xref: /linux/drivers/net/ethernet/qlogic/qed/qed_dev.c (revision 071bf69a0220253a44acb8b2a27f7a262b9a46bf)
1 /* QLogic qed NIC Driver
2  * Copyright (c) 2015 QLogic Corporation
3  *
4  * This software is available under the terms of the GNU General Public License
5  * (GPL) Version 2, available from the file COPYING in the main directory of
6  * this source tree.
7  */
8 
9 #include <linux/types.h>
10 #include <asm/byteorder.h>
11 #include <linux/io.h>
12 #include <linux/delay.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/errno.h>
15 #include <linux/kernel.h>
16 #include <linux/mutex.h>
17 #include <linux/pci.h>
18 #include <linux/slab.h>
19 #include <linux/string.h>
20 #include <linux/vmalloc.h>
21 #include <linux/etherdevice.h>
22 #include <linux/qed/qed_chain.h>
23 #include <linux/qed/qed_if.h>
24 #include "qed.h"
25 #include "qed_cxt.h"
26 #include "qed_dcbx.h"
27 #include "qed_dev_api.h"
28 #include "qed_hsi.h"
29 #include "qed_hw.h"
30 #include "qed_init_ops.h"
31 #include "qed_int.h"
32 #include "qed_mcp.h"
33 #include "qed_reg_addr.h"
34 #include "qed_sp.h"
35 #include "qed_sriov.h"
36 #include "qed_vf.h"
37 
38 static spinlock_t qm_lock;
39 static bool qm_lock_init = false;
40 
41 /* API common to all protocols */
42 enum BAR_ID {
43 	BAR_ID_0,       /* used for GRC */
44 	BAR_ID_1        /* Used for doorbells */
45 };
46 
47 static u32 qed_hw_bar_size(struct qed_hwfn	*p_hwfn,
48 			   enum BAR_ID		bar_id)
49 {
50 	u32 bar_reg = (bar_id == BAR_ID_0 ?
51 		       PGLUE_B_REG_PF_BAR0_SIZE : PGLUE_B_REG_PF_BAR1_SIZE);
52 	u32 val;
53 
54 	if (IS_VF(p_hwfn->cdev))
55 		return 1 << 17;
56 
57 	val = qed_rd(p_hwfn, p_hwfn->p_main_ptt, bar_reg);
58 	if (val)
59 		return 1 << (val + 15);
60 
61 	/* Old MFW initialized above registered only conditionally */
62 	if (p_hwfn->cdev->num_hwfns > 1) {
63 		DP_INFO(p_hwfn,
64 			"BAR size not configured. Assuming BAR size of 256kB for GRC and 512kB for DB\n");
65 			return BAR_ID_0 ? 256 * 1024 : 512 * 1024;
66 	} else {
67 		DP_INFO(p_hwfn,
68 			"BAR size not configured. Assuming BAR size of 512kB for GRC and 512kB for DB\n");
69 			return 512 * 1024;
70 	}
71 }
72 
73 void qed_init_dp(struct qed_dev *cdev,
74 		 u32 dp_module, u8 dp_level)
75 {
76 	u32 i;
77 
78 	cdev->dp_level = dp_level;
79 	cdev->dp_module = dp_module;
80 	for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) {
81 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
82 
83 		p_hwfn->dp_level = dp_level;
84 		p_hwfn->dp_module = dp_module;
85 	}
86 }
87 
88 void qed_init_struct(struct qed_dev *cdev)
89 {
90 	u8 i;
91 
92 	for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) {
93 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
94 
95 		p_hwfn->cdev = cdev;
96 		p_hwfn->my_id = i;
97 		p_hwfn->b_active = false;
98 
99 		mutex_init(&p_hwfn->dmae_info.mutex);
100 	}
101 
102 	/* hwfn 0 is always active */
103 	cdev->hwfns[0].b_active = true;
104 
105 	/* set the default cache alignment to 128 */
106 	cdev->cache_shift = 7;
107 }
108 
109 static void qed_qm_info_free(struct qed_hwfn *p_hwfn)
110 {
111 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
112 
113 	kfree(qm_info->qm_pq_params);
114 	qm_info->qm_pq_params = NULL;
115 	kfree(qm_info->qm_vport_params);
116 	qm_info->qm_vport_params = NULL;
117 	kfree(qm_info->qm_port_params);
118 	qm_info->qm_port_params = NULL;
119 	kfree(qm_info->wfq_data);
120 	qm_info->wfq_data = NULL;
121 }
122 
123 void qed_resc_free(struct qed_dev *cdev)
124 {
125 	int i;
126 
127 	if (IS_VF(cdev))
128 		return;
129 
130 	kfree(cdev->fw_data);
131 	cdev->fw_data = NULL;
132 
133 	kfree(cdev->reset_stats);
134 
135 	for_each_hwfn(cdev, i) {
136 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
137 
138 		kfree(p_hwfn->p_tx_cids);
139 		p_hwfn->p_tx_cids = NULL;
140 		kfree(p_hwfn->p_rx_cids);
141 		p_hwfn->p_rx_cids = NULL;
142 	}
143 
144 	for_each_hwfn(cdev, i) {
145 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
146 
147 		qed_cxt_mngr_free(p_hwfn);
148 		qed_qm_info_free(p_hwfn);
149 		qed_spq_free(p_hwfn);
150 		qed_eq_free(p_hwfn, p_hwfn->p_eq);
151 		qed_consq_free(p_hwfn, p_hwfn->p_consq);
152 		qed_int_free(p_hwfn);
153 		qed_iov_free(p_hwfn);
154 		qed_dmae_info_free(p_hwfn);
155 		qed_dcbx_info_free(p_hwfn, p_hwfn->p_dcbx_info);
156 	}
157 }
158 
159 static int qed_init_qm_info(struct qed_hwfn *p_hwfn, bool b_sleepable)
160 {
161 	u8 num_vports, vf_offset = 0, i, vport_id, num_ports, curr_queue = 0;
162 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
163 	struct init_qm_port_params *p_qm_port;
164 	bool init_rdma_offload_pq = false;
165 	bool init_pure_ack_pq = false;
166 	bool init_ooo_pq = false;
167 	u16 num_pqs, multi_cos_tcs = 1;
168 	u8 pf_wfq = qm_info->pf_wfq;
169 	u32 pf_rl = qm_info->pf_rl;
170 	u16 num_pf_rls = 0;
171 	u16 num_vfs = 0;
172 
173 #ifdef CONFIG_QED_SRIOV
174 	if (p_hwfn->cdev->p_iov_info)
175 		num_vfs = p_hwfn->cdev->p_iov_info->total_vfs;
176 #endif
177 	memset(qm_info, 0, sizeof(*qm_info));
178 
179 	num_pqs = multi_cos_tcs + num_vfs + 1;	/* The '1' is for pure-LB */
180 	num_vports = (u8)RESC_NUM(p_hwfn, QED_VPORT);
181 
182 	if (p_hwfn->hw_info.personality == QED_PCI_ETH_ROCE) {
183 		num_pqs++;	/* for RoCE queue */
184 		init_rdma_offload_pq = true;
185 		/* we subtract num_vfs because each require a rate limiter,
186 		 * and one default rate limiter
187 		 */
188 		if (p_hwfn->pf_params.rdma_pf_params.enable_dcqcn)
189 			num_pf_rls = RESC_NUM(p_hwfn, QED_RL) - num_vfs - 1;
190 
191 		num_pqs += num_pf_rls;
192 		qm_info->num_pf_rls = (u8) num_pf_rls;
193 	}
194 
195 	if (p_hwfn->hw_info.personality == QED_PCI_ISCSI) {
196 		num_pqs += 2;	/* for iSCSI pure-ACK / OOO queue */
197 		init_pure_ack_pq = true;
198 		init_ooo_pq = true;
199 	}
200 
201 	/* Sanity checking that setup requires legal number of resources */
202 	if (num_pqs > RESC_NUM(p_hwfn, QED_PQ)) {
203 		DP_ERR(p_hwfn,
204 		       "Need too many Physical queues - 0x%04x when only %04x are available\n",
205 		       num_pqs, RESC_NUM(p_hwfn, QED_PQ));
206 		return -EINVAL;
207 	}
208 
209 	/* PQs will be arranged as follows: First per-TC PQ then pure-LB quete.
210 	 */
211 	qm_info->qm_pq_params = kcalloc(num_pqs,
212 					sizeof(struct init_qm_pq_params),
213 					b_sleepable ? GFP_KERNEL : GFP_ATOMIC);
214 	if (!qm_info->qm_pq_params)
215 		goto alloc_err;
216 
217 	qm_info->qm_vport_params = kcalloc(num_vports,
218 					   sizeof(struct init_qm_vport_params),
219 					   b_sleepable ? GFP_KERNEL
220 						       : GFP_ATOMIC);
221 	if (!qm_info->qm_vport_params)
222 		goto alloc_err;
223 
224 	qm_info->qm_port_params = kcalloc(MAX_NUM_PORTS,
225 					  sizeof(struct init_qm_port_params),
226 					  b_sleepable ? GFP_KERNEL
227 						      : GFP_ATOMIC);
228 	if (!qm_info->qm_port_params)
229 		goto alloc_err;
230 
231 	qm_info->wfq_data = kcalloc(num_vports, sizeof(struct qed_wfq_data),
232 				    b_sleepable ? GFP_KERNEL : GFP_ATOMIC);
233 	if (!qm_info->wfq_data)
234 		goto alloc_err;
235 
236 	vport_id = (u8)RESC_START(p_hwfn, QED_VPORT);
237 
238 	/* First init rate limited queues */
239 	for (curr_queue = 0; curr_queue < num_pf_rls; curr_queue++) {
240 		qm_info->qm_pq_params[curr_queue].vport_id = vport_id++;
241 		qm_info->qm_pq_params[curr_queue].tc_id =
242 		    p_hwfn->hw_info.non_offload_tc;
243 		qm_info->qm_pq_params[curr_queue].wrr_group = 1;
244 		qm_info->qm_pq_params[curr_queue].rl_valid = 1;
245 	}
246 
247 	/* First init per-TC PQs */
248 	for (i = 0; i < multi_cos_tcs; i++) {
249 		struct init_qm_pq_params *params =
250 		    &qm_info->qm_pq_params[curr_queue++];
251 
252 		if (p_hwfn->hw_info.personality == QED_PCI_ETH_ROCE ||
253 		    p_hwfn->hw_info.personality == QED_PCI_ETH) {
254 			params->vport_id = vport_id;
255 			params->tc_id = p_hwfn->hw_info.non_offload_tc;
256 			params->wrr_group = 1;
257 		} else {
258 			params->vport_id = vport_id;
259 			params->tc_id = p_hwfn->hw_info.offload_tc;
260 			params->wrr_group = 1;
261 		}
262 	}
263 
264 	/* Then init pure-LB PQ */
265 	qm_info->pure_lb_pq = curr_queue;
266 	qm_info->qm_pq_params[curr_queue].vport_id =
267 	    (u8) RESC_START(p_hwfn, QED_VPORT);
268 	qm_info->qm_pq_params[curr_queue].tc_id = PURE_LB_TC;
269 	qm_info->qm_pq_params[curr_queue].wrr_group = 1;
270 	curr_queue++;
271 
272 	qm_info->offload_pq = 0;
273 	if (init_rdma_offload_pq) {
274 		qm_info->offload_pq = curr_queue;
275 		qm_info->qm_pq_params[curr_queue].vport_id = vport_id;
276 		qm_info->qm_pq_params[curr_queue].tc_id =
277 		    p_hwfn->hw_info.offload_tc;
278 		qm_info->qm_pq_params[curr_queue].wrr_group = 1;
279 		curr_queue++;
280 	}
281 
282 	if (init_pure_ack_pq) {
283 		qm_info->pure_ack_pq = curr_queue;
284 		qm_info->qm_pq_params[curr_queue].vport_id = vport_id;
285 		qm_info->qm_pq_params[curr_queue].tc_id =
286 		    p_hwfn->hw_info.offload_tc;
287 		qm_info->qm_pq_params[curr_queue].wrr_group = 1;
288 		curr_queue++;
289 	}
290 
291 	if (init_ooo_pq) {
292 		qm_info->ooo_pq = curr_queue;
293 		qm_info->qm_pq_params[curr_queue].vport_id = vport_id;
294 		qm_info->qm_pq_params[curr_queue].tc_id = DCBX_ISCSI_OOO_TC;
295 		qm_info->qm_pq_params[curr_queue].wrr_group = 1;
296 		curr_queue++;
297 	}
298 
299 	/* Then init per-VF PQs */
300 	vf_offset = curr_queue;
301 	for (i = 0; i < num_vfs; i++) {
302 		/* First vport is used by the PF */
303 		qm_info->qm_pq_params[curr_queue].vport_id = vport_id + i + 1;
304 		qm_info->qm_pq_params[curr_queue].tc_id =
305 		    p_hwfn->hw_info.non_offload_tc;
306 		qm_info->qm_pq_params[curr_queue].wrr_group = 1;
307 		qm_info->qm_pq_params[curr_queue].rl_valid = 1;
308 		curr_queue++;
309 	}
310 
311 	qm_info->vf_queues_offset = vf_offset;
312 	qm_info->num_pqs = num_pqs;
313 	qm_info->num_vports = num_vports;
314 
315 	/* Initialize qm port parameters */
316 	num_ports = p_hwfn->cdev->num_ports_in_engines;
317 	for (i = 0; i < num_ports; i++) {
318 		p_qm_port = &qm_info->qm_port_params[i];
319 		p_qm_port->active = 1;
320 		if (num_ports == 4)
321 			p_qm_port->active_phys_tcs = 0x7;
322 		else
323 			p_qm_port->active_phys_tcs = 0x9f;
324 		p_qm_port->num_pbf_cmd_lines = PBF_MAX_CMD_LINES / num_ports;
325 		p_qm_port->num_btb_blocks = BTB_MAX_BLOCKS / num_ports;
326 	}
327 
328 	qm_info->max_phys_tcs_per_port = NUM_OF_PHYS_TCS;
329 
330 	qm_info->start_pq = (u16)RESC_START(p_hwfn, QED_PQ);
331 
332 	qm_info->num_vf_pqs = num_vfs;
333 	qm_info->start_vport = (u8) RESC_START(p_hwfn, QED_VPORT);
334 
335 	for (i = 0; i < qm_info->num_vports; i++)
336 		qm_info->qm_vport_params[i].vport_wfq = 1;
337 
338 	qm_info->vport_rl_en = 1;
339 	qm_info->vport_wfq_en = 1;
340 	qm_info->pf_rl = pf_rl;
341 	qm_info->pf_wfq = pf_wfq;
342 
343 	return 0;
344 
345 alloc_err:
346 	DP_NOTICE(p_hwfn, "Failed to allocate memory for QM params\n");
347 	qed_qm_info_free(p_hwfn);
348 	return -ENOMEM;
349 }
350 
351 /* This function reconfigures the QM pf on the fly.
