1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * forcedeth: Ethernet driver for NVIDIA nForce media access controllers. 4 * 5 * Note: This driver is a cleanroom reimplementation based on reverse 6 * engineered documentation written by Carl-Daniel Hailfinger 7 * and Andrew de Quincey. 8 * 9 * NVIDIA, nForce and other NVIDIA marks are trademarks or registered 10 * trademarks of NVIDIA Corporation in the United States and other 11 * countries. 12 * 13 * Copyright (C) 2003,4,5 Manfred Spraul 14 * Copyright (C) 2004 Andrew de Quincey (wol support) 15 * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane 16 * IRQ rate fixes, bigendian fixes, cleanups, verification) 17 * Copyright (c) 2004,2005,2006,2007,2008,2009 NVIDIA Corporation 18 * 19 * Known bugs: 20 * We suspect that on some hardware no TX done interrupts are generated. 21 * This means recovery from netif_stop_queue only happens if the hw timer 22 * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT) 23 * and the timer is active in the IRQMask, or if a rx packet arrives by chance. 24 * If your hardware reliably generates tx done interrupts, then you can remove 25 * DEV_NEED_TIMERIRQ from the driver_data flags. 26 * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few 27 * superfluous timer interrupts from the nic. 28 */ 29 30 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 31 32 #define FORCEDETH_VERSION "0.64" 33 #define DRV_NAME "forcedeth" 34 35 #include <linux/module.h> 36 #include <linux/types.h> 37 #include <linux/pci.h> 38 #include <linux/interrupt.h> 39 #include <linux/netdevice.h> 40 #include <linux/etherdevice.h> 41 #include <linux/delay.h> 42 #include <linux/sched.h> 43 #include <linux/spinlock.h> 44 #include <linux/ethtool.h> 45 #include <linux/timer.h> 46 #include <linux/skbuff.h> 47 #include <linux/mii.h> 48 #include <linux/random.h> 49 #include <linux/if_vlan.h> 50 #include <linux/dma-mapping.h> 51 #include <linux/slab.h> 52 #include <linux/uaccess.h> 53 #include <linux/prefetch.h> 54 #include <linux/u64_stats_sync.h> 55 #include <linux/io.h> 56 57 #include <asm/irq.h> 58 59 #define TX_WORK_PER_LOOP 64 60 #define RX_WORK_PER_LOOP 64 61 62 /* 63 * Hardware access: 64 */ 65 66 #define DEV_NEED_TIMERIRQ 0x0000001 /* set the timer irq flag in the irq mask */ 67 #define DEV_NEED_LINKTIMER 0x0000002 /* poll link settings. Relies on the timer irq */ 68 #define DEV_HAS_LARGEDESC 0x0000004 /* device supports jumbo frames and needs packet format 2 */ 69 #define DEV_HAS_HIGH_DMA 0x0000008 /* device supports 64bit dma */ 70 #define DEV_HAS_CHECKSUM 0x0000010 /* device supports tx and rx checksum offloads */ 71 #define DEV_HAS_VLAN 0x0000020 /* device supports vlan tagging and striping */ 72 #define DEV_HAS_MSI 0x0000040 /* device supports MSI */ 73 #define DEV_HAS_MSI_X 0x0000080 /* device supports MSI-X */ 74 #define DEV_HAS_POWER_CNTRL 0x0000100 /* device supports power savings */ 75 #define DEV_HAS_STATISTICS_V1 0x0000200 /* device supports hw statistics version 1 */ 76 #define DEV_HAS_STATISTICS_V2 0x0000400 /* device supports hw statistics version 2 */ 77 #define DEV_HAS_STATISTICS_V3 0x0000800 /* device supports hw statistics version 3 */ 78 #define DEV_HAS_STATISTICS_V12 0x0000600 /* device supports hw statistics version 1 and 2 */ 79 #define DEV_HAS_STATISTICS_V123 0x0000e00 /* device supports hw statistics version 1, 2, and 3 */ 80 #define DEV_HAS_TEST_EXTENDED 0x0001000 /* device supports extended diagnostic test */ 81 #define DEV_HAS_MGMT_UNIT 0x0002000 /* device supports management unit */ 82 #define DEV_HAS_CORRECT_MACADDR 0x0004000 /* device supports correct mac address order */ 83 #define DEV_HAS_COLLISION_FIX 0x0008000 /* device supports tx collision fix */ 84 #define DEV_HAS_PAUSEFRAME_TX_V1 0x0010000 /* device supports tx pause frames version 1 */ 85 #define DEV_HAS_PAUSEFRAME_TX_V2 0x0020000 /* device supports tx pause frames version 2 */ 86 #define DEV_HAS_PAUSEFRAME_TX_V3 0x0040000 /* device supports tx pause frames version 3 */ 87 #define DEV_NEED_TX_LIMIT 0x0080000 /* device needs to limit tx */ 88 #define DEV_NEED_TX_LIMIT2 0x0180000 /* device needs to limit tx, expect for some revs */ 89 #define DEV_HAS_GEAR_MODE 0x0200000 /* device supports gear mode */ 90 #define DEV_NEED_PHY_INIT_FIX 0x0400000 /* device needs specific phy workaround */ 91 #define DEV_NEED_LOW_POWER_FIX 0x0800000 /* device needs special power up workaround */ 92 #define DEV_NEED_MSI_FIX 0x1000000 /* device needs msi workaround */ 93 94 enum { 95 NvRegIrqStatus = 0x000, 96 #define NVREG_IRQSTAT_MIIEVENT 0x040 97 #define NVREG_IRQSTAT_MASK 0x83ff 98 NvRegIrqMask = 0x004, 99 #define NVREG_IRQ_RX_ERROR 0x0001 100 #define NVREG_IRQ_RX 0x0002 101 #define NVREG_IRQ_RX_NOBUF 0x0004 102 #define NVREG_IRQ_TX_ERR 0x0008 103 #define NVREG_IRQ_TX_OK 0x0010 104 #define NVREG_IRQ_TIMER 0x0020 105 #define NVREG_IRQ_LINK 0x0040 106 #define NVREG_IRQ_RX_FORCED 0x0080 107 #define NVREG_IRQ_TX_FORCED 0x0100 108 #define NVREG_IRQ_RECOVER_ERROR 0x8200 109 #define NVREG_IRQMASK_THROUGHPUT 0x00df 110 #define NVREG_IRQMASK_CPU 0x0060 111 #define NVREG_IRQ_TX_ALL (NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED) 112 #define NVREG_IRQ_RX_ALL (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED) 113 #define NVREG_IRQ_OTHER (NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RECOVER_ERROR) 114 115 NvRegUnknownSetupReg6 = 0x008, 116 #define NVREG_UNKSETUP6_VAL 3 117 118 /* 119 * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic 120 * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms 121 */ 122 NvRegPollingInterval = 0x00c, 123 #define NVREG_POLL_DEFAULT_THROUGHPUT 65535 /* backup tx cleanup if loop max reached */ 124 #define NVREG_POLL_DEFAULT_CPU 13 125 NvRegMSIMap0 = 0x020, 126 NvRegMSIMap1 = 0x024, 127 NvRegMSIIrqMask = 0x030, 128 #define NVREG_MSI_VECTOR_0_ENABLED 0x01 129 NvRegMisc1 = 0x080, 130 #define NVREG_MISC1_PAUSE_TX 0x01 131 #define NVREG_MISC1_HD 0x02 132 #define NVREG_MISC1_FORCE 0x3b0f3c 133 134 NvRegMacReset = 0x34, 135 #define NVREG_MAC_RESET_ASSERT 0x0F3 136 NvRegTransmitterControl = 0x084, 137 #define NVREG_XMITCTL_START 0x01 138 #define NVREG_XMITCTL_MGMT_ST 0x40000000 139 #define NVREG_XMITCTL_SYNC_MASK 0x000f0000 140 #define NVREG_XMITCTL_SYNC_NOT_READY 0x0 141 #define NVREG_XMITCTL_SYNC_PHY_INIT 0x00040000 142 #define NVREG_XMITCTL_MGMT_SEMA_MASK 0x00000f00 143 #define NVREG_XMITCTL_MGMT_SEMA_FREE 0x0 144 #define NVREG_XMITCTL_HOST_SEMA_MASK 0x0000f000 145 #define NVREG_XMITCTL_HOST_SEMA_ACQ 0x0000f000 146 #define NVREG_XMITCTL_HOST_LOADED 0x00004000 147 #define NVREG_XMITCTL_TX_PATH_EN 0x01000000 148 #define NVREG_XMITCTL_DATA_START 0x00100000 149 #define NVREG_XMITCTL_DATA_READY 0x00010000 150 #define NVREG_XMITCTL_DATA_ERROR 0x00020000 151 NvRegTransmitterStatus = 0x088, 152 #define NVREG_XMITSTAT_BUSY 