1 /* 2 * forcedeth: Ethernet driver for NVIDIA nForce media access controllers. 3 * 4 * Note: This driver is a cleanroom reimplementation based on reverse 5 * engineered documentation written by Carl-Daniel Hailfinger 6 * and Andrew de Quincey. 7 * 8 * NVIDIA, nForce and other NVIDIA marks are trademarks or registered 9 * trademarks of NVIDIA Corporation in the United States and other 10 * countries. 11 * 12 * Copyright (C) 2003,4,5 Manfred Spraul 13 * Copyright (C) 2004 Andrew de Quincey (wol support) 14 * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane 15 * IRQ rate fixes, bigendian fixes, cleanups, verification) 16 * Copyright (c) 2004,2005,2006,2007,2008,2009 NVIDIA Corporation 17 * 18 * This program is free software; you can redistribute it and/or modify 19 * it under the terms of the GNU General Public License as published by 20 * the Free Software Foundation; either version 2 of the License, or 21 * (at your option) any later version. 22 * 23 * This program is distributed in the hope that it will be useful, 24 * but WITHOUT ANY WARRANTY; without even the implied warranty of 25 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 26 * GNU General Public License for more details. 27 * 28 * You should have received a copy of the GNU General Public License 29 * along with this program; if not, write to the Free Software 30 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 31 * 32 * Known bugs: 33 * We suspect that on some hardware no TX done interrupts are generated. 34 * This means recovery from netif_stop_queue only happens if the hw timer 35 * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT) 36 * and the timer is active in the IRQMask, or if a rx packet arrives by chance. 37 * If your hardware reliably generates tx done interrupts, then you can remove 38 * DEV_NEED_TIMERIRQ from the driver_data flags. 39 * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few 40 * superfluous timer interrupts from the nic. 41 */ 42 43 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 44 45 #define FORCEDETH_VERSION "0.64" 46 #define DRV_NAME "forcedeth" 47 48 #include <linux/module.h> 49 #include <linux/types.h> 50 #include <linux/pci.h> 51 #include <linux/interrupt.h> 52 #include <linux/netdevice.h> 53 #include <linux/etherdevice.h> 54 #include <linux/delay.h> 55 #include <linux/sched.h> 56 #include <linux/spinlock.h> 57 #include <linux/ethtool.h> 58 #include <linux/timer.h> 59 #include <linux/skbuff.h> 60 #include <linux/mii.h> 61 #include <linux/random.h> 62 #include <linux/init.h> 63 #include <linux/if_vlan.h> 64 #include <linux/dma-mapping.h> 65 #include <linux/slab.h> 66 #include <linux/uaccess.h> 67 #include <linux/prefetch.h> 68 #include <linux/u64_stats_sync.h> 69 #include <linux/io.h> 70 71 #include <asm/irq.h> 72 #include <asm/system.h> 73 74 #define TX_WORK_PER_LOOP 64 75 #define RX_WORK_PER_LOOP 64 76 77 /* 78 * Hardware access: 79 */ 80 81 #define DEV_NEED_TIMERIRQ 0x0000001 /* set the timer irq flag in the irq mask */ 82 #define DEV_NEED_LINKTIMER 0x0000002 /* poll link settings. Relies on the timer irq */ 83 #define DEV_HAS_LARGEDESC 0x0000004 /* device supports jumbo frames and needs packet format 2 */ 84 #define DEV_HAS_HIGH_DMA 0x0000008 /* device supports 64bit dma */ 85 #define DEV_HAS_CHECKSUM 0x0000010 /* device supports tx and rx checksum offloads */ 86 #define DEV_HAS_VLAN 0x0000020 /* device supports vlan tagging and striping */ 87 #define DEV_HAS_MSI 0x0000040 /* device supports MSI */ 88 #define DEV_HAS_MSI_X 0x0000080 /* device supports MSI-X */ 89 #define DEV_HAS_POWER_CNTRL 0x0000100 /* device supports power savings */ 90 #define DEV_HAS_STATISTICS_V1 0x0000200 /* device supports hw statistics version 1 */ 91 #define DEV_HAS_STATISTICS_V2 0x0000400 /* device supports hw statistics version 2 */ 92 #define DEV_HAS_STATISTICS_V3 0x0000800 /* device supports hw statistics version 3 */ 93 #define DEV_HAS_STATISTICS_V12 0x0000600 /* device supports hw statistics version 1 and 2 */ 94 #define DEV_HAS_STATISTICS_V123 0x0000e00 /* device supports hw statistics version 1, 2, and 3 */ 95 #define DEV_HAS_TEST_EXTENDED 0x0001000 /* device supports extended diagnostic test */ 96 #define DEV_HAS_MGMT_UNIT 0x0002000 /* device supports management unit */ 97 #define DEV_HAS_CORRECT_MACADDR 0x0004000 /* device supports correct mac address order */ 98 #define DEV_HAS_COLLISION_FIX 0x0008000 /* device supports tx collision fix */ 99 #define DEV_HAS_PAUSEFRAME_TX_V1 0x0010000 /* device supports tx pause frames version 1 */ 100 #define DEV_HAS_PAUSEFRAME_TX_V2 0x0020000 /* device supports tx pause frames version 2 */ 101 #define DEV_HAS_PAUSEFRAME_TX_V3 0x0040000 /* device supports tx pause frames version 3 */ 102 #define DEV_NEED_TX_LIMIT 0x0080000 /* device needs to limit tx */ 103 #define DEV_NEED_TX_LIMIT2 0x0180000 /* device needs to limit tx, expect for some revs */ 104 #define DEV_HAS_GEAR_MODE 0x0200000 /* device supports gear mode */ 105 #define DEV_NEED_PHY_INIT_FIX 0x0400000 /* device needs specific phy workaround */ 106 #define DEV_NEED_LOW_POWER_FIX 0x0800000 /* device needs special power up workaround */ 107 #define DEV_NEED_MSI_FIX 0x1000000 /* device needs msi workaround */ 108 109 enum { 110 NvRegIrqStatus = 0x000, 111 #define NVREG_IRQSTAT_MIIEVENT 0x040 112 #define NVREG_IRQSTAT_MASK 0x83ff 113 NvRegIrqMask = 0x004, 114 #define NVREG_IRQ_RX_ERROR 0x0001 115 #define NVREG_IRQ_RX 0x0002 116 #define NVREG_IRQ_RX_NOBUF 0x0004 117 #define NVREG_IRQ_TX_ERR 0x0008 118 #define NVREG_IRQ_TX_OK 0x0010 119 #define NVREG_IRQ_TIMER 0x0020 120 #define NVREG_IRQ_LINK 0x0040 121 #define NVREG_IRQ_RX_FORCED 0x0080 122 #define NVREG_IRQ_TX_FORCED 0x0100 123 #define NVREG_IRQ_RECOVER_ERROR 0x8200 124 #define NVREG_IRQMASK_THROUGHPUT 0x00df 125 #define NVREG_IRQMASK_CPU 0x0060 126 #define NVREG_IRQ_TX_ALL (NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED) 127 #define NVREG_IRQ_RX_ALL (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED) 128 #define NVREG_IRQ_OTHER (NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RECOVER_ERROR) 129 130 NvRegUnknownSetupReg6 = 0x008, 131 #define NVREG_UNKSETUP6_VAL 3 132 133 /* 134 * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic 135 * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms 136 */ 137 NvRegPollingInterval = 0x00c, 138 #define NVREG_POLL_DEFAULT_THROUGHPUT 65535 /* backup tx cleanup if loop max reached */ 139 #define NVREG_POLL_DEFAULT_CPU 13 140 NvRegMSIMap0 = 0x020, 141 NvRegMSIMap1 = 0x024, 142 NvRegMSIIrqMask = 0x030, 143 #define NVREG_MSI_VECTOR_0_ENABLED 0x01 144 NvRegMisc1 = 0x080, 145 #define NVREG_MISC1_PAUSE_TX 0x01 146 #define NVREG_MISC1_HD 0x02 147 #define NVREG_MISC1_FORCE 0x3b0f3c 148 149 NvRegMacReset = 0x34, 150 #define NVREG_MAC_RESET_ASSERT 0x0F3 151 NvRegTransmitterControl = 0x084, 152 #define NVREG_XMITCTL_START 0x01 153 #define NVREG_XMITCTL_MGMT_ST 0x40000000 154 #define NVREG_XMITCTL_SYNC_MASK 0x000f0000 155 #define NVREG_XMITCTL_SYNC_NOT_READY 0x0 156 #define NVREG_XMITCTL_SYNC_PHY_INIT 0x00040000 157 #define NVREG_XMITCTL_MGMT_SEMA_MASK 0x00000f00 158 #define NVREG_XMITCTL_MGMT_SEMA_FREE 0x0 159 #define NVREG_XMITCTL_HOST_SEMA_MASK 0x0000f000 160 #define NVREG_XMITCTL_HOST_SEMA_ACQ 0x0000f000 161 #define NVREG_XMITCTL_HOST_LOADED 0x00004000 162 #define NVREG_XMITCTL_TX_PATH_EN 0x01000000 163 #define NVREG_XMITCTL_DATA_START 0x00100000 164 #define NVREG_XMITCTL_DATA_READY 0x00010000 165 #define NVREG_XMITCTL_DATA_ERROR 0x00020000 166 NvRegTransmitterStatus = 0x088, 167 #define NVREG_XMITSTAT_BUSY 0x01 168 169 NvRegPacketFilterFlags = 0x8c, 170 #define NVREG_PFF_PAUSE_RX 0x08 171 #define NVREG_PFF_ALWAYS 0x7F0000 172 #define NVREG_PFF_PROMISC 0x80 173 #define NVREG_PFF_MYADDR 0x20 174 #define NVREG_PFF_LOOPBACK 0x10 175 176 NvRegOffloadConfig = 0x90, 177 #define NVREG_OFFLOAD_HOMEPHY 0x601 178 #define NVREG_OFFLOAD_NORMAL RX_NIC_BUFSIZE 179 NvRegReceiverControl = 0x094, 180 #define NVREG_RCVCTL_START 0x01 181 #define NVREG_RCVCTL_RX_PATH_EN 0x01000000 182 NvRegReceiverStatus = 0x98, 183 #define NVREG_RCVSTAT_BUSY 0x01 184 185 NvRegSlotTime = 0x9c, 186 #define NVREG_SLOTTIME_LEGBF_ENABLED 0x80000000 187 #define NVREG_SLOTTIME_10_100_FULL 0x00007f00 188 #define NVREG_SLOTTIME_1000_FULL 0x0003ff00 189 #define NVREG_SLOTTIME_HALF 0x0000ff00 190 #define NVREG_SLOTTIME_DEFAULT 0x00007f00 191 #define NVREG_SLOTTIME_MASK 0x000000ff 192 193 NvRegTxDeferral = 0xA0, 194 #define NVREG_TX_DEFERRAL_DEFAULT 0x15050f 195 #define NVREG_TX_DEFERRAL_RGMII_10_100 0x16070f 196 #define NVREG_TX_DEFERRAL_RGMII_1000 0x14050f 197 #define NVREG_TX_DEFERRAL_RGMII_STRETCH_10 0x16190f 198 #define NVREG_TX_DEFERRAL_RGMII_STRETCH_100 0x16300f 199 #define NVREG_TX_DEFERRAL_MII_STRETCH 0x152000 200 NvRegRxDeferral = 0xA4, 201 #define NVREG_RX_DEFERRAL_DEFAULT 0x16 202 NvRegMacAddrA = 0xA8, 203 NvRegMacAddrB = 0xAC, 204 NvRegMulticastAddrA = 0xB0, 205 #define NVREG_MCASTADDRA_FORCE 0x01 206 NvRegMulticastAddrB = 0xB4, 207 NvRegMulticastMaskA = 0xB8, 208 #define NVREG_MCASTMASKA_NONE 0xffffffff 209 NvRegMulticastMaskB = 0xBC, 210 #define NVREG_MCASTMASKB_NONE 0xffff 211 212 NvRegPhyInterface = 0xC0, 213 #define PHY_RGMII 0x10000000 214 NvRegBackOffControl = 0xC4, 215 #define NVREG_BKOFFCTRL_DEFAULT 0x70000000 216 #define NVREG_BKOFFCTRL_SEED_MASK 0x000003ff 217 #define NVREG_BKOFFCTRL_SELECT 24 218 #define NVREG_BKOFFCTRL_GEAR 12 219 220 NvRegTxRingPhysAddr = 0x100, 221 NvRegRxRingPhysAddr = 0x104, 222 NvRegRingSizes = 0x108, 223 #define NVREG_RINGSZ_TXSHIFT 0 224 #define NVREG_RINGSZ_RXSHIFT 16 225 NvRegTransmitPoll = 0x10c, 226 #define NVREG_TRANSMITPOLL_MAC_ADDR_REV 0x00008000 227 NvRegLinkSpeed = 0x110, 228 #define NVREG_LINKSPEED_FORCE 0x10000 229 #define NVREG_LINKSPEED_10 1000 230 #define NVREG_LINKSPEED_100 100 231 #define NVREG_LINKSPEED_1000 50 232 #define NVREG_LINKSPEED_MASK (0xFFF) 233 NvRegUnknownSetupReg5 = 0x130, 234 #define NVREG_UNKSETUP5_BIT31 (1<<31) 235 NvRegTxWatermark = 0x13c, 236 #define NVREG_TX_WM_DESC1_DEFAULT 0x0200010 237 #define NVREG_TX_WM_DESC2_3_DEFAULT 0x1e08000 238 #define NVREG_TX_WM_DESC2_3_1000 0xfe08000 239 NvRegTxRxControl = 0x144, 240 #define NVREG_TXRXCTL_KICK 0x0001 241 #define NVREG_TXRXCTL_BIT1 0x0002 242 #define NVREG_TXRXCTL_BIT2 0x0004 243 #define NVREG_TXRXCTL_IDLE 0x0008 244 #define NVREG_TXRXCTL_RESET 0x0010 245 #define NVREG_TXRXCTL_RXCHECK 0x0400 246 #define NVREG_TXRXCTL_DESC_1 0 247 #define NVREG_TXRXCTL_DESC_2 0x002100 248 #define NVREG_TXRXCTL_DESC_3 0xc02200 249 #define NVREG_TXRXCTL_VLANSTRIP 0x00040 250 #define NVREG_TXRXCTL_VLANINS 0x00080 251 NvRegTxRingPhysAddrHigh = 0x148, 252 NvRegRxRingPhysAddrHigh = 0x14C, 253 NvRegTxPauseFrame = 0x170, 254 #define NVREG_TX_PAUSEFRAME_DISABLE 0x0fff0080 255 #define NVREG_TX_PAUSEFRAME_ENABLE_V1 0x01800010 256 #define NVREG_TX_PAUSEFRAME_ENABLE_V2 0x056003f0 257 #define NVREG_TX_PAUSEFRAME_ENABLE_V3 0x09f00880 258 NvRegTxPauseFrameLimit = 0x174, 259 #define NVREG_TX_PAUSEFRAMELIMIT_ENABLE 0x00010000 260 NvRegMIIStatus = 0x180, 261 #define NVREG_MIISTAT_ERROR 0x0001 262 #define NVREG_MIISTAT_LINKCHANGE 0x0008 263 #define NVREG_MIISTAT_MASK_RW 0x0007 264 #define NVREG_MIISTAT_MASK_ALL 0x000f 265 NvRegMIIMask = 0x184, 266 #define NVREG_MII_LINKCHANGE 0x0008 267 268 NvRegAdapterControl = 0x188, 269 #define NVREG_ADAPTCTL_START 0x02 270 #define NVREG_ADAPTCTL_LINKUP 0x04 271 #define NVREG_ADAPTCTL_PHYVALID 0x40000 272 #define NVREG_ADAPTCTL_RUNNING 0x100000 273 #define NVREG_ADAPTCTL_PHYSHIFT 24 274 NvRegMIISpeed = 0x18c, 275 #define NVREG_MIISPEED_BIT8 (1<<8) 276 #define NVREG_MIIDELAY 5 277 NvRegMIIControl = 0x190, 278 #define NVREG_MIICTL_INUSE 0x08000 279 #define NVREG_MIICTL_WRITE 0x00400 280 #define NVREG_MIICTL_ADDRSHIFT 5 281 NvRegMIIData = 0x194, 282 NvRegTxUnicast = 0x1a0, 283 NvRegTxMulticast = 0x1a4, 284 NvRegTxBroadcast = 0x1a8, 285 NvRegWakeUpFlags = 0x200, 286 #define NVREG_WAKEUPFLAGS_VAL 0x7770 287 #define NVREG_WAKEUPFLAGS_BUSYSHIFT 24 288 #define NVREG_WAKEUPFLAGS_ENABLESHIFT 16 289 #define NVREG_WAKEUPFLAGS_D3SHIFT 12 290 #define NVREG_WAKEUPFLAGS_D2SHIFT 8 291 #define NVREG_WAKEUPFLAGS_D1SHIFT 4 292 #define NVREG_WAKEUPFLAGS_D0SHIFT 0 293 #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT 0x01 294 #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT 0x02 295 #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE 0x04 296 #define NVREG_WAKEUPFLAGS_ENABLE 0x1111 297 298 NvRegMgmtUnitGetVersion = 0x204, 299 #define NVREG_MGMTUNITGETVERSION 0x01 300 NvRegMgmtUnitVersion = 0x208, 301 #define NVREG_MGMTUNITVERSION 0x08 302 NvRegPowerCap = 0x268, 303 #define NVREG_POWERCAP_D3SUPP (1<<30) 304 #define NVREG_POWERCAP_D2SUPP (1<<26) 305 #define NVREG_POWERCAP_D1SUPP (1<<25) 306 NvRegPowerState = 0x26c, 307 #define NVREG_POWERSTATE_POWEREDUP 0x8000 308 #define NVREG_POWERSTATE_VALID 0x0100 309 #define NVREG_POWERSTATE_MASK 0x0003 310 #define NVREG_POWERSTATE_D0 0x0000 311 #define NVREG_POWERSTATE_D1 0x0001 312 #define NVREG_POWERSTATE_D2 0x0002 313 #define NVREG_POWERSTATE_D3 0x0003 314 NvRegMgmtUnitControl = 0x278, 315 #define NVREG_MGMTUNITCONTROL_INUSE 0x20000 316 NvRegTxCnt = 0x280, 317 NvRegTxZeroReXmt = 0x284, 318 NvRegTxOneReXmt = 0x288, 319 NvRegTxManyReXmt = 0x28c, 320 NvRegTxLateCol = 0x290, 321 NvRegTxUnderflow = 0x294, 322 NvRegTxLossCarrier = 0x298, 323 NvRegTxExcessDef = 0x29c, 324 NvRegTxRetryErr = 0x2a0, 325 NvRegRxFrameErr = 0x2a4, 326 NvRegRxExtraByte = 0x2a8, 327 NvRegRxLateCol = 0x2ac, 328 NvRegRxRunt = 0x2b0, 329 NvRegRxFrameTooLong = 0x2b4, 330 NvRegRxOverflow = 0x2b8, 331 NvRegRxFCSErr = 0x2bc, 332 NvRegRxFrameAlignErr = 0x2c0, 333 NvRegRxLenErr = 0x2c4, 334 NvRegRxUnicast = 0x2c8, 335 NvRegRxMulticast = 0x2cc, 336 NvRegRxBroadcast = 0x2d0, 337 NvRegTxDef = 0x2d4, 338 NvRegTxFrame = 0x2d8, 339 NvRegRxCnt = 0x2dc, 340 NvRegTxPause = 0x2e0, 341 NvRegRxPause = 0x2e4, 342 NvRegRxDropFrame = 0x2e8, 343 NvRegVlanControl = 0x300, 344 #define NVREG_VLANCONTROL_ENABLE 0x2000 345 NvRegMSIXMap0 = 0x3e0, 346 NvRegMSIXMap1 = 0x3e4, 347 NvRegMSIXIrqStatus = 0x3f0, 348 349 NvRegPowerState2 = 0x600, 350 #define NVREG_POWERSTATE2_POWERUP_MASK 0x0F15 351 #define NVREG_POWERSTATE2_POWERUP_REV_A3 0x0001 352 #define NVREG_POWERSTATE2_PHY_RESET 0x0004 353 #define NVREG_POWERSTATE2_GATE_CLOCKS 0x0F00 354 }; 355 356 /* Big endian: should work, but is untested */ 357 struct ring_desc { 358 __le32 buf; 359 __le32 flaglen; 360 }; 361 362 struct ring_desc_ex { 363 __le32 bufhigh; 364 __le32 buflow; 365 __le32 txvlan; 366 __le32 flaglen; 367 }; 368 369 union ring_type { 370 struct ring_desc *orig; 371 struct ring_desc_ex *ex; 372 }; 373 374 #define FLAG_MASK_V1 0xffff0000 375 #define FLAG_MASK_V2 0xffffc000 376 #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1) 377 #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2) 378 379 #define NV_TX_LASTPACKET (1<<16) 380 #define NV_TX_RETRYERROR (1<<19) 381 #define NV_TX_RETRYCOUNT_MASK (0xF<<20) 382 #define NV_TX_FORCED_INTERRUPT (1<<24) 383 #define NV_TX_DEFERRED (1<<26) 384 #define NV_TX_CARRIERLOST (1<<27) 385 #define NV_TX_LATECOLLISION (1<<28) 386 #define NV_TX_UNDERFLOW (1<<29) 387 #define NV_TX_ERROR (1<<30) 388 #define NV_TX_VALID (1<<31) 389 390 #define NV_TX2_LASTPACKET (1<<29) 391 #define NV_TX2_RETRYERROR (1<<18) 392 #define NV_TX2_RETRYCOUNT_MASK (0xF<<19) 393 #define NV_TX2_FORCED_INTERRUPT (1<<30) 394 #define NV_TX2_DEFERRED (1<<25) 395 #define NV_TX2_CARRIERLOST (1<<26) 396 #define NV_TX2_LATECOLLISION (1<<27) 397 #define NV_TX2_UNDERFLOW (1<<28) 398 /* error and valid are the same for both */ 399 #define NV_TX2_ERROR (1<<30) 400 #define NV_TX2_VALID (1<<31) 401 #define NV_TX2_TSO (1<<28) 402 #define NV_TX2_TSO_SHIFT 14 403 #define NV_TX2_TSO_MAX_SHIFT 14 404 #define NV_TX2_TSO_MAX_SIZE (1<<NV_TX2_TSO_MAX_SHIFT) 405 #define NV_TX2_CHECKSUM_L3 (1<<27) 406 #define NV_TX2_CHECKSUM_L4 (1<<26) 407 408 #define NV_TX3_VLAN_TAG_PRESENT (1<<18) 409 410 #define NV_RX_DESCRIPTORVALID (1<<16) 411 #define NV_RX_MISSEDFRAME (1<<17) 412 #define NV_RX_SUBSTRACT1 (1<<18) 413 #define NV_RX_ERROR1 (1<<23) 414 #define NV_RX_ERROR2 (1<<24) 415 #define NV_RX_ERROR3 (1<<25) 416 #define NV_RX_ERROR4 (1<<26) 417 #define NV_RX_CRCERR (1<<27) 418 #define NV_RX_OVERFLOW (1<<28) 419 #define NV_RX_FRAMINGERR (1<<29) 420 #define NV_RX_ERROR (1<<30) 421 #define NV_RX_AVAIL (1<<31) 422 #define NV_RX_ERROR_MASK (NV_RX_ERROR1|NV_RX_ERROR2|NV_RX_ERROR3|NV_RX_ERROR4|NV_RX_CRCERR|NV_RX_OVERFLOW|NV_RX_FRAMINGERR) 423 424 #define NV_RX2_CHECKSUMMASK (0x1C000000) 425 #define NV_RX2_CHECKSUM_IP (0x10000000) 426 #define NV_RX2_CHECKSUM_IP_TCP (0x14000000) 427 #define NV_RX2_CHECKSUM_IP_UDP (0x18000000) 428 #define NV_RX2_DESCRIPTORVALID (1<<29) 429 #define NV_RX2_SUBSTRACT1 (1<<25) 430 #define NV_RX2_ERROR1 (1<<18) 431 #define NV_RX2_ERROR2 (1<<19) 432 #define NV_RX2_ERROR3 (1<<20) 433 #define NV_RX2_ERROR4 (1<<21) 434 #define NV_RX2_CRCERR (1<<22) 435 #define NV_RX2_OVERFLOW (1<<23) 436 #define NV_RX2_FRAMINGERR (1<<24) 437 /* error and avail are the same for both */ 438 #define NV_RX2_ERROR (1<<30) 439 #define NV_RX2_AVAIL (1<<31) 440 #define NV_RX2_ERROR_MASK (NV_RX2_ERROR1|NV_RX2_ERROR2|NV_RX2_ERROR3|NV_RX2_ERROR4|NV_RX2_CRCERR|NV_RX2_OVERFLOW|NV_RX2_FRAMINGERR) 441 442 #define NV_RX3_VLAN_TAG_PRESENT (1<<16) 443 #define NV_RX3_VLAN_TAG_MASK (0x0000FFFF) 444 445 /* Miscellaneous hardware related defines: */ 446 #define NV_PCI_REGSZ_VER1 0x270 447 #define NV_PCI_REGSZ_VER2 0x2d4 448 #define NV_PCI_REGSZ_VER3 0x604 449 #define NV_PCI_REGSZ_MAX 0x604 450 451 /* various timeout delays: all in usec */ 452 #define NV_TXRX_RESET_DELAY 4 453 #define NV_TXSTOP_DELAY1 10 454 #define NV_TXSTOP_DELAY1MAX 500000 455 #define NV_TXSTOP_DELAY2 100 456 #define NV_RXSTOP_DELAY1 10 457 #define NV_RXSTOP_DELAY1MAX 500000 458 #define NV_RXSTOP_DELAY2 100 459 #define NV_SETUP5_DELAY 5 460 #define NV_SETUP5_DELAYMAX 50000 461 #define NV_POWERUP_DELAY 5 462 #define NV_POWERUP_DELAYMAX 5000 463 #define NV_MIIBUSY_DELAY 50 464 #define NV_MIIPHY_DELAY 10 465 #define NV_MIIPHY_DELAYMAX 10000 466 #define NV_MAC_RESET_DELAY 64 467 468 #define NV_WAKEUPPATTERNS 5 469 #define NV_WAKEUPMASKENTRIES 4 470 471 /* General driver defaults */ 472 #define NV_WATCHDOG_TIMEO (5*HZ) 473 474 #define RX_RING_DEFAULT 512 475 #define TX_RING_DEFAULT 256 476 #define RX_RING_MIN 128 477 #define TX_RING_MIN 64 478 #define RING_MAX_DESC_VER_1 1024 479 #define RING_MAX_DESC_VER_2_3 16384 480 481 /* rx/tx mac addr + type + vlan + align + slack*/ 482 #define NV_RX_HEADERS (64) 483 /* even more slack. */ 484 #define NV_RX_ALLOC_PAD (64) 485 486 /* maximum mtu size */ 487 #define NV_PKTLIMIT_1 ETH_DATA_LEN /* hard limit not known */ 488 #define NV_PKTLIMIT_2 9100 /* Actual limit according to NVidia: 9202 */ 489 490 #define OOM_REFILL (1+HZ/20) 491 #define POLL_WAIT (1+HZ/100) 492 #define LINK_TIMEOUT (3*HZ) 493 #define STATS_INTERVAL (10*HZ) 494 495 /* 496 * desc_ver values: 497 * The nic supports three different descriptor types: 498 * - DESC_VER_1: Original 499 * - DESC_VER_2: support for jumbo frames. 500 * - DESC_VER_3: 64-bit format. 501 */ 502 #define DESC_VER_1 1 503 #define DESC_VER_2 2 504 #define DESC_VER_3 3 505 506 /* PHY defines */ 507 #define PHY_OUI_MARVELL 0x5043 508 #define PHY_OUI_CICADA 0x03f1 509 #define PHY_OUI_VITESSE 0x01c1 510 #define PHY_OUI_REALTEK 0x0732 511 #define PHY_OUI_REALTEK2 0x0020 512 #define PHYID1_OUI_MASK 0x03ff 513 #define PHYID1_OUI_SHFT 6 514 #define PHYID2_OUI_MASK 0xfc00 515 #define PHYID2_OUI_SHFT 10 516 #define PHYID2_MODEL_MASK 0x03f0 517 #define PHY_MODEL_REALTEK_8211 0x0110 518 #define PHY_REV_MASK 0x0001 519 #define PHY_REV_REALTEK_8211B 0x0000 520 #define PHY_REV_REALTEK_8211C 0x0001 521 #define PHY_MODEL_REALTEK_8201 0x0200 522 #define PHY_MODEL_MARVELL_E3016 0x0220 523 #define PHY_MARVELL_E3016_INITMASK 0x0300 524 #define PHY_CICADA_INIT1 0x0f000 525 #define PHY_CICADA_INIT2 0x0e00 526 #define PHY_CICADA_INIT3 0x01000 527 #define PHY_CICADA_INIT4 0x0200 528 #define PHY_CICADA_INIT5 0x0004 529 #define PHY_CICADA_INIT6 0x02000 530 #define PHY_VITESSE_INIT_REG1 0x1f 531 #define PHY_VITESSE_INIT_REG2 0x10 532 #define PHY_VITESSE_INIT_REG3 0x11 533 #define PHY_VITESSE_INIT_REG4 0x12 534 #define PHY_VITESSE_INIT_MSK1 0xc 535 #define PHY_VITESSE_INIT_MSK2 0x0180 536 #define PHY_VITESSE_INIT1 0x52b5 537 #define PHY_VITESSE_INIT2 0xaf8a 538 #define PHY_VITESSE_INIT3 0x8 539 #define PHY_VITESSE_INIT4 0x8f8a 540 #define PHY_VITESSE_INIT5 0xaf86 541 #define PHY_VITESSE_INIT6 0x8f86 542 #define PHY_VITESSE_INIT7 0xaf82 543 #define PHY_VITESSE_INIT8 0x0100 544 #define PHY_VITESSE_INIT9 0x8f82 545 #define PHY_VITESSE_INIT10 0x0 546 #define PHY_REALTEK_INIT_REG1 0x1f 547 #define PHY_REALTEK_INIT_REG2 0x19 548 #define PHY_REALTEK_INIT_REG3 0x13 549 #define PHY_REALTEK_INIT_REG4 0x14 550 #define PHY_REALTEK_INIT_REG5 0x18 551 #define PHY_REALTEK_INIT_REG6 0x11 552 #define PHY_REALTEK_INIT_REG7 0x01 553 #define PHY_REALTEK_INIT1 0x0000 554 #define PHY_REALTEK_INIT2 0x8e00 555 #define PHY_REALTEK_INIT3 0x0001 556 #define PHY_REALTEK_INIT4 0xad17 557 #define PHY_REALTEK_INIT5 0xfb54 558 #define PHY_REALTEK_INIT6 0xf5c7 559 #define PHY_REALTEK_INIT7 0x1000 560 #define PHY_REALTEK_INIT8 0x0003 561 #define PHY_REALTEK_INIT9 0x0008 562 #define PHY_REALTEK_INIT10 0x0005 563 #define PHY_REALTEK_INIT11 0x0200 564 #define PHY_REALTEK_INIT_MSK1 0x0003 565 566 #define PHY_GIGABIT 0x0100 567 568 #define PHY_TIMEOUT 0x1 569 #define PHY_ERROR 0x2 570 571 #define PHY_100 0x1 572 #define PHY_1000 0x2 573 #define PHY_HALF 0x100 574 575 #define NV_PAUSEFRAME_RX_CAPABLE 0x0001 576 #define NV_PAUSEFRAME_TX_CAPABLE 0x0002 577 #define NV_PAUSEFRAME_RX_ENABLE 0x0004 578 #define NV_PAUSEFRAME_TX_ENABLE 0x0008 579 #define NV_PAUSEFRAME_RX_REQ 0x0010 580 #define NV_PAUSEFRAME_TX_REQ 0x0020 581 #define NV_PAUSEFRAME_AUTONEG 0x0040 582 583 /* MSI/MSI-X defines */ 584 #define NV_MSI_X_MAX_VECTORS 8 585 #define NV_MSI_X_VECTORS_MASK 0x000f 586 #define NV_MSI_CAPABLE 0x0010 587 #define NV_MSI_X_CAPABLE 0x0020 588 #define NV_MSI_ENABLED 0x0040 589 #define NV_MSI_X_ENABLED 0x0080 590 591 #define NV_MSI_X_VECTOR_ALL 0x0 592 #define NV_MSI_X_VECTOR_RX 0x0 593 #define NV_MSI_X_VECTOR_TX 0x1 594 #define NV_MSI_X_VECTOR_OTHER 0x2 595 596 #define NV_MSI_PRIV_OFFSET 0x68 597 #define NV_MSI_PRIV_VALUE 0xffffffff 598 599 #define NV_RESTART_TX 0x1 600 #define NV_RESTART_RX 0x2 601 602 #define NV_TX_LIMIT_COUNT 16 603 604 #define NV_DYNAMIC_THRESHOLD 4 605 #define NV_DYNAMIC_MAX_QUIET_COUNT 2048 606 607 /* statistics */ 608 struct nv_ethtool_str { 609 char name[ETH_GSTRING_LEN]; 610 }; 611 612 static const struct nv_ethtool_str nv_estats_str[] = { 613 { "tx_bytes" }, /* includes Ethernet FCS CRC */ 614 { "tx_zero_rexmt" }, 615 { "tx_one_rexmt" }, 616 { "tx_many_rexmt" }, 617 { "tx_late_collision" }, 618 { "tx_fifo_errors" }, 619 { "tx_carrier_errors" }, 620 { "tx_excess_deferral" }, 621 { "tx_retry_error" }, 622 { "rx_frame_error" }, 623 { "rx_extra_byte" }, 624 { "rx_late_collision" }, 625 { "rx_runt" }, 626 { "rx_frame_too_long" }, 627 { "rx_over_errors" }, 628 { "rx_crc_errors" }, 629 { "rx_frame_align_error" }, 630 { "rx_length_error" }, 631 { "rx_unicast" }, 632 { "rx_multicast" }, 633 { "rx_broadcast" }, 634 { "rx_packets" }, 635 { "rx_errors_total" }, 636 { "tx_errors_total" }, 637 638 /* version 2 stats */ 639 { "tx_deferral" }, 640 { "tx_packets" }, 641 { "rx_bytes" }, /* includes Ethernet FCS CRC */ 642 { "tx_pause" }, 643 { "rx_pause" }, 644 { "rx_drop_frame" }, 645 646 /* version 3 stats */ 647 { "tx_unicast" }, 648 { "tx_multicast" }, 649 { "tx_broadcast" } 650 }; 651 652 struct nv_ethtool_stats { 653 u64 tx_bytes; /* should be ifconfig->tx_bytes + 4*tx_packets */ 654 u64 tx_zero_rexmt; 655 u64 tx_one_rexmt; 656 u64 tx_many_rexmt; 657 u64 tx_late_collision; 658 u64 tx_fifo_errors; 659 u64 tx_carrier_errors; 660 u64 tx_excess_deferral; 661 u64 tx_retry_error; 662 u64 rx_frame_error; 663 u64 rx_extra_byte; 664 u64 rx_late_collision; 665 u64 rx_runt; 666 u64 rx_frame_too_long; 667 u64 rx_over_errors; 668 u64 rx_crc_errors; 669 u64 rx_frame_align_error; 670 u64 rx_length_error; 671 u64 rx_unicast; 672 u64 rx_multicast; 673 u64 rx_broadcast; 674 u64 rx_packets; /* should be ifconfig->rx_packets */ 675 u64 rx_errors_total; 676 u64 tx_errors_total; 677 678 /* version 2 stats */ 679 u64 tx_deferral; 680 u64 tx_packets; /* should be ifconfig->tx_packets */ 681 u64 rx_bytes; /* should be ifconfig->rx_bytes + 4*rx_packets */ 682 u64 tx_pause; 683 u64 rx_pause; 684 u64 rx_drop_frame; 685 686 /* version 3 stats */ 687 u64 tx_unicast; 688 u64 tx_multicast; 689 u64 tx_broadcast; 690 }; 691 692 #define NV_DEV_STATISTICS_V3_COUNT (sizeof(struct nv_ethtool_stats)/sizeof(u64)) 693 #define NV_DEV_STATISTICS_V2_COUNT (NV_DEV_STATISTICS_V3_COUNT - 3) 694 #define NV_DEV_STATISTICS_V1_COUNT (NV_DEV_STATISTICS_V2_COUNT - 6) 695 696 /* diagnostics */ 697 #define NV_TEST_COUNT_BASE 3 698 #define NV_TEST_COUNT_EXTENDED 4 699 700 static const struct nv_ethtool_str nv_etests_str[] = { 701 { "link (online/offline)" }, 702 { "register (offline) " }, 703 { "interrupt (offline) " }, 704 { "loopback (offline) " } 705 }; 706 707 struct register_test { 708 __u32 reg; 709 __u32 mask; 710 }; 711 712 static const struct register_test nv_registers_test[] = { 713 { NvRegUnknownSetupReg6, 0x01 }, 714 { NvRegMisc1, 0x03c }, 715 { NvRegOffloadConfig, 0x03ff }, 716 { NvRegMulticastAddrA, 0xffffffff }, 717 { NvRegTxWatermark, 0x0ff }, 718 { NvRegWakeUpFlags, 0x07777 }, 719 { 0, 0 } 720 }; 721 722 struct nv_skb_map { 723 struct sk_buff *skb; 724 dma_addr_t dma; 725 unsigned int dma_len:31; 726 unsigned int dma_single:1; 727 struct ring_desc_ex *first_tx_desc; 728 struct nv_skb_map *next_tx_ctx; 729 }; 730 731 /* 732 * SMP locking: 733 * All hardware access under netdev_priv(dev)->lock, except the performance 734 * critical parts: 735 * - rx is (pseudo-) lockless: it relies on the single-threading provided 736 * by the arch code for interrupts. 