm_params(p_hwfn);
1173 }
1174 
1175 /* This function reconfigures the QM pf on the fly.
1176  * For this purpose we:
1177  * 1. reconfigure the QM database
1178  * 2. set new values to runtime array
1179  * 3. send an sdm_qm_cmd through the rbc interface to stop the QM
1180  * 4. activate init tool in QM_PF stage
1181  * 5. send an sdm_qm_cmd through rbc interface to release the QM
1182  */
1183 int qed_qm_reconf(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1184 {
1185 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
1186 	bool b_rc;
1187 	int rc;
1188 
1189 	/* initialize qed's qm data structure */
1190 	qed_init_qm_info(p_hwfn);
1191 
1192 	/* stop PF's qm queues */
1193 	spin_lock_bh(&qm_lock);
1194 	b_rc = qed_send_qm_stop_cmd(p_hwfn, p_ptt, false, true,
1195 				    qm_info->start_pq, qm_info->num_pqs);
1196 	spin_unlock_bh(&qm_lock);
1197 	if (!b_rc)
1198 		return -EINVAL;
1199 
1200 	/* clear the QM_PF runtime phase leftovers from previous init */
1201 	qed_init_clear_rt_data(p_hwfn);
1202 
1203 	/* prepare QM portion of runtime array */
1204 	qed_qm_init_pf(p_hwfn, p_ptt, false);
1205 
1206 	/* activate init tool on runtime array */
1207 	rc = qed_init_run(p_hwfn, p_ptt, PHASE_QM_PF, p_hwfn->rel_pf_id,
1208 			  p_hwfn->hw_info.hw_mode);
1209 	if (rc)
1210 		return rc;
1211 
1212 	/* start PF's qm queues */
1213 	spin_lock_bh(&qm_lock);
1214 	b_rc = qed_send_qm_stop_cmd(p_hwfn, p_ptt, true, true,
1215 				    qm_info->start_pq, qm_info->num_pqs);
1216 	spin_unlock_bh(&qm_lock);
1217 	if (!b_rc)
1218 		return -EINVAL;
1219 
1220 	return 0;
1221 }
1222 
1223 static int qed_alloc_qm_data(struct qed_hwfn *p_hwfn)
1224 {
1225 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
1226 	int rc;
1227 
1228 	rc = qed_init_qm_sanity(p_hwfn);
1229 	if (rc)
1230 		goto alloc_err;
1231 
1232 	qm_info->qm_pq_params = kcalloc(qed_init_qm_get_num_pqs(p_hwfn),
1233 					sizeof(*qm_info->qm_pq_params),
1234 					GFP_KERNEL);
1235 	if (!qm_info->qm_pq_params)
1236 		goto alloc_err;
1237 
1238 	qm_info->qm_vport_params = kcalloc(qed_init_qm_get_num_vports(p_hwfn),
1239 					   sizeof(*qm_info->qm_vport_params),
1240 					   GFP_KERNEL);
1241 	if (!qm_info->qm_vport_params)
1242 		goto alloc_err;
1243 
1244 	qm_info->qm_port_params = kcalloc(p_hwfn->cdev->num_ports_in_engine,
1245 					  sizeof(*qm_info->qm_port_params),
1246 					  GFP_KERNEL);
1247 	if (!qm_info->qm_port_params)
1248 		goto alloc_err;
1249 
1250 	qm_info->wfq_data = kcalloc(qed_init_qm_get_num_vports(p_hwfn),
1251 				    sizeof(*qm_info->wfq_data),
1252 				    GFP_KERNEL);
1253 	if (!qm_info->wfq_data)
1254 		goto alloc_err;
1255 
1256 	return 0;
1257 
1258 alloc_err:
1259 	DP_NOTICE(p_hwfn, "Failed to allocate memory for QM params\n");
1260 	qed_qm_info_free(p_hwfn);
1261 	return -ENOMEM;
1262 }
1263 
1264 int qed_resc_alloc(struct qed_dev *cdev)
1265 {
1266 	u32 rdma_tasks, excess_tasks;
1267 	u32 line_count;
1268 	int i, rc = 0;
1269 
1270 	if (IS_VF(cdev)) {
1271 		for_each_hwfn(cdev, i) {
1272 			rc = qed_l2_alloc(&cdev->hwfns[i]);
1273 			if (rc)
1274 				return rc;
1275 		}
1276 		return rc;
1277 	}
1278 
1279 	cdev->fw_data = kzalloc(sizeof(*cdev->fw_data), GFP_KERNEL);
1280 	if (!cdev->fw_data)
1281 		return -ENOMEM;
1282 
1283 	for_each_hwfn(cdev, i) {
1284 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
1285 		u32 n_eqes, num_cons;
1286 
1287 		/* Initialize the doorbell recovery mechanism */
1288 		rc = qed_db_recovery_setup(p_hwfn);
1289 		if (rc)
1290 			goto alloc_err;
1291 
1292 		/* First allocate the context manager structure */
1293 		rc = qed_cxt_mngr_alloc(p_hwfn);
1294 		if (rc)
1295 			goto alloc_err;
1296 
1297 		/* Set the HW cid/tid numbers (in the contest manager)
1298 		 * Must be done prior to any further computations.
1299 		 */
1300 		rc = qed_cxt_set_pf_params(p_hwfn, RDMA_MAX_TIDS);
1301 		if (rc)
1302 			goto alloc_err;
1303 
1304 		rc = qed_alloc_qm_data(p_hwfn);
1305 		if (rc)
1306 			goto alloc_err;
1307 
1308 		/* init qm info */
1309 		qed_init_qm_info(p_hwfn);
1310 
1311 		/* Compute the ILT client partition */
1312 		rc = qed_cxt_cfg_ilt_compute(p_hwfn, &line_count);
1313 		if (rc) {
1314 			DP_NOTICE(p_hwfn,
1315 				  "too many ILT lines; re-computing with less lines\n");
1316 			/* In case there are not enough ILT lines we reduce the
1317 			 * number of RDMA tasks and re-compute.
1318 			 */
1319 			excess_tasks =
1320 			    qed_cxt_cfg_ilt_compute_excess(p_hwfn, line_count);
1321 			if (!excess_tasks)
1322 				goto alloc_err;
1323 
1324 			rdma_tasks = RDMA_MAX_TIDS - excess_tasks;
1325 			rc = qed_cxt_set_pf_params(p_hwfn, rdma_tasks);
1326 			if (rc)
1327 				goto alloc_err;
1328 
1329 			rc = qed_cxt_cfg_ilt_compute(p_hwfn, &line_count);
1330 			if (rc) {
1331 				DP_ERR(p_hwfn,
1332 				       "failed ILT compute. Requested too many lines: %u\n",
1333 				       line_count);
1334 
1335 				goto alloc_err;
1336 			}
1337 		}
1338 
1339 		/* CID map / ILT shadow table / T2
1340 		 * The talbes sizes are determined by the computations above
1341 		 */
1342 		rc = qed_cxt_tables_alloc(p_hwfn);
1343 		if (rc)
1344 			goto alloc_err;
1345 
1346 		/* SPQ, must follow ILT because initializes SPQ context */
1347 		rc = qed_spq_alloc(p_hwfn);
1348 		if (rc)
1349 			goto alloc_err;
1350 
1351 		/* SP status block allocation */
1352 		p_hwfn->p_dpc_ptt = qed_get_reserved_ptt(p_hwfn,
1353 							 RESERVED_PTT_DPC);
1354 
1355 		rc = qed_int_alloc(p_hwfn, p_hwfn->p_main_ptt);
1356 		if (rc)
1357 			goto alloc_err;
1358 
1359 		rc = qed_iov_alloc(p_hwfn);
1360 		if (rc)
1361 			goto alloc_err;
1362 
1363 		/* EQ */
1364 		n_eqes = qed_chain_get_capacity(&p_hwfn->p_spq->chain);
1365 		if (QED_IS_RDMA_PERSONALITY(p_hwfn)) {
1366 			enum protocol_type rdma_proto;
1367 
1368 			if (QED_IS_ROCE_PERSONALITY(p_hwfn))
1369 				rdma_proto = PROTOCOLID_ROCE;
1370 			else
1371 				rdma_proto = PROTOCOLID_IWARP;
1372 
1373 			num_cons = qed_cxt_get_proto_cid_count(p_hwfn,
1374 							       rdma_proto,
1375 							       NULL) * 2;
1376 			n_eqes += num_cons + 2 * MAX_NUM_VFS_BB;
1377 		} else if (p_hwfn->hw_info.personality == QED_PCI_ISCSI) {
1378 			num_cons =
1379 			    qed_cxt_get_proto_cid_count(p_hwfn,
1380 							PROTOCOLID_ISCSI,
1381 							NULL);
1382 			n_eqes += 2 * num_cons;
1383 		}
1384 
1385 		if (n_eqes > 0xFFFF) {
1386 			DP_ERR(p_hwfn,
1387 			       "Cannot allocate 0x%x EQ elements. The maximum of a u16 chain is 0x%x\n",
1388 			       n_eqes, 0xFFFF);
1389 			goto alloc_no_mem;
1390 		}
1391 
1392 		rc = qed_eq_alloc(p_hwfn, (u16) n_eqes);
1393 		if (rc)
1394 			goto alloc_err;
1395 
1396 		rc = qed_consq_alloc(p_hwfn);
1397 		if (rc)
1398 			goto alloc_err;
1399 
1400 		rc = qed_l2_alloc(p_hwfn);
1401 		if (rc)
1402 			goto alloc_err;
1403 
1404 #ifdef CONFIG_QED_LL2
1405 		if (p_hwfn->using_ll2) {
1406 			rc = qed_ll2_alloc(p_hwfn);
1407 			if (rc)
1408 				goto alloc_err;
1409 		}
1410 #endif
1411 
1412 		if (p_hwfn->hw_info.personality == QED_PCI_FCOE) {
1413 			rc = qed_fcoe_alloc(p_hwfn);
1414 			if (rc)
1415 				goto alloc_err;
1416 		}
1417 
1418 		if (p_hwfn->hw_info.personality == QED_PCI_ISCSI) {
1419 			rc = qed_iscsi_alloc(p_hwfn);
1420 			if (rc)
1421 				goto alloc_err;
1422 			rc = qed_ooo_alloc(p_hwfn);
1423 			if (rc)
1424 				goto alloc_err;
1425 		}
1426 
1427 		if (QED_IS_RDMA_PERSONALITY(p_hwfn)) {
1428 			rc = qed_rdma_info_alloc(p_hwfn);
1429 			if (rc)
1430 				goto alloc_err;
1431 		}
1432 
1433 		/* DMA info initialization */
1434 		rc = qed_dmae_info_alloc(p_hwfn);
1435 		if (rc)
1436 			goto alloc_err;
1437 
1438 		/* DCBX initialization */
1439 		rc = qed_dcbx_info_alloc(p_hwfn);
1440 		if (rc)
1441 			goto alloc_err;
1442 
1443 		rc = qed_dbg_alloc_user_data(p_hwfn);
1444 		if (rc)
1445 			goto alloc_err;
1446 	}
1447 
1448 	cdev->reset_stats = kzalloc(sizeof(*cdev->reset_stats), GFP_KERNEL);
1449 	if (!cdev->reset_stats)
1450 		goto alloc_no_mem;
1451 
1452 	return 0;
1453 
1454 alloc_no_mem:
1455 	rc = -ENOMEM;
1456 alloc_err:
1457 	qed_resc_free(cdev);
1458 	return rc;
1459 }
1460 
1461 void qed_resc_setup(struct qed_dev *cdev)
1462 {
1463 	int i;
1464 
1465 	if (IS_VF(cdev)) {
1466 		for_each_hwfn(cdev, i)
1467 			qed_l2_setup(&cdev->hwfns[i]);
1468 		return;
1469 	}
1470 
1471 	for_each_hwfn(cdev, i) {
1472 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
1473 
1474 		qed_cxt_mngr_setup(p_hwfn);
1475 		qed_spq_setup(p_hwfn);
1476 		qed_eq_setup(p_hwfn);
1477 		qed_consq_setup(p_hwfn);
1478 
1479 		/* Read shadow of current MFW mailbox */
1480 		qed_mcp_read_mb(p_hwfn, p_hwfn->p_main_ptt);
1481 		memcpy(p_hwfn->mcp_info->mfw_mb_shadow,
1482 		       p_hwfn->mcp_info->mfw_mb_cur,
1483 		       p_hwfn->mcp_info->mfw_mb_length);
1484 
1485 		qed_int_setup(p_hwfn, p_hwfn->p_main_ptt);
1486 
1487 		qed_l2_setup(p_hwfn);
1488 		qed_iov_setup(p_hwfn);
1489 #ifdef CONFIG_QED_LL2
1490 		if (p_hwfn->using_ll2)
1491 			qed_ll2_setup(p_hwfn);
1492 #endif
1493 		if (p_hwfn->hw_info.personality == QED_PCI_FCOE)
1494 			qed_fcoe_setup(p_hwfn);
1495 
1496 		if (p_hwfn->hw_info.personality == QED_PCI_ISCSI) {
1497 			qed_iscsi_setup(p_hwfn);
1498 			qed_ooo_setup(p_hwfn);
1499 		}
1500 	}
1501 }
1502 
1503 #define FINAL_CLEANUP_POLL_CNT          (100)
1504 #define FINAL_CLEANUP_POLL_TIME         (10)
1505 int qed_final_cleanup(struct qed_hwfn *p_hwfn,
1506 		      struct qed_ptt *p_ptt, u16 id, bool is_vf)
1507 {
1508 	u32 command = 0, addr, count = FINAL_CLEANUP_POLL_CNT;
1509 	int rc = -EBUSY;
1510 
1511 	addr = GTT_BAR0_MAP_REG_USDM_RAM +
1512 		USTORM_FLR_FINAL_ACK_OFFSET(p_hwfn->rel_pf_id);
1513 
1514 	if (is_vf)
1515 		id += 0x10;
1516 
1517 	command |= X_FINAL_CLEANUP_AGG_INT <<
1518 		SDM_AGG_INT_COMP_PARAMS_AGG_INT_INDEX_SHIFT;
1519 	command |= 1 << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_ENABLE_SHIFT;
1520 	command |= id << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_BIT_SHIFT;
1521 	command |= SDM_COMP_TYPE_AGG_INT << SDM_OP_GEN_COMP_TYPE_SHIFT;
1522 
1523 	/* Make sure notification is not set before initiating final cleanup */
1524 	if (REG_RD(p_hwfn, addr)) {
1525 		DP_NOTICE(p_hwfn,
1526 			  "Unexpected; Found final cleanup notification before initiating final cleanup\n");
1527 		REG_WR(p_hwfn, addr, 0);
1528 	}
1529 
1530 	DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1531 		   "Sending final cleanup for PFVF[%d] [Command %08x]\n",
1532 		   id, command);
1533 
1534 	qed_wr(p_hwfn, p_ptt, XSDM_REG_OPERATION_GEN, command);
1535 
1536 	/* Poll until completion */
1537 	while (!REG_RD(p_hwfn, addr) && count--)
1538 		msleep(FINAL_CLEANUP_POLL_TIME);
1539 
1540 	if (REG_RD(p_hwfn, addr))
1541 		rc = 0;
1542 	else
1543 		DP_NOTICE(p_hwfn,
1544 			  "Failed to receive FW final cleanup notification\n");
1545 
1546 	/* Cleanup afterwards */
1547 	REG_WR(p_hwfn, addr, 0);
1548 
1549 	return rc;
1550 }
1551 
1552 static int qed_calc_hw_mode(struct qed_hwfn *p_hwfn)
1553 {
1554 	int hw_mode = 0;
1555 
1556 	if (QED_IS_BB_B0(p_hwfn->cdev)) {
1557 		hw_mode |= 1 << MODE_BB;
1558 	} else if (QED_IS_AH(p_hwfn->cdev)) {
1559 		hw_mode |= 1 << MODE_K2;
1560 	} else {
1561 		DP_NOTICE(p_hwfn, "Unknown chip type %#x\n",
1562 			  p_hwfn->cdev->type);
1563 		return -EINVAL;
1564 	}
1565 
1566 	switch (p_hwfn->cdev->num_ports_in_engine) {
1567 	case 1:
1568 		hw_mode |= 1 << MODE_PORTS_PER_ENG_1;
1569 		break;
1570 	case 2:
1571 		hw_mode |= 1 << MODE_PORTS_PER_ENG_2;
1572 		break;
1573 	case 4:
1574 		hw_mode |= 1 << MODE_PORTS_PER_ENG_4;
1575 		break;
1576 	default:
1577 		DP_NOTICE(p_hwfn, "num_ports_in_engine = %d not supported\n",
1578 			  p_hwfn->cdev->num_ports_in_engine);
1579 		return -EINVAL;
1580 	}
1581 
1582 	if (test_bit(QED_MF_OVLAN_CLSS, &p_hwfn->cdev->mf_bits))
1583 		hw_mode |= 1 << MODE_MF_SD;
1584 	else
1585 		hw_mode |= 1 << MODE_MF_SI;
1586 
1587 	hw_mode |= 1 << MODE_ASIC;
1588 
1589 	if (p_hwfn->cdev->num_hwfns > 1)
1590 		hw_mode |= 1 << MODE_100G;
1591 
1592 	p_hwfn->hw_info.hw_mode = hw_mode;
1593 
1594 	DP_VERBOSE(p_hwfn, (NETIF_MSG_PROBE | NETIF_MSG_IFUP),
1595 		   "Configuring function for hw_mode: 0x%08x\n",
1596 		   p_hwfn->hw_info.hw_mode);
1597 
1598 	return 0;
1599 }
1600 
1601 /* Init run time data for all PFs on an engine. */
1602 static void qed_init_cau_rt_data(struct qed_dev *cdev)
1603 {
1604 	u32 offset = CAU_REG_SB_VAR_MEMORY_RT_OFFSET;
1605 	int i, igu_sb_id;
1606 
1607 	for_each_hwfn(cdev, i) {
1608 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
1609 		struct qed_igu_info *p_igu_info;
1610 		struct qed_igu_block *p_block;
1611 		struct cau_sb_entry sb_entry;
1612 
1613 		p_igu_info = p_hwfn->hw_info.p_igu_info;
1614 
1615 		for (igu_sb_id = 0;
1616 		     igu_sb_id < QED_MAPPING_MEMORY_SIZE(cdev); igu_sb_id++) {
1617 			p_block = &p_igu_info->entry[igu_sb_id];
1618 
1619 			if (!p_block->is_pf)
1620 				continue;
1621 
1622 			qed_init_cau_sb_entry(p_hwfn, &sb_entry,
1623 					      p_block->function_id, 0, 0);
1624 			STORE_RT_REG_AGG(p_hwfn, offset + igu_sb_id * 2,
1625 					 sb_entry);
1626 		}
1627 	}
1628 }
1629 
1630 static void qed_init_cache_line_size(struct qed_hwfn *p_hwfn,
1631 				     struct qed_ptt *p_ptt)
1632 {
1633 	u32 val, wr_mbs, cache_line_size;
1634 
1635 	val = qed_rd(p_hwfn, p_ptt, PSWRQ2_REG_WR_MBS0);
1636 	switch (val) {
1637 	case 0:
1638 		wr_mbs = 128;
1639 		break;
1640 	case 1:
1641 		wr_mbs = 256;
1642 		break;
1643 	case 2:
1644 		wr_mbs = 512;
1645 		break;
1646 	default:
1647 		DP_INFO(p_hwfn,
1648 			"Unexpected value of PSWRQ2_REG_WR_MBS0 [0x%x]. Avoid configuring PGLUE_B_REG_CACHE_LINE_SIZE.\n",
1649 			val);
