xref: /linux/drivers/net/ethernet/qlogic/qed/qed_dev.c (revision 05ee19c18c2bb3dea69e29219017367c4a77e65a)
1 /* QLogic qed NIC Driver
2  * Copyright (c) 2015-2017  QLogic Corporation
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and /or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 #include <linux/types.h>
34 #include <asm/byteorder.h>
35 #include <linux/io.h>
36 #include <linux/delay.h>
37 #include <linux/dma-mapping.h>
38 #include <linux/errno.h>
39 #include <linux/kernel.h>
40 #include <linux/mutex.h>
41 #include <linux/pci.h>
42 #include <linux/slab.h>
43 #include <linux/string.h>
44 #include <linux/vmalloc.h>
45 #include <linux/etherdevice.h>
46 #include <linux/qed/qed_chain.h>
47 #include <linux/qed/qed_if.h>
48 #include "qed.h"
49 #include "qed_cxt.h"
50 #include "qed_dcbx.h"
51 #include "qed_dev_api.h"
52 #include "qed_fcoe.h"
53 #include "qed_hsi.h"
54 #include "qed_hw.h"
55 #include "qed_init_ops.h"
56 #include "qed_int.h"
57 #include "qed_iscsi.h"
58 #include "qed_ll2.h"
59 #include "qed_mcp.h"
60 #include "qed_ooo.h"
61 #include "qed_reg_addr.h"
62 #include "qed_sp.h"
63 #include "qed_sriov.h"
64 #include "qed_vf.h"
65 #include "qed_rdma.h"
66 
67 static DEFINE_SPINLOCK(qm_lock);
68 
69 /******************** Doorbell Recovery *******************/
70 /* The doorbell recovery mechanism consists of a list of entries which represent
71  * doorbelling entities (l2 queues, roce sq/rq/cqs, the slowpath spq, etc). Each
72  * entity needs to register with the mechanism and provide the parameters
73  * describing it's doorbell, including a location where last used doorbell data
74  * can be found. The doorbell execute function will traverse the list and
75  * doorbell all of the registered entries.
76  */
77 struct qed_db_recovery_entry {
78 	struct list_head list_entry;
79 	void __iomem *db_addr;
80 	void *db_data;
81 	enum qed_db_rec_width db_width;
82 	enum qed_db_rec_space db_space;
83 	u8 hwfn_idx;
84 };
85 
86 /* Display a single doorbell recovery entry */
87 static void qed_db_recovery_dp_entry(struct qed_hwfn *p_hwfn,
88 				     struct qed_db_recovery_entry *db_entry,
89 				     char *action)
90 {
91 	DP_VERBOSE(p_hwfn,
92 		   QED_MSG_SPQ,
93 		   "(%s: db_entry %p, addr %p, data %p, width %s, %s space, hwfn %d)\n",
94 		   action,
95 		   db_entry,
96 		   db_entry->db_addr,
97 		   db_entry->db_data,
98 		   db_entry->db_width == DB_REC_WIDTH_32B ? "32b" : "64b",
99 		   db_entry->db_space == DB_REC_USER ? "user" : "kernel",
100 		   db_entry->hwfn_idx);
101 }
102 
103 /* Doorbell address sanity (address within doorbell bar range) */
104 static bool qed_db_rec_sanity(struct qed_dev *cdev,
105 			      void __iomem *db_addr,
106 			      enum qed_db_rec_width db_width,
107 			      void *db_data)
108 {
109 	u32 width = (db_width == DB_REC_WIDTH_32B) ? 32 : 64;
110 
111 	/* Make sure doorbell address is within the doorbell bar */
112 	if (db_addr < cdev->doorbells ||
113 	    (u8 __iomem *)db_addr + width >
114 	    (u8 __iomem *)cdev->doorbells + cdev->db_size) {
115 		WARN(true,
116 		     "Illegal doorbell address: %p. Legal range for doorbell addresses is [%p..%p]\n",
117 		     db_addr,
118 		     cdev->doorbells,
119 		     (u8 __iomem *)cdev->doorbells + cdev->db_size);
120 		return false;
121 	}
122 
123 	/* ake sure doorbell data pointer is not null */
124 	if (!db_data) {
125 		WARN(true, "Illegal doorbell data pointer: %p", db_data);
126 		return false;
127 	}
128 
129 	return true;
130 }
131 
132 /* Find hwfn according to the doorbell address */
133 static struct qed_hwfn *qed_db_rec_find_hwfn(struct qed_dev *cdev,
134 					     void __iomem *db_addr)
135 {
136 	struct qed_hwfn *p_hwfn;
137 
138 	/* In CMT doorbell bar is split down the middle between engine 0 and enigne 1 */
139 	if (cdev->num_hwfns > 1)
140 		p_hwfn = db_addr < cdev->hwfns[1].doorbells ?
141 		    &cdev->hwfns[0] : &cdev->hwfns[1];
142 	else
143 		p_hwfn = QED_LEADING_HWFN(cdev);
144 
145 	return p_hwfn;
146 }
147 
148 /* Add a new entry to the doorbell recovery mechanism */
149 int qed_db_recovery_add(struct qed_dev *cdev,
150 			void __iomem *db_addr,
151 			void *db_data,
152 			enum qed_db_rec_width db_width,
153 			enum qed_db_rec_space db_space)
154 {
155 	struct qed_db_recovery_entry *db_entry;
156 	struct qed_hwfn *p_hwfn;
157 
158 	/* Shortcircuit VFs, for now */
159 	if (IS_VF(cdev)) {
160 		DP_VERBOSE(cdev,
161 			   QED_MSG_IOV, "db recovery - skipping VF doorbell\n");
162 		return 0;
163 	}
164 
165 	/* Sanitize doorbell address */
166 	if (!qed_db_rec_sanity(cdev, db_addr, db_width, db_data))
167 		return -EINVAL;
168 
169 	/* Obtain hwfn from doorbell address */
170 	p_hwfn = qed_db_rec_find_hwfn(cdev, db_addr);
171 
172 	/* Create entry */
173 	db_entry = kzalloc(sizeof(*db_entry), GFP_KERNEL);
174 	if (!db_entry) {
175 		DP_NOTICE(cdev, "Failed to allocate a db recovery entry\n");
176 		return -ENOMEM;
177 	}
178 
179 	/* Populate entry */
180 	db_entry->db_addr = db_addr;
181 	db_entry->db_data = db_data;
182 	db_entry->db_width = db_width;
183 	db_entry->db_space = db_space;
184 	db_entry->hwfn_idx = p_hwfn->my_id;
185 
186 	/* Display */
187 	qed_db_recovery_dp_entry(p_hwfn, db_entry, "Adding");
188 
189 	/* Protect the list */
190 	spin_lock_bh(&p_hwfn->db_recovery_info.lock);
191 	list_add_tail(&db_entry->list_entry, &p_hwfn->db_recovery_info.list);
192 	spin_unlock_bh(&p_hwfn->db_recovery_info.lock);
193 
194 	return 0;
195 }
196 
197 /* Remove an entry from the doorbell recovery mechanism */
198 int qed_db_recovery_del(struct qed_dev *cdev,
199 			void __iomem *db_addr, void *db_data)
200 {
201 	struct qed_db_recovery_entry *db_entry = NULL;
202 	struct qed_hwfn *p_hwfn;
203 	int rc = -EINVAL;
204 
205 	/* Shortcircuit VFs, for now */
206 	if (IS_VF(cdev)) {
207 		DP_VERBOSE(cdev,
208 			   QED_MSG_IOV, "db recovery - skipping VF doorbell\n");
209 		return 0;
210 	}
211 
212 	/* Obtain hwfn from doorbell address */
213 	p_hwfn = qed_db_rec_find_hwfn(cdev, db_addr);
214 
215 	/* Protect the list */
216 	spin_lock_bh(&p_hwfn->db_recovery_info.lock);
217 	list_for_each_entry(db_entry,
218 			    &p_hwfn->db_recovery_info.list, list_entry) {
219 		/* search according to db_data addr since db_addr is not unique (roce) */
220 		if (db_entry->db_data == db_data) {
221 			qed_db_recovery_dp_entry(p_hwfn, db_entry, "Deleting");
222 			list_del(&db_entry->list_entry);
223 			rc = 0;
224 			break;
225 		}
226 	}
227 
228 	spin_unlock_bh(&p_hwfn->db_recovery_info.lock);
229 
230 	if (rc == -EINVAL)
231 
232 		DP_NOTICE(p_hwfn,
233 			  "Failed to find element in list. Key (db_data addr) was %p. db_addr was %p\n",
234 			  db_data, db_addr);
235 	else
236 		kfree(db_entry);
237 
238 	return rc;
239 }
240 
241 /* Initialize the doorbell recovery mechanism */
242 static int qed_db_recovery_setup(struct qed_hwfn *p_hwfn)
243 {
244 	DP_VERBOSE(p_hwfn, QED_MSG_SPQ, "Setting up db recovery\n");
245 
246 	/* Make sure db_size was set in cdev */
247 	if (!p_hwfn->cdev->db_size) {
248 		DP_ERR(p_hwfn->cdev, "db_size not set\n");
249 		return -EINVAL;
250 	}
251 
252 	INIT_LIST_HEAD(&p_hwfn->db_recovery_info.list);
253 	spin_lock_init(&p_hwfn->db_recovery_info.lock);
254 	p_hwfn->db_recovery_info.db_recovery_counter = 0;
255 
256 	return 0;
257 }
258 
259 /* Destroy the doorbell recovery mechanism */
260 static void qed_db_recovery_teardown(struct qed_hwfn *p_hwfn)
261 {
262 	struct qed_db_recovery_entry *db_entry = NULL;
263 
264 	DP_VERBOSE(p_hwfn, QED_MSG_SPQ, "Tearing down db recovery\n");
265 	if (!list_empty(&p_hwfn->db_recovery_info.list)) {
266 		DP_VERBOSE(p_hwfn,
267 			   QED_MSG_SPQ,
268 			   "Doorbell Recovery teardown found the doorbell recovery list was not empty (Expected in disorderly driver unload (e.g. recovery) otherwise this probably means some flow forgot to db_recovery_del). Prepare to purge doorbell recovery list...\n");
269 		while (!list_empty(&p_hwfn->db_recovery_info.list)) {
270 			db_entry =
271 			    list_first_entry(&p_hwfn->db_recovery_info.list,
272 					     struct qed_db_recovery_entry,
273 					     list_entry);
274 			qed_db_recovery_dp_entry(p_hwfn, db_entry, "Purging");
275 			list_del(&db_entry->list_entry);
276 			kfree(db_entry);
277 		}
278 	}
279 	p_hwfn->db_recovery_info.db_recovery_counter = 0;
280 }
281 
282 /* Print the content of the doorbell recovery mechanism */
283 void qed_db_recovery_dp(struct qed_hwfn *p_hwfn)
284 {
285 	struct qed_db_recovery_entry *db_entry = NULL;
286 
287 	DP_NOTICE(p_hwfn,
288 		  "Displaying doorbell recovery database. Counter was %d\n",
289 		  p_hwfn->db_recovery_info.db_recovery_counter);
290 
291 	/* Protect the list */
292 	spin_lock_bh(&p_hwfn->db_recovery_info.lock);
293 	list_for_each_entry(db_entry,
294 			    &p_hwfn->db_recovery_info.list, list_entry) {
295 		qed_db_recovery_dp_entry(p_hwfn, db_entry, "Printing");
296 	}
297 
298 	spin_unlock_bh(&p_hwfn->db_recovery_info.lock);
299 }
300 
301 /* Ring the doorbell of a single doorbell recovery entry */
302 static void qed_db_recovery_ring(struct qed_hwfn *p_hwfn,
303 				 struct qed_db_recovery_entry *db_entry)
304 {
305 	/* Print according to width */
306 	if (db_entry->db_width == DB_REC_WIDTH_32B) {
307 		DP_VERBOSE(p_hwfn, QED_MSG_SPQ,
308 			   "ringing doorbell address %p data %x\n",
309 			   db_entry->db_addr,
310 			   *(u32 *)db_entry->db_data);
311 	} else {
312 		DP_VERBOSE(p_hwfn, QED_MSG_SPQ,
313 			   "ringing doorbell address %p data %llx\n",
314 			   db_entry->db_addr,
315 			   *(u64 *)(db_entry->db_data));
316 	}
317 
318 	/* Sanity */
319 	if (!qed_db_rec_sanity(p_hwfn->cdev, db_entry->db_addr,
320 			       db_entry->db_width, db_entry->db_data))
321 		return;
322 
323 	/* Flush the write combined buffer. Since there are multiple doorbelling
324 	 * entities using the same address, if we don't flush, a transaction
325 	 * could be lost.
326 	 */
327 	wmb();
328 
329 	/* Ring the doorbell */
330 	if (db_entry->db_width == DB_REC_WIDTH_32B)
331 		DIRECT_REG_WR(db_entry->db_addr,
332 			      *(u32 *)(db_entry->db_data));
333 	else
334 		DIRECT_REG_WR64(db_entry->db_addr,
335 				*(u64 *)(db_entry->db_data));
336 
337 	/* Flush the write combined buffer. Next doorbell may come from a
338 	 * different entity to the same address...
339 	 */
340 	wmb();
341 }
342 
343 /* Traverse the doorbell recovery entry list and ring all the doorbells */
344 void qed_db_recovery_execute(struct qed_hwfn *p_hwfn)
345 {
346 	struct qed_db_recovery_entry *db_entry = NULL;
347 
348 	DP_NOTICE(p_hwfn, "Executing doorbell recovery. Counter was %d\n",
349 		  p_hwfn->db_recovery_info.db_recovery_counter);
350 
351 	/* Track amount of times recovery was executed */
352 	p_hwfn->db_recovery_info.db_recovery_counter++;
353 
354 	/* Protect the list */
355 	spin_lock_bh(&p_hwfn->db_recovery_info.lock);
356 	list_for_each_entry(db_entry,
357 			    &p_hwfn->db_recovery_info.list, list_entry)
358 		qed_db_recovery_ring(p_hwfn, db_entry);
359 	spin_unlock_bh(&p_hwfn->db_recovery_info.lock);
360 }
361 
362 /******************** Doorbell Recovery end ****************/
363 
364 /********************************** NIG LLH ***********************************/
365 
366 enum qed_llh_filter_type {
367 	QED_LLH_FILTER_TYPE_MAC,
368 	QED_LLH_FILTER_TYPE_PROTOCOL,
369 };
370 
371 struct qed_llh_mac_filter {
372 	u8 addr[ETH_ALEN];
373 };
374 
375 struct qed_llh_protocol_filter {
376 	enum qed_llh_prot_filter_type_t type;
377 	u16 source_port_or_eth_type;
378 	u16 dest_port;
379 };
380 
381 union qed_llh_filter {
382 	struct qed_llh_mac_filter mac;
383 	struct qed_llh_protocol_filter protocol;
384 };
385 
386 struct qed_llh_filter_info {
387 	bool b_enabled;
388 	u32 ref_cnt;
389 	enum qed_llh_filter_type type;
390 	union qed_llh_filter filter;
391 };
392 
393 struct qed_llh_info {
394 	/* Number of LLH filters banks */
395 	u8 num_ppfid;
396 
397 #define MAX_NUM_PPFID   8
398 	u8 ppfid_array[MAX_NUM_PPFID];
399 
400 	/* Array of filters arrays:
401 	 * "num_ppfid" elements of filters banks, where each is an array of
402 	 * "NIG_REG_LLH_FUNC_FILTER_EN_SIZE" filters.
403 	 */
404 	struct qed_llh_filter_info **pp_filters;
405 };
406 
407 static void qed_llh_free(struct qed_dev *cdev)
408 {
409 	struct qed_llh_info *p_llh_info = cdev->p_llh_info;
410 	u32 i;
411 
412 	if (p_llh_info) {
413 		if (p_llh_info->pp_filters)
414 			for (i = 0; i < p_llh_info->num_ppfid; i++)
415 				kfree(p_llh_info->pp_filters[i]);
416 
417 		kfree(p_llh_info->pp_filters);
418 	}
419 
420 	kfree(p_llh_info);
421 	cdev->p_llh_info = NULL;
422 }
423 
424 static int qed_llh_alloc(struct qed_dev *cdev)
425 {
426 	struct qed_llh_info *p_llh_info;
427 	u32 size, i;
428 
429 	p_llh_info = kzalloc(sizeof(*p_llh_info), GFP_KERNEL);
430 	if (!p_llh_info)
431 		return -ENOMEM;
432 	cdev->p_llh_info = p_llh_info;
433 
434 	for (i = 0; i < MAX_NUM_PPFID; i++) {
435 		if (!(cdev->ppfid_bitmap & (0x1 << i)))
436 			continue;
437 
438 		p_llh_info->ppfid_array[p_llh_info->num_ppfid] = i;
439 		DP_VERBOSE(cdev, QED_MSG_SP, "ppfid_array[%d] = %hhd\n",
440 			   p_llh_info->num_ppfid, i);
441 		p_llh_info->num_ppfid++;
442 	}
443 
444 	size = p_llh_info->num_ppfid * sizeof(*p_llh_info->pp_filters);
445 	p_llh_info->pp_filters = kzalloc(size, GFP_KERNEL);
446 	if (!p_llh_info->pp_filters)
447 		return -ENOMEM;
448 
449 	size = NIG_REG_LLH_FUNC_FILTER_EN_SIZE *
450 	    sizeof(**p_llh_info->pp_filters);
451 	for (i = 0; i < p_llh_info->num_ppfid; i++) {
452 		p_llh_info->pp_filters[i] = kzalloc(size, GFP_KERNEL);
453 		if (!p_llh_info->pp_filters[i])
454 			return -ENOMEM;
455 	}
456 
457 	return 0;
458 }
459 
460 static int qed_llh_shadow_sanity(struct qed_dev *cdev,
461 				 u8 ppfid, u8 filter_idx, const char *action)
462 {
463 	struct qed_llh_info *p_llh_info = cdev->p_llh_info;
464 
465 	if (ppfid >= p_llh_info->num_ppfid) {
466 		DP_NOTICE(cdev,
467 			  "LLH shadow [%s]: using ppfid %d while only %d ppfids are available\n",
468 			  action, ppfid, p_llh_info->num_ppfid);
469 		return -EINVAL;
470 	}
471 
472 	if (filter_idx >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE) {
473 		DP_NOTICE(cdev,
474 			  "LLH shadow [%s]: using filter_idx %d while only %d filters are available\n",
475 			  action, filter_idx, NIG_REG_LLH_FUNC_FILTER_EN_SIZE);
476 		return -EINVAL;
477 	}
478 
479 	return 0;
480 }
481 
482 #define QED_LLH_INVALID_FILTER_IDX      0xff
483 
484 static int
485 qed_llh_shadow_search_filter(struct qed_dev *cdev,
486 			     u8 ppfid,
487 			     union qed_llh_filter *p_filter, u8 *p_filter_idx)
488 {
489 	struct qed_llh_info *p_llh_info = cdev->p_llh_info;
490 	struct qed_llh_filter_info *p_filters;
491 	int rc;
492 	u8 i;
493 
494 	rc = qed_llh_shadow_sanity(cdev, ppfid, 0, "search");
495 	if (rc)
496 		return rc;
497 
498 	*p_filter_idx = QED_LLH_INVALID_FILTER_IDX;
499 
500 	p_filters = p_llh_info->pp_filters[ppfid];
501 	for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
502 		if (!memcmp(p_filter, &p_filters[i].filter,
503 			    sizeof(*p_filter))) {
504 			*p_filter_idx = i;
505 			break;
506 		}
507 	}
508 
509 	return 0;
510 }
511 
512 static int
513 qed_llh_shadow_get_free_idx(struct qed_dev *cdev, u8 ppfid, u8 *p_filter_idx)
514 {
515 	struct qed_llh_info *p_llh_info = cdev->p_llh_info;
516 	struct qed_llh_filter_info *p_filters;
517 	int rc;
518 	u8 i;
519 
520 	rc = qed_llh_shadow_sanity(cdev, ppfid, 0, "get_free_idx");
521 	if (rc)
522 		return rc;
523 
524 	*p_filter_idx = QED_LLH_INVALID_FILTER_IDX;
525 
526 	p_filters = p_llh_info->pp_filters[ppfid];
527 	for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
528 		if (!p_filters[i].b_enabled) {
529 			*p_filter_idx = i;
530 			break;
531 		}
532 	}
533 
534 	return 0;
535 }
536 
537 static int
538 __qed_llh_shadow_add_filter(struct qed_dev *cdev,
539 			    u8 ppfid,
540 			    u8 filter_idx,
541 			    enum qed_llh_filter_type type,
542 			    union qed_llh_filter *p_filter, u32 *p_ref_cnt)
543 {
544 	struct qed_llh_info *p_llh_info = cdev->p_llh_info;
545 	struct qed_llh_filter_info *p_filters;
546 	int rc;
547 
548 	rc = qed_llh_shadow_sanity(cdev, ppfid, filter_idx, "add");
549 	if (rc)
550 		return rc;
551 
552 	p_filters = p_llh_info->pp_filters[ppfid];
553 	if (!p_filters[filter_idx].ref_cnt) {
554 		p_filters[filter_idx].b_enabled = true;
555 		p_filters[filter_idx].type = type;
556 		memcpy(&p_filters[filter_idx].filter, p_filter,
557 		       sizeof(p_filters[filter_idx].filter));
558 	}
559 
560 	*p_ref_cnt = ++p_filters[filter_idx].ref_cnt;
561 
562 	return 0;
563 }
564 
565 static int
566 qed_llh_shadow_add_filter(struct qed_dev *cdev,
567 			  u8 ppfid,
568 			  enum qed_llh_filter_type type,
569 			  union qed_llh_filter *p_filter,
570 			  u8 *p_filter_idx, u32 *p_ref_cnt)
571 {
572 	int rc;
573 
574 	/* Check if the same filter already exist */
575 	rc = qed_llh_shadow_search_filter(cdev, ppfid, p_filter, p_filter_idx);
576 	if (rc)
577 		return rc;
578 
579 	/* Find a new entry in case of a new filter */
580 	if (*p_filter_idx == QED_LLH_INVALID_FILTER_IDX) {
581 		rc = qed_llh_shadow_get_free_idx(cdev, ppfid, p_filter_idx);
582 		if (rc)
583 			return rc;
584 	}
585 
586 	/* No free entry was found */
587 	if (*p_filter_idx == QED_LLH_INVALID_FILTER_IDX) {
588 		DP_NOTICE(cdev,
589 			  "Failed to find an empty LLH filter to utilize [ppfid %d]\n",
590 			  ppfid);
591 		return -EINVAL;
592 	}
593 
594 	return __qed_llh_shadow_add_filter(cdev, ppfid, *p_filter_idx, type,
595 					   p_filter, p_ref_cnt);
596 }
597 
598 static int
599 __qed_llh_shadow_remove_filter(struct qed_dev *cdev,
600 			       u8 ppfid, u8 filter_idx, u32 *p_ref_cnt)
601 {
602 	struct qed_llh_info *p_llh_info = cdev->p_llh_info;
603 	struct qed_llh_filter_info *p_filters;
604 	int rc;
605 
606 	rc = qed_llh_shadow_sanity(cdev, ppfid, filter_idx, "remove");
607 	if (rc)
608 		return rc;
609 
610 	p_filters = p_llh_info->pp_filters[ppfid];
611 	if (!p_filters[filter_idx].ref_cnt) {
612 		DP_NOTICE(cdev,
613 			  "LLH shadow: trying to remove a filter with ref_cnt=0\n");
614 		return -EINVAL;
615 	}
616 
617 	*p_ref_cnt = --p_filters[filter_idx].ref_cnt;
618 	if (!p_filters[filter_idx].ref_cnt)
619 		memset(&p_filters[filter_idx],
620 		       0, sizeof(p_filters[filter_idx]));
621 
622 	return 0;
623 }
624 
625 static int
626 qed_llh_shadow_remove_filter(struct qed_dev *cdev,
627 			     u8 ppfid,
628 			     union qed_llh_filter *p_filter,
629 			     u8 *p_filter_idx, u32 *p_ref_cnt)
630 {
631 	int rc;
632 
633 	rc = qed_llh_shadow_search_filter(cdev, ppfid, p_filter, p_filter_idx);
634 	if (rc)
635 		return rc;
636 
637 	/* No matching filter was found */
638 	if (*p_filter_idx == QED_LLH_INVALID_FILTER_IDX) {
639 		DP_NOTICE(cdev, "Failed to find a filter in the LLH shadow\n");
640 		return -EINVAL;
641 	}
642 
643 	return __qed_llh_shadow_remove_filter(cdev, ppfid, *p_filter_idx,
644 					      p_ref_cnt);
645 }
646 
647 static int qed_llh_abs_ppfid(struct qed_dev *cdev, u8 ppfid, u8 *p_abs_ppfid)
648 {
649 	struct qed_llh_info *p_llh_info = cdev->p_llh_info;
650 
651 	if (ppfid >= p_llh_info->num_ppfid) {
652 		DP_NOTICE(cdev,
653 			  "ppfid %d is not valid, available indices are 0..%hhd\n",
654 			  ppfid, p_llh_info->num_ppfid - 1);
655 		*p_abs_ppfid = 0;
656 		return -EINVAL;
657 	}
658 
659 	*p_abs_ppfid = p_llh_info->ppfid_array[ppfid];
660 
661 	return 0;
662 }
663 
664 static int
665 qed_llh_set_engine_affin(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
666 {
667 	struct qed_dev *cdev = p_hwfn->cdev;
668 	enum qed_eng eng;
669 	u8 ppfid;
670 	int rc;
671 
672 	rc = qed_mcp_get_engine_config(p_hwfn, p_ptt);
673 	if (rc != 0 && rc != -EOPNOTSUPP) {
674 		DP_NOTICE(p_hwfn,
675 			  "Failed to get the engine affinity configuration\n");
676 		return rc;
677 	}
678 
679 	/* RoCE PF is bound to a single engine */
680 	if (QED_IS_ROCE_PERSONALITY(p_hwfn)) {
681 		eng = cdev->fir_affin ? QED_ENG1 : QED_ENG0;
682 		rc = qed_llh_set_roce_affinity(cdev, eng);
683 		if (rc) {
684 			DP_NOTICE(cdev,
685 				  "Failed to set the RoCE engine affinity\n");
686 			return rc;
687 		}
688 
689 		DP_VERBOSE(cdev,
690 			   QED_MSG_SP,
691 			   "LLH: Set the engine affinity of RoCE packets as %d\n",
692 			   eng);
693 	}
694 
695 	/* Storage PF is bound to a single engine while L2 PF uses both */
696 	if (QED_IS_FCOE_PERSONALITY(p_hwfn) || QED_IS_ISCSI_PERSONALITY(p_hwfn))
697 		eng = cdev->fir_affin ? QED_ENG1 : QED_ENG0;
698 	else			/* L2_PERSONALITY */
699 		eng = QED_BOTH_ENG;
700 
701 	for (ppfid = 0; ppfid < cdev->p_llh_info->num_ppfid; ppfid++) {
702 		rc = qed_llh_set_ppfid_affinity(cdev, ppfid, eng);
703 		if (rc) {
704 			DP_NOTICE(cdev,
705 				  "Failed to set the engine affinity of ppfid %d\n",
706 				  ppfid);
707 			return rc;
708 		}
709 	}
710 
711 	DP_VERBOSE(cdev, QED_MSG_SP,
712 		   "LLH: Set the engine affinity of non-RoCE packets as %d\n",
713 		   eng);
714 
715 	return 0;
716 }
717 
718 static int qed_llh_hw_init_pf(struct qed_hwfn *p_hwfn,
719 			      struct qed_ptt *p_ptt)
720 {
721 	struct qed_dev *cdev = p_hwfn->cdev;
722 	u8 ppfid, abs_ppfid;
723 	int rc;
724 
725 	for (ppfid = 0; ppfid < cdev->p_llh_info->num_ppfid; ppfid++) {
726 		u32 addr;
727 
728 		rc = qed_llh_abs_ppfid(cdev, ppfid, &abs_ppfid);
729 		if (rc)
730 			return rc;
731 
732 		addr = NIG_REG_LLH_PPFID2PFID_TBL_0 + abs_ppfid * 0x4;
733 		qed_wr(p_hwfn, p_ptt, addr, p_hwfn->rel_pf_id);
734 	}
735 
736 	if (test_bit(QED_MF_LLH_MAC_CLSS, &cdev->mf_bits) &&
737 	    !QED_IS_FCOE_PERSONALITY(p_hwfn)) {
738 		rc = qed_llh_add_mac_filter(cdev, 0,
739 					    p_hwfn->hw_info.hw_mac_addr);
740 		if (rc)
741 			DP_NOTICE(cdev,
742 				  "Failed to add an LLH filter with the primary MAC\n");
743 	}
744 
745 	if (QED_IS_CMT(cdev)) {
746 		rc = qed_llh_set_engine_affin(p_hwfn, p_ptt);
747 		if (rc)
748 			return rc;
749 	}
750 
751 	return 0;
752 }
753 
754 u8 qed_llh_get_num_ppfid(struct qed_dev *cdev)
755 {
756 	return cdev->p_llh_info->num_ppfid;
757 }
758 
759 #define NIG_REG_PPF_TO_ENGINE_SEL_ROCE_MASK             0x3
760 #define NIG_REG_PPF_TO_ENGINE_SEL_ROCE_SHIFT            0
761 #define NIG_REG_PPF_TO_ENGINE_SEL_NON_ROCE_MASK         0x3
762 #define NIG_REG_PPF_TO_ENGINE_SEL_NON_ROCE_SHIFT        2
763 
764 int qed_llh_set_ppfid_affinity(struct qed_dev *cdev, u8 ppfid, enum qed_eng eng)
765 {
766 	struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
767 	struct qed_ptt *p_ptt = qed_ptt_acquire(p_hwfn);
768 	u32 addr, val, eng_sel;
769 	u8 abs_ppfid;
770 	int rc = 0;
771 
772 	if (!p_ptt)
773 		return -EAGAIN;
774 
775 	if (!QED_IS_CMT(cdev))
776 		goto out;
777 
778 	rc = qed_llh_abs_ppfid(cdev, ppfid, &abs_ppfid);
779 	if (rc)
780 		goto out;
781 
782 	switch (eng) {
783 	case QED_ENG0:
784 		eng_sel = 0;
785 		break;
786 	case QED_ENG1:
787 		eng_sel = 1;
788 		break;
789 	case QED_BOTH_ENG:
790 		eng_sel = 2;
791 		break;
792 	default:
793 		DP_NOTICE(cdev, "Invalid affinity value for ppfid [%d]\n", eng);
794 		rc = -EINVAL;
795 		goto out;
796 	}
797 
798 	addr = NIG_REG_PPF_TO_ENGINE_SEL + abs_ppfid * 0x4;
799 	val = qed_rd(p_hwfn, p_ptt, addr);
800 	SET_FIELD(val, NIG_REG_PPF_TO_ENGINE_SEL_NON_ROCE, eng_sel);
801 	qed_wr(p_hwfn, p_ptt, addr, val);
802 
803 	/* The iWARP affinity is set as the affinity of ppfid 0 */
804 	if (!ppfid && QED_IS_IWARP_PERSONALITY(p_hwfn))
805 		cdev->iwarp_affin = (eng == QED_ENG1) ? 1 : 0;
806 out:
807 	qed_ptt_release(p_hwfn, p_ptt);
808 
809 	return rc;
810 }
811 
812 int qed_llh_set_roce_affinity(struct qed_dev *cdev, enum qed_eng eng)
813 {
814 	struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
815 	struct qed_ptt *p_ptt = qed_ptt_acquire(p_hwfn);
816 	u32 addr, val, eng_sel;
817 	u8 ppfid, abs_ppfid;
818 	int rc = 0;
819 
820 	if (!p_ptt)
821 		return -EAGAIN;
822 
823 	if (!QED_IS_CMT(cdev))
824 		goto out;
825 
826 	switch (eng) {
827 	case QED_ENG0:
828 		eng_sel = 0;
829 		break;
830 	case QED_ENG1:
831 		eng_sel = 1;
832 		break;
833 	case QED_BOTH_ENG:
834 		eng_sel = 2;
835 		qed_wr(p_hwfn, p_ptt, NIG_REG_LLH_ENG_CLS_ROCE_QP_SEL,
836 		       0xf);  /* QP bit 15 */
837 		break;
838 	default:
839 		DP_NOTICE(cdev, "Invalid affinity value for RoCE [%d]\n", eng);
840 		rc = -EINVAL;
841 		goto out;
842 	}
843 
844 	for (ppfid = 0; ppfid < cdev->p_llh_info->num_ppfid; ppfid++) {
845 		rc = qed_llh_abs_ppfid(cdev, ppfid, &abs_ppfid);
846 		if (rc)
847 			goto out;
848 
849 		addr = NIG_REG_PPF_TO_ENGINE_SEL + abs_ppfid * 0x4;
850 		val = qed_rd(p_hwfn, p_ptt, addr);
851 		SET_FIELD(val, NIG_REG_PPF_TO_ENGINE_SEL_ROCE, eng_sel);
852 		qed_wr(p_hwfn, p_ptt, addr, val);
853 	}
854 out:
855 	qed_ptt_release(p_hwfn, p_ptt);
856 
857 	return rc;
858 }
859 
860 struct qed_llh_filter_details {
861 	u64 value;
862 	u32 mode;
863 	u32 protocol_type;
864 	u32 hdr_sel;
865 	u32 enable;
866 };
867 
868 static int
869 qed_llh_access_filter(struct qed_hwfn *p_hwfn,
870 		      struct qed_ptt *p_ptt,
871 		      u8 abs_ppfid,
872 		      u8 filter_idx,
873 		      struct qed_llh_filter_details *p_details)
874 {
875 	struct qed_dmae_params params = {0};
876 	u32 addr;
877 	u8 pfid;
878 	int rc;
879 
880 	/* The NIG/LLH registers that are accessed in this function have only 16
881 	 * rows which are exposed to a PF. I.e. only the 16 filters of its
882 	 * default ppfid. Accessing filters of other ppfids requires pretending
883 	 * to another PFs.