352  * For this purpose we:
353  * 1. reconfigure the QM database
354  * 2. set new values to runtime arrat
355  * 3. send an sdm_qm_cmd through the rbc interface to stop the QM
356  * 4. activate init tool in QM_PF stage
357  * 5. send an sdm_qm_cmd through rbc interface to release the QM
358  */
359 int qed_qm_reconf(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
360 {
361 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
362 	bool b_rc;
363 	int rc;
364 
365 	/* qm_info is allocated in qed_init_qm_info() which is already called
366 	 * from qed_resc_alloc() or previous call of qed_qm_reconf().
367 	 * The allocated size may change each init, so we free it before next
368 	 * allocation.
369 	 */
370 	qed_qm_info_free(p_hwfn);
371 
372 	/* initialize qed's qm data structure */
373 	rc = qed_init_qm_info(p_hwfn, false);
374 	if (rc)
375 		return rc;
376 
377 	/* stop PF's qm queues */
378 	spin_lock_bh(&qm_lock);
379 	b_rc = qed_send_qm_stop_cmd(p_hwfn, p_ptt, false, true,
380 				    qm_info->start_pq, qm_info->num_pqs);
381 	spin_unlock_bh(&qm_lock);
382 	if (!b_rc)
383 		return -EINVAL;
384 
385 	/* clear the QM_PF runtime phase leftovers from previous init */
386 	qed_init_clear_rt_data(p_hwfn);
387 
388 	/* prepare QM portion of runtime array */
389 	qed_qm_init_pf(p_hwfn);
390 
391 	/* activate init tool on runtime array */
392 	rc = qed_init_run(p_hwfn, p_ptt, PHASE_QM_PF, p_hwfn->rel_pf_id,
393 			  p_hwfn->hw_info.hw_mode);
394 	if (rc)
395 		return rc;
396 
397 	/* start PF's qm queues */
398 	spin_lock_bh(&qm_lock);
399 	b_rc = qed_send_qm_stop_cmd(p_hwfn, p_ptt, true, true,
400 				    qm_info->start_pq, qm_info->num_pqs);
401 	spin_unlock_bh(&qm_lock);
402 	if (!b_rc)
403 		return -EINVAL;
404 
405 	return 0;
406 }
407 
408 int qed_resc_alloc(struct qed_dev *cdev)
409 {
410 	struct qed_consq *p_consq;
411 	struct qed_eq *p_eq;
412 	int i, rc = 0;
413 
414 	if (IS_VF(cdev))
415 		return rc;
416 
417 	cdev->fw_data = kzalloc(sizeof(*cdev->fw_data), GFP_KERNEL);
418 	if (!cdev->fw_data)
419 		return -ENOMEM;
420 
421 	/* Allocate Memory for the Queue->CID mapping */
422 	for_each_hwfn(cdev, i) {
423 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
424 		int tx_size = sizeof(struct qed_hw_cid_data) *
425 				     RESC_NUM(p_hwfn, QED_L2_QUEUE);
426 		int rx_size = sizeof(struct qed_hw_cid_data) *
427 				     RESC_NUM(p_hwfn, QED_L2_QUEUE);
428 
429 		p_hwfn->p_tx_cids = kzalloc(tx_size, GFP_KERNEL);
430 		if (!p_hwfn->p_tx_cids) {
431 			DP_NOTICE(p_hwfn,
432 				  "Failed to allocate memory for Tx Cids\n");
433 			goto alloc_no_mem;
434 		}
435 
436 		p_hwfn->p_rx_cids = kzalloc(rx_size, GFP_KERNEL);
437 		if (!p_hwfn->p_rx_cids) {
438 			DP_NOTICE(p_hwfn,
439 				  "Failed to allocate memory for Rx Cids\n");
440 			goto alloc_no_mem;
441 		}
442 	}
443 
444 	for_each_hwfn(cdev, i) {
445 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
446 		u32 n_eqes, num_cons;
447 
448 		/* First allocate the context manager structure */
449 		rc = qed_cxt_mngr_alloc(p_hwfn);
450 		if (rc)
451 			goto alloc_err;
452 
453 		/* Set the HW cid/tid numbers (in the contest manager)
454 		 * Must be done prior to any further computations.
455 		 */
456 		rc = qed_cxt_set_pf_params(p_hwfn);
457 		if (rc)
458 			goto alloc_err;
459 
460 		/* Prepare and process QM requirements */
461 		rc = qed_init_qm_info(p_hwfn, true);
462 		if (rc)
463 			goto alloc_err;
464 
465 		/* Compute the ILT client partition */
466 		rc = qed_cxt_cfg_ilt_compute(p_hwfn);
467 		if (rc)
468 			goto alloc_err;
469 
470 		/* CID map / ILT shadow table / T2
471 		 * The talbes sizes are determined by the computations above
472 		 */
473 		rc = qed_cxt_tables_alloc(p_hwfn);
474 		if (rc)
475 			goto alloc_err;
476 
477 		/* SPQ, must follow ILT because initializes SPQ context */
478 		rc = qed_spq_alloc(p_hwfn);
479 		if (rc)
480 			goto alloc_err;
481 
482 		/* SP status block allocation */
483 		p_hwfn->p_dpc_ptt = qed_get_reserved_ptt(p_hwfn,
484 							 RESERVED_PTT_DPC);
485 
486 		rc = qed_int_alloc(p_hwfn, p_hwfn->p_main_ptt);
487 		if (rc)
488 			goto alloc_err;
489 
490 		rc = qed_iov_alloc(p_hwfn);
491 		if (rc)
492 			goto alloc_err;
493 
494 		/* EQ */
495 		n_eqes = qed_chain_get_capacity(&p_hwfn->p_spq->chain);
496 		if (p_hwfn->hw_info.personality == QED_PCI_ETH_ROCE) {
497 			num_cons = qed_cxt_get_proto_cid_count(p_hwfn,
498 							       PROTOCOLID_ROCE,
499 							       0) * 2;
500 			n_eqes += num_cons + 2 * MAX_NUM_VFS_BB;
501 		} else if (p_hwfn->hw_info.personality == QED_PCI_ISCSI) {
502 			num_cons =
503 			    qed_cxt_get_proto_cid_count(p_hwfn,
504 							PROTOCOLID_ISCSI, 0);
505 			n_eqes += 2 * num_cons;
506 		}
507 
508 		if (n_eqes > 0xFFFF) {
509 			DP_ERR(p_hwfn,
510 			       "Cannot allocate 0x%x EQ elements. The maximum of a u16 chain is 0x%x\n",
511 			       n_eqes, 0xFFFF);
512 			rc = -EINVAL;
513 			goto alloc_err;
514 		}
515 
516 		p_eq = qed_eq_alloc(p_hwfn, (u16) n_eqes);
517 		if (!p_eq)
518 			goto alloc_no_mem;
519 		p_hwfn->p_eq = p_eq;
520 
521 		p_consq = qed_consq_alloc(p_hwfn);
522 		if (!p_consq)
523 			goto alloc_no_mem;
524 		p_hwfn->p_consq = p_consq;
525 
526 		/* DMA info initialization */
527 		rc = qed_dmae_info_alloc(p_hwfn);
528 		if (rc) {
529 			DP_NOTICE(p_hwfn,
530 				  "Failed to allocate memory for dmae_info structure\n");
531 			goto alloc_err;
532 		}
533 
534 		/* DCBX initialization */
535 		rc = qed_dcbx_info_alloc(p_hwfn);
536 		if (rc) {
537 			DP_NOTICE(p_hwfn,
538 				  "Failed to allocate memory for dcbx structure\n");
539 			goto alloc_err;
540 		}
541 	}
542 
543 	cdev->reset_stats = kzalloc(sizeof(*cdev->reset_stats), GFP_KERNEL);
544 	if (!cdev->reset_stats) {
545 		DP_NOTICE(cdev, "Failed to allocate reset statistics\n");
546 		rc = -ENOMEM;
547 		goto alloc_err;
548 	}
549 
550 	return 0;
551 
552 alloc_no_mem:
553 	rc = -ENOMEM;
554 alloc_err:
555 	qed_resc_free(cdev);
556 	return rc;
557 }
558 
559 void qed_resc_setup(struct qed_dev *cdev)
560 {
561 	int i;
562 
563 	if (IS_VF(cdev))
564 		return;
565 
566 	for_each_hwfn(cdev, i) {
567 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
568 
569 		qed_cxt_mngr_setup(p_hwfn);
570 		qed_spq_setup(p_hwfn);
571 		qed_eq_setup(p_hwfn, p_hwfn->p_eq);
572 		qed_consq_setup(p_hwfn, p_hwfn->p_consq);
573 
574 		/* Read shadow of current MFW mailbox */
575 		qed_mcp_read_mb(p_hwfn, p_hwfn->p_main_ptt);
576 		memcpy(p_hwfn->mcp_info->mfw_mb_shadow,
577 		       p_hwfn->mcp_info->mfw_mb_cur,
578 		       p_hwfn->mcp_info->mfw_mb_length);
579 
580 		qed_int_setup(p_hwfn, p_hwfn->p_main_ptt);
581 
582 		qed_iov_setup(p_hwfn, p_hwfn->p_main_ptt);
583 	}
584 }
585 
586 #define FINAL_CLEANUP_POLL_CNT          (100)
587 #define FINAL_CLEANUP_POLL_TIME         (10)
588 int qed_final_cleanup(struct qed_hwfn *p_hwfn,
589 		      struct qed_ptt *p_ptt, u16 id, bool is_vf)
590 {
591 	u32 command = 0, addr, count = FINAL_CLEANUP_POLL_CNT;
592 	int rc = -EBUSY;
593 
594 	addr = GTT_BAR0_MAP_REG_USDM_RAM +
595 		USTORM_FLR_FINAL_ACK_OFFSET(p_hwfn->rel_pf_id);
596 
597 	if (is_vf)
598 		id += 0x10;
599 
600 	command |= X_FINAL_CLEANUP_AGG_INT <<
601 		SDM_AGG_INT_COMP_PARAMS_AGG_INT_INDEX_SHIFT;
602 	command |= 1 << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_ENABLE_SHIFT;
603 	command |= id << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_BIT_SHIFT;
604 	command |= SDM_COMP_TYPE_AGG_INT << SDM_OP_GEN_COMP_TYPE_SHIFT;
605 
606 	/* Make sure notification is not set before initiating final cleanup */
607 	if (REG_RD(p_hwfn, addr)) {
608 		DP_NOTICE(
609 			p_hwfn,
610 			"Unexpected; Found final cleanup notification before initiating final cleanup\n");
611 		REG_WR(p_hwfn, addr, 0);
612 	}
613 
614 	DP_VERBOSE(p_hwfn, QED_MSG_IOV,
615 		   "Sending final cleanup for PFVF[%d] [Command %08x\n]",
616 		   id, command);
617 
618 	qed_wr(p_hwfn, p_ptt, XSDM_REG_OPERATION_GEN, command);
619 
620 	/* Poll until completion */
621 	while (!REG_RD(p_hwfn, addr) && count--)
622 		msleep(FINAL_CLEANUP_POLL_TIME);
623 
624 	if (REG_RD(p_hwfn, addr))
625 		rc = 0;
626 	else
627 		DP_NOTICE(p_hwfn,
628 			  "Failed to receive FW final cleanup notification\n");
629 
630 	/* Cleanup afterwards */
631 	REG_WR(p_hwfn, addr, 0);
632 
633 	return rc;
634 }
635 
636 static void qed_calc_hw_mode(struct qed_hwfn *p_hwfn)
637 {
638 	int hw_mode = 0;
639 
640 	hw_mode = (1 << MODE_BB_B0);
641 
642 	switch (p_hwfn->cdev->num_ports_in_engines) {
643 	case 1:
644 		hw_mode |= 1 << MODE_PORTS_PER_ENG_1;
645 		break;
646 	case 2:
647 		hw_mode |= 1 << MODE_PORTS_PER_ENG_2;
648 		break;
649 	case 4:
650 		hw_mode |= 1 << MODE_PORTS_PER_ENG_4;
651 		break;
652 	default:
653 		DP_NOTICE(p_hwfn, "num_ports_in_engine = %d not supported\n",
654 			  p_hwfn->cdev->num_ports_in_engines);
655 		return;
656 	}
657 
658 	switch (p_hwfn->cdev->mf_mode) {
659 	case QED_MF_DEFAULT:
660 	case QED_MF_NPAR:
661 		hw_mode |= 1 << MODE_MF_SI;
662 		break;
663 	case QED_MF_OVLAN:
664 		hw_mode |= 1 << MODE_MF_SD;
665 		break;
666 	default:
667 		DP_NOTICE(p_hwfn, "Unsupported MF mode, init as DEFAULT\n");
668 		hw_mode |= 1 << MODE_MF_SI;
669 	}
670 
671 	hw_mode |= 1 << MODE_ASIC;
672 
673 	if (p_hwfn->cdev->num_hwfns > 1)
674 		hw_mode |= 1 << MODE_100G;
675 
676 	p_hwfn->hw_info.hw_mode = hw_mode;
677 
678 	DP_VERBOSE(p_hwfn, (NETIF_MSG_PROBE | NETIF_MSG_IFUP),
679 		   "Configuring function for hw_mode: 0x%08x\n",
680 		   p_hwfn->hw_info.hw_mode);
681 }
682 
683 /* Init run time data for all PFs on an engine. */
684 static void qed_init_cau_rt_data(struct qed_dev *cdev)
685 {
686 	u32 offset = CAU_REG_SB_VAR_MEMORY_RT_OFFSET;
687 	int i, sb_id;
688 
689 	for_each_hwfn(cdev, i) {
690 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
691 		struct qed_igu_info *p_igu_info;
692 		struct qed_igu_block *p_block;
693 		struct cau_sb_entry sb_entry;
694 
695 		p_igu_info = p_hwfn->hw_info.p_igu_info;
696 
697 		for (sb_id = 0; sb_id < QED_MAPPING_MEMORY_SIZE(cdev);
698 		     sb_id++) {
699 			p_block = &p_igu_info->igu_map.igu_blocks[sb_id];
700 			if (!p_block->is_pf)
701 				continue;
702 
703 			qed_init_cau_sb_entry(p_hwfn, &sb_entry,
704 					      p_block->function_id,
705 					      0, 0);
706 			STORE_RT_REG_AGG(p_hwfn, offset + sb_id * 2,
707 					 sb_entry);
708 		}
709 	}
710 }
711 
712 static int qed_hw_init_common(struct qed_hwfn *p_hwfn,
713 			      struct qed_ptt *p_ptt,
714 			      int hw_mode)
715 {
716 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
717 	struct qed_qm_common_rt_init_params params;
718 	struct qed_dev *cdev = p_hwfn->cdev;
719 	u16 num_pfs, pf_id;
720 	u32 concrete_fid;
721 	int rc = 0;
722 	u8 vf_id;
723 
724 	qed_init_cau_rt_data(cdev);
725 
726 	/* Program GTT windows */
727 	qed_gtt_init(p_hwfn);
728 
729 	if (p_hwfn->mcp_info) {
730 		if (p_hwfn->mcp_info->func_info.bandwidth_max)
731 			qm_info->pf_rl_en = 1;
732 		if (p_hwfn->mcp_info->func_info.bandwidth_min)
733 			qm_info->pf_wfq_en = 1;
734 	}
735 
736 	memset(&params, 0, sizeof(params));
737 	params.max_ports_per_engine = p_hwfn->cdev->num_ports_in_engines;
738 	params.max_phys_tcs_per_port = qm_info->max_phys_tcs_per_port;
739 	params.pf_rl_en = qm_info->pf_rl_en;
740 	params.pf_wfq_en = qm_info->pf_wfq_en;
741 	params.vport_rl_en = qm_info->vport_rl_en;
742 	params.vport_wfq_en = qm_info->vport_wfq_en;
743 	params.port_params = qm_info->qm_port_params;
744 
745 	qed_qm_common_rt_init(p_hwfn, &params);
746 
747 	qed_cxt_hw_init_common(p_hwfn);
748 
749 	/* Close gate from NIG to BRB/Storm; By default they are open, but
750 	 * we close them to prevent NIG from passing data to reset blocks.