1650 		return;
1651 	}
1652 
1653 	cache_line_size = min_t(u32, L1_CACHE_BYTES, wr_mbs);
1654 	switch (cache_line_size) {
1655 	case 32:
1656 		val = 0;
1657 		break;
1658 	case 64:
1659 		val = 1;
1660 		break;
1661 	case 128:
1662 		val = 2;
1663 		break;
1664 	case 256:
1665 		val = 3;
1666 		break;
1667 	default:
1668 		DP_INFO(p_hwfn,
1669 			"Unexpected value of cache line size [0x%x]. Avoid configuring PGLUE_B_REG_CACHE_LINE_SIZE.\n",
1670 			cache_line_size);
1671 	}
1672 
1673 	if (L1_CACHE_BYTES > wr_mbs)
1674 		DP_INFO(p_hwfn,
1675 			"The cache line size for padding is suboptimal for performance [OS cache line size 0x%x, wr mbs 0x%x]\n",
1676 			L1_CACHE_BYTES, wr_mbs);
1677 
1678 	STORE_RT_REG(p_hwfn, PGLUE_REG_B_CACHE_LINE_SIZE_RT_OFFSET, val);
1679 	if (val > 0) {
1680 		STORE_RT_REG(p_hwfn, PSWRQ2_REG_DRAM_ALIGN_WR_RT_OFFSET, val);
1681 		STORE_RT_REG(p_hwfn, PSWRQ2_REG_DRAM_ALIGN_RD_RT_OFFSET, val);
1682 	}
1683 }
1684 
1685 static int qed_hw_init_common(struct qed_hwfn *p_hwfn,
1686 			      struct qed_ptt *p_ptt, int hw_mode)
1687 {
1688 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
1689 	struct qed_qm_common_rt_init_params params;
1690 	struct qed_dev *cdev = p_hwfn->cdev;
1691 	u8 vf_id, max_num_vfs;
1692 	u16 num_pfs, pf_id;
1693 	u32 concrete_fid;
1694 	int rc = 0;
1695 
1696 	qed_init_cau_rt_data(cdev);
1697 
1698 	/* Program GTT windows */
1699 	qed_gtt_init(p_hwfn);
1700 
1701 	if (p_hwfn->mcp_info) {
1702 		if (p_hwfn->mcp_info->func_info.bandwidth_max)
1703 			qm_info->pf_rl_en = true;
1704 		if (p_hwfn->mcp_info->func_info.bandwidth_min)
1705 			qm_info->pf_wfq_en = true;
1706 	}
1707 
1708 	memset(&params, 0, sizeof(params));
1709 	params.max_ports_per_engine = p_hwfn->cdev->num_ports_in_engine;
1710 	params.max_phys_tcs_per_port = qm_info->max_phys_tcs_per_port;
1711 	params.pf_rl_en = qm_info->pf_rl_en;
1712 	params.pf_wfq_en = qm_info->pf_wfq_en;
1713 	params.vport_rl_en = qm_info->vport_rl_en;
1714 	params.vport_wfq_en = qm_info->vport_wfq_en;
1715 	params.port_params = qm_info->qm_port_params;
1716 
1717 	qed_qm_common_rt_init(p_hwfn, &params);
1718 
1719 	qed_cxt_hw_init_common(p_hwfn);
1720 
1721 	qed_init_cache_line_size(p_hwfn, p_ptt);
1722 
1723 	rc = qed_init_run(p_hwfn, p_ptt, PHASE_ENGINE, ANY_PHASE_ID, hw_mode);
1724 	if (rc)
1725 		return rc;
1726 
1727 	qed_wr(p_hwfn, p_ptt, PSWRQ2_REG_L2P_VALIDATE_VFID, 0);
1728 	qed_wr(p_hwfn, p_ptt, PGLUE_B_REG_USE_CLIENTID_IN_TAG, 1);
1729 
1730 	if (QED_IS_BB(p_hwfn->cdev)) {
1731 		num_pfs = NUM_OF_ENG_PFS(p_hwfn->cdev);
1732 		for (pf_id = 0; pf_id < num_pfs; pf_id++) {
1733 			qed_fid_pretend(p_hwfn, p_ptt, pf_id);
1734 			qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
1735 			qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
1736 		}
1737 		/* pretend to original PF */
1738 		qed_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id);
1739 	}
1740 
1741 	max_num_vfs = QED_IS_AH(cdev) ? MAX_NUM_VFS_K2 : MAX_NUM_VFS_BB;
1742 	for (vf_id = 0; vf_id < max_num_vfs; vf_id++) {
1743 		concrete_fid = qed_vfid_to_concrete(p_hwfn, vf_id);
1744 		qed_fid_pretend(p_hwfn, p_ptt, (u16) concrete_fid);
1745 		qed_wr(p_hwfn, p_ptt, CCFC_REG_STRONG_ENABLE_VF, 0x1);
1746 		qed_wr(p_hwfn, p_ptt, CCFC_REG_WEAK_ENABLE_VF, 0x0);
1747 		qed_wr(p_hwfn, p_ptt, TCFC_REG_STRONG_ENABLE_VF, 0x1);
1748 		qed_wr(p_hwfn, p_ptt, TCFC_REG_WEAK_ENABLE_VF, 0x0);
1749 	}
1750 	/* pretend to original PF */
1751 	qed_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id);
1752 
1753 	return rc;
1754 }
1755 
1756 static int
1757 qed_hw_init_dpi_size(struct qed_hwfn *p_hwfn,
1758 		     struct qed_ptt *p_ptt, u32 pwm_region_size, u32 n_cpus)
1759 {
1760 	u32 dpi_bit_shift, dpi_count, dpi_page_size;
1761 	u32 min_dpis;
1762 	u32 n_wids;
1763 
1764 	/* Calculate DPI size */
1765 	n_wids = max_t(u32, QED_MIN_WIDS, n_cpus);
1766 	dpi_page_size = QED_WID_SIZE * roundup_pow_of_two(n_wids);
1767 	dpi_page_size = (dpi_page_size + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1);
1768 	dpi_bit_shift = ilog2(dpi_page_size / 4096);
1769 	dpi_count = pwm_region_size / dpi_page_size;
1770 
1771 	min_dpis = p_hwfn->pf_params.rdma_pf_params.min_dpis;
1772 	min_dpis = max_t(u32, QED_MIN_DPIS, min_dpis);
1773 
1774 	p_hwfn->dpi_size = dpi_page_size;
1775 	p_hwfn->dpi_count = dpi_count;
1776 
1777 	qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_DPI_BIT_SHIFT, dpi_bit_shift);
1778 
1779 	if (dpi_count < min_dpis)
1780 		return -EINVAL;
1781 
1782 	return 0;
1783 }
1784 
1785 enum QED_ROCE_EDPM_MODE {
1786 	QED_ROCE_EDPM_MODE_ENABLE = 0,
1787 	QED_ROCE_EDPM_MODE_FORCE_ON = 1,
1788 	QED_ROCE_EDPM_MODE_DISABLE = 2,
1789 };
1790 
1791 bool qed_edpm_enabled(struct qed_hwfn *p_hwfn)
1792 {
1793 	if (p_hwfn->dcbx_no_edpm || p_hwfn->db_bar_no_edpm)
1794 		return false;
1795 
1796 	return true;
1797 }
1798 
1799 static int
1800 qed_hw_init_pf_doorbell_bar(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1801 {
1802 	u32 pwm_regsize, norm_regsize;
1803 	u32 non_pwm_conn, min_addr_reg1;
1804 	u32 db_bar_size, n_cpus = 1;
1805 	u32 roce_edpm_mode;
1806 	u32 pf_dems_shift;
1807 	int rc = 0;
1808 	u8 cond;
1809 
1810 	db_bar_size = qed_hw_bar_size(p_hwfn, p_ptt, BAR_ID_1);
1811 	if (p_hwfn->cdev->num_hwfns > 1)
1812 		db_bar_size /= 2;
1813 
1814 	/* Calculate doorbell regions */
1815 	non_pwm_conn = qed_cxt_get_proto_cid_start(p_hwfn, PROTOCOLID_CORE) +
1816 		       qed_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_CORE,
1817 						   NULL) +
1818 		       qed_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_ETH,
1819 						   NULL);
1820 	norm_regsize = roundup(QED_PF_DEMS_SIZE * non_pwm_conn, PAGE_SIZE);
1821 	min_addr_reg1 = norm_regsize / 4096;
1822 	pwm_regsize = db_bar_size - norm_regsize;
1823 
1824 	/* Check that the normal and PWM sizes are valid */
1825 	if (db_bar_size < norm_regsize) {
1826 		DP_ERR(p_hwfn->cdev,
1827 		       "Doorbell BAR size 0x%x is too small (normal region is 0x%0x )\n",
1828 		       db_bar_size, norm_regsize);
1829 		return -EINVAL;
1830 	}
1831 
1832 	if (pwm_regsize < QED_MIN_PWM_REGION) {
1833 		DP_ERR(p_hwfn->cdev,
1834 		       "PWM region size 0x%0x is too small. Should be at least 0x%0x (Doorbell BAR size is 0x%x and normal region size is 0x%0x)\n",
1835 		       pwm_regsize,
1836 		       QED_MIN_PWM_REGION, db_bar_size, norm_regsize);
1837 		return -EINVAL;
1838 	}
1839 
1840 	/* Calculate number of DPIs */
1841 	roce_edpm_mode = p_hwfn->pf_params.rdma_pf_params.roce_edpm_mode;
1842 	if ((roce_edpm_mode == QED_ROCE_EDPM_MODE_ENABLE) ||
1843 	    ((roce_edpm_mode == QED_ROCE_EDPM_MODE_FORCE_ON))) {
1844 		/* Either EDPM is mandatory, or we are attempting to allocate a
1845 		 * WID per CPU.
1846 		 */
1847 		n_cpus = num_present_cpus();
1848 		rc = qed_hw_init_dpi_size(p_hwfn, p_ptt, pwm_regsize, n_cpus);
1849 	}
1850 
1851 	cond = (rc && (roce_edpm_mode == QED_ROCE_EDPM_MODE_ENABLE)) ||
1852 	       (roce_edpm_mode == QED_ROCE_EDPM_MODE_DISABLE);
1853 	if (cond || p_hwfn->dcbx_no_edpm) {
1854 		/* Either EDPM is disabled from user configuration, or it is
1855 		 * disabled via DCBx, or it is not mandatory and we failed to
1856 		 * allocated a WID per CPU.
1857 		 */
1858 		n_cpus = 1;
1859 		rc = qed_hw_init_dpi_size(p_hwfn, p_ptt, pwm_regsize, n_cpus);
1860 
1861 		if (cond)
1862 			qed_rdma_dpm_bar(p_hwfn, p_ptt);
1863 	}
1864 
1865 	p_hwfn->wid_count = (u16) n_cpus;
1866 
1867 	DP_INFO(p_hwfn,
1868 		"doorbell bar: normal_region_size=%d, pwm_region_size=%d, dpi_size=%d, dpi_count=%d, roce_edpm=%s, page_size=%lu\n",
1869 		norm_regsize,
1870 		pwm_regsize,
1871 		p_hwfn->dpi_size,
1872 		p_hwfn->dpi_count,
1873 		(!qed_edpm_enabled(p_hwfn)) ?
1874 		"disabled" : "enabled", PAGE_SIZE);
1875 
1876 	if (rc) {
1877 		DP_ERR(p_hwfn,
1878 		       "Failed to allocate enough DPIs. Allocated %d but the current minimum is %d.\n",
1879 		       p_hwfn->dpi_count,
1880 		       p_hwfn->pf_params.rdma_pf_params.min_dpis);
1881 		return -EINVAL;
1882 	}
1883 
1884 	p_hwfn->dpi_start_offset = norm_regsize;
1885 
1886 	/* DEMS size is configured log2 of DWORDs, hence the division by 4 */
1887 	pf_dems_shift = ilog2(QED_PF_DEMS_SIZE / 4);
1888 	qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_ICID_BIT_SHIFT_NORM, pf_dems_shift);
1889 	qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_MIN_ADDR_REG1, min_addr_reg1);
1890 
1891 	return 0;
1892 }
1893 
1894 static int qed_hw_init_port(struct qed_hwfn *p_hwfn,
1895 			    struct qed_ptt *p_ptt, int hw_mode)
1896 {
1897 	int rc = 0;
1898 
1899 	rc = qed_init_run(p_hwfn, p_ptt, PHASE_PORT, p_hwfn->port_id, hw_mode);
1900 	if (rc)
1901 		return rc;
1902 
1903 	qed_wr(p_hwfn, p_ptt, PGLUE_B_REG_MASTER_WRITE_PAD_ENABLE, 0);
1904 
1905 	return 0;
1906 }
1907 
1908 static int qed_hw_init_pf(struct qed_hwfn *p_hwfn,
1909 			  struct qed_ptt *p_ptt,
1910 			  struct qed_tunnel_info *p_tunn,
1911 			  int hw_mode,
1912 			  bool b_hw_start,
1913 			  enum qed_int_mode int_mode,
1914 			  bool allow_npar_tx_switch)
1915 {
1916 	u8 rel_pf_id = p_hwfn->rel_pf_id;
1917 	int rc = 0;
1918 
1919 	if (p_hwfn->mcp_info) {
1920 		struct qed_mcp_function_info *p_info;
1921 
1922 		p_info = &p_hwfn->mcp_info->func_info;
1923 		if (p_info->bandwidth_min)
1924 			p_hwfn->qm_info.pf_wfq = p_info->bandwidth_min;
1925 
1926 		/* Update rate limit once we'll actually have a link */
1927 		p_hwfn->qm_info.pf_rl = 100000;
1928 	}
1929 
1930 	qed_cxt_hw_init_pf(p_hwfn, p_ptt);
1931 
1932 	qed_int_igu_init_rt(p_hwfn);
1933 
1934 	/* Set VLAN in NIG if needed */
1935 	if (hw_mode & BIT(MODE_MF_SD)) {
1936 		DP_VERBOSE(p_hwfn, NETIF_MSG_HW, "Configuring LLH_FUNC_TAG\n");
1937 		STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_EN_RT_OFFSET, 1);
1938 		STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_VALUE_RT_OFFSET,
1939 			     p_hwfn->hw_info.ovlan);
1940 
1941 		DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
1942 			   "Configuring LLH_FUNC_FILTER_HDR_SEL\n");
1943 		STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_FILTER_HDR_SEL_RT_OFFSET,
1944 			     1);
1945 	}
1946 
1947 	/* Enable classification by MAC if needed */
1948 	if (hw_mode & BIT(MODE_MF_SI)) {
1949 		DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
1950 			   "Configuring TAGMAC_CLS_TYPE\n");
1951 		STORE_RT_REG(p_hwfn,
1952 			     NIG_REG_LLH_FUNC_TAGMAC_CLS_TYPE_RT_OFFSET, 1);
1953 	}
1954 
1955 	/* Protocol Configuration */
1956 	STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_TCP_RT_OFFSET,
1957 		     (p_hwfn->hw_info.personality == QED_PCI_ISCSI) ? 1 : 0);
1958 	STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_FCOE_RT_OFFSET,
1959 		     (p_hwfn->hw_info.personality == QED_PCI_FCOE) ? 1 : 0);
1960 	STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_ROCE_RT_OFFSET, 0);
1961 
1962 	/* Sanity check before the PF init sequence that uses DMAE */
1963 	rc = qed_dmae_sanity(p_hwfn, p_ptt, "pf_phase");
1964 	if (rc)
1965 		return rc;
1966 
1967 	/* PF Init sequence */
1968 	rc = qed_init_run(p_hwfn, p_ptt, PHASE_PF, rel_pf_id, hw_mode);
1969 	if (rc)
1970 		return rc;
1971 
1972 	/* QM_PF Init sequence (may be invoked separately e.g. for DCB) */
1973 	rc = qed_init_run(p_hwfn, p_ptt, PHASE_QM_PF, rel_pf_id, hw_mode);
1974 	if (rc)
1975 		return rc;
1976 
1977 	/* Pure runtime initializations - directly to the HW  */
1978 	qed_int_igu_init_pure_rt(p_hwfn, p_ptt, true, true);
1979 
1980 	rc = qed_hw_init_pf_doorbell_bar(p_hwfn, p_ptt);
1981 	if (rc)
1982 		return rc;
1983 
1984 	if (b_hw_start) {
1985 		/* enable interrupts */
1986 		qed_int_igu_enable(p_hwfn, p_ptt, int_mode);
1987 
1988 		/* send function start command */
1989 		rc = qed_sp_pf_start(p_hwfn, p_ptt, p_tunn,
1990 				     allow_npar_tx_switch);
1991 		if (rc) {
1992 			DP_NOTICE(p_hwfn, "Function start ramrod failed\n");
1993 			return rc;
1994 		}
1995 		if (p_hwfn->hw_info.personality == QED_PCI_FCOE) {
1996 			qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TAG1, BIT(2));
1997 			qed_wr(p_hwfn, p_ptt,
1998 			       PRS_REG_PKT_LEN_STAT_TAGS_NOT_COUNTED_FIRST,
1999 			       0x100);
2000 		}
2001 	}
2002 	return rc;
2003 }
2004 
2005 int qed_pglueb_set_pfid_enable(struct qed_hwfn *p_hwfn,
2006 			       struct qed_ptt *p_ptt, bool b_enable)
2007 {
2008 	u32 delay_idx = 0, val, set_val = b_enable ? 1 : 0;
2009 
2010 	/* Configure the PF's internal FID_enable for master transactions */
2011 	qed_wr(p_hwfn, p_ptt, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, set_val);
2012 
2013 	/* Wait until value is set - try for 1 second every 50us */
2014 	for (delay_idx = 0; delay_idx < 20000; delay_idx++) {
2015 		val = qed_rd(p_hwfn, p_ptt,
2016 			     PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
2017 		if (val == set_val)
2018 			break;
2019 
2020 		usleep_range(50, 60);
2021 	}
2022 
2023 	if (val != set_val) {
2024 		DP_NOTICE(p_hwfn,
2025 			  "PFID_ENABLE_MASTER wasn't changed after a second\n");
2026 		return -EAGAIN;
2027 	}
2028 
2029 	return 0;
2030 }
2031 
2032 static void qed_reset_mb_shadow(struct qed_hwfn *p_hwfn,
2033 				struct qed_ptt *p_main_ptt)
2034 {
2035 	/* Read shadow of current MFW mailbox */
2036 	qed_mcp_read_mb(p_hwfn, p_main_ptt);
2037 	memcpy(p_hwfn->mcp_info->mfw_mb_shadow,
2038 	       p_hwfn->mcp_info->mfw_mb_cur, p_hwfn->mcp_info->mfw_mb_length);
2039 }
2040 
2041 static void
2042 qed_fill_load_req_params(struct qed_load_req_params *p_load_req,
2043 			 struct qed_drv_load_params *p_drv_load)
2044 {
2045 	memset(p_load_req, 0, sizeof(*p_load_req));
2046 
2047 	p_load_req->drv_role = p_drv_load->is_crash_kernel ?