884 	 * The calculation of PPFID->PFID in AH is based on the relative index
885 	 * of a PF on its port.
886 	 * For BB the pfid is actually the abs_ppfid.
887 	 */
888 	if (QED_IS_BB(p_hwfn->cdev))
889 		pfid = abs_ppfid;
890 	else
891 		pfid = abs_ppfid * p_hwfn->cdev->num_ports_in_engine +
892 		    MFW_PORT(p_hwfn);
893 
894 	/* Filter enable - should be done first when removing a filter */
895 	if (!p_details->enable) {
896 		qed_fid_pretend(p_hwfn, p_ptt,
897 				pfid << PXP_PRETEND_CONCRETE_FID_PFID_SHIFT);
898 
899 		addr = NIG_REG_LLH_FUNC_FILTER_EN + filter_idx * 0x4;
900 		qed_wr(p_hwfn, p_ptt, addr, p_details->enable);
901 
902 		qed_fid_pretend(p_hwfn, p_ptt,
903 				p_hwfn->rel_pf_id <<
904 				PXP_PRETEND_CONCRETE_FID_PFID_SHIFT);
905 	}
906 
907 	/* Filter value */
908 	addr = NIG_REG_LLH_FUNC_FILTER_VALUE + 2 * filter_idx * 0x4;
909 
910 	SET_FIELD(params.flags, QED_DMAE_PARAMS_DST_PF_VALID, 0x1);
911 	params.dst_pfid = pfid;
912 	rc = qed_dmae_host2grc(p_hwfn,
913 			       p_ptt,
914 			       (u64)(uintptr_t)&p_details->value,
915 			       addr, 2 /* size_in_dwords */,
916 			       &params);
917 	if (rc)
918 		return rc;
919 
920 	qed_fid_pretend(p_hwfn, p_ptt,
921 			pfid << PXP_PRETEND_CONCRETE_FID_PFID_SHIFT);
922 
923 	/* Filter mode */
924 	addr = NIG_REG_LLH_FUNC_FILTER_MODE + filter_idx * 0x4;
925 	qed_wr(p_hwfn, p_ptt, addr, p_details->mode);
926 
927 	/* Filter protocol type */
928 	addr = NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE + filter_idx * 0x4;
929 	qed_wr(p_hwfn, p_ptt, addr, p_details->protocol_type);
930 
931 	/* Filter header select */
932 	addr = NIG_REG_LLH_FUNC_FILTER_HDR_SEL + filter_idx * 0x4;
933 	qed_wr(p_hwfn, p_ptt, addr, p_details->hdr_sel);
934 
935 	/* Filter enable - should be done last when adding a filter */
936 	if (p_details->enable) {
937 		addr = NIG_REG_LLH_FUNC_FILTER_EN + filter_idx * 0x4;
938 		qed_wr(p_hwfn, p_ptt, addr, p_details->enable);
939 	}
940 
941 	qed_fid_pretend(p_hwfn, p_ptt,
942 			p_hwfn->rel_pf_id <<
943 			PXP_PRETEND_CONCRETE_FID_PFID_SHIFT);
944 
945 	return 0;
946 }
947 
948 static int
949 qed_llh_add_filter(struct qed_hwfn *p_hwfn,
950 		   struct qed_ptt *p_ptt,
951 		   u8 abs_ppfid,
952 		   u8 filter_idx, u8 filter_prot_type, u32 high, u32 low)
953 {
954 	struct qed_llh_filter_details filter_details;
955 
956 	filter_details.enable = 1;
957 	filter_details.value = ((u64)high << 32) | low;
958 	filter_details.hdr_sel = 0;
959 	filter_details.protocol_type = filter_prot_type;
960 	/* Mode: 0: MAC-address classification 1: protocol classification */
961 	filter_details.mode = filter_prot_type ? 1 : 0;
962 
963 	return qed_llh_access_filter(p_hwfn, p_ptt, abs_ppfid, filter_idx,
964 				     &filter_details);
965 }
966 
967 static int
968 qed_llh_remove_filter(struct qed_hwfn *p_hwfn,
969 		      struct qed_ptt *p_ptt, u8 abs_ppfid, u8 filter_idx)
970 {
971 	struct qed_llh_filter_details filter_details = {0};
972 
973 	return qed_llh_access_filter(p_hwfn, p_ptt, abs_ppfid, filter_idx,
974 				     &filter_details);
975 }
976 
977 int qed_llh_add_mac_filter(struct qed_dev *cdev,
978 			   u8 ppfid, u8 mac_addr[ETH_ALEN])
979 {
980 	struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
981 	struct qed_ptt *p_ptt = qed_ptt_acquire(p_hwfn);
982 	union qed_llh_filter filter = {};
983 	u8 filter_idx, abs_ppfid;
984 	u32 high, low, ref_cnt;
985 	int rc = 0;
986 
987 	if (!p_ptt)
988 		return -EAGAIN;
989 
990 	if (!test_bit(QED_MF_LLH_MAC_CLSS, &cdev->mf_bits))
991 		goto out;
992 
993 	memcpy(filter.mac.addr, mac_addr, ETH_ALEN);
994 	rc = qed_llh_shadow_add_filter(cdev, ppfid,
995 				       QED_LLH_FILTER_TYPE_MAC,
996 				       &filter, &filter_idx, &ref_cnt);
997 	if (rc)
998 		goto err;
999 
1000 	/* Configure the LLH only in case of a new the filter */
1001 	if (ref_cnt == 1) {
1002 		rc = qed_llh_abs_ppfid(cdev, ppfid, &abs_ppfid);
1003 		if (rc)
1004 			goto err;
1005 
1006 		high = mac_addr[1] | (mac_addr[0] << 8);
1007 		low = mac_addr[5] | (mac_addr[4] << 8) | (mac_addr[3] << 16) |
1008 		      (mac_addr[2] << 24);
1009 		rc = qed_llh_add_filter(p_hwfn, p_ptt, abs_ppfid, filter_idx,
1010 					0, high, low);
1011 		if (rc)
1012 			goto err;
1013 	}
1014 
1015 	DP_VERBOSE(cdev,
1016 		   QED_MSG_SP,
1017 		   "LLH: Added MAC filter [%pM] to ppfid %hhd [abs %hhd] at idx %hhd [ref_cnt %d]\n",
1018 		   mac_addr, ppfid, abs_ppfid, filter_idx, ref_cnt);
1019 
1020 	goto out;
1021 
1022 err:	DP_NOTICE(cdev,
1023 		  "LLH: Failed to add MAC filter [%pM] to ppfid %hhd\n",
1024 		  mac_addr, ppfid);
1025 out:
1026 	qed_ptt_release(p_hwfn, p_ptt);
1027 
1028 	return rc;
1029 }
1030 
1031 static int
1032 qed_llh_protocol_filter_stringify(struct qed_dev *cdev,
1033 				  enum qed_llh_prot_filter_type_t type,
1034 				  u16 source_port_or_eth_type,
1035 				  u16 dest_port, u8 *str, size_t str_len)
1036 {
1037 	switch (type) {
1038 	case QED_LLH_FILTER_ETHERTYPE:
1039 		snprintf(str, str_len, "Ethertype 0x%04x",
1040 			 source_port_or_eth_type);
1041 		break;
1042 	case QED_LLH_FILTER_TCP_SRC_PORT:
1043 		snprintf(str, str_len, "TCP src port 0x%04x",
1044 			 source_port_or_eth_type);
1045 		break;
1046 	case QED_LLH_FILTER_UDP_SRC_PORT:
1047 		snprintf(str, str_len, "UDP src port 0x%04x",
1048 			 source_port_or_eth_type);
1049 		break;
1050 	case QED_LLH_FILTER_TCP_DEST_PORT:
1051 		snprintf(str, str_len, "TCP dst port 0x%04x", dest_port);
1052 		break;
1053 	case QED_LLH_FILTER_UDP_DEST_PORT:
1054 		snprintf(str, str_len, "UDP dst port 0x%04x", dest_port);
1055 		break;
1056 	case QED_LLH_FILTER_TCP_SRC_AND_DEST_PORT:
1057 		snprintf(str, str_len, "TCP src/dst ports 0x%04x/0x%04x",
1058 			 source_port_or_eth_type, dest_port);
1059 		break;
1060 	case QED_LLH_FILTER_UDP_SRC_AND_DEST_PORT:
1061 		snprintf(str, str_len, "UDP src/dst ports 0x%04x/0x%04x",
1062 			 source_port_or_eth_type, dest_port);
1063 		break;
1064 	default:
1065 		DP_NOTICE(cdev,
1066 			  "Non valid LLH protocol filter type %d\n", type);
1067 		return -EINVAL;
1068 	}
1069 
1070 	return 0;
1071 }
1072 
1073 static int
1074 qed_llh_protocol_filter_to_hilo(struct qed_dev *cdev,
1075 				enum qed_llh_prot_filter_type_t type,
1076 				u16 source_port_or_eth_type,
1077 				u16 dest_port, u32 *p_high, u32 *p_low)
1078 {
1079 	*p_high = 0;
1080 	*p_low = 0;
1081 
1082 	switch (type) {
1083 	case QED_LLH_FILTER_ETHERTYPE:
1084 		*p_high = source_port_or_eth_type;
1085 		break;
1086 	case QED_LLH_FILTER_TCP_SRC_PORT:
1087 	case QED_LLH_FILTER_UDP_SRC_PORT:
1088 		*p_low = source_port_or_eth_type << 16;
1089 		break;
1090 	case QED_LLH_FILTER_TCP_DEST_PORT:
1091 	case QED_LLH_FILTER_UDP_DEST_PORT:
1092 		*p_low = dest_port;
1093 		break;
1094 	case QED_LLH_FILTER_TCP_SRC_AND_DEST_PORT:
1095 	case QED_LLH_FILTER_UDP_SRC_AND_DEST_PORT:
1096 		*p_low = (source_port_or_eth_type << 16) | dest_port;
1097 		break;
1098 	default:
1099 		DP_NOTICE(cdev,
1100 			  "Non valid LLH protocol filter type %d\n", type);
1101 		return -EINVAL;
1102 	}
1103 
1104 	return 0;
1105 }
1106 
1107 int
1108 qed_llh_add_protocol_filter(struct qed_dev *cdev,
1109 			    u8 ppfid,
1110 			    enum qed_llh_prot_filter_type_t type,
1111 			    u16 source_port_or_eth_type, u16 dest_port)
1112 {
1113 	struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
1114 	struct qed_ptt *p_ptt = qed_ptt_acquire(p_hwfn);
1115 	u8 filter_idx, abs_ppfid, str[32], type_bitmap;
1116 	union qed_llh_filter filter = {};
1117 	u32 high, low, ref_cnt;
1118 	int rc = 0;
1119 
1120 	if (!p_ptt)
1121 		return -EAGAIN;
1122 
1123 	if (!test_bit(QED_MF_LLH_PROTO_CLSS, &cdev->mf_bits))
1124 		goto out;
1125 
1126 	rc = qed_llh_protocol_filter_stringify(cdev, type,
1127 					       source_port_or_eth_type,
1128 					       dest_port, str, sizeof(str));
1129 	if (rc)
1130 		goto err;
1131 
1132 	filter.protocol.type = type;
1133 	filter.protocol.source_port_or_eth_type = source_port_or_eth_type;
1134 	filter.protocol.dest_port = dest_port;
1135 	rc = qed_llh_shadow_add_filter(cdev,
1136 				       ppfid,
1137 				       QED_LLH_FILTER_TYPE_PROTOCOL,
1138 				       &filter, &filter_idx, &ref_cnt);
1139 	if (rc)
1140 		goto err;
1141 
1142 	rc = qed_llh_abs_ppfid(cdev, ppfid, &abs_ppfid);
1143 	if (rc)
1144 		goto err;
1145 
1146 	/* Configure the LLH only in case of a new the filter */
1147 	if (ref_cnt == 1) {
1148 		rc = qed_llh_protocol_filter_to_hilo(cdev, type,
1149 						     source_port_or_eth_type,
1150 						     dest_port, &high, &low);
1151 		if (rc)
1152 			goto err;
1153 
1154 		type_bitmap = 0x1 << type;
1155 		rc = qed_llh_add_filter(p_hwfn, p_ptt, abs_ppfid,
1156 					filter_idx, type_bitmap, high, low);
1157 		if (rc)
1158 			goto err;
1159 	}
1160 
1161 	DP_VERBOSE(cdev,
1162 		   QED_MSG_SP,
1163 		   "LLH: Added protocol filter [%s] to ppfid %hhd [abs %hhd] at idx %hhd [ref_cnt %d]\n",
1164 		   str, ppfid, abs_ppfid, filter_idx, ref_cnt);
1165 
1166 	goto out;
1167 
1168 err:	DP_NOTICE(p_hwfn,
1169 		  "LLH: Failed to add protocol filter [%s] to ppfid %hhd\n",
1170 		  str, ppfid);
1171 out:
1172 	qed_ptt_release(p_hwfn, p_ptt);
1173 
1174 	return rc;
1175 }
1176 
1177 void qed_llh_remove_mac_filter(struct qed_dev *cdev,
1178 			       u8 ppfid, u8 mac_addr[ETH_ALEN])
1179 {
1180 	struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
1181 	struct qed_ptt *p_ptt = qed_ptt_acquire(p_hwfn);
1182 	union qed_llh_filter filter = {};
1183 	u8 filter_idx, abs_ppfid;
1184 	int rc = 0;
1185 	u32 ref_cnt;
1186 
1187 	if (!p_ptt)
1188 		return;
1189 
1190 	if (!test_bit(QED_MF_LLH_MAC_CLSS, &cdev->mf_bits))
1191 		goto out;
1192 
1193 	ether_addr_copy(filter.mac.addr, mac_addr);
1194 	rc = qed_llh_shadow_remove_filter(cdev, ppfid, &filter, &filter_idx,
1195 					  &ref_cnt);
1196 	if (rc)
1197 		goto err;
1198 
1199 	rc = qed_llh_abs_ppfid(cdev, ppfid, &abs_ppfid);
1200 	if (rc)
1201 		goto err;
1202 
1203 	/* Remove from the LLH in case the filter is not in use */
1204 	if (!ref_cnt) {
1205 		rc = qed_llh_remove_filter(p_hwfn, p_ptt, abs_ppfid,
1206 					   filter_idx);
1207 		if (rc)
1208 			goto err;
1209 	}
1210 
1211 	DP_VERBOSE(cdev,
1212 		   QED_MSG_SP,
1213 		   "LLH: Removed MAC filter [%pM] from ppfid %hhd [abs %hhd] at idx %hhd [ref_cnt %d]\n",
1214 		   mac_addr, ppfid, abs_ppfid, filter_idx, ref_cnt);
1215 
1216 	goto out;
1217 
1218 err:	DP_NOTICE(cdev,
1219 		  "LLH: Failed to remove MAC filter [%pM] from ppfid %hhd\n",
1220 		  mac_addr, ppfid);
1221 out:
1222 	qed_ptt_release(p_hwfn, p_ptt);
1223 }
1224 
1225 void qed_llh_remove_protocol_filter(struct qed_dev *cdev,
1226 				    u8 ppfid,
1227 				    enum qed_llh_prot_filter_type_t type,
1228 				    u16 source_port_or_eth_type, u16 dest_port)
1229 {
1230 	struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
1231 	struct qed_ptt *p_ptt = qed_ptt_acquire(p_hwfn);
1232 	u8 filter_idx, abs_ppfid, str[32];
1233 	union qed_llh_filter filter = {};
1234 	int rc = 0;
1235 	u32 ref_cnt;
1236 
1237 	if (!p_ptt)
1238 		return;
1239 
1240 	if (!test_bit(QED_MF_LLH_PROTO_CLSS, &cdev->mf_bits))
1241 		goto out;
1242 
1243 	rc = qed_llh_protocol_filter_stringify(cdev, type,
1244 					       source_port_or_eth_type,
1245 					       dest_port, str, sizeof(str));
1246 	if (rc)
1247 		goto err;
1248 
1249 	filter.protocol.type = type;
1250 	filter.protocol.source_port_or_eth_type = source_port_or_eth_type;
1251 	filter.protocol.dest_port = dest_port;
1252 	rc = qed_llh_shadow_remove_filter(cdev, ppfid, &filter, &filter_idx,
1253 					  &ref_cnt);
1254 	if (rc)
1255 		goto err;
1256 
1257 	rc = qed_llh_abs_ppfid(cdev, ppfid, &abs_ppfid);
1258 	if (rc)
1259 		goto err;
1260 
1261 	/* Remove from the LLH in case the filter is not in use */
1262 	if (!ref_cnt) {
1263 		rc = qed_llh_remove_filter(p_hwfn, p_ptt, abs_ppfid,
1264 					   filter_idx);
1265 		if (rc)
1266 			goto err;
1267 	}
1268 
1269 	DP_VERBOSE(cdev,
1270 		   QED_MSG_SP,
1271 		   "LLH: Removed protocol filter [%s] from ppfid %hhd [abs %hhd] at idx %hhd [ref_cnt %d]\n",
1272 		   str, ppfid, abs_ppfid, filter_idx, ref_cnt);
1273 
1274 	goto out;
1275 
1276 err:	DP_NOTICE(cdev,
1277 		  "LLH: Failed to remove protocol filter [%s] from ppfid %hhd\n",
1278 		  str, ppfid);
1279 out:
1280 	qed_ptt_release(p_hwfn, p_ptt);
1281 }
1282 
1283 /******************************* NIG LLH - End ********************************/
1284 
1285 #define QED_MIN_DPIS            (4)
1286 #define QED_MIN_PWM_REGION      (QED_WID_SIZE * QED_MIN_DPIS)
1287 
1288 static u32 qed_hw_bar_size(struct qed_hwfn *p_hwfn,
1289 			   struct qed_ptt *p_ptt, enum BAR_ID bar_id)
1290 {
1291 	u32 bar_reg = (bar_id == BAR_ID_0 ?
1292 		       PGLUE_B_REG_PF_BAR0_SIZE : PGLUE_B_REG_PF_BAR1_SIZE);
1293 	u32 val;
1294 
1295 	if (IS_VF(p_hwfn->cdev))
1296 		return qed_vf_hw_bar_size(p_hwfn, bar_id);
1297 
1298 	val = qed_rd(p_hwfn, p_ptt, bar_reg);
1299 	if (val)
1300 		return 1 << (val + 15);
1301 
1302 	/* Old MFW initialized above registered only conditionally */
1303 	if (p_hwfn->cdev->num_hwfns > 1) {
1304 		DP_INFO(p_hwfn,
1305 			"BAR size not configured. Assuming BAR size of 256kB for GRC and 512kB for DB\n");
1306 			return BAR_ID_0 ? 256 * 1024 : 512 * 1024;
1307 	} else {
1308 		DP_INFO(p_hwfn,
1309 			"BAR size not configured. Assuming BAR size of 512kB for GRC and 512kB for DB\n");
1310 			return 512 * 1024;
1311 	}
1312 }
1313 
1314 void qed_init_dp(struct qed_dev *cdev, u32 dp_module, u8 dp_level)
1315 {
1316 	u32 i;
1317 
1318 	cdev->dp_level = dp_level;
1319 	cdev->dp_module = dp_module;
1320 	for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) {
1321 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
1322 
1323 		p_hwfn->dp_level = dp_level;
1324 		p_hwfn->dp_module = dp_module;
1325 	}
1326 }
1327 
1328 void qed_init_struct(struct qed_dev *cdev)
1329 {
1330 	u8 i;
1331 
1332 	for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) {
1333 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
1334 
1335 		p_hwfn->cdev = cdev;
1336 		p_hwfn->my_id = i;
1337 		p_hwfn->b_active = false;
1338 
1339 		mutex_init(&p_hwfn->dmae_info.mutex);
1340 	}
1341 
1342 	/* hwfn 0 is always active */
1343 	cdev->hwfns[0].b_active = true;
1344 
1345 	/* set the default cache alignment to 128 */
1346 	cdev->cache_shift = 7;
1347 }
1348 
1349 static void qed_qm_info_free(struct qed_hwfn *p_hwfn)
1350 {
1351 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
1352 
1353 	kfree(qm_info->qm_pq_params);
1354 	qm_info->qm_pq_params = NULL;
1355 	kfree(qm_info->qm_vport_params);
1356 	qm_info->qm_vport_params = NULL;
1357 	kfree(qm_info->qm_port_params);
1358 	qm_info->qm_port_params = NULL;
1359 	kfree(qm_info->wfq_data);
1360 	qm_info->wfq_data = NULL;
1361 }
1362 
1363 static void qed_dbg_user_data_free(struct qed_hwfn *p_hwfn)
1364 {
1365 	kfree(p_hwfn->dbg_user_info);
1366 	p_hwfn->dbg_user_info = NULL;
1367 }
1368 
1369 void qed_resc_free(struct qed_dev *cdev)
1370 {
1371 	int i;
1372 
1373 	if (IS_VF(cdev)) {
1374 		for_each_hwfn(cdev, i)
1375 			qed_l2_free(&cdev->hwfns[i]);
1376 		return;
1377 	}
1378 
1379 	kfree(cdev->fw_data);
1380 	cdev->fw_data = NULL;
1381 
1382 	kfree(cdev->reset_stats);
1383 	cdev->reset_stats = NULL;
1384 
1385 	qed_llh_free(cdev);
1386 
1387 	for_each_hwfn(cdev, i) {
1388 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
1389 
1390 		qed_cxt_mngr_free(p_hwfn);
1391 		qed_qm_info_free(p_hwfn);
1392 		qed_spq_free(p_hwfn);
1393 		qed_eq_free(p_hwfn);
1394 		qed_consq_free(p_hwfn);
1395 		qed_int_free(p_hwfn);
1396 #ifdef CONFIG_QED_LL2
1397 		qed_ll2_free(p_hwfn);
1398 #endif
1399 		if (p_hwfn->hw_info.personality == QED_PCI_FCOE)
1400 			qed_fcoe_free(p_hwfn);
1401 
1402 		if (p_hwfn->hw_info.personality == QED_PCI_ISCSI) {
1403 			qed_iscsi_free(p_hwfn);
1404 			qed_ooo_free(p_hwfn);
1405 		}
1406 
1407 		if (QED_IS_RDMA_PERSONALITY(p_hwfn))
1408 			qed_rdma_info_free(p_hwfn);
1409 
1410 		qed_iov_free(p_hwfn);
1411 		qed_l2_free(p_hwfn);
1412 		qed_dmae_info_free(p_hwfn);
1413 		qed_dcbx_info_free(p_hwfn);
1414 		qed_dbg_user_data_free(p_hwfn);
1415 		qed_fw_overlay_mem_free(p_hwfn, p_hwfn->fw_overlay_mem);
1416 
1417 		/* Destroy doorbell recovery mechanism */
1418 		qed_db_recovery_teardown(p_hwfn);
1419 	}
1420 }
1421 
1422 /******************** QM initialization *******************/
1423 #define ACTIVE_TCS_BMAP 0x9f
1424 #define ACTIVE_TCS_BMAP_4PORT_K2 0xf
1425 
1426 /* determines the physical queue flags for a given PF. */
1427 static u32 qed_get_pq_flags(struct qed_hwfn *p_hwfn)
1428 {
1429 	u32 flags;
1430 
1431 	/* common flags */
1432 	flags = PQ_FLAGS_LB;
1433 
1434 	/* feature flags */
1435 	if (IS_QED_SRIOV(p_hwfn->cdev))
1436 		flags |= PQ_FLAGS_VFS;
1437 
1438 	/* protocol flags */
1439 	switch (p_hwfn->hw_info.personality) {
1440 	case QED_PCI_ETH:
1441 		flags |= PQ_FLAGS_MCOS;
1442 		break;
1443 	case QED_PCI_FCOE:
1444 		flags |= PQ_FLAGS_OFLD;
1445 		break;
1446 	case QED_PCI_ISCSI:
1447 		flags |= PQ_FLAGS_ACK | PQ_FLAGS_OOO | PQ_FLAGS_OFLD;
1448 		break;
1449 	case QED_PCI_ETH_ROCE:
1450 		flags |= PQ_FLAGS_MCOS | PQ_FLAGS_OFLD | PQ_FLAGS_LLT;
1451 		if (IS_QED_MULTI_TC_ROCE(p_hwfn))
1452 			flags |= PQ_FLAGS_MTC;
1453 		break;
1454 	case QED_PCI_ETH_IWARP:
1455 		flags |= PQ_FLAGS_MCOS | PQ_FLAGS_ACK | PQ_FLAGS_OOO |
1456 		    PQ_FLAGS_OFLD;
1457 		break;
1458 	default:
1459 		DP_ERR(p_hwfn,
1460 		       "unknown personality %d\n", p_hwfn->hw_info.personality);
1461 		return 0;
1462 	}
1463 
1464 	return flags;
1465 }
1466 
1467 /* Getters for resource amounts necessary for qm initialization */
1468 static u8 qed_init_qm_get_num_tcs(struct qed_hwfn *p_hwfn)
1469 {
1470 	return p_hwfn->hw_info.num_hw_tc;
1471 }
1472 
1473 static u16 qed_init_qm_get_num_vfs(struct qed_hwfn *p_hwfn)
1474 {
1475 	return IS_QED_SRIOV(p_hwfn->cdev) ?