751 	 * Should have been done in the ENGINE phase, but init-tool lacks
752 	 * proper port-pretend capabilities.
753 	 */
754 	qed_wr(p_hwfn, p_ptt, NIG_REG_RX_BRB_OUT_EN, 0);
755 	qed_wr(p_hwfn, p_ptt, NIG_REG_STORM_OUT_EN, 0);
756 	qed_port_pretend(p_hwfn, p_ptt, p_hwfn->port_id ^ 1);
757 	qed_wr(p_hwfn, p_ptt, NIG_REG_RX_BRB_OUT_EN, 0);
758 	qed_wr(p_hwfn, p_ptt, NIG_REG_STORM_OUT_EN, 0);
759 	qed_port_unpretend(p_hwfn, p_ptt);
760 
761 	rc = qed_init_run(p_hwfn, p_ptt, PHASE_ENGINE, ANY_PHASE_ID, hw_mode);
762 	if (rc != 0)
763 		return rc;
764 
765 	qed_wr(p_hwfn, p_ptt, PSWRQ2_REG_L2P_VALIDATE_VFID, 0);
766 	qed_wr(p_hwfn, p_ptt, PGLUE_B_REG_USE_CLIENTID_IN_TAG, 1);
767 
768 	if (QED_IS_BB(p_hwfn->cdev)) {
769 		num_pfs = NUM_OF_ENG_PFS(p_hwfn->cdev);
770 		for (pf_id = 0; pf_id < num_pfs; pf_id++) {
771 			qed_fid_pretend(p_hwfn, p_ptt, pf_id);
772 			qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
773 			qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
774 		}
775 		/* pretend to original PF */
776 		qed_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id);
777 	}
778 
779 	for (vf_id = 0; vf_id < MAX_NUM_VFS_BB; vf_id++) {
780 		concrete_fid = qed_vfid_to_concrete(p_hwfn, vf_id);
781 		qed_fid_pretend(p_hwfn, p_ptt, (u16) concrete_fid);
782 		qed_wr(p_hwfn, p_ptt, CCFC_REG_STRONG_ENABLE_VF, 0x1);
783 	}
784 	/* pretend to original PF */
785 	qed_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id);
786 
787 	return rc;
788 }
789 
790 static int qed_hw_init_port(struct qed_hwfn *p_hwfn,
791 			    struct qed_ptt *p_ptt,
792 			    int hw_mode)
793 {
794 	int rc = 0;
795 
796 	rc = qed_init_run(p_hwfn, p_ptt, PHASE_PORT, p_hwfn->port_id, hw_mode);
797 	if (rc != 0)
798 		return rc;
799 
800 	if (hw_mode & (1 << MODE_MF_SI)) {
801 		u8 pf_id = 0;
802 
803 		if (!qed_hw_init_first_eth(p_hwfn, p_ptt, &pf_id)) {
804 			DP_VERBOSE(p_hwfn, NETIF_MSG_IFUP,
805 				   "PF[%08x] is first eth on engine\n", pf_id);
806 
807 			/* We should have configured BIT for ppfid, i.e., the
808 			 * relative function number in the port. But there's a
809 			 * bug in LLH in BB where the ppfid is actually engine
810 			 * based, so we need to take this into account.
811 			 */
812 			qed_wr(p_hwfn, p_ptt,
813 			       NIG_REG_LLH_TAGMAC_DEF_PF_VECTOR, 1 << pf_id);
814 		}
815 
816 		/* Take the protocol-based hit vector if there is a hit,
817 		 * otherwise take the other vector.
818 		 */
819 		qed_wr(p_hwfn, p_ptt, NIG_REG_LLH_CLS_TYPE_DUALMODE, 0x2);
820 	}
821 	return rc;
822 }
823 
824 static int qed_hw_init_pf(struct qed_hwfn *p_hwfn,
825 			  struct qed_ptt *p_ptt,
826 			  struct qed_tunn_start_params *p_tunn,
827 			  int hw_mode,
828 			  bool b_hw_start,
829 			  enum qed_int_mode int_mode,
830 			  bool allow_npar_tx_switch)
831 {
832 	u8 rel_pf_id = p_hwfn->rel_pf_id;
833 	int rc = 0;
834 
835 	if (p_hwfn->mcp_info) {
836 		struct qed_mcp_function_info *p_info;
837 
838 		p_info = &p_hwfn->mcp_info->func_info;
839 		if (p_info->bandwidth_min)
840 			p_hwfn->qm_info.pf_wfq = p_info->bandwidth_min;
841 
842 		/* Update rate limit once we'll actually have a link */
843 		p_hwfn->qm_info.pf_rl = 100000;
844 	}
845 
846 	qed_cxt_hw_init_pf(p_hwfn);
847 
848 	qed_int_igu_init_rt(p_hwfn);
849 
850 	/* Set VLAN in NIG if needed */
851 	if (hw_mode & (1 << MODE_MF_SD)) {
852 		DP_VERBOSE(p_hwfn, NETIF_MSG_HW, "Configuring LLH_FUNC_TAG\n");
853 		STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_EN_RT_OFFSET, 1);
854 		STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_VALUE_RT_OFFSET,
855 			     p_hwfn->hw_info.ovlan);
856 	}
857 
858 	/* Enable classification by MAC if needed */
859 	if (hw_mode & (1 << MODE_MF_SI)) {
860 		DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
861 			   "Configuring TAGMAC_CLS_TYPE\n");
862 		STORE_RT_REG(p_hwfn,
863 			     NIG_REG_LLH_FUNC_TAGMAC_CLS_TYPE_RT_OFFSET, 1);
864 	}
865 
866 	/* Protocl Configuration  */
867 	STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_TCP_RT_OFFSET,
868 		     (p_hwfn->hw_info.personality == QED_PCI_ISCSI) ? 1 : 0);
869 	STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_FCOE_RT_OFFSET, 0);
870 	STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_ROCE_RT_OFFSET, 0);
871 
872 	/* Cleanup chip from previous driver if such remains exist */
873 	rc = qed_final_cleanup(p_hwfn, p_ptt, rel_pf_id, false);
874 	if (rc != 0)
875 		return rc;
876 
877 	/* PF Init sequence */
878 	rc = qed_init_run(p_hwfn, p_ptt, PHASE_PF, rel_pf_id, hw_mode);
879 	if (rc)
880 		return rc;
881 
882 	/* QM_PF Init sequence (may be invoked separately e.g. for DCB) */
883 	rc = qed_init_run(p_hwfn, p_ptt, PHASE_QM_PF, rel_pf_id, hw_mode);
884 	if (rc)
885 		return rc;
886 
887 	/* Pure runtime initializations - directly to the HW  */
888 	qed_int_igu_init_pure_rt(p_hwfn, p_ptt, true, true);
889 
890 	if (hw_mode & (1 << MODE_MF_SI)) {
891 		u8 pf_id = 0;
892 		u32 val = 0;
893 
894 		if (!qed_hw_init_first_eth(p_hwfn, p_ptt, &pf_id)) {
895 			if (p_hwfn->rel_pf_id == pf_id) {
896 				DP_VERBOSE(p_hwfn, NETIF_MSG_IFUP,
897 					   "PF[%d] is first ETH on engine\n",
898 					   pf_id);
899 				val = 1;
900 			}
901 			qed_wr(p_hwfn, p_ptt, PRS_REG_MSG_INFO, val);
902 		}
903 	}
904 
905 	if (b_hw_start) {
906 		/* enable interrupts */
907 		qed_int_igu_enable(p_hwfn, p_ptt, int_mode);
908 
909 		/* send function start command */
910 		rc = qed_sp_pf_start(p_hwfn, p_tunn, p_hwfn->cdev->mf_mode,
911 				     allow_npar_tx_switch);
912 		if (rc)
913 			DP_NOTICE(p_hwfn, "Function start ramrod failed\n");
914 	}
915 	return rc;
916 }
917 
918 static int qed_change_pci_hwfn(struct qed_hwfn *p_hwfn,
919 			       struct qed_ptt *p_ptt,
920 			       u8 enable)
921 {
922 	u32 delay_idx = 0, val, set_val = enable ? 1 : 0;
923 
924 	/* Change PF in PXP */
925 	qed_wr(p_hwfn, p_ptt,
926 	       PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, set_val);
927 
928 	/* wait until value is set - try for 1 second every 50us */
929 	for (delay_idx = 0; delay_idx < 20000; delay_idx++) {
930 		val = qed_rd(p_hwfn, p_ptt,
931 			     PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
932 		if (val == set_val)
933 			break;
934 
935 		usleep_range(50, 60);
936 	}
937 
938 	if (val != set_val) {
939 		DP_NOTICE(p_hwfn,
940 			  "PFID_ENABLE_MASTER wasn't changed after a second\n");
941 		return -EAGAIN;
942 	}
943 
944 	return 0;
945 }
946 
947 static void qed_reset_mb_shadow(struct qed_hwfn *p_hwfn,
948 				struct qed_ptt *p_main_ptt)
949 {
950 	/* Read shadow of current MFW mailbox */
951 	qed_mcp_read_mb(p_hwfn, p_main_ptt);
952 	memcpy(p_hwfn->mcp_info->mfw_mb_shadow,
953 	       p_hwfn->mcp_info->mfw_mb_cur,
954 	       p_hwfn->mcp_info->mfw_mb_length);
955 }
956 
957 int qed_hw_init(struct qed_dev *cdev,
958 		struct qed_tunn_start_params *p_tunn,
959 		bool b_hw_start,
960 		enum qed_int_mode int_mode,
961 		bool allow_npar_tx_switch,
962 		const u8 *bin_fw_data)
963 {
964 	u32 load_code, param;
965 	int rc, mfw_rc, i;
966 
967 	if ((int_mode == QED_INT_MODE_MSI) && (cdev->num_hwfns > 1)) {
968 		DP_NOTICE(cdev, "MSI mode is not supported for CMT devices\n");
969 		return -EINVAL;
970 	}
971 
972 	if (IS_PF(cdev)) {
973 		rc = qed_init_fw_data(cdev, bin_fw_data);
974 		if (rc != 0)
975 			return rc;
976 	}
977 
978 	for_each_hwfn(cdev, i) {
979 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
980 
981 		if (IS_VF(cdev)) {
982 			p_hwfn->b_int_enabled = 1;
983 			continue;
984 		}
985 
986 		/* Enable DMAE in PXP */
987 		rc = qed_change_pci_hwfn(p_hwfn, p_hwfn->p_main_ptt, true);
988 
989 		qed_calc_hw_mode(p_hwfn);
990 
991 		rc = qed_mcp_load_req(p_hwfn, p_hwfn->p_main_ptt,
992 				      &load_code);
993 		if (rc) {
994 			DP_NOTICE(p_hwfn, "Failed sending LOAD_REQ command\n");
995 			return rc;
996 		}
997 
998 		qed_reset_mb_shadow(p_hwfn, p_hwfn->p_main_ptt);
999 
1000 		DP_VERBOSE(p_hwfn, QED_MSG_SP,
1001 			   "Load request was sent. Resp:0x%x, Load code: 0x%x\n",
1002 			   rc, load_code);
1003 
1004 		p_hwfn->first_on_engine = (load_code ==
1005 					   FW_MSG_CODE_DRV_LOAD_ENGINE);
1006 
1007 		if (!qm_lock_init) {
1008 			spin_lock_init(&qm_lock);
1009 			qm_lock_init = true;
1010 		}
1011 
1012 		switch (load_code) {
1013 		case FW_MSG_CODE_DRV_LOAD_ENGINE:
1014 			rc = qed_hw_init_common(p_hwfn, p_hwfn->p_main_ptt,
1015 						p_hwfn->hw_info.hw_mode);
1016 			if (rc)
1017 				break;
1018 		/* Fall into */
1019 		case FW_MSG_CODE_DRV_LOAD_PORT:
1020 			rc = qed_hw_init_port(p_hwfn, p_hwfn->p_main_ptt,
1021 					      p_hwfn->hw_info.hw_mode);
1022 			if (rc)
1023 				break;
1024 
1025 		/* Fall into */
1026 		case FW_MSG_CODE_DRV_LOAD_FUNCTION:
1027 			rc = qed_hw_init_pf(p_hwfn, p_hwfn->p_main_ptt,
1028 					    p_tunn, p_hwfn->hw_info.hw_mode,
1029 					    b_hw_start, int_mode,
1030 					    allow_npar_tx_switch);
1031 			break;
1032 		default:
1033 			rc = -EINVAL;
1034 			break;
1035 		}
1036 
1037 		if (rc)
1038 			DP_NOTICE(p_hwfn,
1039 				  "init phase failed for loadcode 0x%x (rc %d)\n",
1040 				   load_code, rc);
1041 
1042 		/* ACK mfw regardless of success or failure of initialization */
1043 		mfw_rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
1044 				     DRV_MSG_CODE_LOAD_DONE,
1045 				     0, &load_code, &param);
1046 		if (rc)
1047 			return rc;
1048 		if (mfw_rc) {
1049 			DP_NOTICE(p_hwfn, "Failed sending LOAD_DONE command\n");
1050 			return mfw_rc;
1051 		}
1052 
1053 		/* send DCBX attention request command */
1054 		DP_VERBOSE(p_hwfn,
1055 			   QED_MSG_DCB,
1056 			   "sending phony dcbx set command to trigger DCBx attention handling\n");