2048 			       QED_DRV_ROLE_KDUMP : QED_DRV_ROLE_OS;
2049 	p_load_req->timeout_val = p_drv_load->mfw_timeout_val;
2050 	p_load_req->avoid_eng_reset = p_drv_load->avoid_eng_reset;
2051 	p_load_req->override_force_load = p_drv_load->override_force_load;
2052 }
2053 
2054 static int qed_vf_start(struct qed_hwfn *p_hwfn,
2055 			struct qed_hw_init_params *p_params)
2056 {
2057 	if (p_params->p_tunn) {
2058 		qed_vf_set_vf_start_tunn_update_param(p_params->p_tunn);
2059 		qed_vf_pf_tunnel_param_update(p_hwfn, p_params->p_tunn);
2060 	}
2061 
2062 	p_hwfn->b_int_enabled = true;
2063 
2064 	return 0;
2065 }
2066 
2067 static void qed_pglueb_clear_err(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2068 {
2069 	qed_wr(p_hwfn, p_ptt, PGLUE_B_REG_WAS_ERROR_PF_31_0_CLR,
2070 	       BIT(p_hwfn->abs_pf_id));
2071 }
2072 
2073 int qed_hw_init(struct qed_dev *cdev, struct qed_hw_init_params *p_params)
2074 {
2075 	struct qed_load_req_params load_req_params;
2076 	u32 load_code, resp, param, drv_mb_param;
2077 	bool b_default_mtu = true;
2078 	struct qed_hwfn *p_hwfn;
2079 	int rc = 0, i;
2080 	u16 ether_type;
2081 
2082 	if ((p_params->int_mode == QED_INT_MODE_MSI) && (cdev->num_hwfns > 1)) {
2083 		DP_NOTICE(cdev, "MSI mode is not supported for CMT devices\n");
2084 		return -EINVAL;
2085 	}
2086 
2087 	if (IS_PF(cdev)) {
2088 		rc = qed_init_fw_data(cdev, p_params->bin_fw_data);
2089 		if (rc)
2090 			return rc;
2091 	}
2092 
2093 	for_each_hwfn(cdev, i) {
2094 		p_hwfn = &cdev->hwfns[i];
2095 
2096 		/* If management didn't provide a default, set one of our own */
2097 		if (!p_hwfn->hw_info.mtu) {
2098 			p_hwfn->hw_info.mtu = 1500;
2099 			b_default_mtu = false;
2100 		}
2101 
2102 		if (IS_VF(cdev)) {
2103 			qed_vf_start(p_hwfn, p_params);
2104 			continue;
2105 		}
2106 
2107 		rc = qed_calc_hw_mode(p_hwfn);
2108 		if (rc)
2109 			return rc;
2110 
2111 		if (IS_PF(cdev) && (test_bit(QED_MF_8021Q_TAGGING,
2112 					     &cdev->mf_bits) ||
2113 				    test_bit(QED_MF_8021AD_TAGGING,
2114 					     &cdev->mf_bits))) {
2115 			if (test_bit(QED_MF_8021Q_TAGGING, &cdev->mf_bits))
2116 				ether_type = ETH_P_8021Q;
2117 			else
2118 				ether_type = ETH_P_8021AD;
2119 			STORE_RT_REG(p_hwfn, PRS_REG_TAG_ETHERTYPE_0_RT_OFFSET,
2120 				     ether_type);
2121 			STORE_RT_REG(p_hwfn, NIG_REG_TAG_ETHERTYPE_0_RT_OFFSET,
2122 				     ether_type);
2123 			STORE_RT_REG(p_hwfn, PBF_REG_TAG_ETHERTYPE_0_RT_OFFSET,
2124 				     ether_type);
2125 			STORE_RT_REG(p_hwfn, DORQ_REG_TAG1_ETHERTYPE_RT_OFFSET,
2126 				     ether_type);
2127 		}
2128 
2129 		qed_fill_load_req_params(&load_req_params,
2130 					 p_params->p_drv_load_params);
2131 		rc = qed_mcp_load_req(p_hwfn, p_hwfn->p_main_ptt,
2132 				      &load_req_params);
2133 		if (rc) {
2134 			DP_NOTICE(p_hwfn, "Failed sending a LOAD_REQ command\n");
2135 			return rc;
2136 		}
2137 
2138 		load_code = load_req_params.load_code;
2139 		DP_VERBOSE(p_hwfn, QED_MSG_SP,
2140 			   "Load request was sent. Load code: 0x%x\n",
2141 			   load_code);
2142 
2143 		/* Only relevant for recovery:
2144 		 * Clear the indication after LOAD_REQ is responded by the MFW.
2145 		 */
2146 		cdev->recov_in_prog = false;
2147 
2148 		qed_mcp_set_capabilities(p_hwfn, p_hwfn->p_main_ptt);
2149 
2150 		qed_reset_mb_shadow(p_hwfn, p_hwfn->p_main_ptt);
2151 
2152 		/* Clean up chip from previous driver if such remains exist.
2153 		 * This is not needed when the PF is the first one on the
2154 		 * engine, since afterwards we are going to init the FW.
2155 		 */
2156 		if (load_code != FW_MSG_CODE_DRV_LOAD_ENGINE) {
2157 			rc = qed_final_cleanup(p_hwfn, p_hwfn->p_main_ptt,
2158 					       p_hwfn->rel_pf_id, false);
2159 			if (rc) {
2160 				DP_NOTICE(p_hwfn, "Final cleanup failed\n");
2161 				goto load_err;
2162 			}
2163 		}
2164 
2165 		/* Log and clear previous pglue_b errors if such exist */
2166 		qed_pglueb_rbc_attn_handler(p_hwfn, p_hwfn->p_main_ptt);
2167 
2168 		/* Enable the PF's internal FID_enable in the PXP */
2169 		rc = qed_pglueb_set_pfid_enable(p_hwfn, p_hwfn->p_main_ptt,
2170 						true);
2171 		if (rc)
2172 			goto load_err;
2173 
2174 		/* Clear the pglue_b was_error indication.
2175 		 * In E4 it must be done after the BME and the internal
2176 		 * FID_enable for the PF are set, since VDMs may cause the
2177 		 * indication to be set again.
2178 		 */
2179 		qed_pglueb_clear_err(p_hwfn, p_hwfn->p_main_ptt);
2180 
2181 		switch (load_code) {
2182 		case FW_MSG_CODE_DRV_LOAD_ENGINE:
2183 			rc = qed_hw_init_common(p_hwfn, p_hwfn->p_main_ptt,
2184 						p_hwfn->hw_info.hw_mode);
2185 			if (rc)
2186 				break;
2187 		/* Fall through */
2188 		case FW_MSG_CODE_DRV_LOAD_PORT:
2189 			rc = qed_hw_init_port(p_hwfn, p_hwfn->p_main_ptt,
2190 					      p_hwfn->hw_info.hw_mode);
2191 			if (rc)
2192 				break;
2193 
2194 		/* Fall through */
2195 		case FW_MSG_CODE_DRV_LOAD_FUNCTION:
2196 			rc = qed_hw_init_pf(p_hwfn, p_hwfn->p_main_ptt,
2197 					    p_params->p_tunn,
2198 					    p_hwfn->hw_info.hw_mode,
2199 					    p_params->b_hw_start,
2200 					    p_params->int_mode,
2201 					    p_params->allow_npar_tx_switch);
2202 			break;
2203 		default:
2204 			DP_NOTICE(p_hwfn,
2205 				  "Unexpected load code [0x%08x]", load_code);
2206 			rc = -EINVAL;
2207 			break;
2208 		}
2209 
2210 		if (rc) {
2211 			DP_NOTICE(p_hwfn,
2212 				  "init phase failed for loadcode 0x%x (rc %d)\n",
2213 				  load_code, rc);
2214 			goto load_err;
2215 		}
2216 
2217 		rc = qed_mcp_load_done(p_hwfn, p_hwfn->p_main_ptt);
2218 		if (rc)
2219 			return rc;
2220 
2221 		/* send DCBX attention request command */
2222 		DP_VERBOSE(p_hwfn,
2223 			   QED_MSG_DCB,
2224 			   "sending phony dcbx set command to trigger DCBx attention handling\n");
2225 		rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
2226 				 DRV_MSG_CODE_SET_DCBX,
2227 				 1 << DRV_MB_PARAM_DCBX_NOTIFY_SHIFT,
2228 				 &resp, &param);
2229 		if (rc) {
2230 			DP_NOTICE(p_hwfn,
2231 				  "Failed to send DCBX attention request\n");
2232 			return rc;
2233 		}
2234 
2235 		p_hwfn->hw_init_done = true;
2236 	}
2237 
2238 	if (IS_PF(cdev)) {
2239 		p_hwfn = QED_LEADING_HWFN(cdev);
2240 
2241 		/* Get pre-negotiated values for stag, bandwidth etc. */
2242 		DP_VERBOSE(p_hwfn,
2243 			   QED_MSG_SPQ,
2244 			   "Sending GET_OEM_UPDATES command to trigger stag/bandwidth attention handling\n");
2245 		drv_mb_param = 1 << DRV_MB_PARAM_DUMMY_OEM_UPDATES_OFFSET;
2246 		rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
2247 				 DRV_MSG_CODE_GET_OEM_UPDATES,
2248 				 drv_mb_param, &resp, &param);
2249 		if (rc)
2250 			DP_NOTICE(p_hwfn,
2251 				  "Failed to send GET_OEM_UPDATES attention request\n");
2252 
2253 		drv_mb_param = STORM_FW_VERSION;
2254 		rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
2255 				 DRV_MSG_CODE_OV_UPDATE_STORM_FW_VER,
2256 				 drv_mb_param, &load_code, &param);
2257 		if (rc)
2258 			DP_INFO(p_hwfn, "Failed to update firmware version\n");
2259 
2260 		if (!b_default_mtu) {
2261 			rc = qed_mcp_ov_update_mtu(p_hwfn, p_hwfn->p_main_ptt,
2262 						   p_hwfn->hw_info.mtu);
2263 			if (rc)
2264 				DP_INFO(p_hwfn,
2265 					"Failed to update default mtu\n");
2266 		}
2267 
2268 		rc = qed_mcp_ov_update_driver_state(p_hwfn,
2269 						    p_hwfn->p_main_ptt,
2270 						  QED_OV_DRIVER_STATE_DISABLED);
2271 		if (rc)
2272 			DP_INFO(p_hwfn, "Failed to update driver state\n");
2273 
2274 		rc = qed_mcp_ov_update_eswitch(p_hwfn, p_hwfn->p_main_ptt,
2275 					       QED_OV_ESWITCH_NONE);
2276 		if (rc)
2277 			DP_INFO(p_hwfn, "Failed to update eswitch mode\n");
2278 	}
2279 
2280 	return 0;
2281 
2282 load_err:
2283 	/* The MFW load lock should be released also when initialization fails.
2284 	 */
2285 	qed_mcp_load_done(p_hwfn, p_hwfn->p_main_ptt);
2286 	return rc;
2287 }
2288 
2289 #define QED_HW_STOP_RETRY_LIMIT (10)
2290 static void qed_hw_timers_stop(struct qed_dev *cdev,
2291 			       struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2292 {
2293 	int i;
2294 
2295 	/* close timers */
2296 	qed_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_CONN, 0x0);
2297 	qed_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_TASK, 0x0);
2298 
2299 	if (cdev->recov_in_prog)
2300 		return;
2301 
2302 	for (i = 0; i < QED_HW_STOP_RETRY_LIMIT; i++) {
2303 		if ((!qed_rd(p_hwfn, p_ptt,
2304 			     TM_REG_PF_SCAN_ACTIVE_CONN)) &&
2305 		    (!qed_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_TASK)))
2306 			break;
2307 
2308 		/* Dependent on number of connection/tasks, possibly
2309 		 * 1ms sleep is required between polls
2310 		 */
2311 		usleep_range(1000, 2000);
2312 	}
2313 
2314 	if (i < QED_HW_STOP_RETRY_LIMIT)
2315 		return;
2316 
2317 	DP_NOTICE(p_hwfn,
2318 		  "Timers linear scans are not over [Connection %02x Tasks %02x]\n",
2319 		  (u8)qed_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_CONN),
2320 		  (u8)qed_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_TASK));
2321 }
2322 
2323 void qed_hw_timers_stop_all(struct qed_dev *cdev)
2324 {
2325 	int j;
2326 
2327 	for_each_hwfn(cdev, j) {
2328 		struct qed_hwfn *p_hwfn = &cdev->hwfns[j];
2329 		struct qed_ptt *p_ptt = p_hwfn->p_main_ptt;
2330 
2331 		qed_hw_timers_stop(cdev, p_hwfn, p_ptt);
2332 	}
2333 }
2334 
2335 int qed_hw_stop(struct qed_dev *cdev)
2336 {
2337 	struct qed_hwfn *p_hwfn;
2338 	struct qed_ptt *p_ptt;
2339 	int rc, rc2 = 0;
2340 	int j;
2341 
2342 	for_each_hwfn(cdev, j) {
2343 		p_hwfn = &cdev->hwfns[j];
2344 		p_ptt = p_hwfn->p_main_ptt;
2345 
2346 		DP_VERBOSE(p_hwfn, NETIF_MSG_IFDOWN, "Stopping hw/fw\n");
2347 
2348 		if (IS_VF(cdev)) {
2349 			qed_vf_pf_int_cleanup(p_hwfn);
2350 			rc = qed_vf_pf_reset(p_hwfn);
2351 			if (rc) {
2352 				DP_NOTICE(p_hwfn,
2353 					  "qed_vf_pf_reset failed. rc = %d.\n",
2354 					  rc);
2355 				rc2 = -EINVAL;
2356 			}
2357 			continue;
2358 		}
2359 
2360 		/* mark the hw as uninitialized... */
2361 		p_hwfn->hw_init_done = false;
2362 
2363 		/* Send unload command to MCP */
2364 		if (!cdev->recov_in_prog) {
2365 			rc = qed_mcp_unload_req(p_hwfn, p_ptt);
2366 			if (rc) {
2367 				DP_NOTICE(p_hwfn,
2368 					  "Failed sending a UNLOAD_REQ command. rc = %d.\n",
2369 					  rc);
2370 				rc2 = -EINVAL;
2371 			}
2372 		}
2373 
2374 		qed_slowpath_irq_sync(p_hwfn);
2375 
2376 		/* After this point no MFW attentions are expected, e.g. prevent
2377 		 * race between pf stop and dcbx pf update.
2378 		 */
2379 		rc = qed_sp_pf_stop(p_hwfn);
2380 		if (rc) {
2381 			DP_NOTICE(p_hwfn,
2382 				  "Failed to close PF against FW [rc = %d]. Continue to stop HW to prevent illegal host access by the device.\n",
2383 				  rc);
2384 			rc2 = -EINVAL;
2385 		}
2386 
2387 		qed_wr(p_hwfn, p_ptt,
2388 		       NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1);
2389 
2390 		qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
2391 		qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0);
2392 		qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0);
2393 		qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
2394 		qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0);
2395 
2396 		qed_hw_timers_stop(cdev, p_hwfn, p_ptt);
2397 
2398 		/* Disable Attention Generation */
2399 		qed_int_igu_disable_int(p_hwfn, p_ptt);
2400 
2401 		qed_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0);
2402 		qed_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0);
2403 
2404 		qed_int_igu_init_pure_rt(p_hwfn, p_ptt, false, true);
2405 
2406 		/* Need to wait 1ms to guarantee SBs are cleared */
2407 		usleep_range(1000, 2000);
2408 
2409 		/* Disable PF in HW blocks */
2410 		qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_DB_ENABLE, 0);
2411 		qed_wr(p_hwfn, p_ptt, QM_REG_PF_EN, 0);
2412 
2413 		if (!cdev->recov_in_prog) {
2414 			rc = qed_mcp_unload_done(p_hwfn, p_ptt);
2415 			if (rc) {
2416 				DP_NOTICE(p_hwfn,
2417 					  "Failed sending a UNLOAD_DONE command. rc = %d.\n",
2418 					  rc);
2419 				rc2 = -EINVAL;
2420 			}
2421 		}
2422 	}
2423 
2424 	if (IS_PF(cdev) && !cdev->recov_in_prog) {
2425 		p_hwfn = QED_LEADING_HWFN(cdev);
2426 		p_ptt = QED_LEADING_HWFN(cdev)->p_main_ptt;
2427 
2428 		/* Clear the PF's internal FID_enable in the PXP.
2429 		 * In CMT this should only be done for first hw-function, and
2430 		 * only after all transactions have stopped for all active
2431 		 * hw-functions.
2432 		 */
2433 		rc = qed_pglueb_set_pfid_enable(p_hwfn, p_ptt, false);
2434 		if (rc) {
2435 			DP_NOTICE(p_hwfn,
2436 				  "qed_pglueb_set_pfid_enable() failed. rc = %d.\n",
2437 				  rc);
2438 			rc2 = -EINVAL;
2439 		}
2440 	}
2441 
2442 	return rc2;
2443 }
2444 
2445 int qed_hw_stop_fastpath(struct qed_dev *cdev)
2446 {
2447 	int j;
2448 
2449 	for_each_hwfn(cdev, j) {
2450 		struct qed_hwfn *p_hwfn = &cdev->hwfns[j];
2451 		struct qed_ptt *p_ptt;
2452 
2453 		if (IS_VF(cdev)) {
2454 			qed_vf_pf_int_cleanup(p_hwfn);
2455 			continue;
2456 		}
2457 		p_ptt = qed_ptt_acquire(p_hwfn);
2458 		if (!p_ptt)
2459 			return -EAGAIN;
2460 
2461 		DP_VERBOSE(p_hwfn,
2462 			   NETIF_MSG_IFDOWN, "Shutting down the fastpath\n");
2463 
2464 		qed_wr(p_hwfn, p_ptt,
2465 		       NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1);
2466 
2467 		qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
2468 		qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0);
2469 		qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0);
2470 		qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
2471 		qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0);
2472 
2473 		qed_int_igu_init_pure_rt(p_hwfn, p_ptt, false, false);
2474 
2475 		/* Need to wait 1ms to guarantee SBs are cleared */
2476 		usleep_range(1000, 2000);
2477 		qed_ptt_release(p_hwfn, p_ptt);
2478 	}
2479 
2480 	return 0;
2481 }
2482 
2483 int qed_hw_start_fastpath(struct qed_hwfn *p_hwfn)
2484 {
2485 	struct qed_ptt *p_ptt;
2486 
2487 	if (IS_VF(p_hwfn->cdev))
2488 		return 0;
2489 
2490 	p_ptt = qed_ptt_acquire(p_hwfn);
2491 	if (!p_ptt)
2492 		return -EAGAIN;
2493 
2494 	if (p_hwfn->p_rdma_info &&
2495 	    p_hwfn->p_rdma_info->active && p_hwfn->b_rdma_enabled_in_prs)
2496 		qed_wr(p_hwfn, p_ptt, p_hwfn->rdma_prs_search_reg, 0x1);
2497 
2498 	/* Re-open incoming traffic */
2499 	qed_wr(p_hwfn, p_ptt, NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x0);
2500 	qed_ptt_release(p_hwfn, p_ptt);
2501 
2502 	return 0;
2503 }
2504 
2505 /* Free hwfn memory and resources acquired in hw_hwfn_prepare */
2506 static void qed_hw_hwfn_free(struct qed_hwfn *p_hwfn)
2507 {
2508 	qed_ptt_pool_free(p_hwfn);
2509 	kfree(p_hwfn->hw_info.p_igu_info);
2510 	p_hwfn->hw_info.p_igu_info = NULL;
2511 }
2512 
2513 /* Setup bar access */
2514 static void qed_hw_hwfn_prepare(struct qed_hwfn *p_hwfn)
2515 {
2516 	/* clear indirect access */
2517 	if (QED_IS_AH(p_hwfn->cdev)) {
2518 		qed_wr(p_hwfn, p_hwfn->p_main_ptt,
2519 		       PGLUE_B_REG_PGL_ADDR_E8_F0_K2, 0);
2520 		qed_wr(p_hwfn, p_hwfn->p_main_ptt,
2521 		       PGLUE_B_REG_PGL_ADDR_EC_F0_K2, 0);
2522 		qed_wr(p_hwfn, p_hwfn->p_main_ptt,
2523 		       PGLUE_B_REG_PGL_ADDR_F0_F0_K2, 0);
2524 		qed_wr(p_hwfn, p_hwfn->p_main_ptt,
2525 		       PGLUE_B_REG_PGL_ADDR_F4_F0_K2, 0);
2526 	} else {
2527 		qed_wr(p_hwfn, p_hwfn->p_main_ptt,
2528 		       PGLUE_B_REG_PGL_ADDR_88_F0_BB, 0);
2529 		qed_wr(p_hwfn, p_hwfn->p_main_ptt,
2530 		       PGLUE_B_REG_PGL_ADDR_8C_F0_BB, 0);
2531 		qed_wr(p_hwfn, p_hwfn->p_main_ptt,
2532 		       PGLUE_B_REG_PGL_ADDR_90_F0_BB, 0);
2533 		qed_wr(p_hwfn, p_hwfn->p_main_ptt,
2534 		       PGLUE_B_REG_PGL_ADDR_94_F0_BB, 0);
2535 	}
2536 
2537 	/* Clean previous pglue_b errors if such exist */
2538 	qed_pglueb_clear_err(p_hwfn, p_hwfn->p_main_ptt);
2539 
2540 	/* enable internal target-read */
2541 	qed_wr(p_hwfn, p_hwfn->p_main_ptt,
2542 	       PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
2543 }
2544 
2545 static void get_function_id(struct qed_hwfn *p_hwfn)
2546 {
2547 	/* ME Register */
2548 	p_hwfn->hw_info.opaque_fid = (u16) REG_RD(p_hwfn,
2549 						  PXP_PF_ME_OPAQUE_ADDR);
2550 
2551 	p_hwfn->hw_info.concrete_fid = REG_RD(p_hwfn, PXP_PF_ME_CONCRETE_ADDR);
2552 
2553 	p_hwfn->abs_pf_id = (p_hwfn->hw_info.concrete_fid >> 16) & 0xf;
2554 	p_hwfn->rel_pf_id = GET_FIELD(p_hwfn->hw_info.concrete_fid,
2555 				      PXP_CONCRETE_FID_PFID);
2556 	p_hwfn->port_id = GET_FIELD(p_hwfn->hw_info.concrete_fid,
2557 				    PXP_CONCRETE_FID_PORT);
2558 
2559 	DP_VERBOSE(p_hwfn, NETIF_MSG_PROBE,
2560 		   "Read ME register: Concrete 0x%08x Opaque 0x%04x\n",
2561 		   p_hwfn->hw_info.concrete_fid, p_hwfn->hw_info.opaque_fid);
2562 }
2563 
2564 static void qed_hw_set_feat(struct qed_hwfn *p_hwfn)
2565 {
2566 	u32 *feat_num = p_hwfn->hw_info.feat_num;
2567 	struct qed_sb_cnt_info sb_cnt;
2568 	u32 non_l2_sbs = 0;
2569 
2570 	memset(&sb_cnt, 0, sizeof(sb_cnt));
2571 	qed_int_get_num_sbs(p_hwfn, &sb_cnt);
2572 
2573 	if (IS_ENABLED(CONFIG_QED_RDMA) &&
2574 	    QED_IS_RDMA_PERSONALITY(p_hwfn)) {
2575 		/* Roce CNQ each requires: 1 status block + 1 CNQ. We divide
2576 		 * the status blocks equally between L2 / RoCE but with
2577 		 * consideration as to how many l2 queues / cnqs we have.