737 * - tx setup is lockless: it relies on netif_tx_lock. Actual submission 738 * needs netdev_priv(dev)->lock :-( 739 * - set_multicast_list: preparation lockless, relies on netif_tx_lock. 740 * 741 * Hardware stats updates are protected by hwstats_lock: 742 * - updated by nv_do_stats_poll (timer). This is meant to avoid 743 * integer wraparound in the NIC stats registers, at low frequency 744 * (0.1 Hz) 745 * - updated by nv_get_ethtool_stats + nv_get_stats64 746 * 747 * Software stats are accessed only through 64b synchronization points 748 * and are not subject to other synchronization techniques (single 749 * update thread on the TX or RX paths). 750 */ 751 752 /* in dev: base, irq */ 753 struct fe_priv { 754 spinlock_t lock; 755 756 struct net_device *dev; 757 struct napi_struct napi; 758 759 /* hardware stats are updated in syscall and timer */ 760 spinlock_t hwstats_lock; 761 struct nv_ethtool_stats estats; 762 763 int in_shutdown; 764 u32 linkspeed; 765 int duplex; 766 int autoneg; 767 int fixed_mode; 768 int phyaddr; 769 int wolenabled; 770 unsigned int phy_oui; 771 unsigned int phy_model; 772 unsigned int phy_rev; 773 u16 gigabit; 774 int intr_test; 775 int recover_error; 776 int quiet_count; 777 778 /* General data: RO fields */ 779 dma_addr_t ring_addr; 780 struct pci_dev *pci_dev; 781 u32 orig_mac[2]; 782 u32 events; 783 u32 irqmask; 784 u32 desc_ver; 785 u32 txrxctl_bits; 786 u32 vlanctl_bits; 787 u32 driver_data; 788 u32 device_id; 789 u32 register_size; 790 u32 mac_in_use; 791 int mgmt_version; 792 int mgmt_sema; 793 794 void __iomem *base; 795 796 /* rx specific fields. 797 * Locking: Within irq hander or disable_irq+spin_lock(&np->lock); 798 */ 799 union ring_type get_rx, put_rx, first_rx, last_rx; 800 struct nv_skb_map *get_rx_ctx, *put_rx_ctx; 801 struct nv_skb_map *first_rx_ctx, *last_rx_ctx; 802 struct nv_skb_map *rx_skb; 803 804 union ring_type rx_ring; 805 unsigned int rx_buf_sz; 806 unsigned int pkt_limit; 807 struct timer_list oom_kick; 808 struct timer_list nic_poll; 809 struct timer_list stats_poll; 810 u32 nic_poll_irq; 811 int rx_ring_size; 812 813 /* RX software stats */ 814 struct u64_stats_sync swstats_rx_syncp; 815 u64 stat_rx_packets; 816 u64 stat_rx_bytes; /* not always available in HW */ 817 u64 stat_rx_missed_errors; 818 u64 stat_rx_dropped; 819 820 /* media detection workaround. 821 * Locking: Within irq hander or disable_irq+spin_lock(&np->lock); 822 */ 823 int need_linktimer; 824 unsigned long link_timeout; 825 /* 826 * tx specific fields. 827 */ 828 union ring_type get_tx, put_tx, first_tx, last_tx; 829 struct nv_skb_map *get_tx_ctx, *put_tx_ctx; 830 struct nv_skb_map *first_tx_ctx, *last_tx_ctx; 831 struct nv_skb_map *tx_skb; 832 833 union ring_type tx_ring; 834 u32 tx_flags; 835 int tx_ring_size; 836 int tx_limit; 837 u32 tx_pkts_in_progress; 838 struct nv_skb_map *tx_change_owner; 839 struct nv_skb_map *tx_end_flip; 840 int tx_stop; 841 842 /* TX software stats */ 843 struct u64_stats_sync swstats_tx_syncp; 844 u64 stat_tx_packets; /* not always available in HW */ 845 u64 stat_tx_bytes; 846 u64 stat_tx_dropped; 847 848 /* msi/msi-x fields */ 849 u32 msi_flags; 850 struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS]; 851 852 /* flow control */ 853 u32 pause_flags; 854 855 /* power saved state */ 856 u32 saved_config_space[NV_PCI_REGSZ_MAX/4]; 857 858 /* for different msi-x irq type */ 859 char name_rx[IFNAMSIZ + 3]; /* -rx */ 860 char name_tx[IFNAMSIZ + 3]; /* -tx */ 861 char name_other[IFNAMSIZ + 6]; /* -other */ 862 }; 863 864 /* 865 * Maximum number of loops until we assume that a bit in the irq mask 866 * is stuck. Overridable with module param. 867 */ 868 static int max_interrupt_work = 4; 869 870 /* 871 * Optimization can be either throuput mode or cpu mode 872 * 873 * Throughput Mode: Every tx and rx packet will generate an interrupt. 874 * CPU Mode: Interrupts are controlled by a timer. 875 */ 876 enum { 877 NV_OPTIMIZATION_MODE_THROUGHPUT, 878 NV_OPTIMIZATION_MODE_CPU, 879 NV_OPTIMIZATION_MODE_DYNAMIC 880 }; 881 static int optimization_mode = NV_OPTIMIZATION_MODE_DYNAMIC; 882 883 /* 884 * Poll interval for timer irq 885 * 886 * This interval determines how frequent an interrupt is generated. 887 * The is value is determined by [(time_in_micro_secs * 100) / (2^10)] 888 * Min = 0, and Max = 65535 889 */ 890 static int poll_interval = -1; 891 892 /* 893 * MSI interrupts 894 */ 895 enum { 896 NV_MSI_INT_DISABLED, 897 NV_MSI_INT_ENABLED 898 }; 899 static int msi = NV_MSI_INT_ENABLED; 900 901 /* 902 * MSIX interrupts 903 */ 904 enum { 905 NV_MSIX_INT_DISABLED, 906 NV_MSIX_INT_ENABLED 907 }; 908 static int msix = NV_MSIX_INT_ENABLED; 909 910 /* 911 * DMA 64bit 912 */ 913 enum { 914 NV_DMA_64BIT_DISABLED, 915 NV_DMA_64BIT_ENABLED 916 }; 917 static int dma_64bit = NV_DMA_64BIT_ENABLED; 918 919 /* 920 * Debug output control for tx_timeout 921 */ 922 static bool debug_tx_timeout = false; 923 924 /* 925 * Crossover Detection 926 * Realtek 8201 phy + some OEM boards do not work properly. 927 */ 928 enum { 929 NV_CROSSOVER_DETECTION_DISABLED, 930 NV_CROSSOVER_DETECTION_ENABLED 931 }; 932 static int phy_cross = NV_CROSSOVER_DETECTION_DISABLED; 933 934 /* 935 * Power down phy when interface is down (persists through reboot; 936 * older Linux and other OSes may not power it up again) 937 */ 938 static int phy_power_down; 939 940 static inline struct fe_priv *get_nvpriv(struct net_device *dev) 941 { 942 return netdev_priv(dev); 943 } 944 945 static inline u8 __iomem *get_hwbase(struct net_device *dev) 946 { 947 return ((struct fe_priv *)netdev_priv(dev))->base; 948 } 949 950 static inline void pci_push(u8 __iomem *base) 951 { 952 /* force out pending posted writes */ 953 readl(base); 954 } 955 956 static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v) 957 { 958 return le32_to_cpu(prd->flaglen) 959 & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2); 960 } 961 962 static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v) 963 { 964 return le32_to_cpu(prd->flaglen) & LEN_MASK_V2; 965 } 966 967 static bool nv_optimized(struct fe_priv *np) 968 { 969 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) 970 return false; 971 return true; 972 } 973 974 static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target, 975 int delay, int delaymax) 976 { 977 u8 __iomem *base = get_hwbase(dev); 978 979 pci_push(base); 980 do { 981 udelay(delay); 982 delaymax -= delay; 983 if (delaymax < 0) 984 return 1; 985 } while ((readl(base + offset) & mask) != target); 986 return 0; 987 } 988 989 #define NV_SETUP_RX_RING 0x01 990 #define NV_SETUP_TX_RING 0x02 991 992 static inline u32 dma_low(dma_addr_t addr) 993 { 994 return addr; 995 } 996 997 static inline u32 dma_high(dma_addr_t addr) 998 { 999 return addr>>31>>1; /* 0 if 32bit, shift down by 32 if 64bit */ 1000 } 1001 1002 static void setup_hw_rings(struct net_device *dev, int rxtx_flags) 1003 { 1004 struct fe_priv *np = get_nvpriv(dev); 1005 u8 __iomem *base = get_hwbase(dev); 1006 1007 if (!nv_optimized(np)) { 1008 if (rxtx_flags & NV_SETUP_RX_RING) 1009 writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr); 1010 if (rxtx_flags & NV_SETUP_TX_RING) 1011 writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr); 1012 } else { 1013 if (rxtx_flags & NV_SETUP_RX_RING) { 1014 writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr); 1015 writel(dma_high(np->ring_addr), base + NvRegRxRingPhysAddrHigh); 1016 } 1017 if (rxtx_flags & NV_SETUP_TX_RING) { 1018 writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr); 1019 writel(dma_high(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddrHigh); 1020 } 1021 } 1022 } 1023 1024 static void free_rings(struct net_device *dev) 1025 { 1026 struct fe_priv *np = get_nvpriv(dev); 1027 1028 if (!nv_optimized(np)) { 1029 if (np->rx_ring.orig) 1030 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size), 1031 np->rx_ring.orig, np->ring_addr); 1032 } else { 1033 if (np->rx_ring.ex) 1034 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size), 1035 np->rx_ring.ex, np->ring_addr); 1036 } 1037 kfree(np->rx_skb); 1038 kfree(np->tx_skb); 1039 } 1040 1041 static int using_multi_irqs(struct net_device *dev) 1042 { 1043 struct fe_priv *np = get_nvpriv(dev); 1044 1045 if (!(np->msi_flags & NV_MSI_X_ENABLED) || 1046 ((np->msi_flags & NV_MSI_X_ENABLED) && 1047 ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1))) 1048 return 0; 1049 else 1050 return 1; 1051 } 1052 1053 static void nv_txrx_gate(struct net_device *dev, bool gate) 1054 { 1055 struct fe_priv *np = get_nvpriv(dev); 1056 u8 __iomem *base = get_hwbase(dev); 1057 u32 powerstate; 1058 1059 if (!np->mac_in_use && 1060 (np->driver_data & DEV_HAS_POWER_CNTRL)) { 1061 powerstate = readl(base + NvRegPowerState2); 1062 if (gate) 1063 powerstate |= NVREG_POWERSTATE2_GATE_CLOCKS; 1064 else 1065 powerstate &= ~NVREG_POWERSTATE2_GATE_CLOCKS; 1066 writel(powerstate, base + NvRegPowerState2); 1067 } 1068 } 1069 1070 static void nv_enable_irq(struct net_device *dev) 1071 { 1072 struct fe_priv *np = get_nvpriv(dev); 1073 1074 if (!using_multi_irqs(dev)) { 1075 if (np->msi_flags & NV_MSI_X_ENABLED) 1076 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector); 1077 else 1078 enable_irq(np->pci_dev->irq); 1079 } else { 1080 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector); 1081 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector); 1082 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector); 1083 } 1084 } 1085 1086 static void nv_disable_irq(struct net_device *dev) 1087 { 1088 struct fe_priv *np = get_nvpriv(dev); 1089 1090 if (!using_multi_irqs(dev)) { 1091 if (np->msi_flags & NV_MSI_X_ENABLED) 1092 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector); 1093 else 1094 disable_irq(np->pci_dev->irq); 1095 } else { 1096 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector); 1097 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector); 1098 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector); 1099 } 1100 } 1101 1102 /* In MSIX mode, a write to irqmask behaves as XOR */ 1103 static void nv_enable_hw_interrupts(struct net_device *dev, u32 mask) 1104 { 1105 u8 __iomem *base = get_hwbase(dev); 1106 1107 writel(mask, base + NvRegIrqMask); 1108 } 1109 1110 static void nv_disable_hw_interrupts(struct net_device *dev, u32 mask) 1111 { 1112 struct fe_priv *np = get_nvpriv(dev); 1113 u8 __iomem *base = get_hwbase(dev); 1114 1115 if (np->msi_flags & NV_MSI_X_ENABLED) { 1116 writel(mask, base + NvRegIrqMask); 1117 } else { 1118 if (np->msi_flags & NV_MSI_ENABLED) 1119 writel(0, base + NvRegMSIIrqMask); 1120 writel(0, base + NvRegIrqMask); 1121 } 1122 } 1123 1124 static void nv_napi_enable(struct net_device *dev) 1125 { 1126 struct fe_priv *np = get_nvpriv(dev); 1127 1128 napi_enable(&np->napi); 1129 } 1130 1131 static void nv_napi_disable(struct net_device *dev) 1132 { 1133 struct fe_priv *np = get_nvpriv(dev); 1134 1135 napi_disable(&np->napi); 1136 } 1137 1138 #define MII_READ (-1) 1139 /* mii_rw: read/write a register on the PHY. 1140 * 1141 * Caller must guarantee serialization 1142 */ 1143 static int mii_rw(struct net_device *dev, int addr, int miireg, int value) 1144 { 1145 u8 __iomem *base = get_hwbase(dev); 1146 u32 reg; 1147 int retval; 1148 1149 writel(NVREG_MIISTAT_MASK_RW, base + NvRegMIIStatus); 1150 1151 reg = readl(base + NvRegMIIControl); 1152 if (reg & NVREG_MIICTL_INUSE) { 1153 writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl); 1154 udelay(NV_MIIBUSY_DELAY); 1155 } 1156 1157 reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg; 1158 if (value != MII_READ) { 1159 writel(value, base + NvRegMIIData); 1160 reg |= NVREG_MIICTL_WRITE; 1161 } 1162 writel(reg, base + NvRegMIIControl); 1163 1164 if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0, 1165 NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX)) { 1166 retval = -1; 1167 } else if (value != MII_READ) { 1168 /* it was a write operation - fewer failures are detectable */ 1169 retval = 0; 1170 } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) { 1171 retval = -1; 1172 } else { 1173 retval = readl(base + NvRegMIIData); 1174 } 1175 1176 return retval; 1177 } 1178 1179 static int phy_reset(struct net_device *dev, u32 bmcr_setup) 1180 { 1181 struct fe_priv *np = netdev_priv(dev); 1182 u32 miicontrol; 1183 unsigned int tries = 0; 1184 1185 miicontrol = BMCR_RESET | bmcr_setup; 1186 if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) 1187 return -1; 1188 1189 /* wait for 500ms */ 1190 msleep(500); 1191 1192 /* must wait till reset is deasserted */ 1193 while (miicontrol & BMCR_RESET) { 1194 usleep_range(10000, 20000); 1195 miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); 1196 /* FIXME: 100 tries seem excessive */ 1197 if (tries++ > 100) 1198 return -1; 1199 } 1200 return 0; 1201 } 1202 1203 static int init_realtek_8211b(struct net_device *dev, struct fe_priv *np) 1204 { 1205 static const struct { 1206 int reg; 1207 int init; 1208 } ri[] = { 1209 { PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1 }, 1210 { PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2 }, 1211 { PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3 }, 1212 { PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4 }, 1213 { PHY_REALTEK_INIT_REG4, PHY_REALTEK_INIT5 }, 1214 { PHY_REALTEK_INIT_REG5, PHY_REALTEK_INIT6 }, 1215 { PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1 }, 1216 }; 1217 int i; 1218 1219 for (i = 0; i < ARRAY_SIZE(ri); i++) { 1220 if (mii_rw(dev, np->phyaddr, ri[i].reg, ri[i].init)) 1221 return PHY_ERROR; 1222 } 1223 1224 return 0; 1225 } 1226 1227 static int init_realtek_8211c(struct net_device *dev, struct fe_priv *np) 1228 { 1229 u32 reg; 1230 u8 __iomem *base = get_hwbase(dev); 1231 u32 powerstate = readl(base + NvRegPowerState2); 1232 1233 /* need to perform hw phy reset */ 1234 powerstate |= NVREG_POWERSTATE2_PHY_RESET; 1235 writel(powerstate, base + NvRegPowerState2); 1236 msleep(25); 1237 1238 powerstate &= ~NVREG_POWERSTATE2_PHY_RESET; 1239 writel(powerstate, base + NvRegPowerState2); 1240 msleep(25); 1241 1242 reg = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ); 1243 reg |= PHY_REALTEK_INIT9; 1244 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, reg)) 1245 return PHY_ERROR; 1246 if (mii_rw(dev, np->phyaddr, 1247 PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT10)) 1248 return PHY_ERROR; 1249 reg = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG7, MII_READ); 1250 if (!(reg & PHY_REALTEK_INIT11)) { 1251 reg |= PHY_REALTEK_INIT11; 1252 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG7, reg)) 1253 return PHY_ERROR; 1254 } 1255 if (mii_rw(dev, np->phyaddr, 1256 PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) 1257 return PHY_ERROR; 1258 1259 return 0; 1260 } 1261 1262 static int init_realtek_8201(struct net_device *dev, struct fe_priv *np) 1263 { 1264 u32 phy_reserved; 1265 1266 if (np->driver_data & DEV_NEED_PHY_INIT_FIX) { 1267 phy_reserved = mii_rw(dev, np->phyaddr, 1268 PHY_REALTEK_INIT_REG6, MII_READ); 1269 phy_reserved |= PHY_REALTEK_INIT7; 1270 if (mii_rw(dev, np->phyaddr, 1271 PHY_REALTEK_INIT_REG6, phy_reserved)) 1272 return PHY_ERROR; 1273 } 1274 1275 return 0; 1276 } 1277 1278 static int init_realtek_8201_cross(struct net_device *dev, struct fe_priv *np) 1279 { 1280 u32 phy_reserved; 1281 1282 if (phy_cross == NV_CROSSOVER_DETECTION_DISABLED) { 1283 if (mii_rw(dev, np->phyaddr, 1284 PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) 1285 return PHY_ERROR; 1286 phy_reserved = mii_rw(dev, np->phyaddr, 1287 PHY_REALTEK_INIT_REG2, MII_READ); 1288 phy_reserved &= ~PHY_REALTEK_INIT_MSK1; 1289 phy_reserved |= PHY_REALTEK_INIT3; 1290 if (mii_rw(dev, np->phyaddr, 1291 PHY_REALTEK_INIT_REG2, phy_reserved)) 1292 return PHY_ERROR; 1293 if (mii_rw(dev, np->phyaddr, 1294 PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) 1295 return PHY_ERROR; 1296 } 1297 1298 return 0; 1299 } 1300 1301 static int init_cicada(struct net_device *dev, struct fe_priv *np, 1302 u32 phyinterface) 1303 { 1304 u32 phy_reserved; 1305 1306 if (phyinterface & PHY_RGMII) { 1307 phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ); 1308 phy_reserved &= ~(PHY_CICADA_INIT1 | PHY_CICADA_INIT2); 1309 phy_reserved |= (PHY_CICADA_INIT3 | PHY_CICADA_INIT4); 1310 if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) 1311 return PHY_ERROR; 1312 phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ); 1313 phy_reserved |= PHY_CICADA_INIT5; 1314 if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) 1315 return PHY_ERROR; 1316 } 1317 phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ); 1318 phy_reserved |= PHY_CICADA_INIT6; 1319 if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) 1320 return PHY_ERROR; 1321 1322 return 0; 1323 } 1324 1325 static int init_vitesse(struct net_device *dev, struct fe_priv *np) 1326 { 1327 u32 phy_reserved; 1328 1329 if (mii_rw(dev, np->phyaddr, 1330 PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT1)) 1331 return PHY_ERROR; 1332 if (mii_rw(dev, np->phyaddr, 1333 PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT2)) 1334 return PHY_ERROR; 1335 phy_reserved = mii_rw(dev, np->phyaddr, 1336 PHY_VITESSE_INIT_REG4, MII_READ); 1337 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) 1338 return PHY_ERROR; 1339 phy_reserved = mii_rw(dev, np->phyaddr, 1340 PHY_VITESSE_INIT_REG3, MII_READ); 1341 phy_reserved &= ~PHY_VITESSE_INIT_MSK1; 1342 phy_reserved |= PHY_VITESSE_INIT3; 1343 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) 1344 return PHY_ERROR; 1345 if (mii_rw(dev, np->phyaddr, 1346 PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT4)) 1347 return PHY_ERROR; 1348 if (mii_rw(dev, np->phyaddr, 1349 PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT5)) 1350 return PHY_ERROR; 1351 phy_reserved = mii_rw(dev, np->phyaddr, 1352 PHY_VITESSE_INIT_REG4, MII_READ); 1353 phy_reserved &= ~PHY_VITESSE_INIT_MSK1; 1354 phy_reserved |= PHY_VITESSE_INIT3; 1355 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) 1356 return PHY_ERROR; 1357 phy_reserved = mii_rw(dev, np->phyaddr, 1358 PHY_VITESSE_INIT_REG3, MII_READ); 1359 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) 1360 return PHY_ERROR; 1361 if (mii_rw(dev, np->phyaddr, 1362 PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT6)) 1363 return PHY_ERROR; 1364 if (mii_rw(dev, np->phyaddr, 1365 PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT7)) 1366 return PHY_ERROR; 1367 phy_reserved = mii_rw(dev, np->phyaddr, 1368 PHY_VITESSE_INIT_REG4, MII_READ); 1369 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) 1370 return PHY_ERROR; 1371 phy_reserved = mii_rw(dev, np->phyaddr, 1372 PHY_VITESSE_INIT_REG3, MII_READ); 1373 phy_reserved &= ~PHY_VITESSE_INIT_MSK2; 1374 phy_reserved |= PHY_VITESSE_INIT8; 1375 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) 1376 return PHY_ERROR; 1377 if (mii_rw(dev, np->phyaddr, 1378 PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT9)) 1379 return PHY_ERROR; 1380 if (mii_rw(dev, np->phyaddr, 1381 PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT10)) 1382 return PHY_ERROR; 1383 1384 return 0; 1385 } 1386 1387 static int phy_init(struct net_device *dev) 1388 { 1389 struct fe_priv *np = get_nvpriv(dev); 1390 u8 __iomem *base = get_hwbase(dev); 1391 u32 phyinterface; 1392 u32 mii_status, mii_control, mii_control_1000, reg; 1393 1394 /* phy errata for E3016 phy */ 1395 if (np->phy_model == PHY_MODEL_MARVELL_E3016) { 1396 reg = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ); 1397 reg &= ~PHY_MARVELL_E3016_INITMASK; 1398 if (mii_rw(dev, np->phyaddr, MII_NCONFIG, reg)) { 1399 netdev_info(dev, "%s: phy write to errata reg failed\n", 1400 pci_name(np->pci_dev)); 1401 return PHY_ERROR; 1402 } 1403 } 1404 if (np->phy_oui == PHY_OUI_REALTEK) { 1405 if (np->phy_model == PHY_MODEL_REALTEK_8211 && 1406 np->phy_rev == PHY_REV_REALTEK_8211B) { 1407 if (init_realtek_8211b(dev, np)) { 1408 netdev_info(dev, "%s: phy init failed\n", 1409 pci_name(np->pci_dev)); 1410 return PHY_ERROR; 1411 } 1412 } else if (np->phy_model == PHY_MODEL_REALTEK_8211 && 1413 np->phy_rev == PHY_REV_REALTEK_8211C) { 1414 if (init_realtek_8211c(dev, np)) { 1415 netdev_info(dev, "%s: phy init failed\n", 1416 pci_name(np->pci_dev)); 1417 return PHY_ERROR; 1418 } 1419 } else if (np->phy_model == PHY_MODEL_REALTEK_8201) { 1420 if (init_realtek_8201(dev, np)) { 1421 netdev_info(dev, "%s: phy init failed\n", 1422 pci_name(np->pci_dev)); 1423 return PHY_ERROR; 1424 } 1425 } 1426 } 1427 1428 /* set advertise register */ 1429 reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ); 1430 reg |= (ADVERTISE_10HALF | ADVERTISE_10FULL | 1431 ADVERTISE_100HALF | ADVERTISE_100FULL | 1432 ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP); 1433 if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) { 1434 netdev_info(dev, "%s: phy write to advertise failed\n", 1435 pci_name(np->pci_dev)); 1436 return PHY_ERROR; 1437 } 1438 1439 /* get phy interface type */ 1440 phyinterface = readl(base + NvRegPhyInterface); 1441 1442 /* see if gigabit phy */ 1443 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ); 1444 if (mii_status & PHY_GIGABIT) { 1445 np->gigabit = PHY_GIGABIT; 1446 mii_control_1000 = mii_rw(dev, np->phyaddr, 1447 MII_CTRL1000, MII_READ); 1448 mii_control_1000 &= ~ADVERTISE_1000HALF; 1449 if (phyinterface & PHY_RGMII) 1450 mii_control_1000 |= ADVERTISE_1000FULL; 1451 else 1452 mii_control_1000 &= ~ADVERTISE_1000FULL; 1453 1454 if (mii_rw(dev, np->phyaddr, MII_CTRL1000, mii_control_1000)) { 1455 netdev_info(dev, "%s: phy init failed\n", 1456 pci_name(np->pci_dev)); 1457 return PHY_ERROR; 1458 } 1459 } else 1460 np->gigabit = 0; 1461 1462 mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); 1463 mii_control |= BMCR_ANENABLE; 1464 1465 if (np->phy_oui == PHY_OUI_REALTEK && 1466 np->phy_model == PHY_MODEL_REALTEK_8211 && 1467 np->phy_rev == PHY_REV_REALTEK_8211C) { 1468 /* start autoneg since we already performed hw reset above */ 1469 mii_control |= BMCR_ANRESTART; 1470 if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) { 1471 netdev_info(dev, "%s: phy init failed\n", 1472 pci_name(np->pci_dev)); 1473 return PHY_ERROR; 1474 } 1475 } else { 1476 /* reset the phy 1477 * (certain phys need bmcr to be setup with reset) 1478 */ 1479 if (phy_reset(dev, mii_control)) { 1480 netdev_info(dev, "%s: phy reset failed\n", 1481 pci_name(np->pci_dev)); 1482 return PHY_ERROR; 1483 } 1484 } 1485 1486 /* phy vendor specific configuration */ 1487 if ((np->phy_oui == PHY_OUI_CICADA)) { 1488 if (init_cicada(dev, np, phyinterface)) { 1489 netdev_info(dev, "%s: phy init failed\n", 1490 pci_name(np->pci_dev)); 1491 return PHY_ERROR; 1492 } 1493 } else if (np->phy_oui == PHY_OUI_VITESSE) { 1494 if (init_vitesse(dev, np)) { 1495 netdev_info(dev, "%s: phy init failed\n", 1496 pci_name(np->pci_dev)); 1497 return PHY_ERROR; 1498 } 1499 } else if (np->phy_oui == PHY_OUI_REALTEK) { 1500 if (np->phy_model == PHY_MODEL_REALTEK_8211 && 1501 np->phy_rev == PHY_REV_REALTEK_8211B) { 1502 /* reset could have cleared these out, set them back */ 1503 if (init_realtek_8211b(dev, np)) { 1504 netdev_info(dev, "%s: phy init failed\n", 1505 pci_name(np->pci_dev)); 1506 return PHY_ERROR; 1507 } 1508 } else if (np->phy_model == PHY_MODEL_REALTEK_8201) { 1509 if (init_realtek_8201(dev, np) || 1510 init_realtek_8201_cross(dev, np)) { 1511 netdev_info(dev, "%s: phy init failed\n", 1512 pci_name(np->pci_dev)); 1513 return PHY_ERROR; 1514 } 1515 } 1516 } 1517 1518 /* some phys clear out pause advertisement on reset, set it back */ 1519 mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg); 1520 1521 /* restart auto negotiation, power down phy */ 1522 mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); 1523 mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE); 1524 if (phy_power_down) 1525 mii_control |= BMCR_PDOWN; 1526 if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) 1527 return PHY_ERROR; 1528 1529 return 0; 1530 } 1531 1532 static void nv_start_rx(struct net_device *dev) 1533 { 1534 struct fe_priv *np = netdev_priv(dev); 1535 u8 __iomem *base = get_hwbase(dev); 1536 u32 rx_ctrl = readl(base + NvRegReceiverControl); 1537 1538 /* Already running? Stop it. */ 1539 if ((readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) && !np->mac_in_use) { 1540 rx_ctrl &= ~NVREG_RCVCTL_START; 1541 writel(rx_ctrl, base + NvRegReceiverControl); 1542 pci_push(base); 1543 } 1544 writel(np->linkspeed, base + NvRegLinkSpeed); 1545 pci_push(base); 1546 rx_ctrl |= NVREG_RCVCTL_START; 1547 if (np->mac_in_use) 1548 rx_ctrl &= ~NVREG_RCVCTL_RX_PATH_EN; 1549 writel(rx_ctrl, base + NvRegReceiverControl); 1550 pci_push(base); 1551 } 1552 1553 static void nv_stop_rx(struct net_device *dev) 1554 { 1555 struct fe_priv *np = netdev_priv(dev); 1556 u8 __iomem *base = get_hwbase(dev); 1557 u32 rx_ctrl = readl(base + NvRegReceiverControl); 1558 1559 if (!np->mac_in_use) 1560 rx_ctrl &= ~NVREG_RCVCTL_START; 1561 else 1562 rx_ctrl |= NVREG_RCVCTL_RX_PATH_EN; 1563 writel(rx_ctrl, base + NvRegReceiverControl); 1564 if (reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0, 1565 NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX)) 1566 netdev_info(dev, "%s: ReceiverStatus remained busy\n", 1567 __func__); 1568 1569 udelay(NV_RXSTOP_DELAY2); 1570 if (!np->mac_in_use) 1571 writel(0, base + NvRegLinkSpeed); 1572 } 1573 1574 static void nv_start_tx(struct net_device *dev) 1575 { 1576 struct fe_priv *np = netdev_priv(dev); 1577 u8 __iomem *base = get_hwbase(dev); 1578 u32 tx_ctrl = readl(base + NvRegTransmitterControl); 1579 1580 tx_ctrl |= NVREG_XMITCTL_START; 1581 if (np->mac_in_use) 1582 tx_ctrl &= ~NVREG_XMITCTL_TX_PATH_EN; 1583 writel(tx_ctrl, base + NvRegTransmitterControl); 1584 pci_push(base); 1585 } 1586 1587 static void nv_stop_tx(struct net_device *dev) 1588 { 1589 struct fe_priv *np = netdev_priv(dev); 1590 u8 __iomem *base = get_hwbase(dev); 1591 u32 tx_ctrl = readl(base + NvRegTransmitterControl); 1592 1593 if (!np->mac_in_use) 1594 tx_ctrl &= ~NVREG_XMITCTL_START; 1595 else 1596 tx_ctrl |= NVREG_XMITCTL_TX_PATH_EN; 1597 writel(tx_ctrl, base + NvRegTransmitterControl); 1598 if (reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0, 1599 NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX)) 1600 netdev_info(dev, "%s: TransmitterStatus remained busy\n", 1601 __func__); 1602 1603 udelay(NV_TXSTOP_DELAY2); 1604 if (!np->mac_in_use) 1605 writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV, 1606 base + NvRegTransmitPoll); 1607 } 1608 1609 static void nv_start_rxtx(struct net_device *dev) 1610 { 1611 nv_start_rx(dev); 1612 nv_start_tx(dev); 1613 } 1614 1615 static void nv_stop_rxtx(struct net_device *dev) 1616 { 1617 nv_stop_rx(dev); 1618 nv_stop_tx(dev); 1619 } 1620 1621 static void nv_txrx_reset(struct net_device *dev) 1622 { 1623 struct fe_priv *np = netdev_priv(dev); 1624 u8 __iomem *base = get_hwbase(dev); 1625 1626 writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl); 1627 pci_push(base); 1628 udelay(NV_TXRX_RESET_DELAY); 1629 writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl); 1630 pci_push(base); 1631 } 1632 1633 static void nv_mac_reset(struct net_device *dev) 1634 { 1635 struct fe_priv *np = netdev_priv(dev); 1636 u8 __iomem *base = get_hwbase(dev); 1637 u32 temp1, temp2, temp3; 1638 1639 writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl); 1640 pci_push(base); 1641 1642 /* save registers since they will be cleared on reset */ 1643 temp1 = readl(base + NvRegMacAddrA); 1644 temp2 = readl(base + NvRegMacAddrB); 1645 temp3 = readl(base + NvRegTransmitPoll); 1646 1647 writel(NVREG_MAC_RESET_ASSERT, base + NvRegMacReset); 1648 pci_push(base); 1649 udelay(NV_MAC_RESET_DELAY); 1650 writel(0, base + NvRegMacReset); 1651 pci_push(base); 1652 udelay(NV_MAC_RESET_DELAY); 1653 1654 /* restore saved registers */ 1655 writel(temp1, base + NvRegMacAddrA); 1656 writel(temp2, base + NvRegMacAddrB); 1657 writel(temp3, base + NvRegTransmitPoll); 1658 1659 writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl); 1660 pci_push(base); 1661 } 1662 1663 /* Caller must appropriately lock netdev_priv(dev)->hwstats_lock */ 1664 static void nv_update_stats(struct net_device *dev) 1665 { 1666 struct fe_priv *np = netdev_priv(dev); 1667 u8 __iomem *base = get_hwbase(dev); 1668 1669 /* If it happens that this is run in top-half context, then 1670 * replace the spin_lock of hwstats_lock with 1671 * spin_lock_irqsave() in calling functions. */ 1672 WARN_ONCE(in_irq(), "forcedeth: estats spin_lock(_bh) from top-half"); 1673 assert_spin_locked(&np->hwstats_lock); 1674 1675 /* query hardware */ 1676 np->estats.tx_bytes += readl(base + NvRegTxCnt); 1677 np->estats.tx_zero_rexmt += readl(base + NvRegTxZeroReXmt); 1678 np->estats.tx_one_rexmt += readl(base + NvRegTxOneReXmt); 1679 np->estats.tx_many_rexmt += readl(base + NvRegTxManyReXmt); 1680 np->estats.tx_late_collision += readl(base + NvRegTxLateCol); 1681 np->estats.tx_fifo_errors += readl(base + NvRegTxUnderflow); 1682 np->estats.tx_carrier_errors += readl(base + NvRegTxLossCarrier); 1683 np->estats.tx_excess_deferral += readl(base + NvRegTxExcessDef); 1684 np->estats.tx_retry_error += readl(base + NvRegTxRetryErr); 1685 np->estats.rx_frame_error += readl(base + NvRegRxFrameErr); 1686 np->estats.rx_extra_byte += readl(base + NvRegRxExtraByte); 1687 np->estats.rx_late_collision += readl(base + NvRegRxLateCol); 1688 np->estats.rx_runt += readl(base + NvRegRxRunt); 1689 np->estats.rx_frame_too_long += readl(base + NvRegRxFrameTooLong); 1690 np->estats.rx_over_errors += readl(base + NvRegRxOverflow); 1691 np->estats.rx_crc_errors += readl(base + NvRegRxFCSErr); 1692 np->estats.rx_frame_align_error += readl(base + NvRegRxFrameAlignErr); 1693 np->estats.rx_length_error += readl(base + NvRegRxLenErr); 1694 np->estats.rx_unicast += readl(base + NvRegRxUnicast); 1695 np->estats.rx_multicast += readl(base + NvRegRxMulticast); 1696 np->estats.rx_broadcast += readl(base + NvRegRxBroadcast); 1697 np->estats.rx_packets = 1698 np->estats.rx_unicast + 1699 np->estats.rx_multicast + 1700 np->estats.rx_broadcast; 1701 np->estats.rx_errors_total = 1702 np->estats.rx_crc_errors + 1703 np->estats.rx_over_errors + 1704 np->estats.rx_frame_error + 1705 (np->estats.rx_frame_align_error - np->estats.rx_extra_byte) + 1706 np->estats.rx_late_collision + 1707 np->estats.rx_runt + 1708 np->estats.rx_frame_too_long; 1709 np->estats.tx_errors_total = 1710 np->estats.tx_late_collision + 1711 np->estats.tx_fifo_errors + 1712 np->estats.tx_carrier_errors + 1713 np->estats.tx_excess_deferral + 1714 np->estats.tx_retry_error; 1715 1716 if (np->driver_data & DEV_HAS_STATISTICS_V2) { 1717 np->estats.tx_deferral += readl(base + NvRegTxDef); 1718 np->estats.tx_packets += readl(base + NvRegTxFrame); 1719 np->estats.rx_bytes += readl(base + NvRegRxCnt); 1720 np->estats.tx_pause += readl(base + NvRegTxPause); 1721 np->estats.rx_pause += readl(base + NvRegRxPause); 1722 np->estats.rx_drop_frame += readl(base + NvRegRxDropFrame); 1723 np->estats.rx_errors_total += np->estats.rx_drop_frame; 1724 } 1725 1726 if (np->driver_data & DEV_HAS_STATISTICS_V3) { 1727 np->estats.tx_unicast += readl(base + NvRegTxUnicast); 1728 np->estats.tx_multicast += readl(base + NvRegTxMulticast); 1729 np->estats.tx_broadcast += readl(base + NvRegTxBroadcast); 1730 } 1731 } 1732 1733 /* 1734 * nv_get_stats64: dev->ndo_get_stats64 function 1735 * Get latest stats value from the nic. 1736 * Called with read_lock(&dev_base_lock) held for read - 1737 * only synchronized against unregister_netdevice. 1738 */ 1739 static struct rtnl_link_stats64* 1740 nv_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *storage) 1741 __acquires(&netdev_priv(dev)->hwstats_lock) 1742 __releases(&netdev_priv(dev)->hwstats_lock) 1743 { 1744 struct fe_priv *np = netdev_priv(dev); 1745 unsigned int syncp_start; 1746 1747 /* 1748 * Note: because HW stats are not always available and for 1749 * consistency reasons, the following ifconfig stats are 1750 * managed by software: rx_bytes, tx_bytes, rx_packets and 1751 * tx_packets. The related hardware stats reported by ethtool 1752 * should be equivalent to these ifconfig stats, with 4 1753 * additional bytes per packet (Ethernet FCS CRC), except for 1754 * tx_packets when TSO kicks in. 1755 */ 1756 1757 /* software stats */ 1758 do { 1759 syncp_start = u64_stats_fetch_begin_bh(&np->swstats_rx_syncp); 1760 storage->rx_packets = np->stat_rx_packets; 1761 storage->rx_bytes = np->stat_rx_bytes; 1762 storage->rx_dropped = np->stat_rx_dropped; 1763 storage->rx_missed_errors = np->stat_rx_missed_errors; 1764 } while (u64_stats_fetch_retry_bh(&np->swstats_rx_syncp, syncp_start)); 1765 1766 do { 1767 syncp_start = u64_stats_fetch_begin_bh(&np->swstats_tx_syncp); 1768 storage->tx_packets = np->stat_tx_packets; 1769 storage->tx_bytes = np->stat_tx_bytes; 1770 storage->tx_dropped = np->stat_tx_dropped; 1771 } while (u64_stats_fetch_retry_bh(&np->swstats_tx_syncp, syncp_start)); 1772 1773 /* If the nic supports hw counters then retrieve latest values */ 1774 if (np->driver_data & DEV_HAS_STATISTICS_V123) { 1775 spin_lock_bh(&np->hwstats_lock); 1776 1777 nv_update_stats(dev); 1778 1779 /* generic stats */ 1780 storage->rx_errors = np->estats.rx_errors_total; 1781 storage->tx_errors = np->estats.tx_errors_total; 1782 1783 /* meaningful only when NIC supports stats v3 */ 1784 storage->multicast = np->estats.rx_multicast; 1785 1786 /* detailed rx_errors */ 1787 storage->rx_length_errors = np->estats.rx_length_error; 1788 storage->rx_over_errors = np->estats.rx_over_errors; 1789 storage->rx_crc_errors = np->estats.rx_crc_errors; 1790 storage->rx_frame_errors = np->estats.rx_frame_align_error; 1791 storage->rx_fifo_errors = np->estats.rx_drop_frame; 1792 1793 /* detailed tx_errors */ 1794 storage->tx_carrier_errors = np->estats.tx_carrier_errors; 1795 storage->tx_fifo_errors = np->estats.tx_fifo_errors; 1796 1797 spin_unlock_bh(&np->hwstats_lock); 1798 } 1799 1800 return storage; 1801 } 1802 1803 /* 1804 * nv_alloc_rx: fill rx ring entries. 1805 * Return 1 if the allocations for the skbs failed and the 1806 * rx engine is without Available descriptors 1807 */ 1808 static int nv_alloc_rx(struct net_device *dev) 1809 { 1810 struct fe_priv *np = netdev_priv(dev); 1811 struct ring_desc *less_rx; 1812 1813 less_rx = np->get_rx.orig; 1814 if (less_rx-- == np->first_rx.orig) 1815 less_rx = np->last_rx.orig; 1816 1817 while (np->put_rx.orig != less_rx) { 1818 struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD); 1819 if (skb) { 1820 np->put_rx_ctx->skb = skb; 1821 np->put_rx_ctx->dma = pci_map_single(np->pci_dev, 1822 skb->data, 1823 skb_tailroom(skb), 1824 PCI_DMA_FROMDEVICE); 1825 np->put_rx_ctx->dma_len = skb_tailroom(skb); 1826 np->put_rx.orig->buf = cpu_to_le32(np->put_rx_ctx->dma); 1827 wmb(); 1828 np->put_rx.orig->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL); 1829 if (unlikely(np->put_rx.orig++ == np->last_rx.orig)) 1830 np->put_rx.orig = np->first_rx.orig; 1831 if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx)) 1832 np->put_rx_ctx = np->first_rx_ctx; 1833 } else { 1834 u64_stats_update_begin(&np->swstats_rx_syncp); 1835 np->stat_rx_dropped++; 1836 u64_stats_update_end(&np->swstats_rx_syncp); 1837 return 1; 1838 } 1839 } 1840 return 0; 1841 } 1842 1843 static int nv_alloc_rx_optimized(struct net_device *dev) 1844 { 1845 struct fe_priv *np = netdev_priv(dev); 1846 struct ring_desc_ex *less_rx; 1847 1848 less_rx = np->get_rx.ex; 1849 if (less_rx-- == np->first_rx.ex) 1850 less_rx = np->last_rx.ex; 1851 1852 while (np->put_rx.ex != less_rx) { 1853 struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD); 1854 if (skb) { 1855 np->put_rx_ctx->skb = skb; 1856 np->put_rx_ctx->dma = pci_map_single(np->pci_dev, 1857 skb->data, 1858 skb_tailroom(skb), 1859 PCI_DMA_FROMDEVICE); 1860 np->put_rx_ctx->dma_len = skb_tailroom(skb); 1861 np->put_rx.ex->bufhigh = cpu_to_le32(dma_high(np->put_rx_ctx->dma)); 1862 np->put_rx.ex->buflow = cpu_to_le32(dma_low(np->put_rx_ctx->dma)); 1863 wmb(); 1864 np->put_rx.ex->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL); 1865 if (unlikely(np->put_rx.ex++ == np->last_rx.ex)) 1866 np->put_rx.ex = np->first_rx.ex; 1867 if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx)) 1868 np->put_rx_ctx = np->first_rx_ctx; 1869 } else { 1870 u64_stats_update_begin(&np->swstats_rx_syncp); 1871 np->stat_rx_dropped++; 1872 u64_stats_update_end(&np->swstats_rx_syncp); 1873 return 1; 1874 } 1875 } 1876 return 0; 1877 } 1878 1879 /* If rx bufs are exhausted called after 50ms to attempt to refresh */ 1880 static void nv_do_rx_refill(unsigned long data) 1881 { 1882 struct net_device *dev = (struct net_device *) data; 1883 struct fe_priv *np = netdev_priv(dev); 1884 1885 /* Just reschedule NAPI rx processing */ 1886 napi_schedule(&np->napi); 1887 } 1888 1889 static void nv_init_rx(struct net_device *dev) 1890 { 1891 struct fe_priv *np = netdev_priv(dev); 1892 int i; 1893 1894 np->get_rx = np->put_rx = np->first_rx = np->rx_ring; 1895 1896 if (!nv_optimized(np)) 1897 np->last_rx.orig = &np->rx_ring.orig[np->rx_ring_size-1]; 1898 else 1899 np->last_rx.ex = &np->rx_ring.ex[np->rx_ring_size-1]; 1900 np->get_rx_ctx = np->put_rx_ctx = np->first_rx_ctx = np->rx_skb; 1901 np->last_rx_ctx = &np->rx_skb[np->rx_ring_size-1]; 1902 1903 for (i = 0; i < np->rx_ring_size; i++) { 1904 if (!nv_optimized(np)) { 1905 np->rx_ring.orig[i].flaglen = 0; 1906 np->rx_ring.orig[i].buf = 0; 1907 } else { 1908 np->rx_ring.ex[i].flaglen = 0; 1909 np->rx_ring.ex[i].txvlan = 0; 1910 np->rx_ring.ex[i].bufhigh = 0; 1911 np->rx_ring.ex[i].buflow = 0; 1912 } 1913 np->rx_skb[i].skb = NULL; 1914 np->rx_skb[i].dma = 0; 1915 } 1916 } 1917 1918 static void nv_init_tx(struct net_device *dev) 1919 { 1920 struct fe_priv *np = netdev_priv(dev); 1921 int i; 1922 1923 np->get_tx = np->put_tx = np->first_tx = np->tx_ring; 1924 1925 if (!nv_optimized(np)) 1926 np->last_tx.orig = &np->tx_ring.orig[np->tx_ring_size-1]; 1927 else 1928 np->last_tx.ex = &np->tx_ring.ex[np->tx_ring_size-1]; 1929 np->get_tx_ctx = np->put_tx_ctx = np->first_tx_ctx = np->tx_skb; 1930 np->last_tx_ctx = &np->tx_skb[np->tx_ring_size-1]; 1931 netdev_reset_queue(np->dev); 1932 np->tx_pkts_in_progress = 0; 1933 np->tx_change_owner = NULL; 1934 np->tx_end_flip = NULL; 1935 np->tx_stop = 0; 1936 1937 for (i = 0; i < np->tx_ring_size; i++) { 1938 if (!nv_optimized(np)) { 1939 np->tx_ring.orig[i].flaglen = 0; 1940 np->tx_ring.orig[i].buf = 0; 1941 } else { 1942 np->tx_ring.ex[i].flaglen = 0; 1943 np->tx_ring.ex[i].txvlan = 0; 1944 np->tx_ring.ex[i].bufhigh = 0; 1945 np->tx_ring.ex[i].buflow = 0; 1946 } 1947 np->tx_skb[i].skb = NULL; 1948 np->tx_skb[i].dma = 0; 1949 np->tx_skb[i].dma_len = 0; 1950 np->tx_skb[i].dma_single = 0; 1951 np->tx_skb[i].first_tx_desc = NULL; 1952 np->tx_skb[i].next_tx_ctx = NULL; 1953 } 1954 } 1955 1956 static int nv_init_ring(struct net_device *dev) 1957 { 1958 struct fe_priv *np = netdev_priv(dev); 1959 1960 nv_init_tx(dev); 1961 nv_init_rx(dev); 1962 1963 if (!nv_optimized(np)) 1964 return nv_alloc_rx(dev); 1965 else 1966 return nv_alloc_rx_optimized(dev); 1967 } 1968 1969 static void nv_unmap_txskb(struct fe_priv *np, struct nv_skb_map *tx_skb) 1970 { 1971 if (tx_skb->dma) { 1972 if (tx_skb->dma_single) 1973 pci_unmap_single(np->pci_dev, tx_skb->dma, 1974 tx_skb->dma_len, 1975 PCI_DMA_TODEVICE); 1976 else 1977 pci_unmap_page(np->pci_dev, tx_skb->dma, 1978 tx_skb->dma_len, 1979 PCI_DMA_TODEVICE); 1980 tx_skb->dma = 0; 1981 } 1982 } 1983 1984 static int nv_release_txskb(struct fe_priv *np, struct nv_skb_map *tx_skb) 1985 { 1986 nv_unmap_txskb(np, tx_skb); 1987 if (tx_skb->skb) { 1988 dev_kfree_skb_any(tx_skb->skb); 1989 tx_skb->skb = NULL; 1990 return 1; 1991 } 1992 return 0; 1993 } 1994 1995 static void nv_drain_tx(struct net_device *dev) 1996 { 1997 struct fe_priv *np = netdev_priv(dev); 1998 unsigned int i; 1999 2000 for (i = 0; i < np->tx_ring_size; i++) { 2001 if (!nv_optimized(np)) { 2002 np->tx_ring.orig[i].flaglen = 0; 2003 np->tx_ring.orig[i].buf = 0; 2004 } else { 2005 np->tx_ring.ex[i].flaglen = 0; 2006 np->tx_ring.ex[i].txvlan = 0; 2007 np->tx_ring.ex[i].bufhigh = 0; 2008 np->tx_ring.ex[i].buflow = 0; 2009 } 2010 if (nv_release_txskb(np, &np->tx_skb[i])) { 2011 u64_stats_update_begin(&np->swstats_tx_syncp); 2012 np->stat_tx_dropped++; 2013 u64_stats_update_end(&np->swstats_tx_syncp); 2014 } 2015 np->tx_skb[i].dma = 0; 2016 np->tx_skb[i].dma_len = 0; 2017 np->tx_skb[i].dma_single = 0; 2018 np->tx_skb[i].first_tx_desc = NULL; 2019 np->tx_skb[i].next_tx_ctx = NULL; 2020 } 2021 np->tx_pkts_in_progress = 0; 2022 np->tx_change_owner = NULL; 2023 np->tx_end_flip = NULL; 2024 } 2025 2026 static void nv_drain_rx(struct net_device *dev) 2027 { 2028 struct fe_priv *np = netdev_priv(dev); 2029 int i; 2030 2031 for (i = 0; i < np->rx_ring_size; i++) { 2032 if (!nv_optimized(np)) { 2033 np->rx_ring.orig[i].flaglen = 0; 2034 np->rx_ring.orig[i].buf = 0; 2035 } else { 2036 np->rx_ring.ex[i].flaglen = 0; 2037 np->rx_ring.ex[i].txvlan = 0; 2038 np->rx_ring.ex[i].bufhigh = 0; 2039 np->rx_ring.ex[i].buflow = 0; 2040 } 2041 wmb(); 2042 if (np->rx_skb[i].skb) { 2043 pci_unmap_single(np->pci_dev, np->rx_skb[i].dma, 2044 (skb_end_pointer(np->rx_skb[i].skb) - 2045 np->rx_skb[i].skb->data), 2046 PCI_DMA_FROMDEVICE); 2047 dev_kfree_skb(np->rx_skb[i].skb); 2048 np->rx_skb[i].skb = NULL; 2049 } 2050 } 2051 } 2052 2053 static void nv_drain_rxtx(struct net_device *dev) 2054 { 2055 nv_drain_tx(dev); 2056 nv_drain_rx(dev); 2057 } 2058 2059 static inline u32 nv_get_empty_tx_slots(struct fe_priv *np) 2060 { 2061 return (u32)(np->tx_ring_size - ((np->tx_ring_size + (np->put_tx_ctx - np->get_tx_ctx)) % np->tx_ring_size)); 2062 } 2063 2064 static void nv_legacybackoff_reseed(struct net_device *dev) 2065 { 2066 u8 __iomem *base = get_hwbase(dev); 2067 u32 reg; 2068 u32 low; 2069 int tx_status = 0; 2070 2071 reg = readl(base + NvRegSlotTime) & ~NVREG_SLOTTIME_MASK; 2072 get_random_bytes(&low, sizeof(low)); 2073 reg |= low & NVREG_SLOTTIME_MASK; 2074 2075 /* Need to stop tx before change takes effect. 2076 * Caller has already gained np->lock. 2077 */ 2078 tx_status = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_START; 2079 if (tx_status) 2080 nv_stop_tx(dev); 2081 nv_stop_rx(dev); 2082 writel(reg, base + NvRegSlotTime); 2083 if (tx_status) 2084 nv_start_tx(dev); 2085 nv_start_rx(dev); 2086 } 2087 2088 /* Gear Backoff Seeds */ 2089 #define BACKOFF_SEEDSET_ROWS 8 2090 #define BACKOFF_SEEDSET_LFSRS 15 2091 2092 /* Known Good seed sets */ 2093 static const u32 main_seedset[BACKOFF_SEEDSET_ROWS][BACKOFF_SEEDSET_LFSRS] = { 2094 {145, 155, 165, 175, 185, 196, 235, 245, 255, 265, 275, 285, 660, 690, 874}, 2095 {245, 255, 265, 575, 385, 298, 335, 345, 355, 366, 375, 385, 761, 790, 974}, 2096 {145, 155, 165, 175, 185, 196, 235, 245, 255, 265, 275, 285, 660, 690, 874}, 2097 {245, 255, 265, 575, 385, 298, 335, 345, 355, 366, 375, 386, 761, 790, 974}, 2098 {266, 265, 276, 585, 397, 208, 345, 355, 365, 376, 385, 396, 771, 700, 984}, 2099 {266, 265, 276, 586, 397, 208, 346, 355, 365, 376, 285, 396, 771, 700, 984}, 2100 {366, 365, 376, 686, 497, 308, 447, 455, 466, 476, 485, 496, 871, 800, 84}, 2101 {466, 465, 476, 786, 597, 408, 547, 555, 566, 576, 585, 597, 971, 900, 184} }; 2102 2103 static const u32 gear_seedset[BACKOFF_SEEDSET_ROWS][BACKOFF_SEEDSET_LFSRS] = { 2104 {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295}, 2105 {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395}, 2106 {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 397}, 2107 {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295}, 2108 {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295}, 2109 {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395}, 2110 {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395}, 2111 {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395} }; 2112 2113 static void nv_gear_backoff_reseed(struct net_device *dev) 2114 { 2115 u8 __iomem *base = get_hwbase(dev); 2116 u32 miniseed1, miniseed2, miniseed2_reversed, miniseed3, miniseed3_reversed; 2117 u32 temp, seedset, combinedSeed; 2118 int i; 2119 2120 /* Setup seed for free running LFSR */ 2121 /* We are going to read the time stamp counter 3 times 2122 and swizzle bits around to increase randomness */ 2123 get_random_bytes(&miniseed1, sizeof(miniseed1)); 2124 miniseed1 &= 0x0fff; 2125 if (miniseed1 == 0) 2126 miniseed1 = 0xabc; 2127 2128 get_random_bytes(&miniseed2, sizeof(miniseed2)); 2129 miniseed2 &= 0x0fff; 2130 if (miniseed2 == 0) 2131 miniseed2 = 0xabc; 2132 miniseed2_reversed = 2133 ((miniseed2 & 0xF00) >> 8) | 2134 (miniseed2 & 0x0F0) | 2135 ((miniseed2 & 0x00F) << 8); 2136 2137 get_random_bytes(&miniseed3, sizeof(miniseed3)); 2138 miniseed3 &= 0x0fff; 2139 if (miniseed3 == 0) 2140 miniseed3 = 0xabc; 2141 miniseed3_reversed = 2142 ((miniseed3 & 0xF00) >> 8) | 2143 (miniseed3 & 0x0F0) | 2144 ((miniseed3 & 0x00F) << 8); 2145 2146 combinedSeed = ((miniseed1 ^ miniseed2_reversed) << 12) | 2147 (miniseed2 ^ miniseed3_reversed); 2148 2149 /* Seeds can not be zero */ 2150 if ((combinedSeed & NVREG_BKOFFCTRL_SEED_MASK) == 0) 2151 combinedSeed |= 0x08; 2152 if ((combinedSeed & (NVREG_BKOFFCTRL_SEED_MASK << NVREG_BKOFFCTRL_GEAR)) == 0) 2153 combinedSeed |= 0x8000; 2154 2155 /* No need to disable tx here */ 2156 temp = NVREG_BKOFFCTRL_DEFAULT | (0 << NVREG_BKOFFCTRL_SELECT); 2157 temp |= combinedSeed & NVREG_BKOFFCTRL_SEED_MASK; 2158 temp |= combinedSeed >> NVREG_BKOFFCTRL_GEAR; 2159 writel(temp, base + NvRegBackOffControl); 2160 2161 /* Setup seeds for all gear LFSRs. */ 2162 get_random_bytes(&seedset, sizeof(seedset)); 2163 seedset = seedset % BACKOFF_SEEDSET_ROWS; 2164 for (i = 1; i <= BACKOFF_SEEDSET_LFSRS; i++) { 2165 temp = NVREG_BKOFFCTRL_DEFAULT | (i << NVREG_BKOFFCTRL_SELECT); 2166 temp |= main_seedset[seedset][i-1] & 0x3ff; 2167 temp |= ((gear_seedset[seedset][i-1] & 0x3ff) << NVREG_BKOFFCTRL_GEAR); 2168 writel(temp, base + NvRegBackOffControl); 2169 } 2170 } 2171 2172 /* 2173 * nv_start_xmit: dev->hard_start_xmit function 2174 * Called with netif_tx_lock held. 2175 */ 2176 static netdev_tx_t nv_start_xmit(struct sk_buff *skb, struct net_device *dev) 2177 { 2178 struct fe_priv *np = netdev_priv(dev); 2179 u32 tx_flags = 0; 2180 u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET); 2181 unsigned int fragments = skb_shinfo(skb)->nr_frags; 2182 unsigned int i; 2183 u32 offset = 0; 2184 u32 bcnt; 2185 u32 size = skb_headlen(skb); 2186 u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0); 2187 u32 empty_slots; 2188 struct ring_desc *put_tx; 2189 struct ring_desc *start_tx; 2190 struct ring_desc *prev_tx; 2191 struct nv_skb_map *prev_tx_ctx; 2192 unsigned long flags; 2193 2194 /* add fragments to entries count */ 2195 for (i = 0; i < fragments; i++) { 2196 u32 frag_size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2197 2198 entries += (frag_size >> NV_TX2_TSO_MAX_SHIFT) + 2199 ((frag_size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0); 2200 } 2201 2202 spin_lock_irqsave(&np->lock, flags); 2203 empty_slots = nv_get_empty_tx_slots(np); 2204 if (unlikely(empty_slots <= entries)) { 2205 netif_stop_queue(dev); 2206 np->tx_stop = 1; 2207 spin_unlock_irqrestore(&np->lock, flags); 2208 return NETDEV_TX_BUSY; 2209 } 2210 spin_unlock_irqrestore(&np->lock, flags); 2211 2212 start_tx = put_tx = np->put_tx.orig; 2213 2214 /* setup the header buffer */ 2215 do { 2216 prev_tx = put_tx; 2217 prev_tx_ctx = np->put_tx_ctx; 2218 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size; 2219 np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt, 2220 PCI_DMA_TODEVICE); 2221 np->put_tx_ctx->dma_len = bcnt; 2222 np->put_tx_ctx->dma_single = 1; 2223 put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma); 2224 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags); 2225 2226 tx_flags = np->tx_flags; 2227 offset += bcnt; 2228 size -= bcnt; 2229 if (unlikely(put_tx++ == np->last_tx.orig)) 2230 put_tx = np->first_tx.orig; 2231 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx)) 2232 np->put_tx_ctx = np->first_tx_ctx; 2233 } while (size); 2234 2235 /* setup the fragments */ 2236 for (i = 0; i < fragments; i++) { 2237 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2238 u32 frag_size = skb_frag_size(frag); 2239 offset = 0; 2240 2241 do { 2242 prev_tx = put_tx; 2243 prev_tx_ctx = np->put_tx_ctx; 2244 bcnt = (frag_size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : frag_size; 2245 np->put_tx_ctx->dma = skb_frag_dma_map( 2246 &np->pci_dev->dev, 2247 frag, offset, 2248 bcnt, 2249 DMA_TO_DEVICE); 2250 np->put_tx_ctx->dma_len = bcnt; 2251 np->put_tx_ctx->dma_single = 0; 2252 put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma); 2253 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags); 2254 2255 offset += bcnt; 2256 frag_size -= bcnt; 2257 if (unlikely(put_tx++ == np->last_tx.orig)) 2258 put_tx = np->first_tx.orig; 2259 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx)) 2260 np->put_tx_ctx = np->first_tx_ctx; 2261 } while (frag_size); 2262 } 2263 2264 /* set last fragment flag */ 2265 prev_tx->flaglen |= cpu_to_le32(tx_flags_extra); 2266 2267 /* save skb in this slot's context area */ 2268 prev_tx_ctx->skb = skb; 2269 2270 if (skb_is_gso(skb)) 2271 tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT); 2272 else 2273 tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ? 