1057 		mfw_rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
1058 				     DRV_MSG_CODE_SET_DCBX,
1059 				     1 << DRV_MB_PARAM_DCBX_NOTIFY_SHIFT,
1060 				     &load_code, &param);
1061 		if (mfw_rc) {
1062 			DP_NOTICE(p_hwfn,
1063 				  "Failed to send DCBX attention request\n");
1064 			return mfw_rc;
1065 		}
1066 
1067 		p_hwfn->hw_init_done = true;
1068 	}
1069 
1070 	return 0;
1071 }
1072 
1073 #define QED_HW_STOP_RETRY_LIMIT (10)
1074 static inline void qed_hw_timers_stop(struct qed_dev *cdev,
1075 				      struct qed_hwfn *p_hwfn,
1076 				      struct qed_ptt *p_ptt)
1077 {
1078 	int i;
1079 
1080 	/* close timers */
1081 	qed_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_CONN, 0x0);
1082 	qed_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_TASK, 0x0);
1083 
1084 	for (i = 0; i < QED_HW_STOP_RETRY_LIMIT; i++) {
1085 		if ((!qed_rd(p_hwfn, p_ptt,
1086 			     TM_REG_PF_SCAN_ACTIVE_CONN)) &&
1087 		    (!qed_rd(p_hwfn, p_ptt,
1088 			     TM_REG_PF_SCAN_ACTIVE_TASK)))
1089 			break;
1090 
1091 		/* Dependent on number of connection/tasks, possibly
1092 		 * 1ms sleep is required between polls
1093 		 */
1094 		usleep_range(1000, 2000);
1095 	}
1096 
1097 	if (i < QED_HW_STOP_RETRY_LIMIT)
1098 		return;
1099 
1100 	DP_NOTICE(p_hwfn,
1101 		  "Timers linear scans are not over [Connection %02x Tasks %02x]\n",
1102 		  (u8)qed_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_CONN),
1103 		  (u8)qed_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_TASK));
1104 }
1105 
1106 void qed_hw_timers_stop_all(struct qed_dev *cdev)
1107 {
1108 	int j;
1109 
1110 	for_each_hwfn(cdev, j) {
1111 		struct qed_hwfn *p_hwfn = &cdev->hwfns[j];
1112 		struct qed_ptt *p_ptt = p_hwfn->p_main_ptt;
1113 
1114 		qed_hw_timers_stop(cdev, p_hwfn, p_ptt);
1115 	}
1116 }
1117 
1118 int qed_hw_stop(struct qed_dev *cdev)
1119 {
1120 	int rc = 0, t_rc;
1121 	int j;
1122 
1123 	for_each_hwfn(cdev, j) {
1124 		struct qed_hwfn *p_hwfn = &cdev->hwfns[j];
1125 		struct qed_ptt *p_ptt = p_hwfn->p_main_ptt;
1126 
1127 		DP_VERBOSE(p_hwfn, NETIF_MSG_IFDOWN, "Stopping hw/fw\n");
1128 
1129 		if (IS_VF(cdev)) {
1130 			qed_vf_pf_int_cleanup(p_hwfn);
1131 			continue;
1132 		}
1133 
1134 		/* mark the hw as uninitialized... */
1135 		p_hwfn->hw_init_done = false;
1136 
1137 		rc = qed_sp_pf_stop(p_hwfn);
1138 		if (rc)
1139 			DP_NOTICE(p_hwfn,
1140 				  "Failed to close PF against FW. Continue to stop HW to prevent illegal host access by the device\n");
1141 
1142 		qed_wr(p_hwfn, p_ptt,
1143 		       NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1);
1144 
1145 		qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
1146 		qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0);
1147 		qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0);
1148 		qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
1149 		qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0);
1150 
1151 		qed_hw_timers_stop(cdev, p_hwfn, p_ptt);
1152 
1153 		/* Disable Attention Generation */
1154 		qed_int_igu_disable_int(p_hwfn, p_ptt);
1155 
1156 		qed_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0);
1157 		qed_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0);
1158 
1159 		qed_int_igu_init_pure_rt(p_hwfn, p_ptt, false, true);
1160 
1161 		/* Need to wait 1ms to guarantee SBs are cleared */
1162 		usleep_range(1000, 2000);
1163 	}
1164 
1165 	if (IS_PF(cdev)) {
1166 		/* Disable DMAE in PXP - in CMT, this should only be done for
1167 		 * first hw-function, and only after all transactions have
1168 		 * stopped for all active hw-functions.
1169 		 */
1170 		t_rc = qed_change_pci_hwfn(&cdev->hwfns[0],
1171 					   cdev->hwfns[0].p_main_ptt, false);
1172 		if (t_rc != 0)
1173 			rc = t_rc;
1174 	}
1175 
1176 	return rc;
1177 }
1178 
1179 void qed_hw_stop_fastpath(struct qed_dev *cdev)
1180 {
1181 	int j;
1182 
1183 	for_each_hwfn(cdev, j) {
1184 		struct qed_hwfn *p_hwfn = &cdev->hwfns[j];
1185 		struct qed_ptt *p_ptt = p_hwfn->p_main_ptt;
1186 
1187 		if (IS_VF(cdev)) {
1188 			qed_vf_pf_int_cleanup(p_hwfn);
1189 			continue;
1190 		}
1191 
1192 		DP_VERBOSE(p_hwfn,
1193 			   NETIF_MSG_IFDOWN,
1194 			   "Shutting down the fastpath\n");
1195 
1196 		qed_wr(p_hwfn, p_ptt,
1197 		       NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1);
1198 
1199 		qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
1200 		qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0);
1201 		qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0);
1202 		qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
1203 		qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0);
1204 
1205 		qed_int_igu_init_pure_rt(p_hwfn, p_ptt, false, false);
1206 
1207 		/* Need to wait 1ms to guarantee SBs are cleared */
1208 		usleep_range(1000, 2000);
1209 	}
1210 }
1211 
1212 void qed_hw_start_fastpath(struct qed_hwfn *p_hwfn)
1213 {
1214 	if (IS_VF(p_hwfn->cdev))
1215 		return;
1216 
1217 	/* Re-open incoming traffic */
1218 	qed_wr(p_hwfn, p_hwfn->p_main_ptt,
1219 	       NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x0);
1220 }
1221 
1222 static int qed_reg_assert(struct qed_hwfn *hwfn,
1223 			  struct qed_ptt *ptt, u32 reg,
1224 			  bool expected)
1225 {
1226 	u32 assert_val = qed_rd(hwfn, ptt, reg);
1227 
1228 	if (assert_val != expected) {
1229 		DP_NOTICE(hwfn, "Value at address 0x%x != 0x%08x\n",
1230 			  reg, expected);
1231 		return -EINVAL;
1232 	}
1233 
1234 	return 0;
1235 }
1236 
1237 int qed_hw_reset(struct qed_dev *cdev)
1238 {
1239 	int rc = 0;
1240 	u32 unload_resp, unload_param;
1241 	int i;
1242 
1243 	for_each_hwfn(cdev, i) {
1244 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
1245 
1246 		if (IS_VF(cdev)) {
1247 			rc = qed_vf_pf_reset(p_hwfn);
1248 			if (rc)
1249 				return rc;
1250 			continue;
1251 		}
1252 
1253 		DP_VERBOSE(p_hwfn, NETIF_MSG_IFDOWN, "Resetting hw/fw\n");
1254 
1255 		/* Check for incorrect states */
1256 		qed_reg_assert(p_hwfn, p_hwfn->p_main_ptt,
1257 			       QM_REG_USG_CNT_PF_TX, 0);
1258 		qed_reg_assert(p_hwfn, p_hwfn->p_main_ptt,
1259 			       QM_REG_USG_CNT_PF_OTHER, 0);
1260 
1261 		/* Disable PF in HW blocks */
1262 		qed_wr(p_hwfn, p_hwfn->p_main_ptt, DORQ_REG_PF_DB_ENABLE, 0);
1263 		qed_wr(p_hwfn, p_hwfn->p_main_ptt, QM_REG_PF_EN, 0);
1264 		qed_wr(p_hwfn, p_hwfn->p_main_ptt,
1265 		       TCFC_REG_STRONG_ENABLE_PF, 0);
1266 		qed_wr(p_hwfn, p_hwfn->p_main_ptt,
1267 		       CCFC_REG_STRONG_ENABLE_PF, 0);
1268 
1269 		/* Send unload command to MCP */
1270 		rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
1271 				 DRV_MSG_CODE_UNLOAD_REQ,
1272 				 DRV_MB_PARAM_UNLOAD_WOL_MCP,
1273 				 &unload_resp, &unload_param);
1274 		if (rc) {
1275 			DP_NOTICE(p_hwfn, "qed_hw_reset: UNLOAD_REQ failed\n");
1276 			unload_resp = FW_MSG_CODE_DRV_UNLOAD_ENGINE;
1277 		}
1278 
1279 		rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
1280 				 DRV_MSG_CODE_UNLOAD_DONE,
1281 				 0, &unload_resp, &unload_param);
1282 		if (rc) {
1283 			DP_NOTICE(p_hwfn, "qed_hw_reset: UNLOAD_DONE failed\n");
1284 			return rc;
1285 		}
1286 	}
1287 
1288 	return rc;
1289 }
1290 
1291 /* Free hwfn memory and resources acquired in hw_hwfn_prepare */
1292 static void qed_hw_hwfn_free(struct qed_hwfn *p_hwfn)
1293 {
1294 	qed_ptt_pool_free(p_hwfn);
1295 	kfree(p_hwfn->hw_info.p_igu_info);
1296 }
1297 
1298 /* Setup bar access */
1299 static void qed_hw_hwfn_prepare(struct qed_hwfn *p_hwfn)
1300 {
1301 	/* clear indirect access */
1302 	qed_wr(p_hwfn, p_hwfn->p_main_ptt, PGLUE_B_REG_PGL_ADDR_88_F0, 0);
1303 	qed_wr(p_hwfn, p_hwfn->p_main_ptt, PGLUE_B_REG_PGL_ADDR_8C_F0, 0);
1304 	qed_wr(p_hwfn, p_hwfn->p_main_ptt, PGLUE_B_REG_PGL_ADDR_90_F0, 0);
1305 	qed_wr(p_hwfn, p_hwfn->p_main_ptt, PGLUE_B_REG_PGL_ADDR_94_F0, 0);
1306 
1307 	/* Clean Previous errors if such exist */
1308 	qed_wr(p_hwfn, p_hwfn->p_main_ptt,
1309 	       PGLUE_B_REG_WAS_ERROR_PF_31_0_CLR,
1310 	       1 << p_hwfn->abs_pf_id);
1311 
1312 	/* enable internal target-read */
1313 	qed_wr(p_hwfn, p_hwfn->p_main_ptt,
1314 	       PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1315 }
1316 
1317 static void get_function_id(struct qed_hwfn *p_hwfn)
1318 {
1319 	/* ME Register */
1320 	p_hwfn->hw_info.opaque_fid = (u16)REG_RD(p_hwfn, PXP_PF_ME_OPAQUE_ADDR);
1321 
1322 	p_hwfn->hw_info.concrete_fid = REG_RD(p_hwfn, PXP_PF_ME_CONCRETE_ADDR);
1323 
1324 	p_hwfn->abs_pf_id = (p_hwfn->hw_info.concrete_fid >> 16) & 0xf;
1325 	p_hwfn->rel_pf_id = GET_FIELD(p_hwfn->hw_info.concrete_fid,
1326 				      PXP_CONCRETE_FID_PFID);
1327 	p_hwfn->port_id = GET_FIELD(p_hwfn->hw_info.concrete_fid,
1328 				    PXP_CONCRETE_FID_PORT);
1329 }
1330 
1331 static void qed_hw_set_feat(struct qed_hwfn *p_hwfn)
1332 {
1333 	u32 *feat_num = p_hwfn->hw_info.feat_num;
1334 	int num_features = 1;
1335 
1336 	feat_num[QED_PF_L2_QUE] = min_t(u32, RESC_NUM(p_hwfn, QED_SB) /
1337 						num_features,
1338 					RESC_NUM(p_hwfn, QED_L2_QUEUE));
1339 	DP_VERBOSE(p_hwfn, NETIF_MSG_PROBE,
1340 		   "#PF_L2_QUEUES=%d #SBS=%d num_features=%d\n",
1341 		   feat_num[QED_PF_L2_QUE], RESC_NUM(p_hwfn, QED_SB),
1342 		   num_features);
1343 }
1344 
1345 static int qed_hw_get_resc(struct qed_hwfn *p_hwfn)
1346 {
1347 	u8 enabled_func_idx = p_hwfn->enabled_func_idx;
1348 	u32 *resc_start = p_hwfn->hw_info.resc_start;
1349 	u8 num_funcs = p_hwfn->num_funcs_on_engine;
1350 	u32 *resc_num = p_hwfn->hw_info.resc_num;
1351 	struct qed_sb_cnt_info sb_cnt_info;
1352 	int i, max_vf_vlan_filters;
1353 
1354 	memset(&sb_cnt_info, 0, sizeof(sb_cnt_info));
1355 