2578 		 */
2579 		feat_num[QED_RDMA_CNQ] =
2580 			min_t(u32, sb_cnt.cnt / 2,
2581 			      RESC_NUM(p_hwfn, QED_RDMA_CNQ_RAM));
2582 
2583 		non_l2_sbs = feat_num[QED_RDMA_CNQ];
2584 	}
2585 	if (QED_IS_L2_PERSONALITY(p_hwfn)) {
2586 		/* Start by allocating VF queues, then PF's */
2587 		feat_num[QED_VF_L2_QUE] = min_t(u32,
2588 						RESC_NUM(p_hwfn, QED_L2_QUEUE),
2589 						sb_cnt.iov_cnt);
2590 		feat_num[QED_PF_L2_QUE] = min_t(u32,
2591 						sb_cnt.cnt - non_l2_sbs,
2592 						RESC_NUM(p_hwfn,
2593 							 QED_L2_QUEUE) -
2594 						FEAT_NUM(p_hwfn,
2595 							 QED_VF_L2_QUE));
2596 	}
2597 
2598 	if (QED_IS_FCOE_PERSONALITY(p_hwfn))
2599 		feat_num[QED_FCOE_CQ] =  min_t(u32, sb_cnt.cnt,
2600 					       RESC_NUM(p_hwfn,
2601 							QED_CMDQS_CQS));
2602 
2603 	if (QED_IS_ISCSI_PERSONALITY(p_hwfn))
2604 		feat_num[QED_ISCSI_CQ] = min_t(u32, sb_cnt.cnt,
2605 					       RESC_NUM(p_hwfn,
2606 							QED_CMDQS_CQS));
2607 	DP_VERBOSE(p_hwfn,
2608 		   NETIF_MSG_PROBE,
2609 		   "#PF_L2_QUEUES=%d VF_L2_QUEUES=%d #ROCE_CNQ=%d FCOE_CQ=%d ISCSI_CQ=%d #SBS=%d\n",
2610 		   (int)FEAT_NUM(p_hwfn, QED_PF_L2_QUE),
2611 		   (int)FEAT_NUM(p_hwfn, QED_VF_L2_QUE),
2612 		   (int)FEAT_NUM(p_hwfn, QED_RDMA_CNQ),
2613 		   (int)FEAT_NUM(p_hwfn, QED_FCOE_CQ),
2614 		   (int)FEAT_NUM(p_hwfn, QED_ISCSI_CQ),
2615 		   (int)sb_cnt.cnt);
2616 }
2617 
2618 const char *qed_hw_get_resc_name(enum qed_resources res_id)
2619 {
2620 	switch (res_id) {
2621 	case QED_L2_QUEUE:
2622 		return "L2_QUEUE";
2623 	case QED_VPORT:
2624 		return "VPORT";
2625 	case QED_RSS_ENG:
2626 		return "RSS_ENG";
2627 	case QED_PQ:
2628 		return "PQ";
2629 	case QED_RL:
2630 		return "RL";
2631 	case QED_MAC:
2632 		return "MAC";
2633 	case QED_VLAN:
2634 		return "VLAN";
2635 	case QED_RDMA_CNQ_RAM:
2636 		return "RDMA_CNQ_RAM";
2637 	case QED_ILT:
2638 		return "ILT";
2639 	case QED_LL2_QUEUE:
2640 		return "LL2_QUEUE";
2641 	case QED_CMDQS_CQS:
2642 		return "CMDQS_CQS";
2643 	case QED_RDMA_STATS_QUEUE:
2644 		return "RDMA_STATS_QUEUE";
2645 	case QED_BDQ:
2646 		return "BDQ";
2647 	case QED_SB:
2648 		return "SB";
2649 	default:
2650 		return "UNKNOWN_RESOURCE";
2651 	}
2652 }
2653 
2654 static int
2655 __qed_hw_set_soft_resc_size(struct qed_hwfn *p_hwfn,
2656 			    struct qed_ptt *p_ptt,
2657 			    enum qed_resources res_id,
2658 			    u32 resc_max_val, u32 *p_mcp_resp)
2659 {
2660 	int rc;
2661 
2662 	rc = qed_mcp_set_resc_max_val(p_hwfn, p_ptt, res_id,
2663 				      resc_max_val, p_mcp_resp);
2664 	if (rc) {
2665 		DP_NOTICE(p_hwfn,
2666 			  "MFW response failure for a max value setting of resource %d [%s]\n",
2667 			  res_id, qed_hw_get_resc_name(res_id));
2668 		return rc;
2669 	}
2670 
2671 	if (*p_mcp_resp != FW_MSG_CODE_RESOURCE_ALLOC_OK)
2672 		DP_INFO(p_hwfn,
2673 			"Failed to set the max value of resource %d [%s]. mcp_resp = 0x%08x.\n",
2674 			res_id, qed_hw_get_resc_name(res_id), *p_mcp_resp);
2675 
2676 	return 0;
2677 }
2678 
2679 static int
2680 qed_hw_set_soft_resc_size(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2681 {
2682 	bool b_ah = QED_IS_AH(p_hwfn->cdev);
2683 	u32 resc_max_val, mcp_resp;
2684 	u8 res_id;
2685 	int rc;
2686 
2687 	for (res_id = 0; res_id < QED_MAX_RESC; res_id++) {
2688 		switch (res_id) {
2689 		case QED_LL2_QUEUE:
2690 			resc_max_val = MAX_NUM_LL2_RX_QUEUES;
2691 			break;
2692 		case QED_RDMA_CNQ_RAM:
2693 			/* No need for a case for QED_CMDQS_CQS since
2694 			 * CNQ/CMDQS are the same resource.
2695 			 */
2696 			resc_max_val = NUM_OF_GLOBAL_QUEUES;
2697 			break;
2698 		case QED_RDMA_STATS_QUEUE:
2699 			resc_max_val = b_ah ? RDMA_NUM_STATISTIC_COUNTERS_K2
2700 			    : RDMA_NUM_STATISTIC_COUNTERS_BB;
2701 			break;
2702 		case QED_BDQ:
2703 			resc_max_val = BDQ_NUM_RESOURCES;
2704 			break;
2705 		default:
2706 			continue;
2707 		}
2708 
2709 		rc = __qed_hw_set_soft_resc_size(p_hwfn, p_ptt, res_id,
2710 						 resc_max_val, &mcp_resp);
2711 		if (rc)
2712 			return rc;
2713 
2714 		/* There's no point to continue to the next resource if the
2715 		 * command is not supported by the MFW.
2716 		 * We do continue if the command is supported but the resource
2717 		 * is unknown to the MFW. Such a resource will be later
2718 		 * configured with the default allocation values.
2719 		 */
2720 		if (mcp_resp == FW_MSG_CODE_UNSUPPORTED)
2721 			return -EINVAL;
2722 	}
2723 
2724 	return 0;
2725 }
2726 
2727 static
2728 int qed_hw_get_dflt_resc(struct qed_hwfn *p_hwfn,
2729 			 enum qed_resources res_id,
2730 			 u32 *p_resc_num, u32 *p_resc_start)
2731 {
2732 	u8 num_funcs = p_hwfn->num_funcs_on_engine;
2733 	bool b_ah = QED_IS_AH(p_hwfn->cdev);
2734 
2735 	switch (res_id) {
2736 	case QED_L2_QUEUE:
2737 		*p_resc_num = (b_ah ? MAX_NUM_L2_QUEUES_K2 :
2738 			       MAX_NUM_L2_QUEUES_BB) / num_funcs;
2739 		break;
2740 	case QED_VPORT:
2741 		*p_resc_num = (b_ah ? MAX_NUM_VPORTS_K2 :
2742 			       MAX_NUM_VPORTS_BB) / num_funcs;
2743 		break;
2744 	case QED_RSS_ENG:
2745 		*p_resc_num = (b_ah ? ETH_RSS_ENGINE_NUM_K2 :
2746 			       ETH_RSS_ENGINE_NUM_BB) / num_funcs;
2747 		break;
2748 	case QED_PQ:
2749 		*p_resc_num = (b_ah ? MAX_QM_TX_QUEUES_K2 :
2750 			       MAX_QM_TX_QUEUES_BB) / num_funcs;
2751 		*p_resc_num &= ~0x7;	/* The granularity of the PQs is 8 */
2752 		break;
2753 	case QED_RL:
2754 		*p_resc_num = MAX_QM_GLOBAL_RLS / num_funcs;
2755 		break;
2756 	case QED_MAC:
2757 	case QED_VLAN:
2758 		/* Each VFC resource can accommodate both a MAC and a VLAN */
2759 		*p_resc_num = ETH_NUM_MAC_FILTERS / num_funcs;
2760 		break;
2761 	case QED_ILT:
2762 		*p_resc_num = (b_ah ? PXP_NUM_ILT_RECORDS_K2 :
2763 			       PXP_NUM_ILT_RECORDS_BB) / num_funcs;
2764 		break;
2765 	case QED_LL2_QUEUE:
2766 		*p_resc_num = MAX_NUM_LL2_RX_QUEUES / num_funcs;
2767 		break;
2768 	case QED_RDMA_CNQ_RAM:
2769 	case QED_CMDQS_CQS:
2770 		/* CNQ/CMDQS are the same resource */
2771 		*p_resc_num = NUM_OF_GLOBAL_QUEUES / num_funcs;
2772 		break;
2773 	case QED_RDMA_STATS_QUEUE:
2774 		*p_resc_num = (b_ah ? RDMA_NUM_STATISTIC_COUNTERS_K2 :
2775 			       RDMA_NUM_STATISTIC_COUNTERS_BB) / num_funcs;
2776 		break;
2777 	case QED_BDQ:
2778 		if (p_hwfn->hw_info.personality != QED_PCI_ISCSI &&
2779 		    p_hwfn->hw_info.personality != QED_PCI_FCOE)
2780 			*p_resc_num = 0;
2781 		else
2782 			*p_resc_num = 1;
2783 		break;
2784 	case QED_SB:
2785 		/* Since we want its value to reflect whether MFW supports
2786 		 * the new scheme, have a default of 0.
2787 		 */
2788 		*p_resc_num = 0;
2789 		break;
2790 	default:
2791 		return -EINVAL;
2792 	}
2793 
2794 	switch (res_id) {
2795 	case QED_BDQ:
2796 		if (!*p_resc_num)
2797 			*p_resc_start = 0;
2798 		else if (p_hwfn->cdev->num_ports_in_engine == 4)
2799 			*p_resc_start = p_hwfn->port_id;
2800 		else if (p_hwfn->hw_info.personality == QED_PCI_ISCSI)
2801 			*p_resc_start = p_hwfn->port_id;
2802 		else if (p_hwfn->hw_info.personality == QED_PCI_FCOE)
2803 			*p_resc_start = p_hwfn->port_id + 2;
2804 		break;
2805 	default:
2806 		*p_resc_start = *p_resc_num * p_hwfn->enabled_func_idx;
2807 		break;
2808 	}
2809 
2810 	return 0;
2811 }
2812 
2813 static int __qed_hw_set_resc_info(struct qed_hwfn *p_hwfn,
2814 				  enum qed_resources res_id)
2815 {
2816 	u32 dflt_resc_num = 0, dflt_resc_start = 0;
2817 	u32 mcp_resp, *p_resc_num, *p_resc_start;
2818 	int rc;
2819 
2820 	p_resc_num = &RESC_NUM(p_hwfn, res_id);
2821 	p_resc_start = &RESC_START(p_hwfn, res_id);
2822 
2823 	rc = qed_hw_get_dflt_resc(p_hwfn, res_id, &dflt_resc_num,
2824 				  &dflt_resc_start);
2825 	if (rc) {
2826 		DP_ERR(p_hwfn,
2827 		       "Failed to get default amount for resource %d [%s]\n",
2828 		       res_id, qed_hw_get_resc_name(res_id));
2829 		return rc;
2830 	}
2831 
2832 	rc = qed_mcp_get_resc_info(p_hwfn, p_hwfn->p_main_ptt, res_id,
2833 				   &mcp_resp, p_resc_num, p_resc_start);
2834 	if (rc) {
2835 		DP_NOTICE(p_hwfn,
2836 			  "MFW response failure for an allocation request for resource %d [%s]\n",
2837 			  res_id, qed_hw_get_resc_name(res_id));
2838 		return rc;
2839 	}
2840 
2841 	/* Default driver values are applied in the following cases:
2842 	 * - The resource allocation MB command is not supported by the MFW
2843 	 * - There is an internal error in the MFW while processing the request
2844 	 * - The resource ID is unknown to the MFW
2845 	 */
2846 	if (mcp_resp != FW_MSG_CODE_RESOURCE_ALLOC_OK) {
2847 		DP_INFO(p_hwfn,
2848 			"Failed to receive allocation info for resource %d [%s]. mcp_resp = 0x%x. Applying default values [%d,%d].\n",
2849 			res_id,
2850 			qed_hw_get_resc_name(res_id),
2851 			mcp_resp, dflt_resc_num, dflt_resc_start);
2852 		*p_resc_num = dflt_resc_num;
2853 		*p_resc_start = dflt_resc_start;
2854 		goto out;
2855 	}
2856 
2857 out:
2858 	/* PQs have to divide by 8 [that's the HW granularity].
2859 	 * Reduce number so it would fit.
2860 	 */
2861 	if ((res_id == QED_PQ) && ((*p_resc_num % 8) || (*p_resc_start % 8))) {
2862 		DP_INFO(p_hwfn,
2863 			"PQs need to align by 8; Number %08x --> %08x, Start %08x --> %08x\n",
2864 			*p_resc_num,
2865 			(*p_resc_num) & ~0x7,
2866 			*p_resc_start, (*p_resc_start) & ~0x7);
2867 		*p_resc_num &= ~0x7;
2868 		*p_resc_start &= ~0x7;
2869 	}
2870 
2871 	return 0;
2872 }
2873 
2874 static int qed_hw_set_resc_info(struct qed_hwfn *p_hwfn)
2875 {
2876 	int rc;
2877 	u8 res_id;
2878 
2879 	for (res_id = 0; res_id < QED_MAX_RESC; res_id++) {
2880 		rc = __qed_hw_set_resc_info(p_hwfn, res_id);
2881 		if (rc)
2882 			return rc;
2883 	}
2884 
2885 	return 0;
2886 }
2887 
2888 static int qed_hw_get_resc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2889 {
2890 	struct qed_resc_unlock_params resc_unlock_params;
2891 	struct qed_resc_lock_params resc_lock_params;
2892 	bool b_ah = QED_IS_AH(p_hwfn->cdev);
2893 	u8 res_id;
2894 	int rc;
2895 
2896 	/* Setting the max values of the soft resources and the following
2897 	 * resources allocation queries should be atomic. Since several PFs can
2898 	 * run in parallel - a resource lock is needed.
2899 	 * If either the resource lock or resource set value commands are not
2900 	 * supported - skip the the max values setting, release the lock if
2901 	 * needed, and proceed to the queries. Other failures, including a
2902 	 * failure to acquire the lock, will cause this function to fail.
