1 /* yellowfin.c: A Packet Engines G-NIC ethernet driver for linux. */ 2 /* 3 Written 1997-2001 by Donald Becker. 4 5 This software may be used and distributed according to the terms of 6 the GNU General Public License (GPL), incorporated herein by reference. 7 Drivers based on or derived from this code fall under the GPL and must 8 retain the authorship, copyright and license notice. This file is not 9 a complete program and may only be used when the entire operating 10 system is licensed under the GPL. 11 12 This driver is for the Packet Engines G-NIC PCI Gigabit Ethernet adapter. 13 It also supports the Symbios Logic version of the same chip core. 14 15 The author may be reached as becker@scyld.com, or C/O 16 Scyld Computing Corporation 17 410 Severn Ave., Suite 210 18 Annapolis MD 21403 19 20 Support and updates available at 21 http://www.scyld.com/network/yellowfin.html 22 [link no longer provides useful info -jgarzik] 23 24 */ 25 26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 27 28 #define DRV_NAME "yellowfin" 29 #define DRV_VERSION "2.1" 30 #define DRV_RELDATE "Sep 11, 2006" 31 32 /* The user-configurable values. 33 These may be modified when a driver module is loaded.*/ 34 35 static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */ 36 /* Maximum events (Rx packets, etc.) to handle at each interrupt. */ 37 static int max_interrupt_work = 20; 38 static int mtu; 39 #ifdef YF_PROTOTYPE /* Support for prototype hardware errata. */ 40 /* System-wide count of bogus-rx frames. */ 41 static int bogus_rx; 42 static int dma_ctrl = 0x004A0263; /* Constrained by errata */ 43 static int fifo_cfg = 0x0020; /* Bypass external Tx FIFO. */ 44 #elif defined(YF_NEW) /* A future perfect board :->. */ 45 static int dma_ctrl = 0x00CAC277; /* Override when loading module! */ 46 static int fifo_cfg = 0x0028; 47 #else 48 static const int dma_ctrl = 0x004A0263; /* Constrained by errata */ 49 static const int fifo_cfg = 0x0020; /* Bypass external Tx FIFO. */ 50 #endif 51 52 /* Set the copy breakpoint for the copy-only-tiny-frames scheme. 53 Setting to > 1514 effectively disables this feature. */ 54 static int rx_copybreak; 55 56 /* Used to pass the media type, etc. 57 No media types are currently defined. These exist for driver 58 interoperability. 59 */ 60 #define MAX_UNITS 8 /* More are supported, limit only on options */ 61 static int options[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1}; 62 static int full_duplex[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1}; 63 64 /* Do ugly workaround for GX server chipset errata. */ 65 static int gx_fix; 66 67 /* Operational parameters that are set at compile time. */ 68 69 /* Keep the ring sizes a power of two for efficiency. 70 Making the Tx ring too long decreases the effectiveness of channel 71 bonding and packet priority. 72 There are no ill effects from too-large receive rings. */ 73 #define TX_RING_SIZE 16 74 #define TX_QUEUE_SIZE 12 /* Must be > 4 && <= TX_RING_SIZE */ 75 #define RX_RING_SIZE 64 76 #define STATUS_TOTAL_SIZE TX_RING_SIZE*sizeof(struct tx_status_words) 77 #define TX_TOTAL_SIZE 2*TX_RING_SIZE*sizeof(struct yellowfin_desc) 78 #define RX_TOTAL_SIZE RX_RING_SIZE*sizeof(struct yellowfin_desc) 79 80 /* Operational parameters that usually are not changed. */ 81 /* Time in jiffies before concluding the transmitter is hung. */ 82 #define TX_TIMEOUT (2*HZ) 83 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/ 84 85 #define yellowfin_debug debug 86 87 #include <linux/module.h> 88 #include <linux/kernel.h> 89 #include <linux/string.h> 90 #include <linux/timer.h> 91 #include <linux/errno.h> 92 #include <linux/ioport.h> 93 #include <linux/interrupt.h> 94 #include <linux/pci.h> 95 #include <linux/init.h> 96 #include <linux/mii.h> 97 #include <linux/netdevice.h> 98 #include <linux/etherdevice.h> 99 #include <linux/skbuff.h> 100 #include <linux/ethtool.h> 101 #include <linux/crc32.h> 102 #include <linux/bitops.h> 103 #include <linux/uaccess.h> 104 #include <asm/processor.h> /* Processor type for cache alignment. */ 105 #include <asm/unaligned.h> 106 #include <asm/io.h> 107 108 /* These identify the driver base version and may not be removed. */ 109 static const char version[] = 110 KERN_INFO DRV_NAME ".c:v1.05 1/09/2001 Written by Donald Becker <becker@scyld.com>\n" 111 " (unofficial 2.4.x port, " DRV_VERSION ", " DRV_RELDATE ")\n"; 112 113 MODULE_AUTHOR("Donald Becker <becker@scyld.com>"); 114 MODULE_DESCRIPTION("Packet Engines Yellowfin G-NIC Gigabit Ethernet driver"); 115 MODULE_LICENSE("GPL"); 116 117 module_param(max_interrupt_work, int, 0); 118 module_param(mtu, int, 0); 119 module_param(debug, int, 0); 120 module_param(rx_copybreak, int, 0); 121 module_param_array(options, int, NULL, 0); 122 module_param_array(full_duplex, int, NULL, 0); 123 module_param(gx_fix, int, 0); 124 MODULE_PARM_DESC(max_interrupt_work, "G-NIC maximum events handled per interrupt"); 125 MODULE_PARM_DESC(mtu, "G-NIC MTU (all boards)"); 126 MODULE_PARM_DESC(debug, "G-NIC debug level (0-7)"); 127 MODULE_PARM_DESC(rx_copybreak, "G-NIC copy breakpoint for copy-only-tiny-frames"); 128 MODULE_PARM_DESC(options, "G-NIC: Bits 0-3: media type, bit 17: full duplex"); 129 MODULE_PARM_DESC(full_duplex, "G-NIC full duplex setting(s) (1)"); 130 MODULE_PARM_DESC(gx_fix, "G-NIC: enable GX server chipset bug workaround (0-1)"); 131 132 /* 133 Theory of Operation 134 135 I. Board Compatibility 136 137 This device driver is designed for the Packet Engines "Yellowfin" Gigabit 138 Ethernet adapter. The G-NIC 64-bit PCI card is supported, as well as the 139 Symbios 53C885E dual function chip. 140 141 II. Board-specific settings 142 143 PCI bus devices are configured by the system at boot time, so no jumpers 144 need to be set on the board. The system BIOS preferably should assign the 145 PCI INTA signal to an otherwise unused system IRQ line. 146 Note: Kernel versions earlier than 1.3.73 do not support shared PCI 147 interrupt lines. 148 149 III. Driver operation 150 151 IIIa. Ring buffers 152 153 The Yellowfin uses the Descriptor Based DMA Architecture specified by Apple. 