0x01 153 154 NvRegPacketFilterFlags = 0x8c, 155 #define NVREG_PFF_PAUSE_RX 0x08 156 #define NVREG_PFF_ALWAYS 0x7F0000 157 #define NVREG_PFF_PROMISC 0x80 158 #define NVREG_PFF_MYADDR 0x20 159 #define NVREG_PFF_LOOPBACK 0x10 160 161 NvRegOffloadConfig = 0x90, 162 #define NVREG_OFFLOAD_HOMEPHY 0x601 163 #define NVREG_OFFLOAD_NORMAL RX_NIC_BUFSIZE 164 NvRegReceiverControl = 0x094, 165 #define NVREG_RCVCTL_START 0x01 166 #define NVREG_RCVCTL_RX_PATH_EN 0x01000000 167 NvRegReceiverStatus = 0x98, 168 #define NVREG_RCVSTAT_BUSY 0x01 169 170 NvRegSlotTime = 0x9c, 171 #define NVREG_SLOTTIME_LEGBF_ENABLED 0x80000000 172 #define NVREG_SLOTTIME_10_100_FULL 0x00007f00 173 #define NVREG_SLOTTIME_1000_FULL 0x0003ff00 174 #define NVREG_SLOTTIME_HALF 0x0000ff00 175 #define NVREG_SLOTTIME_DEFAULT 0x00007f00 176 #define NVREG_SLOTTIME_MASK 0x000000ff 177 178 NvRegTxDeferral = 0xA0, 179 #define NVREG_TX_DEFERRAL_DEFAULT 0x15050f 180 #define NVREG_TX_DEFERRAL_RGMII_10_100 0x16070f 181 #define NVREG_TX_DEFERRAL_RGMII_1000 0x14050f 182 #define NVREG_TX_DEFERRAL_RGMII_STRETCH_10 0x16190f 183 #define NVREG_TX_DEFERRAL_RGMII_STRETCH_100 0x16300f 184 #define NVREG_TX_DEFERRAL_MII_STRETCH 0x152000 185 NvRegRxDeferral = 0xA4, 186 #define NVREG_RX_DEFERRAL_DEFAULT 0x16 187 NvRegMacAddrA = 0xA8, 188 NvRegMacAddrB = 0xAC, 189 NvRegMulticastAddrA = 0xB0, 190 #define NVREG_MCASTADDRA_FORCE 0x01 191 NvRegMulticastAddrB = 0xB4, 192 NvRegMulticastMaskA = 0xB8, 193 #define NVREG_MCASTMASKA_NONE 0xffffffff 194 NvRegMulticastMaskB = 0xBC, 195 #define NVREG_MCASTMASKB_NONE 0xffff 196 197 NvRegPhyInterface = 0xC0, 198 #define PHY_RGMII 0x10000000 199 NvRegBackOffControl = 0xC4, 200 #define NVREG_BKOFFCTRL_DEFAULT 0x70000000 201 #define NVREG_BKOFFCTRL_SEED_MASK 0x000003ff 202 #define NVREG_BKOFFCTRL_SELECT 24 203 #define NVREG_BKOFFCTRL_GEAR 12 204 205 NvRegTxRingPhysAddr = 0x100, 206 NvRegRxRingPhysAddr = 0x104, 207 NvRegRingSizes = 0x108, 208 #define NVREG_RINGSZ_TXSHIFT 0 209 #define NVREG_RINGSZ_RXSHIFT 16 210 NvRegTransmitPoll = 0x10c, 211 #define NVREG_TRANSMITPOLL_MAC_ADDR_REV 0x00008000 212 NvRegLinkSpeed = 0x110, 213 #define NVREG_LINKSPEED_FORCE 0x10000 214 #define NVREG_LINKSPEED_10 1000 215 #define NVREG_LINKSPEED_100 100 216 #define NVREG_LINKSPEED_1000 50 217 #define NVREG_LINKSPEED_MASK (0xFFF) 218 NvRegUnknownSetupReg5 = 0x130, 219 #define NVREG_UNKSETUP5_BIT31 (1<<31) 220 NvRegTxWatermark = 0x13c, 221 #define NVREG_TX_WM_DESC1_DEFAULT 0x0200010 222 #define NVREG_TX_WM_DESC2_3_DEFAULT 0x1e08000 223 #define NVREG_TX_WM_DESC2_3_1000 0xfe08000 224 NvRegTxRxControl = 0x144, 225 #define NVREG_TXRXCTL_KICK 0x0001 226 #define NVREG_TXRXCTL_BIT1 0x0002 227 #define NVREG_TXRXCTL_BIT2 0x0004 228 #define NVREG_TXRXCTL_IDLE 0x0008 229 #define NVREG_TXRXCTL_RESET 0x0010 230 #define NVREG_TXRXCTL_RXCHECK 0x0400 231 #define NVREG_TXRXCTL_DESC_1 0 232 #define NVREG_TXRXCTL_DESC_2 0x002100 233 #define NVREG_TXRXCTL_DESC_3 0xc02200 234 #define NVREG_TXRXCTL_VLANSTRIP 0x00040 235 #define NVREG_TXRXCTL_VLANINS 0x00080 236 NvRegTxRingPhysAddrHigh = 0x148, 237 NvRegRxRingPhysAddrHigh = 0x14C, 238 NvRegTxPauseFrame = 0x170, 239 #define NVREG_TX_PAUSEFRAME_DISABLE 0x0fff0080 240 #define NVREG_TX_PAUSEFRAME_ENABLE_V1 0x01800010 241 #define NVREG_TX_PAUSEFRAME_ENABLE_V2 0x056003f0 242 #define NVREG_TX_PAUSEFRAME_ENABLE_V3 0x09f00880 243 NvRegTxPauseFrameLimit = 0x174, 244 #define NVREG_TX_PAUSEFRAMELIMIT_ENABLE 0x00010000 245 NvRegMIIStatus = 0x180, 246 #define NVREG_MIISTAT_ERROR 0x0001 247 #define NVREG_MIISTAT_LINKCHANGE 0x0008 248 #define NVREG_MIISTAT_MASK_RW 0x0007 249 #define NVREG_MIISTAT_MASK_ALL 0x000f 250 NvRegMIIMask = 0x184, 251 #define NVREG_MII_LINKCHANGE 0x0008 252 253 NvRegAdapterControl = 0x188, 254 #define NVREG_ADAPTCTL_START 0x02 255 #define NVREG_ADAPTCTL_LINKUP 0x04 256 #define NVREG_ADAPTCTL_PHYVALID 0x40000 257 #define NVREG_ADAPTCTL_RUNNING 0x100000 258 #define NVREG_ADAPTCTL_PHYSHIFT 24 259 NvRegMIISpeed = 0x18c, 260 #define NVREG_MIISPEED_BIT8 (1<<8) 261 #define NVREG_MIIDELAY 5 262 NvRegMIIControl = 0x190, 263 #define NVREG_MIICTL_INUSE 0x08000 264 #define NVREG_MIICTL_WRITE 0x00400 265 #define NVREG_MIICTL_ADDRSHIFT 5 266 NvRegMIIData = 0x194, 267 NvRegTxUnicast = 0x1a0, 268 NvRegTxMulticast = 0x1a4, 269 NvRegTxBroadcast = 0x1a8, 270 NvRegWakeUpFlags = 0x200, 271 #define NVREG_WAKEUPFLAGS_VAL 0x7770 272 #define NVREG_WAKEUPFLAGS_BUSYSHIFT 24 273 #define NVREG_WAKEUPFLAGS_ENABLESHIFT 16 274 #define NVREG_WAKEUPFLAGS_D3SHIFT 12 275 #define NVREG_WAKEUPFLAGS_D2SHIFT 8 276 #define NVREG_WAKEUPFLAGS_D1SHIFT 4 277 #define NVREG_WAKEUPFLAGS_D0SHIFT 0 278 #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT 0x01 279 #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT 0x02 280 #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE 0x04 281 #define NVREG_WAKEUPFLAGS_ENABLE 0x1111 282 283 NvRegMgmtUnitGetVersion = 0x204, 284 #define NVREG_MGMTUNITGETVERSION 0x01 285 NvRegMgmtUnitVersion = 0x208, 286 #define NVREG_MGMTUNITVERSION 0x08 287 NvRegPowerCap = 0x268, 288 #define NVREG_POWERCAP_D3SUPP (1<<30) 289 #define NVREG_POWERCAP_D2SUPP (1<<26) 290 #define NVREG_POWERCAP_D1SUPP (1<<25) 291 NvRegPowerState = 0x26c, 292 #define NVREG_POWERSTATE_POWEREDUP 0x8000 293 #define NVREG_POWERSTATE_VALID 0x0100 294 #define NVREG_POWERSTATE_MASK 0x0003 295 #define NVREG_POWERSTATE_D0 0x0000 296 #define NVREG_POWERSTATE_D1 0x0001 297 #define NVREG_POWERSTATE_D2 0x0002 298 #define NVREG_POWERSTATE_D3 0x0003 299 NvRegMgmtUnitControl = 0x278, 300 #define NVREG_MGMTUNITCONTROL_INUSE 0x20000 301 NvRegTxCnt = 0x280, 302 NvRegTxZeroReXmt = 0x284, 303 NvRegTxOneReXmt = 0x288, 304 NvRegTxManyReXmt = 0x28c, 305 NvRegTxLateCol = 0x290, 306 NvRegTxUnderflow = 0x294, 307 NvRegTxLossCarrier = 0x298, 308 NvRegTxExcessDef = 0x29c, 309 NvRegTxRetryErr = 0x2a0, 310 NvRegRxFrameErr = 0x2a4, 311 NvRegRxExtraByte = 0x2a8, 312 NvRegRxLateCol = 0x2ac, 313 NvRegRxRunt = 0x2b0, 314 NvRegRxFrameTooLong = 0x2b4, 315 NvRegRxOverflow = 0x2b8, 316 NvRegRxFCSErr = 0x2bc, 317 NvRegRxFrameAlignErr = 0x2c0, 318 NvRegRxLenErr = 0x2c4, 319 NvRegRxUnicast = 0x2c8, 320 NvRegRxMulticast = 0x2cc, 321 NvRegRxBroadcast = 0x2d0, 322 NvRegTxDef = 0x2d4, 323 NvRegTxFrame = 0x2d8, 324 NvRegRxCnt = 0x2dc, 325 NvRegTxPause = 0x2e0, 326 NvRegRxPause = 0x2e4, 327 NvRegRxDropFrame = 0x2e8, 328 NvRegVlanControl = 0x300, 329 #define NVREG_VLANCONTROL_ENABLE 0x2000 330 NvRegMSIXMap0 = 0x3e0, 331 NvRegMSIXMap1 = 0x3e4, 332 NvRegMSIXIrqStatus = 0x3f0, 333 334 NvRegPowerState2 = 0x600, 335 #define NVREG_POWERSTATE2_POWERUP_MASK 0x0F15 336 #define NVREG_POWERSTATE2_POWERUP_REV_A3 0x0001 337 #define NVREG_POWERSTATE2_PHY_RESET 0x0004 338 #define NVREG_POWERSTATE2_GATE_CLOCKS 0x0F00 339 }; 340 341 /* Big endian: should work, but is untested */ 342 struct ring_desc { 343 __le32 buf; 344 __le32 