1476 	       p_hwfn->cdev->p_iov_info->total_vfs : 0;
1477 }
1478 
1479 static u8 qed_init_qm_get_num_mtc_tcs(struct qed_hwfn *p_hwfn)
1480 {
1481 	u32 pq_flags = qed_get_pq_flags(p_hwfn);
1482 
1483 	if (!(PQ_FLAGS_MTC & pq_flags))
1484 		return 1;
1485 
1486 	return qed_init_qm_get_num_tcs(p_hwfn);
1487 }
1488 
1489 #define NUM_DEFAULT_RLS 1
1490 
1491 static u16 qed_init_qm_get_num_pf_rls(struct qed_hwfn *p_hwfn)
1492 {
1493 	u16 num_pf_rls, num_vfs = qed_init_qm_get_num_vfs(p_hwfn);
1494 
1495 	/* num RLs can't exceed resource amount of rls or vports */
1496 	num_pf_rls = (u16) min_t(u32, RESC_NUM(p_hwfn, QED_RL),
1497 				 RESC_NUM(p_hwfn, QED_VPORT));
1498 
1499 	/* Make sure after we reserve there's something left */
1500 	if (num_pf_rls < num_vfs + NUM_DEFAULT_RLS)
1501 		return 0;
1502 
1503 	/* subtract rls necessary for VFs and one default one for the PF */
1504 	num_pf_rls -= num_vfs + NUM_DEFAULT_RLS;
1505 
1506 	return num_pf_rls;
1507 }
1508 
1509 static u16 qed_init_qm_get_num_vports(struct qed_hwfn *p_hwfn)
1510 {
1511 	u32 pq_flags = qed_get_pq_flags(p_hwfn);
1512 
1513 	/* all pqs share the same vport, except for vfs and pf_rl pqs */
1514 	return (!!(PQ_FLAGS_RLS & pq_flags)) *
1515 	       qed_init_qm_get_num_pf_rls(p_hwfn) +
1516 	       (!!(PQ_FLAGS_VFS & pq_flags)) *
1517 	       qed_init_qm_get_num_vfs(p_hwfn) + 1;
1518 }
1519 
1520 /* calc amount of PQs according to the requested flags */
1521 static u16 qed_init_qm_get_num_pqs(struct qed_hwfn *p_hwfn)
1522 {
1523 	u32 pq_flags = qed_get_pq_flags(p_hwfn);
1524 
1525 	return (!!(PQ_FLAGS_RLS & pq_flags)) *
1526 	       qed_init_qm_get_num_pf_rls(p_hwfn) +
1527 	       (!!(PQ_FLAGS_MCOS & pq_flags)) *
1528 	       qed_init_qm_get_num_tcs(p_hwfn) +
1529 	       (!!(PQ_FLAGS_LB & pq_flags)) + (!!(PQ_FLAGS_OOO & pq_flags)) +
1530 	       (!!(PQ_FLAGS_ACK & pq_flags)) +
1531 	       (!!(PQ_FLAGS_OFLD & pq_flags)) *
1532 	       qed_init_qm_get_num_mtc_tcs(p_hwfn) +
1533 	       (!!(PQ_FLAGS_LLT & pq_flags)) *
1534 	       qed_init_qm_get_num_mtc_tcs(p_hwfn) +
1535 	       (!!(PQ_FLAGS_VFS & pq_flags)) * qed_init_qm_get_num_vfs(p_hwfn);
1536 }
1537 
1538 /* initialize the top level QM params */
1539 static void qed_init_qm_params(struct qed_hwfn *p_hwfn)
1540 {
1541 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
1542 	bool four_port;
1543 
1544 	/* pq and vport bases for this PF */
1545 	qm_info->start_pq = (u16) RESC_START(p_hwfn, QED_PQ);
1546 	qm_info->start_vport = (u8) RESC_START(p_hwfn, QED_VPORT);
1547 
1548 	/* rate limiting and weighted fair queueing are always enabled */
1549 	qm_info->vport_rl_en = true;
1550 	qm_info->vport_wfq_en = true;
1551 
1552 	/* TC config is different for AH 4 port */
1553 	four_port = p_hwfn->cdev->num_ports_in_engine == MAX_NUM_PORTS_K2;
1554 
1555 	/* in AH 4 port we have fewer TCs per port */
1556 	qm_info->max_phys_tcs_per_port = four_port ? NUM_PHYS_TCS_4PORT_K2 :
1557 						     NUM_OF_PHYS_TCS;
1558 
1559 	/* unless MFW indicated otherwise, ooo_tc == 3 for
1560 	 * AH 4-port and 4 otherwise.
1561 	 */
1562 	if (!qm_info->ooo_tc)
1563 		qm_info->ooo_tc = four_port ? DCBX_TCP_OOO_K2_4PORT_TC :
1564 					      DCBX_TCP_OOO_TC;
1565 }
1566 
1567 /* initialize qm vport params */
1568 static void qed_init_qm_vport_params(struct qed_hwfn *p_hwfn)
1569 {
1570 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
1571 	u8 i;
1572 
1573 	/* all vports participate in weighted fair queueing */
1574 	for (i = 0; i < qed_init_qm_get_num_vports(p_hwfn); i++)
1575 		qm_info->qm_vport_params[i].wfq = 1;
1576 }
1577 
1578 /* initialize qm port params */
1579 static void qed_init_qm_port_params(struct qed_hwfn *p_hwfn)
1580 {
1581 	/* Initialize qm port parameters */
1582 	u8 i, active_phys_tcs, num_ports = p_hwfn->cdev->num_ports_in_engine;
1583 	struct qed_dev *cdev = p_hwfn->cdev;
1584 
1585 	/* indicate how ooo and high pri traffic is dealt with */
1586 	active_phys_tcs = num_ports == MAX_NUM_PORTS_K2 ?
1587 			  ACTIVE_TCS_BMAP_4PORT_K2 :
1588 			  ACTIVE_TCS_BMAP;
1589 
1590 	for (i = 0; i < num_ports; i++) {
1591 		struct init_qm_port_params *p_qm_port =
1592 		    &p_hwfn->qm_info.qm_port_params[i];
1593 		u16 pbf_max_cmd_lines;
1594 
1595 		p_qm_port->active = 1;
1596 		p_qm_port->active_phys_tcs = active_phys_tcs;
1597 		pbf_max_cmd_lines = (u16)NUM_OF_PBF_CMD_LINES(cdev);
1598 		p_qm_port->num_pbf_cmd_lines = pbf_max_cmd_lines / num_ports;
1599 		p_qm_port->num_btb_blocks = NUM_OF_BTB_BLOCKS(cdev) / num_ports;
1600 	}
1601 }
1602 
1603 /* Reset the params which must be reset for qm init. QM init may be called as
1604  * a result of flows other than driver load (e.g. dcbx renegotiation). Other
1605  * params may be affected by the init but would simply recalculate to the same
1606  * values. The allocations made for QM init, ports, vports, pqs and vfqs are not
1607  * affected as these amounts stay the same.
1608  */
1609 static void qed_init_qm_reset_params(struct qed_hwfn *p_hwfn)
1610 {
1611 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
1612 
1613 	qm_info->num_pqs = 0;
1614 	qm_info->num_vports = 0;
1615 	qm_info->num_pf_rls = 0;
1616 	qm_info->num_vf_pqs = 0;
1617 	qm_info->first_vf_pq = 0;
1618 	qm_info->first_mcos_pq = 0;
1619 	qm_info->first_rl_pq = 0;
1620 }
1621 
1622 static void qed_init_qm_advance_vport(struct qed_hwfn *p_hwfn)
1623 {
1624 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
1625 
1626 	qm_info->num_vports++;
1627 
1628 	if (qm_info->num_vports > qed_init_qm_get_num_vports(p_hwfn))
1629 		DP_ERR(p_hwfn,
1630 		       "vport overflow! qm_info->num_vports %d, qm_init_get_num_vports() %d\n",
1631 		       qm_info->num_vports, qed_init_qm_get_num_vports(p_hwfn));
1632 }
1633 
1634 /* initialize a single pq and manage qm_info resources accounting.
1635  * The pq_init_flags param determines whether the PQ is rate limited
1636  * (for VF or PF) and whether a new vport is allocated to the pq or not
1637  * (i.e. vport will be shared).
1638  */
1639 
1640 /* flags for pq init */
1641 #define PQ_INIT_SHARE_VPORT     (1 << 0)
1642 #define PQ_INIT_PF_RL           (1 << 1)
1643 #define PQ_INIT_VF_RL           (1 << 2)
1644 
1645 /* defines for pq init */
1646 #define PQ_INIT_DEFAULT_WRR_GROUP       1
1647 #define PQ_INIT_DEFAULT_TC              0
1648 
1649 void qed_hw_info_set_offload_tc(struct qed_hw_info *p_info, u8 tc)
1650 {
1651 	p_info->offload_tc = tc;
1652 	p_info->offload_tc_set = true;
1653 }
1654 
1655 static bool qed_is_offload_tc_set(struct qed_hwfn *p_hwfn)
1656 {
1657 	return p_hwfn->hw_info.offload_tc_set;
1658 }
1659 
1660 static u32 qed_get_offload_tc(struct qed_hwfn *p_hwfn)
1661 {
1662 	if (qed_is_offload_tc_set(p_hwfn))
1663 		return p_hwfn->hw_info.offload_tc;
1664 
1665 	return PQ_INIT_DEFAULT_TC;
1666 }
1667 
1668 static void qed_init_qm_pq(struct qed_hwfn *p_hwfn,
1669 			   struct qed_qm_info *qm_info,
1670 			   u8 tc, u32 pq_init_flags)
1671 {
1672 	u16 pq_idx = qm_info->num_pqs, max_pq = qed_init_qm_get_num_pqs(p_hwfn);
1673 
1674 	if (pq_idx > max_pq)
1675 		DP_ERR(p_hwfn,
1676 		       "pq overflow! pq %d, max pq %d\n", pq_idx, max_pq);
1677 
1678 	/* init pq params */
1679 	qm_info->qm_pq_params[pq_idx].port_id = p_hwfn->port_id;
1680 	qm_info->qm_pq_params[pq_idx].vport_id = qm_info->start_vport +
1681 	    qm_info->num_vports;
1682 	qm_info->qm_pq_params[pq_idx].tc_id = tc;
1683 	qm_info->qm_pq_params[pq_idx].wrr_group = PQ_INIT_DEFAULT_WRR_GROUP;
1684 	qm_info->qm_pq_params[pq_idx].rl_valid =
1685 	    (pq_init_flags & PQ_INIT_PF_RL || pq_init_flags & PQ_INIT_VF_RL);
1686 
1687 	/* qm params accounting */
1688 	qm_info->num_pqs++;
1689 	if (!(pq_init_flags & PQ_INIT_SHARE_VPORT))
1690 		qm_info->num_vports++;
1691 
1692 	if (pq_init_flags & PQ_INIT_PF_RL)
1693 		qm_info->num_pf_rls++;
1694 
1695 	if (qm_info->num_vports > qed_init_qm_get_num_vports(p_hwfn))
1696 		DP_ERR(p_hwfn,
1697 		       "vport overflow! qm_info->num_vports %d, qm_init_get_num_vports() %d\n",
1698 		       qm_info->num_vports, qed_init_qm_get_num_vports(p_hwfn));
1699 
1700 	if (qm_info->num_pf_rls > qed_init_qm_get_num_pf_rls(p_hwfn))
1701 		DP_ERR(p_hwfn,
1702 		       "rl overflow! qm_info->num_pf_rls %d, qm_init_get_num_pf_rls() %d\n",
1703 		       qm_info->num_pf_rls, qed_init_qm_get_num_pf_rls(p_hwfn));
1704 }
1705 
1706 /* get pq index according to PQ_FLAGS */
1707 static u16 *qed_init_qm_get_idx_from_flags(struct qed_hwfn *p_hwfn,
1708 					   unsigned long pq_flags)
1709 {
1710 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
1711 
1712 	/* Can't have multiple flags set here */
1713 	if (bitmap_weight(&pq_flags,
1714 			  sizeof(pq_flags) * BITS_PER_BYTE) > 1) {
1715 		DP_ERR(p_hwfn, "requested multiple pq flags 0x%lx\n", pq_flags);
1716 		goto err;
1717 	}
1718 
1719 	if (!(qed_get_pq_flags(p_hwfn) & pq_flags)) {
1720 		DP_ERR(p_hwfn, "pq flag 0x%lx is not set\n", pq_flags);
1721 		goto err;
1722 	}
1723 
1724 	switch (pq_flags) {
1725 	case PQ_FLAGS_RLS:
1726 		return &qm_info->first_rl_pq;
1727 	case PQ_FLAGS_MCOS:
1728 		return &qm_info->first_mcos_pq;
1729 	case PQ_FLAGS_LB:
1730 		return &qm_info->pure_lb_pq;
1731 	case PQ_FLAGS_OOO:
1732 		return &qm_info->ooo_pq;
1733 	case PQ_FLAGS_ACK:
1734 		return &qm_info->pure_ack_pq;
1735 	case PQ_FLAGS_OFLD:
1736 		return &qm_info->first_ofld_pq;
1737 	case PQ_FLAGS_LLT:
1738 		return &qm_info->first_llt_pq;
1739 	case PQ_FLAGS_VFS:
1740 		return &qm_info->first_vf_pq;
1741 	default:
1742 		goto err;
1743 	}
1744 
1745 err:
1746 	return &qm_info->start_pq;
1747 }
1748 
1749 /* save pq index in qm info */
1750 static void qed_init_qm_set_idx(struct qed_hwfn *p_hwfn,
1751 				u32 pq_flags, u16 pq_val)
1752 {
1753 	u16 *base_pq_idx = qed_init_qm_get_idx_from_flags(p_hwfn, pq_flags);
1754 
1755 	*base_pq_idx = p_hwfn->qm_info.start_pq + pq_val;
1756 }
1757 
1758 /* get tx pq index, with the PQ TX base already set (ready for context init) */
1759 u16 qed_get_cm_pq_idx(struct qed_hwfn *p_hwfn, u32 pq_flags)
1760 {
1761 	u16 *base_pq_idx = qed_init_qm_get_idx_from_flags(p_hwfn, pq_flags);
1762 
1763 	return *base_pq_idx + CM_TX_PQ_BASE;
1764 }
1765 
1766 u16 qed_get_cm_pq_idx_mcos(struct qed_hwfn *p_hwfn, u8 tc)
1767 {
1768 	u8 max_tc = qed_init_qm_get_num_tcs(p_hwfn);
1769 
1770 	if (max_tc == 0) {
1771 		DP_ERR(p_hwfn, "pq with flag 0x%lx do not exist\n",
1772 		       PQ_FLAGS_MCOS);
1773 		return p_hwfn->qm_info.start_pq;
1774 	}
1775 
1776 	if (tc > max_tc)
1777 		DP_ERR(p_hwfn, "tc %d must be smaller than %d\n", tc, max_tc);
1778 
1779 	return qed_get_cm_pq_idx(p_hwfn, PQ_FLAGS_MCOS) + (tc % max_tc);
1780 }
1781 
1782 u16 qed_get_cm_pq_idx_vf(struct qed_hwfn *p_hwfn, u16 vf)
1783 {
1784 	u16 max_vf = qed_init_qm_get_num_vfs(p_hwfn);
1785 
1786 	if (max_vf == 0) {
1787 		DP_ERR(p_hwfn, "pq with flag 0x%lx do not exist\n",
1788 		       PQ_FLAGS_VFS);
1789 		return p_hwfn->qm_info.start_pq;
1790 	}
1791 
1792 	if (vf > max_vf)
1793 		DP_ERR(p_hwfn, "vf %d must be smaller than %d\n", vf, max_vf);
1794 
1795 	return qed_get_cm_pq_idx(p_hwfn, PQ_FLAGS_VFS) + (vf % max_vf);
1796 }
1797 
1798 u16 qed_get_cm_pq_idx_ofld_mtc(struct qed_hwfn *p_hwfn, u8 tc)
1799 {
1800 	u16 first_ofld_pq, pq_offset;
1801 
1802 	first_ofld_pq = qed_get_cm_pq_idx(p_hwfn, PQ_FLAGS_OFLD);
1803 	pq_offset = (tc < qed_init_qm_get_num_mtc_tcs(p_hwfn)) ?
1804 		    tc : PQ_INIT_DEFAULT_TC;
1805 
1806 	return first_ofld_pq + pq_offset;
1807 }
1808 
1809 u16 qed_get_cm_pq_idx_llt_mtc(struct qed_hwfn *p_hwfn, u8 tc)
1810 {
1811 	u16 first_llt_pq, pq_offset;
1812 
1813 	first_llt_pq = qed_get_cm_pq_idx(p_hwfn, PQ_FLAGS_LLT);
1814 	pq_offset = (tc < qed_init_qm_get_num_mtc_tcs(p_hwfn)) ?
1815 		    tc : PQ_INIT_DEFAULT_TC;
1816 
1817 	return first_llt_pq + pq_offset;
1818 }
1819 
1820 /* Functions for creating specific types of pqs */
1821 static void qed_init_qm_lb_pq(struct qed_hwfn *p_hwfn)
1822 {
1823 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
1824 
1825 	if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_LB))
1826 		return;
1827 
1828 	qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_LB, qm_info->num_pqs);
1829 	qed_init_qm_pq(p_hwfn, qm_info, PURE_LB_TC, PQ_INIT_SHARE_VPORT);
1830 }
1831 
1832 static void qed_init_qm_ooo_pq(struct qed_hwfn *p_hwfn)
1833 {
1834 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
1835 
1836 	if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_OOO))
1837 		return;
1838 
1839 	qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_OOO, qm_info->num_pqs);
1840 	qed_init_qm_pq(p_hwfn, qm_info, qm_info->ooo_tc, PQ_INIT_SHARE_VPORT);
1841 }
1842 
1843 static void qed_init_qm_pure_ack_pq(struct qed_hwfn *p_hwfn)
1844 {
1845 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
1846 
1847 	if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_ACK))
1848 		return;
1849 
1850 	qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_ACK, qm_info->num_pqs);
1851 	qed_init_qm_pq(p_hwfn, qm_info, qed_get_offload_tc(p_hwfn),
1852 		       PQ_INIT_SHARE_VPORT);
1853 }
1854 
1855 static void qed_init_qm_mtc_pqs(struct qed_hwfn *p_hwfn)
1856 {
1857 	u8 num_tcs = qed_init_qm_get_num_mtc_tcs(p_hwfn);
1858 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
1859 	u8 tc;
1860 
1861 	/* override pq's TC if offload TC is set */
1862 	for (tc = 0; tc < num_tcs; tc++)
1863 		qed_init_qm_pq(p_hwfn, qm_info,
1864 			       qed_is_offload_tc_set(p_hwfn) ?
1865 			       p_hwfn->hw_info.offload_tc : tc,
1866 			       PQ_INIT_SHARE_VPORT);
1867 }
1868 
1869 static void qed_init_qm_offload_pq(struct qed_hwfn *p_hwfn)
1870 {
1871 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
1872 
1873 	if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_OFLD))
1874 		return;
1875 
1876 	qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_OFLD, qm_info->num_pqs);
1877 	qed_init_qm_mtc_pqs(p_hwfn);
1878 }
1879 
1880 static void qed_init_qm_low_latency_pq(struct qed_hwfn *p_hwfn)
1881 {
1882 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
1883 
1884 	if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_LLT))
1885 		return;
1886 
1887 	qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_LLT, qm_info->num_pqs);
1888 	qed_init_qm_mtc_pqs(p_hwfn);
1889 }
1890 
1891 static void qed_init_qm_mcos_pqs(struct qed_hwfn *p_hwfn)
1892 {
1893 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
1894 	u8 tc_idx;
1895 
1896 	if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_MCOS))
1897 		return;
1898 
1899 	qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_MCOS, qm_info->num_pqs);
1900 	for (tc_idx = 0; tc_idx < qed_init_qm_get_num_tcs(p_hwfn); tc_idx++)
1901 		qed_init_qm_pq(p_hwfn, qm_info, tc_idx, PQ_INIT_SHARE_VPORT);
1902 }
1903 
1904 static void qed_init_qm_vf_pqs(struct qed_hwfn *p_hwfn)
1905 {
1906 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
1907 	u16 vf_idx, num_vfs = qed_init_qm_get_num_vfs(p_hwfn);
1908 
1909 	if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_VFS))
1910 		return;
1911 
1912 	qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_VFS, qm_info->num_pqs);
1913 	qm_info->num_vf_pqs = num_vfs;
1914 	for (vf_idx = 0; vf_idx < num_vfs; vf_idx++)
1915 		qed_init_qm_pq(p_hwfn,
1916 			       qm_info, PQ_INIT_DEFAULT_TC, PQ_INIT_VF_RL);
1917 }
1918 
1919 static void qed_init_qm_rl_pqs(struct qed_hwfn *p_hwfn)
1920 {
1921 	u16 pf_rls_idx, num_pf_rls = qed_init_qm_get_num_pf_rls(p_hwfn);
1922 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
1923 
1924 	if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_RLS))
1925 		return;
1926 
1927 	qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_RLS, qm_info->num_pqs);
1928 	for (pf_rls_idx = 0; pf_rls_idx < num_pf_rls; pf_rls_idx++)
1929 		qed_init_qm_pq(p_hwfn, qm_info, qed_get_offload_tc(p_hwfn),
1930 			       PQ_INIT_PF_RL);
1931 }
1932 
1933 static void qed_init_qm_pq_params(struct qed_hwfn *p_hwfn)
1934 {
1935 	/* rate limited pqs, must come first (FW assumption) */
1936 	qed_init_qm_rl_pqs(p_hwfn);
1937 
1938 	/* pqs for multi cos */
1939 	qed_init_qm_mcos_pqs(p_hwfn);
1940 
1941 	/* pure loopback pq */
1942 	qed_init_qm_lb_pq(p_hwfn);
1943 
1944 	/* out of order pq */
1945 	qed_init_qm_ooo_pq(p_hwfn);
1946 
1947 	/* pure ack pq */
1948 	qed_init_qm_pure_ack_pq(p_hwfn);
1949 
1950 	/* pq for offloaded protocol */
1951 	qed_init_qm_offload_pq(p_hwfn);
1952 
1953 	/* low latency pq */
1954 	qed_init_qm_low_latency_pq(p_hwfn);
1955 
1956 	/* done sharing vports */
1957 	qed_init_qm_advance_vport(p_hwfn);
1958 
1959 	/* pqs for vfs */
1960 	qed_init_qm_vf_pqs(p_hwfn);
1961 }
1962 
1963 /* compare values of getters against resources amounts */
1964 static int qed_init_qm_sanity(struct qed_hwfn *p_hwfn)
1965 {
1966 	if (qed_init_qm_get_num_vports(p_hwfn) > RESC_NUM(p_hwfn, QED_VPORT)) {
1967 		DP_ERR(p_hwfn, "requested amount of vports exceeds resource\n");
1968 		return -EINVAL;
1969 	}
1970 
1971 	if (qed_init_qm_get_num_pqs(p_hwfn) <= RESC_NUM(p_hwfn, QED_PQ))
1972 		return 0;
1973 
1974 	if (QED_IS_ROCE_PERSONALITY(p_hwfn)) {
1975 		p_hwfn->hw_info.multi_tc_roce_en = false;
1976 		DP_NOTICE(p_hwfn,
1977 			  "multi-tc roce was disabled to reduce requested amount of pqs\n");
1978 		if (qed_init_qm_get_num_pqs(p_hwfn) <= RESC_NUM(p_hwfn, QED_PQ))
1979 			return 0;
1980 	}
1981 
1982 	DP_ERR(p_hwfn, "requested amount of pqs exceeds resource\n");
1983 	return -EINVAL;
1984 }
1985 
1986 static void qed_dp_init_qm_params(struct qed_hwfn *p_hwfn)
1987 {
1988 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
1989 	struct init_qm_vport_params *vport;
1990 	struct init_qm_port_params *port;
1991 	struct init_qm_pq_params *pq;
1992 	int i, tc;
1993 
1994 	/* top level params */
1995 	DP_VERBOSE(p_hwfn,
1996 		   NETIF_MSG_HW,
1997 		   "qm init top level params: start_pq %d, start_vport %d, pure_lb_pq %d, offload_pq %d, llt_pq %d, pure_ack_pq %d\n",
1998 		   qm_info->start_pq,
1999 		   qm_info->start_vport,
2000 		   qm_info->pure_lb_pq,
2001 		   qm_info->first_ofld_pq,
2002 		   qm_info->first_llt_pq,
2003 		   qm_info->pure_ack_pq);
2004 	DP_VERBOSE(p_hwfn,
2005 		   NETIF_MSG_HW,
2006 		   "ooo_pq %d, first_vf_pq %d, num_pqs %d, num_vf_pqs %d, num_vports %d, max_phys_tcs_per_port %d\n",
2007 		   qm_info->ooo_pq,
2008 		   qm_info->first_vf_pq,
2009 		   qm_info->num_pqs,
2010 		   qm_info->num_vf_pqs,
2011 		   qm_info->num_vports, qm_info->max_phys_tcs_per_port);
2012 	DP_VERBOSE(p_hwfn,
2013 		   NETIF_MSG_HW,
2014 		   "pf_rl_en %d, pf_wfq_en %d, vport_rl_en %d, vport_wfq_en %d, pf_wfq %d, pf_rl %d, num_pf_rls %d, pq_flags %x\n",
2015 		   qm_info->pf_rl_en,
2016 		   qm_info->pf_wfq_en,
2017 		   qm_info->vport_rl_en,
2018 		   qm_info->vport_wfq_en,
2019 		   qm_info->pf_wfq,
2020 		   qm_info->pf_rl,
2021 		   qm_info->num_pf_rls, qed_get_pq_flags(p_hwfn));
2022 
2023 	/* port table */
2024 	for (i = 0; i < p_hwfn->cdev->num_ports_in_engine; i++) {
2025 		port = &(qm_info->qm_port_params[i]);
2026 		DP_VERBOSE(p_hwfn,
2027 			   NETIF_MSG_HW,
2028 			   "port idx %d, active %d, active_phys_tcs %d, num_pbf_cmd_lines %d, num_btb_blocks %d, reserved %d\n",
2029 			   i,
2030 			   port->active,
2031 			   port->active_phys_tcs,
2032 			   port->num_pbf_cmd_lines,
2033 			   port->num_btb_blocks, port->reserved);
2034 	}
2035 
2036 	/* vport table */
2037 	for (i = 0; i < qm_info->num_vports; i++) {
2038 		vport = &(qm_info->qm_vport_params[i]);
2039 		DP_VERBOSE(p_hwfn,
2040 			   NETIF_MSG_HW,
2041 			   "vport idx %d, wfq %d, first_tx_pq_id [ ",
2042 			   qm_info->start_vport + i, vport->wfq);
2043 		for (tc = 0; tc < NUM_OF_TCS; tc++)
2044 			DP_VERBOSE(p_hwfn,
2045 				   NETIF_MSG_HW,
2046 				   "%d ", vport->first_tx_pq_id[tc]);
2047 		DP_VERBOSE(p_hwfn, NETIF_MSG_HW, "]\n");
2048 	}
2049 
2050 	/* pq table */
2051 	for (i = 0; i < qm_info->num_pqs; i++) {
2052 		pq = &(qm_info->qm_pq_params[i]);
2053 		DP_VERBOSE(p_hwfn,
2054 			   NETIF_MSG_HW,
2055 			   "pq idx %d, port %d, vport_id %d, tc %d, wrr_grp %d, rl_valid %d rl_id %d\n",
2056 			   qm_info->start_pq + i,
2057 			   pq->port_id,
2058 			   pq->vport_id,
2059 			   pq->tc_id, pq->wrr_group, pq->rl_valid, pq->rl_id);
2060 	}
2061 }
2062 
2063 static void qed_init_qm_info(struct qed_hwfn *p_hwfn)
2064 {
2065 	/* reset params required for init run */
2066 	qed_init_qm_reset_params(p_hwfn);
2067 
2068 	/* init QM top level params */
2069 	qed_init_qm_params(p_hwfn);
2070 
2071 	/* init QM port params */
2072 	qed_init_qm_port_params(p_hwfn);
2073 
2074 	/* init QM vport params */
2075 	qed_init_qm_vport_params(p_hwfn);
2076 
2077 	/* init QM physical queue params */
2078 	qed_init_qm_pq_params(p_hwfn);
2079 
2080 	/* display all that init */
2081 	qed_dp_init_qm_params(p_hwfn);
2082 }
2083 
2084 /* This function reconfigures the QM pf on the fly.