154 This is a descriptor list scheme similar to that used by the EEPro100 and 155 Tulip. This driver uses two statically allocated fixed-size descriptor lists 156 formed into rings by a branch from the final descriptor to the beginning of 157 the list. The ring sizes are set at compile time by RX/TX_RING_SIZE. 158 159 The driver allocates full frame size skbuffs for the Rx ring buffers at 160 open() time and passes the skb->data field to the Yellowfin as receive data 161 buffers. When an incoming frame is less than RX_COPYBREAK bytes long, 162 a fresh skbuff is allocated and the frame is copied to the new skbuff. 163 When the incoming frame is larger, the skbuff is passed directly up the 164 protocol stack and replaced by a newly allocated skbuff. 165 166 The RX_COPYBREAK value is chosen to trade-off the memory wasted by 167 using a full-sized skbuff for small frames vs. the copying costs of larger 168 frames. For small frames the copying cost is negligible (esp. considering 169 that we are pre-loading the cache with immediately useful header 170 information). For large frames the copying cost is non-trivial, and the 171 larger copy might flush the cache of useful data. 172 173 IIIC. Synchronization 174 175 The driver runs as two independent, single-threaded flows of control. One 176 is the send-packet routine, which enforces single-threaded use by the 177 dev->tbusy flag. The other thread is the interrupt handler, which is single 178 threaded by the hardware and other software. 179 180 The send packet thread has partial control over the Tx ring and 'dev->tbusy' 181 flag. It sets the tbusy flag whenever it's queuing a Tx packet. If the next 182 queue slot is empty, it clears the tbusy flag when finished otherwise it sets 183 the 'yp->tx_full' flag. 184 185 The interrupt handler has exclusive control over the Rx ring and records stats 186 from the Tx ring. After reaping the stats, it marks the Tx queue entry as 187 empty by incrementing the dirty_tx mark. Iff the 'yp->tx_full' flag is set, it 188 clears both the tx_full and tbusy flags. 189 190 IV. Notes 191 192 Thanks to Kim Stearns of Packet Engines for providing a pair of G-NIC boards. 193 Thanks to Bruce Faust of Digitalscape for providing both their SYM53C885 board 194 and an AlphaStation to verify the Alpha port! 195 196 IVb. References 197 198 Yellowfin Engineering Design Specification, 4/23/97 Preliminary/Confidential 199 Symbios SYM53C885 PCI-SCSI/Fast Ethernet Multifunction Controller Preliminary 200 Data Manual v3.0 201 http://cesdis.gsfc.nasa.gov/linux/misc/NWay.html 202 http://cesdis.gsfc.nasa.gov/linux/misc/100mbps.html 203 204 IVc. Errata 205 206 See Packet Engines confidential appendix (prototype chips only). 207 */ 208 209 210 211 enum capability_flags { 212 HasMII=1, FullTxStatus=2, IsGigabit=4, HasMulticastBug=8, FullRxStatus=16, 213 HasMACAddrBug=32, /* Only on early revs. */ 214 DontUseEeprom=64, /* Don't read the MAC from the EEPROm. */ 215 }; 216 217 /* The PCI I/O space extent. */ 218 enum { 219 YELLOWFIN_SIZE = 0x100, 220 }; 221 222 struct pci_id_info { 223 const char *name; 224 struct match_info { 225 int pci, pci_mask, subsystem, subsystem_mask; 226 int revision, revision_mask; /* Only 8 bits. */ 227 } id; 228 int drv_flags; /* Driver use, intended as capability flags. */ 229 }; 230 231 static const struct pci_id_info pci_id_tbl[] = { 232 {"Yellowfin G-NIC Gigabit Ethernet", { 0x07021000, 0xffffffff}, 233 FullTxStatus | IsGigabit | HasMulticastBug | HasMACAddrBug | DontUseEeprom}, 234 {"Symbios SYM83C885", { 0x07011000, 0xffffffff}, 235 HasMII | DontUseEeprom }, 236 { } 237 }; 238 239 static const struct pci_device_id yellowfin_pci_tbl[] = { 240 { 0x1000, 0x0702, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 }, 241 { 0x1000, 0x0701, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 }, 242 { } 243 }; 244 MODULE_DEVICE_TABLE (pci, yellowfin_pci_tbl); 245 246 247 /* Offsets to the Yellowfin registers. Various sizes and alignments. */ 248 enum yellowfin_offsets { 249 TxCtrl=0x00, TxStatus=0x04, TxPtr=0x0C, 250 TxIntrSel=0x10, TxBranchSel=0x14, TxWaitSel=0x18, 251 RxCtrl=0x40, RxStatus=0x44, RxPtr=0x4C, 252 RxIntrSel=0x50, RxBranchSel=0x54, RxWaitSel=0x58, 253 EventStatus=0x80, IntrEnb=0x82, IntrClear=0x84, IntrStatus=0x86, 254 ChipRev=0x8C, DMACtrl=0x90, TxThreshold=0x94, 255 Cnfg=0xA0, FrameGap0=0xA2, FrameGap1=0xA4, 256 MII_Cmd=0xA6, MII_Addr=0xA8, MII_Wr_Data=0xAA, MII_Rd_Data=0xAC, 257 MII_Status=0xAE, 258 RxDepth=0xB8, FlowCtrl=0xBC, 259 AddrMode=0xD0, StnAddr=0xD2, HashTbl=0xD8, FIFOcfg=0xF8, 260 EEStatus=0xF0, EECtrl=0xF1, EEAddr=0xF2, EERead=0xF3, EEWrite=0xF4, 261 EEFeature=0xF5, 262 }; 263 264 /* The Yellowfin Rx and Tx buffer descriptors. 265 Elements are written as 32 bit for endian portability. */ 266 struct yellowfin_desc { 267 __le32 dbdma_cmd; 268 __le32 addr; 269 __le32 branch_addr; 270 __le32 result_status; 271 }; 272 273 struct tx_status_words { 274 #ifdef __BIG_ENDIAN 275 u16 tx_errs; 276 u16 tx_cnt; 277 u16 paused; 278 u16 total_tx_cnt; 279 #else /* Little endian chips. */ 280 u16 tx_cnt; 281 u16 tx_errs; 282 u16 total_tx_cnt; 283 u16 paused; 284 #endif /* __BIG_ENDIAN */ 285 }; 286 287 /* Bits in yellowfin_desc.cmd */ 288 enum desc_cmd_bits { 289 CMD_TX_PKT=0x10000000, CMD_RX_BUF=0x20000000, CMD_TXSTATUS=0x30000000, 290 CMD_NOP=0x60000000, CMD_STOP=0x70000000, 291 BRANCH_ALWAYS=0x0C0000, INTR_ALWAYS=0x300000, WAIT_ALWAYS=0x030000, 292 BRANCH_IFTRUE=0x040000, 293 }; 294 295 /* Bits in yellowfin_desc.status */ 296 enum desc_status_bits { RX_EOP=0x0040, }; 297 298 /* Bits in the interrupt status/mask registers. */ 299 enum intr_status_bits { 300 IntrRxDone=0x01, IntrRxInvalid=0x02, IntrRxPCIFault=0x04,IntrRxPCIErr=0x08, 301 IntrTxDone=0x10, IntrTxInvalid=0x20, IntrTxPCIFault=0x40,IntrTxPCIErr=0x80, 302 IntrEarlyRx=0x100, IntrWakeup=0x200, }; 303 304 #define PRIV_ALIGN 31 /* Required alignment mask */ 305 #define MII_CNT 4 306 struct yellowfin_private { 307 /* Descriptor rings first for alignment. 