1356 #ifdef CONFIG_QED_SRIOV
1357 	max_vf_vlan_filters = QED_ETH_MAX_VF_NUM_VLAN_FILTERS;
1358 #else
1359 	max_vf_vlan_filters = 0;
1360 #endif
1361 
1362 	qed_int_get_num_sbs(p_hwfn, &sb_cnt_info);
1363 
1364 	resc_num[QED_SB] = min_t(u32,
1365 				 (MAX_SB_PER_PATH_BB / num_funcs),
1366 				 sb_cnt_info.sb_cnt);
1367 	resc_num[QED_L2_QUEUE] = MAX_NUM_L2_QUEUES_BB / num_funcs;
1368 	resc_num[QED_VPORT] = MAX_NUM_VPORTS_BB / num_funcs;
1369 	resc_num[QED_RSS_ENG] = ETH_RSS_ENGINE_NUM_BB / num_funcs;
1370 	resc_num[QED_PQ] = MAX_QM_TX_QUEUES_BB / num_funcs;
1371 	resc_num[QED_RL] = min_t(u32, 64, resc_num[QED_VPORT]);
1372 	resc_num[QED_MAC] = ETH_NUM_MAC_FILTERS / num_funcs;
1373 	resc_num[QED_VLAN] = (ETH_NUM_VLAN_FILTERS - 1 /*For vlan0*/) /
1374 			     num_funcs;
1375 	resc_num[QED_ILT] = PXP_NUM_ILT_RECORDS_BB / num_funcs;
1376 
1377 	for (i = 0; i < QED_MAX_RESC; i++)
1378 		resc_start[i] = resc_num[i] * enabled_func_idx;
1379 
1380 	/* Sanity for ILT */
1381 	if (RESC_END(p_hwfn, QED_ILT) > PXP_NUM_ILT_RECORDS_BB) {
1382 		DP_NOTICE(p_hwfn, "Can't assign ILT pages [%08x,...,%08x]\n",
1383 			  RESC_START(p_hwfn, QED_ILT),
1384 			  RESC_END(p_hwfn, QED_ILT) - 1);
1385 		return -EINVAL;
1386 	}
1387 
1388 	qed_hw_set_feat(p_hwfn);
1389 
1390 	DP_VERBOSE(p_hwfn, NETIF_MSG_PROBE,
1391 		   "The numbers for each resource are:\n"
1392 		   "SB = %d start = %d\n"
1393 		   "L2_QUEUE = %d start = %d\n"
1394 		   "VPORT = %d start = %d\n"
1395 		   "PQ = %d start = %d\n"
1396 		   "RL = %d start = %d\n"
1397 		   "MAC = %d start = %d\n"
1398 		   "VLAN = %d start = %d\n"
1399 		   "ILT = %d start = %d\n",
1400 		   p_hwfn->hw_info.resc_num[QED_SB],
1401 		   p_hwfn->hw_info.resc_start[QED_SB],
1402 		   p_hwfn->hw_info.resc_num[QED_L2_QUEUE],
1403 		   p_hwfn->hw_info.resc_start[QED_L2_QUEUE],
1404 		   p_hwfn->hw_info.resc_num[QED_VPORT],
1405 		   p_hwfn->hw_info.resc_start[QED_VPORT],
1406 		   p_hwfn->hw_info.resc_num[QED_PQ],
1407 		   p_hwfn->hw_info.resc_start[QED_PQ],
1408 		   p_hwfn->hw_info.resc_num[QED_RL],
1409 		   p_hwfn->hw_info.resc_start[QED_RL],
1410 		   p_hwfn->hw_info.resc_num[QED_MAC],
1411 		   p_hwfn->hw_info.resc_start[QED_MAC],
1412 		   p_hwfn->hw_info.resc_num[QED_VLAN],
1413 		   p_hwfn->hw_info.resc_start[QED_VLAN],
1414 		   p_hwfn->hw_info.resc_num[QED_ILT],
1415 		   p_hwfn->hw_info.resc_start[QED_ILT]);
1416 
1417 	return 0;
1418 }
1419 
1420 static int qed_hw_get_nvm_info(struct qed_hwfn *p_hwfn,
1421 			       struct qed_ptt *p_ptt)
1422 {
1423 	u32 nvm_cfg1_offset, mf_mode, addr, generic_cont0, core_cfg;
1424 	u32 port_cfg_addr, link_temp, nvm_cfg_addr, device_capabilities;
1425 	struct qed_mcp_link_params *link;
1426 
1427 	/* Read global nvm_cfg address */
1428 	nvm_cfg_addr = qed_rd(p_hwfn, p_ptt, MISC_REG_GEN_PURP_CR0);
1429 
1430 	/* Verify MCP has initialized it */
1431 	if (!nvm_cfg_addr) {
1432 		DP_NOTICE(p_hwfn, "Shared memory not initialized\n");
1433 		return -EINVAL;
1434 	}
1435 
1436 	/* Read nvm_cfg1  (Notice this is just offset, and not offsize (TBD) */
1437 	nvm_cfg1_offset = qed_rd(p_hwfn, p_ptt, nvm_cfg_addr + 4);
1438 
1439 	addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
1440 	       offsetof(struct nvm_cfg1, glob) +
1441 	       offsetof(struct nvm_cfg1_glob, core_cfg);
1442 
1443 	core_cfg = qed_rd(p_hwfn, p_ptt, addr);
1444 
1445 	switch ((core_cfg & NVM_CFG1_GLOB_NETWORK_PORT_MODE_MASK) >>
1446 		NVM_CFG1_GLOB_NETWORK_PORT_MODE_OFFSET) {
1447 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_2X40G:
1448 		p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_2X40G;
1449 		break;
1450 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X50G:
1451 		p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_2X50G;
1452 		break;
1453 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_1X100G:
1454 		p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_1X100G;
1455 		break;
1456 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_4X10G_F:
1457 		p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_4X10G_F;
1458 		break;
1459 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X10G_E:
1460 		p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_4X10G_E;
1461 		break;
1462 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X20G:
1463 		p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_4X20G;
1464 		break;
1465 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X40G:
1466 		p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_1X40G;
1467 		break;
1468 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X25G:
1469 		p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_2X25G;
1470 		break;
1471 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X25G:
1472 		p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_1X25G;
1473 		break;
1474 	default:
1475 		DP_NOTICE(p_hwfn, "Unknown port mode in 0x%08x\n",
1476 			  core_cfg);
1477 		break;
1478 	}
1479 
1480 	/* Read default link configuration */
1481 	link = &p_hwfn->mcp_info->link_input;
1482 	port_cfg_addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
1483 			offsetof(struct nvm_cfg1, port[MFW_PORT(p_hwfn)]);
1484 	link_temp = qed_rd(p_hwfn, p_ptt,
1485 			   port_cfg_addr +
1486 			   offsetof(struct nvm_cfg1_port, speed_cap_mask));
1487 	link->speed.advertised_speeds =
1488 		link_temp & NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_MASK;
1489 
1490 	p_hwfn->mcp_info->link_capabilities.speed_capabilities =
1491 						link->speed.advertised_speeds;
1492 
1493 	link_temp = qed_rd(p_hwfn, p_ptt,
1494 			   port_cfg_addr +
1495 			   offsetof(struct nvm_cfg1_port, link_settings));
1496 	switch ((link_temp & NVM_CFG1_PORT_DRV_LINK_SPEED_MASK) >>
1497 		NVM_CFG1_PORT_DRV_LINK_SPEED_OFFSET) {
1498 	case NVM_CFG1_PORT_DRV_LINK_SPEED_AUTONEG:
1499 		link->speed.autoneg = true;
1500 		break;
1501 	case NVM_CFG1_PORT_DRV_LINK_SPEED_1G:
1502 		link->speed.forced_speed = 1000;
1503 		break;
1504 	case NVM_CFG1_PORT_DRV_LINK_SPEED_10G:
1505 		link->speed.forced_speed = 10000;
1506 		break;
1507 	case NVM_CFG1_PORT_DRV_LINK_SPEED_25G:
1508 		link->speed.forced_speed = 25000;
1509 		break;
1510 	case NVM_CFG1_PORT_DRV_LINK_SPEED_40G:
1511 		link->speed.forced_speed = 40000;
1512 		break;
1513 	case NVM_CFG1_PORT_DRV_LINK_SPEED_50G:
1514 		link->speed.forced_speed = 50000;
1515 		break;
1516 	case NVM_CFG1_PORT_DRV_LINK_SPEED_BB_100G:
1517 		link->speed.forced_speed = 100000;
1518 		break;
1519 	default:
1520 		DP_NOTICE(p_hwfn, "Unknown Speed in 0x%08x\n",
1521 			  link_temp);
1522 	}
1523 
1524 	link_temp &= NVM_CFG1_PORT_DRV_FLOW_CONTROL_MASK;
1525 	link_temp >>= NVM_CFG1_PORT_DRV_FLOW_CONTROL_OFFSET;
1526 	link->pause.autoneg = !!(link_temp &
1527 				 NVM_CFG1_PORT_DRV_FLOW_CONTROL_AUTONEG);
1528 	link->pause.forced_rx = !!(link_temp &
1529 				   NVM_CFG1_PORT_DRV_FLOW_CONTROL_RX);
1530 	link->pause.forced_tx = !!(link_temp &
1531 				   NVM_CFG1_PORT_DRV_FLOW_CONTROL_TX);
1532 	link->loopback_mode = 0;
1533 
1534 	DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
1535 		   "Read default link: Speed 0x%08x, Adv. Speed 0x%08x, AN: 0x%02x, PAUSE AN: 0x%02x\n",
1536 		   link->speed.forced_speed, link->speed.advertised_speeds,
1537 		   link->speed.autoneg, link->pause.autoneg);
1538 
1539 	/* Read Multi-function information from shmem */
1540 	addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
1541 	       offsetof(struct nvm_cfg1, glob) +
1542 	       offsetof(struct nvm_cfg1_glob, generic_cont0);
1543 
1544 	generic_cont0 = qed_rd(p_hwfn, p_ptt, addr);
1545 
1546 	mf_mode = (generic_cont0 & NVM_CFG1_GLOB_MF_MODE_MASK) >>
1547 		  NVM_CFG1_GLOB_MF_MODE_OFFSET;
1548 
1549 	switch (mf_mode) {
1550 	case NVM_CFG1_GLOB_MF_MODE_MF_ALLOWED:
1551 		p_hwfn->cdev->mf_mode = QED_MF_OVLAN;
1552 		break;
1553 	case NVM_CFG1_GLOB_MF_MODE_NPAR1_0:
1554 		p_hwfn->cdev->mf_mode = QED_MF_NPAR;
1555 		break;
1556 	case NVM_CFG1_GLOB_MF_MODE_DEFAULT:
1557 		p_hwfn->cdev->mf_mode = QED_MF_DEFAULT;
1558 		break;
1559 	}
1560 	DP_INFO(p_hwfn, "Multi function mode is %08x\n",
1561 		p_hwfn->cdev->mf_mode);
1562 
1563 	/* Read Multi-function information from shmem */
1564 	addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
1565 		offsetof(struct nvm_cfg1, glob) +
1566 		offsetof(struct nvm_cfg1_glob, device_capabilities);
1567 
1568 	device_capabilities = qed_rd(p_hwfn, p_ptt, addr);
1569 	if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ETHERNET)
1570 		__set_bit(QED_DEV_CAP_ETH,
1571 			  &p_hwfn->hw_info.device_capabilities);
1572 	if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ISCSI)
1573 		__set_bit(QED_DEV_CAP_ISCSI,
1574 			  &p_hwfn->hw_info.device_capabilities);
1575 	if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ROCE)
1576 		__set_bit(QED_DEV_CAP_ROCE,
1577 			  &p_hwfn->hw_info.device_capabilities);
1578 
1579 	return qed_mcp_fill_shmem_func_info(p_hwfn, p_ptt);
1580 }
1581 
1582 static void qed_get_num_funcs(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1583 {
1584 	u8 num_funcs, enabled_func_idx = p_hwfn->rel_pf_id;
1585 	u32 reg_function_hide, tmp, eng_mask, low_pfs_mask;
1586 
1587 	num_funcs = MAX_NUM_PFS_BB;
1588 
1589 	/* Bit 0 of MISCS_REG_FUNCTION_HIDE indicates whether the bypass values
1590 	 * in the other bits are selected.
1591 	 * Bits 1-15 are for functions 1-15, respectively, and their value is
1592 	 * '0' only for enabled functions (function 0 always exists and
1593 	 * enabled).
1594 	 * In case of CMT, only the "even" functions are enabled, and thus the
1595 	 * number of functions for both hwfns is learnt from the same bits.