2085  * For this purpose we:
2086  * 1. reconfigure the QM database
2087  * 2. set new values to runtime array
2088  * 3. send an sdm_qm_cmd through the rbc interface to stop the QM
2089  * 4. activate init tool in QM_PF stage
2090  * 5. send an sdm_qm_cmd through rbc interface to release the QM
2091  */
2092 int qed_qm_reconf(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2093 {
2094 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
2095 	bool b_rc;
2096 	int rc;
2097 
2098 	/* initialize qed's qm data structure */
2099 	qed_init_qm_info(p_hwfn);
2100 
2101 	/* stop PF's qm queues */
2102 	spin_lock_bh(&qm_lock);
2103 	b_rc = qed_send_qm_stop_cmd(p_hwfn, p_ptt, false, true,
2104 				    qm_info->start_pq, qm_info->num_pqs);
2105 	spin_unlock_bh(&qm_lock);
2106 	if (!b_rc)
2107 		return -EINVAL;
2108 
2109 	/* prepare QM portion of runtime array */
2110 	qed_qm_init_pf(p_hwfn, p_ptt, false);
2111 
2112 	/* activate init tool on runtime array */
2113 	rc = qed_init_run(p_hwfn, p_ptt, PHASE_QM_PF, p_hwfn->rel_pf_id,
2114 			  p_hwfn->hw_info.hw_mode);
2115 	if (rc)
2116 		return rc;
2117 
2118 	/* start PF's qm queues */
2119 	spin_lock_bh(&qm_lock);
2120 	b_rc = qed_send_qm_stop_cmd(p_hwfn, p_ptt, true, true,
2121 				    qm_info->start_pq, qm_info->num_pqs);
2122 	spin_unlock_bh(&qm_lock);
2123 	if (!b_rc)
2124 		return -EINVAL;
2125 
2126 	return 0;
2127 }
2128 
2129 static int qed_alloc_qm_data(struct qed_hwfn *p_hwfn)
2130 {
2131 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
2132 	int rc;
2133 
2134 	rc = qed_init_qm_sanity(p_hwfn);
2135 	if (rc)
2136 		goto alloc_err;
2137 
2138 	qm_info->qm_pq_params = kcalloc(qed_init_qm_get_num_pqs(p_hwfn),
2139 					sizeof(*qm_info->qm_pq_params),
2140 					GFP_KERNEL);
2141 	if (!qm_info->qm_pq_params)
2142 		goto alloc_err;
2143 
2144 	qm_info->qm_vport_params = kcalloc(qed_init_qm_get_num_vports(p_hwfn),
2145 					   sizeof(*qm_info->qm_vport_params),
2146 					   GFP_KERNEL);
2147 	if (!qm_info->qm_vport_params)
2148 		goto alloc_err;
2149 
2150 	qm_info->qm_port_params = kcalloc(p_hwfn->cdev->num_ports_in_engine,
2151 					  sizeof(*qm_info->qm_port_params),
2152 					  GFP_KERNEL);
2153 	if (!qm_info->qm_port_params)
2154 		goto alloc_err;
2155 
2156 	qm_info->wfq_data = kcalloc(qed_init_qm_get_num_vports(p_hwfn),
2157 				    sizeof(*qm_info->wfq_data),
2158 				    GFP_KERNEL);
2159 	if (!qm_info->wfq_data)
2160 		goto alloc_err;
2161 
2162 	return 0;
2163 
2164 alloc_err:
2165 	DP_NOTICE(p_hwfn, "Failed to allocate memory for QM params\n");
2166 	qed_qm_info_free(p_hwfn);
2167 	return -ENOMEM;
2168 }
2169 
2170 int qed_resc_alloc(struct qed_dev *cdev)
2171 {
2172 	u32 rdma_tasks, excess_tasks;
2173 	u32 line_count;
2174 	int i, rc = 0;
2175 
2176 	if (IS_VF(cdev)) {
2177 		for_each_hwfn(cdev, i) {
2178 			rc = qed_l2_alloc(&cdev->hwfns[i]);
2179 			if (rc)
2180 				return rc;
2181 		}
2182 		return rc;
2183 	}
2184 
2185 	cdev->fw_data = kzalloc(sizeof(*cdev->fw_data), GFP_KERNEL);
2186 	if (!cdev->fw_data)
2187 		return -ENOMEM;
2188 
2189 	for_each_hwfn(cdev, i) {
2190 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
2191 		u32 n_eqes, num_cons;
2192 
2193 		/* Initialize the doorbell recovery mechanism */
2194 		rc = qed_db_recovery_setup(p_hwfn);
2195 		if (rc)
2196 			goto alloc_err;
2197 
2198 		/* First allocate the context manager structure */
2199 		rc = qed_cxt_mngr_alloc(p_hwfn);
2200 		if (rc)
2201 			goto alloc_err;
2202 
2203 		/* Set the HW cid/tid numbers (in the contest manager)
2204 		 * Must be done prior to any further computations.
2205 		 */
2206 		rc = qed_cxt_set_pf_params(p_hwfn, RDMA_MAX_TIDS);
2207 		if (rc)
2208 			goto alloc_err;
2209 
2210 		rc = qed_alloc_qm_data(p_hwfn);
2211 		if (rc)
2212 			goto alloc_err;
2213 
2214 		/* init qm info */
2215 		qed_init_qm_info(p_hwfn);
2216 
2217 		/* Compute the ILT client partition */
2218 		rc = qed_cxt_cfg_ilt_compute(p_hwfn, &line_count);
2219 		if (rc) {
2220 			DP_NOTICE(p_hwfn,
2221 				  "too many ILT lines; re-computing with less lines\n");
2222 			/* In case there are not enough ILT lines we reduce the
2223 			 * number of RDMA tasks and re-compute.
2224 			 */
2225 			excess_tasks =
2226 			    qed_cxt_cfg_ilt_compute_excess(p_hwfn, line_count);
2227 			if (!excess_tasks)
2228 				goto alloc_err;
2229 
2230 			rdma_tasks = RDMA_MAX_TIDS - excess_tasks;
2231 			rc = qed_cxt_set_pf_params(p_hwfn, rdma_tasks);
2232 			if (rc)
2233 				goto alloc_err;
2234 
2235 			rc = qed_cxt_cfg_ilt_compute(p_hwfn, &line_count);
2236 			if (rc) {
2237 				DP_ERR(p_hwfn,
2238 				       "failed ILT compute. Requested too many lines: %u\n",
2239 				       line_count);
2240 
2241 				goto alloc_err;
2242 			}
2243 		}
2244 
2245 		/* CID map / ILT shadow table / T2
2246 		 * The talbes sizes are determined by the computations above
2247 		 */
2248 		rc = qed_cxt_tables_alloc(p_hwfn);
2249 		if (rc)
2250 			goto alloc_err;
2251 
2252 		/* SPQ, must follow ILT because initializes SPQ context */
2253 		rc = qed_spq_alloc(p_hwfn);
2254 		if (rc)
2255 			goto alloc_err;
2256 
2257 		/* SP status block allocation */
2258 		p_hwfn->p_dpc_ptt = qed_get_reserved_ptt(p_hwfn,
2259 							 RESERVED_PTT_DPC);
2260 
2261 		rc = qed_int_alloc(p_hwfn, p_hwfn->p_main_ptt);
2262 		if (rc)
2263 			goto alloc_err;
2264 
2265 		rc = qed_iov_alloc(p_hwfn);
2266 		if (rc)
2267 			goto alloc_err;
2268 
2269 		/* EQ */
2270 		n_eqes = qed_chain_get_capacity(&p_hwfn->p_spq->chain);
2271 		if (QED_IS_RDMA_PERSONALITY(p_hwfn)) {
2272 			enum protocol_type rdma_proto;
2273 
2274 			if (QED_IS_ROCE_PERSONALITY(p_hwfn))
2275 				rdma_proto = PROTOCOLID_ROCE;
2276 			else
2277 				rdma_proto = PROTOCOLID_IWARP;
2278 
2279 			num_cons = qed_cxt_get_proto_cid_count(p_hwfn,
2280 							       rdma_proto,
2281 							       NULL) * 2;
2282 			n_eqes += num_cons + 2 * MAX_NUM_VFS_BB;
2283 		} else if (p_hwfn->hw_info.personality == QED_PCI_ISCSI) {
2284 			num_cons =
2285 			    qed_cxt_get_proto_cid_count(p_hwfn,
2286 							PROTOCOLID_ISCSI,
2287 							NULL);
2288 			n_eqes += 2 * num_cons;
2289 		}
2290 
2291 		if (n_eqes > 0xFFFF) {
2292 			DP_ERR(p_hwfn,
2293 			       "Cannot allocate 0x%x EQ elements. The maximum of a u16 chain is 0x%x\n",
2294 			       n_eqes, 0xFFFF);
2295 			goto alloc_no_mem;
2296 		}
2297 
2298 		rc = qed_eq_alloc(p_hwfn, (u16) n_eqes);
2299 		if (rc)
2300 			goto alloc_err;
2301 
2302 		rc = qed_consq_alloc(p_hwfn);
2303 		if (rc)
2304 			goto alloc_err;
2305 
2306 		rc = qed_l2_alloc(p_hwfn);
2307 		if (rc)
2308 			goto alloc_err;
2309 
2310 #ifdef CONFIG_QED_LL2
2311 		if (p_hwfn->using_ll2) {
2312 			rc = qed_ll2_alloc(p_hwfn);
2313 			if (rc)
2314 				goto alloc_err;
2315 		}
2316 #endif
2317 
2318 		if (p_hwfn->hw_info.personality == QED_PCI_FCOE) {
2319 			rc = qed_fcoe_alloc(p_hwfn);
2320 			if (rc)
2321 				goto alloc_err;
2322 		}
2323 
2324 		if (p_hwfn->hw_info.personality == QED_PCI_ISCSI) {
2325 			rc = qed_iscsi_alloc(p_hwfn);
2326 			if (rc)
2327 				goto alloc_err;
2328 			rc = qed_ooo_alloc(p_hwfn);
2329 			if (rc)
2330 				goto alloc_err;
2331 		}
2332 
2333 		if (QED_IS_RDMA_PERSONALITY(p_hwfn)) {
2334 			rc = qed_rdma_info_alloc(p_hwfn);
2335 			if (rc)
2336 				goto alloc_err;
2337 		}
2338 
2339 		/* DMA info initialization */
2340 		rc = qed_dmae_info_alloc(p_hwfn);
2341 		if (rc)
2342 			goto alloc_err;
2343 
2344 		/* DCBX initialization */
2345 		rc = qed_dcbx_info_alloc(p_hwfn);
2346 		if (rc)
2347 			goto alloc_err;
2348 
2349 		rc = qed_dbg_alloc_user_data(p_hwfn, &p_hwfn->dbg_user_info);
2350 		if (rc)
2351 			goto alloc_err;
2352 	}
2353 
2354 	rc = qed_llh_alloc(cdev);
2355 	if (rc) {
2356 		DP_NOTICE(cdev,
2357 			  "Failed to allocate memory for the llh_info structure\n");
2358 		goto alloc_err;
2359 	}
2360 
2361 	cdev->reset_stats = kzalloc(sizeof(*cdev->reset_stats), GFP_KERNEL);
2362 	if (!cdev->reset_stats)
2363 		goto alloc_no_mem;
2364 
2365 	return 0;
2366 
2367 alloc_no_mem:
2368 	rc = -ENOMEM;
2369 alloc_err:
2370 	qed_resc_free(cdev);
2371 	return rc;
2372 }
2373 
2374 void qed_resc_setup(struct qed_dev *cdev)
2375 {
2376 	int i;
2377 
2378 	if (IS_VF(cdev)) {
2379 		for_each_hwfn(cdev, i)
2380 			qed_l2_setup(&cdev->hwfns[i]);
2381 		return;
2382 	}
2383 
2384 	for_each_hwfn(cdev, i) {
2385 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
2386 
2387 		qed_cxt_mngr_setup(p_hwfn);
2388 		qed_spq_setup(p_hwfn);
2389 		qed_eq_setup(p_hwfn);
2390 		qed_consq_setup(p_hwfn);
2391 
2392 		/* Read shadow of current MFW mailbox */
2393 		qed_mcp_read_mb(p_hwfn, p_hwfn->p_main_ptt);
2394 		memcpy(p_hwfn->mcp_info->mfw_mb_shadow,
2395 		       p_hwfn->mcp_info->mfw_mb_cur,
2396 		       p_hwfn->mcp_info->mfw_mb_length);
2397 
2398 		qed_int_setup(p_hwfn, p_hwfn->p_main_ptt);
2399 
2400 		qed_l2_setup(p_hwfn);
2401 		qed_iov_setup(p_hwfn);
2402 #ifdef CONFIG_QED_LL2
2403 		if (p_hwfn->using_ll2)
2404 			qed_ll2_setup(p_hwfn);
2405 #endif
2406 		if (p_hwfn->hw_info.personality == QED_PCI_FCOE)
2407 			qed_fcoe_setup(p_hwfn);
2408 
2409 		if (p_hwfn->hw_info.personality == QED_PCI_ISCSI) {
2410 			qed_iscsi_setup(p_hwfn);
2411 			qed_ooo_setup(p_hwfn);
2412 		}
2413 	}
2414 }
2415 
2416 #define FINAL_CLEANUP_POLL_CNT          (100)
2417 #define FINAL_CLEANUP_POLL_TIME         (10)
2418 int qed_final_cleanup(struct qed_hwfn *p_hwfn,
2419 		      struct qed_ptt *p_ptt, u16 id, bool is_vf)
2420 {
2421 	u32 command = 0, addr, count = FINAL_CLEANUP_POLL_CNT;
2422 	int rc = -EBUSY;
2423 
2424 	addr = GTT_BAR0_MAP_REG_USDM_RAM +
2425 		USTORM_FLR_FINAL_ACK_OFFSET(p_hwfn->rel_pf_id);
2426 
2427 	if (is_vf)
2428 		id += 0x10;
2429 
2430 	command |= X_FINAL_CLEANUP_AGG_INT <<
2431 		SDM_AGG_INT_COMP_PARAMS_AGG_INT_INDEX_SHIFT;
2432 	command |= 1 << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_ENABLE_SHIFT;
2433 	command |= id << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_BIT_SHIFT;
2434 	command |= SDM_COMP_TYPE_AGG_INT << SDM_OP_GEN_COMP_TYPE_SHIFT;
2435 
2436 	/* Make sure notification is not set before initiating final cleanup */
2437 	if (REG_RD(p_hwfn, addr)) {
2438 		DP_NOTICE(p_hwfn,
2439 			  "Unexpected; Found final cleanup notification before initiating final cleanup\n");
2440 		REG_WR(p_hwfn, addr, 0);
2441 	}
2442 
2443 	DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2444 		   "Sending final cleanup for PFVF[%d] [Command %08x]\n",
2445 		   id, command);
2446 
2447 	qed_wr(p_hwfn, p_ptt, XSDM_REG_OPERATION_GEN, command);
2448 
2449 	/* Poll until completion */
2450 	while (!REG_RD(p_hwfn, addr) && count--)
2451 		msleep(FINAL_CLEANUP_POLL_TIME);
2452 
2453 	if (REG_RD(p_hwfn, addr))
2454 		rc = 0;
2455 	else
2456 		DP_NOTICE(p_hwfn,
2457 			  "Failed to receive FW final cleanup notification\n");
2458 
2459 	/* Cleanup afterwards */
2460 	REG_WR(p_hwfn, addr, 0);
2461 
2462 	return rc;
2463 }
2464 
2465 static int qed_calc_hw_mode(struct qed_hwfn *p_hwfn)
2466 {
2467 	int hw_mode = 0;
2468 
2469 	if (QED_IS_BB_B0(p_hwfn->cdev)) {
2470 		hw_mode |= 1 << MODE_BB;
2471 	} else if (QED_IS_AH(p_hwfn->cdev)) {
2472 		hw_mode |= 1 << MODE_K2;
2473 	} else {
2474 		DP_NOTICE(p_hwfn, "Unknown chip type %#x\n",
2475 			  p_hwfn->cdev->type);
2476 		return -EINVAL;
2477 	}
2478 
2479 	switch (p_hwfn->cdev->num_ports_in_engine) {
2480 	case 1:
2481 		hw_mode |= 1 << MODE_PORTS_PER_ENG_1;
2482 		break;
2483 	case 2:
2484 		hw_mode |= 1 << MODE_PORTS_PER_ENG_2;
2485 		break;
2486 	case 4:
2487 		hw_mode |= 1 << MODE_PORTS_PER_ENG_4;
2488 		break;
2489 	default:
2490 		DP_NOTICE(p_hwfn, "num_ports_in_engine = %d not supported\n",
2491 			  p_hwfn->cdev->num_ports_in_engine);
2492 		return -EINVAL;
2493 	}
2494 
2495 	if (test_bit(QED_MF_OVLAN_CLSS, &p_hwfn->cdev->mf_bits))
2496 		hw_mode |= 1 << MODE_MF_SD;
2497 	else
2498 		hw_mode |= 1 << MODE_MF_SI;
2499 
2500 	hw_mode |= 1 << MODE_ASIC;
2501 
2502 	if (p_hwfn->cdev->num_hwfns > 1)
2503 		hw_mode |= 1 << MODE_100G;
2504 
2505 	p_hwfn->hw_info.hw_mode = hw_mode;
2506 
2507 	DP_VERBOSE(p_hwfn, (NETIF_MSG_PROBE | NETIF_MSG_IFUP),
2508 		   "Configuring function for hw_mode: 0x%08x\n",
2509 		   p_hwfn->hw_info.hw_mode);
2510 
2511 	return 0;
2512 }
2513 
2514 /* Init run time data for all PFs on an engine. */
2515 static void qed_init_cau_rt_data(struct qed_dev *cdev)
2516 {
2517 	u32 offset = CAU_REG_SB_VAR_MEMORY_RT_OFFSET;
2518 	int i, igu_sb_id;
2519 
2520 	for_each_hwfn(cdev, i) {
2521 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
2522 		struct qed_igu_info *p_igu_info;
2523 		struct qed_igu_block *p_block;
2524 		struct cau_sb_entry sb_entry;
2525 
2526 		p_igu_info = p_hwfn->hw_info.p_igu_info;
2527 
2528 		for (igu_sb_id = 0;
2529 		     igu_sb_id < QED_MAPPING_MEMORY_SIZE(cdev); igu_sb_id++) {
2530 			p_block = &p_igu_info->entry[igu_sb_id];
2531 
2532 			if (!p_block->is_pf)
2533 				continue;
2534 
2535 			qed_init_cau_sb_entry(p_hwfn, &sb_entry,
2536 					      p_block->function_id, 0, 0);
2537 			STORE_RT_REG_AGG(p_hwfn, offset + igu_sb_id * 2,
2538 					 sb_entry);
2539 		}
2540 	}
2541 }
2542 
2543 static void qed_init_cache_line_size(struct qed_hwfn *p_hwfn,
2544 				     struct qed_ptt *p_ptt)
2545 {
2546 	u32 val, wr_mbs, cache_line_size;
2547 
2548 	val = qed_rd(p_hwfn, p_ptt, PSWRQ2_REG_WR_MBS0);
2549 	switch (val) {
2550 	case 0:
2551 		wr_mbs = 128;
2552 		break;
2553 	case 1:
2554 		wr_mbs = 256;
2555 		break;
2556 	case 2:
2557 		wr_mbs = 512;
2558 		break;
2559 	default:
2560 		DP_INFO(p_hwfn,
2561 			"Unexpected value of PSWRQ2_REG_WR_MBS0 [0x%x]. Avoid configuring PGLUE_B_REG_CACHE_LINE_SIZE.\n",
2562 			val);
2563 		return;
2564 	}
2565 
2566 	cache_line_size = min_t(u32, L1_CACHE_BYTES, wr_mbs);
2567 	switch (cache_line_size) {
2568 	case 32:
2569 		val = 0;
2570 		break;
2571 	case 64:
2572 		val = 1;
2573 		break;
2574 	case 128:
2575 		val = 2;
2576 		break;
2577 	case 256:
2578 		val = 3;
2579 		break;
2580 	default:
2581 		DP_INFO(p_hwfn,
2582 			"Unexpected value of cache line size [0x%x]. Avoid configuring PGLUE_B_REG_CACHE_LINE_SIZE.\n",
2583 			cache_line_size);
2584 	}
2585 
2586 	if (L1_CACHE_BYTES > wr_mbs)
2587 		DP_INFO(p_hwfn,
2588 			"The cache line size for padding is suboptimal for performance [OS cache line size 0x%x, wr mbs 0x%x]\n",
2589 			L1_CACHE_BYTES, wr_mbs);
2590 
2591 	STORE_RT_REG(p_hwfn, PGLUE_REG_B_CACHE_LINE_SIZE_RT_OFFSET, val);
2592 	if (val > 0) {
2593 		STORE_RT_REG(p_hwfn, PSWRQ2_REG_DRAM_ALIGN_WR_RT_OFFSET, val);
2594 		STORE_RT_REG(p_hwfn, PSWRQ2_REG_DRAM_ALIGN_RD_RT_OFFSET, val);
2595 	}
2596 }
2597 
2598 static int qed_hw_init_common(struct qed_hwfn *p_hwfn,
2599 			      struct qed_ptt *p_ptt, int hw_mode)
2600 {
2601 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
2602 	struct qed_qm_common_rt_init_params params;
2603 	struct qed_dev *cdev = p_hwfn->cdev;
2604 	u8 vf_id, max_num_vfs;
2605 	u16 num_pfs, pf_id;
2606 	u32 concrete_fid;
2607 	int rc = 0;
2608 
2609 	qed_init_cau_rt_data(cdev);
2610 
2611 	/* Program GTT windows */
2612 	qed_gtt_init(p_hwfn);
2613 
2614 	if (p_hwfn->mcp_info) {
2615 		if (p_hwfn->mcp_info->func_info.bandwidth_max)
2616 			qm_info->pf_rl_en = true;
2617 		if (p_hwfn->mcp_info->func_info.bandwidth_min)
2618 			qm_info->pf_wfq_en = true;
2619 	}
2620 
2621 	memset(&params, 0, sizeof(params));
2622 	params.max_ports_per_engine = p_hwfn->cdev->num_ports_in_engine;
2623 	params.max_phys_tcs_per_port = qm_info->max_phys_tcs_per_port;
2624 	params.pf_rl_en = qm_info->pf_rl_en;
2625 	params.pf_wfq_en = qm_info->pf_wfq_en;
2626 	params.global_rl_en = qm_info->vport_rl_en;
2627 	params.vport_wfq_en = qm_info->vport_wfq_en;
2628 	params.port_params = qm_info->qm_port_params;
2629 
2630 	qed_qm_common_rt_init(p_hwfn, &params);
2631 
2632 	qed_cxt_hw_init_common(p_hwfn);
2633 
2634 	qed_init_cache_line_size(p_hwfn, p_ptt);
2635 
2636 	rc = qed_init_run(p_hwfn, p_ptt, PHASE_ENGINE, ANY_PHASE_ID, hw_mode);
2637 	if (rc)
2638 		return rc;
2639 
2640 	qed_wr(p_hwfn, p_ptt, PSWRQ2_REG_L2P_VALIDATE_VFID, 0);
2641 	qed_wr(p_hwfn, p_ptt, PGLUE_B_REG_USE_CLIENTID_IN_TAG, 1);
2642 
2643 	if (QED_IS_BB(p_hwfn->cdev)) {
2644 		num_pfs = NUM_OF_ENG_PFS(p_hwfn->cdev);
2645 		for (pf_id = 0; pf_id < num_pfs; pf_id++) {
2646 			qed_fid_pretend(p_hwfn, p_ptt, pf_id);
2647 			qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
2648 			qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
2649 		}
2650 		/* pretend to original PF */
2651 		qed_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id);
2652 	}
2653 
2654 	max_num_vfs = QED_IS_AH(cdev) ? MAX_NUM_VFS_K2 : MAX_NUM_VFS_BB;
2655 	for (vf_id = 0; vf_id < max_num_vfs; vf_id++) {
2656 		concrete_fid = qed_vfid_to_concrete(p_hwfn, vf_id);
2657 		qed_fid_pretend(p_hwfn, p_ptt, (u16) concrete_fid);
2658 		qed_wr(p_hwfn, p_ptt, CCFC_REG_STRONG_ENABLE_VF, 0x1);
2659 		qed_wr(p_hwfn, p_ptt, CCFC_REG_WEAK_ENABLE_VF, 0x0);
2660 		qed_wr(p_hwfn, p_ptt, TCFC_REG_STRONG_ENABLE_VF, 0x1);
2661 		qed_wr(p_hwfn, p_ptt, TCFC_REG_WEAK_ENABLE_VF, 0x0);
2662 	}
2663 	/* pretend to original PF */
2664 	qed_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id);
2665 
2666 	return rc;
2667 }
2668 
2669 static int
2670 qed_hw_init_dpi_size(struct qed_hwfn *p_hwfn,
2671 		     struct qed_ptt *p_ptt, u32 pwm_region_size, u32 n_cpus)
2672 {
2673 	u32 dpi_bit_shift, dpi_count, dpi_page_size;
2674 	u32 min_dpis;
2675 	u32 n_wids;
2676 
2677 	/* Calculate DPI size */
2678 	n_wids = max_t(u32, QED_MIN_WIDS, n_cpus);
2679 	dpi_page_size = QED_WID_SIZE * roundup_pow_of_two(n_wids);
2680 	dpi_page_size = (dpi_page_size + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1);
2681 	dpi_bit_shift = ilog2(dpi_page_size / 4096);
2682 	dpi_count = pwm_region_size / dpi_page_size;
2683 
2684 	min_dpis = p_hwfn->pf_params.rdma_pf_params.min_dpis;
2685 	min_dpis = max_t(u32, QED_MIN_DPIS, min_dpis);
2686 
2687 	p_hwfn->dpi_size = dpi_page_size;
2688 	p_hwfn->dpi_count = dpi_count;
2689 
2690 	qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_DPI_BIT_SHIFT, dpi_bit_shift);
2691 
2692 	if (dpi_count < min_dpis)
2693 		return -EINVAL;
2694 
2695 	return 0;
2696 }
2697 
2698 enum QED_ROCE_EDPM_MODE {
2699 	QED_ROCE_EDPM_MODE_ENABLE = 0,
2700 	QED_ROCE_EDPM_MODE_FORCE_ON = 1,
2701 	QED_ROCE_EDPM_MODE_DISABLE = 2,
2702 };
2703 
2704 bool qed_edpm_enabled(struct qed_hwfn *p_hwfn)
2705 {
2706 	if (p_hwfn->dcbx_no_edpm || p_hwfn->db_bar_no_edpm)
2707 		return false;
2708 
2709 	return true;
2710 }
2711 
2712 static int
2713 qed_hw_init_pf_doorbell_bar(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2714 {
2715 	u32 pwm_regsize, norm_regsize;
2716 	u32 non_pwm_conn, min_addr_reg1;
2717 	u32 db_bar_size, n_cpus = 1;
2718 	u32 roce_edpm_mode;
2719 	u32 pf_dems_shift;
2720 	int rc = 0;
2721 	u8 cond;
2722 
2723 	db_bar_size = qed_hw_bar_size(p_hwfn, p_ptt, BAR_ID_1);
2724 	if (p_hwfn->cdev->num_hwfns > 1)
2725 		db_bar_size /= 2;
2726 
2727 	/* Calculate doorbell regions */
2728 	non_pwm_conn = qed_cxt_get_proto_cid_start(p_hwfn, PROTOCOLID_CORE) +
2729 		       qed_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_CORE,
2730 						   NULL) +
2731 		       qed_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_ETH,
2732 						   NULL);
2733 	norm_regsize = roundup(QED_PF_DEMS_SIZE * non_pwm_conn, PAGE_SIZE);
2734 	min_addr_reg1 = norm_regsize / 4096;
2735 	pwm_regsize = db_bar_size - norm_regsize;
2736 
2737 	/* Check that the normal and PWM sizes are valid */
2738 	if (db_bar_size < norm_regsize) {
2739 		DP_ERR(p_hwfn->cdev,
2740 		       "Doorbell BAR size 0x%x is too small (normal region is 0x%0x )\n",
2741 		       db_bar_size, norm_regsize);
2742 		return -EINVAL;
2743 	}
2744 
2745 	if (pwm_regsize < QED_MIN_PWM_REGION) {
2746 		DP_ERR(p_hwfn->cdev,
2747 		       "PWM region size 0x%0x is too small. Should be at least 0x%0x (Doorbell BAR size is 0x%x and normal region size is 0x%0x)\n",
2748 		       pwm_regsize,
2749 		       QED_MIN_PWM_REGION, db_bar_size, norm_regsize);
2750 		return -EINVAL;
2751 	}
2752 
2753 	/* Calculate number of DPIs */
2754 	roce_edpm_mode = p_hwfn->pf_params.rdma_pf_params.roce_edpm_mode;
2755 	if ((roce_edpm_mode == QED_ROCE_EDPM_MODE_ENABLE) ||
2756 	    ((roce_edpm_mode == QED_ROCE_EDPM_MODE_FORCE_ON))) {
2757 		/* Either EDPM is mandatory, or we are attempting to allocate a
2758 		 * WID per CPU.
2759 		 */
2760 		n_cpus = num_present_cpus();
2761 		rc = qed_hw_init_dpi_size(p_hwfn, p_ptt, pwm_regsize, n_cpus);
2762 	}
2763 
2764 	cond = (rc && (roce_edpm_mode == QED_ROCE_EDPM_MODE_ENABLE)) ||
2765 	       (roce_edpm_mode == QED_ROCE_EDPM_MODE_DISABLE);
2766 	if (cond || p_hwfn->dcbx_no_edpm) {
2767 		/* Either EDPM is disabled from user configuration, or it is
2768 		 * disabled via DCBx, or it is not mandatory and we failed to
2769 		 * allocated a WID per CPU.
2770 		 */
2771 		n_cpus = 1;
2772 		rc = qed_hw_init_dpi_size(p_hwfn, p_ptt, pwm_regsize, n_cpus);
2773 
2774 		if (cond)
2775 			qed_rdma_dpm_bar(p_hwfn, p_ptt);
2776 	}
2777 
2778 	p_hwfn->wid_count = (u16) n_cpus;
2779 
2780 	DP_INFO(p_hwfn,
2781 		"doorbell bar: normal_region_size=%d, pwm_region_size=%d, dpi_size=%d, dpi_count=%d, roce_edpm=%s, page_size=%lu\n",
2782 		norm_regsize,
2783 		pwm_regsize,
2784 		p_hwfn->dpi_size,
2785 		p_hwfn->dpi_count,
2786 		(!qed_edpm_enabled(p_hwfn)) ?