308 Tx requires a second descriptor for status. */ 309 struct yellowfin_desc *rx_ring; 310 struct yellowfin_desc *tx_ring; 311 struct sk_buff* rx_skbuff[RX_RING_SIZE]; 312 struct sk_buff* tx_skbuff[TX_RING_SIZE]; 313 dma_addr_t rx_ring_dma; 314 dma_addr_t tx_ring_dma; 315 316 struct tx_status_words *tx_status; 317 dma_addr_t tx_status_dma; 318 319 struct timer_list timer; /* Media selection timer. */ 320 /* Frequently used and paired value: keep adjacent for cache effect. */ 321 int chip_id, drv_flags; 322 struct pci_dev *pci_dev; 323 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */ 324 unsigned int rx_buf_sz; /* Based on MTU+slack. */ 325 struct tx_status_words *tx_tail_desc; 326 unsigned int cur_tx, dirty_tx; 327 int tx_threshold; 328 unsigned int tx_full:1; /* The Tx queue is full. */ 329 unsigned int full_duplex:1; /* Full-duplex operation requested. */ 330 unsigned int duplex_lock:1; 331 unsigned int medialock:1; /* Do not sense media. */ 332 unsigned int default_port:4; /* Last dev->if_port value. */ 333 /* MII transceiver section. */ 334 int mii_cnt; /* MII device addresses. */ 335 u16 advertising; /* NWay media advertisement */ 336 unsigned char phys[MII_CNT]; /* MII device addresses, only first one used */ 337 spinlock_t lock; 338 void __iomem *base; 339 }; 340 341 static int read_eeprom(void __iomem *ioaddr, int location); 342 static int mdio_read(void __iomem *ioaddr, int phy_id, int location); 343 static void mdio_write(void __iomem *ioaddr, int phy_id, int location, int value); 344 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); 345 static int yellowfin_open(struct net_device *dev); 346 static void yellowfin_timer(struct timer_list *t); 347 static void yellowfin_tx_timeout(struct net_device *dev, unsigned int txqueue); 348 static int yellowfin_init_ring(struct net_device *dev); 349 static netdev_tx_t yellowfin_start_xmit(struct sk_buff *skb, 350 struct net_device *dev); 351 static irqreturn_t yellowfin_interrupt(int irq, void *dev_instance); 352 static int yellowfin_rx(struct net_device *dev); 353 static void yellowfin_error(struct net_device *dev, int intr_status); 354 static int yellowfin_close(struct net_device *dev); 355 static void set_rx_mode(struct net_device *dev); 356 static const struct ethtool_ops ethtool_ops; 357 358 static const struct net_device_ops netdev_ops = { 359 .ndo_open = yellowfin_open, 360 .ndo_stop = yellowfin_close, 361 .ndo_start_xmit = yellowfin_start_xmit, 362 .ndo_set_rx_mode = set_rx_mode, 363 .ndo_validate_addr = eth_validate_addr, 364 .ndo_set_mac_address = eth_mac_addr, 365 .ndo_eth_ioctl = netdev_ioctl, 366 .ndo_tx_timeout = yellowfin_tx_timeout, 367 }; 368 369 static int yellowfin_init_one(struct pci_dev *pdev, 370 const struct pci_device_id *ent) 371 { 372 struct net_device *dev; 373 struct yellowfin_private *np; 374 int irq; 375 int chip_idx = ent->driver_data; 376 static int find_cnt; 377 void __iomem *ioaddr; 378 int i, option = find_cnt < MAX_UNITS ? options[find_cnt] : 0; 379 int drv_flags = pci_id_tbl[chip_idx].drv_flags; 380 void *ring_space; 381 dma_addr_t ring_dma; 382 #ifdef USE_IO_OPS 383 int bar = 0; 384 #else 385 int bar = 1; 386 #endif 387 u8 addr[ETH_ALEN]; 388 389 /* when built into the kernel, we only print version if device is found */ 390 #ifndef MODULE 391 static int printed_version; 392 if (!printed_version++) 393 printk(version); 394 #endif 395 396 i = pci_enable_device(pdev); 397 if (i) return i; 398 399 dev = alloc_etherdev(sizeof(*np)); 400 if (!dev) 401 return -ENOMEM; 402 403 SET_NETDEV_DEV(dev, &pdev->dev); 404 405 np = netdev_priv(dev); 406 407 if (pci_request_regions(pdev, DRV_NAME)) 408 goto err_out_free_netdev; 409 410 pci_set_master (pdev); 411 412 ioaddr = pci_iomap(pdev, bar, YELLOWFIN_SIZE); 413 if (!ioaddr) 414 goto err_out_free_res; 415 416 irq = pdev->irq; 417 418 if (drv_flags & DontUseEeprom) 419 for (i = 0; i < 6; i++) 420 addr[i] = ioread8(ioaddr + StnAddr + i); 421 else { 422 int ee_offset = (read_eeprom(ioaddr, 6) == 0xff ? 0x100 : 0); 423 for (i = 0; i < 6; i++) 424 addr[i] = read_eeprom(ioaddr, ee_offset + i); 425 } 426 eth_hw_addr_set(dev, addr); 427 428 /* Reset the chip. */ 429 iowrite32(0x80000000, ioaddr + DMACtrl); 430 431 pci_set_drvdata(pdev, dev); 432 spin_lock_init(&np->lock); 433 434 np->pci_dev = pdev; 435 np->chip_id = chip_idx; 436 np->drv_flags = drv_flags; 437 np->base = ioaddr; 438 439 ring_space = dma_alloc_coherent(&pdev->dev, TX_TOTAL_SIZE, &ring_dma, 440 GFP_KERNEL); 441 if (!ring_space) 442 goto err_out_cleardev; 443 np->tx_ring = ring_space; 444 np->tx_ring_dma = ring_dma; 445 446 ring_space = dma_alloc_coherent(&pdev->dev, RX_TOTAL_SIZE, &ring_dma, 447 GFP_KERNEL); 448 if (!ring_space) 449 goto err_out_unmap_tx; 450 np->rx_ring = ring_space; 451 np->rx_ring_dma = ring_dma; 452 453 ring_space = dma_alloc_coherent(&pdev->dev, STATUS_TOTAL_SIZE, 454 &ring_dma, GFP_KERNEL); 455 if (!ring_space) 456 goto err_out_unmap_rx; 457 np->tx_status = ring_space; 458 np->tx_status_dma = ring_dma; 459 460 if (dev->mem_start) 461 option = dev->mem_start; 462 463 /* The lower four bits are the media type. */ 464 if (option > 0) { 465 if (option & 0x200) 466 np->full_duplex = 1; 467 np->default_port = option & 15; 468 if (np->default_port) 469 np->medialock = 1; 470 } 471 if (find_cnt < MAX_UNITS && full_duplex[find_cnt] > 0) 472 np->full_duplex = 1; 473 474 if (np->full_duplex) 475 np->duplex_lock = 1; 476 477 /* The Yellowfin-specific entries in the device structure. */ 478 dev->netdev_ops = &netdev_ops; 479 dev->ethtool_ops = ðtool_ops; 480 dev->watchdog_timeo = TX_TIMEOUT; 481 482 if (mtu) 483 dev->mtu = mtu; 484 485 i = register_netdev(dev); 486 if (i) 487 goto err_out_unmap_status; 488 489 netdev_info(dev, "%s type %8x at %p, %pM, IRQ %d\n", 490 pci_id_tbl[chip_idx].name, 491 ioread32(ioaddr + ChipRev), ioaddr, 492 dev->dev_addr, irq); 493 494 if (np->drv_flags & HasMII) { 495 int phy, phy_idx = 0; 496 for (phy = 0; phy < 32 && phy_idx < MII_CNT; phy++) { 497 int mii_status = mdio_read(ioaddr, phy, 1); 498 if (mii_status != 0xffff && mii_status != 0x0000) { 499 np->phys[phy_idx++] = phy; 500 np->advertising = mdio_read(ioaddr, phy, 4); 501 netdev_info(dev, "MII PHY found at address %d, status 0x%04x advertising %04x\n", 502 phy, mii_status, np->advertising); 