1596 	 */
1597 	reg_function_hide = qed_rd(p_hwfn, p_ptt, MISCS_REG_FUNCTION_HIDE);
1598 
1599 	if (reg_function_hide & 0x1) {
1600 		if (QED_PATH_ID(p_hwfn) && p_hwfn->cdev->num_hwfns == 1) {
1601 			num_funcs = 0;
1602 			eng_mask = 0xaaaa;
1603 		} else {
1604 			num_funcs = 1;
1605 			eng_mask = 0x5554;
1606 		}
1607 
1608 		/* Get the number of the enabled functions on the engine */
1609 		tmp = (reg_function_hide ^ 0xffffffff) & eng_mask;
1610 		while (tmp) {
1611 			if (tmp & 0x1)
1612 				num_funcs++;
1613 			tmp >>= 0x1;
1614 		}
1615 
1616 		/* Get the PF index within the enabled functions */
1617 		low_pfs_mask = (0x1 << p_hwfn->abs_pf_id) - 1;
1618 		tmp = reg_function_hide & eng_mask & low_pfs_mask;
1619 		while (tmp) {
1620 			if (tmp & 0x1)
1621 				enabled_func_idx--;
1622 			tmp >>= 0x1;
1623 		}
1624 	}
1625 
1626 	p_hwfn->num_funcs_on_engine = num_funcs;
1627 	p_hwfn->enabled_func_idx = enabled_func_idx;
1628 
1629 	DP_VERBOSE(p_hwfn,
1630 		   NETIF_MSG_PROBE,
1631 		   "PF [rel_id %d, abs_id %d] within the %d enabled functions on the engine\n",
1632 		   p_hwfn->rel_pf_id,
1633 		   p_hwfn->abs_pf_id,
1634 		   p_hwfn->num_funcs_on_engine);
1635 }
1636 
1637 static int
1638 qed_get_hw_info(struct qed_hwfn *p_hwfn,
1639 		struct qed_ptt *p_ptt,
1640 		enum qed_pci_personality personality)
1641 {
1642 	u32 port_mode;
1643 	int rc;
1644 
1645 	/* Since all information is common, only first hwfns should do this */
1646 	if (IS_LEAD_HWFN(p_hwfn)) {
1647 		rc = qed_iov_hw_info(p_hwfn);
1648 		if (rc)
1649 			return rc;
1650 	}
1651 
1652 	/* Read the port mode */
1653 	port_mode = qed_rd(p_hwfn, p_ptt,
1654 			   CNIG_REG_NW_PORT_MODE_BB_B0);
1655 
1656 	if (port_mode < 3) {
1657 		p_hwfn->cdev->num_ports_in_engines = 1;
1658 	} else if (port_mode <= 5) {
1659 		p_hwfn->cdev->num_ports_in_engines = 2;
1660 	} else {
1661 		DP_NOTICE(p_hwfn, "PORT MODE: %d not supported\n",
1662 			  p_hwfn->cdev->num_ports_in_engines);
1663 
1664 		/* Default num_ports_in_engines to something */
1665 		p_hwfn->cdev->num_ports_in_engines = 1;
1666 	}
1667 
1668 	qed_hw_get_nvm_info(p_hwfn, p_ptt);
1669 
1670 	rc = qed_int_igu_read_cam(p_hwfn, p_ptt);
1671 	if (rc)
1672 		return rc;
1673 
1674 	if (qed_mcp_is_init(p_hwfn))
1675 		ether_addr_copy(p_hwfn->hw_info.hw_mac_addr,
1676 				p_hwfn->mcp_info->func_info.mac);
1677 	else
1678 		eth_random_addr(p_hwfn->hw_info.hw_mac_addr);
1679 
1680 	if (qed_mcp_is_init(p_hwfn)) {
1681 		if (p_hwfn->mcp_info->func_info.ovlan != QED_MCP_VLAN_UNSET)
1682 			p_hwfn->hw_info.ovlan =
1683 				p_hwfn->mcp_info->func_info.ovlan;
1684 
1685 		qed_mcp_cmd_port_init(p_hwfn, p_ptt);
1686 	}
1687 
1688 	if (qed_mcp_is_init(p_hwfn)) {
1689 		enum qed_pci_personality protocol;
1690 
1691 		protocol = p_hwfn->mcp_info->func_info.protocol;
1692 		p_hwfn->hw_info.personality = protocol;
1693 	}
1694 
1695 	qed_get_num_funcs(p_hwfn, p_ptt);
1696 
1697 	return qed_hw_get_resc(p_hwfn);
1698 }
1699 
1700 static int qed_get_dev_info(struct qed_dev *cdev)
1701 {
1702 	struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
1703 	u32 tmp;
1704 
1705 	/* Read Vendor Id / Device Id */
1706 	pci_read_config_word(cdev->pdev, PCI_VENDOR_ID,
1707 			     &cdev->vendor_id);
1708 	pci_read_config_word(cdev->pdev, PCI_DEVICE_ID,
1709 			     &cdev->device_id);
1710 	cdev->chip_num = (u16)qed_rd(p_hwfn, p_hwfn->p_main_ptt,
1711 				     MISCS_REG_CHIP_NUM);
1712 	cdev->chip_rev = (u16)qed_rd(p_hwfn, p_hwfn->p_main_ptt,
1713 				     MISCS_REG_CHIP_REV);
1714 	MASK_FIELD(CHIP_REV, cdev->chip_rev);
1715 
1716 	cdev->type = QED_DEV_TYPE_BB;
1717 	/* Learn number of HW-functions */
1718 	tmp = qed_rd(p_hwfn, p_hwfn->p_main_ptt,
1719 		     MISCS_REG_CMT_ENABLED_FOR_PAIR);
1720 
1721 	if (tmp & (1 << p_hwfn->rel_pf_id)) {
1722 		DP_NOTICE(cdev->hwfns, "device in CMT mode\n");
1723 		cdev->num_hwfns = 2;
1724 	} else {
1725 		cdev->num_hwfns = 1;
1726 	}
1727 
1728 	cdev->chip_bond_id = qed_rd(p_hwfn, p_hwfn->p_main_ptt,
1729 				    MISCS_REG_CHIP_TEST_REG) >> 4;
1730 	MASK_FIELD(CHIP_BOND_ID, cdev->chip_bond_id);
1731 	cdev->chip_metal = (u16)qed_rd(p_hwfn, p_hwfn->p_main_ptt,
1732 				       MISCS_REG_CHIP_METAL);
1733 	MASK_FIELD(CHIP_METAL, cdev->chip_metal);
1734 
1735 	DP_INFO(cdev->hwfns,
1736 		"Chip details - Num: %04x Rev: %04x Bond id: %04x Metal: %04x\n",
1737 		cdev->chip_num, cdev->chip_rev,
1738 		cdev->chip_bond_id, cdev->chip_metal);
1739 
1740 	if (QED_IS_BB(cdev) && CHIP_REV_IS_A0(cdev)) {
1741 		DP_NOTICE(cdev->hwfns,
1742 			  "The chip type/rev (BB A0) is not supported!\n");
1743 		return -EINVAL;
1744 	}
1745 
1746 	return 0;
1747 }
1748 
1749 static int qed_hw_prepare_single(struct qed_hwfn *p_hwfn,
1750 				 void __iomem *p_regview,
1751 				 void __iomem *p_doorbells,
1752 				 enum qed_pci_personality personality)
1753 {
1754 	int rc = 0;
1755 
1756 	/* Split PCI bars evenly between hwfns */
1757 	p_hwfn->regview = p_regview;
1758 	p_hwfn->doorbells = p_doorbells;
1759 
1760 	if (IS_VF(p_hwfn->cdev))
1761 		return qed_vf_hw_prepare(p_hwfn);
1762 
1763 	/* Validate that chip access is feasible */
1764 	if (REG_RD(p_hwfn, PXP_PF_ME_OPAQUE_ADDR) == 0xffffffff) {
1765 		DP_ERR(p_hwfn,
1766 		       "Reading the ME register returns all Fs; Preventing further chip access\n");
1767 		return -EINVAL;
1768 	}
1769 
1770 	get_function_id(p_hwfn);
1771 
1772 	/* Allocate PTT pool */
1773 	rc = qed_ptt_pool_alloc(p_hwfn);
1774 	if (rc) {
1775 		DP_NOTICE(p_hwfn, "Failed to prepare hwfn's hw\n");
1776 		goto err0;
1777 	}
1778 
1779 	/* Allocate the main PTT */
1780 	p_hwfn->p_main_ptt = qed_get_reserved_ptt(p_hwfn, RESERVED_PTT_MAIN);
1781 
1782 	/* First hwfn learns basic information, e.g., number of hwfns */
1783 	if (!p_hwfn->my_id) {
1784 		rc = qed_get_dev_info(p_hwfn->cdev);
1785 		if (rc != 0)
1786 			goto err1;
1787 	}
1788 
1789 	qed_hw_hwfn_prepare(p_hwfn);
1790 
1791 	/* Initialize MCP structure */
1792 	rc = qed_mcp_cmd_init(p_hwfn, p_hwfn->p_main_ptt);
1793 	if (rc) {
1794 		DP_NOTICE(p_hwfn, "Failed initializing mcp command\n");
1795 		goto err1;
1796 	}
1797 
1798 	/* Read the device configuration information from the HW and SHMEM */
1799 	rc = qed_get_hw_info(p_hwfn, p_hwfn->p_main_ptt, personality);
1800 	if (rc) {
1801 		DP_NOTICE(p_hwfn, "Failed to get HW information\n");
1802 		goto err2;
1803 	}
1804 
1805 	/* Allocate the init RT array and initialize the init-ops engine */
1806 	rc = qed_init_alloc(p_hwfn);
1807 	if (rc) {
1808 		DP_NOTICE(p_hwfn, "Failed to allocate the init array\n");
1809 		goto err2;
1810 	}
1811 
1812 	return rc;
1813 err2:
1814 	if (IS_LEAD_HWFN(p_hwfn))
1815 		qed_iov_free_hw_info(p_hwfn->cdev);
1816 	qed_mcp_free(p_hwfn);
1817 err1:
1818 	qed_hw_hwfn_free(p_hwfn);
1819 err0:
1820 	return rc;
1821 }
1822 
1823 int qed_hw_prepare(struct qed_dev *cdev,
1824 		   int personality)
1825 {
1826 	struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
1827 	int rc;
1828 
1829 	/* Store the precompiled init data ptrs */
1830 	if (IS_PF(cdev))
1831 		qed_init_iro_array(cdev);
1832 
1833 	/* Initialize the first hwfn - will learn number of hwfns */
1834 	rc = qed_hw_prepare_single(p_hwfn,
1835 				   cdev->regview,
1836 				   cdev->doorbells, personality);
1837 	if (rc)
1838 		return rc;
1839 
1840 	personality = p_hwfn->hw_info.personality;
1841 
1842 	/* Initialize the rest of the hwfns */
1843 	if (cdev->num_hwfns > 1) {
1844 		void __iomem *p_regview, *p_doorbell;
1845 		u8 __iomem *addr;
1846 
1847 		/* adjust bar offset for second engine */
1848 		addr = cdev->regview + qed_hw_bar_size(p_hwfn, BAR_ID_0) / 2;
1849 		p_regview = addr;
1850 
1851 		/* adjust doorbell bar offset for second engine */
1852 		addr = cdev->doorbells + qed_hw_bar_size(p_hwfn, BAR_ID_1) / 2;
1853 		p_doorbell = addr;
1854 
1855 		/* prepare second hw function */
1856 		rc = qed_hw_prepare_single(&cdev->hwfns[1], p_regview,
1857 					   p_doorbell, personality);
1858 
1859 		/* in case of error, need to free the previously
1860 		 * initiliazed hwfn 0.
1861 		 */
1862 		if (rc) {
1863 			if (IS_PF(cdev)) {
1864 				qed_init_free(p_hwfn);
1865 				qed_mcp_free(p_hwfn);
1866 				qed_hw_hwfn_free(p_hwfn);
1867 			}
1868 		}
1869 	}
1870 
1871 	return rc;
1872 }
1873 
1874 void qed_hw_remove(struct qed_dev *cdev)
1875 {
1876 	int i;
1877 
1878 	for_each_hwfn(cdev, i) {
1879 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
1880 
1881 		if (IS_VF(cdev)) {
1882 			qed_vf_pf_release(p_hwfn);
1883 			continue;
1884 		}
1885 
1886 		qed_init_free(p_hwfn);
1887 		qed_hw_hwfn_free(p_hwfn);
1888 		qed_mcp_free(p_hwfn);
1889 	}
1890 
1891 	qed_iov_free_hw_info(cdev);
1892 }
1893 
1894 static void qed_chain_free_next_ptr(struct qed_dev *cdev,
1895 				    struct qed_chain *p_chain)
1896 {
1897 	void *p_virt = p_chain->p_virt_addr, *p_virt_next = NULL;
1898 	dma_addr_t p_phys = p_chain->p_phys_addr, p_phys_next = 0;
1899 	struct qed_chain_next *p_next;
1900 	u32 size, i;
1901 
1902 	if (!p_virt)
1903 		return;
1904 
1905 	size = p_chain->elem_size * p_chain->usable_per_page;
1906 
1907 	for (i = 0; i < p_chain->page_cnt; i++) {
1908 		if (!p_virt)
1909 			break;
1910 
1911 		p_next = (struct qed_chain_next *)((u8 *)p_virt + size);
1912 		p_virt_next = p_next->next_virt;
1913 		p_phys_next = HILO_DMA_REGPAIR(p_next->next_phys);
1914 
1915 		dma_free_coherent(&cdev->pdev->dev,
1916 				  QED_CHAIN_PAGE_SIZE, p_virt, p_phys);
1917 
1918 		p_virt = p_virt_next;
1919 		p_phys = p_phys_next;
1920 	}
1921 }
1922 
1923 static void qed_chain_free_single(struct qed_dev *cdev,
1924 				  struct qed_chain *p_chain)
1925 {
1926 	if (!p_chain->p_virt_addr)
1927 		return;
1928 
1929 	dma_free_coherent(&cdev->pdev->dev,
1930 			  QED_CHAIN_PAGE_SIZE,
1931 			  p_chain->p_virt_addr, p_chain->p_phys_addr);
1932 }
1933 
1934 static void qed_chain_free_pbl(struct qed_dev *cdev, struct qed_chain *p_chain)
1935 {
1936 	void **pp_virt_addr_tbl = p_chain->pbl.pp_virt_addr_tbl;
1937 	u32 page_cnt = p_chain->page_cnt, i, pbl_size;
1938 	u8 *p_pbl_virt = p_chain->pbl.p_virt_table;
1939 
1940 	if (!pp_virt_addr_tbl)
1941 		return;
1942 
1943 	if (!p_chain->pbl.p_virt_table)
1944 		goto out;
1945 
1946 	for (i = 0; i < page_cnt; i++) {
1947 		if (!pp_virt_addr_tbl[i])
1948 			break;
1949 
1950 		dma_free_coherent(&cdev->pdev->dev,
1951 				  QED_CHAIN_PAGE_SIZE,
1952 				  pp_virt_addr_tbl[i],
1953 				  *(dma_addr_t *)p_pbl_virt);
1954 
1955 		p_pbl_virt += QED_CHAIN_PBL_ENTRY_SIZE;
1956 	}
1957 
1958 	pbl_size = page_cnt * QED_CHAIN_PBL_ENTRY_SIZE;
1959 	dma_free_coherent(&cdev->pdev->dev,
1960 			  pbl_size,
1961 			  p_chain->pbl.p_virt_table, p_chain->pbl.p_phys_table);
1962 out:
1963 	vfree(p_chain->pbl.pp_virt_addr_tbl);
1964 }
1965 
1966 void qed_chain_free(struct qed_dev *cdev, struct qed_chain *p_chain)
1967 {
1968 	switch (p_chain->mode) {
1969 	case QED_CHAIN_MODE_NEXT_PTR:
1970 		qed_chain_free_next_ptr(cdev, p_chain);
1971 		break;
1972 	case QED_CHAIN_MODE_SINGLE:
1973 		qed_chain_free_single(cdev, p_chain);
1974 		break;
1975 	case QED_CHAIN_MODE_PBL:
1976 		qed_chain_free_pbl(cdev, p_chain);
1977 		break;
1978 	}
1979 }
1980 
1981 static int
1982 qed_chain_alloc_sanity_check(struct qed_dev *cdev,
1983 			     enum qed_chain_cnt_type cnt_type,
1984 			     size_t elem_size, u32 page_cnt)
1985 {
1986 	u64 chain_size = ELEMS_PER_PAGE(elem_size) * page_cnt;
1987 
1988 	/* The actual chain size can be larger than the maximal possible value
1989 	 * after rounding up the requested elements number to pages, and after
1990 	 * taking into acount the unusuable elements (next-ptr elements).
1991 	 * The size of a "u16" chain can be (U16_MAX + 1) since the chain
1992 	 * size/capacity fields are of a u32 type.