2787 		"disabled" : "enabled", PAGE_SIZE);
2788 
2789 	if (rc) {
2790 		DP_ERR(p_hwfn,
2791 		       "Failed to allocate enough DPIs. Allocated %d but the current minimum is %d.\n",
2792 		       p_hwfn->dpi_count,
2793 		       p_hwfn->pf_params.rdma_pf_params.min_dpis);
2794 		return -EINVAL;
2795 	}
2796 
2797 	p_hwfn->dpi_start_offset = norm_regsize;
2798 
2799 	/* DEMS size is configured log2 of DWORDs, hence the division by 4 */
2800 	pf_dems_shift = ilog2(QED_PF_DEMS_SIZE / 4);
2801 	qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_ICID_BIT_SHIFT_NORM, pf_dems_shift);
2802 	qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_MIN_ADDR_REG1, min_addr_reg1);
2803 
2804 	return 0;
2805 }
2806 
2807 static int qed_hw_init_port(struct qed_hwfn *p_hwfn,
2808 			    struct qed_ptt *p_ptt, int hw_mode)
2809 {
2810 	int rc = 0;
2811 
2812 	/* In CMT the gate should be cleared by the 2nd hwfn */
2813 	if (!QED_IS_CMT(p_hwfn->cdev) || !IS_LEAD_HWFN(p_hwfn))
2814 		STORE_RT_REG(p_hwfn, NIG_REG_BRB_GATE_DNTFWD_PORT_RT_OFFSET, 0);
2815 
2816 	rc = qed_init_run(p_hwfn, p_ptt, PHASE_PORT, p_hwfn->port_id, hw_mode);
2817 	if (rc)
2818 		return rc;
2819 
2820 	qed_wr(p_hwfn, p_ptt, PGLUE_B_REG_MASTER_WRITE_PAD_ENABLE, 0);
2821 
2822 	return 0;
2823 }
2824 
2825 static int qed_hw_init_pf(struct qed_hwfn *p_hwfn,
2826 			  struct qed_ptt *p_ptt,
2827 			  struct qed_tunnel_info *p_tunn,
2828 			  int hw_mode,
2829 			  bool b_hw_start,
2830 			  enum qed_int_mode int_mode,
2831 			  bool allow_npar_tx_switch)
2832 {
2833 	u8 rel_pf_id = p_hwfn->rel_pf_id;
2834 	int rc = 0;
2835 
2836 	if (p_hwfn->mcp_info) {
2837 		struct qed_mcp_function_info *p_info;
2838 
2839 		p_info = &p_hwfn->mcp_info->func_info;
2840 		if (p_info->bandwidth_min)
2841 			p_hwfn->qm_info.pf_wfq = p_info->bandwidth_min;
2842 
2843 		/* Update rate limit once we'll actually have a link */
2844 		p_hwfn->qm_info.pf_rl = 100000;
2845 	}
2846 
2847 	qed_cxt_hw_init_pf(p_hwfn, p_ptt);
2848 
2849 	qed_int_igu_init_rt(p_hwfn);
2850 
2851 	/* Set VLAN in NIG if needed */
2852 	if (hw_mode & BIT(MODE_MF_SD)) {
2853 		DP_VERBOSE(p_hwfn, NETIF_MSG_HW, "Configuring LLH_FUNC_TAG\n");
2854 		STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_EN_RT_OFFSET, 1);
2855 		STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_VALUE_RT_OFFSET,
2856 			     p_hwfn->hw_info.ovlan);
2857 
2858 		DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
2859 			   "Configuring LLH_FUNC_FILTER_HDR_SEL\n");
2860 		STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_FILTER_HDR_SEL_RT_OFFSET,
2861 			     1);
2862 	}
2863 
2864 	/* Enable classification by MAC if needed */
2865 	if (hw_mode & BIT(MODE_MF_SI)) {
2866 		DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
2867 			   "Configuring TAGMAC_CLS_TYPE\n");
2868 		STORE_RT_REG(p_hwfn,
2869 			     NIG_REG_LLH_FUNC_TAGMAC_CLS_TYPE_RT_OFFSET, 1);
2870 	}
2871 
2872 	/* Protocol Configuration */
2873 	STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_TCP_RT_OFFSET,
2874 		     (p_hwfn->hw_info.personality == QED_PCI_ISCSI) ? 1 : 0);
2875 	STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_FCOE_RT_OFFSET,
2876 		     (p_hwfn->hw_info.personality == QED_PCI_FCOE) ? 1 : 0);
2877 	STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_ROCE_RT_OFFSET, 0);
2878 
2879 	/* Sanity check before the PF init sequence that uses DMAE */
2880 	rc = qed_dmae_sanity(p_hwfn, p_ptt, "pf_phase");
2881 	if (rc)
2882 		return rc;
2883 
2884 	/* PF Init sequence */
2885 	rc = qed_init_run(p_hwfn, p_ptt, PHASE_PF, rel_pf_id, hw_mode);
2886 	if (rc)
2887 		return rc;
2888 
2889 	/* QM_PF Init sequence (may be invoked separately e.g. for DCB) */
2890 	rc = qed_init_run(p_hwfn, p_ptt, PHASE_QM_PF, rel_pf_id, hw_mode);
2891 	if (rc)
2892 		return rc;
2893 
2894 	qed_fw_overlay_init_ram(p_hwfn, p_ptt, p_hwfn->fw_overlay_mem);
2895 
2896 	/* Pure runtime initializations - directly to the HW  */
2897 	qed_int_igu_init_pure_rt(p_hwfn, p_ptt, true, true);
2898 
2899 	rc = qed_hw_init_pf_doorbell_bar(p_hwfn, p_ptt);
2900 	if (rc)
2901 		return rc;
2902 
2903 	/* Use the leading hwfn since in CMT only NIG #0 is operational */
2904 	if (IS_LEAD_HWFN(p_hwfn)) {
2905 		rc = qed_llh_hw_init_pf(p_hwfn, p_ptt);
2906 		if (rc)
2907 			return rc;
2908 	}
2909 
2910 	if (b_hw_start) {
2911 		/* enable interrupts */
2912 		qed_int_igu_enable(p_hwfn, p_ptt, int_mode);
2913 
2914 		/* send function start command */
2915 		rc = qed_sp_pf_start(p_hwfn, p_ptt, p_tunn,
2916 				     allow_npar_tx_switch);
2917 		if (rc) {
2918 			DP_NOTICE(p_hwfn, "Function start ramrod failed\n");
2919 			return rc;
2920 		}
2921 		if (p_hwfn->hw_info.personality == QED_PCI_FCOE) {
2922 			qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TAG1, BIT(2));
2923 			qed_wr(p_hwfn, p_ptt,
2924 			       PRS_REG_PKT_LEN_STAT_TAGS_NOT_COUNTED_FIRST,
2925 			       0x100);
2926 		}
2927 	}
2928 	return rc;
2929 }
2930 
2931 int qed_pglueb_set_pfid_enable(struct qed_hwfn *p_hwfn,
2932 			       struct qed_ptt *p_ptt, bool b_enable)
2933 {
2934 	u32 delay_idx = 0, val, set_val = b_enable ? 1 : 0;
2935 
2936 	/* Configure the PF's internal FID_enable for master transactions */
2937 	qed_wr(p_hwfn, p_ptt, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, set_val);
2938 
2939 	/* Wait until value is set - try for 1 second every 50us */
2940 	for (delay_idx = 0; delay_idx < 20000; delay_idx++) {
2941 		val = qed_rd(p_hwfn, p_ptt,
2942 			     PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
2943 		if (val == set_val)
2944 			break;
2945 
2946 		usleep_range(50, 60);
2947 	}
2948 
2949 	if (val != set_val) {
2950 		DP_NOTICE(p_hwfn,
2951 			  "PFID_ENABLE_MASTER wasn't changed after a second\n");
2952 		return -EAGAIN;
2953 	}
2954 
2955 	return 0;
2956 }
2957 
2958 static void qed_reset_mb_shadow(struct qed_hwfn *p_hwfn,
2959 				struct qed_ptt *p_main_ptt)
2960 {
2961 	/* Read shadow of current MFW mailbox */
2962 	qed_mcp_read_mb(p_hwfn, p_main_ptt);
2963 	memcpy(p_hwfn->mcp_info->mfw_mb_shadow,
2964 	       p_hwfn->mcp_info->mfw_mb_cur, p_hwfn->mcp_info->mfw_mb_length);
2965 }
2966 
2967 static void
2968 qed_fill_load_req_params(struct qed_load_req_params *p_load_req,
2969 			 struct qed_drv_load_params *p_drv_load)
2970 {
2971 	memset(p_load_req, 0, sizeof(*p_load_req));
2972 
2973 	p_load_req->drv_role = p_drv_load->is_crash_kernel ?
2974 			       QED_DRV_ROLE_KDUMP : QED_DRV_ROLE_OS;
2975 	p_load_req->timeout_val = p_drv_load->mfw_timeout_val;
2976 	p_load_req->avoid_eng_reset = p_drv_load->avoid_eng_reset;
2977 	p_load_req->override_force_load = p_drv_load->override_force_load;
2978 }
2979 
2980 static int qed_vf_start(struct qed_hwfn *p_hwfn,
2981 			struct qed_hw_init_params *p_params)
2982 {
2983 	if (p_params->p_tunn) {
2984 		qed_vf_set_vf_start_tunn_update_param(p_params->p_tunn);
2985 		qed_vf_pf_tunnel_param_update(p_hwfn, p_params->p_tunn);
2986 	}
2987 
2988 	p_hwfn->b_int_enabled = true;
2989 
2990 	return 0;
2991 }
2992 
2993 static void qed_pglueb_clear_err(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2994 {
2995 	qed_wr(p_hwfn, p_ptt, PGLUE_B_REG_WAS_ERROR_PF_31_0_CLR,
2996 	       BIT(p_hwfn->abs_pf_id));
2997 }
2998 
2999 int qed_hw_init(struct qed_dev *cdev, struct qed_hw_init_params *p_params)
3000 {
3001 	struct qed_load_req_params load_req_params;
3002 	u32 load_code, resp, param, drv_mb_param;
3003 	bool b_default_mtu = true;
3004 	struct qed_hwfn *p_hwfn;
3005 	const u32 *fw_overlays;
3006 	u32 fw_overlays_len;
3007 	u16 ether_type;
3008 	int rc = 0, i;
3009 
3010 	if ((p_params->int_mode == QED_INT_MODE_MSI) && (cdev->num_hwfns > 1)) {
3011 		DP_NOTICE(cdev, "MSI mode is not supported for CMT devices\n");
3012 		return -EINVAL;
3013 	}
3014 
3015 	if (IS_PF(cdev)) {
3016 		rc = qed_init_fw_data(cdev, p_params->bin_fw_data);
3017 		if (rc)
3018 			return rc;
3019 	}
3020 
3021 	for_each_hwfn(cdev, i) {
3022 		p_hwfn = &cdev->hwfns[i];
3023 
3024 		/* If management didn't provide a default, set one of our own */
3025 		if (!p_hwfn->hw_info.mtu) {
3026 			p_hwfn->hw_info.mtu = 1500;
3027 			b_default_mtu = false;
3028 		}
3029 
3030 		if (IS_VF(cdev)) {
3031 			qed_vf_start(p_hwfn, p_params);
3032 			continue;
3033 		}
3034 
3035 		rc = qed_calc_hw_mode(p_hwfn);
3036 		if (rc)
3037 			return rc;
3038 
3039 		if (IS_PF(cdev) && (test_bit(QED_MF_8021Q_TAGGING,
3040 					     &cdev->mf_bits) ||
3041 				    test_bit(QED_MF_8021AD_TAGGING,
3042 					     &cdev->mf_bits))) {
3043 			if (test_bit(QED_MF_8021Q_TAGGING, &cdev->mf_bits))
3044 				ether_type = ETH_P_8021Q;
3045 			else
3046 				ether_type = ETH_P_8021AD;
3047 			STORE_RT_REG(p_hwfn, PRS_REG_TAG_ETHERTYPE_0_RT_OFFSET,
3048 				     ether_type);
3049 			STORE_RT_REG(p_hwfn, NIG_REG_TAG_ETHERTYPE_0_RT_OFFSET,
3050 				     ether_type);
3051 			STORE_RT_REG(p_hwfn, PBF_REG_TAG_ETHERTYPE_0_RT_OFFSET,
3052 				     ether_type);
3053 			STORE_RT_REG(p_hwfn, DORQ_REG_TAG1_ETHERTYPE_RT_OFFSET,
3054 				     ether_type);
3055 		}
3056 
3057 		qed_fill_load_req_params(&load_req_params,
3058 					 p_params->p_drv_load_params);
3059 		rc = qed_mcp_load_req(p_hwfn, p_hwfn->p_main_ptt,
3060 				      &load_req_params);
3061 		if (rc) {
3062 			DP_NOTICE(p_hwfn, "Failed sending a LOAD_REQ command\n");
3063 			return rc;
3064 		}
3065 
3066 		load_code = load_req_params.load_code;
3067 		DP_VERBOSE(p_hwfn, QED_MSG_SP,
3068 			   "Load request was sent. Load code: 0x%x\n",
3069 			   load_code);
3070 
3071 		/* Only relevant for recovery:
3072 		 * Clear the indication after LOAD_REQ is responded by the MFW.
3073 		 */
3074 		cdev->recov_in_prog = false;
3075 
3076 		qed_mcp_set_capabilities(p_hwfn, p_hwfn->p_main_ptt);
3077 
3078 		qed_reset_mb_shadow(p_hwfn, p_hwfn->p_main_ptt);
3079 
3080 		/* Clean up chip from previous driver if such remains exist.
3081 		 * This is not needed when the PF is the first one on the
3082 		 * engine, since afterwards we are going to init the FW.
3083 		 */
3084 		if (load_code != FW_MSG_CODE_DRV_LOAD_ENGINE) {
3085 			rc = qed_final_cleanup(p_hwfn, p_hwfn->p_main_ptt,
3086 					       p_hwfn->rel_pf_id, false);
3087 			if (rc) {
3088 				qed_hw_err_notify(p_hwfn, p_hwfn->p_main_ptt,
3089 						  QED_HW_ERR_RAMROD_FAIL,
3090 						  "Final cleanup failed\n");
3091 				goto load_err;
3092 			}
3093 		}
3094 
3095 		/* Log and clear previous pglue_b errors if such exist */
3096 		qed_pglueb_rbc_attn_handler(p_hwfn, p_hwfn->p_main_ptt);
3097 
3098 		/* Enable the PF's internal FID_enable in the PXP */
3099 		rc = qed_pglueb_set_pfid_enable(p_hwfn, p_hwfn->p_main_ptt,
3100 						true);
3101 		if (rc)
3102 			goto load_err;
3103 
3104 		/* Clear the pglue_b was_error indication.
3105 		 * In E4 it must be done after the BME and the internal
3106 		 * FID_enable for the PF are set, since VDMs may cause the
3107 		 * indication to be set again.
3108 		 */
3109 		qed_pglueb_clear_err(p_hwfn, p_hwfn->p_main_ptt);
3110 
3111 		fw_overlays = cdev->fw_data->fw_overlays;
3112 		fw_overlays_len = cdev->fw_data->fw_overlays_len;
3113 		p_hwfn->fw_overlay_mem =
3114 		    qed_fw_overlay_mem_alloc(p_hwfn, fw_overlays,
3115 					     fw_overlays_len);
3116 		if (!p_hwfn->fw_overlay_mem) {
3117 			DP_NOTICE(p_hwfn,
3118 				  "Failed to allocate fw overlay memory\n");
3119 			rc = -ENOMEM;
3120 			goto load_err;
3121 		}
3122 
3123 		switch (load_code) {
3124 		case FW_MSG_CODE_DRV_LOAD_ENGINE:
3125 			rc = qed_hw_init_common(p_hwfn, p_hwfn->p_main_ptt,
3126 						p_hwfn->hw_info.hw_mode);
3127 			if (rc)
3128 				break;
3129 		/* Fall through */
3130 		case FW_MSG_CODE_DRV_LOAD_PORT:
3131 			rc = qed_hw_init_port(p_hwfn, p_hwfn->p_main_ptt,
3132 					      p_hwfn->hw_info.hw_mode);
3133 			if (rc)
3134 				break;
3135 
3136 		/* Fall through */
3137 		case FW_MSG_CODE_DRV_LOAD_FUNCTION:
3138 			rc = qed_hw_init_pf(p_hwfn, p_hwfn->p_main_ptt,
3139 					    p_params->p_tunn,
3140 					    p_hwfn->hw_info.hw_mode,
3141 					    p_params->b_hw_start,
3142 					    p_params->int_mode,
3143 					    p_params->allow_npar_tx_switch);
3144 			break;
3145 		default:
3146 			DP_NOTICE(p_hwfn,
3147 				  "Unexpected load code [0x%08x]", load_code);
3148 			rc = -EINVAL;
3149 			break;
3150 		}
3151 
3152 		if (rc) {
3153 			DP_NOTICE(p_hwfn,
3154 				  "init phase failed for loadcode 0x%x (rc %d)\n",
3155 				  load_code, rc);
3156 			goto load_err;
3157 		}
3158 
3159 		rc = qed_mcp_load_done(p_hwfn, p_hwfn->p_main_ptt);
3160 		if (rc)
3161 			return rc;
3162 
3163 		/* send DCBX attention request command */
3164 		DP_VERBOSE(p_hwfn,
3165 			   QED_MSG_DCB,
3166 			   "sending phony dcbx set command to trigger DCBx attention handling\n");
3167 		rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
3168 				 DRV_MSG_CODE_SET_DCBX,
3169 				 1 << DRV_MB_PARAM_DCBX_NOTIFY_SHIFT,
3170 				 &resp, &param);
3171 		if (rc) {
3172 			DP_NOTICE(p_hwfn,
3173 				  "Failed to send DCBX attention request\n");
3174 			return rc;
3175 		}
3176 
3177 		p_hwfn->hw_init_done = true;
3178 	}
3179 
3180 	if (IS_PF(cdev)) {
3181 		p_hwfn = QED_LEADING_HWFN(cdev);
3182 
3183 		/* Get pre-negotiated values for stag, bandwidth etc. */
3184 		DP_VERBOSE(p_hwfn,
3185 			   QED_MSG_SPQ,
3186 			   "Sending GET_OEM_UPDATES command to trigger stag/bandwidth attention handling\n");
3187 		drv_mb_param = 1 << DRV_MB_PARAM_DUMMY_OEM_UPDATES_OFFSET;
3188 		rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
3189 				 DRV_MSG_CODE_GET_OEM_UPDATES,
3190 				 drv_mb_param, &resp, &param);
3191 		if (rc)
3192 			DP_NOTICE(p_hwfn,
3193 				  "Failed to send GET_OEM_UPDATES attention request\n");
3194 
3195 		drv_mb_param = STORM_FW_VERSION;
3196 		rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
3197 				 DRV_MSG_CODE_OV_UPDATE_STORM_FW_VER,
3198 				 drv_mb_param, &load_code, &param);
3199 		if (rc)
3200 			DP_INFO(p_hwfn, "Failed to update firmware version\n");
3201 
3202 		if (!b_default_mtu) {
3203 			rc = qed_mcp_ov_update_mtu(p_hwfn, p_hwfn->p_main_ptt,
3204 						   p_hwfn->hw_info.mtu);
3205 			if (rc)
3206 				DP_INFO(p_hwfn,
3207 					"Failed to update default mtu\n");
3208 		}
3209 
3210 		rc = qed_mcp_ov_update_driver_state(p_hwfn,
3211 						    p_hwfn->p_main_ptt,
3212 						  QED_OV_DRIVER_STATE_DISABLED);
3213 		if (rc)
3214 			DP_INFO(p_hwfn, "Failed to update driver state\n");
3215 
3216 		rc = qed_mcp_ov_update_eswitch(p_hwfn, p_hwfn->p_main_ptt,
3217 					       QED_OV_ESWITCH_NONE);
3218 		if (rc)
3219 			DP_INFO(p_hwfn, "Failed to update eswitch mode\n");
3220 	}
3221 
3222 	return 0;
3223 
3224 load_err:
3225 	/* The MFW load lock should be released also when initialization fails.
3226 	 */
3227 	qed_mcp_load_done(p_hwfn, p_hwfn->p_main_ptt);
3228 	return rc;
3229 }
3230 
3231 #define QED_HW_STOP_RETRY_LIMIT (10)
3232 static void qed_hw_timers_stop(struct qed_dev *cdev,
3233 			       struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
3234 {
3235 	int i;
3236 
3237 	/* close timers */
3238 	qed_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_CONN, 0x0);
3239 	qed_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_TASK, 0x0);
3240 
3241 	if (cdev->recov_in_prog)
3242 		return;
3243 
3244 	for (i = 0; i < QED_HW_STOP_RETRY_LIMIT; i++) {
3245 		if ((!qed_rd(p_hwfn, p_ptt,
3246 			     TM_REG_PF_SCAN_ACTIVE_CONN)) &&
3247 		    (!qed_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_TASK)))
3248 			break;
3249 
3250 		/* Dependent on number of connection/tasks, possibly
3251 		 * 1ms sleep is required between polls
3252 		 */
3253 		usleep_range(1000, 2000);
3254 	}
3255 
3256 	if (i < QED_HW_STOP_RETRY_LIMIT)
3257 		return;
3258 
3259 	DP_NOTICE(p_hwfn,
3260 		  "Timers linear scans are not over [Connection %02x Tasks %02x]\n",
3261 		  (u8)qed_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_CONN),
3262 		  (u8)qed_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_TASK));
3263 }
3264 
3265 void qed_hw_timers_stop_all(struct qed_dev *cdev)
3266 {
3267 	int j;
3268 
3269 	for_each_hwfn(cdev, j) {
3270 		struct qed_hwfn *p_hwfn = &cdev->hwfns[j];
3271 		struct qed_ptt *p_ptt = p_hwfn->p_main_ptt;
3272 
3273 		qed_hw_timers_stop(cdev, p_hwfn, p_ptt);
3274 	}
3275 }
3276 
3277 int qed_hw_stop(struct qed_dev *cdev)
3278 {
3279 	struct qed_hwfn *p_hwfn;
3280 	struct qed_ptt *p_ptt;
3281 	int rc, rc2 = 0;
3282 	int j;
3283 
3284 	for_each_hwfn(cdev, j) {
3285 		p_hwfn = &cdev->hwfns[j];
3286 		p_ptt = p_hwfn->p_main_ptt;
3287 
3288 		DP_VERBOSE(p_hwfn, NETIF_MSG_IFDOWN, "Stopping hw/fw\n");
3289 
3290 		if (IS_VF(cdev)) {
3291 			qed_vf_pf_int_cleanup(p_hwfn);
3292 			rc = qed_vf_pf_reset(p_hwfn);
3293 			if (rc) {
3294 				DP_NOTICE(p_hwfn,
3295 					  "qed_vf_pf_reset failed. rc = %d.\n",
3296 					  rc);
3297 				rc2 = -EINVAL;
3298 			}
3299 			continue;
3300 		}
3301 
3302 		/* mark the hw as uninitialized... */
3303 		p_hwfn->hw_init_done = false;
3304 
3305 		/* Send unload command to MCP */
3306 		if (!cdev->recov_in_prog) {
3307 			rc = qed_mcp_unload_req(p_hwfn, p_ptt);
3308 			if (rc) {
3309 				DP_NOTICE(p_hwfn,
3310 					  "Failed sending a UNLOAD_REQ command. rc = %d.\n",
3311 					  rc);
3312 				rc2 = -EINVAL;
3313 			}
3314 		}
3315 
3316 		qed_slowpath_irq_sync(p_hwfn);
3317 
3318 		/* After this point no MFW attentions are expected, e.g. prevent
3319 		 * race between pf stop and dcbx pf update.
3320 		 */
3321 		rc = qed_sp_pf_stop(p_hwfn);
3322 		if (rc) {
3323 			DP_NOTICE(p_hwfn,
3324 				  "Failed to close PF against FW [rc = %d]. Continue to stop HW to prevent illegal host access by the device.\n",
3325 				  rc);
3326 			rc2 = -EINVAL;
3327 		}
3328 
3329 		qed_wr(p_hwfn, p_ptt,
3330 		       NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1);
3331 
3332 		qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
3333 		qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0);
3334 		qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0);
3335 		qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
3336 		qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0);
3337 
3338 		qed_hw_timers_stop(cdev, p_hwfn, p_ptt);
3339 
3340 		/* Disable Attention Generation */
3341 		qed_int_igu_disable_int(p_hwfn, p_ptt);
3342 
3343 		qed_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0);
3344 		qed_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0);
3345 
3346 		qed_int_igu_init_pure_rt(p_hwfn, p_ptt, false, true);
3347 
3348 		/* Need to wait 1ms to guarantee SBs are cleared */
3349 		usleep_range(1000, 2000);
3350 
3351 		/* Disable PF in HW blocks */
3352 		qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_DB_ENABLE, 0);
3353 		qed_wr(p_hwfn, p_ptt, QM_REG_PF_EN, 0);
3354 
3355 		if (IS_LEAD_HWFN(p_hwfn) &&
3356 		    test_bit(QED_MF_LLH_MAC_CLSS, &cdev->mf_bits) &&
3357 		    !QED_IS_FCOE_PERSONALITY(p_hwfn))
3358 			qed_llh_remove_mac_filter(cdev, 0,
3359 						  p_hwfn->hw_info.hw_mac_addr);
3360 
3361 		if (!cdev->recov_in_prog) {
3362 			rc = qed_mcp_unload_done(p_hwfn, p_ptt);
3363 			if (rc) {
3364 				DP_NOTICE(p_hwfn,
3365 					  "Failed sending a UNLOAD_DONE command. rc = %d.\n",
3366 					  rc);
3367 				rc2 = -EINVAL;
3368 			}
3369 		}
3370 	}
3371 
3372 	if (IS_PF(cdev) && !cdev->recov_in_prog) {
3373 		p_hwfn = QED_LEADING_HWFN(cdev);
3374 		p_ptt = QED_LEADING_HWFN(cdev)->p_main_ptt;
3375 
3376 		/* Clear the PF's internal FID_enable in the PXP.
3377 		 * In CMT this should only be done for first hw-function, and
3378 		 * only after all transactions have stopped for all active
3379 		 * hw-functions.
3380 		 */
3381 		rc = qed_pglueb_set_pfid_enable(p_hwfn, p_ptt, false);
3382 		if (rc) {
3383 			DP_NOTICE(p_hwfn,
3384 				  "qed_pglueb_set_pfid_enable() failed. rc = %d.\n",
3385 				  rc);
3386 			rc2 = -EINVAL;
3387 		}
3388 	}
3389 
3390 	return rc2;
3391 }
3392 
3393 int qed_hw_stop_fastpath(struct qed_dev *cdev)
3394 {
3395 	int j;
3396 
3397 	for_each_hwfn(cdev, j) {
3398 		struct qed_hwfn *p_hwfn = &cdev->hwfns[j];
3399 		struct qed_ptt *p_ptt;
3400 
3401 		if (IS_VF(cdev)) {
3402 			qed_vf_pf_int_cleanup(p_hwfn);
3403 			continue;
3404 		}
3405 		p_ptt = qed_ptt_acquire(p_hwfn);
3406 		if (!p_ptt)
3407 			return -EAGAIN;
3408 
3409 		DP_VERBOSE(p_hwfn,
3410 			   NETIF_MSG_IFDOWN, "Shutting down the fastpath\n");
3411 
3412 		qed_wr(p_hwfn, p_ptt,
3413 		       NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1);
3414 
3415 		qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
3416 		qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0);
3417 		qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0);
3418 		qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
3419 		qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0);
3420 
3421 		qed_int_igu_init_pure_rt(p_hwfn, p_ptt, false, false);
3422 
3423 		/* Need to wait 1ms to guarantee SBs are cleared */
3424 		usleep_range(1000, 2000);
3425 		qed_ptt_release(p_hwfn, p_ptt);
3426 	}
3427 
3428 	return 0;
3429 }
3430 
3431 int qed_hw_start_fastpath(struct qed_hwfn *p_hwfn)
3432 {
3433 	struct qed_ptt *p_ptt;
3434 
3435 	if (IS_VF(p_hwfn->cdev))
3436 		return 0;
3437 
3438 	p_ptt = qed_ptt_acquire(p_hwfn);
3439 	if (!p_ptt)
3440 		return -EAGAIN;
3441 
3442 	if (p_hwfn->p_rdma_info &&
3443 	    p_hwfn->p_rdma_info->active && p_hwfn->b_rdma_enabled_in_prs)
3444 		qed_wr(p_hwfn, p_ptt, p_hwfn->rdma_prs_search_reg, 0x1);
3445 
3446 	/* Re-open incoming traffic */
3447 	qed_wr(p_hwfn, p_ptt, NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x0);
3448 	qed_ptt_release(p_hwfn, p_ptt);
3449 
3450 	return 0;
3451 }
3452 
3453 /* Free hwfn memory and resources acquired in hw_hwfn_prepare */
3454 static void qed_hw_hwfn_free(struct qed_hwfn *p_hwfn)
3455 {
3456 	qed_ptt_pool_free(p_hwfn);
3457 	kfree(p_hwfn->hw_info.p_igu_info);
3458 	p_hwfn->hw_info.p_igu_info = NULL;
3459 }
3460 
3461 /* Setup bar access */
3462 static void qed_hw_hwfn_prepare(struct qed_hwfn *p_hwfn)
3463 {
3464 	/* clear indirect access */
3465 	if (QED_IS_AH(p_hwfn->cdev)) {
3466 		qed_wr(p_hwfn, p_hwfn->p_main_ptt,
3467 		       PGLUE_B_REG_PGL_ADDR_E8_F0_K2, 0);
3468 		qed_wr(p_hwfn, p_hwfn->p_main_ptt,
3469 		       PGLUE_B_REG_PGL_ADDR_EC_F0_K2, 0);
3470 		qed_wr(p_hwfn, p_hwfn->p_main_ptt,
3471 		       PGLUE_B_REG_PGL_ADDR_F0_F0_K2, 0);
3472 		qed_wr(p_hwfn, p_hwfn->p_main_ptt,
3473 		       PGLUE_B_REG_PGL_ADDR_F4_F0_K2, 0);
3474 	} else {
3475 		qed_wr(p_hwfn, p_hwfn->p_main_ptt,
3476 		       PGLUE_B_REG_PGL_ADDR_88_F0_BB, 0);
3477 		qed_wr(p_hwfn, p_hwfn->p_main_ptt,
3478 		       PGLUE_B_REG_PGL_ADDR_8C_F0_BB, 0);
3479 		qed_wr(p_hwfn, p_hwfn->p_main_ptt,
3480 		       PGLUE_B_REG_PGL_ADDR_90_F0_BB, 0);
3481 		qed_wr(p_hwfn, p_hwfn->p_main_ptt,
3482 		       PGLUE_B_REG_PGL_ADDR_94_F0_BB, 0);
3483 	}
3484 
3485 	/* Clean previous pglue_b errors if such exist */
3486 	qed_pglueb_clear_err(p_hwfn, p_hwfn->p_main_ptt);
3487 
3488 	/* enable internal target-read */
3489 	qed_wr(p_hwfn, p_hwfn->p_main_ptt,
3490 	       PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
3491 }
3492 
3493 static void get_function_id(struct qed_hwfn *p_hwfn)
3494 {
3495 	/* ME Register */
3496 	p_hwfn->hw_info.opaque_fid = (u16) REG_RD(p_hwfn,
3497 						  PXP_PF_ME_OPAQUE_ADDR);
3498 
3499 	p_hwfn->hw_info.concrete_fid = REG_RD(p_hwfn, PXP_PF_ME_CONCRETE_ADDR);
3500 
3501 	p_hwfn->abs_pf_id = (p_hwfn->hw_info.concrete_fid >> 16) & 0xf;
3502 	p_hwfn->rel_pf_id = GET_FIELD(p_hwfn->hw_info.concrete_fid,
3503 				      PXP_CONCRETE_FID_PFID);
3504 	p_hwfn->port_id = GET_FIELD(p_hwfn->hw_info.concrete_fid,
3505 				    PXP_CONCRETE_FID_PORT);
3506 
3507 	DP_VERBOSE(p_hwfn, NETIF_MSG_PROBE,
3508 		   "Read ME register: Concrete 0x%08x Opaque 0x%04x\n",
3509 		   p_hwfn->hw_info.concrete_fid, p_hwfn->hw_info.opaque_fid);
3510 }
3511 
3512 static void qed_hw_set_feat(struct qed_hwfn *p_hwfn)
3513 {
3514 	u32 *feat_num = p_hwfn->hw_info.feat_num;
3515 	struct qed_sb_cnt_info sb_cnt;
3516 	u32 non_l2_sbs = 0;
3517 
3518 	memset(&sb_cnt, 0, sizeof(sb_cnt));
3519 	qed_int_get_num_sbs(p_hwfn, &sb_cnt);
3520 
3521 	if (IS_ENABLED(CONFIG_QED_RDMA) &&
3522 	    QED_IS_RDMA_PERSONALITY(p_hwfn)) {
3523 		/* Roce CNQ each requires: 1 status block + 1 CNQ. We divide
3524 		 * the status blocks equally between L2 / RoCE but with
3525 		 * consideration as to how many l2 queues / cnqs we have.