503 } 504 } 505 np->mii_cnt = phy_idx; 506 } 507 508 find_cnt++; 509 510 return 0; 511 512 err_out_unmap_status: 513 dma_free_coherent(&pdev->dev, STATUS_TOTAL_SIZE, np->tx_status, 514 np->tx_status_dma); 515 err_out_unmap_rx: 516 dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, np->rx_ring, 517 np->rx_ring_dma); 518 err_out_unmap_tx: 519 dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, np->tx_ring, 520 np->tx_ring_dma); 521 err_out_cleardev: 522 pci_iounmap(pdev, ioaddr); 523 err_out_free_res: 524 pci_release_regions(pdev); 525 err_out_free_netdev: 526 free_netdev (dev); 527 return -ENODEV; 528 } 529 530 static int read_eeprom(void __iomem *ioaddr, int location) 531 { 532 int bogus_cnt = 10000; /* Typical 33Mhz: 1050 ticks */ 533 534 iowrite8(location, ioaddr + EEAddr); 535 iowrite8(0x30 | ((location >> 8) & 7), ioaddr + EECtrl); 536 while ((ioread8(ioaddr + EEStatus) & 0x80) && --bogus_cnt > 0) 537 ; 538 return ioread8(ioaddr + EERead); 539 } 540 541 /* MII Managemen Data I/O accesses. 542 These routines assume the MDIO controller is idle, and do not exit until 543 the command is finished. */ 544 545 static int mdio_read(void __iomem *ioaddr, int phy_id, int location) 546 { 547 int i; 548 549 iowrite16((phy_id<<8) + location, ioaddr + MII_Addr); 550 iowrite16(1, ioaddr + MII_Cmd); 551 for (i = 10000; i >= 0; i--) 552 if ((ioread16(ioaddr + MII_Status) & 1) == 0) 553 break; 554 return ioread16(ioaddr + MII_Rd_Data); 555 } 556 557 static void mdio_write(void __iomem *ioaddr, int phy_id, int location, int value) 558 { 559 int i; 560 561 iowrite16((phy_id<<8) + location, ioaddr + MII_Addr); 562 iowrite16(value, ioaddr + MII_Wr_Data); 563 564 /* Wait for the command to finish. */ 565 for (i = 10000; i >= 0; i--) 566 if ((ioread16(ioaddr + MII_Status) & 1) == 0) 567 break; 568 } 569 570 571 static int yellowfin_open(struct net_device *dev) 572 { 573 struct yellowfin_private *yp = netdev_priv(dev); 574 const int irq = yp->pci_dev->irq; 575 void __iomem *ioaddr = yp->base; 576 int i, rc; 577 578 /* Reset the chip. */ 579 iowrite32(0x80000000, ioaddr + DMACtrl); 580 581 rc = request_irq(irq, yellowfin_interrupt, IRQF_SHARED, dev->name, dev); 582 if (rc) 583 return rc; 584 585 rc = yellowfin_init_ring(dev); 586 if (rc < 0) 587 goto err_free_irq; 588 589 iowrite32(yp->rx_ring_dma, ioaddr + RxPtr); 590 iowrite32(yp->tx_ring_dma, ioaddr + TxPtr); 591 592 for (i = 0; i < 6; i++) 593 iowrite8(dev->dev_addr[i], ioaddr + StnAddr + i); 594 595 /* Set up various condition 'select' registers. 596 There are no options here. */ 597 iowrite32(0x00800080, ioaddr + TxIntrSel); /* Interrupt on Tx abort */ 598 iowrite32(0x00800080, ioaddr + TxBranchSel); /* Branch on Tx abort */ 599 iowrite32(0x00400040, ioaddr + TxWaitSel); /* Wait on Tx status */ 600 iowrite32(0x00400040, ioaddr + RxIntrSel); /* Interrupt on Rx done */ 601 iowrite32(0x00400040, ioaddr + RxBranchSel); /* Branch on Rx error */ 602 iowrite32(0x00400040, ioaddr + RxWaitSel); /* Wait on Rx done */ 603 604 /* Initialize other registers: with so many this eventually this will 605 converted to an offset/value list. */ 606 iowrite32(dma_ctrl, ioaddr + DMACtrl); 607 iowrite16(fifo_cfg, ioaddr + FIFOcfg); 608 /* Enable automatic generation of flow control frames, period 0xffff. */ 609 iowrite32(0x0030FFFF, ioaddr + FlowCtrl); 610 611 yp->tx_threshold = 32; 612 iowrite32(yp->tx_threshold, ioaddr + TxThreshold); 613 614 if (dev->if_port == 0) 615 dev->if_port = yp->default_port; 616 617 netif_start_queue(dev); 618 619 /* Setting the Rx mode will start the Rx process. */ 620 if (yp->drv_flags & IsGigabit) { 621 /* We are always in full-duplex mode with gigabit! */ 622 yp->full_duplex = 1; 623 iowrite16(0x01CF, ioaddr + Cnfg); 624 } else { 625 iowrite16(0x0018, ioaddr + FrameGap0); /* 0060/4060 for non-MII 10baseT */ 626 iowrite16(0x1018, ioaddr + FrameGap1); 627 iowrite16(0x101C | (yp->full_duplex ? 2 : 0), ioaddr + Cnfg); 628 } 629 set_rx_mode(dev); 630 631 /* Enable interrupts by setting the interrupt mask. */ 632 iowrite16(0x81ff, ioaddr + IntrEnb); /* See enum intr_status_bits */ 633 iowrite16(0x0000, ioaddr + EventStatus); /* Clear non-interrupting events */ 634 iowrite32(0x80008000, ioaddr + RxCtrl); /* Start Rx and Tx channels. */ 635 iowrite32(0x80008000, ioaddr + TxCtrl); 636 637 if (yellowfin_debug > 2) { 638 netdev_printk(KERN_DEBUG, dev, "Done %s()\n", __func__); 639 } 640 641 /* Set the timer to check for link beat. */ 642 timer_setup(&yp->timer, yellowfin_timer, 0); 643 yp->timer.expires = jiffies + 3*HZ; 644 add_timer(&yp->timer); 645 out: 646 return rc; 647 648 err_free_irq: 649 free_irq(irq, dev); 650 goto out; 651 } 652 653 static void yellowfin_timer(struct timer_list *t) 654 { 655 struct yellowfin_private *yp = from_timer(yp, t, timer); 656 struct net_device *dev = pci_get_drvdata(yp->pci_dev); 657 void __iomem *ioaddr = yp->base; 658 int next_tick = 60*HZ; 659 660 if (yellowfin_debug > 3) { 661 netdev_printk(KERN_DEBUG, dev, "Yellowfin timer tick, status %08x\n", 662 ioread16(ioaddr + IntrStatus)); 663 } 664 665 if (yp->mii_cnt) { 666 int bmsr = mdio_read(ioaddr, yp->phys[0], MII_BMSR); 667 int lpa = mdio_read(ioaddr, yp->phys[0], MII_LPA); 668 int negotiated = lpa & yp->advertising; 669 if (yellowfin_debug > 1) 670 netdev_printk(KERN_DEBUG, dev, "MII #%d status register is %04x, link partner capability %04x\n", 671 yp->phys[0], bmsr, lpa); 672 673 yp->full_duplex = mii_duplex(yp->duplex_lock, negotiated); 674 675 iowrite16(0x101C | (yp->full_duplex ? 2 : 0), ioaddr + Cnfg); 676 677 if (bmsr & BMSR_LSTATUS) 678 next_tick = 60*HZ; 679 else 680 next_tick = 3*HZ; 681 } 682 683 yp->timer.expires = jiffies + next_tick; 684 add_timer(&yp->timer); 685 } 686 687 static void yellowfin_tx_timeout(struct net_device *dev, unsigned int txqueue) 688 { 689 struct yellowfin_private *yp = netdev_priv(dev); 690 void __iomem *ioaddr = yp->base; 691 692 netdev_warn(dev, "Yellowfin transmit timed out at %d/%d Tx status %04x, Rx status %04x, resetting...