flaglen; 345 }; 346 347 struct ring_desc_ex { 348 __le32 bufhigh; 349 __le32 buflow; 350 __le32 txvlan; 351 __le32 flaglen; 352 }; 353 354 union ring_type { 355 struct ring_desc *orig; 356 struct ring_desc_ex *ex; 357 }; 358 359 #define FLAG_MASK_V1 0xffff0000 360 #define FLAG_MASK_V2 0xffffc000 361 #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1) 362 #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2) 363 364 #define NV_TX_LASTPACKET (1<<16) 365 #define NV_TX_RETRYERROR (1<<19) 366 #define NV_TX_RETRYCOUNT_MASK (0xF<<20) 367 #define NV_TX_FORCED_INTERRUPT (1<<24) 368 #define NV_TX_DEFERRED (1<<26) 369 #define NV_TX_CARRIERLOST (1<<27) 370 #define NV_TX_LATECOLLISION (1<<28) 371 #define NV_TX_UNDERFLOW (1<<29) 372 #define NV_TX_ERROR (1<<30) 373 #define NV_TX_VALID (1<<31) 374 375 #define NV_TX2_LASTPACKET (1<<29) 376 #define NV_TX2_RETRYERROR (1<<18) 377 #define NV_TX2_RETRYCOUNT_MASK (0xF<<19) 378 #define NV_TX2_FORCED_INTERRUPT (1<<30) 379 #define NV_TX2_DEFERRED (1<<25) 380 #define NV_TX2_CARRIERLOST (1<<26) 381 #define NV_TX2_LATECOLLISION (1<<27) 382 #define NV_TX2_UNDERFLOW (1<<28) 383 /* error and valid are the same for both */ 384 #define NV_TX2_ERROR (1<<30) 385 #define NV_TX2_VALID (1<<31) 386 #define NV_TX2_TSO (1<<28) 387 #define NV_TX2_TSO_SHIFT 14 388 #define NV_TX2_TSO_MAX_SHIFT 14 389 #define NV_TX2_TSO_MAX_SIZE (1<<NV_TX2_TSO_MAX_SHIFT) 390 #define NV_TX2_CHECKSUM_L3 (1<<27) 391 #define NV_TX2_CHECKSUM_L4 (1<<26) 392 393 #define NV_TX3_VLAN_TAG_PRESENT (1<<18) 394 395 #define NV_RX_DESCRIPTORVALID (1<<16) 396 #define NV_RX_MISSEDFRAME (1<<17) 397 #define NV_RX_SUBTRACT1 (1<<18) 398 #define NV_RX_ERROR1 (1<<23) 399 #define NV_RX_ERROR2 (1<<24) 400 #define NV_RX_ERROR3 (1<<25) 401 #define NV_RX_ERROR4 (1<<26) 402 #define NV_RX_CRCERR (1<<27) 403 #define NV_RX_OVERFLOW (1<<28) 404 #define NV_RX_FRAMINGERR (1<<29) 405 #define NV_RX_ERROR (1<<30) 406 #define NV_RX_AVAIL (1<<31) 407 #define NV_RX_ERROR_MASK (NV_RX_ERROR1|NV_RX_ERROR2|NV_RX_ERROR3|NV_RX_ERROR4|NV_RX_CRCERR|NV_RX_OVERFLOW|NV_RX_FRAMINGERR) 408 409 #define NV_RX2_CHECKSUMMASK (0x1C000000) 410 #define NV_RX2_CHECKSUM_IP (0x10000000) 411 #define NV_RX2_CHECKSUM_IP_TCP (0x14000000) 412 #define NV_RX2_CHECKSUM_IP_UDP (0x18000000) 413 #define NV_RX2_DESCRIPTORVALID (1<<29) 414 #define NV_RX2_SUBTRACT1 (1<<25) 415 #define NV_RX2_ERROR1 (1<<18) 416 #define NV_RX2_ERROR2 (1<<19) 417 #define NV_RX2_ERROR3 (1<<20) 418 #define NV_RX2_ERROR4 (1<<21) 419 #define NV_RX2_CRCERR (1<<22) 420 #define NV_RX2_OVERFLOW (1<<23) 421 #define NV_RX2_FRAMINGERR (1<<24) 422 /* error and avail are the same for both */ 423 #define NV_RX2_ERROR (1<<30) 424 #define NV_RX2_AVAIL (1<<31) 425 #define NV_RX2_ERROR_MASK (NV_RX2_ERROR1|NV_RX2_ERROR2|NV_RX2_ERROR3|NV_RX2_ERROR4|NV_RX2_CRCERR|NV_RX2_OVERFLOW|NV_RX2_FRAMINGERR) 426 427 #define NV_RX3_VLAN_TAG_PRESENT (1<<16) 428 #define NV_RX3_VLAN_TAG_MASK (0x0000FFFF) 429 430 /* Miscellaneous hardware related defines: */ 431 #define NV_PCI_REGSZ_VER1 0x270 432 #define NV_PCI_REGSZ_VER2 0x2d4 433 #define NV_PCI_REGSZ_VER3 0x604 434 #define NV_PCI_REGSZ_MAX 0x604 435 436 /* various timeout delays: all in usec */ 437 #define NV_TXRX_RESET_DELAY 4 438 #define NV_TXSTOP_DELAY1 10 439 #define NV_TXSTOP_DELAY1MAX 500000 440 #define NV_TXSTOP_DELAY2 100 441 #define NV_RXSTOP_DELAY1 10 442 #define NV_RXSTOP_DELAY1MAX 500000 443 #define NV_RXSTOP_DELAY2 100 444 #define NV_SETUP5_DELAY 5 445 #define NV_SETUP5_DELAYMAX 50000 446 #define NV_POWERUP_DELAY 5 447 #define NV_POWERUP_DELAYMAX 5000 448 #define NV_MIIBUSY_DELAY 50 449 #define NV_MIIPHY_DELAY 10 450 #define NV_MIIPHY_DELAYMAX 10000 451 #define NV_MAC_RESET_DELAY 64 452 453 #define NV_WAKEUPPATTERNS 5 454 #define NV_WAKEUPMASKENTRIES 4 455 456 /* General driver defaults */ 457 #define NV_WATCHDOG_TIMEO (5*HZ) 458 459 #define RX_RING_DEFAULT 512 460 #define TX_RING_DEFAULT 256 461 #define RX_RING_MIN 128 462 #define TX_RING_MIN 64 463 #define RING_MAX_DESC_VER_1 1024 464 #define RING_MAX_DESC_VER_2_3 16384 465 466 /* rx/tx mac addr + type + vlan + align + slack*/ 467 #define NV_RX_HEADERS (64) 468 /* even more slack. */ 469 #define NV_RX_ALLOC_PAD (64) 470 471 /* maximum mtu size */ 472 #define NV_PKTLIMIT_1 ETH_DATA_LEN /* hard limit not known */ 473 #define NV_PKTLIMIT_2 9100 /* Actual limit according to NVidia: 9202 */ 474 475 #define OOM_REFILL (1+HZ/20) 476 #define POLL_WAIT (1+HZ/100) 477 #define LINK_TIMEOUT (3*HZ) 478 #define STATS_INTERVAL (10*HZ) 479 480 /* 481 * desc_ver values: 482 * The nic supports three different descriptor types: 483 * - DESC_VER_1: Original 484 * - DESC_VER_2: support for jumbo frames. 485 * - DESC_VER_3: 64-bit format. 486 */ 487 #define DESC_VER_1 1 488 #define DESC_VER_2 2 489 #define DESC_VER_3 3 490 491 /* PHY defines */ 492 #define PHY_OUI_MARVELL 0x5043 493 #define PHY_OUI_CICADA 0x03f1 494 #define PHY_OUI_VITESSE 0x01c1 495 #define PHY_OUI_REALTEK 0x0732 496 #define PHY_OUI_REALTEK2 0x0020 497 #define PHYID1_OUI_MASK 0x03ff 498 #define PHYID1_OUI_SHFT 6 499 #define PHYID2_OUI_MASK 0xfc00 500 #define PHYID2_OUI_SHFT 10 501 #define PHYID2_MODEL_MASK 0x03f0 502 #define PHY_MODEL_REALTEK_8211 0x0110 503 #define PHY_REV_MASK 0x0001 504 #define PHY_REV_REALTEK_8211B 0x0000 505 #define PHY_REV_REALTEK_8211C 0x0001 506 #define PHY_MODEL_REALTEK_8201 0x0200 507 #define PHY_MODEL_MARVELL_E3016 0x0220 508 #define PHY_MARVELL_E3016_INITMASK 0x0300 509 #define PHY_CICADA_INIT1 0x0f000 510 #define PHY_CICADA_INIT2 0x0e00 511 #define PHY_CICADA_INIT3 0x01000 512 #define PHY_CICADA_INIT4 0x0200 513 #define PHY_CICADA_INIT5 0x0004 514 #define PHY_CICADA_INIT6 0x02000 515 #define PHY_VITESSE_INIT_REG1 0x1f 516 #define PHY_VITESSE_INIT_REG2 0x10 517 #define PHY_VITESSE_INIT_REG3 0x11 518 #define PHY_VITESSE_INIT_REG4 0x12 519 #define PHY_VITESSE_INIT_MSK1 0xc 520 #define PHY_VITESSE_INIT_MSK2 0x0180 521 #define PHY_VITESSE_INIT1 0x52b5 522 #define PHY_VITESSE_INIT2 0xaf8a 523 #define PHY_VITESSE_INIT3 0x8 524 #define PHY_VITESSE_INIT4 0x8f8a 525 #define PHY_VITESSE_INIT5 0xaf86 526 #define PHY_VITESSE_INIT6 0x8f86 527 #define PHY_VITESSE_INIT7 0xaf82 528 #define PHY_VITESSE_INIT8 0x0100 529 #define PHY_VITESSE_INIT9 0x8f82 530 #define PHY_VITESSE_INIT10 0x0 531 #define PHY_REALTEK_INIT_REG1 0x1f 532 #define PHY_REALTEK_INIT_REG2 0x19 533 #define PHY_REALTEK_INIT_REG3 0x13 534 #define PHY_REALTEK_INIT_REG4 0x14 535 #define PHY_REALTEK_INIT_REG5 0x18 536 #define PHY_REALTEK_INIT_REG6 0x11 537 #define PHY_REALTEK_INIT_REG7 0x01 538 #define PHY_REALTEK_INIT1 0x0000 539 #define PHY_REALTEK_INIT2 0x8e00 540 #define PHY_REALTEK_INIT3 0x0001 541 #define PHY_REALTEK_INIT4 0xad17 542 #define PHY_REALTEK_INIT5 0xfb54 543 #define PHY_REALTEK_INIT6 0xf5c7 544 #define PHY_REALTEK_INIT7 0x1000 545 #define PHY_REALTEK_INIT8 0x0003 546 #define