3526 		 */
3527 		feat_num[QED_RDMA_CNQ] =
3528 			min_t(u32, sb_cnt.cnt / 2,
3529 			      RESC_NUM(p_hwfn, QED_RDMA_CNQ_RAM));
3530 
3531 		non_l2_sbs = feat_num[QED_RDMA_CNQ];
3532 	}
3533 	if (QED_IS_L2_PERSONALITY(p_hwfn)) {
3534 		/* Start by allocating VF queues, then PF's */
3535 		feat_num[QED_VF_L2_QUE] = min_t(u32,
3536 						RESC_NUM(p_hwfn, QED_L2_QUEUE),
3537 						sb_cnt.iov_cnt);
3538 		feat_num[QED_PF_L2_QUE] = min_t(u32,
3539 						sb_cnt.cnt - non_l2_sbs,
3540 						RESC_NUM(p_hwfn,
3541 							 QED_L2_QUEUE) -
3542 						FEAT_NUM(p_hwfn,
3543 							 QED_VF_L2_QUE));
3544 	}
3545 
3546 	if (QED_IS_FCOE_PERSONALITY(p_hwfn))
3547 		feat_num[QED_FCOE_CQ] =  min_t(u32, sb_cnt.cnt,
3548 					       RESC_NUM(p_hwfn,
3549 							QED_CMDQS_CQS));
3550 
3551 	if (QED_IS_ISCSI_PERSONALITY(p_hwfn))
3552 		feat_num[QED_ISCSI_CQ] = min_t(u32, sb_cnt.cnt,
3553 					       RESC_NUM(p_hwfn,
3554 							QED_CMDQS_CQS));
3555 	DP_VERBOSE(p_hwfn,
3556 		   NETIF_MSG_PROBE,
3557 		   "#PF_L2_QUEUES=%d VF_L2_QUEUES=%d #ROCE_CNQ=%d FCOE_CQ=%d ISCSI_CQ=%d #SBS=%d\n",
3558 		   (int)FEAT_NUM(p_hwfn, QED_PF_L2_QUE),
3559 		   (int)FEAT_NUM(p_hwfn, QED_VF_L2_QUE),
3560 		   (int)FEAT_NUM(p_hwfn, QED_RDMA_CNQ),
3561 		   (int)FEAT_NUM(p_hwfn, QED_FCOE_CQ),
3562 		   (int)FEAT_NUM(p_hwfn, QED_ISCSI_CQ),
3563 		   (int)sb_cnt.cnt);
3564 }
3565 
3566 const char *qed_hw_get_resc_name(enum qed_resources res_id)
3567 {
3568 	switch (res_id) {
3569 	case QED_L2_QUEUE:
3570 		return "L2_QUEUE";
3571 	case QED_VPORT:
3572 		return "VPORT";
3573 	case QED_RSS_ENG:
3574 		return "RSS_ENG";
3575 	case QED_PQ:
3576 		return "PQ";
3577 	case QED_RL:
3578 		return "RL";
3579 	case QED_MAC:
3580 		return "MAC";
3581 	case QED_VLAN:
3582 		return "VLAN";
3583 	case QED_RDMA_CNQ_RAM:
3584 		return "RDMA_CNQ_RAM";
3585 	case QED_ILT:
3586 		return "ILT";
3587 	case QED_LL2_RAM_QUEUE:
3588 		return "LL2_RAM_QUEUE";
3589 	case QED_LL2_CTX_QUEUE:
3590 		return "LL2_CTX_QUEUE";
3591 	case QED_CMDQS_CQS:
3592 		return "CMDQS_CQS";
3593 	case QED_RDMA_STATS_QUEUE:
3594 		return "RDMA_STATS_QUEUE";
3595 	case QED_BDQ:
3596 		return "BDQ";
3597 	case QED_SB:
3598 		return "SB";
3599 	default:
3600 		return "UNKNOWN_RESOURCE";
3601 	}
3602 }
3603 
3604 static int
3605 __qed_hw_set_soft_resc_size(struct qed_hwfn *p_hwfn,
3606 			    struct qed_ptt *p_ptt,
3607 			    enum qed_resources res_id,
3608 			    u32 resc_max_val, u32 *p_mcp_resp)
3609 {
3610 	int rc;
3611 
3612 	rc = qed_mcp_set_resc_max_val(p_hwfn, p_ptt, res_id,
3613 				      resc_max_val, p_mcp_resp);
3614 	if (rc) {
3615 		DP_NOTICE(p_hwfn,
3616 			  "MFW response failure for a max value setting of resource %d [%s]\n",
3617 			  res_id, qed_hw_get_resc_name(res_id));
3618 		return rc;
3619 	}
3620 
3621 	if (*p_mcp_resp != FW_MSG_CODE_RESOURCE_ALLOC_OK)
3622 		DP_INFO(p_hwfn,
3623 			"Failed to set the max value of resource %d [%s]. mcp_resp = 0x%08x.\n",
3624 			res_id, qed_hw_get_resc_name(res_id), *p_mcp_resp);
3625 
3626 	return 0;
3627 }
3628 
3629 static u32 qed_hsi_def_val[][MAX_CHIP_IDS] = {
3630 	{MAX_NUM_VFS_BB, MAX_NUM_VFS_K2},
3631 	{MAX_NUM_L2_QUEUES_BB, MAX_NUM_L2_QUEUES_K2},
3632 	{MAX_NUM_PORTS_BB, MAX_NUM_PORTS_K2},
3633 	{MAX_SB_PER_PATH_BB, MAX_SB_PER_PATH_K2,},
3634 	{MAX_NUM_PFS_BB, MAX_NUM_PFS_K2},
3635 	{MAX_NUM_VPORTS_BB, MAX_NUM_VPORTS_K2},
3636 	{ETH_RSS_ENGINE_NUM_BB, ETH_RSS_ENGINE_NUM_K2},
3637 	{MAX_QM_TX_QUEUES_BB, MAX_QM_TX_QUEUES_K2},
3638 	{PXP_NUM_ILT_RECORDS_BB, PXP_NUM_ILT_RECORDS_K2},
3639 	{RDMA_NUM_STATISTIC_COUNTERS_BB, RDMA_NUM_STATISTIC_COUNTERS_K2},
3640 	{MAX_QM_GLOBAL_RLS, MAX_QM_GLOBAL_RLS},
3641 	{PBF_MAX_CMD_LINES, PBF_MAX_CMD_LINES},
3642 	{BTB_MAX_BLOCKS_BB, BTB_MAX_BLOCKS_K2},
3643 };
3644 
3645 u32 qed_get_hsi_def_val(struct qed_dev *cdev, enum qed_hsi_def_type type)
3646 {
3647 	enum chip_ids chip_id = QED_IS_BB(cdev) ? CHIP_BB : CHIP_K2;
3648 
3649 	if (type >= QED_NUM_HSI_DEFS) {
3650 		DP_ERR(cdev, "Unexpected HSI definition type [%d]\n", type);
3651 		return 0;
3652 	}
3653 
3654 	return qed_hsi_def_val[type][chip_id];
3655 }
3656 static int
3657 qed_hw_set_soft_resc_size(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
3658 {
3659 	u32 resc_max_val, mcp_resp;
3660 	u8 res_id;
3661 	int rc;
3662 	for (res_id = 0; res_id < QED_MAX_RESC; res_id++) {
3663 		switch (res_id) {
3664 		case QED_LL2_RAM_QUEUE:
3665 			resc_max_val = MAX_NUM_LL2_RX_RAM_QUEUES;
3666 			break;
3667 		case QED_LL2_CTX_QUEUE:
3668 			resc_max_val = MAX_NUM_LL2_RX_CTX_QUEUES;
3669 			break;
3670 		case QED_RDMA_CNQ_RAM:
3671 			/* No need for a case for QED_CMDQS_CQS since
3672 			 * CNQ/CMDQS are the same resource.
3673 			 */
3674 			resc_max_val = NUM_OF_GLOBAL_QUEUES;
3675 			break;
3676 		case QED_RDMA_STATS_QUEUE:
3677 			resc_max_val =
3678 			    NUM_OF_RDMA_STATISTIC_COUNTERS(p_hwfn->cdev);
3679 			break;
3680 		case QED_BDQ:
3681 			resc_max_val = BDQ_NUM_RESOURCES;
3682 			break;
3683 		default:
3684 			continue;
3685 		}
3686 
3687 		rc = __qed_hw_set_soft_resc_size(p_hwfn, p_ptt, res_id,
3688 						 resc_max_val, &mcp_resp);
3689 		if (rc)
3690 			return rc;
3691 
3692 		/* There's no point to continue to the next resource if the
3693 		 * command is not supported by the MFW.
3694 		 * We do continue if the command is supported but the resource
3695 		 * is unknown to the MFW. Such a resource will be later
3696 		 * configured with the default allocation values.
3697 		 */
3698 		if (mcp_resp == FW_MSG_CODE_UNSUPPORTED)
3699 			return -EINVAL;
3700 	}
3701 
3702 	return 0;
3703 }
3704 
3705 static
3706 int qed_hw_get_dflt_resc(struct qed_hwfn *p_hwfn,
3707 			 enum qed_resources res_id,
3708 			 u32 *p_resc_num, u32 *p_resc_start)
3709 {
3710 	u8 num_funcs = p_hwfn->num_funcs_on_engine;
3711 	struct qed_dev *cdev = p_hwfn->cdev;
3712 
3713 	switch (res_id) {
3714 	case QED_L2_QUEUE:
3715 		*p_resc_num = NUM_OF_L2_QUEUES(cdev) / num_funcs;
3716 		break;
3717 	case QED_VPORT:
3718 		*p_resc_num = NUM_OF_VPORTS(cdev) / num_funcs;
3719 		break;
3720 	case QED_RSS_ENG:
3721 		*p_resc_num = NUM_OF_RSS_ENGINES(cdev) / num_funcs;
3722 		break;
3723 	case QED_PQ:
3724 		*p_resc_num = NUM_OF_QM_TX_QUEUES(cdev) / num_funcs;
3725 		*p_resc_num &= ~0x7;	/* The granularity of the PQs is 8 */
3726 		break;
3727 	case QED_RL:
3728 		*p_resc_num = NUM_OF_QM_GLOBAL_RLS(cdev) / num_funcs;
3729 		break;
3730 	case QED_MAC:
3731 	case QED_VLAN:
3732 		/* Each VFC resource can accommodate both a MAC and a VLAN */
3733 		*p_resc_num = ETH_NUM_MAC_FILTERS / num_funcs;
3734 		break;
3735 	case QED_ILT:
3736 		*p_resc_num = NUM_OF_PXP_ILT_RECORDS(cdev) / num_funcs;
3737 		break;
3738 	case QED_LL2_RAM_QUEUE:
3739 		*p_resc_num = MAX_NUM_LL2_RX_RAM_QUEUES / num_funcs;
3740 		break;
3741 	case QED_LL2_CTX_QUEUE:
3742 		*p_resc_num = MAX_NUM_LL2_RX_CTX_QUEUES / num_funcs;
3743 		break;
3744 	case QED_RDMA_CNQ_RAM:
3745 	case QED_CMDQS_CQS:
3746 		/* CNQ/CMDQS are the same resource */
3747 		*p_resc_num = NUM_OF_GLOBAL_QUEUES / num_funcs;
3748 		break;
3749 	case QED_RDMA_STATS_QUEUE:
3750 		*p_resc_num = NUM_OF_RDMA_STATISTIC_COUNTERS(cdev) / num_funcs;
3751 		break;
3752 	case QED_BDQ:
3753 		if (p_hwfn->hw_info.personality != QED_PCI_ISCSI &&
3754 		    p_hwfn->hw_info.personality != QED_PCI_FCOE)
3755 			*p_resc_num = 0;
3756 		else
3757 			*p_resc_num = 1;
3758 		break;
3759 	case QED_SB:
3760 		/* Since we want its value to reflect whether MFW supports
3761 		 * the new scheme, have a default of 0.
3762 		 */
3763 		*p_resc_num = 0;
3764 		break;
3765 	default:
3766 		return -EINVAL;
3767 	}
3768 
3769 	switch (res_id) {
3770 	case QED_BDQ:
3771 		if (!*p_resc_num)
3772 			*p_resc_start = 0;
3773 		else if (p_hwfn->cdev->num_ports_in_engine == 4)
3774 			*p_resc_start = p_hwfn->port_id;
3775 		else if (p_hwfn->hw_info.personality == QED_PCI_ISCSI)
3776 			*p_resc_start = p_hwfn->port_id;
3777 		else if (p_hwfn->hw_info.personality == QED_PCI_FCOE)
3778 			*p_resc_start = p_hwfn->port_id + 2;
3779 		break;
3780 	default:
3781 		*p_resc_start = *p_resc_num * p_hwfn->enabled_func_idx;
3782 		break;
3783 	}
3784 
3785 	return 0;
3786 }
3787 
3788 static int __qed_hw_set_resc_info(struct qed_hwfn *p_hwfn,
3789 				  enum qed_resources res_id)
3790 {
3791 	u32 dflt_resc_num = 0, dflt_resc_start = 0;
3792 	u32 mcp_resp, *p_resc_num, *p_resc_start;
3793 	int rc;
3794 
3795 	p_resc_num = &RESC_NUM(p_hwfn, res_id);
3796 	p_resc_start = &RESC_START(p_hwfn, res_id);
3797 
3798 	rc = qed_hw_get_dflt_resc(p_hwfn, res_id, &dflt_resc_num,
3799 				  &dflt_resc_start);
3800 	if (rc) {
3801 		DP_ERR(p_hwfn,
3802 		       "Failed to get default amount for resource %d [%s]\n",
3803 		       res_id, qed_hw_get_resc_name(res_id));
3804 		return rc;
3805 	}
3806 
3807 	rc = qed_mcp_get_resc_info(p_hwfn, p_hwfn->p_main_ptt, res_id,
3808 				   &mcp_resp, p_resc_num, p_resc_start);
3809 	if (rc) {
3810 		DP_NOTICE(p_hwfn,
3811 			  "MFW response failure for an allocation request for resource %d [%s]\n",
3812 			  res_id, qed_hw_get_resc_name(res_id));
3813 		return rc;
3814 	}
3815 
3816 	/* Default driver values are applied in the following cases:
3817 	 * - The resource allocation MB command is not supported by the MFW
3818 	 * - There is an internal error in the MFW while processing the request
3819 	 * - The resource ID is unknown to the MFW
3820 	 */
3821 	if (mcp_resp != FW_MSG_CODE_RESOURCE_ALLOC_OK) {
3822 		DP_INFO(p_hwfn,
3823 			"Failed to receive allocation info for resource %d [%s]. mcp_resp = 0x%x. Applying default values [%d,%d].\n",
3824 			res_id,
3825 			qed_hw_get_resc_name(res_id),
3826 			mcp_resp, dflt_resc_num, dflt_resc_start);
3827 		*p_resc_num = dflt_resc_num;
3828 		*p_resc_start = dflt_resc_start;
3829 		goto out;
3830 	}
3831 
3832 out:
3833 	/* PQs have to divide by 8 [that's the HW granularity].
3834 	 * Reduce number so it would fit.
3835 	 */
3836 	if ((res_id == QED_PQ) && ((*p_resc_num % 8) || (*p_resc_start % 8))) {
3837 		DP_INFO(p_hwfn,
3838 			"PQs need to align by 8; Number %08x --> %08x, Start %08x --> %08x\n",
3839 			*p_resc_num,
3840 			(*p_resc_num) & ~0x7,
3841 			*p_resc_start, (*p_resc_start) & ~0x7);
3842 		*p_resc_num &= ~0x7;
3843 		*p_resc_start &= ~0x7;
3844 	}
3845 
3846 	return 0;
3847 }
3848 
3849 static int qed_hw_set_resc_info(struct qed_hwfn *p_hwfn)
3850 {
3851 	int rc;
3852 	u8 res_id;
3853 
3854 	for (res_id = 0; res_id < QED_MAX_RESC; res_id++) {
3855 		rc = __qed_hw_set_resc_info(p_hwfn, res_id);
3856 		if (rc)
3857 			return rc;
3858 	}
3859 
3860 	return 0;
3861 }
3862 
3863 static int qed_hw_get_ppfid_bitmap(struct qed_hwfn *p_hwfn,
3864 				   struct qed_ptt *p_ptt)
3865 {
3866 	struct qed_dev *cdev = p_hwfn->cdev;
3867 	u8 native_ppfid_idx;
3868 	int rc;
3869 
3870 	/* Calculation of BB/AH is different for native_ppfid_idx */
3871 	if (QED_IS_BB(cdev))
3872 		native_ppfid_idx = p_hwfn->rel_pf_id;
3873 	else
3874 		native_ppfid_idx = p_hwfn->rel_pf_id /
3875 		    cdev->num_ports_in_engine;
3876 
3877 	rc = qed_mcp_get_ppfid_bitmap(p_hwfn, p_ptt);
3878 	if (rc != 0 && rc != -EOPNOTSUPP)
3879 		return rc;
3880 	else if (rc == -EOPNOTSUPP)
3881 		cdev->ppfid_bitmap = 0x1 << native_ppfid_idx;
3882 
3883 	if (!(cdev->ppfid_bitmap & (0x1 << native_ppfid_idx))) {
3884 		DP_INFO(p_hwfn,
3885 			"Fix the PPFID bitmap to include the native PPFID [native_ppfid_idx %hhd, orig_bitmap 0x%hhx]\n",
3886 			native_ppfid_idx, cdev->ppfid_bitmap);
3887 		cdev->ppfid_bitmap = 0x1 << native_ppfid_idx;
3888 	}
3889 
3890 	return 0;
3891 }
3892 
3893 static int qed_hw_get_resc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
3894 {
3895 	struct qed_resc_unlock_params resc_unlock_params;
3896 	struct qed_resc_lock_params resc_lock_params;
3897 	bool b_ah = QED_IS_AH(p_hwfn->cdev);
3898 	u8 res_id;
3899 	int rc;
3900 
3901 	/* Setting the max values of the soft resources and the following
3902 	 * resources allocation queries should be atomic. Since several PFs can
3903 	 * run in parallel - a resource lock is needed.
3904 	 * If either the resource lock or resource set value commands are not
3905 	 * supported - skip the the max values setting, release the lock if
3906 	 * needed, and proceed to the queries. Other failures, including a
3907 	 * failure to acquire the lock, will cause this function to fail.
3908 	 */
3909 	qed_mcp_resc_lock_default_init(&resc_lock_params, &resc_unlock_params,
3910 				       QED_RESC_LOCK_RESC_ALLOC, false);
3911 
3912 	rc = qed_mcp_resc_lock(p_hwfn, p_ptt, &resc_lock_params);
3913 	if (rc && rc != -EINVAL) {
3914 		return rc;
3915 	} else if (rc == -EINVAL) {
3916 		DP_INFO(p_hwfn,
3917 			"Skip the max values setting of the soft resources since the resource lock is not supported by the MFW\n");
3918 	} else if (!rc && !resc_lock_params.b_granted) {
3919 		DP_NOTICE(p_hwfn,
3920 			  "Failed to acquire the resource lock for the resource allocation commands\n");
3921 		return -EBUSY;
3922 	} else {
3923 		rc = qed_hw_set_soft_resc_size(p_hwfn, p_ptt);
3924 		if (rc && rc != -EINVAL) {
3925 			DP_NOTICE(p_hwfn,
3926 				  "Failed to set the max values of the soft resources\n");
3927 			goto unlock_and_exit;
3928 		} else if (rc == -EINVAL) {
3929 			DP_INFO(p_hwfn,
3930 				"Skip the max values setting of the soft resources since it is not supported by the MFW\n");
3931 			rc = qed_mcp_resc_unlock(p_hwfn, p_ptt,
3932 						 &resc_unlock_params);
3933 			if (rc)
3934 				DP_INFO(p_hwfn,
3935 					"Failed to release the resource lock for the resource allocation commands\n");
3936 		}
3937 	}
3938 
3939 	rc = qed_hw_set_resc_info(p_hwfn);
3940 	if (rc)
3941 		goto unlock_and_exit;
3942 
3943 	if (resc_lock_params.b_granted && !resc_unlock_params.b_released) {
3944 		rc = qed_mcp_resc_unlock(p_hwfn, p_ptt, &resc_unlock_params);
3945 		if (rc)
3946 			DP_INFO(p_hwfn,
3947 				"Failed to release the resource lock for the resource allocation commands\n");
3948 	}
3949 
3950 	/* PPFID bitmap */
3951 	if (IS_LEAD_HWFN(p_hwfn)) {
3952 		rc = qed_hw_get_ppfid_bitmap(p_hwfn, p_ptt);
3953 		if (rc)
3954 			return rc;
3955 	}
3956 
3957 	/* Sanity for ILT */
3958 	if ((b_ah && (RESC_END(p_hwfn, QED_ILT) > PXP_NUM_ILT_RECORDS_K2)) ||
3959 	    (!b_ah && (RESC_END(p_hwfn, QED_ILT) > PXP_NUM_ILT_RECORDS_BB))) {
3960 		DP_NOTICE(p_hwfn, "Can't assign ILT pages [%08x,...,%08x]\n",
3961 			  RESC_START(p_hwfn, QED_ILT),
3962 			  RESC_END(p_hwfn, QED_ILT) - 1);
3963 		return -EINVAL;
3964 	}
3965 
3966 	/* This will also learn the number of SBs from MFW */
3967 	if (qed_int_igu_reset_cam(p_hwfn, p_ptt))
3968 		return -EINVAL;
3969 
3970 	qed_hw_set_feat(p_hwfn);
3971 
3972 	for (res_id = 0; res_id < QED_MAX_RESC; res_id++)
3973 		DP_VERBOSE(p_hwfn, NETIF_MSG_PROBE, "%s = %d start = %d\n",
3974 			   qed_hw_get_resc_name(res_id),
3975 			   RESC_NUM(p_hwfn, res_id),
3976 			   RESC_START(p_hwfn, res_id));
3977 
3978 	return 0;
3979 
3980 unlock_and_exit:
3981 	if (resc_lock_params.b_granted && !resc_unlock_params.b_released)
3982 		qed_mcp_resc_unlock(p_hwfn, p_ptt, &resc_unlock_params);
3983 	return rc;
3984 }
3985 
3986 static int qed_hw_get_nvm_info(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
3987 {
3988 	u32 port_cfg_addr, link_temp, nvm_cfg_addr, device_capabilities;
3989 	u32 nvm_cfg1_offset, mf_mode, addr, generic_cont0, core_cfg;
3990 	struct qed_mcp_link_capabilities *p_caps;
3991 	struct qed_mcp_link_params *link;
3992 
3993 	/* Read global nvm_cfg address */
3994 	nvm_cfg_addr = qed_rd(p_hwfn, p_ptt, MISC_REG_GEN_PURP_CR0);
3995 
3996 	/* Verify MCP has initialized it */
3997 	if (!nvm_cfg_addr) {
3998 		DP_NOTICE(p_hwfn, "Shared memory not initialized\n");
3999 		return -EINVAL;
4000 	}
4001 
4002 	/* Read nvm_cfg1  (Notice this is just offset, and not offsize (TBD) */
4003 	nvm_cfg1_offset = qed_rd(p_hwfn, p_ptt, nvm_cfg_addr + 4);
4004 
4005 	addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
4006 	       offsetof(struct nvm_cfg1, glob) +
4007 	       offsetof(struct nvm_cfg1_glob, core_cfg);
4008 
4009 	core_cfg = qed_rd(p_hwfn, p_ptt, addr);
4010 
4011 	switch ((core_cfg & NVM_CFG1_GLOB_NETWORK_PORT_MODE_MASK) >>
4012 		NVM_CFG1_GLOB_NETWORK_PORT_MODE_OFFSET) {
4013 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_2X40G:
4014 		p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_2X40G;
4015 		break;
4016 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X50G:
4017 		p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_2X50G;
4018 		break;
4019 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_1X100G:
4020 		p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_1X100G;
4021 		break;
4022 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_4X10G_F:
4023 		p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_4X10G_F;
4024 		break;
4025 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X10G_E:
4026 		p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_4X10G_E;
4027 		break;
4028 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X20G:
4029 		p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_4X20G;
4030 		break;
4031 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X40G:
4032 		p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_1X40G;
4033 		break;
4034 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X25G:
4035 		p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_2X25G;
4036 		break;
4037 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X10G:
4038 		p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_2X10G;
4039 		break;
4040 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X25G:
4041 		p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_1X25G;
4042 		break;
4043 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_4X25G:
4044 		p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_4X25G;
4045 		break;
4046 	default:
4047 		DP_NOTICE(p_hwfn, "Unknown port mode in 0x%08x\n", core_cfg);
4048 		break;
4049 	}
4050 
4051 	/* Read default link configuration */
4052 	link = &p_hwfn->mcp_info->link_input;
4053 	p_caps = &p_hwfn->mcp_info->link_capabilities;
4054 	port_cfg_addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
4055 			offsetof(struct nvm_cfg1, port[MFW_PORT(p_hwfn)]);
4056 	link_temp = qed_rd(p_hwfn, p_ptt,
4057 			   port_cfg_addr +
4058 			   offsetof(struct nvm_cfg1_port, speed_cap_mask));
4059 	link_temp &= NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_MASK;
4060 	link->speed.advertised_speeds = link_temp;
4061 
4062 	link_temp = link->speed.advertised_speeds;
4063 	p_hwfn->mcp_info->link_capabilities.speed_capabilities = link_temp;
4064 
4065 	link_temp = qed_rd(p_hwfn, p_ptt,
4066 			   port_cfg_addr +
4067 			   offsetof(struct nvm_cfg1_port, link_settings));
4068 	switch ((link_temp & NVM_CFG1_PORT_DRV_LINK_SPEED_MASK) >>
4069 		NVM_CFG1_PORT_DRV_LINK_SPEED_OFFSET) {
4070 	case NVM_CFG1_PORT_DRV_LINK_SPEED_AUTONEG:
4071 		link->speed.autoneg = true;
4072 		break;
4073 	case NVM_CFG1_PORT_DRV_LINK_SPEED_1G:
4074 		link->speed.forced_speed = 1000;
4075 		break;
4076 	case NVM_CFG1_PORT_DRV_LINK_SPEED_10G:
4077 		link->speed.forced_speed = 10000;
4078 		break;
4079 	case NVM_CFG1_PORT_DRV_LINK_SPEED_20G:
4080 		link->speed.forced_speed = 20000;
4081 		break;
4082 	case NVM_CFG1_PORT_DRV_LINK_SPEED_25G:
4083 		link->speed.forced_speed = 25000;
4084 		break;
4085 	case NVM_CFG1_PORT_DRV_LINK_SPEED_40G:
4086 		link->speed.forced_speed = 40000;
4087 		break;
4088 	case NVM_CFG1_PORT_DRV_LINK_SPEED_50G:
4089 		link->speed.forced_speed = 50000;
4090 		break;
4091 	case NVM_CFG1_PORT_DRV_LINK_SPEED_BB_100G:
4092 		link->speed.forced_speed = 100000;
4093 		break;
4094 	default:
4095 		DP_NOTICE(p_hwfn, "Unknown Speed in 0x%08x\n", link_temp);
4096 	}
4097 
4098 	p_hwfn->mcp_info->link_capabilities.default_speed_autoneg =
4099 		link->speed.autoneg;
4100 
4101 	link_temp &= NVM_CFG1_PORT_DRV_FLOW_CONTROL_MASK;
4102 	link_temp >>= NVM_CFG1_PORT_DRV_FLOW_CONTROL_OFFSET;
4103 	link->pause.autoneg = !!(link_temp &
4104 				 NVM_CFG1_PORT_DRV_FLOW_CONTROL_AUTONEG);
4105 	link->pause.forced_rx = !!(link_temp &
4106 				   NVM_CFG1_PORT_DRV_FLOW_CONTROL_RX);
4107 	link->pause.forced_tx = !!(link_temp &
4108 				   NVM_CFG1_PORT_DRV_FLOW_CONTROL_TX);
4109 	link->loopback_mode = 0;
4110 
4111 	if (p_hwfn->mcp_info->capabilities & FW_MB_PARAM_FEATURE_SUPPORT_EEE) {
4112 		link_temp = qed_rd(p_hwfn, p_ptt, port_cfg_addr +
4113 				   offsetof(struct nvm_cfg1_port, ext_phy));
4114 		link_temp &= NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_MASK;
4115 		link_temp >>= NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_OFFSET;
4116 		p_caps->default_eee = QED_MCP_EEE_ENABLED;
4117 		link->eee.enable = true;
4118 		switch (link_temp) {
4119 		case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_DISABLED:
4120 			p_caps->default_eee = QED_MCP_EEE_DISABLED;
4121 			link->eee.enable = false;
4122 			break;
4123 		case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_BALANCED:
4124 			p_caps->eee_lpi_timer = EEE_TX_TIMER_USEC_BALANCED_TIME;
4125 			break;
4126 		case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_AGGRESSIVE:
4127 			p_caps->eee_lpi_timer =
4128 			    EEE_TX_TIMER_USEC_AGGRESSIVE_TIME;
4129 			break;
4130 		case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_LOW_LATENCY:
4131 			p_caps->eee_lpi_timer = EEE_TX_TIMER_USEC_LATENCY_TIME;
4132 			break;
4133 		}
4134 
4135 		link->eee.tx_lpi_timer = p_caps->eee_lpi_timer;
4136 		link->eee.tx_lpi_enable = link->eee.enable;
4137 		link->eee.adv_caps = QED_EEE_1G_ADV | QED_EEE_10G_ADV;
4138 	} else {
4139 		p_caps->default_eee = QED_MCP_EEE_UNSUPPORTED;
4140 	}
4141 
4142 	DP_VERBOSE(p_hwfn,
4143 		   NETIF_MSG_LINK,
4144 		   "Read default link: Speed 0x%08x, Adv. Speed 0x%08x, AN: 0x%02x, PAUSE AN: 0x%02x EEE: %02x [%08x usec]\n",
4145 		   link->speed.forced_speed,
4146 		   link->speed.advertised_speeds,
4147 		   link->speed.autoneg,
4148 		   link->pause.autoneg,
4149 		   p_caps->default_eee, p_caps->eee_lpi_timer);
4150 
4151 	if (IS_LEAD_HWFN(p_hwfn)) {
4152 		struct qed_dev *cdev = p_hwfn->cdev;
4153 
4154 		/* Read Multi-function information from shmem */
4155 		addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
4156 		       offsetof(struct nvm_cfg1, glob) +
4157 		       offsetof(struct nvm_cfg1_glob, generic_cont0);
4158 
4159 		generic_cont0 = qed_rd(p_hwfn, p_ptt, addr);
4160 
4161 		mf_mode = (generic_cont0 & NVM_CFG1_GLOB_MF_MODE_MASK) >>
4162 			  NVM_CFG1_GLOB_MF_MODE_OFFSET;
4163 
4164 		switch (mf_mode) {
4165 		case NVM_CFG1_GLOB_MF_MODE_MF_ALLOWED:
4166 			cdev->mf_bits = BIT(QED_MF_OVLAN_CLSS);
4167 			break;
4168 		case NVM_CFG1_GLOB_MF_MODE_UFP:
4169 			cdev->mf_bits = BIT(QED_MF_OVLAN_CLSS) |
4170 					BIT(QED_MF_LLH_PROTO_CLSS) |
4171 					BIT(QED_MF_UFP_SPECIFIC) |
4172 					BIT(QED_MF_8021Q_TAGGING) |
4173 					BIT(QED_MF_DONT_ADD_VLAN0_TAG);
4174 			break;
4175 		case NVM_CFG1_GLOB_MF_MODE_BD:
4176 			cdev->mf_bits = BIT(QED_MF_OVLAN_CLSS) |
4177 					BIT(QED_MF_LLH_PROTO_CLSS) |
4178 					BIT(QED_MF_8021AD_TAGGING) |
4179 					BIT(QED_MF_DONT_ADD_VLAN0_TAG);
4180 			break;
4181 		case NVM_CFG1_GLOB_MF_MODE_NPAR1_0:
4182 			cdev->mf_bits = BIT(QED_MF_LLH_MAC_CLSS) |
4183 					BIT(QED_MF_LLH_PROTO_CLSS) |
4184 					BIT(QED_MF_LL2_NON_UNICAST) |
4185 					BIT(QED_MF_INTER_PF_SWITCH);
4186 			break;
4187 		case NVM_CFG1_GLOB_MF_MODE_DEFAULT:
4188 			cdev->mf_bits = BIT(QED_MF_LLH_MAC_CLSS) |
4189 					BIT(QED_MF_LLH_PROTO_CLSS) |
4190 					BIT(QED_MF_LL2_NON_UNICAST);
4191 			if (QED_IS_BB(p_hwfn->cdev))
4192 				cdev->mf_bits |= BIT(QED_MF_NEED_DEF_PF);
4193 			break;
4194 		}
4195 
4196 		DP_INFO(p_hwfn, "Multi function mode is 0x%lx\n",
4197 			cdev->mf_bits);
4198 	}
4199 
4200 	DP_INFO(p_hwfn, "Multi function mode is 0x%lx\n",
4201 		p_hwfn->cdev->mf_bits);
4202 
4203 	/* Read device capabilities information from shmem */
4204 	addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
4205 		offsetof(struct nvm_cfg1, glob) +
4206 		offsetof(struct nvm_cfg1_glob, device_capabilities);
4207 
4208 	device_capabilities = qed_rd(p_hwfn, p_ptt, addr);
4209 	if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ETHERNET)
4210 		__set_bit(QED_DEV_CAP_ETH,
4211 			  &p_hwfn->hw_info.device_capabilities);
4212 	if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_FCOE)
4213 		__set_bit(QED_DEV_CAP_FCOE,
4214 			  &p_hwfn->hw_info.device_capabilities);
4215 	if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ISCSI)
4216 		__set_bit(QED_DEV_CAP_ISCSI,
4217 			  &p_hwfn->hw_info.device_capabilities);
4218 	if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ROCE)
4219 		__set_bit(QED_DEV_CAP_ROCE,
4220 			  &p_hwfn->hw_info.device_capabilities);
4221 
4222 	return qed_mcp_fill_shmem_func_info(p_hwfn, p_ptt);
4223 }
4224 
4225 static void qed_get_num_funcs(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
4226 {
4227 	u8 num_funcs, enabled_func_idx = p_hwfn->rel_pf_id;
4228 	u32 reg_function_hide, tmp, eng_mask, low_pfs_mask;
4229 	struct qed_dev *cdev = p_hwfn->cdev;
4230 
4231 	num_funcs = QED_IS_AH(cdev) ? MAX_NUM_PFS_K2 : MAX_NUM_PFS_BB;
4232 
4233 	/* Bit 0 of MISCS_REG_FUNCTION_HIDE indicates whether the bypass values
4234 	 * in the other bits are selected.