2274 NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0; 2275 2276 spin_lock_irqsave(&np->lock, flags); 2277 2278 /* set tx flags */ 2279 start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra); 2280 2281 netdev_sent_queue(np->dev, skb->len); 2282 2283 np->put_tx.orig = put_tx; 2284 2285 spin_unlock_irqrestore(&np->lock, flags); 2286 2287 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl); 2288 return NETDEV_TX_OK; 2289 } 2290 2291 static netdev_tx_t nv_start_xmit_optimized(struct sk_buff *skb, 2292 struct net_device *dev) 2293 { 2294 struct fe_priv *np = netdev_priv(dev); 2295 u32 tx_flags = 0; 2296 u32 tx_flags_extra; 2297 unsigned int fragments = skb_shinfo(skb)->nr_frags; 2298 unsigned int i; 2299 u32 offset = 0; 2300 u32 bcnt; 2301 u32 size = skb_headlen(skb); 2302 u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0); 2303 u32 empty_slots; 2304 struct ring_desc_ex *put_tx; 2305 struct ring_desc_ex *start_tx; 2306 struct ring_desc_ex *prev_tx; 2307 struct nv_skb_map *prev_tx_ctx; 2308 struct nv_skb_map *start_tx_ctx; 2309 unsigned long flags; 2310 2311 /* add fragments to entries count */ 2312 for (i = 0; i < fragments; i++) { 2313 u32 frag_size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2314 2315 entries += (frag_size >> NV_TX2_TSO_MAX_SHIFT) + 2316 ((frag_size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0); 2317 } 2318 2319 spin_lock_irqsave(&np->lock, flags); 2320 empty_slots = nv_get_empty_tx_slots(np); 2321 if (unlikely(empty_slots <= entries)) { 2322 netif_stop_queue(dev); 2323 np->tx_stop = 1; 2324 spin_unlock_irqrestore(&np->lock, flags); 2325 return NETDEV_TX_BUSY; 2326 } 2327 spin_unlock_irqrestore(&np->lock, flags); 2328 2329 start_tx = put_tx = np->put_tx.ex; 2330 start_tx_ctx = np->put_tx_ctx; 2331 2332 /* setup the header buffer */ 2333 do { 2334 prev_tx = put_tx; 2335 prev_tx_ctx = np->put_tx_ctx; 2336 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size; 2337 np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt, 2338 PCI_DMA_TODEVICE); 2339 np->put_tx_ctx->dma_len = bcnt; 2340 np->put_tx_ctx->dma_single = 1; 2341 put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma)); 2342 put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma)); 2343 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags); 2344 2345 tx_flags = NV_TX2_VALID; 2346 offset += bcnt; 2347 size -= bcnt; 2348 if (unlikely(put_tx++ == np->last_tx.ex)) 2349 put_tx = np->first_tx.ex; 2350 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx)) 2351 np->put_tx_ctx = np->first_tx_ctx; 2352 } while (size); 2353 2354 /* setup the fragments */ 2355 for (i = 0; i < fragments; i++) { 2356 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2357 u32 frag_size = skb_frag_size(frag); 2358 offset = 0; 2359 2360 do { 2361 prev_tx = put_tx; 2362 prev_tx_ctx = np->put_tx_ctx; 2363 bcnt = (frag_size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : frag_size; 2364 np->put_tx_ctx->dma = skb_frag_dma_map( 2365 &np->pci_dev->dev, 2366 frag, offset, 2367 bcnt, 2368 DMA_TO_DEVICE); 2369 np->put_tx_ctx->dma_len = bcnt; 2370 np->put_tx_ctx->dma_single = 0; 2371 put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma)); 2372 put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma)); 2373 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags); 2374 2375 offset += bcnt; 2376 frag_size -= bcnt; 2377 if (unlikely(put_tx++ == np->last_tx.ex)) 2378 put_tx = np->first_tx.ex; 2379 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx)) 2380 np->put_tx_ctx = np->first_tx_ctx; 2381 } while (frag_size); 2382 } 2383 2384 /* set last fragment flag */ 2385 prev_tx->flaglen |= cpu_to_le32(NV_TX2_LASTPACKET); 2386 2387 /* save skb in this slot's context area */ 2388 prev_tx_ctx->skb = skb; 2389 2390 if (skb_is_gso(skb)) 2391 tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT); 2392 else 2393 tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ? 2394 NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0; 2395 2396 /* vlan tag */ 2397 if (vlan_tx_tag_present(skb)) 2398 start_tx->txvlan = cpu_to_le32(NV_TX3_VLAN_TAG_PRESENT | 2399 vlan_tx_tag_get(skb)); 2400 else 2401 start_tx->txvlan = 0; 2402 2403 spin_lock_irqsave(&np->lock, flags); 2404 2405 if (np->tx_limit) { 2406 /* Limit the number of outstanding tx. Setup all fragments, but 2407 * do not set the VALID bit on the first descriptor. Save a pointer 2408 * to that descriptor and also for next skb_map element. 2409 */ 2410 2411 if (np->tx_pkts_in_progress == NV_TX_LIMIT_COUNT) { 2412 if (!np->tx_change_owner) 2413 np->tx_change_owner = start_tx_ctx; 2414 2415 /* remove VALID bit */ 2416 tx_flags &= ~NV_TX2_VALID; 2417 start_tx_ctx->first_tx_desc = start_tx; 2418 start_tx_ctx->next_tx_ctx = np->put_tx_ctx; 2419 np->tx_end_flip = np->put_tx_ctx; 2420 } else { 2421 np->tx_pkts_in_progress++; 2422 } 2423 } 2424 2425 /* set tx flags */ 2426 start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra); 2427 2428 netdev_sent_queue(np->dev, skb->len); 2429 2430 np->put_tx.ex = put_tx; 2431 2432 spin_unlock_irqrestore(&np->lock, flags); 2433 2434 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl); 2435 return NETDEV_TX_OK; 2436 } 2437 2438 static inline void nv_tx_flip_ownership(struct net_device *dev) 2439 { 2440 struct fe_priv *np = netdev_priv(dev); 2441 2442 np->tx_pkts_in_progress--; 2443 if (np->tx_change_owner) { 2444 np->tx_change_owner->first_tx_desc->flaglen |= 2445 cpu_to_le32(NV_TX2_VALID); 2446 np->tx_pkts_in_progress++; 2447 2448 np->tx_change_owner = np->tx_change_owner->next_tx_ctx; 2449 if (np->tx_change_owner == np->tx_end_flip) 2450 np->tx_change_owner = NULL; 2451 2452 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl); 2453 } 2454 } 2455 2456 /* 2457 * nv_tx_done: check for completed packets, release the skbs. 2458 * 2459 * Caller must own np->lock. 2460 */ 2461 static int nv_tx_done(struct net_device *dev, int limit) 2462 { 2463 struct fe_priv *np = netdev_priv(dev); 2464 u32 flags; 2465 int tx_work = 0; 2466 struct ring_desc *orig_get_tx = np->get_tx.orig; 2467 unsigned int bytes_compl = 0; 2468 2469 while ((np->get_tx.orig != np->put_tx.orig) && 2470 !((flags = le32_to_cpu(np->get_tx.orig->flaglen)) & NV_TX_VALID) && 2471 (tx_work < limit)) { 2472 2473 nv_unmap_txskb(np, np->get_tx_ctx); 2474 2475 if (np->desc_ver == DESC_VER_1) { 2476 if (flags & NV_TX_LASTPACKET) { 2477 if (flags & NV_TX_ERROR) { 2478 if ((flags & NV_TX_RETRYERROR) 2479 && !(flags & NV_TX_RETRYCOUNT_MASK)) 2480 nv_legacybackoff_reseed(dev); 2481 } else { 2482 u64_stats_update_begin(&np->swstats_tx_syncp); 2483 np->stat_tx_packets++; 2484 np->stat_tx_bytes += np->get_tx_ctx->skb->len; 2485 u64_stats_update_end(&np->swstats_tx_syncp); 2486 } 2487 bytes_compl += np->get_tx_ctx->skb->len; 2488 dev_kfree_skb_any(np->get_tx_ctx->skb); 2489 np->get_tx_ctx->skb = NULL; 2490 tx_work++; 2491 } 2492 } else { 2493 if (flags & NV_TX2_LASTPACKET) { 2494 if (flags & NV_TX2_ERROR) { 2495 if ((flags & NV_TX2_RETRYERROR) 2496 && !(flags & NV_TX2_RETRYCOUNT_MASK)) 2497 nv_legacybackoff_reseed(dev); 2498 } else { 2499 u64_stats_update_begin(&np->swstats_tx_syncp); 2500 np->stat_tx_packets++; 2501 np->stat_tx_bytes += np->get_tx_ctx->skb->len; 2502 u64_stats_update_end(&np->swstats_tx_syncp); 2503 } 2504 bytes_compl += np->get_tx_ctx->skb->len; 2505 dev_kfree_skb_any(np->get_tx_ctx->skb); 2506 np->get_tx_ctx->skb = NULL; 2507 tx_work++; 2508 } 2509 } 2510 if (unlikely(np->get_tx.orig++ == np->last_tx.orig)) 2511 np->get_tx.orig = np->first_tx.orig; 2512 if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx)) 2513 np->get_tx_ctx = np->first_tx_ctx; 2514 } 2515 2516 netdev_completed_queue(np->dev, tx_work, bytes_compl); 2517 2518 if (unlikely((np->tx_stop == 1) && (np->get_tx.orig != orig_get_tx))) { 2519 np->tx_stop = 0; 2520 netif_wake_queue(dev); 2521 } 2522 return tx_work; 2523 } 2524 2525 static int nv_tx_done_optimized(struct net_device *dev, int limit) 2526 { 2527 struct fe_priv *np = netdev_priv(dev); 2528 u32 flags; 2529 int tx_work = 0; 2530 struct ring_desc_ex *orig_get_tx = np->get_tx.ex; 2531 unsigned long bytes_cleaned = 0; 2532 2533 while ((np->get_tx.ex != np->put_tx.ex) && 2534 !((flags = le32_to_cpu(np->get_tx.ex->flaglen)) & NV_TX2_VALID) && 2535 (tx_work < limit)) { 2536 2537 nv_unmap_txskb(np, np->get_tx_ctx); 2538 2539 if (flags & NV_TX2_LASTPACKET) { 2540 if (flags & NV_TX2_ERROR) { 2541 if ((flags & NV_TX2_RETRYERROR) 2542 && !(flags & NV_TX2_RETRYCOUNT_MASK)) { 2543 if (np->driver_data & DEV_HAS_GEAR_MODE) 2544 nv_gear_backoff_reseed(dev); 2545 else 2546 nv_legacybackoff_reseed(dev); 2547 } 2548 } else { 2549 u64_stats_update_begin(&np->swstats_tx_syncp); 2550 np->stat_tx_packets++; 2551 np->stat_tx_bytes += np->get_tx_ctx->skb->len; 2552 u64_stats_update_end(&np->swstats_tx_syncp); 2553 } 2554 2555 bytes_cleaned += np->get_tx_ctx->skb->len; 2556 dev_kfree_skb_any(np->get_tx_ctx->skb); 2557 np->get_tx_ctx->skb = NULL; 2558 tx_work++; 2559 2560 if (np->tx_limit) 2561 nv_tx_flip_ownership(dev); 2562 } 2563 2564 if (unlikely(np->get_tx.ex++ == np->last_tx.ex)) 2565 np->get_tx.ex = np->first_tx.ex; 2566 if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx)) 2567 np->get_tx_ctx = np->first_tx_ctx; 2568 } 2569 2570 netdev_completed_queue(np->dev, tx_work, bytes_cleaned); 2571 2572 if (unlikely((np->tx_stop == 1) && (np->get_tx.ex != orig_get_tx))) { 2573 np->tx_stop = 0; 2574 netif_wake_queue(dev); 2575 } 2576 return tx_work; 2577 } 2578 2579 /* 2580 * nv_tx_timeout: dev->tx_timeout function 2581 * Called with netif_tx_lock held. 2582 */ 2583 static void nv_tx_timeout(struct net_device *dev) 2584 { 2585 struct fe_priv *np = netdev_priv(dev); 2586 u8 __iomem *base = get_hwbase(dev); 2587 u32 status; 2588 union ring_type put_tx; 2589 int saved_tx_limit; 2590 2591 if (np->msi_flags & NV_MSI_X_ENABLED) 2592 status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK; 2593 else 2594 status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK; 2595 2596 netdev_warn(dev, "Got tx_timeout. irq status: %08x\n", status); 2597 2598 if (unlikely(debug_tx_timeout)) { 2599 int i; 2600 2601 netdev_info(dev, "Ring at %lx\n", (unsigned long)np->ring_addr); 2602 netdev_info(dev, "Dumping tx registers\n"); 2603 for (i = 0; i <= np->register_size; i += 32) { 2604 netdev_info(dev, 2605 "%3x: %08x %08x %08x %08x " 2606 "%08x %08x %08x %08x\n", 2607 i, 2608 readl(base + i + 0), readl(base + i + 4), 2609 readl(base + i + 8), readl(base + i + 12), 2610 readl(base + i + 16), readl(base + i + 20), 2611 readl(base + i + 24), readl(base + i + 28)); 2612 } 2613 netdev_info(dev, "Dumping tx ring\n"); 2614 for (i = 0; i < np->tx_ring_size; i += 4) { 2615 if (!nv_optimized(np)) { 2616 netdev_info(dev, 2617 "%03x: %08x %08x // %08x %08x " 2618 "// %08x %08x // %08x %08x\n", 2619 i, 2620 le32_to_cpu(np->tx_ring.orig[i].buf), 2621 le32_to_cpu(np->tx_ring.orig[i].flaglen), 2622 le32_to_cpu(np->tx_ring.orig[i+1].buf), 2623 le32_to_cpu(np->tx_ring.orig[i+1].flaglen), 2624 le32_to_cpu(np->tx_ring.orig[i+2].buf), 2625 le32_to_cpu(np->tx_ring.orig[i+2].flaglen), 2626 le32_to_cpu(np->tx_ring.orig[i+3].buf), 2627 le32_to_cpu(np->tx_ring.orig[i+3].flaglen)); 2628 } else { 2629 netdev_info(dev, 2630 "%03x: %08x %08x %08x " 2631 "// %08x %08x %08x " 2632 "// %08x %08x %08x " 2633 "// %08x %08x %08x\n", 2634 i, 2635 le32_to_cpu(np->tx_ring.ex[i].bufhigh), 2636 le32_to_cpu(np->tx_ring.ex[i].buflow), 2637 le32_to_cpu(np->tx_ring.ex[i].flaglen), 2638 le32_to_cpu(np->tx_ring.ex[i+1].bufhigh), 2639 le32_to_cpu(np->tx_ring.ex[i+1].buflow), 2640 le32_to_cpu(np->tx_ring.ex[i+1].flaglen), 2641 le32_to_cpu(np->tx_ring.ex[i+2].bufhigh), 2642 le32_to_cpu(np->tx_ring.ex[i+2].buflow), 2643 le32_to_cpu(np->tx_ring.ex[i+2].flaglen), 2644 le32_to_cpu(np->tx_ring.ex[i+3].bufhigh), 2645 le32_to_cpu(np->tx_ring.ex[i+3].buflow), 2646 le32_to_cpu(np->tx_ring.ex[i+3].flaglen)); 2647 } 2648 } 2649 } 2650 2651 spin_lock_irq(&np->lock); 2652 2653 /* 1) stop tx engine */ 2654 nv_stop_tx(dev); 2655 2656 /* 2) complete any outstanding tx and do not give HW any limited tx pkts */ 2657 saved_tx_limit = np->tx_limit; 2658 np->tx_limit = 0; /* prevent giving HW any limited pkts */ 2659 np->tx_stop = 0; /* prevent waking tx queue */ 2660 if (!nv_optimized(np)) 2661 nv_tx_done(dev, np->tx_ring_size); 2662 else 2663 nv_tx_done_optimized(dev, np->tx_ring_size); 2664 2665 /* save current HW position */ 2666 if (np->tx_change_owner) 2667 put_tx.ex = np->tx_change_owner->first_tx_desc; 2668 else 2669 put_tx = np->put_tx; 2670 2671 /* 3) clear all tx state */ 2672 nv_drain_tx(dev); 2673 nv_init_tx(dev); 2674 2675 /* 4) restore state to current HW position */ 2676 np->get_tx = np->put_tx = put_tx; 2677 np->tx_limit = saved_tx_limit; 2678 2679 /* 5) restart tx engine */ 2680 nv_start_tx(dev); 2681 netif_wake_queue(dev); 2682 spin_unlock_irq(&np->lock); 2683 } 2684 2685 /* 2686 * Called when the nic notices a mismatch between the actual data len on the 2687 * wire and the len indicated in the 802 header 2688 */ 2689 static int nv_getlen(struct net_device *dev, void *packet, int datalen) 2690 { 2691 int hdrlen; /* length of the 802 header */ 2692 int protolen; /* length as stored in the proto field */ 2693 2694 /* 1) calculate len according to header */ 2695 if (((struct vlan_ethhdr *)packet)->h_vlan_proto == htons(ETH_P_8021Q)) { 2696 protolen = ntohs(((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto); 2697 hdrlen = VLAN_HLEN; 2698 } else { 2699 protolen = ntohs(((struct ethhdr *)packet)->h_proto); 2700 hdrlen = ETH_HLEN; 2701 } 2702 if (protolen > ETH_DATA_LEN) 2703 return datalen; /* Value in proto field not a len, no checks possible */ 2704 2705 protolen += hdrlen; 2706 /* consistency checks: */ 2707 if (datalen > ETH_ZLEN) { 2708 if (datalen >= protolen) { 2709 /* more data on wire than in 802 header, trim of 2710 * additional data. 2711 */ 2712 return protolen; 2713 } else { 2714 /* less data on wire than mentioned in header. 2715 * Discard the packet. 2716 */ 2717 return -1; 2718 } 2719 } else { 2720 /* short packet. Accept only if 802 values are also short */ 2721 if (protolen > ETH_ZLEN) { 2722 return -1; 2723 } 2724 return datalen; 2725 } 2726 } 2727 2728 static int nv_rx_process(struct net_device *dev, int limit) 2729 { 2730 struct fe_priv *np = netdev_priv(dev); 2731 u32 flags; 2732 int rx_work = 0; 2733 struct sk_buff *skb; 2734 int len; 2735 2736 while ((np->get_rx.orig != np->put_rx.orig) && 2737 !((flags = le32_to_cpu(np->get_rx.orig->flaglen)) & NV_RX_AVAIL) && 2738 (rx_work < limit)) { 2739 2740 /* 2741 * the packet is for us - immediately tear down the pci mapping. 2742 * TODO: check if a prefetch of the first cacheline improves 2743 * the performance. 2744 */ 2745 pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma, 2746 np->get_rx_ctx->dma_len, 2747 PCI_DMA_FROMDEVICE); 2748 skb = np->get_rx_ctx->skb; 2749 np->get_rx_ctx->skb = NULL; 2750 2751 /* look at what we actually got: */ 2752 if (np->desc_ver == DESC_VER_1) { 2753 if (likely(flags & NV_RX_DESCRIPTORVALID)) { 2754 len = flags & LEN_MASK_V1; 2755 if (unlikely(flags & NV_RX_ERROR)) { 2756 if ((flags & NV_RX_ERROR_MASK) == NV_RX_ERROR4) { 2757 len = nv_getlen(dev, skb->data, len); 2758 if (len < 0) { 2759 dev_kfree_skb(skb); 2760 goto next_pkt; 2761 } 2762 } 2763 /* framing errors are soft errors */ 2764 else if ((flags & NV_RX_ERROR_MASK) == NV_RX_FRAMINGERR) { 2765 if (flags & NV_RX_SUBSTRACT1) 2766 len--; 2767 } 2768 /* the rest are hard errors */ 2769 else { 2770 if (flags & NV_RX_MISSEDFRAME) { 2771 u64_stats_update_begin(&np->swstats_rx_syncp); 2772 np->stat_rx_missed_errors++; 2773 u64_stats_update_end(&np->swstats_rx_syncp); 2774 } 2775 dev_kfree_skb(skb); 2776 goto next_pkt; 2777 } 2778 } 2779 } else { 2780 dev_kfree_skb(skb); 2781 goto next_pkt; 2782 } 2783 } else { 2784 if (likely(flags & NV_RX2_DESCRIPTORVALID)) { 2785 len = flags & LEN_MASK_V2; 2786 if (unlikely(flags & NV_RX2_ERROR)) { 2787 if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_ERROR4) { 2788 len = nv_getlen(dev, skb->data, len); 2789 if (len < 0) { 2790 dev_kfree_skb(skb); 2791 goto next_pkt; 2792 } 2793 } 2794 /* framing errors are soft errors */ 2795 else if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_FRAMINGERR) { 2796 if (flags & NV_RX2_SUBSTRACT1) 2797 len--; 2798 } 2799 /* the rest are hard errors */ 2800 else { 2801 dev_kfree_skb(skb); 2802 goto next_pkt; 2803 } 2804 } 2805 if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */ 2806 ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */ 2807 skb->ip_summed = CHECKSUM_UNNECESSARY; 2808 } else { 2809 dev_kfree_skb(skb); 2810 goto next_pkt; 2811 } 2812 } 2813 /* got a valid packet - forward it to the network core */ 2814 skb_put(skb, len); 2815 skb->protocol = eth_type_trans(skb, dev); 2816 napi_gro_receive(&np->napi, skb); 2817 u64_stats_update_begin(&np->swstats_rx_syncp); 2818 np->stat_rx_packets++; 2819 np->stat_rx_bytes += len; 2820 u64_stats_update_end(&np->swstats_rx_syncp); 2821 next_pkt: 2822 if (unlikely(np->get_rx.orig++ == np->last_rx.orig)) 2823 np->get_rx.orig = np->first_rx.orig; 2824 if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx)) 2825 np->get_rx_ctx = np->first_rx_ctx; 2826 2827 rx_work++; 2828 } 2829 2830 return rx_work; 2831 } 2832 2833 static int nv_rx_process_optimized(struct net_device *dev, int limit) 2834 { 2835 struct fe_priv *np = netdev_priv(dev); 2836 u32 flags; 2837 u32 vlanflags = 0; 2838 int rx_work = 0; 2839 struct sk_buff *skb; 2840 int len; 2841 2842 while ((np->get_rx.ex != np->put_rx.ex) && 2843 !((flags = le32_to_cpu(np->get_rx.ex->flaglen)) & NV_RX2_AVAIL) && 2844 (rx_work < limit)) { 2845 2846 /* 2847 * the packet is for us - immediately tear down the pci mapping. 2848 * TODO: check if a prefetch of the first cacheline improves 2849 * the performance. 2850 */ 2851 pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma, 2852 np->get_rx_ctx->dma_len, 2853 PCI_DMA_FROMDEVICE); 2854 skb = np->get_rx_ctx->skb; 2855 np->get_rx_ctx->skb = NULL; 2856 2857 /* look at what we actually got: */ 2858 if (likely(flags & NV_RX2_DESCRIPTORVALID)) { 2859 len = flags & LEN_MASK_V2; 2860 if (unlikely(flags & NV_RX2_ERROR)) { 2861 if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_ERROR4) { 2862 len = nv_getlen(dev, skb->data, len); 2863 if (len < 0) { 2864 dev_kfree_skb(skb); 2865 goto next_pkt; 2866 } 2867 } 2868 /* framing errors are soft errors */ 2869 else if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_FRAMINGERR) { 2870 if (flags & NV_RX2_SUBSTRACT1) 2871 len--; 2872 } 2873 /* the rest are hard errors */ 2874 else { 2875 dev_kfree_skb(skb); 2876 goto next_pkt; 2877 } 2878 } 2879 2880 if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */ 2881 ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */ 2882 skb->ip_summed = CHECKSUM_UNNECESSARY; 2883 2884 /* got a valid packet - forward it to the network core */ 2885 skb_put(skb, len); 2886 skb->protocol = eth_type_trans(skb, dev); 2887 prefetch(skb->data); 2888 2889 vlanflags = le32_to_cpu(np->get_rx.ex->buflow); 2890 2891 /* 2892 * There's need to check for NETIF_F_HW_VLAN_RX here. 2893 * Even if vlan rx accel is disabled, 2894 * NV_RX3_VLAN_TAG_PRESENT is pseudo randomly set. 2895 */ 2896 if (dev->features & NETIF_F_HW_VLAN_RX && 2897 vlanflags & NV_RX3_VLAN_TAG_PRESENT) { 2898 u16 vid = vlanflags & NV_RX3_VLAN_TAG_MASK; 2899 2900 __vlan_hwaccel_put_tag(skb, vid); 2901 } 2902 napi_gro_receive(&np->napi, skb); 2903 u64_stats_update_begin(&np->swstats_rx_syncp); 2904 np->stat_rx_packets++; 2905 np->stat_rx_bytes += len; 2906 u64_stats_update_end(&np->swstats_rx_syncp); 2907 } else { 2908 dev_kfree_skb(skb); 2909 } 2910 next_pkt: 2911 if (unlikely(np->get_rx.ex++ == np->last_rx.ex)) 2912 np->get_rx.ex = np->first_rx.ex; 2913 if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx)) 2914 np->get_rx_ctx = np->first_rx_ctx; 2915 2916 rx_work++; 2917 } 2918 2919 return rx_work; 2920 } 2921 2922 static void set_bufsize(struct net_device *dev) 2923 { 2924 struct fe_priv *np = netdev_priv(dev); 2925 2926 if (dev->mtu <= ETH_DATA_LEN) 2927 np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS; 2928 else 2929 np->rx_buf_sz = dev->mtu + NV_RX_HEADERS; 2930 } 2931 2932 /* 2933 * nv_change_mtu: dev->change_mtu function 2934 * Called with dev_base_lock held for read. 2935 */ 2936 static int nv_change_mtu(struct net_device *dev, int new_mtu) 2937 { 2938 struct fe_priv *np = netdev_priv(dev); 2939 int old_mtu; 2940 2941 if (new_mtu < 64 || new_mtu > np->pkt_limit) 2942 return -EINVAL; 2943 2944 old_mtu = dev->mtu; 2945 dev->mtu = new_mtu; 2946 2947 /* return early if the buffer sizes will not change */ 2948 if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN) 2949 return 0; 2950 if (old_mtu == new_mtu) 2951 return 0; 2952 2953 /* synchronized against open : rtnl_lock() held by caller */ 2954 if (netif_running(dev)) { 2955 u8 __iomem *base = get_hwbase(dev); 2956 /* 2957 * It seems that the nic preloads valid ring entries into an 2958 * internal buffer. The procedure for flushing everything is 2959 * guessed, there is probably a simpler approach. 2960 * Changing the MTU is a rare event, it shouldn't matter. 2961 */ 2962 nv_disable_irq(dev); 2963 nv_napi_disable(dev); 2964 netif_tx_lock_bh(dev); 2965 netif_addr_lock(dev); 2966 spin_lock(&np->lock); 2967 /* stop engines */ 2968 nv_stop_rxtx(dev); 2969 nv_txrx_reset(dev); 2970 /* drain rx queue */ 2971 nv_drain_rxtx(dev); 2972 /* reinit driver view of the rx queue */ 2973 set_bufsize(dev); 2974 if (nv_init_ring(dev)) { 2975 if (!np->in_shutdown) 2976 mod_timer(&np->oom_kick, jiffies + OOM_REFILL); 2977 } 2978 /* reinit nic view of the rx queue */ 2979 writel(np->rx_buf_sz, base + NvRegOffloadConfig); 2980 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING); 2981 writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT), 2982 base + NvRegRingSizes); 2983 pci_push(base); 2984 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl); 2985 pci_push(base); 2986 2987 /* restart rx engine */ 2988 nv_start_rxtx(dev); 2989 spin_unlock(&np->lock); 2990 netif_addr_unlock(dev); 2991 netif_tx_unlock_bh(dev); 2992 nv_napi_enable(dev); 2993 nv_enable_irq(dev); 2994 } 2995 return 0; 2996 } 2997 2998 static void nv_copy_mac_to_hw(struct net_device *dev) 2999 { 3000 u8 __iomem *base = get_hwbase(dev); 3001 u32 mac[2]; 3002 3003 mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) + 3004 (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24); 3005 mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8); 3006 3007 writel(mac[0], base + NvRegMacAddrA); 3008 writel(mac[1], base + NvRegMacAddrB); 3009 } 3010 3011 /* 3012 * nv_set_mac_address: dev->set_mac_address function 3013 * Called with rtnl_lock() held. 3014 */ 3015 static int nv_set_mac_address(struct net_device *dev, void *addr) 3016 { 3017 struct fe_priv *np = netdev_priv(dev); 3018 struct sockaddr *macaddr = (struct sockaddr *)addr; 3019 3020 if (!is_valid_ether_addr(macaddr->sa_data)) 3021 return -EADDRNOTAVAIL; 3022 3023 /* synchronized against open : rtnl_lock() held by caller */ 3024 memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN); 3025 3026 if (netif_running(dev)) { 3027 netif_tx_lock_bh(dev); 3028 netif_addr_lock(dev); 3029 spin_lock_irq(&np->lock); 3030 3031 /* stop rx engine */ 3032 nv_stop_rx(dev); 3033 3034 /* set mac address */ 3035 nv_copy_mac_to_hw(dev); 3036 3037 /* restart rx engine */ 3038 nv_start_rx(dev); 3039 spin_unlock_irq(&np->lock); 3040 netif_addr_unlock(dev); 3041 netif_tx_unlock_bh(dev); 3042 } else { 3043 nv_copy_mac_to_hw(dev); 3044 } 3045 return 0; 3046 } 3047 3048 /* 3049 * nv_set_multicast: dev->set_multicast function 3050 * Called with netif_tx_lock held. 3051 */ 3052 static void nv_set_multicast(struct net_device *dev) 3053 { 3054 struct fe_priv *np = netdev_priv(dev); 3055 u8 __iomem *base = get_hwbase(dev); 3056 u32 addr[2]; 3057 u32 mask[2]; 3058 u32 pff = readl(base + NvRegPacketFilterFlags) & NVREG_PFF_PAUSE_RX; 3059 3060 memset(addr, 0, sizeof(addr)); 3061 memset(mask, 0, sizeof(mask)); 3062 3063 if (dev->flags & IFF_PROMISC) { 3064 pff |= NVREG_PFF_PROMISC; 3065 } else { 3066 pff |= NVREG_PFF_MYADDR; 3067 3068 if (dev->flags & IFF_ALLMULTI || !netdev_mc_empty(dev)) { 3069 u32 alwaysOff[2]; 3070 u32 alwaysOn[2]; 3071 3072 alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff; 3073 if (dev->flags & IFF_ALLMULTI) { 3074 alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0; 3075 } else { 3076 struct netdev_hw_addr *ha; 3077 3078 netdev_for_each_mc_addr(ha, dev) { 3079 unsigned char *hw_addr = ha->addr; 3080 u32 a, b; 3081 3082 a = le32_to_cpu(*(__le32 *) hw_addr); 3083 b = le16_to_cpu(*(__le16 *) (&hw_addr[4])); 3084 alwaysOn[0] &= a; 3085 alwaysOff[0] &= ~a; 3086 alwaysOn[1] &= b; 3087 alwaysOff[1] &= ~b; 3088 } 3089 } 3090 addr[0] = alwaysOn[0]; 3091 addr[1] = alwaysOn[1]; 3092 mask[0] = alwaysOn[0] | alwaysOff[0]; 3093 mask[1] = alwaysOn[1] | alwaysOff[1]; 3094 } else { 3095 mask[0] = NVREG_MCASTMASKA_NONE; 3096 mask[1] = NVREG_MCASTMASKB_NONE; 3097 } 3098 } 3099 addr[0] |= NVREG_MCASTADDRA_FORCE; 3100 pff |= NVREG_PFF_ALWAYS; 3101 spin_lock_irq(&np->lock); 3102 nv_stop_rx(dev); 3103 writel(addr[0], base + NvRegMulticastAddrA); 3104 writel(addr[1], base + NvRegMulticastAddrB); 3105 writel(mask[0], base + NvRegMulticastMaskA); 3106 writel(mask[1], base + NvRegMulticastMaskB); 3107 writel(pff, base + NvRegPacketFilterFlags); 3108 nv_start_rx(dev); 3109 spin_unlock_irq(&np->lock); 3110 } 3111 3112 static void nv_update_pause(struct net_device *dev, u32 pause_flags) 3113 { 3114 struct fe_priv *np = netdev_priv(dev); 3115 u8 __iomem *base = get_hwbase(dev); 3116 3117 np->pause_flags &= ~(NV_PAUSEFRAME_TX_ENABLE | NV_PAUSEFRAME_RX_ENABLE); 3118 3119 if (np->pause_flags & NV_PAUSEFRAME_RX_CAPABLE) { 3120 u32 pff = readl(base + NvRegPacketFilterFlags) & ~NVREG_PFF_PAUSE_RX; 3121 if (pause_flags & NV_PAUSEFRAME_RX_ENABLE) { 3122 writel(pff|NVREG_PFF_PAUSE_RX, base + NvRegPacketFilterFlags); 3123 np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE; 3124 } else { 3125 writel(pff, base + NvRegPacketFilterFlags); 3126 } 3127 } 3128 if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE) { 3129 u32 regmisc = readl(base + NvRegMisc1) & ~NVREG_MISC1_PAUSE_TX; 3130 if (pause_flags & NV_PAUSEFRAME_TX_ENABLE) { 3131 u32 pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V1; 3132 if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V2) 3133 pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V2; 3134 if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V3) { 3135 pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V3; 3136 /* limit the number of tx pause frames to a default of 8 */ 3137 writel(readl(base + NvRegTxPauseFrameLimit)|NVREG_TX_PAUSEFRAMELIMIT_ENABLE, base + NvRegTxPauseFrameLimit); 3138 } 3139 writel(pause_enable, base + NvRegTxPauseFrame); 3140 writel(regmisc|NVREG_MISC1_PAUSE_TX, base + NvRegMisc1); 3141 np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE; 3142 } else { 3143 writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame); 3144 writel(regmisc, base + NvRegMisc1); 3145 } 3146 } 3147 } 3148 3149 static void nv_force_linkspeed(struct net_device *dev, int speed, int duplex) 3150 { 3151 struct fe_priv *np = netdev_priv(dev); 3152 u8 __iomem *base = get_hwbase(dev); 3153 u32 phyreg, txreg; 3154 int mii_status; 3155 3156 np->linkspeed = NVREG_LINKSPEED_FORCE|speed; 3157 np->duplex = duplex; 3158 3159 /* see if gigabit phy */ 3160 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ); 3161 if (mii_status & PHY_GIGABIT) { 3162 np->gigabit = PHY_GIGABIT; 3163 phyreg = readl(base + NvRegSlotTime); 3164 phyreg &= ~(0x3FF00); 3165 if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10) 3166 phyreg |= NVREG_SLOTTIME_10_100_FULL; 3167 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100) 3168 phyreg |= NVREG_SLOTTIME_10_100_FULL; 3169 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000) 3170 phyreg |= NVREG_SLOTTIME_1000_FULL; 3171 writel(phyreg, base + NvRegSlotTime); 3172 } 3173 3174 phyreg = readl(base + NvRegPhyInterface); 3175 phyreg &= ~(PHY_HALF|PHY_100|PHY_1000); 3176 if (np->duplex == 0) 3177 phyreg |= PHY_HALF; 3178 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100) 3179 phyreg |= PHY_100; 3180 else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == 3181 NVREG_LINKSPEED_1000) 3182 phyreg |= PHY_1000; 3183 writel(phyreg, base + NvRegPhyInterface); 3184 3185 if (phyreg & PHY_RGMII) { 3186 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == 3187 NVREG_LINKSPEED_1000) 3188 txreg = NVREG_TX_DEFERRAL_RGMII_1000; 3189 else 3190 txreg = NVREG_TX_DEFERRAL_RGMII_10_100; 3191 } else { 3192 txreg = NVREG_TX_DEFERRAL_DEFAULT; 3193 } 3194 writel(txreg, base + NvRegTxDeferral); 3195 3196 if (np->desc_ver == DESC_VER_1) { 3197 txreg = NVREG_TX_WM_DESC1_DEFAULT; 3198 } else { 3199 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == 3200 NVREG_LINKSPEED_1000) 3201 txreg = NVREG_TX_WM_DESC2_3_1000; 3202 else 3203 txreg = NVREG_TX_WM_DESC2_3_DEFAULT; 3204 } 3205 writel(txreg, base + NvRegTxWatermark); 3206 3207 writel(NVREG_MISC1_FORCE | (np->duplex ? 