2903 	 */
2904 	qed_mcp_resc_lock_default_init(&resc_lock_params, &resc_unlock_params,
2905 				       QED_RESC_LOCK_RESC_ALLOC, false);
2906 
2907 	rc = qed_mcp_resc_lock(p_hwfn, p_ptt, &resc_lock_params);
2908 	if (rc && rc != -EINVAL) {
2909 		return rc;
2910 	} else if (rc == -EINVAL) {
2911 		DP_INFO(p_hwfn,
2912 			"Skip the max values setting of the soft resources since the resource lock is not supported by the MFW\n");
2913 	} else if (!rc && !resc_lock_params.b_granted) {
2914 		DP_NOTICE(p_hwfn,
2915 			  "Failed to acquire the resource lock for the resource allocation commands\n");
2916 		return -EBUSY;
2917 	} else {
2918 		rc = qed_hw_set_soft_resc_size(p_hwfn, p_ptt);
2919 		if (rc && rc != -EINVAL) {
2920 			DP_NOTICE(p_hwfn,
2921 				  "Failed to set the max values of the soft resources\n");
2922 			goto unlock_and_exit;
2923 		} else if (rc == -EINVAL) {
2924 			DP_INFO(p_hwfn,
2925 				"Skip the max values setting of the soft resources since it is not supported by the MFW\n");
2926 			rc = qed_mcp_resc_unlock(p_hwfn, p_ptt,
2927 						 &resc_unlock_params);
2928 			if (rc)
2929 				DP_INFO(p_hwfn,
2930 					"Failed to release the resource lock for the resource allocation commands\n");
2931 		}
2932 	}
2933 
2934 	rc = qed_hw_set_resc_info(p_hwfn);
2935 	if (rc)
2936 		goto unlock_and_exit;
2937 
2938 	if (resc_lock_params.b_granted && !resc_unlock_params.b_released) {
2939 		rc = qed_mcp_resc_unlock(p_hwfn, p_ptt, &resc_unlock_params);
2940 		if (rc)
2941 			DP_INFO(p_hwfn,
2942 				"Failed to release the resource lock for the resource allocation commands\n");
2943 	}
2944 
2945 	/* Sanity for ILT */
2946 	if ((b_ah && (RESC_END(p_hwfn, QED_ILT) > PXP_NUM_ILT_RECORDS_K2)) ||
2947 	    (!b_ah && (RESC_END(p_hwfn, QED_ILT) > PXP_NUM_ILT_RECORDS_BB))) {
2948 		DP_NOTICE(p_hwfn, "Can't assign ILT pages [%08x,...,%08x]\n",
2949 			  RESC_START(p_hwfn, QED_ILT),
2950 			  RESC_END(p_hwfn, QED_ILT) - 1);
2951 		return -EINVAL;
2952 	}
2953 
2954 	/* This will also learn the number of SBs from MFW */
2955 	if (qed_int_igu_reset_cam(p_hwfn, p_ptt))
2956 		return -EINVAL;
2957 
2958 	qed_hw_set_feat(p_hwfn);
2959 
2960 	for (res_id = 0; res_id < QED_MAX_RESC; res_id++)
2961 		DP_VERBOSE(p_hwfn, NETIF_MSG_PROBE, "%s = %d start = %d\n",
2962 			   qed_hw_get_resc_name(res_id),
2963 			   RESC_NUM(p_hwfn, res_id),
2964 			   RESC_START(p_hwfn, res_id));
2965 
2966 	return 0;
2967 
2968 unlock_and_exit:
2969 	if (resc_lock_params.b_granted && !resc_unlock_params.b_released)
2970 		qed_mcp_resc_unlock(p_hwfn, p_ptt, &resc_unlock_params);
2971 	return rc;
2972 }
2973 
2974 static int qed_hw_get_nvm_info(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2975 {
2976 	u32 port_cfg_addr, link_temp, nvm_cfg_addr, device_capabilities;
2977 	u32 nvm_cfg1_offset, mf_mode, addr, generic_cont0, core_cfg;
2978 	struct qed_mcp_link_capabilities *p_caps;
2979 	struct qed_mcp_link_params *link;
2980 
2981 	/* Read global nvm_cfg address */
2982 	nvm_cfg_addr = qed_rd(p_hwfn, p_ptt, MISC_REG_GEN_PURP_CR0);
2983 
2984 	/* Verify MCP has initialized it */
2985 	if (!nvm_cfg_addr) {
2986 		DP_NOTICE(p_hwfn, "Shared memory not initialized\n");
2987 		return -EINVAL;
2988 	}
2989 
2990 	/* Read nvm_cfg1  (Notice this is just offset, and not offsize (TBD) */
2991 	nvm_cfg1_offset = qed_rd(p_hwfn, p_ptt, nvm_cfg_addr + 4);
2992 
2993 	addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
2994 	       offsetof(struct nvm_cfg1, glob) +
2995 	       offsetof(struct nvm_cfg1_glob, core_cfg);
2996 
2997 	core_cfg = qed_rd(p_hwfn, p_ptt, addr);
2998 
2999 	switch ((core_cfg & NVM_CFG1_GLOB_NETWORK_PORT_MODE_MASK) >>
3000 		NVM_CFG1_GLOB_NETWORK_PORT_MODE_OFFSET) {
3001 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_2X40G:
3002 		p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_2X40G;
3003 		break;
3004 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X50G:
3005 		p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_2X50G;
3006 		break;
3007 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_1X100G:
3008 		p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_1X100G;
3009 		break;
3010 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_4X10G_F:
3011 		p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_4X10G_F;
3012 		break;
3013 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X10G_E:
3014 		p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_4X10G_E;
3015 		break;
3016 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X20G:
3017 		p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_4X20G;
3018 		break;
3019 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X40G:
3020 		p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_1X40G;
3021 		break;
3022 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X25G:
3023 		p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_2X25G;
3024 		break;
3025 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X10G:
3026 		p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_2X10G;
3027 		break;
3028 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X25G:
3029 		p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_1X25G;
3030 		break;
3031 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_4X25G:
3032 		p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_4X25G;
3033 		break;
3034 	default:
3035 		DP_NOTICE(p_hwfn, "Unknown port mode in 0x%08x\n", core_cfg);
3036 		break;
3037 	}
3038 
3039 	/* Read default link configuration */
3040 	link = &p_hwfn->mcp_info->link_input;
3041 	p_caps = &p_hwfn->mcp_info->link_capabilities;
3042 	port_cfg_addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
3043 			offsetof(struct nvm_cfg1, port[MFW_PORT(p_hwfn)]);
3044 	link_temp = qed_rd(p_hwfn, p_ptt,
3045 			   port_cfg_addr +
3046 			   offsetof(struct nvm_cfg1_port, speed_cap_mask));
3047 	link_temp &= NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_MASK;
3048 	link->speed.advertised_speeds = link_temp;
3049 
3050 	link_temp = link->speed.advertised_speeds;
3051 	p_hwfn->mcp_info->link_capabilities.speed_capabilities = link_temp;
3052 
3053 	link_temp = qed_rd(p_hwfn, p_ptt,
3054 			   port_cfg_addr +
3055 			   offsetof(struct nvm_cfg1_port, link_settings));
3056 	switch ((link_temp & NVM_CFG1_PORT_DRV_LINK_SPEED_MASK) >>
3057 		NVM_CFG1_PORT_DRV_LINK_SPEED_OFFSET) {
3058 	case NVM_CFG1_PORT_DRV_LINK_SPEED_AUTONEG:
3059 		link->speed.autoneg = true;
3060 		break;
3061 	case NVM_CFG1_PORT_DRV_LINK_SPEED_1G:
3062 		link->speed.forced_speed = 1000;
3063 		break;
3064 	case NVM_CFG1_PORT_DRV_LINK_SPEED_10G:
3065 		link->speed.forced_speed = 10000;
3066 		break;
3067 	case NVM_CFG1_PORT_DRV_LINK_SPEED_20G:
3068 		link->speed.forced_speed = 20000;
3069 		break;
3070 	case NVM_CFG1_PORT_DRV_LINK_SPEED_25G:
3071 		link->speed.forced_speed = 25000;
3072 		break;
3073 	case NVM_CFG1_PORT_DRV_LINK_SPEED_40G:
3074 		link->speed.forced_speed = 40000;
3075 		break;
3076 	case NVM_CFG1_PORT_DRV_LINK_SPEED_50G:
3077 		link->speed.forced_speed = 50000;
3078 		break;
3079 	case NVM_CFG1_PORT_DRV_LINK_SPEED_BB_100G:
3080 		link->speed.forced_speed = 100000;
3081 		break;
3082 	default:
3083 		DP_NOTICE(p_hwfn, "Unknown Speed in 0x%08x\n", link_temp);
3084 	}
3085 
3086 	p_hwfn->mcp_info->link_capabilities.default_speed_autoneg =
3087 		link->speed.autoneg;
3088 
3089 	link_temp &= NVM_CFG1_PORT_DRV_FLOW_CONTROL_MASK;
3090 	link_temp >>= NVM_CFG1_PORT_DRV_FLOW_CONTROL_OFFSET;
3091 	link->pause.autoneg = !!(link_temp &
3092 				 NVM_CFG1_PORT_DRV_FLOW_CONTROL_AUTONEG);
3093 	link->pause.forced_rx = !!(link_temp &
3094 				   NVM_CFG1_PORT_DRV_FLOW_CONTROL_RX);
3095 	link->pause.forced_tx = !!(link_temp &
3096 				   NVM_CFG1_PORT_DRV_FLOW_CONTROL_TX);
3097 	link->loopback_mode = 0;
3098 
3099 	if (p_hwfn->mcp_info->capabilities & FW_MB_PARAM_FEATURE_SUPPORT_EEE) {
3100 		link_temp = qed_rd(p_hwfn, p_ptt, port_cfg_addr +
3101 				   offsetof(struct nvm_cfg1_port, ext_phy));
3102 		link_temp &= NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_MASK;
3103 		link_temp >>= NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_OFFSET;
3104 		p_caps->default_eee = QED_MCP_EEE_ENABLED;
3105 		link->eee.enable = true;
3106 		switch (link_temp) {
3107 		case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_DISABLED:
3108 			p_caps->default_eee = QED_MCP_EEE_DISABLED;
3109 			link->eee.enable = false;
3110 			break;
3111 		case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_BALANCED:
3112 			p_caps->eee_lpi_timer = EEE_TX_TIMER_USEC_BALANCED_TIME;
3113 			break;
3114 		case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_AGGRESSIVE:
3115 			p_caps->eee_lpi_timer =
3116 			    EEE_TX_TIMER_USEC_AGGRESSIVE_TIME;
3117 			break;
3118 		case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_LOW_LATENCY:
3119 			p_caps->eee_lpi_timer = EEE_TX_TIMER_USEC_LATENCY_TIME;
3120 			break;
3121 		}
3122 
3123 		link->eee.tx_lpi_timer = p_caps->eee_lpi_timer;
3124 		link->eee.tx_lpi_enable = link->eee.enable;
3125 		link->eee.adv_caps = QED_EEE_1G_ADV | QED_EEE_10G_ADV;
3126 	} else {
3127 		p_caps->default_eee = QED_MCP_EEE_UNSUPPORTED;
3128 	}
3129 
3130 	DP_VERBOSE(p_hwfn,
3131 		   NETIF_MSG_LINK,
3132 		   "Read default link: Speed 0x%08x, Adv. Speed 0x%08x, AN: 0x%02x, PAUSE AN: 0x%02x EEE: %02x [%08x usec]\n",
3133 		   link->speed.forced_speed,
3134 		   link->speed.advertised_speeds,
3135 		   link->speed.autoneg,
3136 		   link->pause.autoneg,
3137 		   p_caps->default_eee, p_caps->eee_lpi_timer);
3138 
3139 	if (IS_LEAD_HWFN(p_hwfn)) {
3140 		struct qed_dev *cdev = p_hwfn->cdev;
3141 
3142 		/* Read Multi-function information from shmem */
3143 		addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
3144 		       offsetof(struct nvm_cfg1, glob) +
3145 		       offsetof(struct nvm_cfg1_glob, generic_cont0);
3146 
3147 		generic_cont0 = qed_rd(p_hwfn, p_ptt, addr);
3148 
3149 		mf_mode = (generic_cont0 & NVM_CFG1_GLOB_MF_MODE_MASK) >>
3150 			  NVM_CFG1_GLOB_MF_MODE_OFFSET;
3151 
3152 		switch (mf_mode) {
3153 		case NVM_CFG1_GLOB_MF_MODE_MF_ALLOWED:
3154 			cdev->mf_bits = BIT(QED_MF_OVLAN_CLSS);
3155 			break;
3156 		case NVM_CFG1_GLOB_MF_MODE_UFP:
3157 			cdev->mf_bits = BIT(QED_MF_OVLAN_CLSS) |
3158 					BIT(QED_MF_LLH_PROTO_CLSS) |
3159 					BIT(QED_MF_UFP_SPECIFIC) |
3160 					BIT(QED_MF_8021Q_TAGGING);
3161 			break;
3162 		case NVM_CFG1_GLOB_MF_MODE_BD:
3163 			cdev->mf_bits = BIT(QED_MF_OVLAN_CLSS) |
3164 					BIT(QED_MF_LLH_PROTO_CLSS) |
3165 					BIT(QED_MF_8021AD_TAGGING);
3166 			break;
3167 		case NVM_CFG1_GLOB_MF_MODE_NPAR1_0:
3168 			cdev->mf_bits = BIT(QED_MF_LLH_MAC_CLSS) |
3169 					BIT(QED_MF_LLH_PROTO_CLSS) |
3170 					BIT(QED_MF_LL2_NON_UNICAST) |
3171 					BIT(QED_MF_INTER_PF_SWITCH);
3172 			break;
3173 		case NVM_CFG1_GLOB_MF_MODE_DEFAULT:
3174 			cdev->mf_bits = BIT(QED_MF_LLH_MAC_CLSS) |
3175 					BIT(QED_MF_LLH_PROTO_CLSS) |
3176 					BIT(QED_MF_LL2_NON_UNICAST);
3177 			if (QED_IS_BB(p_hwfn->cdev))
3178 				cdev->mf_bits |= BIT(QED_MF_NEED_DEF_PF);
3179 			break;
3180 		}
3181 
3182 		DP_INFO(p_hwfn, "Multi function mode is 0x%lx\n",
3183 			cdev->mf_bits);
3184 	}
3185 
3186 	DP_INFO(p_hwfn, "Multi function mode is 0x%lx\n",
3187 		p_hwfn->cdev->mf_bits);
3188 
3189 	/* Read device capabilities information from shmem */
3190 	addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
3191 		offsetof(struct nvm_cfg1, glob) +
3192 		offsetof(struct nvm_cfg1_glob, device_capabilities);
3193 
3194 	device_capabilities = qed_rd(p_hwfn, p_ptt, addr);
3195 	if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ETHERNET)
3196 		__set_bit(QED_DEV_CAP_ETH,
3197 			  &p_hwfn->hw_info.device_capabilities);
3198 	if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_FCOE)
3199 		__set_bit(QED_DEV_CAP_FCOE,
3200 			  &p_hwfn->hw_info.device_capabilities);
3201 	if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ISCSI)
3202 		__set_bit(QED_DEV_CAP_ISCSI,
3203 			  &p_hwfn->hw_info.device_capabilities);
3204 	if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ROCE)
3205 		__set_bit(QED_DEV_CAP_ROCE,
3206 			  &p_hwfn->hw_info.device_capabilities);
3207 
3208 	return qed_mcp_fill_shmem_func_info(p_hwfn, p_ptt);
3209 }
3210 
3211 static void qed_get_num_funcs(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
3212 {
3213 	u8 num_funcs, enabled_func_idx = p_hwfn->rel_pf_id;
3214 	u32 reg_function_hide, tmp, eng_mask, low_pfs_mask;
3215 	struct qed_dev *cdev = p_hwfn->cdev;
3216 
3217 	num_funcs = QED_IS_AH(cdev) ? MAX_NUM_PFS_K2 : MAX_NUM_PFS_BB;
3218 
3219 	/* Bit 0 of MISCS_REG_FUNCTION_HIDE indicates whether the bypass values
3220 	 * in the other bits are selected.
3221 	 * Bits 1-15 are for functions 1-15, respectively, and their value is
3222 	 * '0' only for enabled functions (function 0 always exists and
3223 	 * enabled).
3224 	 * In case of CMT, only the "even" functions are enabled, and thus the
3225 	 * number of functions for both hwfns is learnt from the same bits.