PHY_REALTEK_INIT9 0x0008 547 #define PHY_REALTEK_INIT10 0x0005 548 #define PHY_REALTEK_INIT11 0x0200 549 #define PHY_REALTEK_INIT_MSK1 0x0003 550 551 #define PHY_GIGABIT 0x0100 552 553 #define PHY_TIMEOUT 0x1 554 #define PHY_ERROR 0x2 555 556 #define PHY_100 0x1 557 #define PHY_1000 0x2 558 #define PHY_HALF 0x100 559 560 #define NV_PAUSEFRAME_RX_CAPABLE 0x0001 561 #define NV_PAUSEFRAME_TX_CAPABLE 0x0002 562 #define NV_PAUSEFRAME_RX_ENABLE 0x0004 563 #define NV_PAUSEFRAME_TX_ENABLE 0x0008 564 #define NV_PAUSEFRAME_RX_REQ 0x0010 565 #define NV_PAUSEFRAME_TX_REQ 0x0020 566 #define NV_PAUSEFRAME_AUTONEG 0x0040 567 568 /* MSI/MSI-X defines */ 569 #define NV_MSI_X_MAX_VECTORS 8 570 #define NV_MSI_X_VECTORS_MASK 0x000f 571 #define NV_MSI_CAPABLE 0x0010 572 #define NV_MSI_X_CAPABLE 0x0020 573 #define NV_MSI_ENABLED 0x0040 574 #define NV_MSI_X_ENABLED 0x0080 575 576 #define NV_MSI_X_VECTOR_ALL 0x0 577 #define NV_MSI_X_VECTOR_RX 0x0 578 #define NV_MSI_X_VECTOR_TX 0x1 579 #define NV_MSI_X_VECTOR_OTHER 0x2 580 581 #define NV_MSI_PRIV_OFFSET 0x68 582 #define NV_MSI_PRIV_VALUE 0xffffffff 583 584 #define NV_RESTART_TX 0x1 585 #define NV_RESTART_RX 0x2 586 587 #define NV_TX_LIMIT_COUNT 16 588 589 #define NV_DYNAMIC_THRESHOLD 4 590 #define NV_DYNAMIC_MAX_QUIET_COUNT 2048 591 592 /* statistics */ 593 struct nv_ethtool_str { 594 char name[ETH_GSTRING_LEN]; 595 }; 596 597 static const struct nv_ethtool_str nv_estats_str[] = { 598 { "tx_bytes" }, /* includes Ethernet FCS CRC */ 599 { "tx_zero_rexmt" }, 600 { "tx_one_rexmt" }, 601 { "tx_many_rexmt" }, 602 { "tx_late_collision" }, 603 { "tx_fifo_errors" }, 604 { "tx_carrier_errors" }, 605 { "tx_excess_deferral" }, 606 { "tx_retry_error" }, 607 { "rx_frame_error" }, 608 { "rx_extra_byte" }, 609 { "rx_late_collision" }, 610 { "rx_runt" }, 611 { "rx_frame_too_long" }, 612 { "rx_over_errors" }, 613 { "rx_crc_errors" }, 614 { "rx_frame_align_error" }, 615 { "rx_length_error" }, 616 { "rx_unicast" }, 617 { "rx_multicast" }, 618 { "rx_broadcast" }, 619 { "rx_packets" }, 620 { "rx_errors_total" }, 621 { "tx_errors_total" }, 622 623 /* version 2 stats */ 624 { "tx_deferral" }, 625 { "tx_packets" }, 626 { "rx_bytes" }, /* includes Ethernet FCS CRC */ 627 { "tx_pause" }, 628 { "rx_pause" }, 629 { "rx_drop_frame" }, 630 631 /* version 3 stats */ 632 { "tx_unicast" }, 633 { "tx_multicast" }, 634 { "tx_broadcast" } 635 }; 636 637 struct nv_ethtool_stats { 638 u64 tx_bytes; /* should be ifconfig->tx_bytes + 4*tx_packets */ 639 u64 tx_zero_rexmt; 640 u64 tx_one_rexmt; 641 u64 tx_many_rexmt; 642 u64 tx_late_collision; 643 u64 tx_fifo_errors; 644 u64 tx_carrier_errors; 645 u64 tx_excess_deferral; 646 u64 tx_retry_error; 647 u64 rx_frame_error; 648 u64 rx_extra_byte; 649 u64 rx_late_collision; 650 u64 rx_runt; 651 u64 rx_frame_too_long; 652 u64 rx_over_errors; 653 u64 rx_crc_errors; 654 u64 rx_frame_align_error; 655 u64 rx_length_error; 656 u64 rx_unicast; 657 u64 rx_multicast; 658 u64 rx_broadcast; 659 u64 rx_packets; /* should be ifconfig->rx_packets */ 660 u64 rx_errors_total; 661 u64 tx_errors_total; 662 663 /* version 2 stats */ 664 u64 tx_deferral; 665 u64 tx_packets; /* should be ifconfig->tx_packets */ 666 u64 rx_bytes; /* should be ifconfig->rx_bytes + 4*rx_packets */ 667 u64 tx_pause; 668 u64 rx_pause; 669 u64 rx_drop_frame; 670 671 /* version 3 stats */ 672 u64 tx_unicast; 673 u64 tx_multicast; 674 u64 tx_broadcast; 675 }; 676 677 #define NV_DEV_STATISTICS_V3_COUNT (sizeof(struct nv_ethtool_stats)/sizeof(u64)) 678 #define NV_DEV_STATISTICS_V2_COUNT (NV_DEV_STATISTICS_V3_COUNT - 3) 679 #define NV_DEV_STATISTICS_V1_COUNT (NV_DEV_STATISTICS_V2_COUNT - 6) 680 681 /* diagnostics */ 682 #define NV_TEST_COUNT_BASE 3 683 #define NV_TEST_COUNT_EXTENDED 4 684 685 static const struct nv_ethtool_str nv_etests_str[] = { 686 { "link (online/offline)" }, 687 { "register (offline) " }, 688 { "interrupt (offline) " }, 689 { "loopback (offline) " } 690 }; 691 692 struct register_test { 693 __u32 reg; 694 __u32 mask; 695 }; 696 697 static const struct register_test nv_registers_test[] = { 698 { NvRegUnknownSetupReg6, 0x01 }, 699 { NvRegMisc1, 0x03c }, 700 { NvRegOffloadConfig, 0x03ff }, 701 { NvRegMulticastAddrA, 0xffffffff }, 702 { NvRegTxWatermark, 0x0ff }, 703 { NvRegWakeUpFlags, 0x07777 }, 704 { 0, 0 } 705 }; 706 707 struct nv_skb_map { 708 struct sk_buff *skb; 709 dma_addr_t dma; 710 unsigned int dma_len:31; 711 unsigned int dma_single:1; 712 struct ring_desc_ex *first_tx_desc; 713 struct nv_skb_map *next_tx_ctx; 714 }; 715 716 struct nv_txrx_stats { 717 u64 stat_rx_packets; 718 u64 stat_rx_bytes; /* not always available in HW */ 719 u64 stat_rx_missed_errors; 720 u64 stat_rx_dropped; 721 u64 stat_tx_packets; /* not always available in HW */ 722 u64 stat_tx_bytes; 723 u64 stat_tx_dropped; 724 }; 725 726 #define nv_txrx_stats_inc(member) \ 727 __this_cpu_inc(np->txrx_stats->member) 728 #define nv_txrx_stats_add(member, count) \ 729 __this_cpu_add(np->txrx_stats->member, (count)) 730 731 /* 732 * SMP locking: 733 * All hardware access under netdev_priv(dev)->lock, except the performance 734 * critical parts: 735 * - rx is (pseudo-) lockless: it relies on the single-threading provided 736 * by the arch code for interrupts. 737 * - tx setup is lockless: it relies on netif_tx_lock. Actual submission 738 * needs netdev_priv(dev)->lock :-( 739 * - set_multicast_list: preparation lockless, relies on netif_tx_lock. 740 * 741 * Hardware stats updates are protected by hwstats_lock: 742 * - updated by nv_do_stats_poll (timer). This is meant to avoid 743 * integer wraparound in the NIC stats registers, at low frequency 744 * (0.1 Hz) 745 * - updated by nv_get_ethtool_stats + nv_get_stats64 746 * 747 * Software stats are accessed only through 64b synchronization points 748 * and are not subject to other synchronization techniques (single 749 * update thread on the TX or RX paths). 750 */ 751 752 /* in dev: base, irq */ 753 struct fe_priv { 754 spinlock_t lock; 755 756 struct net_device *dev; 757 struct napi_struct napi; 758 759 /* hardware stats are updated in syscall and timer */ 760 spinlock_t hwstats_lock; 761 struct nv_ethtool_stats estats; 762 763 int in_shutdown; 764 u32 linkspeed; 765 int duplex; 766 int autoneg; 767 int fixed_mode; 768 int phyaddr; 769 int wolenabled; 770 unsigned int phy_oui; 771 unsigned int phy_model; 772 unsigned int phy_rev; 773 u16 gigabit; 774 int intr_test; 775 int recover_error; 776 int quiet_count; 777 778 /* General data: RO fields */ 779 dma_addr_t ring_addr; 780 struct pci_dev *pci_dev; 781 u32 orig_mac[2]; 782 u32 events; 783 u32 irqmask; 784 u32 desc_ver; 785 u32 txrxctl_bits; 786 u32 vlanctl_bits; 787 u32 driver_data; 788 u32 device_id; 789 u32 register_size; 790 u32 mac_in_use; 791 int mgmt_version; 792 int mgmt_sema; 793 794 void __iomem *base; 795 796 /* rx specific fields. 