4235 	 * Bits 1-15 are for functions 1-15, respectively, and their value is
4236 	 * '0' only for enabled functions (function 0 always exists and
4237 	 * enabled).
4238 	 * In case of CMT, only the "even" functions are enabled, and thus the
4239 	 * number of functions for both hwfns is learnt from the same bits.
4240 	 */
4241 	reg_function_hide = qed_rd(p_hwfn, p_ptt, MISCS_REG_FUNCTION_HIDE);
4242 
4243 	if (reg_function_hide & 0x1) {
4244 		if (QED_IS_BB(cdev)) {
4245 			if (QED_PATH_ID(p_hwfn) && cdev->num_hwfns == 1) {
4246 				num_funcs = 0;
4247 				eng_mask = 0xaaaa;
4248 			} else {
4249 				num_funcs = 1;
4250 				eng_mask = 0x5554;
4251 			}
4252 		} else {
4253 			num_funcs = 1;
4254 			eng_mask = 0xfffe;
4255 		}
4256 
4257 		/* Get the number of the enabled functions on the engine */
4258 		tmp = (reg_function_hide ^ 0xffffffff) & eng_mask;
4259 		while (tmp) {
4260 			if (tmp & 0x1)
4261 				num_funcs++;
4262 			tmp >>= 0x1;
4263 		}
4264 
4265 		/* Get the PF index within the enabled functions */
4266 		low_pfs_mask = (0x1 << p_hwfn->abs_pf_id) - 1;
4267 		tmp = reg_function_hide & eng_mask & low_pfs_mask;
4268 		while (tmp) {
4269 			if (tmp & 0x1)
4270 				enabled_func_idx--;
4271 			tmp >>= 0x1;
4272 		}
4273 	}
4274 
4275 	p_hwfn->num_funcs_on_engine = num_funcs;
4276 	p_hwfn->enabled_func_idx = enabled_func_idx;
4277 
4278 	DP_VERBOSE(p_hwfn,
4279 		   NETIF_MSG_PROBE,
4280 		   "PF [rel_id %d, abs_id %d] occupies index %d within the %d enabled functions on the engine\n",
4281 		   p_hwfn->rel_pf_id,
4282 		   p_hwfn->abs_pf_id,
4283 		   p_hwfn->enabled_func_idx, p_hwfn->num_funcs_on_engine);
4284 }
4285 
4286 static void qed_hw_info_port_num(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
4287 {
4288 	u32 addr, global_offsize, global_addr, port_mode;
4289 	struct qed_dev *cdev = p_hwfn->cdev;
4290 
4291 	/* In CMT there is always only one port */
4292 	if (cdev->num_hwfns > 1) {
4293 		cdev->num_ports_in_engine = 1;
4294 		cdev->num_ports = 1;
4295 		return;
4296 	}
4297 
4298 	/* Determine the number of ports per engine */
4299 	port_mode = qed_rd(p_hwfn, p_ptt, MISC_REG_PORT_MODE);
4300 	switch (port_mode) {
4301 	case 0x0:
4302 		cdev->num_ports_in_engine = 1;
4303 		break;
4304 	case 0x1:
4305 		cdev->num_ports_in_engine = 2;
4306 		break;
4307 	case 0x2:
4308 		cdev->num_ports_in_engine = 4;
4309 		break;
4310 	default:
4311 		DP_NOTICE(p_hwfn, "Unknown port mode 0x%08x\n", port_mode);
4312 		cdev->num_ports_in_engine = 1;	/* Default to something */
4313 		break;
4314 	}
4315 
4316 	/* Get the total number of ports of the device */
4317 	addr = SECTION_OFFSIZE_ADDR(p_hwfn->mcp_info->public_base,
4318 				    PUBLIC_GLOBAL);
4319 	global_offsize = qed_rd(p_hwfn, p_ptt, addr);
4320 	global_addr = SECTION_ADDR(global_offsize, 0);
4321 	addr = global_addr + offsetof(struct public_global, max_ports);
4322 	cdev->num_ports = (u8)qed_rd(p_hwfn, p_ptt, addr);
4323 }
4324 
4325 static void qed_get_eee_caps(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
4326 {
4327 	struct qed_mcp_link_capabilities *p_caps;
4328 	u32 eee_status;
4329 
4330 	p_caps = &p_hwfn->mcp_info->link_capabilities;
4331 	if (p_caps->default_eee == QED_MCP_EEE_UNSUPPORTED)
4332 		return;
4333 
4334 	p_caps->eee_speed_caps = 0;
4335 	eee_status = qed_rd(p_hwfn, p_ptt, p_hwfn->mcp_info->port_addr +
4336 			    offsetof(struct public_port, eee_status));
4337 	eee_status = (eee_status & EEE_SUPPORTED_SPEED_MASK) >>
4338 			EEE_SUPPORTED_SPEED_OFFSET;
4339 
4340 	if (eee_status & EEE_1G_SUPPORTED)
4341 		p_caps->eee_speed_caps |= QED_EEE_1G_ADV;
4342 	if (eee_status & EEE_10G_ADV)
4343 		p_caps->eee_speed_caps |= QED_EEE_10G_ADV;
4344 }
4345 
4346 static int
4347 qed_get_hw_info(struct qed_hwfn *p_hwfn,
4348 		struct qed_ptt *p_ptt,
4349 		enum qed_pci_personality personality)
4350 {
4351 	int rc;
4352 
4353 	/* Since all information is common, only first hwfns should do this */
4354 	if (IS_LEAD_HWFN(p_hwfn)) {
4355 		rc = qed_iov_hw_info(p_hwfn);
4356 		if (rc)
4357 			return rc;
4358 	}
4359 
4360 	if (IS_LEAD_HWFN(p_hwfn))
4361 		qed_hw_info_port_num(p_hwfn, p_ptt);
4362 
4363 	qed_mcp_get_capabilities(p_hwfn, p_ptt);
4364 
4365 	qed_hw_get_nvm_info(p_hwfn, p_ptt);
4366 
4367 	rc = qed_int_igu_read_cam(p_hwfn, p_ptt);
4368 	if (rc)
4369 		return rc;
4370 
4371 	if (qed_mcp_is_init(p_hwfn))
4372 		ether_addr_copy(p_hwfn->hw_info.hw_mac_addr,
4373 				p_hwfn->mcp_info->func_info.mac);
4374 	else
4375 		eth_random_addr(p_hwfn->hw_info.hw_mac_addr);
4376 
4377 	if (qed_mcp_is_init(p_hwfn)) {
4378 		if (p_hwfn->mcp_info->func_info.ovlan != QED_MCP_VLAN_UNSET)
4379 			p_hwfn->hw_info.ovlan =
4380 				p_hwfn->mcp_info->func_info.ovlan;
4381 
4382 		qed_mcp_cmd_port_init(p_hwfn, p_ptt);
4383 
4384 		qed_get_eee_caps(p_hwfn, p_ptt);
4385 
4386 		qed_mcp_read_ufp_config(p_hwfn, p_ptt);
4387 	}
4388 
4389 	if (qed_mcp_is_init(p_hwfn)) {
4390 		enum qed_pci_personality protocol;
4391 
4392 		protocol = p_hwfn->mcp_info->func_info.protocol;
4393 		p_hwfn->hw_info.personality = protocol;
4394 	}
4395 
4396 	if (QED_IS_ROCE_PERSONALITY(p_hwfn))
4397 		p_hwfn->hw_info.multi_tc_roce_en = true;
4398 
4399 	p_hwfn->hw_info.num_hw_tc = NUM_PHYS_TCS_4PORT_K2;
4400 	p_hwfn->hw_info.num_active_tc = 1;
4401 
4402 	qed_get_num_funcs(p_hwfn, p_ptt);
4403 
4404 	if (qed_mcp_is_init(p_hwfn))
4405 		p_hwfn->hw_info.mtu = p_hwfn->mcp_info->func_info.mtu;
4406 
4407 	return qed_hw_get_resc(p_hwfn, p_ptt);
4408 }
4409 
4410 static int qed_get_dev_info(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
4411 {
4412 	struct qed_dev *cdev = p_hwfn->cdev;
4413 	u16 device_id_mask;
4414 	u32 tmp;
4415 
4416 	/* Read Vendor Id / Device Id */
4417 	pci_read_config_word(cdev->pdev, PCI_VENDOR_ID, &cdev->vendor_id);
4418 	pci_read_config_word(cdev->pdev, PCI_DEVICE_ID, &cdev->device_id);
4419 
4420 	/* Determine type */
4421 	device_id_mask = cdev->device_id & QED_DEV_ID_MASK;
4422 	switch (device_id_mask) {
4423 	case QED_DEV_ID_MASK_BB:
4424 		cdev->type = QED_DEV_TYPE_BB;
4425 		break;
4426 	case QED_DEV_ID_MASK_AH:
4427 		cdev->type = QED_DEV_TYPE_AH;
4428 		break;
4429 	default:
4430 		DP_NOTICE(p_hwfn, "Unknown device id 0x%x\n", cdev->device_id);
4431 		return -EBUSY;
4432 	}
4433 
4434 	cdev->chip_num = (u16)qed_rd(p_hwfn, p_ptt, MISCS_REG_CHIP_NUM);
4435 	cdev->chip_rev = (u16)qed_rd(p_hwfn, p_ptt, MISCS_REG_CHIP_REV);
4436 
4437 	MASK_FIELD(CHIP_REV, cdev->chip_rev);
4438 
4439 	/* Learn number of HW-functions */
4440 	tmp = qed_rd(p_hwfn, p_ptt, MISCS_REG_CMT_ENABLED_FOR_PAIR);
4441 
4442 	if (tmp & (1 << p_hwfn->rel_pf_id)) {
4443 		DP_NOTICE(cdev->hwfns, "device in CMT mode\n");
4444 		cdev->num_hwfns = 2;
4445 	} else {
4446 		cdev->num_hwfns = 1;
4447 	}
4448 
4449 	cdev->chip_bond_id = qed_rd(p_hwfn, p_ptt,
4450 				    MISCS_REG_CHIP_TEST_REG) >> 4;
4451 	MASK_FIELD(CHIP_BOND_ID, cdev->chip_bond_id);
4452 	cdev->chip_metal = (u16)qed_rd(p_hwfn, p_ptt, MISCS_REG_CHIP_METAL);
4453 	MASK_FIELD(CHIP_METAL, cdev->chip_metal);
4454 
4455 	DP_INFO(cdev->hwfns,
4456 		"Chip details - %s %c%d, Num: %04x Rev: %04x Bond id: %04x Metal: %04x\n",
4457 		QED_IS_BB(cdev) ? "BB" : "AH",
4458 		'A' + cdev->chip_rev,
4459 		(int)cdev->chip_metal,
4460 		cdev->chip_num, cdev->chip_rev,
4461 		cdev->chip_bond_id, cdev->chip_metal);
4462 
4463 	return 0;
4464 }
4465 
4466 static void qed_nvm_info_free(struct qed_hwfn *p_hwfn)
4467 {
4468 	kfree(p_hwfn->nvm_info.image_att);
4469 	p_hwfn->nvm_info.image_att = NULL;
4470 }
4471 
4472 static int qed_hw_prepare_single(struct qed_hwfn *p_hwfn,
4473 				 void __iomem *p_regview,
4474 				 void __iomem *p_doorbells,
4475 				 u64 db_phys_addr,
4476 				 enum qed_pci_personality personality)
4477 {
4478 	struct qed_dev *cdev = p_hwfn->cdev;
4479 	int rc = 0;
4480 
4481 	/* Split PCI bars evenly between hwfns */
4482 	p_hwfn->regview = p_regview;
4483 	p_hwfn->doorbells = p_doorbells;
4484 	p_hwfn->db_phys_addr = db_phys_addr;
4485 
4486 	if (IS_VF(p_hwfn->cdev))
4487 		return qed_vf_hw_prepare(p_hwfn);
4488 
4489 	/* Validate that chip access is feasible */
4490 	if (REG_RD(p_hwfn, PXP_PF_ME_OPAQUE_ADDR) == 0xffffffff) {
4491 		DP_ERR(p_hwfn,
4492 		       "Reading the ME register returns all Fs; Preventing further chip access\n");
4493 		return -EINVAL;
4494 	}
4495 
4496 	get_function_id(p_hwfn);
4497 
4498 	/* Allocate PTT pool */
4499 	rc = qed_ptt_pool_alloc(p_hwfn);
4500 	if (rc)
4501 		goto err0;
4502 
4503 	/* Allocate the main PTT */
4504 	p_hwfn->p_main_ptt = qed_get_reserved_ptt(p_hwfn, RESERVED_PTT_MAIN);
4505 
4506 	/* First hwfn learns basic information, e.g., number of hwfns */
4507 	if (!p_hwfn->my_id) {
4508 		rc = qed_get_dev_info(p_hwfn, p_hwfn->p_main_ptt);
4509 		if (rc)
4510 			goto err1;
4511 	}
4512 
4513 	qed_hw_hwfn_prepare(p_hwfn);
4514 
4515 	/* Initialize MCP structure */
4516 	rc = qed_mcp_cmd_init(p_hwfn, p_hwfn->p_main_ptt);
4517 	if (rc) {
4518 		DP_NOTICE(p_hwfn, "Failed initializing mcp command\n");
4519 		goto err1;
4520 	}
4521 
4522 	/* Read the device configuration information from the HW and SHMEM */
4523 	rc = qed_get_hw_info(p_hwfn, p_hwfn->p_main_ptt, personality);
4524 	if (rc) {
4525 		DP_NOTICE(p_hwfn, "Failed to get HW information\n");
4526 		goto err2;
4527 	}
4528 
4529 	/* Sending a mailbox to the MFW should be done after qed_get_hw_info()
4530 	 * is called as it sets the ports number in an engine.
4531 	 */
4532 	if (IS_LEAD_HWFN(p_hwfn) && !cdev->recov_in_prog) {
4533 		rc = qed_mcp_initiate_pf_flr(p_hwfn, p_hwfn->p_main_ptt);
4534 		if (rc)
4535 			DP_NOTICE(p_hwfn, "Failed to initiate PF FLR\n");
4536 	}
4537 
4538 	/* NVRAM info initialization and population */
4539 	if (IS_LEAD_HWFN(p_hwfn)) {
4540 		rc = qed_mcp_nvm_info_populate(p_hwfn);
4541 		if (rc) {
4542 			DP_NOTICE(p_hwfn,
4543 				  "Failed to populate nvm info shadow\n");
4544 			goto err2;
4545 		}
4546 	}
4547 
4548 	/* Allocate the init RT array and initialize the init-ops engine */
4549 	rc = qed_init_alloc(p_hwfn);
4550 	if (rc)
4551 		goto err3;
4552 
4553 	return rc;
4554 err3:
4555 	if (IS_LEAD_HWFN(p_hwfn))
4556 		qed_nvm_info_free(p_hwfn);
4557 err2:
4558 	if (IS_LEAD_HWFN(p_hwfn))
4559 		qed_iov_free_hw_info(p_hwfn->cdev);
4560 	qed_mcp_free(p_hwfn);
4561 err1:
4562 	qed_hw_hwfn_free(p_hwfn);
4563 err0:
4564 	return rc;
4565 }
4566 
4567 int qed_hw_prepare(struct qed_dev *cdev,
4568 		   int personality)
4569 {
4570 	struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
4571 	int rc;
4572 
4573 	/* Store the precompiled init data ptrs */
4574 	if (IS_PF(cdev))
4575 		qed_init_iro_array(cdev);
4576 
4577 	/* Initialize the first hwfn - will learn number of hwfns */
4578 	rc = qed_hw_prepare_single(p_hwfn,
4579 				   cdev->regview,
4580 				   cdev->doorbells,
4581 				   cdev->db_phys_addr,
4582 				   personality);
4583 	if (rc)
4584 		return rc;
4585 
4586 	personality = p_hwfn->hw_info.personality;
4587 
4588 	/* Initialize the rest of the hwfns */
4589 	if (cdev->num_hwfns > 1) {
4590 		void __iomem *p_regview, *p_doorbell;
4591 		u64 db_phys_addr;
4592 		u32 offset;
4593 
4594 		/* adjust bar offset for second engine */
4595 		offset = qed_hw_bar_size(p_hwfn, p_hwfn->p_main_ptt,
4596 					 BAR_ID_0) / 2;
4597 		p_regview = cdev->regview + offset;
4598 
4599 		offset = qed_hw_bar_size(p_hwfn, p_hwfn->p_main_ptt,
4600 					 BAR_ID_1) / 2;
4601 
4602 		p_doorbell = cdev->doorbells + offset;
4603 
4604 		db_phys_addr = cdev->db_phys_addr + offset;
4605 
4606 		/* prepare second hw function */
4607 		rc = qed_hw_prepare_single(&cdev->hwfns[1], p_regview,
4608 					   p_doorbell, db_phys_addr,
4609 					   personality);
4610 
4611 		/* in case of error, need to free the previously
4612 		 * initiliazed hwfn 0.
4613 		 */
4614 		if (rc) {
4615 			if (IS_PF(cdev)) {
4616 				qed_init_free(p_hwfn);
4617 				qed_nvm_info_free(p_hwfn);
4618 				qed_mcp_free(p_hwfn);
4619 				qed_hw_hwfn_free(p_hwfn);
4620 			}
4621 		}
4622 	}
4623 
4624 	return rc;
4625 }
4626 
4627 void qed_hw_remove(struct qed_dev *cdev)
4628 {
4629 	struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
4630 	int i;
4631 
4632 	if (IS_PF(cdev))
4633 		qed_mcp_ov_update_driver_state(p_hwfn, p_hwfn->p_main_ptt,
4634 					       QED_OV_DRIVER_STATE_NOT_LOADED);
4635 
4636 	for_each_hwfn(cdev, i) {
4637 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
4638 
4639 		if (IS_VF(cdev)) {
4640 			qed_vf_pf_release(p_hwfn);
4641 			continue;
4642 		}
4643 
4644 		qed_init_free(p_hwfn);
4645 		qed_hw_hwfn_free(p_hwfn);
4646 		qed_mcp_free(p_hwfn);
4647 	}
4648 
4649 	qed_iov_free_hw_info(cdev);
4650 
4651 	qed_nvm_info_free(p_hwfn);
4652 }
4653 
4654 static void qed_chain_free_next_ptr(struct qed_dev *cdev,
4655 				    struct qed_chain *p_chain)
4656 {
4657 	void *p_virt = p_chain->p_virt_addr, *p_virt_next = NULL;
4658 	dma_addr_t p_phys = p_chain->p_phys_addr, p_phys_next = 0;
4659 	struct qed_chain_next *p_next;
4660 	u32 size, i;
4661 
4662 	if (!p_virt)
4663 		return;
4664 
4665 	size = p_chain->elem_size * p_chain->usable_per_page;
4666 
4667 	for (i = 0; i < p_chain->page_cnt; i++) {
4668 		if (!p_virt)
4669 			break;
4670 
4671 		p_next = (struct qed_chain_next *)((u8 *)p_virt + size);
4672 		p_virt_next = p_next->next_virt;
4673 		p_phys_next = HILO_DMA_REGPAIR(p_next->next_phys);
4674 
4675 		dma_free_coherent(&cdev->pdev->dev,
4676 				  QED_CHAIN_PAGE_SIZE, p_virt, p_phys);
4677 
4678 		p_virt = p_virt_next;
4679 		p_phys = p_phys_next;
4680 	}
4681 }
4682 
4683 static void qed_chain_free_single(struct qed_dev *cdev,
4684 				  struct qed_chain *p_chain)
4685 {
4686 	if (!p_chain->p_virt_addr)
4687 		return;
4688 
4689 	dma_free_coherent(&cdev->pdev->dev,
4690 			  QED_CHAIN_PAGE_SIZE,
4691 			  p_chain->p_virt_addr, p_chain->p_phys_addr);
4692 }
4693 
4694 static void qed_chain_free_pbl(struct qed_dev *cdev, struct qed_chain *p_chain)
4695 {
4696 	struct addr_tbl_entry *pp_addr_tbl = p_chain->pbl.pp_addr_tbl;
4697 	u32 page_cnt = p_chain->page_cnt, i, pbl_size;
4698 
4699 	if (!pp_addr_tbl)
4700 		return;
4701 
4702 	for (i = 0; i < page_cnt; i++) {
4703 		if (!pp_addr_tbl[i].virt_addr || !pp_addr_tbl[i].dma_map)
4704 			break;
4705 
4706 		dma_free_coherent(&cdev->pdev->dev,
4707 				  QED_CHAIN_PAGE_SIZE,
4708 				  pp_addr_tbl[i].virt_addr,
4709 				  pp_addr_tbl[i].dma_map);
4710 	}
4711 
4712 	pbl_size = page_cnt * QED_CHAIN_PBL_ENTRY_SIZE;
4713 
4714 	if (!p_chain->b_external_pbl)
4715 		dma_free_coherent(&cdev->pdev->dev,
4716 				  pbl_size,
4717 				  p_chain->pbl_sp.p_virt_table,
4718 				  p_chain->pbl_sp.p_phys_table);
4719 
4720 	vfree(p_chain->pbl.pp_addr_tbl);
4721 	p_chain->pbl.pp_addr_tbl = NULL;
4722 }
4723 
4724 void qed_chain_free(struct qed_dev *cdev, struct qed_chain *p_chain)
4725 {
4726 	switch (p_chain->mode) {
4727 	case QED_CHAIN_MODE_NEXT_PTR:
4728 		qed_chain_free_next_ptr(cdev, p_chain);
4729 		break;
4730 	case QED_CHAIN_MODE_SINGLE:
4731 		qed_chain_free_single(cdev, p_chain);
4732 		break;
4733 	case QED_CHAIN_MODE_PBL:
4734 		qed_chain_free_pbl(cdev, p_chain);
4735 		break;
4736 	}
4737 }
4738 
4739 static int
4740 qed_chain_alloc_sanity_check(struct qed_dev *cdev,
4741 			     enum qed_chain_cnt_type cnt_type,
4742 			     size_t elem_size, u32 page_cnt)
4743 {
4744 	u64 chain_size = ELEMS_PER_PAGE(elem_size) * page_cnt;
4745 
4746 	/* The actual chain size can be larger than the maximal possible value
4747 	 * after rounding up the requested elements number to pages, and after
4748 	 * taking into acount the unusuable elements (next-ptr elements).
4749 	 * The size of a "u16" chain can be (U16_MAX + 1) since the chain
4750 	 * size/capacity fields are of a u32 type.
4751 	 */
4752 	if ((cnt_type == QED_CHAIN_CNT_TYPE_U16 &&
4753 	     chain_size > ((u32)U16_MAX + 1)) ||
4754 	    (cnt_type == QED_CHAIN_CNT_TYPE_U32 && chain_size > U32_MAX)) {
4755 		DP_NOTICE(cdev,
4756 			  "The actual chain size (0x%llx) is larger than the maximal possible value\n",
4757 			  chain_size);
4758 		return -EINVAL;
4759 	}
4760 
4761 	return 0;
4762 }
4763 
4764 static int
4765 qed_chain_alloc_next_ptr(struct qed_dev *cdev, struct qed_chain *p_chain)
4766 {
4767 	void *p_virt = NULL, *p_virt_prev = NULL;
4768 	dma_addr_t p_phys = 0;
4769 	u32 i;
4770 
4771 	for (i = 0; i < p_chain->page_cnt; i++) {
4772 		p_virt = dma_alloc_coherent(&cdev->pdev->dev,
4773 					    QED_CHAIN_PAGE_SIZE,
4774 					    &p_phys, GFP_KERNEL);
4775 		if (!p_virt)
4776 			return -ENOMEM;
4777 
4778 		if (i == 0) {
4779 			qed_chain_init_mem(p_chain, p_virt, p_phys);
4780 			qed_chain_reset(p_chain);
4781 		} else {
4782 			qed_chain_init_next_ptr_elem(p_chain, p_virt_prev,
4783 						     p_virt, p_phys);
4784 		}
4785 
4786 		p_virt_prev = p_virt;
4787 	}
4788 	/* Last page's next element should point to the beginning of the
4789 	 * chain.