\n", 693 yp->cur_tx, yp->dirty_tx, 694 ioread32(ioaddr + TxStatus), 695 ioread32(ioaddr + RxStatus)); 696 697 /* Note: these should be KERN_DEBUG. */ 698 if (yellowfin_debug) { 699 int i; 700 pr_warn(" Rx ring %p: ", yp->rx_ring); 701 for (i = 0; i < RX_RING_SIZE; i++) 702 pr_cont(" %08x", yp->rx_ring[i].result_status); 703 pr_cont("\n"); 704 pr_warn(" Tx ring %p: ", yp->tx_ring); 705 for (i = 0; i < TX_RING_SIZE; i++) 706 pr_cont(" %04x /%08x", 707 yp->tx_status[i].tx_errs, 708 yp->tx_ring[i].result_status); 709 pr_cont("\n"); 710 } 711 712 /* If the hardware is found to hang regularly, we will update the code 713 to reinitialize the chip here. */ 714 dev->if_port = 0; 715 716 /* Wake the potentially-idle transmit channel. */ 717 iowrite32(0x10001000, yp->base + TxCtrl); 718 if (yp->cur_tx - yp->dirty_tx < TX_QUEUE_SIZE) 719 netif_wake_queue (dev); /* Typical path */ 720 721 netif_trans_update(dev); /* prevent tx timeout */ 722 dev->stats.tx_errors++; 723 } 724 725 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */ 726 static int yellowfin_init_ring(struct net_device *dev) 727 { 728 struct yellowfin_private *yp = netdev_priv(dev); 729 int i, j; 730 731 yp->tx_full = 0; 732 yp->cur_rx = yp->cur_tx = 0; 733 yp->dirty_tx = 0; 734 735 yp->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32); 736 737 for (i = 0; i < RX_RING_SIZE; i++) { 738 yp->rx_ring[i].dbdma_cmd = 739 cpu_to_le32(CMD_RX_BUF | INTR_ALWAYS | yp->rx_buf_sz); 740 yp->rx_ring[i].branch_addr = cpu_to_le32(yp->rx_ring_dma + 741 ((i+1)%RX_RING_SIZE)*sizeof(struct yellowfin_desc)); 742 } 743 744 for (i = 0; i < RX_RING_SIZE; i++) { 745 struct sk_buff *skb = netdev_alloc_skb(dev, yp->rx_buf_sz + 2); 746 yp->rx_skbuff[i] = skb; 747 if (skb == NULL) 748 break; 749 skb_reserve(skb, 2); /* 16 byte align the IP header. */ 750 yp->rx_ring[i].addr = cpu_to_le32(dma_map_single(&yp->pci_dev->dev, 751 skb->data, 752 yp->rx_buf_sz, 753 DMA_FROM_DEVICE)); 754 } 755 if (i != RX_RING_SIZE) { 756 for (j = 0; j < i; j++) 757 dev_kfree_skb(yp->rx_skbuff[j]); 758 return -ENOMEM; 759 } 760 yp->rx_ring[i-1].dbdma_cmd = cpu_to_le32(CMD_STOP); 761 yp->dirty_rx = (unsigned int)(i - RX_RING_SIZE); 762 763 #define NO_TXSTATS 764 #ifdef NO_TXSTATS 765 /* In this mode the Tx ring needs only a single descriptor. */ 766 for (i = 0; i < TX_RING_SIZE; i++) { 767 yp->tx_skbuff[i] = NULL; 768 yp->tx_ring[i].dbdma_cmd = cpu_to_le32(CMD_STOP); 769 yp->tx_ring[i].branch_addr = cpu_to_le32(yp->tx_ring_dma + 770 ((i+1)%TX_RING_SIZE)*sizeof(struct yellowfin_desc)); 771 } 772 /* Wrap ring */ 773 yp->tx_ring[--i].dbdma_cmd = cpu_to_le32(CMD_STOP | BRANCH_ALWAYS); 774 #else 775 { 776 /* Tx ring needs a pair of descriptors, the second for the status. */ 777 for (i = 0; i < TX_RING_SIZE; i++) { 778 j = 2*i; 779 yp->tx_skbuff[i] = 0; 780 /* Branch on Tx error. */ 781 yp->tx_ring[j].dbdma_cmd = cpu_to_le32(CMD_STOP); 782 yp->tx_ring[j].branch_addr = cpu_to_le32(yp->tx_ring_dma + 783 (j+1)*sizeof(struct yellowfin_desc)); 784 j++; 785 if (yp->flags & FullTxStatus) { 786 yp->tx_ring[j].dbdma_cmd = 787 cpu_to_le32(CMD_TXSTATUS | sizeof(*yp->tx_status)); 788 yp->tx_ring[j].request_cnt = sizeof(*yp->tx_status); 789 yp->tx_ring[j].addr = cpu_to_le32(yp->tx_status_dma + 790 i*sizeof(struct tx_status_words)); 791 } else { 792 /* Symbios chips write only tx_errs word. */ 793 yp->tx_ring[j].dbdma_cmd = 794 cpu_to_le32(CMD_TXSTATUS | INTR_ALWAYS | 2); 795 yp->tx_ring[j].request_cnt = 2; 796 /* Om pade ummmmm... */ 797 yp->tx_ring[j].addr = cpu_to_le32(yp->tx_status_dma + 798 i*sizeof(struct tx_status_words) + 799 &(yp->tx_status[0].tx_errs) - 800 &(yp->tx_status[0])); 801 } 802 yp->tx_ring[j].branch_addr = cpu_to_le32(yp->tx_ring_dma + 803 ((j+1)%(2*TX_RING_SIZE))*sizeof(struct yellowfin_desc)); 804 } 805 /* Wrap ring */ 806 yp->tx_ring[++j].dbdma_cmd |= cpu_to_le32(BRANCH_ALWAYS | INTR_ALWAYS); 807 } 808 #endif 809 yp->tx_tail_desc = &yp->tx_status[0]; 810 return 0; 811 } 812 813 static netdev_tx_t yellowfin_start_xmit(struct sk_buff *skb, 814 struct net_device *dev) 815 { 816 struct yellowfin_private *yp = netdev_priv(dev); 817 unsigned entry; 818 int len = skb->len; 819 820 netif_stop_queue (dev); 821 822 /* Note: Ordering is important here, set the field with the 823 "ownership" bit last, and only then increment cur_tx. */ 824 825 /* Calculate the next Tx descriptor entry. */ 826 entry = yp->cur_tx % TX_RING_SIZE; 827 828 if (gx_fix) { /* Note: only works for paddable protocols e.g. IP. */ 829 int cacheline_end = ((unsigned long)skb->data + skb->len) % 32; 830 /* Fix GX chipset errata. */ 831 if (cacheline_end > 24 || cacheline_end == 0) { 832 len = skb->len + 32 - cacheline_end + 1; 833 if (skb_padto(skb, len)) { 834 yp->tx_skbuff[entry] = NULL; 835 netif_wake_queue(dev); 836 return NETDEV_TX_OK; 837 } 838 } 839 } 840 yp->tx_skbuff[entry] = skb; 841 842 #ifdef NO_TXSTATS 843 yp->tx_ring[entry].addr = cpu_to_le32(dma_map_single(&yp->pci_dev->dev, 844 skb->data, 845 len, DMA_TO_DEVICE)); 846 yp->tx_ring[entry].result_status = 0; 847 if (entry >= TX_RING_SIZE-1) { 848 /* New stop command. */ 849 yp->tx_ring[0].dbdma_cmd = cpu_to_le32(CMD_STOP); 850 yp->tx_ring[TX_RING_SIZE-1].dbdma_cmd = 851 cpu_to_le32(CMD_TX_PKT|BRANCH_ALWAYS | len); 852 } else { 853 yp->tx_ring[entry+1].dbdma_cmd = cpu_to_le32(CMD_STOP); 854 yp->tx_ring[entry].dbdma_cmd = 855 cpu_to_le32(CMD_TX_PKT | BRANCH_IFTRUE | len); 856 } 857 yp->cur_tx++; 858 #else 859 yp->tx_ring[entry<<1].request_cnt = len; 860 yp->tx_ring[entry<<1].addr = cpu_to_le32(dma_map_single(&yp->pci_dev->dev, 861 skb->data, 862 len, DMA_TO_DEVICE)); 863 /* The input_last (status-write) command is constant, but we must 864 rewrite the subsequent 'stop' command. */ 865 866 yp->cur_tx++; 867 { 868 unsigned next_entry = yp->cur_tx % TX_RING_SIZE; 869 yp->tx_ring[next_entry<<1].dbdma_cmd = cpu_to_le32(CMD_STOP); 870 } 871 /* Final step -- overwrite the old 'stop' command. */ 872 873 yp->tx_ring[entry<<1].dbdma_cmd = 874 cpu_to_le32( ((entry % 6) == 0 ? CMD_TX_PKT|INTR_ALWAYS|BRANCH_IFTRUE : 875 CMD_TX_PKT | BRANCH_IFTRUE) | len); 876 #endif 877 878 /* Non-x86 Todo: explicitly flush cache lines here. */ 879 880 /* Wake the potentially-idle transmit channel. */ 881 iowrite32(0x10001000, yp->base + TxCtrl); 