797 * Locking: Within irq hander or disable_irq+spin_lock(&np->lock); 798 */ 799 union ring_type get_rx, put_rx, last_rx; 800 struct nv_skb_map *get_rx_ctx, *put_rx_ctx; 801 struct nv_skb_map *last_rx_ctx; 802 struct nv_skb_map *rx_skb; 803 804 union ring_type rx_ring; 805 unsigned int rx_buf_sz; 806 unsigned int pkt_limit; 807 struct timer_list oom_kick; 808 struct timer_list nic_poll; 809 struct timer_list stats_poll; 810 u32 nic_poll_irq; 811 int rx_ring_size; 812 813 /* RX software stats */ 814 struct u64_stats_sync swstats_rx_syncp; 815 struct nv_txrx_stats __percpu *txrx_stats; 816 817 /* media detection workaround. 818 * Locking: Within irq hander or disable_irq+spin_lock(&np->lock); 819 */ 820 int need_linktimer; 821 unsigned long link_timeout; 822 /* 823 * tx specific fields. 824 */ 825 union ring_type get_tx, put_tx, last_tx; 826 struct nv_skb_map *get_tx_ctx, *put_tx_ctx; 827 struct nv_skb_map *last_tx_ctx; 828 struct nv_skb_map *tx_skb; 829 830 union ring_type tx_ring; 831 u32 tx_flags; 832 int tx_ring_size; 833 int tx_limit; 834 u32 tx_pkts_in_progress; 835 struct nv_skb_map *tx_change_owner; 836 struct nv_skb_map *tx_end_flip; 837 int tx_stop; 838 839 /* TX software stats */ 840 struct u64_stats_sync swstats_tx_syncp; 841 842 /* msi/msi-x fields */ 843 u32 msi_flags; 844 struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS]; 845 846 /* flow control */ 847 u32 pause_flags; 848 849 /* power saved state */ 850 u32 saved_config_space[NV_PCI_REGSZ_MAX/4]; 851 852 /* for different msi-x irq type */ 853 char name_rx[IFNAMSIZ + 3]; /* -rx */ 854 char name_tx[IFNAMSIZ + 3]; /* -tx */ 855 char name_other[IFNAMSIZ + 6]; /* -other */ 856 }; 857 858 /* 859 * Maximum number of loops until we assume that a bit in the irq mask 860 * is stuck. Overridable with module param. 861 */ 862 static int max_interrupt_work = 4; 863 864 /* 865 * Optimization can be either throuput mode or cpu mode 866 * 867 * Throughput Mode: Every tx and rx packet will generate an interrupt. 868 * CPU Mode: Interrupts are controlled by a timer. 869 */ 870 enum { 871 NV_OPTIMIZATION_MODE_THROUGHPUT, 872 NV_OPTIMIZATION_MODE_CPU, 873 NV_OPTIMIZATION_MODE_DYNAMIC 874 }; 875 static int optimization_mode = NV_OPTIMIZATION_MODE_DYNAMIC; 876 877 /* 878 * Poll interval for timer irq 879 * 880 * This interval determines how frequent an interrupt is generated. 881 * The is value is determined by [(time_in_micro_secs * 100) / (2^10)] 882 * Min = 0, and Max = 65535 883 */ 884 static int poll_interval = -1; 885 886 /* 887 * MSI interrupts 888 */ 889 enum { 890 NV_MSI_INT_DISABLED, 891 NV_MSI_INT_ENABLED 892 }; 893 static int msi = NV_MSI_INT_ENABLED; 894 895 /* 896 * MSIX interrupts 897 */ 898 enum { 899 NV_MSIX_INT_DISABLED, 900 NV_MSIX_INT_ENABLED 901 }; 902 static int msix = NV_MSIX_INT_ENABLED; 903 904 /* 905 * DMA 64bit 906 */ 907 enum { 908 NV_DMA_64BIT_DISABLED, 909 NV_DMA_64BIT_ENABLED 910 }; 911 static int dma_64bit = NV_DMA_64BIT_ENABLED; 912 913 /* 914 * Debug output control for tx_timeout 915 */ 916 static bool debug_tx_timeout = false; 917 918 /* 919 * Crossover Detection 920 * Realtek 8201 phy + some OEM boards do not work properly. 921 */ 922 enum { 923 NV_CROSSOVER_DETECTION_DISABLED, 924 NV_CROSSOVER_DETECTION_ENABLED 925 }; 926 static int phy_cross = NV_CROSSOVER_DETECTION_DISABLED; 927 928 /* 929 * Power down phy when interface is down (persists through reboot; 930 * older Linux and other OSes may not power it up again) 931 */ 932 static int phy_power_down; 933 934 static inline struct fe_priv *get_nvpriv(struct net_device *dev) 935 { 936 return netdev_priv(dev); 937 } 938 939 static inline u8 __iomem *get_hwbase(struct net_device *dev) 940 { 941 return ((struct fe_priv *)netdev_priv(dev))->base; 942 } 943 944 static inline void pci_push(u8 __iomem *base) 945 { 946 /* force out pending posted writes */ 947 readl(base); 948 } 949 950 static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v) 951 { 952 return le32_to_cpu(prd->flaglen) 953 & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2); 954 } 955 956 static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v) 957 { 958 return le32_to_cpu(prd->flaglen) & LEN_MASK_V2; 959 } 960 961 static bool nv_optimized(struct fe_priv *np) 962 { 963 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) 964 return false; 965 return true; 966 } 967 968 static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target, 969 int delay, int delaymax) 970 { 971 u8 __iomem *base = get_hwbase(dev); 972 973 pci_push(base); 974 do { 975 udelay(delay); 976 delaymax -= delay; 977 if (delaymax < 0) 978 return 1; 979 } while ((readl(base + offset) & mask) != target); 980 return 0; 981 } 982 983 #define NV_SETUP_RX_RING 0x01 984 #define NV_SETUP_TX_RING 0x02 985 986 static inline u32 dma_low(dma_addr_t addr) 987 { 988 return addr; 989 } 990 991 static inline u32 dma_high(dma_addr_t addr) 992 { 993 return addr>>31>>1; /* 0 if 32bit, shift down by 32 if 64bit */ 994 } 995 996 static void setup_hw_rings(struct net_device *dev, int rxtx_flags) 997 { 998 struct fe_priv *np = get_nvpriv(dev); 999 u8 __iomem *base = get_hwbase(dev); 1000 1001 if (!nv_optimized(np)) { 1002 if (rxtx_flags & NV_SETUP_RX_RING) 1003 writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr); 1004 if (rxtx_flags & NV_SETUP_TX_RING) 1005 writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr); 1006 } else { 1007 if (rxtx_flags & NV_SETUP_RX_RING) { 1008 writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr); 1009 writel(dma_high(np->ring_addr), base + NvRegRxRingPhysAddrHigh); 1010 } 1011 if (rxtx_flags & NV_SETUP_TX_RING) { 1012 writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr); 1013 writel(dma_high(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddrHigh); 1014 } 1015 } 1016 } 1017 1018 static void free_rings(struct net_device *dev) 1019 { 1020 struct fe_priv *np = get_nvpriv(dev); 1021 1022 if (!nv_optimized(np)) { 1023 if (np->rx_ring.orig) 1024 dma_free_coherent(&np->pci_dev->dev, 1025 sizeof(struct ring_desc) * 1026 (np->rx_ring_size + 1027 np->tx_ring_size), 1028 np->rx_ring.orig, np->ring_addr); 1029 } else { 1030 if (np->rx_ring.ex) 1031 dma_free_coherent(&np->pci_dev->dev, 1032 sizeof(struct ring_desc_ex) * 1033 (np->rx_ring_size + 1034 np->tx_ring_size), 1035 np->rx_ring.ex, np->ring_addr); 1036 } 1037 kfree(np->rx_skb); 1038 kfree(np->tx_skb); 1039 } 1040 1041 static int using_multi_irqs(struct net_device *dev) 1042 { 1043 struct fe_priv *np = get_nvpriv(dev); 1044 1045 if (!