0 : NVREG_MISC1_HD), 3208 base + NvRegMisc1); 3209 pci_push(base); 3210 writel(np->linkspeed, base + NvRegLinkSpeed); 3211 pci_push(base); 3212 3213 return; 3214 } 3215 3216 /** 3217 * nv_update_linkspeed: Setup the MAC according to the link partner 3218 * @dev: Network device to be configured 3219 * 3220 * The function queries the PHY and checks if there is a link partner. 3221 * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is 3222 * set to 10 MBit HD. 3223 * 3224 * The function returns 0 if there is no link partner and 1 if there is 3225 * a good link partner. 3226 */ 3227 static int nv_update_linkspeed(struct net_device *dev) 3228 { 3229 struct fe_priv *np = netdev_priv(dev); 3230 u8 __iomem *base = get_hwbase(dev); 3231 int adv = 0; 3232 int lpa = 0; 3233 int adv_lpa, adv_pause, lpa_pause; 3234 int newls = np->linkspeed; 3235 int newdup = np->duplex; 3236 int mii_status; 3237 u32 bmcr; 3238 int retval = 0; 3239 u32 control_1000, status_1000, phyreg, pause_flags, txreg; 3240 u32 txrxFlags = 0; 3241 u32 phy_exp; 3242 3243 /* If device loopback is enabled, set carrier on and enable max link 3244 * speed. 3245 */ 3246 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); 3247 if (bmcr & BMCR_LOOPBACK) { 3248 if (netif_running(dev)) { 3249 nv_force_linkspeed(dev, NVREG_LINKSPEED_1000, 1); 3250 if (!netif_carrier_ok(dev)) 3251 netif_carrier_on(dev); 3252 } 3253 return 1; 3254 } 3255 3256 /* BMSR_LSTATUS is latched, read it twice: 3257 * we want the current value. 3258 */ 3259 mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ); 3260 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ); 3261 3262 if (!(mii_status & BMSR_LSTATUS)) { 3263 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10; 3264 newdup = 0; 3265 retval = 0; 3266 goto set_speed; 3267 } 3268 3269 if (np->autoneg == 0) { 3270 if (np->fixed_mode & LPA_100FULL) { 3271 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100; 3272 newdup = 1; 3273 } else if (np->fixed_mode & LPA_100HALF) { 3274 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100; 3275 newdup = 0; 3276 } else if (np->fixed_mode & LPA_10FULL) { 3277 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10; 3278 newdup = 1; 3279 } else { 3280 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10; 3281 newdup = 0; 3282 } 3283 retval = 1; 3284 goto set_speed; 3285 } 3286 /* check auto negotiation is complete */ 3287 if (!(mii_status & BMSR_ANEGCOMPLETE)) { 3288 /* still in autonegotiation - configure nic for 10 MBit HD and wait. */ 3289 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10; 3290 newdup = 0; 3291 retval = 0; 3292 goto set_speed; 3293 } 3294 3295 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ); 3296 lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ); 3297 3298 retval = 1; 3299 if (np->gigabit == PHY_GIGABIT) { 3300 control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ); 3301 status_1000 = mii_rw(dev, np->phyaddr, MII_STAT1000, MII_READ); 3302 3303 if ((control_1000 & ADVERTISE_1000FULL) && 3304 (status_1000 & LPA_1000FULL)) { 3305 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000; 3306 newdup = 1; 3307 goto set_speed; 3308 } 3309 } 3310 3311 /* FIXME: handle parallel detection properly */ 3312 adv_lpa = lpa & adv; 3313 if (adv_lpa & LPA_100FULL) { 3314 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100; 3315 newdup = 1; 3316 } else if (adv_lpa & LPA_100HALF) { 3317 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100; 3318 newdup = 0; 3319 } else if (adv_lpa & LPA_10FULL) { 3320 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10; 3321 newdup = 1; 3322 } else if (adv_lpa & LPA_10HALF) { 3323 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10; 3324 newdup = 0; 3325 } else { 3326 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10; 3327 newdup = 0; 3328 } 3329 3330 set_speed: 3331 if (np->duplex == newdup && np->linkspeed == newls) 3332 return retval; 3333 3334 np->duplex = newdup; 3335 np->linkspeed = newls; 3336 3337 /* The transmitter and receiver must be restarted for safe update */ 3338 if (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_START) { 3339 txrxFlags |= NV_RESTART_TX; 3340 nv_stop_tx(dev); 3341 } 3342 if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) { 3343 txrxFlags |= NV_RESTART_RX; 3344 nv_stop_rx(dev); 3345 } 3346 3347 if (np->gigabit == PHY_GIGABIT) { 3348 phyreg = readl(base + NvRegSlotTime); 3349 phyreg &= ~(0x3FF00); 3350 if (((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10) || 3351 ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100)) 3352 phyreg |= NVREG_SLOTTIME_10_100_FULL; 3353 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000) 3354 phyreg |= NVREG_SLOTTIME_1000_FULL; 3355 writel(phyreg, base + NvRegSlotTime); 3356 } 3357 3358 phyreg = readl(base + NvRegPhyInterface); 3359 phyreg &= ~(PHY_HALF|PHY_100|PHY_1000); 3360 if (np->duplex == 0) 3361 phyreg |= PHY_HALF; 3362 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100) 3363 phyreg |= PHY_100; 3364 else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000) 3365 phyreg |= PHY_1000; 3366 writel(phyreg, base + NvRegPhyInterface); 3367 3368 phy_exp = mii_rw(dev, np->phyaddr, MII_EXPANSION, MII_READ) & EXPANSION_NWAY; /* autoneg capable */ 3369 if (phyreg & PHY_RGMII) { 3370 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000) { 3371 txreg = NVREG_TX_DEFERRAL_RGMII_1000; 3372 } else { 3373 if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX)) { 3374 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_10) 3375 txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_10; 3376 else 3377 txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_100; 3378 } else { 3379 txreg = NVREG_TX_DEFERRAL_RGMII_10_100; 3380 } 3381 } 3382 } else { 3383 if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX)) 3384 txreg = NVREG_TX_DEFERRAL_MII_STRETCH; 3385 else 3386 txreg = NVREG_TX_DEFERRAL_DEFAULT; 3387 } 3388 writel(txreg, base + NvRegTxDeferral); 3389 3390 if (np->desc_ver == DESC_VER_1) { 3391 txreg = NVREG_TX_WM_DESC1_DEFAULT; 3392 } else { 3393 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000) 3394 txreg = NVREG_TX_WM_DESC2_3_1000; 3395 else 3396 txreg = NVREG_TX_WM_DESC2_3_DEFAULT; 3397 } 3398 writel(txreg, base + NvRegTxWatermark); 3399 3400 writel(NVREG_MISC1_FORCE | (np->duplex ? 0 : NVREG_MISC1_HD), 3401 base + NvRegMisc1); 3402 pci_push(base); 3403 writel(np->linkspeed, base + NvRegLinkSpeed); 3404 pci_push(base); 3405 3406 pause_flags = 0; 3407 /* setup pause frame */ 3408 if (np->duplex != 0) { 3409 if (np->autoneg && np->pause_flags & NV_PAUSEFRAME_AUTONEG) { 3410 adv_pause = adv & (ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM); 3411 lpa_pause = lpa & (LPA_PAUSE_CAP | LPA_PAUSE_ASYM); 3412 3413 switch (adv_pause) { 3414 case ADVERTISE_PAUSE_CAP: 3415 if (lpa_pause & LPA_PAUSE_CAP) { 3416 pause_flags |= NV_PAUSEFRAME_RX_ENABLE; 3417 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) 3418 pause_flags |= NV_PAUSEFRAME_TX_ENABLE; 3419 } 3420 break; 3421 case ADVERTISE_PAUSE_ASYM: 3422 if (lpa_pause == (LPA_PAUSE_CAP | LPA_PAUSE_ASYM)) 3423 pause_flags |= NV_PAUSEFRAME_TX_ENABLE; 3424 break; 3425 case ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM: 3426 if (lpa_pause & LPA_PAUSE_CAP) { 3427 pause_flags |= NV_PAUSEFRAME_RX_ENABLE; 3428 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) 3429 pause_flags |= NV_PAUSEFRAME_TX_ENABLE; 3430 } 3431 if (lpa_pause == LPA_PAUSE_ASYM) 3432 pause_flags |= NV_PAUSEFRAME_RX_ENABLE; 3433 break; 3434 } 3435 } else { 3436 pause_flags = np->pause_flags; 3437 } 3438 } 3439 nv_update_pause(dev, pause_flags); 3440 3441 if (txrxFlags & NV_RESTART_TX) 3442 nv_start_tx(dev); 3443 if (txrxFlags & NV_RESTART_RX) 3444 nv_start_rx(dev); 3445 3446 return retval; 3447 } 3448 3449 static void nv_linkchange(struct net_device *dev) 3450 { 3451 if (nv_update_linkspeed(dev)) { 3452 if (!netif_carrier_ok(dev)) { 3453 netif_carrier_on(dev); 3454 netdev_info(dev, "link up\n"); 3455 nv_txrx_gate(dev, false); 3456 nv_start_rx(dev); 3457 } 3458 } else { 3459 if (netif_carrier_ok(dev)) { 3460 netif_carrier_off(dev); 3461 netdev_info(dev, "link down\n"); 3462 nv_txrx_gate(dev, true); 3463 nv_stop_rx(dev); 3464 } 3465 } 3466 } 3467 3468 static void nv_link_irq(struct net_device *dev) 3469 { 3470 u8 __iomem *base = get_hwbase(dev); 3471 u32 miistat; 3472 3473 miistat = readl(base + NvRegMIIStatus); 3474 writel(NVREG_MIISTAT_LINKCHANGE, base + NvRegMIIStatus); 3475 3476 if (miistat & (NVREG_MIISTAT_LINKCHANGE)) 3477 nv_linkchange(dev); 3478 } 3479 3480 static void nv_msi_workaround(struct fe_priv *np) 3481 { 3482 3483 /* Need to toggle the msi irq mask within the ethernet device, 3484 * otherwise, future interrupts will not be detected. 3485 */ 3486 if (np->msi_flags & NV_MSI_ENABLED) { 3487 u8 __iomem *base = np->base; 3488 3489 writel(0, base + NvRegMSIIrqMask); 3490 writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask); 3491 } 3492 } 3493 3494 static inline int nv_change_interrupt_mode(struct net_device *dev, int total_work) 3495 { 3496 struct fe_priv *np = netdev_priv(dev); 3497 3498 if (optimization_mode == NV_OPTIMIZATION_MODE_DYNAMIC) { 3499 if (total_work > NV_DYNAMIC_THRESHOLD) { 3500 /* transition to poll based interrupts */ 3501 np->quiet_count = 0; 3502 if (np->irqmask != NVREG_IRQMASK_CPU) { 3503 np->irqmask = NVREG_IRQMASK_CPU; 3504 return 1; 3505 } 3506 } else { 3507 if (np->quiet_count < NV_DYNAMIC_MAX_QUIET_COUNT) { 3508 np->quiet_count++; 3509 } else { 3510 /* reached a period of low activity, switch 3511 to per tx/rx packet interrupts */ 3512 if (np->irqmask != NVREG_IRQMASK_THROUGHPUT) { 3513 np->irqmask = NVREG_IRQMASK_THROUGHPUT; 3514 return 1; 3515 } 3516 } 3517 } 3518 } 3519 return 0; 3520 } 3521 3522 static irqreturn_t nv_nic_irq(int foo, void *data) 3523 { 3524 struct net_device *dev = (struct net_device *) data; 3525 struct fe_priv *np = netdev_priv(dev); 3526 u8 __iomem *base = get_hwbase(dev); 3527 3528 if (!(np->msi_flags & NV_MSI_X_ENABLED)) { 3529 np->events = readl(base + NvRegIrqStatus); 3530 writel(np->events, base + NvRegIrqStatus); 3531 } else { 3532 np->events = readl(base + NvRegMSIXIrqStatus); 3533 writel(np->events, base + NvRegMSIXIrqStatus); 3534 } 3535 if (!(np->events & np->irqmask)) 3536 return IRQ_NONE; 3537 3538 nv_msi_workaround(np); 3539 3540 if (napi_schedule_prep(&np->napi)) { 3541 /* 3542 * Disable further irq's (msix not enabled with napi) 3543 */ 3544 writel(0, base + NvRegIrqMask); 3545 __napi_schedule(&np->napi); 3546 } 3547 3548 return IRQ_HANDLED; 3549 } 3550 3551 /** 3552 * All _optimized functions are used to help increase performance 3553 * (reduce CPU and increase throughput). They use descripter version 3, 3554 * compiler directives, and reduce memory accesses. 3555 */ 3556 static irqreturn_t nv_nic_irq_optimized(int foo, void *data) 3557 { 3558 struct net_device *dev = (struct net_device *) data; 3559 struct fe_priv *np = netdev_priv(dev); 3560 u8 __iomem *base = get_hwbase(dev); 3561 3562 if (!(np->msi_flags & NV_MSI_X_ENABLED)) { 3563 np->events = readl(base + NvRegIrqStatus); 3564 writel(np->events, base + NvRegIrqStatus); 3565 } else { 3566 np->events = readl(base + NvRegMSIXIrqStatus); 3567 writel(np->events, base + NvRegMSIXIrqStatus); 3568 } 3569 if (!(np->events & np->irqmask)) 3570 return IRQ_NONE; 3571 3572 nv_msi_workaround(np); 3573 3574 if (napi_schedule_prep(&np->napi)) { 3575 /* 3576 * Disable further irq's (msix not enabled with napi) 3577 */ 3578 writel(0, base + NvRegIrqMask); 3579 __napi_schedule(&np->napi); 3580 } 3581 3582 return IRQ_HANDLED; 3583 } 3584 3585 static irqreturn_t nv_nic_irq_tx(int foo, void *data) 3586 { 3587 struct net_device *dev = (struct net_device *) data; 3588 struct fe_priv *np = netdev_priv(dev); 3589 u8 __iomem *base = get_hwbase(dev); 3590 u32 events; 3591 int i; 3592 unsigned long flags; 3593 3594 for (i = 0;; i++) { 3595 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL; 3596 writel(events, base + NvRegMSIXIrqStatus); 3597 netdev_dbg(dev, "tx irq events: %08x\n", events); 3598 if (!(events & np->irqmask)) 3599 break; 3600 3601 spin_lock_irqsave(&np->lock, flags); 3602 nv_tx_done_optimized(dev, TX_WORK_PER_LOOP); 3603 spin_unlock_irqrestore(&np->lock, flags); 3604 3605 if (unlikely(i > max_interrupt_work)) { 3606 spin_lock_irqsave(&np->lock, flags); 3607 /* disable interrupts on the nic */ 3608 writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask); 3609 pci_push(base); 3610 3611 if (!np->in_shutdown) { 3612 np->nic_poll_irq |= NVREG_IRQ_TX_ALL; 3613 mod_timer(&np->nic_poll, jiffies + POLL_WAIT); 3614 } 3615 spin_unlock_irqrestore(&np->lock, flags); 3616 netdev_dbg(dev, "%s: too many iterations (%d)\n", 3617 __func__, i); 3618 break; 3619 } 3620 3621 } 3622 3623 return IRQ_RETVAL(i); 3624 } 3625 3626 static int nv_napi_poll(struct napi_struct *napi, int budget) 3627 { 3628 struct fe_priv *np = container_of(napi, struct fe_priv, napi); 3629 struct net_device *dev = np->dev; 3630 u8 __iomem *base = get_hwbase(dev); 3631 unsigned long flags; 3632 int retcode; 3633 int rx_count, tx_work = 0, rx_work = 0; 3634 3635 do { 3636 if (!nv_optimized(np)) { 3637 spin_lock_irqsave(&np->lock, flags); 3638 tx_work += nv_tx_done(dev, np->tx_ring_size); 3639 spin_unlock_irqrestore(&np->lock, flags); 3640 3641 rx_count = nv_rx_process(dev, budget - rx_work); 3642 retcode = nv_alloc_rx(dev); 3643 } else { 3644 spin_lock_irqsave(&np->lock, flags); 3645 tx_work += nv_tx_done_optimized(dev, np->tx_ring_size); 3646 spin_unlock_irqrestore(&np->lock, flags); 3647 3648 rx_count = nv_rx_process_optimized(dev, 3649 budget - rx_work); 3650 retcode = nv_alloc_rx_optimized(dev); 3651 } 3652 } while (retcode == 0 && 3653 rx_count > 0 && (rx_work += rx_count) < budget); 3654 3655 if (retcode) { 3656 spin_lock_irqsave(&np->lock, flags); 3657 if (!np->in_shutdown) 3658 mod_timer(&np->oom_kick, jiffies + OOM_REFILL); 3659 spin_unlock_irqrestore(&np->lock, flags); 3660 } 3661 3662 nv_change_interrupt_mode(dev, tx_work + rx_work); 3663 3664 if (unlikely(np->events & NVREG_IRQ_LINK)) { 3665 spin_lock_irqsave(&np->lock, flags); 3666 nv_link_irq(dev); 3667 spin_unlock_irqrestore(&np->lock, flags); 3668 } 3669 if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) { 3670 spin_lock_irqsave(&np->lock, flags); 3671 nv_linkchange(dev); 3672 spin_unlock_irqrestore(&np->lock, flags); 3673 np->link_timeout = jiffies + LINK_TIMEOUT; 3674 } 3675 if (unlikely(np->events & NVREG_IRQ_RECOVER_ERROR)) { 3676 spin_lock_irqsave(&np->lock, flags); 3677 if (!np->in_shutdown) { 3678 np->nic_poll_irq = np->irqmask; 3679 np->recover_error = 1; 3680 mod_timer(&np->nic_poll, jiffies + POLL_WAIT); 3681 } 3682 spin_unlock_irqrestore(&np->lock, flags); 3683 napi_complete(napi); 3684 return rx_work; 3685 } 3686 3687 if (rx_work < budget) { 3688 /* re-enable interrupts 3689 (msix not enabled in napi) */ 3690 napi_complete(napi); 3691 3692 writel(np->irqmask, base + NvRegIrqMask); 3693 } 3694 return rx_work; 3695 } 3696 3697 static irqreturn_t nv_nic_irq_rx(int foo, void *data) 3698 { 3699 struct net_device *dev = (struct net_device *) data; 3700 struct fe_priv *np = netdev_priv(dev); 3701 u8 __iomem *base = get_hwbase(dev); 3702 u32 events; 3703 int i; 3704 unsigned long flags; 3705 3706 for (i = 0;; i++) { 3707 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL; 3708 writel(events, base + NvRegMSIXIrqStatus); 3709 netdev_dbg(dev, "rx irq events: %08x\n", events); 3710 if (!(events & np->irqmask)) 3711 break; 3712 3713 if (nv_rx_process_optimized(dev, RX_WORK_PER_LOOP)) { 3714 if (unlikely(nv_alloc_rx_optimized(dev))) { 3715 spin_lock_irqsave(&np->lock, flags); 3716 if (!np->in_shutdown) 3717 mod_timer(&np->oom_kick, jiffies + OOM_REFILL); 3718 spin_unlock_irqrestore(&np->lock, flags); 3719 } 3720 } 3721 3722 if (unlikely(i > max_interrupt_work)) { 3723 spin_lock_irqsave(&np->lock, flags); 3724 /* disable interrupts on the nic */ 3725 writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask); 3726 pci_push(base); 3727 3728 if (!np->in_shutdown) { 3729 np->nic_poll_irq |= NVREG_IRQ_RX_ALL; 3730 mod_timer(&np->nic_poll, jiffies + POLL_WAIT); 3731 } 3732 spin_unlock_irqrestore(&np->lock, flags); 3733 netdev_dbg(dev, "%s: too many iterations (%d)\n", 3734 __func__, i); 3735 break; 3736 } 3737 } 3738 3739 return IRQ_RETVAL(i); 3740 } 3741 3742 static irqreturn_t nv_nic_irq_other(int foo, void *data) 3743 { 3744 struct net_device *dev = (struct net_device *) data; 3745 struct fe_priv *np = netdev_priv(dev); 3746 u8 __iomem *base = get_hwbase(dev); 3747 u32 events; 3748 int i; 3749 unsigned long flags; 3750 3751 for (i = 0;; i++) { 3752 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER; 3753 writel(events, base + NvRegMSIXIrqStatus); 3754 netdev_dbg(dev, "irq events: %08x\n", events); 3755 if (!(events & np->irqmask)) 3756 break; 3757 3758 /* check tx in case we reached max loop limit in tx isr */ 3759 spin_lock_irqsave(&np->lock, flags); 3760 nv_tx_done_optimized(dev, TX_WORK_PER_LOOP); 3761 spin_unlock_irqrestore(&np->lock, flags); 3762 3763 if (events & NVREG_IRQ_LINK) { 3764 spin_lock_irqsave(&np->lock, flags); 3765 nv_link_irq(dev); 3766 spin_unlock_irqrestore(&np->lock, flags); 3767 } 3768 if (np->need_linktimer && time_after(jiffies, np->link_timeout)) { 3769 spin_lock_irqsave(&np->lock, flags); 3770 nv_linkchange(dev); 3771 spin_unlock_irqrestore(&np->lock, flags); 3772 np->link_timeout = jiffies + LINK_TIMEOUT; 3773 } 3774 if (events & NVREG_IRQ_RECOVER_ERROR) { 3775 spin_lock_irq(&np->lock); 3776 /* disable interrupts on the nic */ 3777 writel(NVREG_IRQ_OTHER, base + NvRegIrqMask); 3778 pci_push(base); 3779 3780 if (!np->in_shutdown) { 3781 np->nic_poll_irq |= NVREG_IRQ_OTHER; 3782 np->recover_error = 1; 3783 mod_timer(&np->nic_poll, jiffies + POLL_WAIT); 3784 } 3785 spin_unlock_irq(&np->lock); 3786 break; 3787 } 3788 if (unlikely(i > max_interrupt_work)) { 3789 spin_lock_irqsave(&np->lock, flags); 3790 /* disable interrupts on the nic */ 3791 writel(NVREG_IRQ_OTHER, base + NvRegIrqMask); 3792 pci_push(base); 3793 3794 if (!np->in_shutdown) { 3795 np->nic_poll_irq |= NVREG_IRQ_OTHER; 3796 mod_timer(&np->nic_poll, jiffies + POLL_WAIT); 3797 } 3798 spin_unlock_irqrestore(&np->lock, flags); 3799 netdev_dbg(dev, "%s: too many iterations (%d)\n", 3800 __func__, i); 3801 break; 3802 } 3803 3804 } 3805 3806 return IRQ_RETVAL(i); 3807 } 3808 3809 static irqreturn_t nv_nic_irq_test(int foo, void *data) 3810 { 3811 struct net_device *dev = (struct net_device *) data; 3812 struct fe_priv *np = netdev_priv(dev); 3813 u8 __iomem *base = get_hwbase(dev); 3814 u32 events; 3815 3816 if (!(np->msi_flags & NV_MSI_X_ENABLED)) { 3817 events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK; 3818 writel(events & NVREG_IRQ_TIMER, base + NvRegIrqStatus); 3819 } else { 3820 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK; 3821 writel(events & NVREG_IRQ_TIMER, base + NvRegMSIXIrqStatus); 3822 } 3823 pci_push(base); 3824 if (!(events & NVREG_IRQ_TIMER)) 3825 return IRQ_RETVAL(0); 3826 3827 nv_msi_workaround(np); 3828 3829 spin_lock(&np->lock); 3830 np->intr_test = 1; 3831 spin_unlock(&np->lock); 3832 3833 return IRQ_RETVAL(1); 3834 } 3835 3836 static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask) 3837 { 3838 u8 __iomem *base = get_hwbase(dev); 3839 int i; 3840 u32 msixmap = 0; 3841 3842 /* Each interrupt bit can be mapped to a MSIX vector (4 bits). 3843 * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents 3844 * the remaining 8 interrupts. 3845 */ 3846 for (i = 0; i < 8; i++) { 3847 if ((irqmask >> i) & 0x1) 3848 msixmap |= vector << (i << 2); 3849 } 3850 writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0); 3851 3852 msixmap = 0; 3853 for (i = 0; i < 8; i++) { 3854 if ((irqmask >> (i + 8)) & 0x1) 3855 msixmap |= vector << (i << 2); 3856 } 3857 writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1); 3858 } 3859 3860 static int nv_request_irq(struct net_device *dev, int intr_test) 3861 { 3862 struct fe_priv *np = get_nvpriv(dev); 3863 u8 __iomem *base = get_hwbase(dev); 3864 int ret = 1; 3865 int i; 3866 irqreturn_t (*handler)(int foo, void *data); 3867 3868 if (intr_test) { 3869 handler = nv_nic_irq_test; 3870 } else { 3871 if (nv_optimized(np)) 3872 handler = nv_nic_irq_optimized; 3873 else 3874 handler = nv_nic_irq; 3875 } 3876 3877 if (np->msi_flags & NV_MSI_X_CAPABLE) { 3878 for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) 3879 np->msi_x_entry[i].entry = i; 3880 ret = pci_enable_msix(np->pci_dev, np->msi_x_entry, (np->msi_flags & NV_MSI_X_VECTORS_MASK)); 3881 if (ret == 0) { 3882 np->msi_flags |= NV_MSI_X_ENABLED; 3883 if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT && !intr_test) { 3884 /* Request irq for rx handling */ 3885 sprintf(np->name_rx, "%s-rx", dev->name); 3886 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, 3887 nv_nic_irq_rx, IRQF_SHARED, np->name_rx, dev) != 0) { 3888 netdev_info(dev, 3889 "request_irq failed for rx %d\n", 3890 ret); 3891 pci_disable_msix(np->pci_dev); 3892 np->msi_flags &= ~NV_MSI_X_ENABLED; 3893 goto out_err; 3894 } 3895 /* Request irq for tx handling */ 3896 sprintf(np->name_tx, "%s-tx", dev->name); 3897 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, 3898 nv_nic_irq_tx, IRQF_SHARED, np->name_tx, dev) != 0) { 3899 netdev_info(dev, 3900 "request_irq failed for tx %d\n", 3901 ret); 3902 pci_disable_msix(np->pci_dev); 3903 np->msi_flags &= ~NV_MSI_X_ENABLED; 3904 goto out_free_rx; 3905 } 3906 /* Request irq for link and timer handling */ 3907 sprintf(np->name_other, "%s-other", dev->name); 3908 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector, 3909 nv_nic_irq_other, IRQF_SHARED, np->name_other, dev) != 0) { 3910 netdev_info(dev, 3911 "request_irq failed for link %d\n", 3912 ret); 3913 pci_disable_msix(np->pci_dev); 3914 np->msi_flags &= ~NV_MSI_X_ENABLED; 3915 goto out_free_tx; 3916 } 3917 /* map interrupts to their respective vector */ 3918 writel(0, base + NvRegMSIXMap0); 3919 writel(0, base + NvRegMSIXMap1); 3920 set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL); 3921 set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL); 3922 set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER); 3923 } else { 3924 /* Request irq for all interrupts */ 3925 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, handler, IRQF_SHARED, dev->name, dev) != 0) { 3926 netdev_info(dev, 3927 "request_irq failed %d\n", 3928 ret); 3929 pci_disable_msix(np->pci_dev); 3930 np->msi_flags &= ~NV_MSI_X_ENABLED; 3931 goto out_err; 3932 } 3933 3934 /* map interrupts to vector 0 */ 3935 writel(0, base + NvRegMSIXMap0); 3936 writel(0, base + NvRegMSIXMap1); 3937 } 3938 netdev_info(dev, "MSI-X enabled\n"); 3939 } 3940 } 3941 if (ret != 0 && np->msi_flags & NV_MSI_CAPABLE) { 3942 ret = pci_enable_msi(np->pci_dev); 3943 if (ret == 0) { 3944 np->msi_flags |= NV_MSI_ENABLED; 3945 dev->irq = np->pci_dev->irq; 3946 if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0) { 3947 netdev_info(dev, "request_irq failed %d\n", 3948 ret); 3949 pci_disable_msi(np->pci_dev); 3950 np->msi_flags &= ~NV_MSI_ENABLED; 3951 dev->irq = np->pci_dev->irq; 3952 goto out_err; 3953 } 3954 3955 /* map interrupts to vector 0 */ 3956 writel(0, base + NvRegMSIMap0); 3957 writel(0, base + NvRegMSIMap1); 3958 /* enable msi vector 0 */ 3959 writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask); 3960 netdev_info(dev, "MSI enabled\n"); 3961 } 3962 } 3963 if (ret != 0) { 3964 if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0) 3965 goto out_err; 3966 3967 } 3968 3969 return 0; 3970 out_free_tx: 3971 free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, dev); 3972 out_free_rx: 3973 free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, dev); 3974 out_err: 3975 return 1; 3976 } 3977 3978 static void nv_free_irq(struct net_device *dev) 3979 { 3980 struct fe_priv *np = get_nvpriv(dev); 3981 int i; 3982 3983 if (np->msi_flags & NV_MSI_X_ENABLED) { 3984 for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) 3985 free_irq(np->msi_x_entry[i].vector, dev); 3986 pci_disable_msix(np->pci_dev); 3987 np->msi_flags &= ~NV_MSI_X_ENABLED; 3988 } else { 3989 free_irq(np->pci_dev->irq, dev); 3990 if (np->msi_flags & NV_MSI_ENABLED) { 3991 pci_disable_msi(np->pci_dev); 3992 np->msi_flags &= ~NV_MSI_ENABLED; 3993 } 3994 } 3995 } 3996 3997 static void nv_do_nic_poll(unsigned long data) 3998 { 3999 struct net_device *dev = (struct net_device *) data; 4000 struct fe_priv *np = netdev_priv(dev); 4001 u8 __iomem *base = get_hwbase(dev); 4002 u32 mask = 0; 4003 4004 /* 4005 * First disable irq(s) and then 4006 * reenable interrupts on the nic, we have to do this before calling 4007 * nv_nic_irq because that may decide to do otherwise 4008 */ 4009 4010 if (!using_multi_irqs(dev)) { 4011 if (np->msi_flags & NV_MSI_X_ENABLED) 4012 disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector); 4013 else 4014 disable_irq_lockdep(np->pci_dev->irq); 4015 mask = np->irqmask; 4016 } else { 4017 if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) { 4018 disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector); 4019 mask |= NVREG_IRQ_RX_ALL; 4020 } 4021 if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) { 4022 disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector); 4023 mask |= NVREG_IRQ_TX_ALL; 4024 } 4025 if (np->nic_poll_irq & NVREG_IRQ_OTHER) { 4026 disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector); 4027 mask |= NVREG_IRQ_OTHER; 4028 } 4029 } 4030 /* disable_irq() contains synchronize_irq, thus no irq handler can run now */ 4031 4032 if (np->recover_error) { 4033 np->recover_error = 0; 4034 netdev_info(dev, "MAC in recoverable error state\n"); 4035 if (netif_running(dev)) { 4036 netif_tx_lock_bh(dev); 4037 netif_addr_lock(dev); 4038 spin_lock(&np->lock); 4039 /* stop engines */ 4040 nv_stop_rxtx(dev); 4041 if (np->driver_data & DEV_HAS_POWER_CNTRL) 4042 nv_mac_reset(dev); 4043 nv_txrx_reset(dev); 4044 /* drain rx queue */ 4045 nv_drain_rxtx(dev); 4046 /* reinit driver view of the rx queue */ 4047 set_bufsize(dev); 4048 if (nv_init_ring(dev)) { 4049 if (!np->in_shutdown) 4050 mod_timer(&np->oom_kick, jiffies + OOM_REFILL); 4051 } 4052 /* reinit nic view of the rx queue */ 4053 writel(np->rx_buf_sz, base + NvRegOffloadConfig); 4054 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING); 4055 writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT), 4056 base + NvRegRingSizes); 4057 pci_push(base); 4058 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl); 4059 pci_push(base); 4060 /* clear interrupts */ 4061 if (!