3226 	 */
3227 	reg_function_hide = qed_rd(p_hwfn, p_ptt, MISCS_REG_FUNCTION_HIDE);
3228 
3229 	if (reg_function_hide & 0x1) {
3230 		if (QED_IS_BB(cdev)) {
3231 			if (QED_PATH_ID(p_hwfn) && cdev->num_hwfns == 1) {
3232 				num_funcs = 0;
3233 				eng_mask = 0xaaaa;
3234 			} else {
3235 				num_funcs = 1;
3236 				eng_mask = 0x5554;
3237 			}
3238 		} else {
3239 			num_funcs = 1;
3240 			eng_mask = 0xfffe;
3241 		}
3242 
3243 		/* Get the number of the enabled functions on the engine */
3244 		tmp = (reg_function_hide ^ 0xffffffff) & eng_mask;
3245 		while (tmp) {
3246 			if (tmp & 0x1)
3247 				num_funcs++;
3248 			tmp >>= 0x1;
3249 		}
3250 
3251 		/* Get the PF index within the enabled functions */
3252 		low_pfs_mask = (0x1 << p_hwfn->abs_pf_id) - 1;
3253 		tmp = reg_function_hide & eng_mask & low_pfs_mask;
3254 		while (tmp) {
3255 			if (tmp & 0x1)
3256 				enabled_func_idx--;
3257 			tmp >>= 0x1;
3258 		}
3259 	}
3260 
3261 	p_hwfn->num_funcs_on_engine = num_funcs;
3262 	p_hwfn->enabled_func_idx = enabled_func_idx;
3263 
3264 	DP_VERBOSE(p_hwfn,
3265 		   NETIF_MSG_PROBE,
3266 		   "PF [rel_id %d, abs_id %d] occupies index %d within the %d enabled functions on the engine\n",
3267 		   p_hwfn->rel_pf_id,
3268 		   p_hwfn->abs_pf_id,
3269 		   p_hwfn->enabled_func_idx, p_hwfn->num_funcs_on_engine);
3270 }
3271 
3272 static void qed_hw_info_port_num(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
3273 {
3274 	u32 addr, global_offsize, global_addr, port_mode;
3275 	struct qed_dev *cdev = p_hwfn->cdev;
3276 
3277 	/* In CMT there is always only one port */
3278 	if (cdev->num_hwfns > 1) {
3279 		cdev->num_ports_in_engine = 1;
3280 		cdev->num_ports = 1;
3281 		return;
3282 	}
3283 
3284 	/* Determine the number of ports per engine */
3285 	port_mode = qed_rd(p_hwfn, p_ptt, MISC_REG_PORT_MODE);
3286 	switch (port_mode) {
3287 	case 0x0:
3288 		cdev->num_ports_in_engine = 1;
3289 		break;
3290 	case 0x1:
3291 		cdev->num_ports_in_engine = 2;
3292 		break;
3293 	case 0x2:
3294 		cdev->num_ports_in_engine = 4;
3295 		break;
3296 	default:
3297 		DP_NOTICE(p_hwfn, "Unknown port mode 0x%08x\n", port_mode);
3298 		cdev->num_ports_in_engine = 1;	/* Default to something */
3299 		break;
3300 	}
3301 
3302 	/* Get the total number of ports of the device */
3303 	addr = SECTION_OFFSIZE_ADDR(p_hwfn->mcp_info->public_base,
3304 				    PUBLIC_GLOBAL);
3305 	global_offsize = qed_rd(p_hwfn, p_ptt, addr);
3306 	global_addr = SECTION_ADDR(global_offsize, 0);
3307 	addr = global_addr + offsetof(struct public_global, max_ports);
3308 	cdev->num_ports = (u8)qed_rd(p_hwfn, p_ptt, addr);
3309 }
3310 
3311 static void qed_get_eee_caps(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
3312 {
3313 	struct qed_mcp_link_capabilities *p_caps;
3314 	u32 eee_status;
3315 
3316 	p_caps = &p_hwfn->mcp_info->link_capabilities;
3317 	if (p_caps->default_eee == QED_MCP_EEE_UNSUPPORTED)
3318 		return;
3319 
3320 	p_caps->eee_speed_caps = 0;
3321 	eee_status = qed_rd(p_hwfn, p_ptt, p_hwfn->mcp_info->port_addr +
3322 			    offsetof(struct public_port, eee_status));
3323 	eee_status = (eee_status & EEE_SUPPORTED_SPEED_MASK) >>
3324 			EEE_SUPPORTED_SPEED_OFFSET;
3325 
3326 	if (eee_status & EEE_1G_SUPPORTED)
3327 		p_caps->eee_speed_caps |= QED_EEE_1G_ADV;
3328 	if (eee_status & EEE_10G_ADV)
3329 		p_caps->eee_speed_caps |= QED_EEE_10G_ADV;
3330 }
3331 
3332 static int
3333 qed_get_hw_info(struct qed_hwfn *p_hwfn,
3334 		struct qed_ptt *p_ptt,
3335 		enum qed_pci_personality personality)
3336 {
3337 	int rc;
3338 
3339 	/* Since all information is common, only first hwfns should do this */
3340 	if (IS_LEAD_HWFN(p_hwfn)) {
3341 		rc = qed_iov_hw_info(p_hwfn);
3342 		if (rc)
3343 			return rc;
3344 	}
3345 
3346 	if (IS_LEAD_HWFN(p_hwfn))
3347 		qed_hw_info_port_num(p_hwfn, p_ptt);
3348 
3349 	qed_mcp_get_capabilities(p_hwfn, p_ptt);
3350 
3351 	qed_hw_get_nvm_info(p_hwfn, p_ptt);
3352 
3353 	rc = qed_int_igu_read_cam(p_hwfn, p_ptt);
3354 	if (rc)
3355 		return rc;
3356 
3357 	if (qed_mcp_is_init(p_hwfn))
3358 		ether_addr_copy(p_hwfn->hw_info.hw_mac_addr,
3359 				p_hwfn->mcp_info->func_info.mac);
3360 	else
3361 		eth_random_addr(p_hwfn->hw_info.hw_mac_addr);
3362 
3363 	if (qed_mcp_is_init(p_hwfn)) {
3364 		if (p_hwfn->mcp_info->func_info.ovlan != QED_MCP_VLAN_UNSET)
3365 			p_hwfn->hw_info.ovlan =
3366 				p_hwfn->mcp_info->func_info.ovlan;
3367 
3368 		qed_mcp_cmd_port_init(p_hwfn, p_ptt);
3369 
3370 		qed_get_eee_caps(p_hwfn, p_ptt);
3371 
3372 		qed_mcp_read_ufp_config(p_hwfn, p_ptt);
3373 	}
3374 
3375 	if (qed_mcp_is_init(p_hwfn)) {
3376 		enum qed_pci_personality protocol;
3377 
3378 		protocol = p_hwfn->mcp_info->func_info.protocol;
3379 		p_hwfn->hw_info.personality = protocol;
3380 	}
3381 
3382 	if (QED_IS_ROCE_PERSONALITY(p_hwfn))
3383 		p_hwfn->hw_info.multi_tc_roce_en = 1;
3384 
3385 	p_hwfn->hw_info.num_hw_tc = NUM_PHYS_TCS_4PORT_K2;
3386 	p_hwfn->hw_info.num_active_tc = 1;
3387 
3388 	qed_get_num_funcs(p_hwfn, p_ptt);
3389 
3390 	if (qed_mcp_is_init(p_hwfn))
3391 		p_hwfn->hw_info.mtu = p_hwfn->mcp_info->func_info.mtu;
3392 
3393 	return qed_hw_get_resc(p_hwfn, p_ptt);
3394 }
3395 
3396 static int qed_get_dev_info(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
3397 {
3398 	struct qed_dev *cdev = p_hwfn->cdev;
3399 	u16 device_id_mask;
3400 	u32 tmp;
3401 
3402 	/* Read Vendor Id / Device Id */
3403 	pci_read_config_word(cdev->pdev, PCI_VENDOR_ID, &cdev->vendor_id);
3404 	pci_read_config_word(cdev->pdev, PCI_DEVICE_ID, &cdev->device_id);
3405 
3406 	/* Determine type */
3407 	device_id_mask = cdev->device_id & QED_DEV_ID_MASK;
3408 	switch (device_id_mask) {
3409 	case QED_DEV_ID_MASK_BB:
3410 		cdev->type = QED_DEV_TYPE_BB;
3411 		break;
3412 	case QED_DEV_ID_MASK_AH:
3413 		cdev->type = QED_DEV_TYPE_AH;
3414 		break;
3415 	default:
3416 		DP_NOTICE(p_hwfn, "Unknown device id 0x%x\n", cdev->device_id);
3417 		return -EBUSY;
3418 	}
3419 
3420 	cdev->chip_num = (u16)qed_rd(p_hwfn, p_ptt, MISCS_REG_CHIP_NUM);
3421 	cdev->chip_rev = (u16)qed_rd(p_hwfn, p_ptt, MISCS_REG_CHIP_REV);
3422 
3423 	MASK_FIELD(CHIP_REV, cdev->chip_rev);
3424 
3425 	/* Learn number of HW-functions */
3426 	tmp = qed_rd(p_hwfn, p_ptt, MISCS_REG_CMT_ENABLED_FOR_PAIR);
3427 
3428 	if (tmp & (1 << p_hwfn->rel_pf_id)) {
3429 		DP_NOTICE(cdev->hwfns, "device in CMT mode\n");
3430 		cdev->num_hwfns = 2;
3431 	} else {
3432 		cdev->num_hwfns = 1;
3433 	}
3434 
3435 	cdev->chip_bond_id = qed_rd(p_hwfn, p_ptt,
3436 				    MISCS_REG_CHIP_TEST_REG) >> 4;
3437 	MASK_FIELD(CHIP_BOND_ID, cdev->chip_bond_id);
3438 	cdev->chip_metal = (u16)qed_rd(p_hwfn, p_ptt, MISCS_REG_CHIP_METAL);
3439 	MASK_FIELD(CHIP_METAL, cdev->chip_metal);
3440 
3441 	DP_INFO(cdev->hwfns,
3442 		"Chip details - %s %c%d, Num: %04x Rev: %04x Bond id: %04x Metal: %04x\n",
3443 		QED_IS_BB(cdev) ? "BB" : "AH",
3444 		'A' + cdev->chip_rev,
3445 		(int)cdev->chip_metal,
3446 		cdev->chip_num, cdev->chip_rev,
3447 		cdev->chip_bond_id, cdev->chip_metal);
3448 
3449 	return 0;
3450 }
3451 
3452 static void qed_nvm_info_free(struct qed_hwfn *p_hwfn)
3453 {
3454 	kfree(p_hwfn->nvm_info.image_att);
3455 	p_hwfn->nvm_info.image_att = NULL;
3456 }
3457 
3458 static int qed_hw_prepare_single(struct qed_hwfn *p_hwfn,
3459 				 void __iomem *p_regview,
3460 				 void __iomem *p_doorbells,
3461 				 enum qed_pci_personality personality)
3462 {
3463 	struct qed_dev *cdev = p_hwfn->cdev;
3464 	int rc = 0;
3465 
3466 	/* Split PCI bars evenly between hwfns */
3467 	p_hwfn->regview = p_regview;
3468 	p_hwfn->doorbells = p_doorbells;
3469 
3470 	if (IS_VF(p_hwfn->cdev))
3471 		return qed_vf_hw_prepare(p_hwfn);
3472 
3473 	/* Validate that chip access is feasible */
3474 	if (REG_RD(p_hwfn, PXP_PF_ME_OPAQUE_ADDR) == 0xffffffff) {
3475 		DP_ERR(p_hwfn,
3476 		       "Reading the ME register returns all Fs; Preventing further chip access\n");
3477 		return -EINVAL;
3478 	}
3479 
3480 	get_function_id(p_hwfn);
3481 
3482 	/* Allocate PTT pool */
3483 	rc = qed_ptt_pool_alloc(p_hwfn);
3484 	if (rc)
3485 		goto err0;
3486 
3487 	/* Allocate the main PTT */
3488 	p_hwfn->p_main_ptt = qed_get_reserved_ptt(p_hwfn, RESERVED_PTT_MAIN);
3489 
3490 	/* First hwfn learns basic information, e.g., number of hwfns */
3491 	if (!p_hwfn->my_id) {
3492 		rc = qed_get_dev_info(p_hwfn, p_hwfn->p_main_ptt);
3493 		if (rc)
3494 			goto err1;
3495 	}
3496 
3497 	qed_hw_hwfn_prepare(p_hwfn);
3498 
3499 	/* Initialize MCP structure */
3500 	rc = qed_mcp_cmd_init(p_hwfn, p_hwfn->p_main_ptt);
3501 	if (rc) {
3502 		DP_NOTICE(p_hwfn, "Failed initializing mcp command\n");
3503 		goto err1;
3504 	}
3505 
3506 	/* Read the device configuration information from the HW and SHMEM */
3507 	rc = qed_get_hw_info(p_hwfn, p_hwfn->p_main_ptt, personality);
3508 	if (rc) {
3509 		DP_NOTICE(p_hwfn, "Failed to get HW information\n");
3510 		goto err2;
3511 	}
3512 
3513 	/* Sending a mailbox to the MFW should be done after qed_get_hw_info()
3514 	 * is called as it sets the ports number in an engine.
3515 	 */
3516 	if (IS_LEAD_HWFN(p_hwfn) && !cdev->recov_in_prog) {
3517 		rc = qed_mcp_initiate_pf_flr(p_hwfn, p_hwfn->p_main_ptt);
3518 		if (rc)
3519 			DP_NOTICE(p_hwfn, "Failed to initiate PF FLR\n");
3520 	}
3521 
3522 	/* NVRAM info initialization and population */
3523 	if (IS_LEAD_HWFN(p_hwfn)) {
3524 		rc = qed_mcp_nvm_info_populate(p_hwfn);
3525 		if (rc) {
3526 			DP_NOTICE(p_hwfn,
3527 				  "Failed to populate nvm info shadow\n");
3528 			goto err2;
3529 		}
3530 	}
3531 
3532 	/* Allocate the init RT array and initialize the init-ops engine */
3533 	rc = qed_init_alloc(p_hwfn);
3534 	if (rc)
3535 		goto err3;
3536 
3537 	return rc;
3538 err3:
3539 	if (IS_LEAD_HWFN(p_hwfn))
3540 		qed_nvm_info_free(p_hwfn);
3541 err2:
3542 	if (IS_LEAD_HWFN(p_hwfn))
3543 		qed_iov_free_hw_info(p_hwfn->cdev);
3544 	qed_mcp_free(p_hwfn);
3545 err1:
3546 	qed_hw_hwfn_free(p_hwfn);
3547 err0:
3548 	return rc;
3549 }
3550 
3551 int qed_hw_prepare(struct qed_dev *cdev,
3552 		   int personality)
3553 {
3554 	struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
3555 	int rc;
3556 
3557 	/* Store the precompiled init data ptrs */
3558 	if (IS_PF(cdev))
3559 		qed_init_iro_array(cdev);
3560 
3561 	/* Initialize the first hwfn - will learn number of hwfns */
3562 	rc = qed_hw_prepare_single(p_hwfn,
3563 				   cdev->regview,
3564 				   cdev->doorbells, personality);
3565 	if (rc)
3566 		return rc;
3567 
3568 	personality = p_hwfn->hw_info.personality;
3569 
3570 	/* Initialize the rest of the hwfns */
3571 	if (cdev->num_hwfns > 1) {
3572 		void __iomem *p_regview, *p_doorbell;
3573 		u8 __iomem *addr;
3574 
3575 		/* adjust bar offset for second engine */
3576 		addr = cdev->regview +
3577 		       qed_hw_bar_size(p_hwfn, p_hwfn->p_main_ptt,
3578 				       BAR_ID_0) / 2;
3579 		p_regview = addr;
3580 
3581 		addr = cdev->doorbells +
3582 		       qed_hw_bar_size(p_hwfn, p_hwfn->p_main_ptt,
3583 				       BAR_ID_1) / 2;
3584 		p_doorbell = addr;
3585 
3586 		/* prepare second hw function */
3587 		rc = qed_hw_prepare_single(&cdev->hwfns[1], p_regview,
3588 					   p_doorbell, personality);
3589 
3590 		/* in case of error, need to free the previously
3591 		 * initiliazed hwfn 0.
3592 		 */
3593 		if (rc) {
3594 			if (IS_PF(cdev)) {
3595 				qed_init_free(p_hwfn);
3596 				qed_nvm_info_free(p_hwfn);
3597 				qed_mcp_free(p_hwfn);
3598 				qed_hw_hwfn_free(p_hwfn);
3599 			}
3600 		}
3601 	}
3602 
3603 	return rc;
3604 }
3605 
3606 void qed_hw_remove(struct qed_dev *cdev)
3607 {
3608 	struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
3609 	int i;
3610 
3611 	if (IS_PF(cdev))
3612 		qed_mcp_ov_update_driver_state(p_hwfn, p_hwfn->p_main_ptt,
3613 					       QED_OV_DRIVER_STATE_NOT_LOADED);
3614 
3615 	for_each_hwfn(cdev, i) {
3616 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
3617 
3618 		if (IS_VF(cdev)) {
3619 			qed_vf_pf_release(p_hwfn);
3620 			continue;
3621 		}
3622 
3623 		qed_init_free(p_hwfn);
3624 		qed_hw_hwfn_free(p_hwfn);
3625 		qed_mcp_free(p_hwfn);
3626 	}
3627 
3628 	qed_iov_free_hw_info(cdev);
3629 
3630 	qed_nvm_info_free(p_hwfn);
3631 }
3632 
3633 static void qed_chain_free_next_ptr(struct qed_dev *cdev,
3634 				    struct qed_chain *p_chain)
3635 {
3636 	void *p_virt = p_chain->p_virt_addr, *p_virt_next = NULL;
3637 	dma_addr_t p_phys = p_chain->p_phys_addr, p_phys_next = 0;
3638 	struct qed_chain_next *p_next;
3639 	u32 size, i;
3640 
3641 	if (!p_virt)
3642 		return;
3643 
3644 	size = p_chain->elem_size * p_chain->usable_per_page;
3645 
3646 	for (i = 0; i < p_chain->page_cnt; i++) {
3647 		if (!p_virt)
3648 			break;
3649 
3650 		p_next = (struct qed_chain_next *)((u8 *)p_virt + size);
3651 		p_virt_next = p_next->next_virt;
3652 		p_phys_next = HILO_DMA_REGPAIR(p_next->next_phys);
3653 
3654 		dma_free_coherent(&cdev->pdev->dev,
3655 				  QED_CHAIN_PAGE_SIZE, p_virt, p_phys);
3656 
3657 		p_virt = p_virt_next;
3658 		p_phys = p_phys_next;
3659 	}
3660 }
3661 
3662 static void qed_chain_free_single(struct qed_dev *cdev,
3663 				  struct qed_chain *p_chain)
3664 {
3665 	if (!p_chain->p_virt_addr)
3666 		return;
3667 
3668 	dma_free_coherent(&cdev->pdev->dev,
3669 			  QED_CHAIN_PAGE_SIZE,
3670 			  p_chain->p_virt_addr, p_chain->p_phys_addr);
3671 }
3672 
3673 static void qed_chain_free_pbl(struct qed_dev *cdev, struct qed_chain *p_chain)
3674 {
3675 	void **pp_virt_addr_tbl = p_chain->pbl.pp_virt_addr_tbl;
3676 	u32 page_cnt = p_chain->page_cnt, i, pbl_size;
3677 	u8 *p_pbl_virt = p_chain->pbl_sp.p_virt_table;
3678 
3679 	if (!pp_virt_addr_tbl)
3680 		return;
3681 
3682 	if (!p_pbl_virt)
3683 		goto out;
3684 
3685 	for (i = 0; i < page_cnt; i++) {
3686 		if (!pp_virt_addr_tbl[i])
3687 			break;
3688 
3689 		dma_free_coherent(&cdev->pdev->dev,
3690 				  QED_CHAIN_PAGE_SIZE,
3691 				  pp_virt_addr_tbl[i],
3692 				  *(dma_addr_t *)p_pbl_virt);
3693 
3694 		p_pbl_virt += QED_CHAIN_PBL_ENTRY_SIZE;
3695 	}
3696 
3697 	pbl_size = page_cnt * QED_CHAIN_PBL_ENTRY_SIZE;
3698 
3699 	if (!p_chain->b_external_pbl)
3700 		dma_free_coherent(&cdev->pdev->dev,
3701 				  pbl_size,
3702 				  p_chain->pbl_sp.p_virt_table,
3703 				  p_chain->pbl_sp.p_phys_table);
3704 out:
3705 	vfree(p_chain->pbl.pp_virt_addr_tbl);
3706 	p_chain->pbl.pp_virt_addr_tbl = NULL;
3707 }
3708 
3709 void qed_chain_free(struct qed_dev *cdev, struct qed_chain *p_chain)
3710 {
3711 	switch (p_chain->mode) {
3712 	case QED_CHAIN_MODE_NEXT_PTR:
3713 		qed_chain_free_next_ptr(cdev, p_chain);
3714 		break;
3715 	case QED_CHAIN_MODE_SINGLE:
3716 		qed_chain_free_single(cdev, p_chain);
3717 		break;
3718 	case QED_CHAIN_MODE_PBL:
3719 		qed_chain_free_pbl(cdev, p_chain);
3720 		break;
3721 	}
3722 }
3723 
3724 static int
3725 qed_chain_alloc_sanity_check(struct qed_dev *cdev,
3726 			     enum qed_chain_cnt_type cnt_type,
3727 			     size_t elem_size, u32 page_cnt)
3728 {
3729 	u64 chain_size = ELEMS_PER_PAGE(elem_size) * page_cnt;
3730 
3731 	/* The actual chain size can be larger than the maximal possible value
3732 	 * after rounding up the requested elements number to pages, and after
3733 	 * taking into acount the unusuable elements (next-ptr elements).
3734 	 * The size of a "u16" chain can be (U16_MAX + 1) since the chain
3735 	 * size/capacity fields are of a u32 type.
3736 	 */
3737 	if ((cnt_type == QED_CHAIN_CNT_TYPE_U16 &&
3738 	     chain_size > ((u32)U16_MAX + 1)) ||
3739 	    (cnt_type == QED_CHAIN_CNT_TYPE_U32 && chain_size > U32_MAX)) {
3740 		DP_NOTICE(cdev,
3741 			  "The actual chain size (0x%llx) is larger than the maximal possible value\n",
3742 			  chain_size);
3743 		return -EINVAL;
3744 	}
3745 
3746 	return 0;
3747 }
3748 
3749 static int
3750 qed_chain_alloc_next_ptr(struct qed_dev *cdev, struct qed_chain *p_chain)
3751 {
3752 	void *p_virt = NULL, *p_virt_prev = NULL;
3753 	dma_addr_t p_phys = 0;
3754 	u32 i;
3755 
3756 	for (i = 0; i < p_chain->page_cnt; i++) {
3757 		p_virt = dma_alloc_coherent(&cdev->pdev->dev,
3758 					    QED_CHAIN_PAGE_SIZE,
3759 					    &p_phys, GFP_KERNEL);
3760 		if (!p_virt)
3761 			return -ENOMEM;
3762 
3763 		if (i == 0) {
3764 			qed_chain_init_mem(p_chain, p_virt, p_phys);
3765 			qed_chain_reset(p_chain);
3766 		} else {
3767 			qed_chain_init_next_ptr_elem(p_chain, p_virt_prev,
3768 						     p_virt, p_phys);
3769 		}
3770 
3771 		p_virt_prev = p_virt;
3772 	}
3773 	/* Last page's next element should point to the beginning of the
3774 	 * chain.
3775 	 */
3776 	qed_chain_init_next_ptr_elem(p_chain, p_virt_prev,
3777 				     p_chain->p_virt_addr,
3778 				     p_chain->p_phys_addr);
3779 
3780 	return 0;
3781 }
3782 
3783 static int
3784 qed_chain_alloc_single(struct qed_dev *cdev, struct qed_chain *p_chain)
3785 {
3786 	dma_addr_t p_phys = 0;
3787 	void *p_virt = NULL;
3788 
3789 	p_virt = dma_alloc_coherent(&cdev->pdev->dev,
3790 				    QED_CHAIN_PAGE_SIZE, &p_phys, GFP_KERNEL);
3791 	if (!p_virt)
3792 		return -ENOMEM;
3793 
3794 	qed_chain_init_mem(p_chain, p_virt, p_phys);
3795 	qed_chain_reset(p_chain);
3796 
3797 	return 0;
3798 }
3799 
3800 static int
3801 qed_chain_alloc_pbl(struct qed_dev *cdev,
3802 		    struct qed_chain *p_chain,
3803 		    struct qed_chain_ext_pbl *ext_pbl)
3804 {
3805 	u32 page_cnt = p_chain->page_cnt, size, i;
3806 	dma_addr_t p_phys = 0, p_pbl_phys = 0;
3807 	void **pp_virt_addr_tbl = NULL;
3808 	u8 *p_pbl_virt = NULL;
3809 	void *p_virt = NULL;
3810 
3811 	size = page_cnt * sizeof(*pp_virt_addr_tbl);
3812 	pp_virt_addr_tbl = vzalloc(size);
3813 	if (!pp_virt_addr_tbl)
3814 		return -ENOMEM;
3815 
3816 	/* The allocation of the PBL table is done with its full size, since it
3817 	 * is expected to be successive.