882 883 if (yp->cur_tx - yp->dirty_tx < TX_QUEUE_SIZE) 884 netif_start_queue (dev); /* Typical path */ 885 else 886 yp->tx_full = 1; 887 888 if (yellowfin_debug > 4) { 889 netdev_printk(KERN_DEBUG, dev, "Yellowfin transmit frame #%d queued in slot %d\n", 890 yp->cur_tx, entry); 891 } 892 return NETDEV_TX_OK; 893 } 894 895 /* The interrupt handler does all of the Rx thread work and cleans up 896 after the Tx thread. */ 897 static irqreturn_t yellowfin_interrupt(int irq, void *dev_instance) 898 { 899 struct net_device *dev = dev_instance; 900 struct yellowfin_private *yp; 901 void __iomem *ioaddr; 902 int boguscnt = max_interrupt_work; 903 unsigned int handled = 0; 904 905 yp = netdev_priv(dev); 906 ioaddr = yp->base; 907 908 spin_lock (&yp->lock); 909 910 do { 911 u16 intr_status = ioread16(ioaddr + IntrClear); 912 913 if (yellowfin_debug > 4) 914 netdev_printk(KERN_DEBUG, dev, "Yellowfin interrupt, status %04x\n", 915 intr_status); 916 917 if (intr_status == 0) 918 break; 919 handled = 1; 920 921 if (intr_status & (IntrRxDone | IntrEarlyRx)) { 922 yellowfin_rx(dev); 923 iowrite32(0x10001000, ioaddr + RxCtrl); /* Wake Rx engine. */ 924 } 925 926 #ifdef NO_TXSTATS 927 for (; yp->cur_tx - yp->dirty_tx > 0; yp->dirty_tx++) { 928 int entry = yp->dirty_tx % TX_RING_SIZE; 929 struct sk_buff *skb; 930 931 if (yp->tx_ring[entry].result_status == 0) 932 break; 933 skb = yp->tx_skbuff[entry]; 934 dev->stats.tx_packets++; 935 dev->stats.tx_bytes += skb->len; 936 /* Free the original skb. */ 937 dma_unmap_single(&yp->pci_dev->dev, 938 le32_to_cpu(yp->tx_ring[entry].addr), 939 skb->len, DMA_TO_DEVICE); 940 dev_consume_skb_irq(skb); 941 yp->tx_skbuff[entry] = NULL; 942 } 943 if (yp->tx_full && 944 yp->cur_tx - yp->dirty_tx < TX_QUEUE_SIZE - 4) { 945 /* The ring is no longer full, clear tbusy. */ 946 yp->tx_full = 0; 947 netif_wake_queue(dev); 948 } 949 #else 950 if ((intr_status & IntrTxDone) || (yp->tx_tail_desc->tx_errs)) { 951 unsigned dirty_tx = yp->dirty_tx; 952 953 for (dirty_tx = yp->dirty_tx; yp->cur_tx - dirty_tx > 0; 954 dirty_tx++) { 955 /* Todo: optimize this. */ 956 int entry = dirty_tx % TX_RING_SIZE; 957 u16 tx_errs = yp->tx_status[entry].tx_errs; 958 struct sk_buff *skb; 959 960 #ifndef final_version 961 if (yellowfin_debug > 5) 962 netdev_printk(KERN_DEBUG, dev, "Tx queue %d check, Tx status %04x %04x %04x %04x\n", 963 entry, 964 yp->tx_status[entry].tx_cnt, 965 yp->tx_status[entry].tx_errs, 966 yp->tx_status[entry].total_tx_cnt, 967 yp->tx_status[entry].paused); 968 #endif 969 if (tx_errs == 0) 970 break; /* It still hasn't been Txed */ 971 skb = yp->tx_skbuff[entry]; 972 if (tx_errs & 0xF810) { 973 /* There was an major error, log it. */ 974 #ifndef final_version 975 if (yellowfin_debug > 1) 976 netdev_printk(KERN_DEBUG, dev, "Transmit error, Tx status %04x\n", 977 tx_errs); 978 #endif 979 dev->stats.tx_errors++; 980 if (tx_errs & 0xF800) dev->stats.tx_aborted_errors++; 981 if (tx_errs & 0x0800) dev->stats.tx_carrier_errors++; 982 if (tx_errs & 0x2000) dev->stats.tx_window_errors++; 983 if (tx_errs & 0x8000) dev->stats.tx_fifo_errors++; 984 } else { 985 #ifndef final_version 986 if (yellowfin_debug > 4) 987 netdev_printk(KERN_DEBUG, dev, "Normal transmit, Tx status %04x\n", 988 tx_errs); 989 #endif 990 dev->stats.tx_bytes += skb->len; 991 dev->stats.collisions += tx_errs & 15; 992 dev->stats.tx_packets++; 993 } 994 /* Free the original skb. */ 995 dma_unmap_single(&yp->pci_dev->dev, 996 yp->tx_ring[entry << 1].addr, 997 skb->len, DMA_TO_DEVICE); 998 dev_consume_skb_irq(skb); 999 yp->tx_skbuff[entry] = 0; 1000 /* Mark status as empty. */ 1001 yp->tx_status[entry].tx_errs = 0; 1002 } 1003 1004 #ifndef final_version 1005 if (yp->cur_tx - dirty_tx > TX_RING_SIZE) { 1006 netdev_err(dev, "Out-of-sync dirty pointer, %d vs. %d, full=%d\n", 1007 dirty_tx, yp->cur_tx, yp->tx_full); 1008 dirty_tx += TX_RING_SIZE; 1009 } 1010 #endif 1011 1012 if (yp->tx_full && 1013 yp->cur_tx - dirty_tx < TX_QUEUE_SIZE - 2) { 1014 /* The ring is no longer full, clear tbusy. */ 1015 yp->tx_full = 0; 1016 netif_wake_queue(dev); 1017 } 1018 1019 yp->dirty_tx = dirty_tx; 1020 yp->tx_tail_desc = &yp->tx_status[dirty_tx % TX_RING_SIZE]; 1021 } 1022 #endif 1023 1024 /* Log errors and other uncommon events. */ 1025 if (intr_status & 0x2ee) /* Abnormal error summary. */ 1026 yellowfin_error(dev, intr_status); 1027 1028 if (--boguscnt < 0) { 1029 netdev_warn(dev, "Too much work at interrupt, status=%#04x\n", 1030 intr_status); 1031 break; 1032 } 1033 } while (1); 1034 1035 if (yellowfin_debug > 3) 1036 netdev_printk(KERN_DEBUG, dev, "exiting interrupt, status=%#04x\n", 1037 ioread16(ioaddr + IntrStatus)); 1038 1039 spin_unlock (&yp->lock); 1040 return IRQ_RETVAL(handled); 1041 } 1042 1043 /* This routine is logically part of the interrupt handler, but separated 1044 for clarity and better register allocation. */ 1045 static int yellowfin_rx(struct net_device *dev) 1046 { 1047 struct yellowfin_private *yp = netdev_priv(dev); 1048 int entry = yp->cur_rx % RX_RING_SIZE; 1049 int boguscnt = yp->dirty_rx + RX_RING_SIZE - yp->cur_rx; 1050 1051 if (yellowfin_debug > 4) { 1052 printk(KERN_DEBUG " In yellowfin_rx(), entry %d status %08x\n", 1053 entry, yp->rx_ring[entry].result_status); 1054 printk(KERN_DEBUG " #%d desc. %08x %08x %08x\n", 1055 entry, yp->rx_ring[entry].dbdma_cmd, yp->rx_ring[entry].addr, 1056 yp->rx_ring[entry].result_status); 1057 } 1058 1059 /* If EOP is set on the next entry, it's a new packet. Send it up. */ 1060 while (1) { 1061 struct yellowfin_desc *desc = &yp->rx_ring[entry]; 1062 struct sk_buff *rx_skb = yp->rx_skbuff[entry]; 1063 s16 frame_status; 1064 u16 desc_status; 1065 int data_size, __maybe_unused yf_size; 1066 u8 *buf_addr; 1067 1068 if(!desc->result_status) 1069 break; 1070 dma_sync_single_for_cpu(&yp->pci_dev->dev, 1071 le32_to_cpu(desc->addr), 1072 yp->rx_buf_sz, DMA_FROM_DEVICE); 1073 desc_status = le32_to_cpu(desc->result_status) >> 16; 1074 buf_addr = rx_skb->data; 1075 data_size = (le32_to_cpu(desc->dbdma_cmd) - 1076 le32_to_cpu(desc->result_status)) & 0xffff; 1077 frame_status = get_unaligned_le16(&(buf_addr[data_size - 2])); 1078 if (yellowfin_debug > 4) 1079 printk(KERN_DEBUG " %s() status was %04x\n", 1080 __func__, frame_status); 1081 if (--boguscnt < 0) 1082 break; 1083 1084 yf_size = sizeof(struct yellowfin_desc); 1085 1086 if ( ! (desc_status & RX_EOP)) { 1087 if (data_size != 0) 1088 netdev_warn(dev, "Oversized Ethernet frame spanned multiple buffers, status %04x, data_size %d!