(np->msi_flags & NV_MSI_X_ENABLED)) 4062 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus); 4063 else 4064 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus); 4065 4066 /* restart rx engine */ 4067 nv_start_rxtx(dev); 4068 spin_unlock(&np->lock); 4069 netif_addr_unlock(dev); 4070 netif_tx_unlock_bh(dev); 4071 } 4072 } 4073 4074 writel(mask, base + NvRegIrqMask); 4075 pci_push(base); 4076 4077 if (!using_multi_irqs(dev)) { 4078 np->nic_poll_irq = 0; 4079 if (nv_optimized(np)) 4080 nv_nic_irq_optimized(0, dev); 4081 else 4082 nv_nic_irq(0, dev); 4083 if (np->msi_flags & NV_MSI_X_ENABLED) 4084 enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector); 4085 else 4086 enable_irq_lockdep(np->pci_dev->irq); 4087 } else { 4088 if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) { 4089 np->nic_poll_irq &= ~NVREG_IRQ_RX_ALL; 4090 nv_nic_irq_rx(0, dev); 4091 enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector); 4092 } 4093 if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) { 4094 np->nic_poll_irq &= ~NVREG_IRQ_TX_ALL; 4095 nv_nic_irq_tx(0, dev); 4096 enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector); 4097 } 4098 if (np->nic_poll_irq & NVREG_IRQ_OTHER) { 4099 np->nic_poll_irq &= ~NVREG_IRQ_OTHER; 4100 nv_nic_irq_other(0, dev); 4101 enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector); 4102 } 4103 } 4104 4105 } 4106 4107 #ifdef CONFIG_NET_POLL_CONTROLLER 4108 static void nv_poll_controller(struct net_device *dev) 4109 { 4110 nv_do_nic_poll((unsigned long) dev); 4111 } 4112 #endif 4113 4114 static void nv_do_stats_poll(unsigned long data) 4115 __acquires(&netdev_priv(dev)->hwstats_lock) 4116 __releases(&netdev_priv(dev)->hwstats_lock) 4117 { 4118 struct net_device *dev = (struct net_device *) data; 4119 struct fe_priv *np = netdev_priv(dev); 4120 4121 /* If lock is currently taken, the stats are being refreshed 4122 * and hence fresh enough */ 4123 if (spin_trylock(&np->hwstats_lock)) { 4124 nv_update_stats(dev); 4125 spin_unlock(&np->hwstats_lock); 4126 } 4127 4128 if (!np->in_shutdown) 4129 mod_timer(&np->stats_poll, 4130 round_jiffies(jiffies + STATS_INTERVAL)); 4131 } 4132 4133 static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 4134 { 4135 struct fe_priv *np = netdev_priv(dev); 4136 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 4137 strlcpy(info->version, FORCEDETH_VERSION, sizeof(info->version)); 4138 strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info)); 4139 } 4140 4141 static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo) 4142 { 4143 struct fe_priv *np = netdev_priv(dev); 4144 wolinfo->supported = WAKE_MAGIC; 4145 4146 spin_lock_irq(&np->lock); 4147 if (np->wolenabled) 4148 wolinfo->wolopts = WAKE_MAGIC; 4149 spin_unlock_irq(&np->lock); 4150 } 4151 4152 static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo) 4153 { 4154 struct fe_priv *np = netdev_priv(dev); 4155 u8 __iomem *base = get_hwbase(dev); 4156 u32 flags = 0; 4157 4158 if (wolinfo->wolopts == 0) { 4159 np->wolenabled = 0; 4160 } else if (wolinfo->wolopts & WAKE_MAGIC) { 4161 np->wolenabled = 1; 4162 flags = NVREG_WAKEUPFLAGS_ENABLE; 4163 } 4164 if (netif_running(dev)) { 4165 spin_lock_irq(&np->lock); 4166 writel(flags, base + NvRegWakeUpFlags); 4167 spin_unlock_irq(&np->lock); 4168 } 4169 device_set_wakeup_enable(&np->pci_dev->dev, np->wolenabled); 4170 return 0; 4171 } 4172 4173 static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd) 4174 { 4175 struct fe_priv *np = netdev_priv(dev); 4176 u32 speed; 4177 int adv; 4178 4179 spin_lock_irq(&np->lock); 4180 ecmd->port = PORT_MII; 4181 if (!netif_running(dev)) { 4182 /* We do not track link speed / duplex setting if the 4183 * interface is disabled. Force a link check */ 4184 if (nv_update_linkspeed(dev)) { 4185 if (!netif_carrier_ok(dev)) 4186 netif_carrier_on(dev); 4187 } else { 4188 if (netif_carrier_ok(dev)) 4189 netif_carrier_off(dev); 4190 } 4191 } 4192 4193 if (netif_carrier_ok(dev)) { 4194 switch (np->linkspeed & (NVREG_LINKSPEED_MASK)) { 4195 case NVREG_LINKSPEED_10: 4196 speed = SPEED_10; 4197 break; 4198 case NVREG_LINKSPEED_100: 4199 speed = SPEED_100; 4200 break; 4201 case NVREG_LINKSPEED_1000: 4202 speed = SPEED_1000; 4203 break; 4204 default: 4205 speed = -1; 4206 break; 4207 } 4208 ecmd->duplex = DUPLEX_HALF; 4209 if (np->duplex) 4210 ecmd->duplex = DUPLEX_FULL; 4211 } else { 4212 speed = -1; 4213 ecmd->duplex = -1; 4214 } 4215 ethtool_cmd_speed_set(ecmd, speed); 4216 ecmd->autoneg = np->autoneg; 4217 4218 ecmd->advertising = ADVERTISED_MII; 4219 if (np->autoneg) { 4220 ecmd->advertising |= ADVERTISED_Autoneg; 4221 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ); 4222 if (adv & ADVERTISE_10HALF) 4223 ecmd->advertising |= ADVERTISED_10baseT_Half; 4224 if (adv & ADVERTISE_10FULL) 4225 ecmd->advertising |= ADVERTISED_10baseT_Full; 4226 if (adv & ADVERTISE_100HALF) 4227 ecmd->advertising |= ADVERTISED_100baseT_Half; 4228 if (adv & ADVERTISE_100FULL) 4229 ecmd->advertising |= ADVERTISED_100baseT_Full; 4230 if (np->gigabit == PHY_GIGABIT) { 4231 adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ); 4232 if (adv & ADVERTISE_1000FULL) 4233 ecmd->advertising |= ADVERTISED_1000baseT_Full; 4234 } 4235 } 4236 ecmd->supported = (SUPPORTED_Autoneg | 4237 SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | 4238 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | 4239 SUPPORTED_MII); 4240 if (np->gigabit == PHY_GIGABIT) 4241 ecmd->supported |= SUPPORTED_1000baseT_Full; 4242 4243 ecmd->phy_address = np->phyaddr; 4244 ecmd->transceiver = XCVR_EXTERNAL; 4245 4246 /* ignore maxtxpkt, maxrxpkt for now */ 4247 spin_unlock_irq(&np->lock); 4248 return 0; 4249 } 4250 4251 static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd) 4252 { 4253 struct fe_priv *np = netdev_priv(dev); 4254 u32 speed = ethtool_cmd_speed(ecmd); 4255 4256 if (ecmd->port != PORT_MII) 4257 return -EINVAL; 4258 if (ecmd->transceiver != XCVR_EXTERNAL) 4259 return -EINVAL; 4260 if (ecmd->phy_address != np->phyaddr) { 4261 /* TODO: support switching between multiple phys. Should be 4262 * trivial, but not enabled due to lack of test hardware. */ 4263 return -EINVAL; 4264 } 4265 if (ecmd->autoneg == AUTONEG_ENABLE) { 4266 u32 mask; 4267 4268 mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | 4269 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full; 4270 if (np->gigabit == PHY_GIGABIT) 4271 mask |= ADVERTISED_1000baseT_Full; 4272 4273 if ((ecmd->advertising & mask) == 0) 4274 return -EINVAL; 4275 4276 } else if (ecmd->autoneg == AUTONEG_DISABLE) { 4277 /* Note: autonegotiation disable, speed 1000 intentionally 4278 * forbidden - no one should need that. */ 4279 4280 if (speed != SPEED_10 && speed != SPEED_100) 4281 return -EINVAL; 4282 if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL) 4283 return -EINVAL; 4284 } else { 4285 return -EINVAL; 4286 } 4287 4288 netif_carrier_off(dev); 4289 if (netif_running(dev)) { 4290 unsigned long flags; 4291 4292 nv_disable_irq(dev); 4293 netif_tx_lock_bh(dev); 4294 netif_addr_lock(dev); 4295 /* with plain spinlock lockdep complains */ 4296 spin_lock_irqsave(&np->lock, flags); 4297 /* stop engines */ 4298 /* FIXME: 4299 * this can take some time, and interrupts are disabled 4300 * due to spin_lock_irqsave, but let's hope no daemon 4301 * is going to change the settings very often... 4302 * Worst case: 4303 * NV_RXSTOP_DELAY1MAX + NV_TXSTOP_DELAY1MAX 4304 * + some minor delays, which is up to a second approximately 4305 */ 4306 nv_stop_rxtx(dev); 4307 spin_unlock_irqrestore(&np->lock, flags); 4308 netif_addr_unlock(dev); 4309 netif_tx_unlock_bh(dev); 4310 } 4311 4312 if (ecmd->autoneg == AUTONEG_ENABLE) { 4313 int adv, bmcr; 4314 4315 np->autoneg = 1; 4316 4317 /* advertise only what has been requested */ 4318 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ); 4319 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM); 4320 if (ecmd->advertising & ADVERTISED_10baseT_Half) 4321 adv |= ADVERTISE_10HALF; 4322 if (ecmd->advertising & ADVERTISED_10baseT_Full) 4323 adv |= ADVERTISE_10FULL; 4324 if (ecmd->advertising & ADVERTISED_100baseT_Half) 4325 adv |= ADVERTISE_100HALF; 4326 if (ecmd->advertising & ADVERTISED_100baseT_Full) 4327 adv |= ADVERTISE_100FULL; 4328 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisements but disable tx pause */ 4329 adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM; 4330 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) 4331 adv |= ADVERTISE_PAUSE_ASYM; 4332 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv); 4333 4334 if (np->gigabit == PHY_GIGABIT) { 4335 adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ); 4336 adv &= ~ADVERTISE_1000FULL; 4337 if (ecmd->advertising & ADVERTISED_1000baseT_Full) 4338 adv |= ADVERTISE_1000FULL; 4339 mii_rw(dev, np->phyaddr, MII_CTRL1000, adv); 4340 } 4341 4342 if (netif_running(dev)) 4343 netdev_info(dev, "link down\n"); 4344 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); 4345 if (np->phy_model == PHY_MODEL_MARVELL_E3016) { 4346 bmcr |= BMCR_ANENABLE; 4347 /* reset the phy in order for settings to stick, 4348 * and cause autoneg to start */ 4349 if (phy_reset(dev, bmcr)) { 4350 netdev_info(dev, "phy reset failed\n"); 4351 return -EINVAL; 4352 } 4353 } else { 4354 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART); 4355 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr); 4356 } 4357 } else { 4358 int adv, bmcr; 4359 4360 np->autoneg = 0; 4361 4362 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ); 4363 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM); 4364 if (speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF) 4365 adv |= ADVERTISE_10HALF; 4366 if (speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL) 4367 adv |= ADVERTISE_10FULL; 4368 if (speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF) 4369 adv |= ADVERTISE_100HALF; 4370 if (speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL) 4371 adv |= ADVERTISE_100FULL; 4372 np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE); 4373 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) {/* for rx we set both advertisements but disable tx pause */ 4374 adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM; 4375 np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE; 4376 } 4377 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) { 4378 adv |= ADVERTISE_PAUSE_ASYM; 4379 np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE; 4380 } 4381 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv); 4382 np->fixed_mode = adv; 4383 4384 if (np->gigabit == PHY_GIGABIT) { 4385 adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ); 4386 adv &= ~ADVERTISE_1000FULL; 4387 mii_rw(dev, np->phyaddr, MII_CTRL1000, adv); 4388 } 4389 4390 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); 4391 bmcr &= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_SPEED1000|BMCR_FULLDPLX); 4392 if (np->fixed_mode & (ADVERTISE_10FULL|ADVERTISE_100FULL)) 4393 bmcr |= BMCR_FULLDPLX; 4394 if (np->fixed_mode & (ADVERTISE_100HALF|ADVERTISE_100FULL)) 4395 bmcr |= BMCR_SPEED100; 4396 if (np->phy_oui == PHY_OUI_MARVELL) { 4397 /* reset the phy in order for forced mode settings to stick */ 4398 if (phy_reset(dev, bmcr)) { 4399 netdev_info(dev, "phy reset failed\n"); 4400 return -EINVAL; 4401 } 4402 } else { 4403 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr); 4404 if (netif_running(dev)) { 4405 /* Wait a bit and then reconfigure the nic. */ 4406 udelay(10); 4407 nv_linkchange(dev); 4408 } 4409 } 4410 } 4411 4412 if (netif_running(dev)) { 4413 nv_start_rxtx(dev); 4414 nv_enable_irq(dev); 4415 } 4416 4417 return 0; 4418 } 4419 4420 #define FORCEDETH_REGS_VER 1 4421 4422 static int nv_get_regs_len(struct net_device *dev) 4423 { 4424 struct fe_priv *np = netdev_priv(dev); 4425 return np->register_size; 4426 } 4427 4428 static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf) 4429 { 4430 struct fe_priv *np = netdev_priv(dev); 4431 u8 __iomem *base = get_hwbase(dev); 4432 u32 *rbuf = buf; 4433 int i; 4434 4435 regs->version = FORCEDETH_REGS_VER; 4436 spin_lock_irq(&np->lock); 4437 for (i = 0; i <= np->register_size/sizeof(u32); i++) 4438 rbuf[i] = readl(base + i*sizeof(u32)); 4439 spin_unlock_irq(&np->lock); 4440 } 4441 4442 static int nv_nway_reset(struct net_device *dev) 4443 { 4444 struct fe_priv *np = netdev_priv(dev); 4445 int ret; 4446 4447 if (np->autoneg) { 4448 int bmcr; 4449 4450 netif_carrier_off(dev); 4451 if (netif_running(dev)) { 4452 nv_disable_irq(dev); 4453 netif_tx_lock_bh(dev); 4454 netif_addr_lock(dev); 4455 spin_lock(&np->lock); 4456 /* stop engines */ 4457 nv_stop_rxtx(dev); 4458 spin_unlock(&np->lock); 4459 netif_addr_unlock(dev); 4460 netif_tx_unlock_bh(dev); 4461 netdev_info(dev, "link down\n"); 4462 } 4463 4464 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); 4465 if (np->phy_model == PHY_MODEL_MARVELL_E3016) { 4466 bmcr |= BMCR_ANENABLE; 4467 /* reset the phy in order for settings to stick*/ 4468 if (phy_reset(dev, bmcr)) { 4469 netdev_info(dev, "phy reset failed\n"); 4470 return -EINVAL; 4471 } 4472 } else { 4473 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART); 4474 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr); 4475 } 4476 4477 if (netif_running(dev)) { 4478 nv_start_rxtx(dev); 4479 nv_enable_irq(dev); 4480 } 4481 ret = 0; 4482 } else { 4483 ret = -EINVAL; 4484 } 4485 4486 return ret; 4487 } 4488 4489 static void nv_get_ringparam(struct net_device *dev, struct ethtool_ringparam* ring) 4490 { 4491 struct fe_priv *np = netdev_priv(dev); 4492 4493 ring->rx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3; 4494 ring->tx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3; 4495 4496 ring->rx_pending = np->rx_ring_size; 4497 ring->tx_pending = np->tx_ring_size; 4498 } 4499 4500 static int nv_set_ringparam(struct net_device *dev, struct ethtool_ringparam* ring) 4501 { 4502 struct fe_priv *np = netdev_priv(dev); 4503 u8 __iomem *base = get_hwbase(dev); 4504 u8 *rxtx_ring, *rx_skbuff, *tx_skbuff; 4505 dma_addr_t ring_addr; 4506 4507 if (ring->rx_pending < RX_RING_MIN || 4508 ring->tx_pending < TX_RING_MIN || 4509 ring->rx_mini_pending != 0 || 4510 ring->rx_jumbo_pending != 0 || 4511 (np->desc_ver == DESC_VER_1 && 4512 (ring->rx_pending > RING_MAX_DESC_VER_1 || 4513 ring->tx_pending > RING_MAX_DESC_VER_1)) || 4514 (np->desc_ver != DESC_VER_1 && 4515 (ring->rx_pending > RING_MAX_DESC_VER_2_3 || 4516 ring->tx_pending > RING_MAX_DESC_VER_2_3))) { 4517 return -EINVAL; 4518 } 4519 4520 /* allocate new rings */ 4521 if (!nv_optimized(np)) { 4522 rxtx_ring = pci_alloc_consistent(np->pci_dev, 4523 sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending), 4524 &ring_addr); 4525 } else { 4526 rxtx_ring = pci_alloc_consistent(np->pci_dev, 4527 sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending), 4528 &ring_addr); 4529 } 4530 rx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->rx_pending, GFP_KERNEL); 4531 tx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->tx_pending, GFP_KERNEL); 4532 if (!rxtx_ring || !rx_skbuff || !tx_skbuff) { 4533 /* fall back to old rings */ 4534 if (!nv_optimized(np)) { 4535 if (rxtx_ring) 4536 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending), 4537 rxtx_ring, ring_addr); 4538 } else { 4539 if (rxtx_ring) 4540 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending), 4541 rxtx_ring, ring_addr); 4542 } 4543 4544 kfree(rx_skbuff); 4545 kfree(tx_skbuff); 4546 goto exit; 4547 } 4548 4549 if (netif_running(dev)) { 4550 nv_disable_irq(dev); 4551 nv_napi_disable(dev); 4552 netif_tx_lock_bh(dev); 4553 netif_addr_lock(dev); 4554 spin_lock(&np->lock); 4555 /* stop engines */ 4556 nv_stop_rxtx(dev); 4557 nv_txrx_reset(dev); 4558 /* drain queues */ 4559 nv_drain_rxtx(dev); 4560 /* delete queues */ 4561 free_rings(dev); 4562 } 4563 4564 /* set new values */ 4565 np->rx_ring_size = ring->rx_pending; 4566 np->tx_ring_size = ring->tx_pending; 4567 4568 if (!nv_optimized(np)) { 4569 np->rx_ring.orig = (struct ring_desc *)rxtx_ring; 4570 np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size]; 4571 } else { 4572 np->rx_ring.ex = (struct ring_desc_ex *)rxtx_ring; 4573 np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size]; 4574 } 4575 np->rx_skb = (struct nv_skb_map *)rx_skbuff; 4576 np->tx_skb = (struct nv_skb_map *)tx_skbuff; 4577 np->ring_addr = ring_addr; 4578 4579 memset(np->rx_skb, 0, sizeof(struct nv_skb_map) * np->rx_ring_size); 4580 memset(np->tx_skb, 0, sizeof(struct nv_skb_map) * np->tx_ring_size); 4581 4582 if (netif_running(dev)) { 4583 /* reinit driver view of the queues */ 4584 set_bufsize(dev); 4585 if (nv_init_ring(dev)) { 4586 if (!np->in_shutdown) 4587 mod_timer(&np->oom_kick, jiffies + OOM_REFILL); 4588 } 4589 4590 /* reinit nic view of the queues */ 4591 writel(np->rx_buf_sz, base + NvRegOffloadConfig); 4592 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING); 4593 writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT), 4594 base + NvRegRingSizes); 4595 pci_push(base); 4596 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl); 4597 pci_push(base); 4598 4599 /* restart engines */ 4600 nv_start_rxtx(dev); 4601 spin_unlock(&np->lock); 4602 netif_addr_unlock(dev); 4603 netif_tx_unlock_bh(dev); 4604 nv_napi_enable(dev); 4605 nv_enable_irq(dev); 4606 } 4607 return 0; 4608 exit: 4609 return -ENOMEM; 4610 } 4611 4612 static void nv_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause) 4613 { 4614 struct fe_priv *np = netdev_priv(dev); 4615 4616 pause->autoneg = (np->pause_flags & NV_PAUSEFRAME_AUTONEG) != 0; 4617 pause->rx_pause = (np->pause_flags & NV_PAUSEFRAME_RX_ENABLE) != 0; 4618 pause->tx_pause = (np->pause_flags & NV_PAUSEFRAME_TX_ENABLE) != 0; 4619 } 4620 4621 static int nv_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause) 4622 { 4623 struct fe_priv *np = netdev_priv(dev); 4624 int adv, bmcr; 4625 4626 if ((!np->autoneg && np->duplex == 0) || 4627 (np->autoneg && !pause->autoneg && np->duplex == 0)) { 4628 netdev_info(dev, "can not set pause settings when forced link is in half duplex\n"); 4629 return -EINVAL; 4630 } 4631 if (pause->tx_pause && !(np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)) { 4632 netdev_info(dev, "hardware does not support tx pause frames\n"); 4633 return -EINVAL; 4634 } 4635 4636 netif_carrier_off(dev); 4637 if (netif_running(dev)) { 4638 nv_disable_irq(dev); 4639 netif_tx_lock_bh(dev); 4640 netif_addr_lock(dev); 4641 spin_lock(&np->lock); 4642 /* stop engines */ 4643 nv_stop_rxtx(dev); 4644 spin_unlock(&np->lock); 4645 netif_addr_unlock(dev); 4646 netif_tx_unlock_bh(dev); 4647 } 4648 4649 np->pause_flags &= ~(NV_PAUSEFRAME_RX_REQ|NV_PAUSEFRAME_TX_REQ); 4650 if (pause->rx_pause) 4651 np->pause_flags |= NV_PAUSEFRAME_RX_REQ; 4652 if (pause->tx_pause) 4653 np->pause_flags |= NV_PAUSEFRAME_TX_REQ; 4654 4655 if (np->autoneg && pause->autoneg) { 4656 np->pause_flags |= NV_PAUSEFRAME_AUTONEG; 4657 4658 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ); 4659 adv &= ~(ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM); 4660 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisements but disable tx pause */ 4661 adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM; 4662 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) 4663 adv |= ADVERTISE_PAUSE_ASYM; 4664 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv); 4665 4666 if (netif_running(dev)) 4667 netdev_info(dev, "link down\n"); 4668 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); 4669 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART); 4670 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr); 4671 } else { 4672 np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE); 4673 if (pause->rx_pause) 4674 np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE; 4675 if (pause->tx_pause) 4676 np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE; 4677 4678 if (!netif_running(dev)) 4679 nv_update_linkspeed(dev); 4680 else 4681 nv_update_pause(dev, np->pause_flags); 4682 } 4683 4684 if (netif_running(dev)) { 4685 nv_start_rxtx(dev); 4686 nv_enable_irq(dev); 4687 } 4688 return 0; 4689 } 4690 4691 static int nv_set_loopback(struct net_device *dev, netdev_features_t features) 4692 { 4693 struct fe_priv *np = netdev_priv(dev); 4694 unsigned long flags; 4695 u32 miicontrol; 4696 int err, retval = 0; 4697 4698 spin_lock_irqsave(&np->lock, flags); 4699 miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); 4700 if (features & NETIF_F_LOOPBACK) { 4701 if (miicontrol & BMCR_LOOPBACK) { 4702 spin_unlock_irqrestore(&np->lock, flags); 4703 netdev_info(dev, "Loopback already enabled\n"); 4704 return 0; 4705 } 4706 nv_disable_irq(dev); 4707 /* Turn on loopback mode */ 4708 miicontrol |= BMCR_LOOPBACK | BMCR_FULLDPLX | BMCR_SPEED1000; 4709 err = mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol); 4710 if (err) { 4711 retval = PHY_ERROR; 4712 spin_unlock_irqrestore(&np->lock, flags); 4713 phy_init(dev); 4714 } else { 4715 if (netif_running(dev)) { 4716 /* Force 1000 Mbps full-duplex */ 4717 nv_force_linkspeed(dev, NVREG_LINKSPEED_1000, 4718 1); 4719 /* Force link up */ 4720 netif_carrier_on(dev); 4721 } 4722 spin_unlock_irqrestore(&np->lock, flags); 4723 netdev_info(dev, 4724 "Internal PHY loopback mode enabled.\n"); 4725 } 4726 } else { 4727 if (!(miicontrol & BMCR_LOOPBACK)) { 4728 spin_unlock_irqrestore(&np->lock, flags); 4729 netdev_info(dev, "Loopback already disabled\n"); 4730 return 0; 4731 } 4732 nv_disable_irq(dev); 4733 /* Turn off loopback */ 4734 spin_unlock_irqrestore(&np->lock, flags); 4735 netdev_info(dev, "Internal PHY loopback mode disabled.