(np->msi_flags & NV_MSI_X_ENABLED) || 1046 ((np->msi_flags & NV_MSI_X_ENABLED) && 1047 ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1))) 1048 return 0; 1049 else 1050 return 1; 1051 } 1052 1053 static void nv_txrx_gate(struct net_device *dev, bool gate) 1054 { 1055 struct fe_priv *np = get_nvpriv(dev); 1056 u8 __iomem *base = get_hwbase(dev); 1057 u32 powerstate; 1058 1059 if (!np->mac_in_use && 1060 (np->driver_data & DEV_HAS_POWER_CNTRL)) { 1061 powerstate = readl(base + NvRegPowerState2); 1062 if (gate) 1063 powerstate |= NVREG_POWERSTATE2_GATE_CLOCKS; 1064 else 1065 powerstate &= ~NVREG_POWERSTATE2_GATE_CLOCKS; 1066 writel(powerstate, base + NvRegPowerState2); 1067 } 1068 } 1069 1070 static void nv_enable_irq(struct net_device *dev) 1071 { 1072 struct fe_priv *np = get_nvpriv(dev); 1073 1074 if (!using_multi_irqs(dev)) { 1075 if (np->msi_flags & NV_MSI_X_ENABLED) 1076 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector); 1077 else 1078 enable_irq(np->pci_dev->irq); 1079 } else { 1080 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector); 1081 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector); 1082 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector); 1083 } 1084 } 1085 1086 static void nv_disable_irq(struct net_device *dev) 1087 { 1088 struct fe_priv *np = get_nvpriv(dev); 1089 1090 if (!using_multi_irqs(dev)) { 1091 if (np->msi_flags & NV_MSI_X_ENABLED) 1092 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector); 1093 else 1094 disable_irq(np->pci_dev->irq); 1095 } else { 1096 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector); 1097 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector); 1098 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector); 1099 } 1100 } 1101 1102 /* In MSIX mode, a write to irqmask behaves as XOR */ 1103 static void nv_enable_hw_interrupts(struct net_device *dev, u32 mask) 1104 { 1105 u8 __iomem *base = get_hwbase(dev); 1106 1107 writel(mask, base + NvRegIrqMask); 1108 } 1109 1110 static void nv_disable_hw_interrupts(struct net_device *dev, u32 mask) 1111 { 1112 struct fe_priv *np = get_nvpriv(dev); 1113 u8 __iomem *base = get_hwbase(dev); 1114 1115 if (np->msi_flags & NV_MSI_X_ENABLED) { 1116 writel(mask, base + NvRegIrqMask); 1117 } else { 1118 if (np->msi_flags & NV_MSI_ENABLED) 1119 writel(0, base + NvRegMSIIrqMask); 1120 writel(0, base + NvRegIrqMask); 1121 } 1122 } 1123 1124 static void nv_napi_enable(struct net_device *dev) 1125 { 1126 struct fe_priv *np = get_nvpriv(dev); 1127 1128 napi_enable(&np->napi); 1129 } 1130 1131 static void nv_napi_disable(struct net_device *dev) 1132 { 1133 struct fe_priv *np = get_nvpriv(dev); 1134 1135 napi_disable(&np->napi); 1136 } 1137 1138 #define MII_READ (-1) 1139 /* mii_rw: read/write a register on the PHY. 1140 * 1141 * Caller must guarantee serialization 1142 */ 1143 static int mii_rw(struct net_device *dev, int addr, int miireg, int value) 1144 { 1145 u8 __iomem *base = get_hwbase(dev); 1146 u32 reg; 1147 int retval; 1148 1149 writel(NVREG_MIISTAT_MASK_RW, base + NvRegMIIStatus); 1150 1151 reg = readl(base + NvRegMIIControl); 1152 if (reg & NVREG_MIICTL_INUSE) { 1153 writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl); 1154 udelay(NV_MIIBUSY_DELAY); 1155 } 1156 1157 reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg; 1158 if (value != MII_READ) { 1159 writel(value, base + NvRegMIIData); 1160 reg |= NVREG_MIICTL_WRITE; 1161 } 1162 writel(reg, base + NvRegMIIControl); 1163 1164 if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0, 1165 NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX)) { 1166 retval = -1; 1167 } else if (value != MII_READ) { 1168 /* it was a write operation - fewer failures are detectable */ 1169 retval = 0; 1170 } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) { 1171 retval = -1; 1172 } else { 1173 retval = readl(base + NvRegMIIData); 1174 } 1175 1176 return retval; 1177 } 1178 1179 static int phy_reset(struct net_device *dev, u32 bmcr_setup) 1180 { 1181 struct fe_priv *np = netdev_priv(dev); 1182 u32 miicontrol; 1183 unsigned int tries = 0; 1184 1185 miicontrol = BMCR_RESET | bmcr_setup; 1186 if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) 1187 return -1; 1188 1189 /* wait for 500ms */ 1190 msleep(500); 1191 1192 /* must wait till reset is deasserted */ 1193 while (miicontrol & BMCR_RESET) { 1194 usleep_range(10000, 20000); 1195 miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); 1196 /* FIXME: 100 tries seem excessive */ 1197 if (tries++ > 100) 1198 return -1; 1199 } 1200 return 0; 1201 } 1202 1203 static int init_realtek_8211b(struct net_device *dev, struct fe_priv *np) 1204 { 1205 static const struct { 1206 int reg; 1207 int init; 1208 } ri[] = { 1209 { PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1 }, 1210 { PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2 }, 1211 { PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3 }, 1212 { PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4 }, 1213 { PHY_REALTEK_INIT_REG4, PHY_REALTEK_INIT5 }, 1214 { PHY_REALTEK_INIT_REG5, PHY_REALTEK_INIT6 }, 1215 { PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1 }, 1216 }; 1217 int i; 1218 1219 for (i = 0; i < ARRAY_SIZE(ri); i++) { 1220 if (mii_rw(dev, np->phyaddr, ri[i].reg, ri[i].init)) 1221 return PHY_ERROR; 1222 } 1223 1224 return 0; 1225 } 1226 1227 static int init_realtek_8211c(struct net_device *dev, struct fe_priv *np) 1228 { 1229 u32 reg; 1230 u8 __iomem *base = get_hwbase(dev); 1231 u32 powerstate = readl(base + NvRegPowerState2); 1232 1233 /* need to perform hw phy reset */ 1234 powerstate |= NVREG_POWERSTATE2_PHY_RESET; 1235 writel(powerstate, base + NvRegPowerState2); 1236 msleep(25); 1237 1238 powerstate &= ~NVREG_POWERSTATE2_PHY_RESET; 1239 writel(powerstate, base + NvRegPowerState2); 1240 msleep(25); 1241 1242 reg = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ); 1243 reg |= PHY_REALTEK_INIT9; 1244 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, reg)) 1245 return PHY_ERROR; 1246 if (mii_rw(dev, np->phyaddr, 1247 PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT10)) 1248 return PHY_ERROR; 1249 reg = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG7, MII_READ); 1250 if (!