\n", 1089 desc_status, data_size); 1090 dev->stats.rx_length_errors++; 1091 } else if ((yp->drv_flags & IsGigabit) && (frame_status & 0x0038)) { 1092 /* There was a error. */ 1093 if (yellowfin_debug > 3) 1094 printk(KERN_DEBUG " %s() Rx error was %04x\n", 1095 __func__, frame_status); 1096 dev->stats.rx_errors++; 1097 if (frame_status & 0x0060) dev->stats.rx_length_errors++; 1098 if (frame_status & 0x0008) dev->stats.rx_frame_errors++; 1099 if (frame_status & 0x0010) dev->stats.rx_crc_errors++; 1100 if (frame_status < 0) dev->stats.rx_dropped++; 1101 } else if ( !(yp->drv_flags & IsGigabit) && 1102 ((buf_addr[data_size-1] & 0x85) || buf_addr[data_size-2] & 0xC0)) { 1103 u8 status1 = buf_addr[data_size-2]; 1104 u8 status2 = buf_addr[data_size-1]; 1105 dev->stats.rx_errors++; 1106 if (status1 & 0xC0) dev->stats.rx_length_errors++; 1107 if (status2 & 0x03) dev->stats.rx_frame_errors++; 1108 if (status2 & 0x04) dev->stats.rx_crc_errors++; 1109 if (status2 & 0x80) dev->stats.rx_dropped++; 1110 #ifdef YF_PROTOTYPE /* Support for prototype hardware errata. */ 1111 } else if ((yp->flags & HasMACAddrBug) && 1112 !ether_addr_equal(le32_to_cpu(yp->rx_ring_dma + 1113 entry * yf_size), 1114 dev->dev_addr) && 1115 !ether_addr_equal(le32_to_cpu(yp->rx_ring_dma + 1116 entry * yf_size), 1117 "\377\377\377\377\377\377")) { 1118 if (bogus_rx++ == 0) 1119 netdev_warn(dev, "Bad frame to %pM\n", 1120 buf_addr); 1121 #endif 1122 } else { 1123 struct sk_buff *skb; 1124 int pkt_len = data_size - 1125 (yp->chip_id ? 7 : 8 + buf_addr[data_size - 8]); 1126 /* To verify: Yellowfin Length should omit the CRC! */ 1127 1128 #ifndef final_version 1129 if (yellowfin_debug > 4) 1130 printk(KERN_DEBUG " %s() normal Rx pkt length %d of %d, bogus_cnt %d\n", 1131 __func__, pkt_len, data_size, boguscnt); 1132 #endif 1133 /* Check if the packet is long enough to just pass up the skbuff 1134 without copying to a properly sized skbuff. */ 1135 if (pkt_len > rx_copybreak) { 1136 skb_put(skb = rx_skb, pkt_len); 1137 dma_unmap_single(&yp->pci_dev->dev, 1138 le32_to_cpu(yp->rx_ring[entry].addr), 1139 yp->rx_buf_sz, 1140 DMA_FROM_DEVICE); 1141 yp->rx_skbuff[entry] = NULL; 1142 } else { 1143 skb = netdev_alloc_skb(dev, pkt_len + 2); 1144 if (skb == NULL) 1145 break; 1146 skb_reserve(skb, 2); /* 16 byte align the IP header */ 1147 skb_copy_to_linear_data(skb, rx_skb->data, pkt_len); 1148 skb_put(skb, pkt_len); 1149 dma_sync_single_for_device(&yp->pci_dev->dev, 1150 le32_to_cpu(desc->addr), 1151 yp->rx_buf_sz, 1152 DMA_FROM_DEVICE); 1153 } 1154 skb->protocol = eth_type_trans(skb, dev); 1155 netif_rx(skb); 1156 dev->stats.rx_packets++; 1157 dev->stats.rx_bytes += pkt_len; 1158 } 1159 entry = (++yp->cur_rx) % RX_RING_SIZE; 1160 } 1161 1162 /* Refill the Rx ring buffers. */ 1163 for (; yp->cur_rx - yp->dirty_rx > 0; yp->dirty_rx++) { 1164 entry = yp->dirty_rx % RX_RING_SIZE; 1165 if (yp->rx_skbuff[entry] == NULL) { 1166 struct sk_buff *skb = netdev_alloc_skb(dev, yp->rx_buf_sz + 2); 1167 if (skb == NULL) 1168 break; /* Better luck next round. */ 1169 yp->rx_skbuff[entry] = skb; 1170 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */ 1171 yp->rx_ring[entry].addr = cpu_to_le32(dma_map_single(&yp->pci_dev->dev, 1172 skb->data, 1173 yp->rx_buf_sz, 1174 DMA_FROM_DEVICE)); 1175 } 1176 yp->rx_ring[entry].dbdma_cmd = cpu_to_le32(CMD_STOP); 1177 yp->rx_ring[entry].result_status = 0; /* Clear complete bit. */ 1178 if (entry != 0) 1179 yp->rx_ring[entry - 1].dbdma_cmd = 1180 cpu_to_le32(CMD_RX_BUF | INTR_ALWAYS | yp->rx_buf_sz); 1181 else 1182 yp->rx_ring[RX_RING_SIZE - 1].dbdma_cmd = 1183 cpu_to_le32(CMD_RX_BUF | INTR_ALWAYS | BRANCH_ALWAYS 1184 | yp->rx_buf_sz); 1185 } 1186 1187 return 0; 1188 } 1189 1190 static void yellowfin_error(struct net_device *dev, int intr_status) 1191 { 1192 netdev_err(dev, "Something Wicked happened! %04x\n", intr_status); 1193 /* Hmmmmm, it's not clear what to do here. */ 1194 if (intr_status & (IntrTxPCIErr | IntrTxPCIFault)) 1195 dev->stats.tx_errors++; 1196 if (intr_status & (IntrRxPCIErr | IntrRxPCIFault)) 1197 dev->stats.rx_errors++; 1198 } 1199 1200 static int yellowfin_close(struct net_device *dev) 1201 { 1202 struct yellowfin_private *yp = netdev_priv(dev); 1203 void __iomem *ioaddr = yp->base; 1204 int i; 1205 1206 netif_stop_queue (dev); 1207 1208 if (yellowfin_debug > 1) { 1209 netdev_printk(KERN_DEBUG, dev, "Shutting down ethercard, status was Tx %04x Rx %04x Int %02x\n", 1210 ioread16(ioaddr + TxStatus), 1211 ioread16(ioaddr + RxStatus), 1212 ioread16(ioaddr + IntrStatus)); 1213 netdev_printk(KERN_DEBUG, dev, "Queue pointers were Tx %d / %d, Rx %d / %d\n", 1214 yp->cur_tx, yp->dirty_tx, 1215 yp->cur_rx, yp->dirty_rx); 1216 } 1217 1218 /* Disable interrupts by clearing the interrupt mask. */ 1219 iowrite16(0x0000, ioaddr + IntrEnb); 1220 1221 /* Stop the chip's Tx and Rx processes. */ 1222 iowrite32(0x80000000, ioaddr + RxCtrl); 1223 iowrite32(0x80000000, ioaddr + TxCtrl); 1224 1225 del_timer(&yp->timer); 1226 1227 #if defined(__i386__) 1228 if (yellowfin_debug > 2) { 1229 printk(KERN_DEBUG " Tx ring at %08llx:\n", 1230 (unsigned long long)yp->tx_ring_dma); 1231 for (i = 0; i < TX_RING_SIZE*2; i++) 1232 printk(KERN_DEBUG " %c #%d desc. %08x %08x %08x %08x\n", 1233 ioread32(ioaddr + TxPtr) == (long)&yp->tx_ring[i] ? '>' : ' ', 1234 i, yp->tx_ring[i].dbdma_cmd, yp->tx_ring[i].addr, 1235 yp->tx_ring[i].branch_addr, yp->tx_ring[i].result_status); 1236 printk(KERN_DEBUG " Tx status %p:\n", yp->tx_status); 1237 for (i = 0; i < TX_RING_SIZE; i++) 1238 printk(KERN_DEBUG " #%d status %04x %04x %04x %04x\n", 1239 i, yp->tx_status[i].tx_cnt, yp->tx_status[i].tx_errs, 1240 yp->tx_status[i].total_tx_cnt, yp->tx_status[i].paused); 1241 1242 printk(KERN_DEBUG " Rx ring %08llx:\n", 1243 (unsigned long long)yp->rx_ring_dma); 1244 for (i = 0; i < RX_RING_SIZE; i++) { 1245 printk(KERN_DEBUG " %c #%d desc. %08x %08x %08x\n", 1246 ioread32(ioaddr + RxPtr) == (long)&yp->rx_ring[i] ? '>' : ' ', 1247 i, yp->rx_ring[i].dbdma_cmd, yp->rx_ring[i].addr, 1248 yp->rx_ring[i].result_status); 1249 if (yellowfin_debug > 6) { 1250 if (get_unaligned((u8*)yp->rx_ring[i].addr) != 0x69) { 1251 int j; 1252 1253 printk(KERN_DEBUG); 1254 for (j = 0; j < 0x50; j++) 1255 pr_cont(" %04x", 1256 get_unaligned(((u16*)yp->rx_ring[i].addr) + j)); 1257 pr_cont("\n"); 1258 } 1259 } 1260 } 1261 } 1262 #endif /* __i386__ debugging only */ 1263 1264 free_irq(yp->pci_dev->irq, dev); 1265 1266 /* Free all the skbuffs in the Rx queue. */ 1267 for (i = 0; i < RX_RING_SIZE; i++) { 1268 yp->rx_ring[i].dbdma_cmd = cpu_to_le32(CMD_STOP); 1269 yp->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */ 1270 if (yp->rx_skbuff[i]) { 1271 dev_kfree_skb(yp->rx_skbuff[i]); 1272 } 1273 yp->rx_skbuff[i] = NULL; 1274 } 1275 for (i = 0; i < TX_RING_SIZE; i++) { 1276 dev_kfree_skb(yp->tx_skbuff[i]); 1277 yp->tx_skbuff[i] = NULL; 1278 } 1279 1280 #ifdef YF_PROTOTYPE /* Support for prototype hardware errata. */ 1281 if (yellowfin_debug > 0) { 1282 netdev_printk(KERN_DEBUG, dev, "Received %d frames that we should not have\n", 1283 bogus_rx); 1284 } 1285 #endif 1286 1287 return 0; 1288 } 1289 1290 /* Set or clear the multicast filter for this adaptor. */ 1291 1292 static void set_rx_mode(struct net_device *dev) 1293 { 1294 struct yellowfin_private *yp = netdev_priv(dev); 1295 void __iomem *ioaddr = yp->base; 1296 u16 cfg_value = ioread16(ioaddr + Cnfg); 1297 1298 /* Stop the Rx process to change any value. */ 1299 iowrite16(cfg_value & ~0x1000, ioaddr + Cnfg); 1300 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */ 1301 iowrite16(0x000F, ioaddr + AddrMode); 1302 } else if ((netdev_mc_count(dev) > 64) || 1303 (dev->flags & IFF_ALLMULTI)) { 1304 /* Too many to filter well, or accept all multicasts. */ 1305 iowrite16(0x000B, ioaddr + AddrMode); 1306 } else if (!netdev_mc_empty(dev)) { /* Must use the multicast hash table. */ 1307 struct netdev_hw_addr *ha; 1308 u16 hash_table[4]; 1309 int i; 1310 1311 memset(hash_table, 0, sizeof(hash_table)); 1312 netdev_for_each_mc_addr(ha, dev) { 1313 unsigned int bit; 1314 1315 /* Due to a bug in the early chip versions, multiple filter 1316 slots must be set for each address. */ 1317 if (yp->drv_flags & HasMulticastBug) { 1318 bit = (ether_crc_le(3, ha->addr) >> 3) & 0x3f; 1319 hash_table[bit >> 4] |= (1 << bit); 1320 bit = (ether_crc_le(4, ha->addr) >> 3) & 0x3f; 1321 hash_table[bit >> 4] |= (1 << bit); 1322 bit = (ether_crc_le(5, ha->addr) >> 3) & 0x3f; 1323 hash_table[bit >> 4] |= (1 << bit); 1324 } 1325 bit = (ether_crc_le(6, ha->addr) >> 3) & 0x3f; 1326 hash_table[bit >> 4] |= (1 << bit); 1327 } 1328 /* Copy the hash table to the chip. */ 1329 for (i = 0; i < 4; i++) 1330 iowrite16(hash_table[i], ioaddr + HashTbl + i*2); 1331 iowrite16(0x0003, ioaddr + AddrMode); 1332 } else { /* Normal, unicast/broadcast-only mode. */ 1333 iowrite16(0x0001, ioaddr + AddrMode); 1334 } 1335 /* Restart the Rx process. */ 1336 iowrite16(cfg_value | 0x1000, ioaddr + Cnfg); 1337 } 1338 1339 static void yellowfin_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 1340 { 1341 struct yellowfin_private *np = netdev_priv(dev); 1342 1343 strscpy(info->driver, DRV_NAME, sizeof(info->driver)); 1344 strscpy(info->version, DRV_VERSION, sizeof(info->version)); 1345 strscpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info)); 1346 } 1347 1348 static const struct ethtool_ops ethtool_ops = { 1349 .get_drvinfo = yellowfin_get_drvinfo 1350 }; 1351 1352 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 1353 { 1354 struct yellowfin_private *np = netdev_priv(dev); 1355 void __iomem *ioaddr = np->base; 1356 struct mii_ioctl_data *data = if_mii(rq); 1357 1358 switch(cmd) { 1359 case SIOCGMIIPHY: /* Get address of MII PHY in use. */ 1360 data->phy_id = np->phys[0] & 0x1f; 1361 fallthrough; 1362 1363 case SIOCGMIIREG: /* Read MII PHY register. */ 1364 data->val_out = mdio_read(ioaddr, data->phy_id & 0x1f, data->reg_num & 0x1f); 1365 return 0; 1366 1367 case SIOCSMIIREG: /* Write MII PHY register. */ 1368 if (data->phy_id == np->phys[0]) { 1369 u16 value = data->val_in; 1370 switch (data->reg_num) { 1371 case 0: 1372 /* Check for autonegotiation on or reset. */ 1373 np->medialock = (value & 0x9000) ? 0 : 1; 1374 if (np->medialock) 1375 np->full_duplex = (value & 0x0100) ? 1 : 0; 1376 break; 1377 case 4: np->advertising = value; break; 1378 } 1379 /* Perhaps check_duplex(dev), depending on chip semantics. */ 1380 } 1381 mdio_write(ioaddr, data->phy_id & 0x1f, data->reg_num & 0x1f, data->val_in); 1382 return 0; 1383 default: 1384 return -EOPNOTSUPP; 1385 } 1386 } 1387 1388 1389 static void yellowfin_remove_one(struct pci_dev *pdev) 1390 { 1391 struct net_device *dev = pci_get_drvdata(pdev); 1392 struct yellowfin_private *np; 1393 1394 BUG_ON(!dev); 1395 np = netdev_priv(dev); 1396 1397 dma_free_coherent(&pdev->dev, STATUS_TOTAL_SIZE, np->tx_status, 1398 np->tx_status_dma); 1399 dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, np->rx_ring, 1400 np->rx_ring_dma); 1401 dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, np->tx_ring, 1402 np->tx_ring_dma); 1403 unregister_netdev (dev); 1404 1405 pci_iounmap(pdev, np->base); 1406 1407 pci_release_regions (pdev); 1408 1409 free_netdev (dev); 1410 } 1411 1412 1413 static struct pci_driver yellowfin_driver = { 1414 .name = DRV_NAME, 1415 .id_table = yellowfin_pci_tbl, 1416 .probe = yellowfin_init_one, 1417 .remove = yellowfin_remove_one, 1418 }; 1419 1420 1421 static int __init yellowfin_init (void) 1422 { 1423 /* when a module, this is printed whether or not devices are found in probe */ 1424 #ifdef MODULE 1425 printk(version); 1426 #endif 1427 return pci_register_driver(&yellowfin_driver); 1428 } 1429 1430 1431 static void __exit yellowfin_cleanup (void) 1432 { 1433 pci_unregister_driver (&yellowfin_driver); 1434 } 1435 1436 1437 module_init(yellowfin_init); 1438 module_exit(yellowfin_cleanup); 1439