1993 	 */
1994 	if ((cnt_type == QED_CHAIN_CNT_TYPE_U16 &&
1995 	     chain_size > 0x10000) ||
1996 	    (cnt_type == QED_CHAIN_CNT_TYPE_U32 &&
1997 	     chain_size > 0x100000000ULL)) {
1998 		DP_NOTICE(cdev,
1999 			  "The actual chain size (0x%llx) is larger than the maximal possible value\n",
2000 			  chain_size);
2001 		return -EINVAL;
2002 	}
2003 
2004 	return 0;
2005 }
2006 
2007 static int
2008 qed_chain_alloc_next_ptr(struct qed_dev *cdev, struct qed_chain *p_chain)
2009 {
2010 	void *p_virt = NULL, *p_virt_prev = NULL;
2011 	dma_addr_t p_phys = 0;
2012 	u32 i;
2013 
2014 	for (i = 0; i < p_chain->page_cnt; i++) {
2015 		p_virt = dma_alloc_coherent(&cdev->pdev->dev,
2016 					    QED_CHAIN_PAGE_SIZE,
2017 					    &p_phys, GFP_KERNEL);
2018 		if (!p_virt) {
2019 			DP_NOTICE(cdev, "Failed to allocate chain memory\n");
2020 			return -ENOMEM;
2021 		}
2022 
2023 		if (i == 0) {
2024 			qed_chain_init_mem(p_chain, p_virt, p_phys);
2025 			qed_chain_reset(p_chain);
2026 		} else {
2027 			qed_chain_init_next_ptr_elem(p_chain, p_virt_prev,
2028 						     p_virt, p_phys);
2029 		}
2030 
2031 		p_virt_prev = p_virt;
2032 	}
2033 	/* Last page's next element should point to the beginning of the
2034 	 * chain.
2035 	 */
2036 	qed_chain_init_next_ptr_elem(p_chain, p_virt_prev,
2037 				     p_chain->p_virt_addr,
2038 				     p_chain->p_phys_addr);
2039 
2040 	return 0;
2041 }
2042 
2043 static int
2044 qed_chain_alloc_single(struct qed_dev *cdev, struct qed_chain *p_chain)
2045 {
2046 	dma_addr_t p_phys = 0;
2047 	void *p_virt = NULL;
2048 
2049 	p_virt = dma_alloc_coherent(&cdev->pdev->dev,
2050 				    QED_CHAIN_PAGE_SIZE, &p_phys, GFP_KERNEL);
2051 	if (!p_virt) {
2052 		DP_NOTICE(cdev, "Failed to allocate chain memory\n");
2053 		return -ENOMEM;
2054 	}
2055 
2056 	qed_chain_init_mem(p_chain, p_virt, p_phys);
2057 	qed_chain_reset(p_chain);
2058 
2059 	return 0;
2060 }
2061 
2062 static int qed_chain_alloc_pbl(struct qed_dev *cdev, struct qed_chain *p_chain)
2063 {
2064 	u32 page_cnt = p_chain->page_cnt, size, i;
2065 	dma_addr_t p_phys = 0, p_pbl_phys = 0;
2066 	void **pp_virt_addr_tbl = NULL;
2067 	u8 *p_pbl_virt = NULL;
2068 	void *p_virt = NULL;
2069 
2070 	size = page_cnt * sizeof(*pp_virt_addr_tbl);
2071 	pp_virt_addr_tbl = vmalloc(size);
2072 	if (!pp_virt_addr_tbl) {
2073 		DP_NOTICE(cdev,
2074 			  "Failed to allocate memory for the chain virtual addresses table\n");
2075 		return -ENOMEM;
2076 	}
2077 	memset(pp_virt_addr_tbl, 0, size);
2078 
2079 	/* The allocation of the PBL table is done with its full size, since it
2080 	 * is expected to be successive.
2081 	 * qed_chain_init_pbl_mem() is called even in a case of an allocation
2082 	 * failure, since pp_virt_addr_tbl was previously allocated, and it
2083 	 * should be saved to allow its freeing during the error flow.
2084 	 */
2085 	size = page_cnt * QED_CHAIN_PBL_ENTRY_SIZE;
2086 	p_pbl_virt = dma_alloc_coherent(&cdev->pdev->dev,
2087 					size, &p_pbl_phys, GFP_KERNEL);
2088 	qed_chain_init_pbl_mem(p_chain, p_pbl_virt, p_pbl_phys,
2089 			       pp_virt_addr_tbl);
2090 	if (!p_pbl_virt) {
2091 		DP_NOTICE(cdev, "Failed to allocate chain pbl memory\n");
2092 		return -ENOMEM;
2093 	}
2094 
2095 	for (i = 0; i < page_cnt; i++) {
2096 		p_virt = dma_alloc_coherent(&cdev->pdev->dev,
2097 					    QED_CHAIN_PAGE_SIZE,
2098 					    &p_phys, GFP_KERNEL);
2099 		if (!p_virt) {
2100 			DP_NOTICE(cdev, "Failed to allocate chain memory\n");
2101 			return -ENOMEM;
2102 		}
2103 
2104 		if (i == 0) {
2105 			qed_chain_init_mem(p_chain, p_virt, p_phys);
2106 			qed_chain_reset(p_chain);
2107 		}
2108 
2109 		/* Fill the PBL table with the physical address of the page */
2110 		*(dma_addr_t *)p_pbl_virt = p_phys;
2111 		/* Keep the virtual address of the page */
2112 		p_chain->pbl.pp_virt_addr_tbl[i] = p_virt;
2113 
2114 		p_pbl_virt += QED_CHAIN_PBL_ENTRY_SIZE;
2115 	}
2116 
2117 	return 0;
2118 }
2119 
2120 int qed_chain_alloc(struct qed_dev *cdev,
2121 		    enum qed_chain_use_mode intended_use,
2122 		    enum qed_chain_mode mode,
2123 		    enum qed_chain_cnt_type cnt_type,
2124 		    u32 num_elems, size_t elem_size, struct qed_chain *p_chain)
2125 {
2126 	u32 page_cnt;
2127 	int rc = 0;
2128 
2129 	if (mode == QED_CHAIN_MODE_SINGLE)
2130 		page_cnt = 1;
2131 	else
2132 		page_cnt = QED_CHAIN_PAGE_CNT(num_elems, elem_size, mode);
2133 
2134 	rc = qed_chain_alloc_sanity_check(cdev, cnt_type, elem_size, page_cnt);
2135 	if (rc) {
2136 		DP_NOTICE(cdev,
2137 			  "Cannot allocate a chain with the given arguments:\n"
2138 			  "[use_mode %d, mode %d, cnt_type %d, num_elems %d, elem_size %zu]\n",
2139 			  intended_use, mode, cnt_type, num_elems, elem_size);
2140 		return rc;
2141 	}
2142 
2143 	qed_chain_init_params(p_chain, page_cnt, (u8) elem_size, intended_use,
2144 			      mode, cnt_type);
2145 
2146 	switch (mode) {
2147 	case QED_CHAIN_MODE_NEXT_PTR:
2148 		rc = qed_chain_alloc_next_ptr(cdev, p_chain);
2149 		break;
2150 	case QED_CHAIN_MODE_SINGLE:
2151 		rc = qed_chain_alloc_single(cdev, p_chain);
2152 		break;
2153 	case QED_CHAIN_MODE_PBL:
2154 		rc = qed_chain_alloc_pbl(cdev, p_chain);
2155 		break;
2156 	}
2157 	if (rc)
2158 		goto nomem;
2159 
2160 	return 0;
2161 
2162 nomem:
2163 	qed_chain_free(cdev, p_chain);
2164 	return rc;
2165 }
2166 
2167 int qed_fw_l2_queue(struct qed_hwfn *p_hwfn, u16 src_id, u16 *dst_id)
2168 {
2169 	if (src_id >= RESC_NUM(p_hwfn, QED_L2_QUEUE)) {
2170 		u16 min, max;
2171 
2172 		min = (u16) RESC_START(p_hwfn, QED_L2_QUEUE);
2173 		max = min + RESC_NUM(p_hwfn, QED_L2_QUEUE);
2174 		DP_NOTICE(p_hwfn,
2175 			  "l2_queue id [%d] is not valid, available indices [%d - %d]\n",
2176 			  src_id, min, max);
2177 
2178 		return -EINVAL;
2179 	}
2180 
2181 	*dst_id = RESC_START(p_hwfn, QED_L2_QUEUE) + src_id;
2182 
2183 	return 0;
2184 }
2185 
2186 int qed_fw_vport(struct qed_hwfn *p_hwfn,
2187 		 u8 src_id, u8 *dst_id)
2188 {
2189 	if (src_id >= RESC_NUM(p_hwfn, QED_VPORT)) {
2190 		u8 min, max;
2191 
2192 		min = (u8)RESC_START(p_hwfn, QED_VPORT);
2193 		max = min + RESC_NUM(p_hwfn, QED_VPORT);
2194 		DP_NOTICE(p_hwfn,
2195 			  "vport id [%d] is not valid, available indices [%d - %d]\n",
2196 			  src_id, min, max);
2197 
2198 		return -EINVAL;
2199 	}
2200 
2201 	*dst_id = RESC_START(p_hwfn, QED_VPORT) + src_id;
2202 
2203 	return 0;
2204 }
2205 
2206 int qed_fw_rss_eng(struct qed_hwfn *p_hwfn,
2207 		   u8 src_id, u8 *dst_id)
2208 {
2209 	if (src_id >= RESC_NUM(p_hwfn, QED_RSS_ENG)) {
2210 		u8 min, max;
2211 
2212 		min = (u8)RESC_START(p_hwfn, QED_RSS_ENG);
2213 		max = min + RESC_NUM(p_hwfn, QED_RSS_ENG);
2214 		DP_NOTICE(p_hwfn,
2215 			  "rss_eng id [%d] is not valid, available indices [%d - %d]\n",
2216 			  src_id, min, max);
2217 
2218 		return -EINVAL;
2219 	}
2220 
2221 	*dst_id = RESC_START(p_hwfn, QED_RSS_ENG) + src_id;
2222 
2223 	return 0;
2224 }
2225 
2226 static int qed_set_coalesce(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
2227 			    u32 hw_addr, void *p_eth_qzone,
2228 			    size_t eth_qzone_size, u8 timeset)
2229 {
2230 	struct coalescing_timeset *p_coal_timeset;
2231 
2232 	if (p_hwfn->cdev->int_coalescing_mode != QED_COAL_MODE_ENABLE) {
2233 		DP_NOTICE(p_hwfn, "Coalescing configuration not enabled\n");
2234 		return -EINVAL;
2235 	}
2236 
2237 	p_coal_timeset = p_eth_qzone;
2238 	memset(p_coal_timeset, 0, eth_qzone_size);
2239 	SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_TIMESET, timeset);
2240 	SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_VALID, 1);
2241 	qed_memcpy_to(p_hwfn, p_ptt, hw_addr, p_eth_qzone, eth_qzone_size);
2242 
2243 	return 0;
2244 }
2245 
2246 int qed_set_rxq_coalesce(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
2247 			 u16 coalesce, u8 qid, u16 sb_id)
2248 {
2249 	struct ustorm_eth_queue_zone eth_qzone;
2250 	u8 timeset, timer_res;
2251 	u16 fw_qid = 0;
2252 	u32 address;
2253 	int rc;
2254 
2255 	/* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */
2256 	if (coalesce <= 0x7F) {
2257 		timer_res = 0;
2258 	} else if (coalesce <= 0xFF) {
2259 		timer_res = 1;
2260 	} else if (coalesce <= 0x1FF) {
2261 		timer_res = 2;
2262 	} else {
2263 		DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce);
2264 		return -EINVAL;
2265 	}
2266 	timeset = (u8)(coalesce >> timer_res);
2267 
2268 	rc = qed_fw_l2_queue(p_hwfn, (u16)qid, &fw_qid);
2269 	if (rc)
2270 		return rc;
2271 
2272 	rc = qed_int_set_timer_res(p_hwfn, p_ptt, timer_res, sb_id, false);
2273 	if (rc)
2274 		goto out;
2275 
2276 	address = BAR0_MAP_REG_USDM_RAM + USTORM_ETH_QUEUE_ZONE_OFFSET(fw_qid);
2277 
2278 	rc = qed_set_coalesce(p_hwfn, p_ptt, address, &eth_qzone,
2279 			      sizeof(struct ustorm_eth_queue_zone), timeset);
2280 	if (rc)
2281 		goto out;
2282 
2283 	p_hwfn->cdev->rx_coalesce_usecs = coalesce;
2284 out:
2285 	return rc;
2286 }
2287 
2288 int qed_set_txq_coalesce(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
2289 			 u16 coalesce, u8 qid, u16 sb_id)
2290 {
2291 	struct xstorm_eth_queue_zone eth_qzone;
2292 	u8 timeset, timer_res;
2293 	u16 fw_qid = 0;
2294 	u32 address;
2295 	int rc;
2296 
2297 	/* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */
2298 	if (coalesce <= 0x7F) {
2299 		timer_res = 0;
2300 	} else if (coalesce <= 0xFF) {
2301 		timer_res = 1;
2302 	} else if (coalesce <= 0x1FF) {
2303 		timer_res = 2;
2304 	} else {
2305 		DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce);
2306 		return -EINVAL;
2307 	}
2308 	timeset = (u8)(coalesce >> timer_res);
2309 
2310 	rc = qed_fw_l2_queue(p_hwfn, (u16)qid, &fw_qid);
2311 	if (rc)
2312 		return rc;
2313 
2314 	rc = qed_int_set_timer_res(p_hwfn, p_ptt, timer_res, sb_id, true);
2315 	if (rc)
2316 		goto out;
2317 
2318 	address = BAR0_MAP_REG_XSDM_RAM + XSTORM_ETH_QUEUE_ZONE_OFFSET(fw_qid);
2319 
2320 	rc = qed_set_coalesce(p_hwfn, p_ptt, address, &eth_qzone,
2321 			      sizeof(struct xstorm_eth_queue_zone), timeset);
2322 	if (rc)
2323 		goto out;
2324 
2325 	p_hwfn->cdev->tx_coalesce_usecs = coalesce;
2326 out:
2327 	return rc;
2328 }
2329 
2330 /* Calculate final WFQ values for all vports and configure them.