3818 	 * qed_chain_init_pbl_mem() is called even in a case of an allocation
3819 	 * failure, since pp_virt_addr_tbl was previously allocated, and it
3820 	 * should be saved to allow its freeing during the error flow.
3821 	 */
3822 	size = page_cnt * QED_CHAIN_PBL_ENTRY_SIZE;
3823 
3824 	if (!ext_pbl) {
3825 		p_pbl_virt = dma_alloc_coherent(&cdev->pdev->dev,
3826 						size, &p_pbl_phys, GFP_KERNEL);
3827 	} else {
3828 		p_pbl_virt = ext_pbl->p_pbl_virt;
3829 		p_pbl_phys = ext_pbl->p_pbl_phys;
3830 		p_chain->b_external_pbl = true;
3831 	}
3832 
3833 	qed_chain_init_pbl_mem(p_chain, p_pbl_virt, p_pbl_phys,
3834 			       pp_virt_addr_tbl);
3835 	if (!p_pbl_virt)
3836 		return -ENOMEM;
3837 
3838 	for (i = 0; i < page_cnt; i++) {
3839 		p_virt = dma_alloc_coherent(&cdev->pdev->dev,
3840 					    QED_CHAIN_PAGE_SIZE,
3841 					    &p_phys, GFP_KERNEL);
3842 		if (!p_virt)
3843 			return -ENOMEM;
3844 
3845 		if (i == 0) {
3846 			qed_chain_init_mem(p_chain, p_virt, p_phys);
3847 			qed_chain_reset(p_chain);
3848 		}
3849 
3850 		/* Fill the PBL table with the physical address of the page */
3851 		*(dma_addr_t *)p_pbl_virt = p_phys;
3852 		/* Keep the virtual address of the page */
3853 		p_chain->pbl.pp_virt_addr_tbl[i] = p_virt;
3854 
3855 		p_pbl_virt += QED_CHAIN_PBL_ENTRY_SIZE;
3856 	}
3857 
3858 	return 0;
3859 }
3860 
3861 int qed_chain_alloc(struct qed_dev *cdev,
3862 		    enum qed_chain_use_mode intended_use,
3863 		    enum qed_chain_mode mode,
3864 		    enum qed_chain_cnt_type cnt_type,
3865 		    u32 num_elems,
3866 		    size_t elem_size,
3867 		    struct qed_chain *p_chain,
3868 		    struct qed_chain_ext_pbl *ext_pbl)
3869 {
3870 	u32 page_cnt;
3871 	int rc = 0;
3872 
3873 	if (mode == QED_CHAIN_MODE_SINGLE)
3874 		page_cnt = 1;
3875 	else
3876 		page_cnt = QED_CHAIN_PAGE_CNT(num_elems, elem_size, mode);
3877 
3878 	rc = qed_chain_alloc_sanity_check(cdev, cnt_type, elem_size, page_cnt);
3879 	if (rc) {
3880 		DP_NOTICE(cdev,
3881 			  "Cannot allocate a chain with the given arguments:\n");
3882 		DP_NOTICE(cdev,
3883 			  "[use_mode %d, mode %d, cnt_type %d, num_elems %d, elem_size %zu]\n",
3884 			  intended_use, mode, cnt_type, num_elems, elem_size);
3885 		return rc;
3886 	}
3887 
3888 	qed_chain_init_params(p_chain, page_cnt, (u8) elem_size, intended_use,
3889 			      mode, cnt_type);
3890 
3891 	switch (mode) {
3892 	case QED_CHAIN_MODE_NEXT_PTR:
3893 		rc = qed_chain_alloc_next_ptr(cdev, p_chain);
3894 		break;
3895 	case QED_CHAIN_MODE_SINGLE:
3896 		rc = qed_chain_alloc_single(cdev, p_chain);
3897 		break;
3898 	case QED_CHAIN_MODE_PBL:
3899 		rc = qed_chain_alloc_pbl(cdev, p_chain, ext_pbl);
3900 		break;
3901 	}
3902 	if (rc)
3903 		goto nomem;
3904 
3905 	return 0;
3906 
3907 nomem:
3908 	qed_chain_free(cdev, p_chain);
3909 	return rc;
3910 }
3911 
3912 int qed_fw_l2_queue(struct qed_hwfn *p_hwfn, u16 src_id, u16 *dst_id)
3913 {
3914 	if (src_id >= RESC_NUM(p_hwfn, QED_L2_QUEUE)) {
3915 		u16 min, max;
3916 
3917 		min = (u16) RESC_START(p_hwfn, QED_L2_QUEUE);
3918 		max = min + RESC_NUM(p_hwfn, QED_L2_QUEUE);
3919 		DP_NOTICE(p_hwfn,
3920 			  "l2_queue id [%d] is not valid, available indices [%d - %d]\n",
3921 			  src_id, min, max);
3922 
3923 		return -EINVAL;
3924 	}
3925 
3926 	*dst_id = RESC_START(p_hwfn, QED_L2_QUEUE) + src_id;
3927 
3928 	return 0;
3929 }
3930 
3931 int qed_fw_vport(struct qed_hwfn *p_hwfn, u8 src_id, u8 *dst_id)
3932 {
3933 	if (src_id >= RESC_NUM(p_hwfn, QED_VPORT)) {
3934 		u8 min, max;
3935 
3936 		min = (u8)RESC_START(p_hwfn, QED_VPORT);
3937 		max = min + RESC_NUM(p_hwfn, QED_VPORT);
3938 		DP_NOTICE(p_hwfn,
3939 			  "vport id [%d] is not valid, available indices [%d - %d]\n",
3940 			  src_id, min, max);
3941 
3942 		return -EINVAL;
3943 	}
3944 
3945 	*dst_id = RESC_START(p_hwfn, QED_VPORT) + src_id;
3946 
3947 	return 0;
3948 }
3949 
3950 int qed_fw_rss_eng(struct qed_hwfn *p_hwfn, u8 src_id, u8 *dst_id)
3951 {
3952 	if (src_id >= RESC_NUM(p_hwfn, QED_RSS_ENG)) {
3953 		u8 min, max;
3954 
3955 		min = (u8)RESC_START(p_hwfn, QED_RSS_ENG);
3956 		max = min + RESC_NUM(p_hwfn, QED_RSS_ENG);
3957 		DP_NOTICE(p_hwfn,
3958 			  "rss_eng id [%d] is not valid, available indices [%d - %d]\n",
3959 			  src_id, min, max);
3960 
3961 		return -EINVAL;
3962 	}
3963 
3964 	*dst_id = RESC_START(p_hwfn, QED_RSS_ENG) + src_id;
3965 
3966 	return 0;
3967 }
3968 
3969 static void qed_llh_mac_to_filter(u32 *p_high, u32 *p_low,
3970 				  u8 *p_filter)
3971 {
3972 	*p_high = p_filter[1] | (p_filter[0] << 8);
3973 	*p_low = p_filter[5] | (p_filter[4] << 8) |
3974 		 (p_filter[3] << 16) | (p_filter[2] << 24);
3975 }
3976 
3977 int qed_llh_add_mac_filter(struct qed_hwfn *p_hwfn,
3978 			   struct qed_ptt *p_ptt, u8 *p_filter)
3979 {
3980 	u32 high = 0, low = 0, en;
3981 	int i;
3982 
3983 	if (!test_bit(QED_MF_LLH_MAC_CLSS, &p_hwfn->cdev->mf_bits))
3984 		return 0;
3985 
3986 	qed_llh_mac_to_filter(&high, &low, p_filter);
3987 
3988 	/* Find a free entry and utilize it */
3989 	for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
3990 		en = qed_rd(p_hwfn, p_ptt,
3991 			    NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32));
3992 		if (en)
3993 			continue;
3994 		qed_wr(p_hwfn, p_ptt,
3995 		       NIG_REG_LLH_FUNC_FILTER_VALUE +
3996 		       2 * i * sizeof(u32), low);
3997 		qed_wr(p_hwfn, p_ptt,
3998 		       NIG_REG_LLH_FUNC_FILTER_VALUE +
3999 		       (2 * i + 1) * sizeof(u32), high);
4000 		qed_wr(p_hwfn, p_ptt,
4001 		       NIG_REG_LLH_FUNC_FILTER_MODE + i * sizeof(u32), 0);
4002 		qed_wr(p_hwfn, p_ptt,
4003 		       NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE +
4004 		       i * sizeof(u32), 0);
4005 		qed_wr(p_hwfn, p_ptt,
4006 		       NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32), 1);
4007 		break;
4008 	}
4009 	if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE) {
4010 		DP_NOTICE(p_hwfn,
4011 			  "Failed to find an empty LLH filter to utilize\n");
4012 		return -EINVAL;
4013 	}
4014 
4015 	DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
4016 		   "mac: %pM is added at %d\n",
4017 		   p_filter, i);
4018 
4019 	return 0;
4020 }
4021 
4022 void qed_llh_remove_mac_filter(struct qed_hwfn *p_hwfn,
4023 			       struct qed_ptt *p_ptt, u8 *p_filter)
4024 {
4025 	u32 high = 0, low = 0;
4026 	int i;
4027 
4028 	if (!test_bit(QED_MF_LLH_MAC_CLSS, &p_hwfn->cdev->mf_bits))
4029 		return;
4030 
4031 	qed_llh_mac_to_filter(&high, &low, p_filter);
4032 
4033 	/* Find the entry and clean it */
4034 	for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
4035 		if (qed_rd(p_hwfn, p_ptt,
4036 			   NIG_REG_LLH_FUNC_FILTER_VALUE +
4037 			   2 * i * sizeof(u32)) != low)
4038 			continue;
4039 		if (qed_rd(p_hwfn, p_ptt,
4040 			   NIG_REG_LLH_FUNC_FILTER_VALUE +
4041 			   (2 * i + 1) * sizeof(u32)) != high)
4042 			continue;
4043 
4044 		qed_wr(p_hwfn, p_ptt,
4045 		       NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32), 0);
4046 		qed_wr(p_hwfn, p_ptt,
4047 		       NIG_REG_LLH_FUNC_FILTER_VALUE + 2 * i * sizeof(u32), 0);
4048 		qed_wr(p_hwfn, p_ptt,
4049 		       NIG_REG_LLH_FUNC_FILTER_VALUE +
4050 		       (2 * i + 1) * sizeof(u32), 0);
4051 
4052 		DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
4053 			   "mac: %pM is removed from %d\n",
4054 			   p_filter, i);
4055 		break;
4056 	}
4057 	if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE)
4058 		DP_NOTICE(p_hwfn, "Tried to remove a non-configured filter\n");
4059 }
4060 
4061 int
4062 qed_llh_add_protocol_filter(struct qed_hwfn *p_hwfn,
4063 			    struct qed_ptt *p_ptt,
4064 			    u16 source_port_or_eth_type,
4065 			    u16 dest_port, enum qed_llh_port_filter_type_t type)
4066 {
4067 	u32 high = 0, low = 0, en;
4068 	int i;
4069 
4070 	if (!test_bit(QED_MF_LLH_PROTO_CLSS, &p_hwfn->cdev->mf_bits))
4071 		return 0;
4072 
4073 	switch (type) {
4074 	case QED_LLH_FILTER_ETHERTYPE:
4075 		high = source_port_or_eth_type;
4076 		break;
4077 	case QED_LLH_FILTER_TCP_SRC_PORT:
4078 	case QED_LLH_FILTER_UDP_SRC_PORT:
4079 		low = source_port_or_eth_type << 16;
4080 		break;
4081 	case QED_LLH_FILTER_TCP_DEST_PORT:
4082 	case QED_LLH_FILTER_UDP_DEST_PORT:
4083 		low = dest_port;
4084 		break;
4085 	case QED_LLH_FILTER_TCP_SRC_AND_DEST_PORT:
4086 	case QED_LLH_FILTER_UDP_SRC_AND_DEST_PORT:
4087 		low = (source_port_or_eth_type << 16) | dest_port;
4088 		break;
4089 	default:
4090 		DP_NOTICE(p_hwfn,
4091 			  "Non valid LLH protocol filter type %d\n", type);
4092 		return -EINVAL;
4093 	}
4094 	/* Find a free entry and utilize it */
4095 	for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
4096 		en = qed_rd(p_hwfn, p_ptt,
4097 			    NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32));
4098 		if (en)
4099 			continue;
4100 		qed_wr(p_hwfn, p_ptt,
4101 		       NIG_REG_LLH_FUNC_FILTER_VALUE +
4102 		       2 * i * sizeof(u32), low);
4103 		qed_wr(p_hwfn, p_ptt,
4104 		       NIG_REG_LLH_FUNC_FILTER_VALUE +
4105 		       (2 * i + 1) * sizeof(u32), high);
4106 		qed_wr(p_hwfn, p_ptt,
4107 		       NIG_REG_LLH_FUNC_FILTER_MODE + i * sizeof(u32), 1);
4108 		qed_wr(p_hwfn, p_ptt,
4109 		       NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE +
4110 		       i * sizeof(u32), 1 << type);
4111 		qed_wr(p_hwfn, p_ptt,
4112 		       NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32), 1);
4113 		break;
4114 	}
4115 	if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE) {
4116 		DP_NOTICE(p_hwfn,
4117 			  "Failed to find an empty LLH filter to utilize\n");
4118 		return -EINVAL;
4119 	}
4120 	switch (type) {
4121 	case QED_LLH_FILTER_ETHERTYPE:
4122 		DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
4123 			   "ETH type %x is added at %d\n",
4124 			   source_port_or_eth_type, i);
4125 		break;
4126 	case QED_LLH_FILTER_TCP_SRC_PORT:
4127 		DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
4128 			   "TCP src port %x is added at %d\n",
4129 			   source_port_or_eth_type, i);
4130 		break;
4131 	case QED_LLH_FILTER_UDP_SRC_PORT:
4132 		DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
4133 			   "UDP src port %x is added at %d\n",
4134 			   source_port_or_eth_type, i);
4135 		break;
4136 	case QED_LLH_FILTER_TCP_DEST_PORT:
4137 		DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
4138 			   "TCP dst port %x is added at %d\n", dest_port, i);
4139 		break;
4140 	case QED_LLH_FILTER_UDP_DEST_PORT:
4141 		DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
4142 			   "UDP dst port %x is added at %d\n", dest_port, i);
4143 		break;
4144 	case QED_LLH_FILTER_TCP_SRC_AND_DEST_PORT:
4145 		DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
4146 			   "TCP src/dst ports %x/%x are added at %d\n",
4147 			   source_port_or_eth_type, dest_port, i);
4148 		break;
4149 	case QED_LLH_FILTER_UDP_SRC_AND_DEST_PORT:
4150 		DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
4151 			   "UDP src/dst ports %x/%x are added at %d\n",
4152 			   source_port_or_eth_type, dest_port, i);
4153 		break;
4154 	}
4155 	return 0;
4156 }
4157 
4158 void
4159 qed_llh_remove_protocol_filter(struct qed_hwfn *p_hwfn,
4160 			       struct qed_ptt *p_ptt,
4161 			       u16 source_port_or_eth_type,
4162 			       u16 dest_port,
4163 			       enum qed_llh_port_filter_type_t type)
4164 {
4165 	u32 high = 0, low = 0;
4166 	int i;
4167 
4168 	if (!test_bit(QED_MF_LLH_PROTO_CLSS, &p_hwfn->cdev->mf_bits))
4169 		return;
4170 
4171 	switch (type) {
4172 	case QED_LLH_FILTER_ETHERTYPE:
4173 		high = source_port_or_eth_type;
4174 		break;
4175 	case QED_LLH_FILTER_TCP_SRC_PORT:
4176 	case QED_LLH_FILTER_UDP_SRC_PORT:
4177 		low = source_port_or_eth_type << 16;
4178 		break;
4179 	case QED_LLH_FILTER_TCP_DEST_PORT:
4180 	case QED_LLH_FILTER_UDP_DEST_PORT:
4181 		low = dest_port;
4182 		break;
4183 	case QED_LLH_FILTER_TCP_SRC_AND_DEST_PORT:
4184 	case QED_LLH_FILTER_UDP_SRC_AND_DEST_PORT:
4185 		low = (source_port_or_eth_type << 16) | dest_port;
4186 		break;
4187 	default:
4188 		DP_NOTICE(p_hwfn,
4189 			  "Non valid LLH protocol filter type %d\n", type);
4190 		return;
4191 	}
4192 
4193 	for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
4194 		if (!qed_rd(p_hwfn, p_ptt,
4195 			    NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32)))
4196 			continue;
4197 		if (!qed_rd(p_hwfn, p_ptt,
4198 			    NIG_REG_LLH_FUNC_FILTER_MODE + i * sizeof(u32)))
4199 			continue;
4200 		if (!(qed_rd(p_hwfn, p_ptt,
4201 			     NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE +
4202 			     i * sizeof(u32)) & BIT(type)))
4203 			continue;
4204 		if (qed_rd(p_hwfn, p_ptt,
4205 			   NIG_REG_LLH_FUNC_FILTER_VALUE +
4206 			   2 * i * sizeof(u32)) != low)
4207 			continue;
4208 		if (qed_rd(p_hwfn, p_ptt,
4209 			   NIG_REG_LLH_FUNC_FILTER_VALUE +
4210 			   (2 * i + 1) * sizeof(u32)) != high)
4211 			continue;
4212 
4213 		qed_wr(p_hwfn, p_ptt,
4214 		       NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32), 0);
4215 		qed_wr(p_hwfn, p_ptt,
4216 		       NIG_REG_LLH_FUNC_FILTER_MODE + i * sizeof(u32), 0);
4217 		qed_wr(p_hwfn, p_ptt,
4218 		       NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE +
4219 		       i * sizeof(u32), 0);
4220 		qed_wr(p_hwfn, p_ptt,
4221 		       NIG_REG_LLH_FUNC_FILTER_VALUE + 2 * i * sizeof(u32), 0);
4222 		qed_wr(p_hwfn, p_ptt,
4223 		       NIG_REG_LLH_FUNC_FILTER_VALUE +
4224 		       (2 * i + 1) * sizeof(u32), 0);
4225 		break;
4226 	}
4227 
4228 	if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE)
4229 		DP_NOTICE(p_hwfn, "Tried to remove a non-configured filter\n");
4230 }
4231 
4232 static int qed_set_coalesce(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
4233 			    u32 hw_addr, void *p_eth_qzone,
4234 			    size_t eth_qzone_size, u8 timeset)
4235 {
4236 	struct coalescing_timeset *p_coal_timeset;
4237 
4238 	if (p_hwfn->cdev->int_coalescing_mode != QED_COAL_MODE_ENABLE) {
4239 		DP_NOTICE(p_hwfn, "Coalescing configuration not enabled\n");
4240 		return -EINVAL;
4241 	}
4242 
4243 	p_coal_timeset = p_eth_qzone;
4244 	memset(p_eth_qzone, 0, eth_qzone_size);
4245 	SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_TIMESET, timeset);
4246 	SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_VALID, 1);
4247 	qed_memcpy_to(p_hwfn, p_ptt, hw_addr, p_eth_qzone, eth_qzone_size);
4248 
4249 	return 0;
4250 }
4251 
4252 int qed_set_queue_coalesce(u16 rx_coal, u16 tx_coal, void *p_handle)
4253 {
4254 	struct qed_queue_cid *p_cid = p_handle;
4255 	struct qed_hwfn *p_hwfn;
4256 	struct qed_ptt *p_ptt;
4257 	int rc = 0;
4258 
4259 	p_hwfn = p_cid->p_owner;
4260 
4261 	if (IS_VF(p_hwfn->cdev))
4262 		return qed_vf_pf_set_coalesce(p_hwfn, rx_coal, tx_coal, p_cid);
4263 
4264 	p_ptt = qed_ptt_acquire(p_hwfn);
4265 	if (!p_ptt)
4266 		return -EAGAIN;
4267 
4268 	if (rx_coal) {
4269 		rc = qed_set_rxq_coalesce(p_hwfn, p_ptt, rx_coal, p_cid);
4270 		if (rc)
4271 			goto out;
4272 		p_hwfn->cdev->rx_coalesce_usecs = rx_coal;
4273 	}
4274 
4275 	if (tx_coal) {
4276 		rc = qed_set_txq_coalesce(p_hwfn, p_ptt, tx_coal, p_cid);
4277 		if (rc)
4278 			goto out;
4279 		p_hwfn->cdev->tx_coalesce_usecs = tx_coal;
4280 	}
4281 out:
4282 	qed_ptt_release(p_hwfn, p_ptt);
4283 	return rc;
4284 }
4285 
4286 int qed_set_rxq_coalesce(struct qed_hwfn *p_hwfn,
4287 			 struct qed_ptt *p_ptt,
4288 			 u16 coalesce, struct qed_queue_cid *p_cid)
4289 {
4290 	struct ustorm_eth_queue_zone eth_qzone;
4291 	u8 timeset, timer_res;
4292 	u32 address;
4293 	int rc;
4294 
4295 	/* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */
4296 	if (coalesce <= 0x7F) {
4297 		timer_res = 0;
4298 	} else if (coalesce <= 0xFF) {
4299 		timer_res = 1;
4300 	} else if (coalesce <= 0x1FF) {
4301 		timer_res = 2;
4302 	} else {
4303 		DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce);
4304 		return -EINVAL;
4305 	}
4306 	timeset = (u8)(coalesce >> timer_res);
4307 
4308 	rc = qed_int_set_timer_res(p_hwfn, p_ptt, timer_res,
4309 				   p_cid->sb_igu_id, false);
4310 	if (rc)
4311 		goto out;
4312 
4313 	address = BAR0_MAP_REG_USDM_RAM +
4314 		  USTORM_ETH_QUEUE_ZONE_OFFSET(p_cid->abs.queue_id);
4315 
4316 	rc = qed_set_coalesce(p_hwfn, p_ptt, address, &eth_qzone,
4317 			      sizeof(struct ustorm_eth_queue_zone), timeset);
4318 	if (rc)
4319 		goto out;
4320 
4321 out:
4322 	return rc;
4323 }
4324 
4325 int qed_set_txq_coalesce(struct qed_hwfn *p_hwfn,
4326 			 struct qed_ptt *p_ptt,
4327 			 u16 coalesce, struct qed_queue_cid *p_cid)
4328 {
4329 	struct xstorm_eth_queue_zone eth_qzone;
4330 	u8 timeset, timer_res;
4331 	u32 address;
4332 	int rc;
4333 
4334 	/* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */
4335 	if (coalesce <= 0x7F) {
4336 		timer_res = 0;
4337 	} else if (coalesce <= 0xFF) {
4338 		timer_res = 1;
4339 	} else if (coalesce <= 0x1FF) {
4340 		timer_res = 2;
4341 	} else {
4342 		DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce);
4343 		return -EINVAL;
4344 	}
4345 	timeset = (u8)(coalesce >> timer_res);
4346 
4347 	rc = qed_int_set_timer_res(p_hwfn, p_ptt, timer_res,
4348 				   p_cid->sb_igu_id, true);
4349 	if (rc)
4350 		goto out;
4351 
4352 	address = BAR0_MAP_REG_XSDM_RAM +
4353 		  XSTORM_ETH_QUEUE_ZONE_OFFSET(p_cid->abs.queue_id);
4354 
4355 	rc = qed_set_coalesce(p_hwfn, p_ptt, address, &eth_qzone,
4356 			      sizeof(struct xstorm_eth_queue_zone), timeset);
4357 out:
4358 	return rc;
4359 }
4360 
4361 /* Calculate final WFQ values for all vports and configure them.