(reg & PHY_REALTEK_INIT11)) { 1251 reg |= PHY_REALTEK_INIT11; 1252 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG7, reg)) 1253 return PHY_ERROR; 1254 } 1255 if (mii_rw(dev, np->phyaddr, 1256 PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) 1257 return PHY_ERROR; 1258 1259 return 0; 1260 } 1261 1262 static int init_realtek_8201(struct net_device *dev, struct fe_priv *np) 1263 { 1264 u32 phy_reserved; 1265 1266 if (np->driver_data & DEV_NEED_PHY_INIT_FIX) { 1267 phy_reserved = mii_rw(dev, np->phyaddr, 1268 PHY_REALTEK_INIT_REG6, MII_READ); 1269 phy_reserved |= PHY_REALTEK_INIT7; 1270 if (mii_rw(dev, np->phyaddr, 1271 PHY_REALTEK_INIT_REG6, phy_reserved)) 1272 return PHY_ERROR; 1273 } 1274 1275 return 0; 1276 } 1277 1278 static int init_realtek_8201_cross(struct net_device *dev, struct fe_priv *np) 1279 { 1280 u32 phy_reserved; 1281 1282 if (phy_cross == NV_CROSSOVER_DETECTION_DISABLED) { 1283 if (mii_rw(dev, np->phyaddr, 1284 PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) 1285 return PHY_ERROR; 1286 phy_reserved = mii_rw(dev, np->phyaddr, 1287 PHY_REALTEK_INIT_REG2, MII_READ); 1288 phy_reserved &= ~PHY_REALTEK_INIT_MSK1; 1289 phy_reserved |= PHY_REALTEK_INIT3; 1290 if (mii_rw(dev, np->phyaddr, 1291 PHY_REALTEK_INIT_REG2, phy_reserved)) 1292 return PHY_ERROR; 1293 if (mii_rw(dev, np->phyaddr, 1294 PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) 1295 return PHY_ERROR; 1296 } 1297 1298 return 0; 1299 } 1300 1301 static int init_cicada(struct net_device *dev, struct fe_priv *np, 1302 u32 phyinterface) 1303 { 1304 u32 phy_reserved; 1305 1306 if (phyinterface & PHY_RGMII) { 1307 phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ); 1308 phy_reserved &= ~(PHY_CICADA_INIT1 | PHY_CICADA_INIT2); 1309 phy_reserved |= (PHY_CICADA_INIT3 | PHY_CICADA_INIT4); 1310 if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) 1311 return PHY_ERROR; 1312 phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ); 1313 phy_reserved |= PHY_CICADA_INIT5; 1314 if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) 1315 return PHY_ERROR; 1316 } 1317 phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ); 1318 phy_reserved |= PHY_CICADA_INIT6; 1319 if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) 1320 return PHY_ERROR; 1321 1322 return 0; 1323 } 1324 1325 static int init_vitesse(struct net_device *dev, struct fe_priv *np) 1326 { 1327 u32 phy_reserved; 1328 1329 if (mii_rw(dev, np->phyaddr, 1330 PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT1)) 1331 return PHY_ERROR; 1332 if (mii_rw(dev, np->phyaddr, 1333 PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT2)) 1334 return PHY_ERROR; 1335 phy_reserved = mii_rw(dev, np->phyaddr, 1336 PHY_VITESSE_INIT_REG4, MII_READ); 1337 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) 1338 return PHY_ERROR; 1339 phy_reserved = mii_rw(dev, np->phyaddr, 1340 PHY_VITESSE_INIT_REG3, MII_READ); 1341 phy_reserved &= ~PHY_VITESSE_INIT_MSK1; 1342 phy_reserved |= PHY_VITESSE_INIT3; 1343 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) 1344 return PHY_ERROR; 1345 if (mii_rw(dev, np->phyaddr, 1346 PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT4)) 1347 return PHY_ERROR; 1348 if (mii_rw(dev, np->phyaddr, 1349 PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT5)) 1350 return PHY_ERROR; 1351 phy_reserved = mii_rw(dev, np->phyaddr, 1352 PHY_VITESSE_INIT_REG4, MII_READ); 1353 phy_reserved &= ~PHY_VITESSE_INIT_MSK1; 1354 phy_reserved |= PHY_VITESSE_INIT3; 1355 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) 1356 return PHY_ERROR; 1357 phy_reserved = mii_rw(dev, np->phyaddr, 1358 PHY_VITESSE_INIT_REG3, MII_READ); 1359 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) 1360 return PHY_ERROR; 1361 if (mii_rw(dev, np->phyaddr, 1362 PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT6)) 1363 return PHY_ERROR; 1364 if (mii_rw(dev, np->phyaddr, 1365 PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT7)) 1366 return PHY_ERROR; 1367 phy_reserved = mii_rw(dev, np->phyaddr, 1368 PHY_VITESSE_INIT_REG4, MII_READ); 1369 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) 1370 return PHY_ERROR; 1371 phy_reserved = mii_rw(dev, np->phyaddr, 1372 PHY_VITESSE_INIT_REG3, MII_READ); 1373 phy_reserved &= ~PHY_VITESSE_INIT_MSK2; 1374 phy_reserved |= PHY_VITESSE_INIT8; 1375 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) 1376 return PHY_ERROR; 1377 if (mii_rw(dev, np->phyaddr, 1378 PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT9)) 1379 return PHY_ERROR; 1380 if (mii_rw(dev, np->phyaddr, 1381 PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT10)) 1382 return PHY_ERROR; 1383 1384 return 0; 1385 } 1386 1387 static int phy_init(struct net_device *dev) 1388 { 1389 struct fe_priv *np = get_nvpriv(dev); 1390 u8 __iomem *base = get_hwbase(dev); 1391 u32 phyinterface; 1392 u32 mii_status, mii_control, mii_control_1000, reg; 1393 1394 /* phy errata for E3016 phy */ 1395 if (np->phy_model == PHY_MODEL_MARVELL_E3016) { 1396 reg = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ); 1397 reg &= ~PHY_MARVELL_E3016_INITMASK; 1398 if (mii_rw(dev, np->phyaddr, MII_NCONFIG, reg)) { 1399 netdev_info(dev, "%s: phy write to errata reg failed\n", 1400 pci_name(np->pci_dev)); 1401 return PHY_ERROR; 1402 } 1403 } 1404 if (np->phy_oui == PHY_OUI_REALTEK) { 1405 if (np->phy_model == PHY_MODEL_REALTEK_8211 && 1406 np->phy_rev == PHY_REV_REALTEK_8211B) { 1407 if (init_realtek_8211b(dev, np)) { 1408 netdev_info(dev, "%s: phy init failed\n", 1409 pci_name(np->pci_dev)); 1410 return PHY_ERROR; 1411 } 1412 } else if (np->phy_model == PHY_MODEL_REALTEK_8211 && 1413 np->phy_rev == PHY_REV_REALTEK_8211C) { 1414 if (init_realtek_8211c(dev, np)) { 1415 netdev_info(dev, "%s: phy init failed\n", 1416 pci_name(np->pci_dev)); 1417 return PHY_ERROR; 1418 } 1419 } else if (np->phy_model == PHY_MODEL_REALTEK_8201) { 1420 if (init_realtek_8201(dev, np)) { 1421 netdev_info(dev, "%s: phy init failed\n", 1422 pci_name(np->pci_dev)); 1423 return PHY_ERROR; 1424 } 1425 } 1426 } 1427 1428 /* set advertise register */ 1429 reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ); 1430 reg |= (ADVERTISE_10HALF | ADVERTISE_10FULL | 1431 ADVERTISE_100HALF | ADVERTISE_100FULL | 1432 ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP); 1433 if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) { 1434 netdev_info(dev, "%s: phy write to advertise failed\n", 1435 pci_name(np->pci_dev)); 1436 return PHY_ERROR; 1437 } 1438 1439 /* get phy interface type */ 1440 phyinterface = readl(base + NvRegPhyInterface); 1441 1442 /* see if gigabit phy */ 1443 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ); 1444 if (mii_status & PHY_GIGABIT) { 1445 np->gigabit = PHY_GIGABIT; 1446 mii_control_1000 = mii_rw(dev, np->phyaddr, 1447 MII_CTRL1000, MII_READ); 1448 mii_control_1000 &= ~ADVERTISE_1000HALF; 1449 if (phyinterface & PHY_RGMII) 1450 mii_control_1000 |= ADVERTISE_1000FULL; 1451 else 1452 mii_control_1000 &= ~ADVERTISE_1000FULL; 1453 1454 if (mii_rw(dev, np->phyaddr, MII_CTRL1000, mii_control_1000)) { 1455 netdev_info(dev, "%s: phy init failed\n", 1456 pci_name(np->pci_dev)); 1457 return PHY_ERROR; 1458 } 1459 } else 1460 np->gigabit = 0; 1461 1462 mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); 1463 mii_control |= BMCR_ANENABLE; 1464 1465 if (np->phy_oui == PHY_OUI_REALTEK && 1466 np->phy_model == PHY_MODEL_REALTEK_8211 && 1467 np->phy_rev == PHY_REV_REALTEK_8211C) { 1468 /* start autoneg since we already performed hw reset above */ 1469 mii_control |= BMCR_ANRESTART; 1470 if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) { 1471 netdev_info(dev, "%s: phy init failed\n", 1472 pci_name(np->pci_dev)); 1473 