2331  * After this configuration each vport will have
2332  * approx min rate =  min_pf_rate * (vport_wfq / QED_WFQ_UNIT)
2333  */
2334 static void qed_configure_wfq_for_all_vports(struct qed_hwfn *p_hwfn,
2335 					     struct qed_ptt *p_ptt,
2336 					     u32 min_pf_rate)
2337 {
2338 	struct init_qm_vport_params *vport_params;
2339 	int i;
2340 
2341 	vport_params = p_hwfn->qm_info.qm_vport_params;
2342 
2343 	for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
2344 		u32 wfq_speed = p_hwfn->qm_info.wfq_data[i].min_speed;
2345 
2346 		vport_params[i].vport_wfq = (wfq_speed * QED_WFQ_UNIT) /
2347 						min_pf_rate;
2348 		qed_init_vport_wfq(p_hwfn, p_ptt,
2349 				   vport_params[i].first_tx_pq_id,
2350 				   vport_params[i].vport_wfq);
2351 	}
2352 }
2353 
2354 static void qed_init_wfq_default_param(struct qed_hwfn *p_hwfn,
2355 				       u32 min_pf_rate)
2356 
2357 {
2358 	int i;
2359 
2360 	for (i = 0; i < p_hwfn->qm_info.num_vports; i++)
2361 		p_hwfn->qm_info.qm_vport_params[i].vport_wfq = 1;
2362 }
2363 
2364 static void qed_disable_wfq_for_all_vports(struct qed_hwfn *p_hwfn,
2365 					   struct qed_ptt *p_ptt,
2366 					   u32 min_pf_rate)
2367 {
2368 	struct init_qm_vport_params *vport_params;
2369 	int i;
2370 
2371 	vport_params = p_hwfn->qm_info.qm_vport_params;
2372 
2373 	for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
2374 		qed_init_wfq_default_param(p_hwfn, min_pf_rate);
2375 		qed_init_vport_wfq(p_hwfn, p_ptt,
2376 				   vport_params[i].first_tx_pq_id,
2377 				   vport_params[i].vport_wfq);
2378 	}
2379 }
2380 
2381 /* This function performs several validations for WFQ
2382  * configuration and required min rate for a given vport
2383  * 1. req_rate must be greater than one percent of min_pf_rate.
2384  * 2. req_rate should not cause other vports [not configured for WFQ explicitly]
2385  *    rates to get less than one percent of min_pf_rate.
2386  * 3. total_req_min_rate [all vports min rate sum] shouldn't exceed min_pf_rate.
2387  */
2388 static int qed_init_wfq_param(struct qed_hwfn *p_hwfn,
2389 			      u16 vport_id, u32 req_rate,
2390 			      u32 min_pf_rate)
2391 {
2392 	u32 total_req_min_rate = 0, total_left_rate = 0, left_rate_per_vp = 0;
2393 	int non_requested_count = 0, req_count = 0, i, num_vports;
2394 
2395 	num_vports = p_hwfn->qm_info.num_vports;
2396 
2397 	/* Accounting for the vports which are configured for WFQ explicitly */
2398 	for (i = 0; i < num_vports; i++) {
2399 		u32 tmp_speed;
2400 
2401 		if ((i != vport_id) &&
2402 		    p_hwfn->qm_info.wfq_data[i].configured) {
2403 			req_count++;
2404 			tmp_speed = p_hwfn->qm_info.wfq_data[i].min_speed;
2405 			total_req_min_rate += tmp_speed;
2406 		}
2407 	}
2408 
2409 	/* Include current vport data as well */
2410 	req_count++;
2411 	total_req_min_rate += req_rate;
2412 	non_requested_count = num_vports - req_count;
2413 
2414 	if (req_rate < min_pf_rate / QED_WFQ_UNIT) {
2415 		DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
2416 			   "Vport [%d] - Requested rate[%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n",
2417 			   vport_id, req_rate, min_pf_rate);
2418 		return -EINVAL;
2419 	}
2420 
2421 	if (num_vports > QED_WFQ_UNIT) {
2422 		DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
2423 			   "Number of vports is greater than %d\n",
2424 			   QED_WFQ_UNIT);
2425 		return -EINVAL;
2426 	}
2427 
2428 	if (total_req_min_rate > min_pf_rate) {
2429 		DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
2430 			   "Total requested min rate for all vports[%d Mbps] is greater than configured PF min rate[%d Mbps]\n",
2431 			   total_req_min_rate, min_pf_rate);
2432 		return -EINVAL;
2433 	}
2434 
2435 	total_left_rate	= min_pf_rate - total_req_min_rate;
2436 
2437 	left_rate_per_vp = total_left_rate / non_requested_count;
2438 	if (left_rate_per_vp <  min_pf_rate / QED_WFQ_UNIT) {
2439 		DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
2440 			   "Non WFQ configured vports rate [%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n",
2441 			   left_rate_per_vp, min_pf_rate);
2442 		return -EINVAL;
2443 	}
2444 
2445 	p_hwfn->qm_info.wfq_data[vport_id].min_speed = req_rate;
2446 	p_hwfn->qm_info.wfq_data[vport_id].configured = true;
2447 
2448 	for (i = 0; i < num_vports; i++) {
2449 		if (p_hwfn->qm_info.wfq_data[i].configured)
2450 			continue;
2451 
2452 		p_hwfn->qm_info.wfq_data[i].min_speed = left_rate_per_vp;
2453 	}
2454 
2455 	return 0;
2456 }
2457 
2458 static int __qed_configure_vport_wfq(struct qed_hwfn *p_hwfn,
2459 				     struct qed_ptt *p_ptt, u16 vp_id, u32 rate)
2460 {
2461 	struct qed_mcp_link_state *p_link;
2462 	int rc = 0;
2463 
2464 	p_link = &p_hwfn->cdev->hwfns[0].mcp_info->link_output;
2465 
2466 	if (!p_link->min_pf_rate) {
2467 		p_hwfn->qm_info.wfq_data[vp_id].min_speed = rate;
2468 		p_hwfn->qm_info.wfq_data[vp_id].configured = true;
2469 		return rc;
2470 	}
2471 
2472 	rc = qed_init_wfq_param(p_hwfn, vp_id, rate, p_link->min_pf_rate);
2473 
2474 	if (rc == 0)
2475 		qed_configure_wfq_for_all_vports(p_hwfn, p_ptt,
2476 						 p_link->min_pf_rate);
2477 	else
2478 		DP_NOTICE(p_hwfn,
2479 			  "Validation failed while configuring min rate\n");
2480 
2481 	return rc;
2482 }
2483 
2484 static int __qed_configure_vp_wfq_on_link_change(struct qed_hwfn *p_hwfn,
2485 						 struct qed_ptt *p_ptt,
2486 						 u32 min_pf_rate)
2487 {
2488 	bool use_wfq = false;
2489 	int rc = 0;
2490 	u16 i;
2491 
2492 	/* Validate all pre configured vports for wfq */
2493 	for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
2494 		u32 rate;
2495 
2496 		if (!p_hwfn->qm_info.wfq_data[i].configured)
2497 			continue;
2498 
2499 		rate = p_hwfn->qm_info.wfq_data[i].min_speed;
2500 		use_wfq = true;
2501 
2502 		rc = qed_init_wfq_param(p_hwfn, i, rate, min_pf_rate);
2503 		if (rc) {
2504 			DP_NOTICE(p_hwfn,
2505 				  "WFQ validation failed while configuring min rate\n");
2506 			break;
2507 		}
2508 	}
2509 
2510 	if (!rc && use_wfq)
2511 		qed_configure_wfq_for_all_vports(p_hwfn, p_ptt, min_pf_rate);
2512 	else
2513 		qed_disable_wfq_for_all_vports(p_hwfn, p_ptt, min_pf_rate);
2514 
2515 	return rc;
2516 }
2517 
2518 /* Main API for qed clients to configure vport min rate.
2519  * vp_id - vport id in PF Range[0 - (total_num_vports_per_pf - 1)]
2520  * rate - Speed in Mbps needs to be assigned to a given vport.
2521  */
2522 int qed_configure_vport_wfq(struct qed_dev *cdev, u16 vp_id, u32 rate)
2523 {
2524 	int i, rc = -EINVAL;
2525 
2526 	/* Currently not supported; Might change in future */
2527 	if (cdev->num_hwfns > 1) {
2528 		DP_NOTICE(cdev,
2529 			  "WFQ configuration is not supported for this device\n");
2530 		return rc;
2531 	}
2532 
2533 	for_each_hwfn(cdev, i) {
2534 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
2535 		struct qed_ptt *p_ptt;
2536 
2537 		p_ptt = qed_ptt_acquire(p_hwfn);
2538 		if (!p_ptt)
2539 			return -EBUSY;
2540 
2541 		rc = __qed_configure_vport_wfq(p_hwfn, p_ptt, vp_id, rate);
2542 
2543 		if (rc) {
2544 			qed_ptt_release(p_hwfn, p_ptt);
2545 			return rc;
2546 		}
2547 
2548 		qed_ptt_release(p_hwfn, p_ptt);
2549 	}
2550 
2551 	return rc;
2552 }
2553 
2554 /* API to configure WFQ from mcp link change */
2555 void qed_configure_vp_wfq_on_link_change(struct qed_dev *cdev, u32 min_pf_rate)
2556 {
2557 	int i;
2558 
2559 	if (cdev->num_hwfns > 1) {
2560 		DP_VERBOSE(cdev,
2561 			   NETIF_MSG_LINK,
2562 			   "WFQ configuration is not supported for this device\n");
2563 		return;
2564 	}
2565 
2566 	for_each_hwfn(cdev, i) {
2567 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
2568 
2569 		__qed_configure_vp_wfq_on_link_change(p_hwfn,
2570 						      p_hwfn->p_dpc_ptt,
2571 						      min_pf_rate);
2572 	}
2573 }
2574 
2575 int __qed_configure_pf_max_bandwidth(struct qed_hwfn *p_hwfn,
2576 				     struct qed_ptt *p_ptt,
2577 				     struct qed_mcp_link_state *p_link,
2578 				     u8 max_bw)
2579 {
2580 	int rc = 0;
2581 
2582 	p_hwfn->mcp_info->func_info.bandwidth_max = max_bw;
2583 
2584 	if (!p_link->line_speed && (max_bw != 100))
2585 		return rc;
2586 
2587 	p_link->speed = (p_link->line_speed * max_bw) / 100;
2588 	p_hwfn->qm_info.pf_rl = p_link->speed;
2589 
2590 	/* Since the limiter also affects Tx-switched traffic, we don't want it
2591 	 * to limit such traffic in case there's no actual limit.
2592 	 * In that case, set limit to imaginary high boundary.
2593 	 */
2594 	if (max_bw == 100)
2595 		p_hwfn->qm_info.pf_rl = 100000;
2596 
2597 	rc = qed_init_pf_rl(p_hwfn, p_ptt, p_hwfn->rel_pf_id,
2598 			    p_hwfn->qm_info.pf_rl);
2599 
2600 	DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
2601 		   "Configured MAX bandwidth to be %08x Mb/sec\n",
2602 		   p_link->speed);
2603 
2604 	return rc;
2605 }
2606 
2607 /* Main API to configure PF max bandwidth where bw range is [1 - 100] */
2608 int qed_configure_pf_max_bandwidth(struct qed_dev *cdev, u8 max_bw)
2609 {
2610 	int i, rc = -EINVAL;
2611 
2612 	if (max_bw < 1 || max_bw > 100) {
2613 		DP_NOTICE(cdev, "PF max bw valid range is [1-100]\n");
2614 		return rc;
2615 	}
2616 
2617 	for_each_hwfn(cdev, i) {
2618 		struct qed_hwfn	*p_hwfn = &cdev->hwfns[i];
2619 		struct qed_hwfn *p_lead = QED_LEADING_HWFN(cdev);
2620 		struct qed_mcp_link_state *p_link;
2621 		struct qed_ptt *p_ptt;
2622 
2623 		p_link = &p_lead->mcp_info->link_output;
2624 
2625 		p_ptt = qed_ptt_acquire(p_hwfn);
2626 		if (!p_ptt)
2627 			return -EBUSY;
2628 
2629 		rc = __qed_configure_pf_max_bandwidth(p_hwfn, p_ptt,
2630 						      p_link, max_bw);
2631 
2632 		qed_ptt_release(p_hwfn, p_ptt);
2633 
2634 		if (rc)
2635 			break;
2636 	}
2637 
2638 	return rc;
2639 }
2640 
2641 int __qed_configure_pf_min_bandwidth(struct qed_hwfn *p_hwfn,
2642 				     struct qed_ptt *p_ptt,
2643 				     struct qed_mcp_link_state *p_link,
2644 				     u8 min_bw)
2645 {
2646 	int rc = 0;
2647 
2648 	p_hwfn->mcp_info->func_info.bandwidth_min = min_bw;
2649 	p_hwfn->qm_info.pf_wfq = min_bw;
2650 
2651 	if (!p_link->line_speed)
2652 		return rc;
2653 
2654 	p_link->min_pf_rate = (p_link->line_speed * min_bw) / 100;
2655 
2656 	rc = qed_init_pf_wfq(p_hwfn, p_ptt, p_hwfn->rel_pf_id, min_bw);
2657 
2658 	DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
2659 		   "Configured MIN bandwidth to be %d Mb/sec\n",
2660 		   p_link->min_pf_rate);
2661 
2662 	return rc;
2663 }
2664 
2665 /* Main API to configure PF min bandwidth where bw range is [1-100] */
2666 int qed_configure_pf_min_bandwidth(struct qed_dev *cdev, u8 min_bw)
2667 {
2668 	int i, rc = -EINVAL;
2669 
2670 	if (min_bw < 1 || min_bw > 100) {
2671 		DP_NOTICE(cdev, "PF min bw valid range is [1-100]\n");
2672 		return rc;
2673 	}
2674 
2675 	for_each_hwfn(cdev, i) {
2676 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
2677 		struct qed_hwfn *p_lead = QED_LEADING_HWFN(cdev);
2678 		struct qed_mcp_link_state *p_link;
2679 		struct qed_ptt *p_ptt;
2680 
2681 		p_link = &p_lead->mcp_info->link_output;
2682 
2683 		p_ptt = qed_ptt_acquire(p_hwfn);
2684 		if (!p_ptt)
2685 			return -EBUSY;
2686 
2687 		rc = __qed_configure_pf_min_bandwidth(p_hwfn, p_ptt,
2688 						      p_link, min_bw);
2689 		if (rc) {
2690 			qed_ptt_release(p_hwfn, p_ptt);
2691 			return rc;
2692 		}
2693 
2694 		if (p_link->min_pf_rate) {
2695 			u32 min_rate = p_link->min_pf_rate;
2696 
2697 			rc = __qed_configure_vp_wfq_on_link_change(p_hwfn,
2698 								   p_ptt,
2699 								   min_rate);
2700 		}
2701 
2702 		qed_ptt_release(p_hwfn, p_ptt);
2703 	}
2704 
2705 	return rc;
2706 }
2707 
2708 void qed_clean_wfq_db(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2709 {
2710 	struct qed_mcp_link_state *p_link;
2711 
2712 	p_link = &p_hwfn->mcp_info->link_output;
2713 
2714 	if (p_link->min_pf_rate)
2715 		qed_disable_wfq_for_all_vports(p_hwfn, p_ptt,
2716 					       p_link->min_pf_rate);
2717 
2718 	memset(p_hwfn->qm_info.wfq_data, 0,
2719 	       sizeof(*p_hwfn->qm_info.wfq_data) * p_hwfn->qm_info.num_vports);
2720 }
2721