4362  * After this configuration each vport will have
4363  * approx min rate =  min_pf_rate * (vport_wfq / QED_WFQ_UNIT)
4364  */
4365 static void qed_configure_wfq_for_all_vports(struct qed_hwfn *p_hwfn,
4366 					     struct qed_ptt *p_ptt,
4367 					     u32 min_pf_rate)
4368 {
4369 	struct init_qm_vport_params *vport_params;
4370 	int i;
4371 
4372 	vport_params = p_hwfn->qm_info.qm_vport_params;
4373 
4374 	for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
4375 		u32 wfq_speed = p_hwfn->qm_info.wfq_data[i].min_speed;
4376 
4377 		vport_params[i].vport_wfq = (wfq_speed * QED_WFQ_UNIT) /
4378 						min_pf_rate;
4379 		qed_init_vport_wfq(p_hwfn, p_ptt,
4380 				   vport_params[i].first_tx_pq_id,
4381 				   vport_params[i].vport_wfq);
4382 	}
4383 }
4384 
4385 static void qed_init_wfq_default_param(struct qed_hwfn *p_hwfn,
4386 				       u32 min_pf_rate)
4387 
4388 {
4389 	int i;
4390 
4391 	for (i = 0; i < p_hwfn->qm_info.num_vports; i++)
4392 		p_hwfn->qm_info.qm_vport_params[i].vport_wfq = 1;
4393 }
4394 
4395 static void qed_disable_wfq_for_all_vports(struct qed_hwfn *p_hwfn,
4396 					   struct qed_ptt *p_ptt,
4397 					   u32 min_pf_rate)
4398 {
4399 	struct init_qm_vport_params *vport_params;
4400 	int i;
4401 
4402 	vport_params = p_hwfn->qm_info.qm_vport_params;
4403 
4404 	for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
4405 		qed_init_wfq_default_param(p_hwfn, min_pf_rate);
4406 		qed_init_vport_wfq(p_hwfn, p_ptt,
4407 				   vport_params[i].first_tx_pq_id,
4408 				   vport_params[i].vport_wfq);
4409 	}
4410 }
4411 
4412 /* This function performs several validations for WFQ
4413  * configuration and required min rate for a given vport
4414  * 1. req_rate must be greater than one percent of min_pf_rate.
4415  * 2. req_rate should not cause other vports [not configured for WFQ explicitly]
4416  *    rates to get less than one percent of min_pf_rate.
4417  * 3. total_req_min_rate [all vports min rate sum] shouldn't exceed min_pf_rate.
4418  */
4419 static int qed_init_wfq_param(struct qed_hwfn *p_hwfn,
4420 			      u16 vport_id, u32 req_rate, u32 min_pf_rate)
4421 {
4422 	u32 total_req_min_rate = 0, total_left_rate = 0, left_rate_per_vp = 0;
4423 	int non_requested_count = 0, req_count = 0, i, num_vports;
4424 
4425 	num_vports = p_hwfn->qm_info.num_vports;
4426 
4427 	/* Accounting for the vports which are configured for WFQ explicitly */
4428 	for (i = 0; i < num_vports; i++) {
4429 		u32 tmp_speed;
4430 
4431 		if ((i != vport_id) &&
4432 		    p_hwfn->qm_info.wfq_data[i].configured) {
4433 			req_count++;
4434 			tmp_speed = p_hwfn->qm_info.wfq_data[i].min_speed;
4435 			total_req_min_rate += tmp_speed;
4436 		}
4437 	}
4438 
4439 	/* Include current vport data as well */
4440 	req_count++;
4441 	total_req_min_rate += req_rate;
4442 	non_requested_count = num_vports - req_count;
4443 
4444 	if (req_rate < min_pf_rate / QED_WFQ_UNIT) {
4445 		DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
4446 			   "Vport [%d] - Requested rate[%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n",
4447 			   vport_id, req_rate, min_pf_rate);
4448 		return -EINVAL;
4449 	}
4450 
4451 	if (num_vports > QED_WFQ_UNIT) {
4452 		DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
4453 			   "Number of vports is greater than %d\n",
4454 			   QED_WFQ_UNIT);
4455 		return -EINVAL;
4456 	}
4457 
4458 	if (total_req_min_rate > min_pf_rate) {
4459 		DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
4460 			   "Total requested min rate for all vports[%d Mbps] is greater than configured PF min rate[%d Mbps]\n",
4461 			   total_req_min_rate, min_pf_rate);
4462 		return -EINVAL;
4463 	}
4464 
4465 	total_left_rate	= min_pf_rate - total_req_min_rate;
4466 
4467 	left_rate_per_vp = total_left_rate / non_requested_count;
4468 	if (left_rate_per_vp <  min_pf_rate / QED_WFQ_UNIT) {
4469 		DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
4470 			   "Non WFQ configured vports rate [%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n",
4471 			   left_rate_per_vp, min_pf_rate);
4472 		return -EINVAL;
4473 	}
4474 
4475 	p_hwfn->qm_info.wfq_data[vport_id].min_speed = req_rate;
4476 	p_hwfn->qm_info.wfq_data[vport_id].configured = true;
4477 
4478 	for (i = 0; i < num_vports; i++) {
4479 		if (p_hwfn->qm_info.wfq_data[i].configured)
4480 			continue;
4481 
4482 		p_hwfn->qm_info.wfq_data[i].min_speed = left_rate_per_vp;
4483 	}
4484 
4485 	return 0;
4486 }
4487 
4488 static int __qed_configure_vport_wfq(struct qed_hwfn *p_hwfn,
4489 				     struct qed_ptt *p_ptt, u16 vp_id, u32 rate)
4490 {
4491 	struct qed_mcp_link_state *p_link;
4492 	int rc = 0;
4493 
4494 	p_link = &p_hwfn->cdev->hwfns[0].mcp_info->link_output;
4495 
4496 	if (!p_link->min_pf_rate) {
4497 		p_hwfn->qm_info.wfq_data[vp_id].min_speed = rate;
4498 		p_hwfn->qm_info.wfq_data[vp_id].configured = true;
4499 		return rc;
4500 	}
4501 
4502 	rc = qed_init_wfq_param(p_hwfn, vp_id, rate, p_link->min_pf_rate);
4503 
4504 	if (!rc)
4505 		qed_configure_wfq_for_all_vports(p_hwfn, p_ptt,
4506 						 p_link->min_pf_rate);
4507 	else
4508 		DP_NOTICE(p_hwfn,
4509 			  "Validation failed while configuring min rate\n");
4510 
4511 	return rc;
4512 }
4513 
4514 static int __qed_configure_vp_wfq_on_link_change(struct qed_hwfn *p_hwfn,
4515 						 struct qed_ptt *p_ptt,
4516 						 u32 min_pf_rate)
4517 {
4518 	bool use_wfq = false;
4519 	int rc = 0;
4520 	u16 i;
4521 
4522 	/* Validate all pre configured vports for wfq */
4523 	for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
4524 		u32 rate;
4525 
4526 		if (!p_hwfn->qm_info.wfq_data[i].configured)
4527 			continue;
4528 
4529 		rate = p_hwfn->qm_info.wfq_data[i].min_speed;
4530 		use_wfq = true;
4531 
4532 		rc = qed_init_wfq_param(p_hwfn, i, rate, min_pf_rate);
4533 		if (rc) {
4534 			DP_NOTICE(p_hwfn,
4535 				  "WFQ validation failed while configuring min rate\n");
4536 			break;
4537 		}
4538 	}
4539 
4540 	if (!rc && use_wfq)
4541 		qed_configure_wfq_for_all_vports(p_hwfn, p_ptt, min_pf_rate);
4542 	else
4543 		qed_disable_wfq_for_all_vports(p_hwfn, p_ptt, min_pf_rate);
4544 
4545 	return rc;
4546 }
4547 
4548 /* Main API for qed clients to configure vport min rate.
4549  * vp_id - vport id in PF Range[0 - (total_num_vports_per_pf - 1)]
4550  * rate - Speed in Mbps needs to be assigned to a given vport.
4551  */
4552 int qed_configure_vport_wfq(struct qed_dev *cdev, u16 vp_id, u32 rate)
4553 {
4554 	int i, rc = -EINVAL;
4555 
4556 	/* Currently not supported; Might change in future */
4557 	if (cdev->num_hwfns > 1) {
4558 		DP_NOTICE(cdev,
4559 			  "WFQ configuration is not supported for this device\n");
4560 		return rc;
4561 	}
4562 
4563 	for_each_hwfn(cdev, i) {
4564 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
4565 		struct qed_ptt *p_ptt;
4566 
4567 		p_ptt = qed_ptt_acquire(p_hwfn);
4568 		if (!p_ptt)
4569 			return -EBUSY;
4570 
4571 		rc = __qed_configure_vport_wfq(p_hwfn, p_ptt, vp_id, rate);
4572 
4573 		if (rc) {
4574 			qed_ptt_release(p_hwfn, p_ptt);
4575 			return rc;
4576 		}
4577 
4578 		qed_ptt_release(p_hwfn, p_ptt);
4579 	}
4580 
4581 	return rc;
4582 }
4583 
4584 /* API to configure WFQ from mcp link change */
4585 void qed_configure_vp_wfq_on_link_change(struct qed_dev *cdev,
4586 					 struct qed_ptt *p_ptt, u32 min_pf_rate)
4587 {
4588 	int i;
4589 
4590 	if (cdev->num_hwfns > 1) {
4591 		DP_VERBOSE(cdev,
4592 			   NETIF_MSG_LINK,
4593 			   "WFQ configuration is not supported for this device\n");
4594 		return;
4595 	}
4596 
4597 	for_each_hwfn(cdev, i) {
4598 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
4599 
4600 		__qed_configure_vp_wfq_on_link_change(p_hwfn, p_ptt,
4601 						      min_pf_rate);
4602 	}
4603 }
4604 
4605 int __qed_configure_pf_max_bandwidth(struct qed_hwfn *p_hwfn,
4606 				     struct qed_ptt *p_ptt,
4607 				     struct qed_mcp_link_state *p_link,
4608 				     u8 max_bw)
4609 {
4610 	int rc = 0;
4611 
4612 	p_hwfn->mcp_info->func_info.bandwidth_max = max_bw;
4613 
4614 	if (!p_link->line_speed && (max_bw != 100))
4615 		return rc;
4616 
4617 	p_link->speed = (p_link->line_speed * max_bw) / 100;
4618 	p_hwfn->qm_info.pf_rl = p_link->speed;
4619 
4620 	/* Since the limiter also affects Tx-switched traffic, we don't want it
4621 	 * to limit such traffic in case there's no actual limit.
4622 	 * In that case, set limit to imaginary high boundary.
4623 	 */
4624 	if (max_bw == 100)
4625 		p_hwfn->qm_info.pf_rl = 100000;
4626 
4627 	rc = qed_init_pf_rl(p_hwfn, p_ptt, p_hwfn->rel_pf_id,
4628 			    p_hwfn->qm_info.pf_rl);
4629 
4630 	DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
4631 		   "Configured MAX bandwidth to be %08x Mb/sec\n",
4632 		   p_link->speed);
4633 
4634 	return rc;
4635 }
4636 
4637 /* Main API to configure PF max bandwidth where bw range is [1 - 100] */
4638 int qed_configure_pf_max_bandwidth(struct qed_dev *cdev, u8 max_bw)
4639 {
4640 	int i, rc = -EINVAL;
4641 
4642 	if (max_bw < 1 || max_bw > 100) {
4643 		DP_NOTICE(cdev, "PF max bw valid range is [1-100]\n");
4644 		return rc;
4645 	}
4646 
4647 	for_each_hwfn(cdev, i) {
4648 		struct qed_hwfn	*p_hwfn = &cdev->hwfns[i];
4649 		struct qed_hwfn *p_lead = QED_LEADING_HWFN(cdev);
4650 		struct qed_mcp_link_state *p_link;
4651 		struct qed_ptt *p_ptt;
4652 
4653 		p_link = &p_lead->mcp_info->link_output;
4654 
4655 		p_ptt = qed_ptt_acquire(p_hwfn);
4656 		if (!p_ptt)
4657 			return -EBUSY;
4658 
4659 		rc = __qed_configure_pf_max_bandwidth(p_hwfn, p_ptt,
4660 						      p_link, max_bw);
4661 
4662 		qed_ptt_release(p_hwfn, p_ptt);
4663 
4664 		if (rc)
4665 			break;
4666 	}
4667 
4668 	return rc;
4669 }
4670 
4671 int __qed_configure_pf_min_bandwidth(struct qed_hwfn *p_hwfn,
4672 				     struct qed_ptt *p_ptt,
4673 				     struct qed_mcp_link_state *p_link,
4674 				     u8 min_bw)
4675 {
4676 	int rc = 0;
4677 
4678 	p_hwfn->mcp_info->func_info.bandwidth_min = min_bw;
4679 	p_hwfn->qm_info.pf_wfq = min_bw;
4680 
4681 	if (!p_link->line_speed)
4682 		return rc;
4683 
4684 	p_link->min_pf_rate = (p_link->line_speed * min_bw) / 100;
4685 
4686 	rc = qed_init_pf_wfq(p_hwfn, p_ptt, p_hwfn->rel_pf_id, min_bw);
4687 
4688 	DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
4689 		   "Configured MIN bandwidth to be %d Mb/sec\n",
4690 		   p_link->min_pf_rate);
4691 
4692 	return rc;
4693 }
4694 
4695 /* Main API to configure PF min bandwidth where bw range is [1-100] */
4696 int qed_configure_pf_min_bandwidth(struct qed_dev *cdev, u8 min_bw)
4697 {
4698 	int i, rc = -EINVAL;
4699 
4700 	if (min_bw < 1 || min_bw > 100) {
4701 		DP_NOTICE(cdev, "PF min bw valid range is [1-100]\n");
4702 		return rc;
4703 	}
4704 
4705 	for_each_hwfn(cdev, i) {
4706 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
4707 		struct qed_hwfn *p_lead = QED_LEADING_HWFN(cdev);
4708 		struct qed_mcp_link_state *p_link;
4709 		struct qed_ptt *p_ptt;
4710 
4711 		p_link = &p_lead->mcp_info->link_output;
4712 
4713 		p_ptt = qed_ptt_acquire(p_hwfn);
4714 		if (!p_ptt)
4715 			return -EBUSY;
4716 
4717 		rc = __qed_configure_pf_min_bandwidth(p_hwfn, p_ptt,
4718 						      p_link, min_bw);
4719 		if (rc) {
4720 			qed_ptt_release(p_hwfn, p_ptt);
4721 			return rc;
4722 		}
4723 
4724 		if (p_link->min_pf_rate) {
4725 			u32 min_rate = p_link->min_pf_rate;
4726 
4727 			rc = __qed_configure_vp_wfq_on_link_change(p_hwfn,
4728 								   p_ptt,
4729 								   min_rate);
4730 		}
4731 
4732 		qed_ptt_release(p_hwfn, p_ptt);
4733 	}
4734 
4735 	return rc;
4736 }
4737 
4738 void qed_clean_wfq_db(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
4739 {
4740 	struct qed_mcp_link_state *p_link;
4741 
4742 	p_link = &p_hwfn->mcp_info->link_output;
4743 
4744 	if (p_link->min_pf_rate)
4745 		qed_disable_wfq_for_all_vports(p_hwfn, p_ptt,
4746 					       p_link->min_pf_rate);
4747 
4748 	memset(p_hwfn->qm_info.wfq_data, 0,
4749 	       sizeof(*p_hwfn->qm_info.wfq_data) * p_hwfn->qm_info.num_vports);
4750 }
4751 
4752 int qed_device_num_ports(struct qed_dev *cdev)
4753 {
4754 	return cdev->num_ports;
4755 }
4756 
4757 void qed_set_fw_mac_addr(__le16 *fw_msb,
4758 			 __le16 *fw_mid, __le16 *fw_lsb, u8 *mac)
4759 {
4760 	((u8 *)fw_msb)[0] = mac[1];
4761 	((u8 *)fw_msb)[1] = mac[0];
4762 	((u8 *)fw_mid)[0] = mac[3];
4763 	((u8 *)fw_mid)[1] = mac[2];
4764 	((u8 *)fw_lsb)[0] = mac[5];
4765 	((u8 *)fw_lsb)[1] = mac[4];
4766 }
4767