4790 	 */
4791 	qed_chain_init_next_ptr_elem(p_chain, p_virt_prev,
4792 				     p_chain->p_virt_addr,
4793 				     p_chain->p_phys_addr);
4794 
4795 	return 0;
4796 }
4797 
4798 static int
4799 qed_chain_alloc_single(struct qed_dev *cdev, struct qed_chain *p_chain)
4800 {
4801 	dma_addr_t p_phys = 0;
4802 	void *p_virt = NULL;
4803 
4804 	p_virt = dma_alloc_coherent(&cdev->pdev->dev,
4805 				    QED_CHAIN_PAGE_SIZE, &p_phys, GFP_KERNEL);
4806 	if (!p_virt)
4807 		return -ENOMEM;
4808 
4809 	qed_chain_init_mem(p_chain, p_virt, p_phys);
4810 	qed_chain_reset(p_chain);
4811 
4812 	return 0;
4813 }
4814 
4815 static int
4816 qed_chain_alloc_pbl(struct qed_dev *cdev,
4817 		    struct qed_chain *p_chain,
4818 		    struct qed_chain_ext_pbl *ext_pbl)
4819 {
4820 	u32 page_cnt = p_chain->page_cnt, size, i;
4821 	dma_addr_t p_phys = 0, p_pbl_phys = 0;
4822 	struct addr_tbl_entry *pp_addr_tbl;
4823 	u8 *p_pbl_virt = NULL;
4824 	void *p_virt = NULL;
4825 
4826 	size = page_cnt * sizeof(*pp_addr_tbl);
4827 	pp_addr_tbl =  vzalloc(size);
4828 	if (!pp_addr_tbl)
4829 		return -ENOMEM;
4830 
4831 	/* The allocation of the PBL table is done with its full size, since it
4832 	 * is expected to be successive.
4833 	 * qed_chain_init_pbl_mem() is called even in a case of an allocation
4834 	 * failure, since tbl was previously allocated, and it
4835 	 * should be saved to allow its freeing during the error flow.
4836 	 */
4837 	size = page_cnt * QED_CHAIN_PBL_ENTRY_SIZE;
4838 
4839 	if (!ext_pbl) {
4840 		p_pbl_virt = dma_alloc_coherent(&cdev->pdev->dev,
4841 						size, &p_pbl_phys, GFP_KERNEL);
4842 	} else {
4843 		p_pbl_virt = ext_pbl->p_pbl_virt;
4844 		p_pbl_phys = ext_pbl->p_pbl_phys;
4845 		p_chain->b_external_pbl = true;
4846 	}
4847 
4848 	qed_chain_init_pbl_mem(p_chain, p_pbl_virt, p_pbl_phys, pp_addr_tbl);
4849 	if (!p_pbl_virt)
4850 		return -ENOMEM;
4851 
4852 	for (i = 0; i < page_cnt; i++) {
4853 		p_virt = dma_alloc_coherent(&cdev->pdev->dev,
4854 					    QED_CHAIN_PAGE_SIZE,
4855 					    &p_phys, GFP_KERNEL);
4856 		if (!p_virt)
4857 			return -ENOMEM;
4858 
4859 		if (i == 0) {
4860 			qed_chain_init_mem(p_chain, p_virt, p_phys);
4861 			qed_chain_reset(p_chain);
4862 		}
4863 
4864 		/* Fill the PBL table with the physical address of the page */
4865 		*(dma_addr_t *)p_pbl_virt = p_phys;
4866 		/* Keep the virtual address of the page */
4867 		p_chain->pbl.pp_addr_tbl[i].virt_addr = p_virt;
4868 		p_chain->pbl.pp_addr_tbl[i].dma_map = p_phys;
4869 
4870 		p_pbl_virt += QED_CHAIN_PBL_ENTRY_SIZE;
4871 	}
4872 
4873 	return 0;
4874 }
4875 
4876 int qed_chain_alloc(struct qed_dev *cdev,
4877 		    enum qed_chain_use_mode intended_use,
4878 		    enum qed_chain_mode mode,
4879 		    enum qed_chain_cnt_type cnt_type,
4880 		    u32 num_elems,
4881 		    size_t elem_size,
4882 		    struct qed_chain *p_chain,
4883 		    struct qed_chain_ext_pbl *ext_pbl)
4884 {
4885 	u32 page_cnt;
4886 	int rc = 0;
4887 
4888 	if (mode == QED_CHAIN_MODE_SINGLE)
4889 		page_cnt = 1;
4890 	else
4891 		page_cnt = QED_CHAIN_PAGE_CNT(num_elems, elem_size, mode);
4892 
4893 	rc = qed_chain_alloc_sanity_check(cdev, cnt_type, elem_size, page_cnt);
4894 	if (rc) {
4895 		DP_NOTICE(cdev,
4896 			  "Cannot allocate a chain with the given arguments:\n");
4897 		DP_NOTICE(cdev,
4898 			  "[use_mode %d, mode %d, cnt_type %d, num_elems %d, elem_size %zu]\n",
4899 			  intended_use, mode, cnt_type, num_elems, elem_size);
4900 		return rc;
4901 	}
4902 
4903 	qed_chain_init_params(p_chain, page_cnt, (u8) elem_size, intended_use,
4904 			      mode, cnt_type);
4905 
4906 	switch (mode) {
4907 	case QED_CHAIN_MODE_NEXT_PTR:
4908 		rc = qed_chain_alloc_next_ptr(cdev, p_chain);
4909 		break;
4910 	case QED_CHAIN_MODE_SINGLE:
4911 		rc = qed_chain_alloc_single(cdev, p_chain);
4912 		break;
4913 	case QED_CHAIN_MODE_PBL:
4914 		rc = qed_chain_alloc_pbl(cdev, p_chain, ext_pbl);
4915 		break;
4916 	}
4917 	if (rc)
4918 		goto nomem;
4919 
4920 	return 0;
4921 
4922 nomem:
4923 	qed_chain_free(cdev, p_chain);
4924 	return rc;
4925 }
4926 
4927 int qed_fw_l2_queue(struct qed_hwfn *p_hwfn, u16 src_id, u16 *dst_id)
4928 {
4929 	if (src_id >= RESC_NUM(p_hwfn, QED_L2_QUEUE)) {
4930 		u16 min, max;
4931 
4932 		min = (u16) RESC_START(p_hwfn, QED_L2_QUEUE);
4933 		max = min + RESC_NUM(p_hwfn, QED_L2_QUEUE);
4934 		DP_NOTICE(p_hwfn,
4935 			  "l2_queue id [%d] is not valid, available indices [%d - %d]\n",
4936 			  src_id, min, max);
4937 
4938 		return -EINVAL;
4939 	}
4940 
4941 	*dst_id = RESC_START(p_hwfn, QED_L2_QUEUE) + src_id;
4942 
4943 	return 0;
4944 }
4945 
4946 int qed_fw_vport(struct qed_hwfn *p_hwfn, u8 src_id, u8 *dst_id)
4947 {
4948 	if (src_id >= RESC_NUM(p_hwfn, QED_VPORT)) {
4949 		u8 min, max;
4950 
4951 		min = (u8)RESC_START(p_hwfn, QED_VPORT);
4952 		max = min + RESC_NUM(p_hwfn, QED_VPORT);
4953 		DP_NOTICE(p_hwfn,
4954 			  "vport id [%d] is not valid, available indices [%d - %d]\n",
4955 			  src_id, min, max);
4956 
4957 		return -EINVAL;
4958 	}
4959 
4960 	*dst_id = RESC_START(p_hwfn, QED_VPORT) + src_id;
4961 
4962 	return 0;
4963 }
4964 
4965 int qed_fw_rss_eng(struct qed_hwfn *p_hwfn, u8 src_id, u8 *dst_id)
4966 {
4967 	if (src_id >= RESC_NUM(p_hwfn, QED_RSS_ENG)) {
4968 		u8 min, max;
4969 
4970 		min = (u8)RESC_START(p_hwfn, QED_RSS_ENG);
4971 		max = min + RESC_NUM(p_hwfn, QED_RSS_ENG);
4972 		DP_NOTICE(p_hwfn,
4973 			  "rss_eng id [%d] is not valid, available indices [%d - %d]\n",
4974 			  src_id, min, max);
4975 
4976 		return -EINVAL;
4977 	}
4978 
4979 	*dst_id = RESC_START(p_hwfn, QED_RSS_ENG) + src_id;
4980 
4981 	return 0;
4982 }
4983 
4984 static int qed_set_coalesce(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
4985 			    u32 hw_addr, void *p_eth_qzone,
4986 			    size_t eth_qzone_size, u8 timeset)
4987 {
4988 	struct coalescing_timeset *p_coal_timeset;
4989 
4990 	if (p_hwfn->cdev->int_coalescing_mode != QED_COAL_MODE_ENABLE) {
4991 		DP_NOTICE(p_hwfn, "Coalescing configuration not enabled\n");
4992 		return -EINVAL;
4993 	}
4994 
4995 	p_coal_timeset = p_eth_qzone;
4996 	memset(p_eth_qzone, 0, eth_qzone_size);
4997 	SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_TIMESET, timeset);
4998 	SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_VALID, 1);
4999 	qed_memcpy_to(p_hwfn, p_ptt, hw_addr, p_eth_qzone, eth_qzone_size);
5000 
5001 	return 0;
5002 }
5003 
5004 int qed_set_queue_coalesce(u16 rx_coal, u16 tx_coal, void *p_handle)
5005 {
5006 	struct qed_queue_cid *p_cid = p_handle;
5007 	struct qed_hwfn *p_hwfn;
5008 	struct qed_ptt *p_ptt;
5009 	int rc = 0;
5010 
5011 	p_hwfn = p_cid->p_owner;
5012 
5013 	if (IS_VF(p_hwfn->cdev))
5014 		return qed_vf_pf_set_coalesce(p_hwfn, rx_coal, tx_coal, p_cid);
5015 
5016 	p_ptt = qed_ptt_acquire(p_hwfn);
5017 	if (!p_ptt)
5018 		return -EAGAIN;
5019 
5020 	if (rx_coal) {
5021 		rc = qed_set_rxq_coalesce(p_hwfn, p_ptt, rx_coal, p_cid);
5022 		if (rc)
5023 			goto out;
5024 		p_hwfn->cdev->rx_coalesce_usecs = rx_coal;
5025 	}
5026 
5027 	if (tx_coal) {
5028 		rc = qed_set_txq_coalesce(p_hwfn, p_ptt, tx_coal, p_cid);
5029 		if (rc)
5030 			goto out;
5031 		p_hwfn->cdev->tx_coalesce_usecs = tx_coal;
5032 	}
5033 out:
5034 	qed_ptt_release(p_hwfn, p_ptt);
5035 	return rc;
5036 }
5037 
5038 int qed_set_rxq_coalesce(struct qed_hwfn *p_hwfn,
5039 			 struct qed_ptt *p_ptt,
5040 			 u16 coalesce, struct qed_queue_cid *p_cid)
5041 {
5042 	struct ustorm_eth_queue_zone eth_qzone;
5043 	u8 timeset, timer_res;
5044 	u32 address;
5045 	int rc;
5046 
5047 	/* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */
5048 	if (coalesce <= 0x7F) {
5049 		timer_res = 0;
5050 	} else if (coalesce <= 0xFF) {
5051 		timer_res = 1;
5052 	} else if (coalesce <= 0x1FF) {
5053 		timer_res = 2;
5054 	} else {
5055 		DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce);
5056 		return -EINVAL;
5057 	}
5058 	timeset = (u8)(coalesce >> timer_res);
5059 
5060 	rc = qed_int_set_timer_res(p_hwfn, p_ptt, timer_res,
5061 				   p_cid->sb_igu_id, false);
5062 	if (rc)
5063 		goto out;
5064 
5065 	address = BAR0_MAP_REG_USDM_RAM +
5066 		  USTORM_ETH_QUEUE_ZONE_OFFSET(p_cid->abs.queue_id);
5067 
5068 	rc = qed_set_coalesce(p_hwfn, p_ptt, address, &eth_qzone,
5069 			      sizeof(struct ustorm_eth_queue_zone), timeset);
5070 	if (rc)
5071 		goto out;
5072 
5073 out:
5074 	return rc;
5075 }
5076 
5077 int qed_set_txq_coalesce(struct qed_hwfn *p_hwfn,
5078 			 struct qed_ptt *p_ptt,
5079 			 u16 coalesce, struct qed_queue_cid *p_cid)
5080 {
5081 	struct xstorm_eth_queue_zone eth_qzone;
5082 	u8 timeset, timer_res;
5083 	u32 address;
5084 	int rc;
5085 
5086 	/* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */
5087 	if (coalesce <= 0x7F) {
5088 		timer_res = 0;
5089 	} else if (coalesce <= 0xFF) {
5090 		timer_res = 1;
5091 	} else if (coalesce <= 0x1FF) {
5092 		timer_res = 2;
5093 	} else {
5094 		DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce);
5095 		return -EINVAL;
5096 	}
5097 	timeset = (u8)(coalesce >> timer_res);
5098 
5099 	rc = qed_int_set_timer_res(p_hwfn, p_ptt, timer_res,
5100 				   p_cid->sb_igu_id, true);
5101 	if (rc)
5102 		goto out;
5103 
5104 	address = BAR0_MAP_REG_XSDM_RAM +
5105 		  XSTORM_ETH_QUEUE_ZONE_OFFSET(p_cid->abs.queue_id);
5106 
5107 	rc = qed_set_coalesce(p_hwfn, p_ptt, address, &eth_qzone,
5108 			      sizeof(struct xstorm_eth_queue_zone), timeset);
5109 out:
5110 	return rc;
5111 }
5112 
5113 /* Calculate final WFQ values for all vports and configure them.
5114  * After this configuration each vport will have
5115  * approx min rate =  min_pf_rate * (vport_wfq / QED_WFQ_UNIT)
5116  */
5117 static void qed_configure_wfq_for_all_vports(struct qed_hwfn *p_hwfn,
5118 					     struct qed_ptt *p_ptt,
5119 					     u32 min_pf_rate)
5120 {
5121 	struct init_qm_vport_params *vport_params;
5122 	int i;
5123 
5124 	vport_params = p_hwfn->qm_info.qm_vport_params;
5125 
5126 	for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
5127 		u32 wfq_speed = p_hwfn->qm_info.wfq_data[i].min_speed;
5128 
5129 		vport_params[i].wfq = (wfq_speed * QED_WFQ_UNIT) /
5130 						min_pf_rate;
5131 		qed_init_vport_wfq(p_hwfn, p_ptt,
5132 				   vport_params[i].first_tx_pq_id,
5133 				   vport_params[i].wfq);
5134 	}
5135 }
5136 
5137 static void qed_init_wfq_default_param(struct qed_hwfn *p_hwfn,
5138 				       u32 min_pf_rate)
5139 
5140 {
5141 	int i;
5142 
5143 	for (i = 0; i < p_hwfn->qm_info.num_vports; i++)
5144 		p_hwfn->qm_info.qm_vport_params[i].wfq = 1;
5145 }
5146 
5147 static void qed_disable_wfq_for_all_vports(struct qed_hwfn *p_hwfn,
5148 					   struct qed_ptt *p_ptt,
5149 					   u32 min_pf_rate)
5150 {
5151 	struct init_qm_vport_params *vport_params;
5152 	int i;
5153 
5154 	vport_params = p_hwfn->qm_info.qm_vport_params;
5155 
5156 	for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
5157 		qed_init_wfq_default_param(p_hwfn, min_pf_rate);
5158 		qed_init_vport_wfq(p_hwfn, p_ptt,
5159 				   vport_params[i].first_tx_pq_id,
5160 				   vport_params[i].wfq);
5161 	}
5162 }
5163 
5164 /* This function performs several validations for WFQ
5165  * configuration and required min rate for a given vport
5166  * 1. req_rate must be greater than one percent of min_pf_rate.
5167  * 2. req_rate should not cause other vports [not configured for WFQ explicitly]
5168  *    rates to get less than one percent of min_pf_rate.
5169  * 3. total_req_min_rate [all vports min rate sum] shouldn't exceed min_pf_rate.
5170  */
5171 static int qed_init_wfq_param(struct qed_hwfn *p_hwfn,
5172 			      u16 vport_id, u32 req_rate, u32 min_pf_rate)
5173 {
5174 	u32 total_req_min_rate = 0, total_left_rate = 0, left_rate_per_vp = 0;
5175 	int non_requested_count = 0, req_count = 0, i, num_vports;
5176 
5177 	num_vports = p_hwfn->qm_info.num_vports;
5178 
5179 	/* Accounting for the vports which are configured for WFQ explicitly */
5180 	for (i = 0; i < num_vports; i++) {
5181 		u32 tmp_speed;
5182 
5183 		if ((i != vport_id) &&
5184 		    p_hwfn->qm_info.wfq_data[i].configured) {
5185 			req_count++;
5186 			tmp_speed = p_hwfn->qm_info.wfq_data[i].min_speed;
5187 			total_req_min_rate += tmp_speed;
5188 		}
5189 	}
5190 
5191 	/* Include current vport data as well */
5192 	req_count++;
5193 	total_req_min_rate += req_rate;
5194 	non_requested_count = num_vports - req_count;
5195 
5196 	if (req_rate < min_pf_rate / QED_WFQ_UNIT) {
5197 		DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
5198 			   "Vport [%d] - Requested rate[%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n",
5199 			   vport_id, req_rate, min_pf_rate);
5200 		return -EINVAL;
5201 	}
5202 
5203 	if (num_vports > QED_WFQ_UNIT) {
5204 		DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
5205 			   "Number of vports is greater than %d\n",
5206 			   QED_WFQ_UNIT);
5207 		return -EINVAL;
5208 	}
5209 
5210 	if (total_req_min_rate > min_pf_rate) {
5211 		DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
5212 			   "Total requested min rate for all vports[%d Mbps] is greater than configured PF min rate[%d Mbps]\n",
5213 			   total_req_min_rate, min_pf_rate);
5214 		return -EINVAL;
5215 	}
5216 
5217 	total_left_rate	= min_pf_rate - total_req_min_rate;
5218 
5219 	left_rate_per_vp = total_left_rate / non_requested_count;
5220 	if (left_rate_per_vp <  min_pf_rate / QED_WFQ_UNIT) {
5221 		DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
5222 			   "Non WFQ configured vports rate [%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n",
5223 			   left_rate_per_vp, min_pf_rate);
5224 		return -EINVAL;
5225 	}
5226 
5227 	p_hwfn->qm_info.wfq_data[vport_id].min_speed = req_rate;
5228 	p_hwfn->qm_info.wfq_data[vport_id].configured = true;
5229 
5230 	for (i = 0; i < num_vports; i++) {
5231 		if (p_hwfn->qm_info.wfq_data[i].configured)
5232 			continue;
5233 
5234 		p_hwfn->qm_info.wfq_data[i].min_speed = left_rate_per_vp;
5235 	}
5236 
5237 	return 0;
5238 }
5239 
5240 static int __qed_configure_vport_wfq(struct qed_hwfn *p_hwfn,
5241 				     struct qed_ptt *p_ptt, u16 vp_id, u32 rate)
5242 {
5243 	struct qed_mcp_link_state *p_link;
5244 	int rc = 0;
5245 
5246 	p_link = &p_hwfn->cdev->hwfns[0].mcp_info->link_output;
5247 
5248 	if (!p_link->min_pf_rate) {
5249 		p_hwfn->qm_info.wfq_data[vp_id].min_speed = rate;
5250 		p_hwfn->qm_info.wfq_data[vp_id].configured = true;
5251 		return rc;
5252 	}
5253 
5254 	rc = qed_init_wfq_param(p_hwfn, vp_id, rate, p_link->min_pf_rate);
5255 
5256 	if (!rc)
5257 		qed_configure_wfq_for_all_vports(p_hwfn, p_ptt,
5258 						 p_link->min_pf_rate);
5259 	else
5260 		DP_NOTICE(p_hwfn,
5261 			  "Validation failed while configuring min rate\n");
5262 
5263 	return rc;
5264 }
5265 
5266 static int __qed_configure_vp_wfq_on_link_change(struct qed_hwfn *p_hwfn,
5267 						 struct qed_ptt *p_ptt,
5268 						 u32 min_pf_rate)
5269 {
5270 	bool use_wfq = false;
5271 	int rc = 0;
5272 	u16 i;
5273 
5274 	/* Validate all pre configured vports for wfq */
5275 	for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
5276 		u32 rate;
5277 
5278 		if (!p_hwfn->qm_info.wfq_data[i].configured)
5279 			continue;
5280 
5281 		rate = p_hwfn->qm_info.wfq_data[i].min_speed;
5282 		use_wfq = true;
5283 
5284 		rc = qed_init_wfq_param(p_hwfn, i, rate, min_pf_rate);
5285 		if (rc) {
5286 			DP_NOTICE(p_hwfn,
5287 				  "WFQ validation failed while configuring min rate\n");
5288 			break;
5289 		}
5290 	}
5291 
5292 	if (!rc && use_wfq)
5293 		qed_configure_wfq_for_all_vports(p_hwfn, p_ptt, min_pf_rate);
5294 	else
5295 		qed_disable_wfq_for_all_vports(p_hwfn, p_ptt, min_pf_rate);
5296 
5297 	return rc;
5298 }
5299 
5300 /* Main API for qed clients to configure vport min rate.
5301  * vp_id - vport id in PF Range[0 - (total_num_vports_per_pf - 1)]
5302  * rate - Speed in Mbps needs to be assigned to a given vport.
5303  */
5304 int qed_configure_vport_wfq(struct qed_dev *cdev, u16 vp_id, u32 rate)
5305 {
5306 	int i, rc = -EINVAL;
5307 
5308 	/* Currently not supported; Might change in future */
5309 	if (cdev->num_hwfns > 1) {
5310 		DP_NOTICE(cdev,
5311 			  "WFQ configuration is not supported for this device\n");
5312 		return rc;
5313 	}
5314 
5315 	for_each_hwfn(cdev, i) {
5316 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
5317 		struct qed_ptt *p_ptt;
5318 
5319 		p_ptt = qed_ptt_acquire(p_hwfn);
5320 		if (!p_ptt)
5321 			return -EBUSY;
5322 
5323 		rc = __qed_configure_vport_wfq(p_hwfn, p_ptt, vp_id, rate);
5324 
5325 		if (rc) {
5326 			qed_ptt_release(p_hwfn, p_ptt);
5327 			return rc;
5328 		}
5329 
5330 		qed_ptt_release(p_hwfn, p_ptt);
5331 	}
5332 
5333 	return rc;
5334 }
5335 
5336 /* API to configure WFQ from mcp link change */
5337 void qed_configure_vp_wfq_on_link_change(struct qed_dev *cdev,
5338 					 struct qed_ptt *p_ptt, u32 min_pf_rate)
5339 {
5340 	int i;
5341 
5342 	if (cdev->num_hwfns > 1) {
5343 		DP_VERBOSE(cdev,
5344 			   NETIF_MSG_LINK,
5345 			   "WFQ configuration is not supported for this device\n");
5346 		return;
5347 	}
5348 
5349 	for_each_hwfn(cdev, i) {
5350 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
5351 
5352 		__qed_configure_vp_wfq_on_link_change(p_hwfn, p_ptt,
5353 						      min_pf_rate);
5354 	}
5355 }
5356 
5357 int __qed_configure_pf_max_bandwidth(struct qed_hwfn *p_hwfn,
5358 				     struct qed_ptt *p_ptt,
5359 				     struct qed_mcp_link_state *p_link,
5360 				     u8 max_bw)
5361 {
5362 	int rc = 0;
5363 
5364 	p_hwfn->mcp_info->func_info.bandwidth_max = max_bw;
5365 
5366 	if (!p_link->line_speed && (max_bw != 100))
5367 		return rc;
5368 
5369 	p_link->speed = (p_link->line_speed * max_bw) / 100;
5370 	p_hwfn->qm_info.pf_rl = p_link->speed;
5371 
5372 	/* Since the limiter also affects Tx-switched traffic, we don't want it
5373 	 * to limit such traffic in case there's no actual limit.
5374 	 * In that case, set limit to imaginary high boundary.
5375 	 */
5376 	if (max_bw == 100)
5377 		p_hwfn->qm_info.pf_rl = 100000;
5378 
5379 	rc = qed_init_pf_rl(p_hwfn, p_ptt, p_hwfn->rel_pf_id,
5380 			    p_hwfn->qm_info.pf_rl);
5381 
5382 	DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
5383 		   "Configured MAX bandwidth to be %08x Mb/sec\n",
5384 		   p_link->speed);
5385 
5386 	return rc;
5387 }
5388 
5389 /* Main API to configure PF max bandwidth where bw range is [1 - 100] */
5390 int qed_configure_pf_max_bandwidth(struct qed_dev *cdev, u8 max_bw)
5391 {
5392 	int i, rc = -EINVAL;
5393 
5394 	if (max_bw < 1 || max_bw > 100) {
5395 		DP_NOTICE(cdev, "PF max bw valid range is [1-100]\n");
5396 		return rc;
5397 	}
5398 
5399 	for_each_hwfn(cdev, i) {
5400 		struct qed_hwfn	*p_hwfn = &cdev->hwfns[i];
5401 		struct qed_hwfn *p_lead = QED_LEADING_HWFN(cdev);
5402 		struct qed_mcp_link_state *p_link;
5403 		struct qed_ptt *p_ptt;
5404 
5405 		p_link = &p_lead->mcp_info->link_output;
5406 
5407 		p_ptt = qed_ptt_acquire(p_hwfn);
5408 		if (!p_ptt)
5409 			return -EBUSY;
5410 
5411 		rc = __qed_configure_pf_max_bandwidth(p_hwfn, p_ptt,
5412 						      p_link, max_bw);
5413 
5414 		qed_ptt_release(p_hwfn, p_ptt);
5415 
5416 		if (rc)
5417 			break;
5418 	}
5419 
5420 	return rc;
5421 }
5422 
5423 int __qed_configure_pf_min_bandwidth(struct qed_hwfn *p_hwfn,
5424 				     struct qed_ptt *p_ptt,
5425 				     struct qed_mcp_link_state *p_link,
5426 				     u8 min_bw)
5427 {
5428 	int rc = 0;
5429 
5430 	p_hwfn->mcp_info->func_info.bandwidth_min = min_bw;
5431 	p_hwfn->qm_info.pf_wfq = min_bw;
5432 
5433 	if (!p_link->line_speed)
5434 		return rc;
5435 
5436 	p_link->min_pf_rate = (p_link->line_speed * min_bw) / 100;
5437 
5438 	rc = qed_init_pf_wfq(p_hwfn, p_ptt, p_hwfn->rel_pf_id, min_bw);
5439 
5440 	DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
5441 		   "Configured MIN bandwidth to be %d Mb/sec\n",
5442 		   p_link->min_pf_rate);
5443 
5444 	return rc;
5445 }
5446 
5447 /* Main API to configure PF min bandwidth where bw range is [1-100] */
5448 int qed_configure_pf_min_bandwidth(struct qed_dev *cdev, u8 min_bw)
5449 {
5450 	int i, rc = -EINVAL;
5451 
5452 	if (min_bw < 1 || min_bw > 100) {
5453 		DP_NOTICE(cdev, "PF min bw valid range is [1-100]\n");
5454 		return rc;
5455 	}
5456 
5457 	for_each_hwfn(cdev, i) {
5458 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
5459 		struct qed_hwfn *p_lead = QED_LEADING_HWFN(cdev);
5460 		struct qed_mcp_link_state *p_link;
5461 		struct qed_ptt *p_ptt;
5462 
5463 		p_link = &p_lead->mcp_info->link_output;
5464 
5465 		p_ptt = qed_ptt_acquire(p_hwfn);
5466 		if (!p_ptt)
5467 			return -EBUSY;
5468 
5469 		rc = __qed_configure_pf_min_bandwidth(p_hwfn, p_ptt,
5470 						      p_link, min_bw);
5471 		if (rc) {
5472 			qed_ptt_release(p_hwfn, p_ptt);
5473 			return rc;
5474 		}
5475 
5476 		if (p_link->min_pf_rate) {
5477 			u32 min_rate = p_link->min_pf_rate;
5478 
5479 			rc = __qed_configure_vp_wfq_on_link_change(p_hwfn,
5480 								   p_ptt,
5481 								   min_rate);
5482 		}
5483 
5484 		qed_ptt_release(p_hwfn, p_ptt);
5485 	}
5486 
5487 	return rc;
5488 }
5489 
5490 void qed_clean_wfq_db(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
5491 {
5492 	struct qed_mcp_link_state *p_link;
5493 
5494 	p_link = &p_hwfn->mcp_info->link_output;
5495 
5496 	if (p_link->min_pf_rate)
5497 		qed_disable_wfq_for_all_vports(p_hwfn, p_ptt,
5498 					       p_link->min_pf_rate);
5499 
5500 	memset(p_hwfn->qm_info.wfq_data, 0,
5501 	       sizeof(*p_hwfn->qm_info.wfq_data) * p_hwfn->qm_info.num_vports);
5502 }
5503 
5504 int qed_device_num_ports(struct qed_dev *cdev)
5505 {
5506 	return cdev->num_ports;
5507 }
5508 
5509 void qed_set_fw_mac_addr(__le16 *fw_msb,
5510 			 __le16 *fw_mid, __le16 *fw_lsb, u8 *mac)
5511 {
5512 	((u8 *)fw_msb)[0] = mac[1];
5513 	((u8 *)fw_msb)[1] = mac[0];
5514 	((u8 *)fw_mid)[0] = mac[3];
5515 	((u8 *)fw_mid)[1] = mac[2];
5516 	((u8 *)fw_lsb)[0] = mac[5];
5517 	((u8 *)fw_lsb)[1] = mac[4];
5518 }
5519