\n"); 4736 phy_init(dev); 4737 } 4738 msleep(500); 4739 spin_lock_irqsave(&np->lock, flags); 4740 nv_enable_irq(dev); 4741 spin_unlock_irqrestore(&np->lock, flags); 4742 4743 return retval; 4744 } 4745 4746 static netdev_features_t nv_fix_features(struct net_device *dev, 4747 netdev_features_t features) 4748 { 4749 /* vlan is dependent on rx checksum offload */ 4750 if (features & (NETIF_F_HW_VLAN_TX|NETIF_F_HW_VLAN_RX)) 4751 features |= NETIF_F_RXCSUM; 4752 4753 return features; 4754 } 4755 4756 static void nv_vlan_mode(struct net_device *dev, netdev_features_t features) 4757 { 4758 struct fe_priv *np = get_nvpriv(dev); 4759 4760 spin_lock_irq(&np->lock); 4761 4762 if (features & NETIF_F_HW_VLAN_RX) 4763 np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP; 4764 else 4765 np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP; 4766 4767 if (features & NETIF_F_HW_VLAN_TX) 4768 np->txrxctl_bits |= NVREG_TXRXCTL_VLANINS; 4769 else 4770 np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS; 4771 4772 writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl); 4773 4774 spin_unlock_irq(&np->lock); 4775 } 4776 4777 static int nv_set_features(struct net_device *dev, netdev_features_t features) 4778 { 4779 struct fe_priv *np = netdev_priv(dev); 4780 u8 __iomem *base = get_hwbase(dev); 4781 netdev_features_t changed = dev->features ^ features; 4782 int retval; 4783 4784 if ((changed & NETIF_F_LOOPBACK) && netif_running(dev)) { 4785 retval = nv_set_loopback(dev, features); 4786 if (retval != 0) 4787 return retval; 4788 } 4789 4790 if (changed & NETIF_F_RXCSUM) { 4791 spin_lock_irq(&np->lock); 4792 4793 if (features & NETIF_F_RXCSUM) 4794 np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK; 4795 else 4796 np->txrxctl_bits &= ~NVREG_TXRXCTL_RXCHECK; 4797 4798 if (netif_running(dev)) 4799 writel(np->txrxctl_bits, base + NvRegTxRxControl); 4800 4801 spin_unlock_irq(&np->lock); 4802 } 4803 4804 if (changed & (NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX)) 4805 nv_vlan_mode(dev, features); 4806 4807 return 0; 4808 } 4809 4810 static int nv_get_sset_count(struct net_device *dev, int sset) 4811 { 4812 struct fe_priv *np = netdev_priv(dev); 4813 4814 switch (sset) { 4815 case ETH_SS_TEST: 4816 if (np->driver_data & DEV_HAS_TEST_EXTENDED) 4817 return NV_TEST_COUNT_EXTENDED; 4818 else 4819 return NV_TEST_COUNT_BASE; 4820 case ETH_SS_STATS: 4821 if (np->driver_data & DEV_HAS_STATISTICS_V3) 4822 return NV_DEV_STATISTICS_V3_COUNT; 4823 else if (np->driver_data & DEV_HAS_STATISTICS_V2) 4824 return NV_DEV_STATISTICS_V2_COUNT; 4825 else if (np->driver_data & DEV_HAS_STATISTICS_V1) 4826 return NV_DEV_STATISTICS_V1_COUNT; 4827 else 4828 return 0; 4829 default: 4830 return -EOPNOTSUPP; 4831 } 4832 } 4833 4834 static void nv_get_ethtool_stats(struct net_device *dev, 4835 struct ethtool_stats *estats, u64 *buffer) 4836 __acquires(&netdev_priv(dev)->hwstats_lock) 4837 __releases(&netdev_priv(dev)->hwstats_lock) 4838 { 4839 struct fe_priv *np = netdev_priv(dev); 4840 4841 spin_lock_bh(&np->hwstats_lock); 4842 nv_update_stats(dev); 4843 memcpy(buffer, &np->estats, 4844 nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(u64)); 4845 spin_unlock_bh(&np->hwstats_lock); 4846 } 4847 4848 static int nv_link_test(struct net_device *dev) 4849 { 4850 struct fe_priv *np = netdev_priv(dev); 4851 int mii_status; 4852 4853 mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ); 4854 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ); 4855 4856 /* check phy link status */ 4857 if (!(mii_status & BMSR_LSTATUS)) 4858 return 0; 4859 else 4860 return 1; 4861 } 4862 4863 static int nv_register_test(struct net_device *dev) 4864 { 4865 u8 __iomem *base = get_hwbase(dev); 4866 int i = 0; 4867 u32 orig_read, new_read; 4868 4869 do { 4870 orig_read = readl(base + nv_registers_test[i].reg); 4871 4872 /* xor with mask to toggle bits */ 4873 orig_read ^= nv_registers_test[i].mask; 4874 4875 writel(orig_read, base + nv_registers_test[i].reg); 4876 4877 new_read = readl(base + nv_registers_test[i].reg); 4878 4879 if ((new_read & nv_registers_test[i].mask) != (orig_read & nv_registers_test[i].mask)) 4880 return 0; 4881 4882 /* restore original value */ 4883 orig_read ^= nv_registers_test[i].mask; 4884 writel(orig_read, base + nv_registers_test[i].reg); 4885 4886 } while (nv_registers_test[++i].reg != 0); 4887 4888 return 1; 4889 } 4890 4891 static int nv_interrupt_test(struct net_device *dev) 4892 { 4893 struct fe_priv *np = netdev_priv(dev); 4894 u8 __iomem *base = get_hwbase(dev); 4895 int ret = 1; 4896 int testcnt; 4897 u32 save_msi_flags, save_poll_interval = 0; 4898 4899 if (netif_running(dev)) { 4900 /* free current irq */ 4901 nv_free_irq(dev); 4902 save_poll_interval = readl(base+NvRegPollingInterval); 4903 } 4904 4905 /* flag to test interrupt handler */ 4906 np->intr_test = 0; 4907 4908 /* setup test irq */ 4909 save_msi_flags = np->msi_flags; 4910 np->msi_flags &= ~NV_MSI_X_VECTORS_MASK; 4911 np->msi_flags |= 0x001; /* setup 1 vector */ 4912 if (nv_request_irq(dev, 1)) 4913 return 0; 4914 4915 /* setup timer interrupt */ 4916 writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval); 4917 writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6); 4918 4919 nv_enable_hw_interrupts(dev, NVREG_IRQ_TIMER); 4920 4921 /* wait for at least one interrupt */ 4922 msleep(100); 4923 4924 spin_lock_irq(&np->lock); 4925 4926 /* flag should be set within ISR */ 4927 testcnt = np->intr_test; 4928 if (!testcnt) 4929 ret = 2; 4930 4931 nv_disable_hw_interrupts(dev, NVREG_IRQ_TIMER); 4932 if (!(np->msi_flags & NV_MSI_X_ENABLED)) 4933 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus); 4934 else 4935 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus); 4936 4937 spin_unlock_irq(&np->lock); 4938 4939 nv_free_irq(dev); 4940 4941 np->msi_flags = save_msi_flags; 4942 4943 if (netif_running(dev)) { 4944 writel(save_poll_interval, base + NvRegPollingInterval); 4945 writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6); 4946 /* restore original irq */ 4947 if (nv_request_irq(dev, 0)) 4948 return 0; 4949 } 4950 4951 return ret; 4952 } 4953 4954 static int nv_loopback_test(struct net_device *dev) 4955 { 4956 struct fe_priv *np = netdev_priv(dev); 4957 u8 __iomem *base = get_hwbase(dev); 4958 struct sk_buff *tx_skb, *rx_skb; 4959 dma_addr_t test_dma_addr; 4960 u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET); 4961 u32 flags; 4962 int len, i, pkt_len; 4963 u8 *pkt_data; 4964 u32 filter_flags = 0; 4965 u32 misc1_flags = 0; 4966 int ret = 1; 4967 4968 if (netif_running(dev)) { 4969 nv_disable_irq(dev); 4970 filter_flags = readl(base + NvRegPacketFilterFlags); 4971 misc1_flags = readl(base + NvRegMisc1); 4972 } else { 4973 nv_txrx_reset(dev); 4974 } 4975 4976 /* reinit driver view of the rx queue */ 4977 set_bufsize(dev); 4978 nv_init_ring(dev); 4979 4980 /* setup hardware for loopback */ 4981 writel(NVREG_MISC1_FORCE, base + NvRegMisc1); 4982 writel(NVREG_PFF_ALWAYS | NVREG_PFF_LOOPBACK, base + NvRegPacketFilterFlags); 4983 4984 /* reinit nic view of the rx queue */ 4985 writel(np->rx_buf_sz, base + NvRegOffloadConfig); 4986 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING); 4987 writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT), 4988 base + NvRegRingSizes); 4989 pci_push(base); 4990 4991 /* restart rx engine */ 4992 nv_start_rxtx(dev); 4993 4994 /* setup packet for tx */ 4995 pkt_len = ETH_DATA_LEN; 4996 tx_skb = dev_alloc_skb(pkt_len); 4997 if (!tx_skb) { 4998 netdev_err(dev, "dev_alloc_skb() failed during loopback test\n"); 4999 ret = 0; 5000 goto out; 5001 } 5002 test_dma_addr = pci_map_single(np->pci_dev, tx_skb->data, 5003 skb_tailroom(tx_skb), 5004 PCI_DMA_FROMDEVICE); 5005 pkt_data = skb_put(tx_skb, pkt_len); 5006 for (i = 0; i < pkt_len; i++) 5007 pkt_data[i] = (u8)(i & 0xff); 5008 5009 if (!nv_optimized(np)) { 5010 np->tx_ring.orig[0].buf = cpu_to_le32(test_dma_addr); 5011 np->tx_ring.orig[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra); 5012 } else { 5013 np->tx_ring.ex[0].bufhigh = cpu_to_le32(dma_high(test_dma_addr)); 5014 np->tx_ring.ex[0].buflow = cpu_to_le32(dma_low(test_dma_addr)); 5015 np->tx_ring.ex[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra); 5016 } 5017 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl); 5018 pci_push(get_hwbase(dev)); 5019 5020 msleep(500); 5021 5022 /* check for rx of the packet */ 5023 if (!nv_optimized(np)) { 5024 flags = le32_to_cpu(np->rx_ring.orig[0].flaglen); 5025 len = nv_descr_getlength(&np->rx_ring.orig[0], np->desc_ver); 5026 5027 } else { 5028 flags = le32_to_cpu(np->rx_ring.ex[0].flaglen); 5029 len = nv_descr_getlength_ex(&np->rx_ring.ex[0], np->desc_ver); 5030 } 5031 5032 if (flags & NV_RX_AVAIL) { 5033 ret = 0; 5034 } else if (np->desc_ver == DESC_VER_1) { 5035 if (flags & NV_RX_ERROR) 5036 ret = 0; 5037 } else { 5038 if (flags & NV_RX2_ERROR) 5039 ret = 0; 5040 } 5041 5042 if (ret) { 5043 if (len != pkt_len) { 5044 ret = 0; 5045 } else { 5046 rx_skb = np->rx_skb[0].skb; 5047 for (i = 0; i < pkt_len; i++) { 5048 if (rx_skb->data[i] != (u8)(i & 0xff)) { 5049 ret = 0; 5050 break; 5051 } 5052 } 5053 } 5054 } 5055 5056 pci_unmap_single(np->pci_dev, test_dma_addr, 5057 (skb_end_pointer(tx_skb) - tx_skb->data), 5058 PCI_DMA_TODEVICE); 5059 dev_kfree_skb_any(tx_skb); 5060 out: 5061 /* stop engines */ 5062 nv_stop_rxtx(dev); 5063 nv_txrx_reset(dev); 5064 /* drain rx queue */ 5065 nv_drain_rxtx(dev); 5066 5067 if (netif_running(dev)) { 5068 writel(misc1_flags, base + NvRegMisc1); 5069 writel(filter_flags, base + NvRegPacketFilterFlags); 5070 nv_enable_irq(dev); 5071 } 5072 5073 return ret; 5074 } 5075 5076 static void nv_self_test(struct net_device *dev, struct ethtool_test *test, u64 *buffer) 5077 { 5078 struct fe_priv *np = netdev_priv(dev); 5079 u8 __iomem *base = get_hwbase(dev); 5080 int result; 5081 memset(buffer, 0, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(u64)); 5082 5083 if (!nv_link_test(dev)) { 5084 test->flags |= ETH_TEST_FL_FAILED; 5085 buffer[0] = 1; 5086 } 5087 5088 if (test->flags & ETH_TEST_FL_OFFLINE) { 5089 if (netif_running(dev)) { 5090 netif_stop_queue(dev); 5091 nv_napi_disable(dev); 5092 netif_tx_lock_bh(dev); 5093 netif_addr_lock(dev); 5094 spin_lock_irq(&np->lock); 5095 nv_disable_hw_interrupts(dev, np->irqmask); 5096 if (!(np->msi_flags & NV_MSI_X_ENABLED)) 5097 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus); 5098 else 5099 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus); 5100 /* stop engines */ 5101 nv_stop_rxtx(dev); 5102 nv_txrx_reset(dev); 5103 /* drain rx queue */ 5104 nv_drain_rxtx(dev); 5105 spin_unlock_irq(&np->lock); 5106 netif_addr_unlock(dev); 5107 netif_tx_unlock_bh(dev); 5108 } 5109 5110 if (!nv_register_test(dev)) { 5111 test->flags |= ETH_TEST_FL_FAILED; 5112 buffer[1] = 1; 5113 } 5114 5115 result = nv_interrupt_test(dev); 5116 if (result != 1) { 5117 test->flags |= ETH_TEST_FL_FAILED; 5118 buffer[2] = 1; 5119 } 5120 if (result == 0) { 5121 /* bail out */ 5122 return; 5123 } 5124 5125 if (!nv_loopback_test(dev)) { 5126 test->flags |= ETH_TEST_FL_FAILED; 5127 buffer[3] = 1; 5128 } 5129 5130 if (netif_running(dev)) { 5131 /* reinit driver view of the rx queue */ 5132 set_bufsize(dev); 5133 if (nv_init_ring(dev)) { 5134 if (!np->in_shutdown) 5135 mod_timer(&np->oom_kick, jiffies + OOM_REFILL); 5136 } 5137 /* reinit nic view of the rx queue */ 5138 writel(np->rx_buf_sz, base + NvRegOffloadConfig); 5139 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING); 5140 writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT), 5141 base + NvRegRingSizes); 5142 pci_push(base); 5143 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl); 5144 pci_push(base); 5145 /* restart rx engine */ 5146 nv_start_rxtx(dev); 5147 netif_start_queue(dev); 5148 nv_napi_enable(dev); 5149 nv_enable_hw_interrupts(dev, np->irqmask); 5150 } 5151 } 5152 } 5153 5154 static void nv_get_strings(struct net_device *dev, u32 stringset, u8 *buffer) 5155 { 5156 switch (stringset) { 5157 case ETH_SS_STATS: 5158 memcpy(buffer, &nv_estats_str, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(struct nv_ethtool_str)); 5159 break; 5160 case ETH_SS_TEST: 5161 memcpy(buffer, &nv_etests_str, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(struct nv_ethtool_str)); 5162 break; 5163 } 5164 } 5165 5166 static const struct ethtool_ops ops = { 5167 .get_drvinfo = nv_get_drvinfo, 5168 .get_link = ethtool_op_get_link, 5169 .get_wol = nv_get_wol, 5170 .set_wol = nv_set_wol, 5171 .get_settings = nv_get_settings, 5172 .set_settings = nv_set_settings, 5173 .get_regs_len = nv_get_regs_len, 5174 .get_regs = nv_get_regs, 5175 .nway_reset = nv_nway_reset, 5176 .get_ringparam = nv_get_ringparam, 5177 .set_ringparam = nv_set_ringparam, 5178 .get_pauseparam = nv_get_pauseparam, 5179 .set_pauseparam = nv_set_pauseparam, 5180 .get_strings = nv_get_strings, 5181 .get_ethtool_stats = nv_get_ethtool_stats, 5182 .get_sset_count = nv_get_sset_count, 5183 .self_test = nv_self_test, 5184 }; 5185 5186 /* The mgmt unit and driver use a semaphore to access the phy during init */ 5187 static int nv_mgmt_acquire_sema(struct net_device *dev) 5188 { 5189 struct fe_priv *np = netdev_priv(dev); 5190 u8 __iomem *base = get_hwbase(dev); 5191 int i; 5192 u32 tx_ctrl, mgmt_sema; 5193 5194 for (i = 0; i < 10; i++) { 5195 mgmt_sema = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_SEMA_MASK; 5196 if (mgmt_sema == NVREG_XMITCTL_MGMT_SEMA_FREE) 5197 break; 5198 msleep(500); 5199 } 5200 5201 if (mgmt_sema != NVREG_XMITCTL_MGMT_SEMA_FREE) 5202 return 0; 5203 5204 for (i = 0; i < 2; i++) { 5205 tx_ctrl = readl(base + NvRegTransmitterControl); 5206 tx_ctrl |= NVREG_XMITCTL_HOST_SEMA_ACQ; 5207 writel(tx_ctrl, base + NvRegTransmitterControl); 5208 5209 /* verify that semaphore was acquired */ 5210 tx_ctrl = readl(base + NvRegTransmitterControl); 5211 if (((tx_ctrl & NVREG_XMITCTL_HOST_SEMA_MASK) == NVREG_XMITCTL_HOST_SEMA_ACQ) && 5212 ((tx_ctrl & NVREG_XMITCTL_MGMT_SEMA_MASK) == NVREG_XMITCTL_MGMT_SEMA_FREE)) { 5213 np->mgmt_sema = 1; 5214 return 1; 5215 } else 5216 udelay(50); 5217 } 5218 5219 return 0; 5220 } 5221 5222 static void nv_mgmt_release_sema(struct net_device *dev) 5223 { 5224 struct fe_priv *np = netdev_priv(dev); 5225 u8 __iomem *base = get_hwbase(dev); 5226 u32 tx_ctrl; 5227 5228 if (np->driver_data & DEV_HAS_MGMT_UNIT) { 5229 if (np->mgmt_sema) { 5230 tx_ctrl = readl(base + NvRegTransmitterControl); 5231 tx_ctrl &= ~NVREG_XMITCTL_HOST_SEMA_ACQ; 5232 writel(tx_ctrl, base + NvRegTransmitterControl); 5233 } 5234 } 5235 } 5236 5237 5238 static int nv_mgmt_get_version(struct net_device *dev) 5239 { 5240 struct fe_priv *np = netdev_priv(dev); 5241 u8 __iomem *base = get_hwbase(dev); 5242 u32 data_ready = readl(base + NvRegTransmitterControl); 5243 u32 data_ready2 = 0; 5244 unsigned long start; 5245 int ready = 0; 5246 5247 writel(NVREG_MGMTUNITGETVERSION, base + NvRegMgmtUnitGetVersion); 5248 writel(data_ready ^ NVREG_XMITCTL_DATA_START, base + NvRegTransmitterControl); 5249 start = jiffies; 5250 while (time_before(jiffies, start + 5*HZ)) { 5251 data_ready2 = readl(base + NvRegTransmitterControl); 5252 if ((data_ready & NVREG_XMITCTL_DATA_READY) != (data_ready2 & NVREG_XMITCTL_DATA_READY)) { 5253 ready = 1; 5254 break; 5255 } 5256 schedule_timeout_uninterruptible(1); 5257 } 5258 5259 if (!ready || (data_ready2 & NVREG_XMITCTL_DATA_ERROR)) 5260 return 0; 5261 5262 np->mgmt_version = readl(base + NvRegMgmtUnitVersion) & NVREG_MGMTUNITVERSION; 5263 5264 return 1; 5265 } 5266 5267 static int nv_open(struct net_device *dev) 5268 { 5269 struct fe_priv *np = netdev_priv(dev); 5270 u8 __iomem *base = get_hwbase(dev); 5271 int ret = 1; 5272 int oom, i; 5273 u32 low; 5274 5275 /* power up phy */ 5276 mii_rw(dev, np->phyaddr, MII_BMCR, 5277 mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ) & ~BMCR_PDOWN); 5278 5279 nv_txrx_gate(dev, false); 5280 /* erase previous misconfiguration */ 5281 if (np->driver_data & DEV_HAS_POWER_CNTRL) 5282 nv_mac_reset(dev); 5283 writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA); 5284 writel(0, base + NvRegMulticastAddrB); 5285 writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA); 5286 writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB); 5287 writel(0, base + NvRegPacketFilterFlags); 5288 5289 writel(0, base + NvRegTransmitterControl); 5290 writel(0, base + NvRegReceiverControl); 5291 5292 writel(0, base + NvRegAdapterControl); 5293 5294 if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE) 5295 writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame); 5296 5297 /* initialize descriptor rings */ 5298 set_bufsize(dev); 5299 oom = nv_init_ring(dev); 5300 5301 writel(0, base + NvRegLinkSpeed); 5302 writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll); 5303 nv_txrx_reset(dev); 5304 writel(0, base + NvRegUnknownSetupReg6); 5305 5306 np->in_shutdown = 0; 5307 5308 /* give hw rings */ 5309 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING); 5310 writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT), 5311 base + NvRegRingSizes); 5312 5313 writel(np->linkspeed, base + NvRegLinkSpeed); 5314 if (np->desc_ver == DESC_VER_1) 5315 writel(NVREG_TX_WM_DESC1_DEFAULT, base + NvRegTxWatermark); 5316 else 5317 writel(NVREG_TX_WM_DESC2_3_DEFAULT, base + NvRegTxWatermark); 5318 writel(np->txrxctl_bits, base + NvRegTxRxControl); 5319 writel(np->vlanctl_bits, base + NvRegVlanControl); 5320 pci_push(base); 5321 writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl); 5322 if (reg_delay(dev, NvRegUnknownSetupReg5, 5323 NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31, 5324 NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX)) 5325 netdev_info(dev, 5326 "%s: SetupReg5, Bit 31 remained off\n", __func__); 5327 5328 writel(0, base + NvRegMIIMask); 5329 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus); 5330 writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus); 5331 5332 writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1); 5333 writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus); 5334 writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags); 5335 writel(np->rx_buf_sz, base + NvRegOffloadConfig); 5336 5337 writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus); 5338 5339 get_random_bytes(&low, sizeof(low)); 5340 low &= NVREG_SLOTTIME_MASK; 5341 if (np->desc_ver == DESC_VER_1) { 5342 writel(low|NVREG_SLOTTIME_DEFAULT, base + NvRegSlotTime); 5343 } else { 5344 if (!(np->driver_data & DEV_HAS_GEAR_MODE)) { 5345 /* setup legacy backoff */ 5346 writel(NVREG_SLOTTIME_LEGBF_ENABLED|NVREG_SLOTTIME_10_100_FULL|low, base + NvRegSlotTime); 5347 } else { 5348 writel(NVREG_SLOTTIME_10_100_FULL, base + NvRegSlotTime); 5349 nv_gear_backoff_reseed(dev); 5350 } 5351 } 5352 writel(NVREG_TX_DEFERRAL_DEFAULT, base + NvRegTxDeferral); 5353 writel(NVREG_RX_DEFERRAL_DEFAULT, base + NvRegRxDeferral); 5354 if (poll_interval == -1) { 5355 if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT) 5356 writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval); 5357 else 5358 writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval); 5359 } else 5360 writel(poll_interval & 0xFFFF, base + NvRegPollingInterval); 5361 writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6); 5362 writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING, 5363 base + NvRegAdapterControl); 5364 writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed); 5365 writel(NVREG_MII_LINKCHANGE, base + NvRegMIIMask); 5366 if (np->wolenabled) 5367 writel(NVREG_WAKEUPFLAGS_ENABLE , base + NvRegWakeUpFlags); 5368 5369 i = readl(base + NvRegPowerState); 5370 if ((i & NVREG_POWERSTATE_POWEREDUP) == 0) 5371 writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState); 5372 5373 pci_push(base); 5374 udelay(10); 5375 writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState); 5376 5377 nv_disable_hw_interrupts(dev, np->irqmask); 5378 pci_push(base); 5379 writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus); 5380 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus); 5381 pci_push(base); 5382 5383 if (nv_request_irq(dev, 0)) 5384 goto out_drain; 5385 5386 /* ask for interrupts */ 5387 nv_enable_hw_interrupts(dev, np->irqmask); 5388 5389 spin_lock_irq(&np->lock); 5390 writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA); 5391 writel(0, base + NvRegMulticastAddrB); 5392 writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA); 5393 writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB); 5394 writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags); 5395 /* One manual link speed update: Interrupts are enabled, future link 5396 * speed changes cause interrupts and are handled by nv_link_irq(). 5397 */ 5398 { 5399 u32 miistat; 5400 miistat = readl(base + NvRegMIIStatus); 5401 writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus); 5402 } 5403 /* set linkspeed to invalid value, thus force nv_update_linkspeed 5404 * to init hw */ 5405 np->linkspeed = 0; 5406 ret = nv_update_linkspeed(dev); 5407 nv_start_rxtx(dev); 5408 netif_start_queue(dev); 5409 nv_napi_enable(dev); 5410 5411 if (ret) { 5412 netif_carrier_on(dev); 5413 } else { 5414 netdev_info(dev, "no link during initialization\n"); 5415 netif_carrier_off(dev); 5416 } 5417 if (oom) 5418 mod_timer(&np->oom_kick, jiffies + OOM_REFILL); 5419 5420 /* start statistics timer */ 5421 if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3)) 5422 mod_timer(&np->stats_poll, 5423 round_jiffies(jiffies + STATS_INTERVAL)); 5424 5425 spin_unlock_irq(&np->lock); 5426 5427 /* If the loopback feature was set while the device was down, make sure 5428 * that it's set correctly now. 5429 */ 5430 if (dev->features & NETIF_F_LOOPBACK) 5431 nv_set_loopback(dev, dev->features); 5432 5433 return 0; 5434 out_drain: 5435 nv_drain_rxtx(dev); 5436 return ret; 5437 } 5438 5439 static int nv_close(struct net_device *dev) 5440 { 5441 struct fe_priv *np = netdev_priv(dev); 5442 u8 __iomem *base; 5443 5444 spin_lock_irq(&np->lock); 5445 np->in_shutdown = 1; 5446 spin_unlock_irq(&np->lock); 5447 nv_napi_disable(dev); 5448 synchronize_irq(np->pci_dev->irq); 5449 5450 del_timer_sync(&np->oom_kick); 5451 del_timer_sync(&np->nic_poll); 5452 del_timer_sync(&np->stats_poll); 5453 5454 netif_stop_queue(dev); 5455 spin_lock_irq(&np->lock); 5456 nv_stop_rxtx(dev); 5457 nv_txrx_reset(dev); 5458 5459 /* disable interrupts on the nic or we will lock up */ 5460 base = get_hwbase(dev); 5461 nv_disable_hw_interrupts(dev, np->irqmask); 5462 pci_push(base); 5463 5464 spin_unlock_irq(&np->lock); 5465 5466 nv_free_irq(dev); 5467 5468 nv_drain_rxtx(dev); 5469 5470 if (np->wolenabled || !phy_power_down) { 5471 nv_txrx_gate(dev, false); 5472 writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags); 5473 nv_start_rx(dev); 5474 } else { 5475 /* power down phy */ 5476 mii_rw(dev, np->phyaddr, MII_BMCR, 5477 mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ)|BMCR_PDOWN); 5478 nv_txrx_gate(dev, true); 5479 } 5480 5481 /* FIXME: power down nic */ 5482 5483 return 0; 5484 } 5485 5486 static const struct net_device_ops nv_netdev_ops = { 5487 .ndo_open = nv_open, 5488 .ndo_stop = nv_close, 5489 .ndo_get_stats64 = nv_get_stats64, 5490 .ndo_start_xmit = nv_start_xmit, 5491 .ndo_tx_timeout = nv_tx_timeout, 5492 .ndo_change_mtu = nv_change_mtu, 5493 .ndo_fix_features = nv_fix_features, 5494 .ndo_set_features = nv_set_features, 5495 .ndo_validate_addr = eth_validate_addr, 5496 .ndo_set_mac_address = nv_set_mac_address, 5497 .ndo_set_rx_mode = nv_set_multicast, 5498 #ifdef CONFIG_NET_POLL_CONTROLLER 5499 .ndo_poll_controller = nv_poll_controller, 5500 #endif 5501 }; 5502 5503 static const struct net_device_ops nv_netdev_ops_optimized = { 5504 .ndo_open = nv_open, 5505 .ndo_stop = nv_close, 5506 .ndo_get_stats64 = nv_get_stats64, 5507 .ndo_start_xmit = nv_start_xmit_optimized, 5508 .ndo_tx_timeout = nv_tx_timeout, 5509 .ndo_change_mtu = nv_change_mtu, 5510 .ndo_fix_features = nv_fix_features, 5511 .ndo_set_features = nv_set_features, 5512 .ndo_validate_addr = eth_validate_addr, 5513 .ndo_set_mac_address = nv_set_mac_address, 5514 .ndo_set_rx_mode = nv_set_multicast, 5515 #ifdef CONFIG_NET_POLL_CONTROLLER 5516 .ndo_poll_controller = nv_poll_controller, 5517 #endif 5518 }; 5519 5520 static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id) 5521 { 5522 struct net_device *dev; 5523 struct fe_priv *np; 5524 unsigned long addr; 5525 u8 __iomem *base; 5526 int err, i; 5527 u32 powerstate, txreg; 5528 u32 phystate_orig = 0, phystate; 5529 int phyinitialized = 0; 5530 static int printed_version; 5531 5532 if (!printed_version++) 5533 pr_info("Reverse Engineered nForce ethernet driver. Version %s.\n", 5534 FORCEDETH_VERSION); 5535 5536 dev = alloc_etherdev(sizeof(struct fe_priv)); 5537 err = -ENOMEM; 5538 if (!dev) 5539 goto out; 5540 5541 np = netdev_priv(dev); 5542 np->dev = dev; 5543 np->pci_dev = pci_dev; 5544 spin_lock_init(&np->lock); 5545 spin_lock_init(&np->hwstats_lock); 5546 SET_NETDEV_DEV(dev, &pci_dev->dev); 5547 5548 init_timer(&np->oom_kick); 5549 np->oom_kick.data = (unsigned long) dev; 5550 np->oom_kick.function = nv_do_rx_refill; /* timer handler */ 5551 init_timer(&np->nic_poll); 5552 np->nic_poll.data = (unsigned long) dev; 5553 np->nic_poll.function = nv_do_nic_poll; /* timer handler */ 5554 init_timer_deferrable(&np->stats_poll); 5555 np->stats_poll.data = (unsigned long) dev; 5556 np->stats_poll.function = nv_do_stats_poll; /* timer handler */ 5557 5558 err = pci_enable_device(pci_dev); 5559 if (err) 5560 goto out_free; 5561 5562 pci_set_master(pci_dev); 5563 5564 err = pci_request_regions(pci_dev, DRV_NAME); 5565 if (err < 0) 5566 goto out_disable; 5567 5568 if (id->driver_data & (DEV_HAS_VLAN|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3)) 5569 np->register_size = NV_PCI_REGSZ_VER3; 5570 else if (id->driver_data & DEV_HAS_STATISTICS_V1) 5571 np->register_size = NV_PCI_REGSZ_VER2; 5572 else 5573 np->register_size = NV_PCI_REGSZ_VER1; 5574 5575 err = -EINVAL; 5576 addr = 0; 5577 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) { 5578 if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM && 5579 pci_resource_len(pci_dev, i) >= np->register_size) { 5580 addr = pci_resource_start(pci_dev, i); 5581 break; 5582 } 5583 } 5584 if (i == DEVICE_COUNT_RESOURCE) { 5585 dev_info(&pci_dev->dev, "Couldn't find register window\n"); 5586 goto out_relreg; 5587 } 5588 5589 /* copy of driver data */ 5590 np->driver_data = id->driver_data; 5591 /* copy of device id */ 5592 np->device_id = id->device; 5593 5594 /* handle different descriptor versions */ 5595 if (id->driver_data & DEV_HAS_HIGH_DMA) { 5596 /* packet format 3: supports 40-bit addressing */ 5597 np->desc_ver = DESC_VER_3; 5598 np->txrxctl_bits = NVREG_TXRXCTL_DESC_3; 5599 if (dma_64bit) { 5600 if (pci_set_dma_mask(pci_dev, DMA_BIT_MASK(39))) 5601 dev_info(&pci_dev->dev, 5602 "64-bit DMA failed, using 32-bit addressing\n"); 5603 else 5604 dev->features |= NETIF_F_HIGHDMA; 5605 if (pci_set_consistent_dma_mask(pci_dev, DMA_BIT_MASK(39))) { 5606 dev_info(&pci_dev->dev, 5607 "64-bit DMA (consistent) failed, using 32-bit ring buffers\n"); 5608 } 5609 } 5610 } else if (id->driver_data & DEV_HAS_LARGEDESC) { 5611 /* packet format 2: supports jumbo frames */ 5612 np->desc_ver = DESC_VER_2; 5613 np->txrxctl_bits = NVREG_TXRXCTL_DESC_2; 5614 } else { 5615 /* original packet format */ 5616 np->desc_ver = DESC_VER_1; 5617 np->txrxctl_bits = NVREG_TXRXCTL_DESC_1; 5618 } 5619 5620 np->pkt_limit = NV_PKTLIMIT_1; 5621 if (id->driver_data & DEV_HAS_LARGEDESC) 5622 np->pkt_limit = NV_PKTLIMIT_2; 5623 5624 if (id->driver_data & DEV_HAS_CHECKSUM) { 5625 np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK; 5626 dev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_SG | 5627 NETIF_F_TSO | NETIF_F_RXCSUM; 5628 } 5629 5630 np->vlanctl_bits = 0; 5631 if (id->driver_data & DEV_HAS_VLAN) { 5632 np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE; 5633 dev->hw_features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX; 5634 } 5635 5636 dev->features |= dev->hw_features; 5637 5638 /* Add loopback capability to the device. */ 5639 dev->hw_features |= NETIF_F_LOOPBACK; 5640 5641 np->pause_flags = NV_PAUSEFRAME_RX_CAPABLE | NV_PAUSEFRAME_RX_REQ | NV_PAUSEFRAME_AUTONEG; 5642 if ((id->driver_data & DEV_HAS_PAUSEFRAME_TX_V1) || 5643 (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V2) || 5644 (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V3)) { 5645 np->pause_flags |= NV_PAUSEFRAME_TX_CAPABLE | NV_PAUSEFRAME_TX_REQ; 5646 } 5647 5648 err = -ENOMEM; 5649 np->base = ioremap(addr, np->register_size); 5650 if (!np->base) 5651 goto out_relreg; 5652 dev->base_addr = (unsigned long)np->base; 5653 5654 dev->irq = pci_dev->irq; 5655 5656 np->rx_ring_size = RX_RING_DEFAULT; 5657 np->tx_ring_size = TX_RING_DEFAULT; 5658 5659 if (!nv_optimized(np)) { 5660 np->rx_ring.orig = pci_alloc_consistent(pci_dev, 5661 sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size), 5662 &np->ring_addr); 5663 if (!np->rx_ring.orig) 5664 goto out_unmap; 5665 np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size]; 5666 } else { 5667 np->rx_ring.ex = pci_alloc_consistent(pci_dev, 5668 sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size), 5669 &np->ring_addr); 5670 if (!np->rx_ring.ex) 5671 goto out_unmap; 5672 np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size]; 5673 } 5674 np->rx_skb = kcalloc(np->rx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL); 5675 np->tx_skb = kcalloc(np->tx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL); 5676 if (!np->rx_skb || !np->tx_skb) 5677 goto out_freering; 5678 5679 if (!nv_optimized(np)) 5680 dev->netdev_ops = &nv_netdev_ops; 5681 else 5682 dev->netdev_ops = &nv_netdev_ops_optimized; 5683 5684 netif_napi_add(dev, &np->napi, nv_napi_poll, RX_WORK_PER_LOOP); 5685 SET_ETHTOOL_OPS(dev, &ops); 5686 dev->watchdog_timeo = NV_WATCHDOG_TIMEO; 5687 5688 pci_set_drvdata(pci_dev, dev); 5689 5690 /* read the mac address */ 5691 base = get_hwbase(dev); 5692 np->orig_mac[0] = readl(base + NvRegMacAddrA); 5693 np->orig_mac[1] = readl(base + NvRegMacAddrB); 5694 5695 /* check the workaround bit for correct mac address order */ 5696 txreg = readl(base + NvRegTransmitPoll); 5697 if (id->driver_data & DEV_HAS_CORRECT_MACADDR) { 5698 /* mac address is already in correct order */ 5699 dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff; 5700 dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff; 5701 dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff; 5702 dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff; 5703 dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff; 5704 dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff; 5705 } else if (txreg & NVREG_TRANSMITPOLL_MAC_ADDR_REV) { 5706 /* mac address is already in correct order */ 5707 dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff; 5708 dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff; 5709 dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff; 5710 dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff; 5711 dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff; 5712 dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff; 5713 /* 5714 * Set orig mac address back to the reversed version. 5715 * This flag will be cleared during low power transition. 5716 * Therefore, we should always put back the reversed address. 5717 */ 5718 np->orig_mac[0] = (dev->dev_addr[5] << 0) + (dev->dev_addr[4] << 8) + 5719 (dev->dev_addr[3] << 16) + (dev->dev_addr[2] << 24); 5720 np->orig_mac[1] = (dev->dev_addr[1] << 0) + (dev->dev_addr[0] << 8); 5721 } else { 5722 /* need to reverse mac address to correct order */ 5723 dev->dev_addr[0] = (np->orig_mac[1] >> 8) & 0xff; 5724 dev->dev_addr[1] = (np->orig_mac[1] >> 0) & 0xff; 5725 dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff; 5726 dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff; 5727 dev->dev_addr[4] = (np->orig_mac[0] >> 8) & 0xff; 5728 dev->dev_addr[5] = (np->orig_mac[0] >> 0) & 0xff; 5729 writel(txreg|NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll); 5730 dev_dbg(&pci_dev->dev, 5731 "%s: set workaround bit for reversed mac addr\n", 5732 __func__); 5733 } 5734 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 5735 5736 if (!is_valid_ether_addr(dev->perm_addr)) { 5737 /* 5738 * Bad mac address. At least one bios sets the mac address 5739 * to 01:23:45:67:89:ab 5740 */ 5741 dev_err(&pci_dev->dev, 5742 "Invalid MAC address detected: %pM - Please complain to your hardware vendor.\n", 5743 dev->dev_addr); 5744 random_ether_addr(dev->dev_addr); 5745 dev_err(&pci_dev->dev, 5746 "Using random MAC address: %pM\n", dev->dev_addr); 5747 } 5748 5749 /* set mac address */ 5750 nv_copy_mac_to_hw(dev); 5751 5752 /* disable WOL */ 5753 writel(0, base + NvRegWakeUpFlags); 5754 np->wolenabled = 0; 5755 device_set_wakeup_enable(&pci_dev->dev, false); 5756 5757 if (id->driver_data & DEV_HAS_POWER_CNTRL) { 5758 5759 /* take phy and nic out of low power mode */ 5760 powerstate = readl(base + NvRegPowerState2); 5761 powerstate &= ~NVREG_POWERSTATE2_POWERUP_MASK; 5762 if ((id->driver_data & DEV_NEED_LOW_POWER_FIX) && 5763 pci_dev->revision >= 0xA3) 5764 powerstate |= NVREG_POWERSTATE2_POWERUP_REV_A3; 5765 writel(powerstate, base + NvRegPowerState2); 5766 } 5767 5768 if (np->desc_ver == DESC_VER_1) 5769 np->tx_flags = NV_TX_VALID; 5770 else 5771 np->tx_flags = NV_TX2_VALID; 5772 5773 np->msi_flags = 0; 5774 if ((id->driver_data & DEV_HAS_MSI) && msi) 5775 np->msi_flags |= NV_MSI_CAPABLE; 5776 5777 if ((id->driver_data & DEV_HAS_MSI_X) && msix) { 5778 /* msix has had reported issues when modifying irqmask 5779 as in the case of napi, therefore, disable for now 5780 */ 5781 #if 0 5782 np->msi_flags |= NV_MSI_X_CAPABLE; 5783 #endif 5784 } 5785 5786 if (optimization_mode == NV_OPTIMIZATION_MODE_CPU) { 5787 np->irqmask = NVREG_IRQMASK_CPU; 5788 if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */ 5789 np->msi_flags |= 0x0001; 5790 } else if (optimization_mode == NV_OPTIMIZATION_MODE_DYNAMIC && 5791 !(id->driver_data & DEV_NEED_TIMERIRQ)) { 5792 /* start off in throughput mode */ 5793 np->irqmask = NVREG_IRQMASK_THROUGHPUT; 5794 /* remove support for msix mode */ 5795 np->msi_flags &= ~NV_MSI_X_CAPABLE; 5796 } else { 5797 optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT; 5798 np->irqmask = NVREG_IRQMASK_THROUGHPUT; 5799 if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */ 5800 np->msi_flags |= 0x0003; 5801 } 5802 5803 if (id->driver_data & DEV_NEED_TIMERIRQ) 5804 np->irqmask |= NVREG_IRQ_TIMER; 5805 if (id->driver_data & DEV_NEED_LINKTIMER) { 5806 np->need_linktimer = 1; 5807 np->link_timeout = jiffies + LINK_TIMEOUT; 5808 } else { 5809 np->need_linktimer = 0; 5810 } 5811 5812 /* Limit the number of tx's outstanding for hw bug */ 5813 if (id->driver_data & DEV_NEED_TX_LIMIT) { 5814 np->tx_limit = 1; 5815 if (((id->driver_data & DEV_NEED_TX_LIMIT2) == DEV_NEED_TX_LIMIT2) && 5816 pci_dev->revision >= 0xA2) 5817 np->tx_limit = 0; 5818 } 5819 5820 /* clear phy state and temporarily halt phy interrupts */ 5821 writel(0, base + NvRegMIIMask); 5822 phystate = readl(base + NvRegAdapterControl); 5823 if (phystate & NVREG_ADAPTCTL_RUNNING) { 5824 phystate_orig = 1; 5825 phystate &= ~NVREG_ADAPTCTL_RUNNING; 5826 writel(phystate, base + NvRegAdapterControl); 5827 } 5828 writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus); 5829 5830 if (id->driver_data & DEV_HAS_MGMT_UNIT) { 5831 /* management unit running on the mac? */ 5832 if ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_ST) && 5833 (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_PHY_INIT) && 5834 nv_mgmt_acquire_sema(dev) && 5835 nv_mgmt_get_version(dev)) { 5836 np->mac_in_use = 1; 5837 if (np->mgmt_version > 0) 5838 np->mac_in_use = readl(base + NvRegMgmtUnitControl) & NVREG_MGMTUNITCONTROL_INUSE; 5839 /* management unit setup the phy already? */ 5840 if (np->mac_in_use && 5841 ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_MASK) == 5842 NVREG_XMITCTL_SYNC_PHY_INIT)) { 5843 /* phy is inited by mgmt unit */ 5844 phyinitialized = 1; 5845 } else { 5846 /* we need to init the phy */ 5847 } 5848 } 5849 } 5850 5851 /* find a suitable phy */ 5852 for (i = 1; i <= 32; i++) { 5853 int id1, id2; 5854 int phyaddr = i & 0x1F; 5855 5856 spin_lock_irq(&np->lock); 5857 id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ); 5858 spin_unlock_irq(&np->lock); 5859 if (id1 < 0 || id1 == 0xffff) 5860 continue; 5861 spin_lock_irq(&np->lock); 5862 id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ); 5863 spin_unlock_irq(&np->lock); 5864 if (id2 < 0 || id2 == 0xffff) 5865 continue; 5866 5867 np->phy_model = id2 & PHYID2_MODEL_MASK; 5868 id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT; 5869 id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT; 5870 np->phyaddr = phyaddr; 5871 np->phy_oui = id1 | id2; 5872 5873 /* Realtek hardcoded phy id1 to all zero's on certain phys */ 5874 if (np->phy_oui == PHY_OUI_REALTEK2) 5875 np->phy_oui = PHY_OUI_REALTEK; 5876 /* Setup phy revision for Realtek */ 5877 if (np->phy_oui == PHY_OUI_REALTEK && np->phy_model == PHY_MODEL_REALTEK_8211) 5878 np->phy_rev = mii_rw(dev, phyaddr, MII_RESV1, MII_READ) & PHY_REV_MASK; 5879 5880 break; 5881 } 5882 if (i == 33) { 5883 dev_info(&pci_dev->dev, "open: Could not find a valid PHY\n"); 5884 goto out_error; 5885 } 5886 5887 if (!phyinitialized) { 5888 /* reset it */ 5889 phy_init(dev); 5890 } else { 5891 /* see if it is a gigabit phy */ 5892 u32 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ); 5893 if (mii_status & PHY_GIGABIT) 5894 np->gigabit = PHY_GIGABIT; 5895 } 5896 5897 /* set default link speed settings */ 5898 np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10; 5899 np->duplex = 0; 5900 np->autoneg = 1; 5901 5902 err = register_netdev(dev); 5903 if (err) { 5904 dev_info(&pci_dev->dev, "unable to register netdev: %d\n", err); 5905 goto out_error; 5906 } 5907 5908 if (id->driver_data & DEV_HAS_VLAN) 5909 nv_vlan_mode(dev, dev->features); 5910 5911 netif_carrier_off(dev); 5912 5913 dev_info(&pci_dev->dev, "ifname %s, PHY OUI 0x%x @ %d, addr %pM\n", 5914 dev->name, np->phy_oui, np->phyaddr, dev->dev_addr); 5915 5916 dev_info(&pci_dev->dev, "%s%s%s%s%s%s%s%s%s%s%sdesc-v%u\n", 5917 dev->features & NETIF_F_HIGHDMA ? "highdma " : "", 5918 dev->features & (NETIF_F_IP_CSUM | NETIF_F_SG) ? 5919 "csum " : "", 5920 dev->features & (NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX) ? 5921 "vlan " : "", 5922 dev->features & (NETIF_F_LOOPBACK) ? 5923 "loopback " : "", 5924 id->driver_data & DEV_HAS_POWER_CNTRL ? "pwrctl " : "", 5925 id->driver_data & DEV_HAS_MGMT_UNIT ? "mgmt " : "", 5926 id->driver_data & DEV_NEED_TIMERIRQ ? "timirq " : "", 5927 np->gigabit == PHY_GIGABIT ? "gbit " : "", 5928 np->need_linktimer ? "lnktim " : "", 5929 np->msi_flags & NV_MSI_CAPABLE ? "msi " : "", 5930 np->msi_flags & NV_MSI_X_CAPABLE ? "msi-x " : "", 5931 np->desc_ver); 5932 5933 return 0; 5934 5935 out_error: 5936 if (phystate_orig) 5937 writel(phystate|NVREG_ADAPTCTL_RUNNING, base + NvRegAdapterControl); 5938 pci_set_drvdata(pci_dev, NULL); 5939 out_freering: 5940 free_rings(dev); 5941 out_unmap: 5942 iounmap(get_hwbase(dev)); 5943 out_relreg: 5944 pci_release_regions(pci_dev); 5945 out_disable: 5946 pci_disable_device(pci_dev); 5947 out_free: 5948 free_netdev(dev); 5949 out: 5950 return err; 5951 } 5952 5953 static void nv_restore_phy(struct net_device *dev) 5954 { 5955 struct fe_priv *np = netdev_priv(dev); 5956 u16 phy_reserved, mii_control; 5957 5958 if (np->phy_oui == PHY_OUI_REALTEK && 5959 np->phy_model == PHY_MODEL_REALTEK_8201 && 5960 phy_cross == NV_CROSSOVER_DETECTION_DISABLED) { 5961 mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3); 5962 phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, MII_READ); 5963 phy_reserved &= ~PHY_REALTEK_INIT_MSK1; 5964 phy_reserved |= PHY_REALTEK_INIT8; 5965 mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, phy_reserved); 5966 mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1); 5967 5968 /* restart auto negotiation */ 5969 mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); 5970 mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE); 5971 mii_rw(dev, np->phyaddr, MII_BMCR, mii_control); 5972 } 5973 } 5974 5975 static void nv_restore_mac_addr(struct pci_dev *pci_dev) 5976 { 5977 struct net_device *dev = pci_get_drvdata(pci_dev); 5978 struct fe_priv *np = netdev_priv(dev); 5979 u8 __iomem *base = get_hwbase(dev); 5980 5981 /* special op: write back the misordered MAC address - otherwise 5982 * the next nv_probe would see a wrong address. 5983 */ 5984 writel(np->orig_mac[0], base + NvRegMacAddrA); 5985 writel(np->orig_mac[1], base + NvRegMacAddrB); 5986 writel(readl(base + NvRegTransmitPoll) & ~NVREG_TRANSMITPOLL_MAC_ADDR_REV, 5987 base + NvRegTransmitPoll); 5988 } 5989 5990 static void __devexit nv_remove(struct pci_dev *pci_dev) 5991 { 5992 struct net_device *dev = pci_get_drvdata(pci_dev); 5993 5994 unregister_netdev(dev); 5995 5996 nv_restore_mac_addr(pci_dev); 5997 5998 /* restore any phy related changes */ 5999 nv_restore_phy(dev); 6000 6001 nv_mgmt_release_sema(dev); 6002 6003 /* free all structures */ 6004 free_rings(dev); 6005 iounmap(get_hwbase(dev)); 6006 pci_release_regions(pci_dev); 6007 pci_disable_device(pci_dev); 6008 free_netdev(dev); 6009 pci_set_drvdata(pci_dev, NULL); 6010 } 6011 6012 #ifdef CONFIG_PM_SLEEP 6013 static int nv_suspend(struct device *device) 6014 { 6015 struct pci_dev *pdev = to_pci_dev(device); 6016 struct net_device *dev = pci_get_drvdata(pdev); 6017 struct fe_priv *np = netdev_priv(dev); 6018 u8 __iomem *base = get_hwbase(dev); 6019 int i; 6020 6021 if (netif_running(dev)) { 6022 /* Gross. */ 6023 nv_close(dev); 6024 } 6025 netif_device_detach(dev); 6026 6027 /* save non-pci configuration space */ 6028 for (i = 0; i <= np->register_size/sizeof(u32); i++) 6029 np->saved_config_space[i] = readl(base + i*sizeof(u32)); 6030 6031 return 0; 6032 } 6033 6034 static int nv_resume(struct device *device) 6035 { 6036 struct pci_dev *pdev = to_pci_dev(device); 6037 struct net_device *dev = pci_get_drvdata(pdev); 6038 struct fe_priv *np = netdev_priv(dev); 6039 u8 __iomem *base = get_hwbase(dev); 6040 int i, rc = 0; 6041 6042 /* restore non-pci configuration space */ 6043 for (i = 0; i <= np->register_size/sizeof(u32); i++) 6044 writel(np->saved_config_space[i], base+i*sizeof(u32)); 6045 6046 if (np->driver_data & DEV_NEED_MSI_FIX) 6047 pci_write_config_dword(pdev, NV_MSI_PRIV_OFFSET, NV_MSI_PRIV_VALUE); 6048 6049 /* restore phy state, including autoneg */ 6050 phy_init(dev); 6051 6052 netif_device_attach(dev); 6053 if (netif_running(dev)) { 6054 rc = nv_open(dev); 6055 nv_set_multicast(dev); 6056 } 6057 return rc; 6058 } 6059 6060 static SIMPLE_DEV_PM_OPS(nv_pm_ops, nv_suspend, nv_resume); 6061 #define NV_PM_OPS (&nv_pm_ops) 6062 6063 #else 6064 #define NV_PM_OPS NULL 6065 #endif /* CONFIG_PM_SLEEP */ 6066 6067 #ifdef CONFIG_PM 6068 static void nv_shutdown(struct pci_dev *pdev) 6069 { 6070 struct net_device *dev = pci_get_drvdata(pdev); 6071 struct fe_priv *np = netdev_priv(dev); 6072 6073 if (netif_running(dev)) 6074 nv_close(dev); 6075 6076 /* 6077 * Restore the MAC so a kernel started by kexec won't get confused. 6078 * If we really go for poweroff, we must not restore the MAC, 6079 * otherwise the MAC for WOL will be reversed at least on some boards. 6080 */ 6081 if (system_state != SYSTEM_POWER_OFF) 6082 nv_restore_mac_addr(pdev); 6083 6084 pci_disable_device(pdev); 6085 /* 6086 * Apparently it is not possible to reinitialise from D3 hot, 6087 * only put the device into D3 if we really go for poweroff. 6088 */ 6089 if (system_state == SYSTEM_POWER_OFF) { 6090 pci_wake_from_d3(pdev, np->wolenabled); 6091 pci_set_power_state(pdev, PCI_D3hot); 6092 } 6093 } 6094 #else 6095 #define nv_shutdown NULL 6096 #endif /* CONFIG_PM */ 6097 6098 static DEFINE_PCI_DEVICE_TABLE(pci_tbl) = { 6099 { /* nForce Ethernet Controller */ 6100 PCI_DEVICE(0x10DE, 0x01C3), 6101 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER, 6102 }, 6103 { /* nForce2 Ethernet Controller */ 6104 PCI_DEVICE(0x10DE, 0x0066), 6105 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER, 6106 }, 6107 { /* nForce3 Ethernet Controller */ 6108 PCI_DEVICE(0x10DE, 0x00D6), 6109 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER, 6110 }, 6111 { /* nForce3 Ethernet Controller */ 6112 PCI_DEVICE(0x10DE, 0x0086), 6113 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM, 6114 }, 6115 { /* nForce3 Ethernet Controller */ 6116 PCI_DEVICE(0x10DE, 0x008C), 6117 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM, 6118 }, 6119 { /* nForce3 Ethernet Controller */ 6120 PCI_DEVICE(0x10DE, 0x00E6), 6121 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM, 6122 }, 6123 { /* nForce3 Ethernet Controller */ 6124 PCI_DEVICE(0x10DE, 0x00DF), 6125 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM, 6126 }, 6127 { /* CK804 Ethernet Controller */ 6128 PCI_DEVICE(0x10DE, 0x0056), 6129 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT, 6130 }, 6131 { /* CK804 Ethernet Controller */ 6132 PCI_DEVICE(0x10DE, 0x0057), 6133 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT, 6134 }, 6135 { /* MCP04 Ethernet Controller */ 6136 PCI_DEVICE(0x10DE, 0x0037), 6137 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT, 6138 }, 6139 { /* MCP04 Ethernet Controller */ 6140 PCI_DEVICE(0x10DE, 0x0038), 6141 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT, 6142 }, 6143 { /* MCP51 Ethernet Controller */ 6144 PCI_DEVICE(0x10DE, 0x0268), 6145 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1|DEV_NEED_LOW_POWER_FIX, 6146 }, 6147 { /* MCP51 Ethernet Controller */ 6148 PCI_DEVICE(0x10DE, 0x0269), 6149 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1|DEV_NEED_LOW_POWER_FIX, 6150 }, 6151 { /* MCP55 Ethernet Controller */ 6152 PCI_DEVICE(0x10DE, 0x0372), 6153 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_NEED_TX_LIMIT|DEV_NEED_MSI_FIX, 6154 }, 6155 { /* MCP55 Ethernet Controller */ 6156 PCI_DEVICE(0x10DE, 0x0373), 6157 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_NEED_TX_LIMIT|DEV_NEED_MSI_FIX, 6158 }, 6159 { /* MCP61 Ethernet Controller */ 6160 PCI_DEVICE(0x10DE, 0x03E5), 6161 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX, 6162 }, 6163 { /* MCP61 Ethernet Controller */ 6164 PCI_DEVICE(0x10DE, 0x03E6), 6165 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX, 6166 }, 6167 { /* MCP61 Ethernet Controller */ 6168 PCI_DEVICE(0x10DE, 0x03EE), 6169 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX, 6170 }, 6171 { /* MCP61 Ethernet Controller */ 6172 PCI_DEVICE(0x10DE, 0x03EF), 6173 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX, 6174 }, 6175 { /* MCP65 Ethernet Controller */ 6176 PCI_DEVICE(0x10DE, 0x0450), 6177 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX, 6178 }, 6179 { /* MCP65 Ethernet Controller */ 6180 PCI_DEVICE(0x10DE, 0x0451), 6181 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX, 6182 }, 6183 { /* MCP65 Ethernet Controller */ 6184 PCI_DEVICE(0x10DE, 0x0452), 6185 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX, 6186 }, 6187 { /* MCP65 Ethernet Controller */ 6188 PCI_DEVICE(0x10DE, 0x0453), 6189 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX, 6190 }, 6191 { /* MCP67 Ethernet Controller */ 6192 PCI_DEVICE(0x10DE, 0x054C), 6193 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX, 6194 }, 6195 { /* MCP67 Ethernet Controller */ 6196 PCI_DEVICE(0x10DE, 0x054D), 6197 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX, 6198 }, 6199 { /* MCP67 Ethernet Controller */ 6200 PCI_DEVICE(0x10DE, 0x054E), 6201 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX, 6202 }, 6203 { /* MCP67 Ethernet Controller */ 6204 PCI_DEVICE(0x10DE, 0x054F), 6205 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX, 6206 }, 6207 { /* MCP73 Ethernet Controller */ 6208 PCI_DEVICE(0x10DE, 0x07DC), 6209 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX, 6210 }, 6211 { /* MCP73 Ethernet Controller */ 6212 PCI_DEVICE(0x10DE, 0x07DD), 6213 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX, 6214 }, 6215 { /* MCP73 Ethernet Controller */ 6216 PCI_DEVICE(0x10DE, 0x07DE), 6217 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX, 6218 }, 6219 { /* MCP73 Ethernet Controller */ 6220 PCI_DEVICE(0x10DE, 0x07DF), 6221 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX, 6222 }, 6223 { /* MCP77 Ethernet Controller */ 6224 PCI_DEVICE(0x10DE, 0x0760), 6225 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX, 6226 }, 6227 { /* MCP77 Ethernet Controller */ 6228 PCI_DEVICE(0x10DE, 0x0761), 6229 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX, 6230 }, 6231 { /* MCP77 Ethernet Controller */ 6232 PCI_DEVICE(0x10DE, 0x0762), 6233 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX, 6234 }, 6235 { /* MCP77 Ethernet Controller */ 6236 PCI_DEVICE(0x10DE, 0x0763), 6237 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX, 6238 }, 6239 { /* MCP79 Ethernet Controller */ 6240 PCI_DEVICE(0x10DE, 0x0AB0), 6241 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX, 6242 }, 6243 { /* MCP79 Ethernet Controller */ 6244 PCI_DEVICE(0x10DE, 0x0AB1), 6245 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX, 6246 }, 6247 { /* MCP79 Ethernet Controller */ 6248 PCI_DEVICE(0x10DE, 0x0AB2), 6249 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX, 6250 }, 6251 { /* MCP79 Ethernet Controller */ 6252 PCI_DEVICE(0x10DE, 0x0AB3), 6253 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX, 6254 }, 6255 { /* MCP89 Ethernet Controller */ 6256 PCI_DEVICE(0x10DE, 0x0D7D), 6257 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX, 6258 }, 6259 {0,}, 6260 }; 6261 6262 static struct pci_driver driver = { 6263 .name = DRV_NAME, 6264 .id_table = pci_tbl, 6265 .probe = nv_probe, 6266 .remove = __devexit_p(nv_remove), 6267 .shutdown = nv_shutdown, 6268 .driver.pm = NV_PM_OPS, 6269 }; 6270 6271 static int __init init_nic(void) 6272 { 6273 return pci_register_driver(&driver); 6274 } 6275 6276 static void __exit exit_nic(void) 6277 { 6278 pci_unregister_driver(&driver); 6279 } 6280 6281 module_param(max_interrupt_work, int, 0); 6282 MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt"); 6283 module_param(optimization_mode, int, 0); 6284 MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer. In dynamic mode (2), the mode toggles between throughput and CPU mode based on network load."); 6285 module_param(poll_interval, int, 0); 6286 MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535."); 6287 module_param(msi, int, 0); 6288 MODULE_PARM_DESC(msi, "MSI interrupts are enabled by setting to 1 and disabled by setting to 0."); 6289 module_param(msix, int, 0); 6290 MODULE_PARM_DESC(msix, "MSIX interrupts are enabled by setting to 1 and disabled by setting to 0."); 6291 module_param(dma_64bit, int, 0); 6292 MODULE_PARM_DESC(dma_64bit, "High DMA is enabled by setting to 1 and disabled by setting to 0."); 6293 module_param(phy_cross, int, 0); 6294 MODULE_PARM_DESC(phy_cross, "Phy crossover detection for Realtek 8201 phy is enabled by setting to 1 and disabled by setting to 0."); 6295 module_param(phy_power_down, int, 0); 6296 MODULE_PARM_DESC(phy_power_down, "Power down phy and disable link when interface is down (1), or leave phy powered up (0)."); 6297 module_param(debug_tx_timeout, bool, 0); 6298 MODULE_PARM_DESC(debug_tx_timeout, 6299 "Dump tx related registers and ring when tx_timeout happens"); 6300 6301 MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>"); 6302 MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver"); 6303 MODULE_LICENSE("GPL"); 6304 6305 MODULE_DEVICE_TABLE(pci, pci_tbl); 6306 6307 module_init(init_nic); 6308 module_exit(exit_nic); 6309