return PHY_ERROR; 1474 } 1475 } else { 1476 /* reset the phy 1477 * (certain phys need bmcr to be setup with reset) 1478 */ 1479 if (phy_reset(dev, mii_control)) { 1480 netdev_info(dev, "%s: phy reset failed\n", 1481 pci_name(np->pci_dev)); 1482 return PHY_ERROR; 1483 } 1484 } 1485 1486 /* phy vendor specific configuration */ 1487 if (np->phy_oui == PHY_OUI_CICADA) { 1488 if (init_cicada(dev, np, phyinterface)) { 1489 netdev_info(dev, "%s: phy init failed\n", 1490 pci_name(np->pci_dev)); 1491 return PHY_ERROR; 1492 } 1493 } else if (np->phy_oui == PHY_OUI_VITESSE) { 1494 if (init_vitesse(dev, np)) { 1495 netdev_info(dev, "%s: phy init failed\n", 1496 pci_name(np->pci_dev)); 1497 return PHY_ERROR; 1498 } 1499 } else if (np->phy_oui == PHY_OUI_REALTEK) { 1500 if (np->phy_model == PHY_MODEL_REALTEK_8211 && 1501 np->phy_rev == PHY_REV_REALTEK_8211B) { 1502 /* reset could have cleared these out, set them back */ 1503 if (init_realtek_8211b(dev, np)) { 1504 netdev_info(dev, "%s: phy init failed\n", 1505 pci_name(np->pci_dev)); 1506 return PHY_ERROR; 1507 } 1508 } else if (np->phy_model == PHY_MODEL_REALTEK_8201) { 1509 if (init_realtek_8201(dev, np) || 1510 init_realtek_8201_cross(dev, np)) { 1511 netdev_info(dev, "%s: phy init failed\n", 1512 pci_name(np->pci_dev)); 1513 return PHY_ERROR; 1514 } 1515 } 1516 } 1517 1518 /* some phys clear out pause advertisement on reset, set it back */ 1519 mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg); 1520 1521 /* restart auto negotiation, power down phy */ 1522 mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); 1523 mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE); 1524 if (phy_power_down) 1525 mii_control |= BMCR_PDOWN; 1526 if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) 1527 return PHY_ERROR; 1528 1529 return 0; 1530 } 1531 1532 static void nv_start_rx(struct net_device *dev) 1533 { 1534 struct fe_priv *np = netdev_priv(dev); 1535 u8 __iomem *base = get_hwbase(dev); 1536 u32 rx_ctrl = readl(base + NvRegReceiverControl); 1537 1538 /* Already running? Stop it. */ 1539 if ((readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) && !np->mac_in_use) { 1540 rx_ctrl &= ~NVREG_RCVCTL_START; 1541 writel(rx_ctrl, base + NvRegReceiverControl); 1542 pci_push(base); 1543 } 1544 writel(np->linkspeed, base + NvRegLinkSpeed); 1545 pci_push(base); 1546 rx_ctrl |= NVREG_RCVCTL_START; 1547 if (np->mac_in_use) 1548 rx_ctrl &= ~NVREG_RCVCTL_RX_PATH_EN; 1549 writel(rx_ctrl, base + NvRegReceiverControl); 1550 pci_push(base); 1551 } 1552 1553 static void nv_stop_rx(struct net_device *dev) 1554 { 1555 struct fe_priv *np = netdev_priv(dev); 1556 u8 __iomem *base = get_hwbase(dev); 1557 u32 rx_ctrl = readl(base + NvRegReceiverControl); 1558 1559 if (!np->mac_in_use) 1560 rx_ctrl &= ~NVREG_RCVCTL_START; 1561 else 1562 rx_ctrl |= NVREG_RCVCTL_RX_PATH_EN; 1563 writel(rx_ctrl, base + NvRegReceiverControl); 1564 if (reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0, 1565 NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX)) 1566 netdev_info(dev, "%s: ReceiverStatus remained busy\n", 1567 __func__); 1568 1569 udelay(NV_RXSTOP_DELAY2); 1570 if (!np->mac_in_use) 1571 writel(0, base + NvRegLinkSpeed); 1572 } 1573 1574 static void nv_start_tx(struct net_device *dev) 1575 { 1576 struct fe_priv *np = netdev_priv(dev); 1577 u8 __iomem *base = get_hwbase(dev); 1578 u32 tx_ctrl = readl(base + NvRegTransmitterControl); 1579 1580 tx_ctrl |= NVREG_XMITCTL_START; 1581 if (np->mac_in_use) 1582 tx_ctrl &= ~NVREG_XMITCTL_TX_PATH_EN; 1583 writel(tx_ctrl, base + NvRegTransmitterControl); 1584 pci_push(base); 1585 } 1586 1587 static void nv_stop_tx(struct net_device *dev) 1588 { 1589 struct fe_priv *np = netdev_priv(dev); 1590 u8 __iomem *base = get_hwbase(dev); 1591 u32 tx_ctrl = readl(base + NvRegTransmitterControl); 1592 1593 if (!np->mac_in_use) 1594 tx_ctrl &= ~NVREG_XMITCTL_START; 1595 else 1596 tx_ctrl |= NVREG_XMITCTL_TX_PATH_EN; 1597 writel(tx_ctrl, base + NvRegTransmitterControl); 1598 if (reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0, 1599 NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX)) 1600 netdev_info(dev, "%s: TransmitterStatus remained busy\n", 1601 __func__); 1602 1603 udelay(NV_TXSTOP_DELAY2); 1604 if (!np->mac_in_use) 1605 writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV, 1606 base + NvRegTransmitPoll); 1607 } 1608 1609 static void nv_start_rxtx(struct net_device *dev) 1610 { 1611 nv_start_rx(dev); 1612 nv_start_tx(dev); 1613 } 1614 1615 static void nv_stop_rxtx(struct net_device *dev) 1616 { 1617 nv_stop_rx(dev); 1618 nv_stop_tx(dev); 1619 } 1620 1621 static void nv_txrx_reset(struct net_device *dev) 1622 { 1623 struct fe_priv *np = netdev_priv(dev); 1624 u8 __iomem *base = get_hwbase(dev); 1625 1626 writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl); 1627 pci_push(base); 1628 udelay(NV_TXRX_RESET_DELAY); 1629 writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl); 1630 pci_push(base); 1631 } 1632 1633 static void nv_mac_reset(struct net_device *dev) 1634 { 1635 struct fe_priv *np = netdev_priv(dev); 1636 u8 __iomem *base = get_hwbase(dev); 1637 u32 temp1, temp2, temp3; 1638 1639 writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl); 1640 pci_push(base); 1641 1642 /* save registers since they will be cleared on reset */ 1643 temp1 = readl(base + NvRegMacAddrA); 1644 temp2 = readl(base + NvRegMacAddrB); 1645 temp3 = readl(base + NvRegTransmitPoll); 1646 1647 writel(NVREG_MAC_RESET_ASSERT, base + NvRegMacReset); 1648 pci_push(base); 1649 udelay(NV_MAC_RESET_DELAY); 1650 writel(0, base + NvRegMacReset); 1651 pci_push(base); 1652 udelay(NV_MAC_RESET_DELAY); 1653 1654 /* restore saved registers */ 1655 writel(temp1, base + NvRegMacAddrA); 1656 writel(temp2, base + NvRegMacAddrB); 1657 writel(temp3, base + NvRegTransmitPoll); 1658 1659 writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl); 1660 pci_push(base); 1661 } 1662 1663 /* Caller must appropriately lock netdev_priv(dev)->hwstats_lock */ 1664 static void nv_update_stats(struct net_device *dev) 1665 { 1666 struct fe_priv *np = netdev_priv(dev); 1667 u8 __iomem *base = get_hwbase(dev); 1668 1669 /* If it happens that this is run in top-half context, then 1670 * replace the spin_lock of hwstats_lock with 1671 * spin_lock_irqsave() in calling functions. */ 1672 WARN_ONCE(in_irq(), "forcedeth: estats spin_lock(_bh) from top-half"); 1673 assert_spin_locked(&np->hwstats_lock); 1674 1675 /* query hardware */ 1676 np->estats.tx_bytes += readl(base + NvRegTxCnt); 1677 np->estats.tx_zero_rexmt += readl(base + NvRegTxZeroReXmt); 1678 np->estats.tx_one_rexmt += readl(base + NvRegTxOneReXmt); 1679 np->estats.tx_many_rexmt += readl(base + NvRegTxManyReXmt); 1680 np->estats.tx_late_collision += readl(base + NvRegTxLateCol); 1681 np->estats.tx_fifo_errors += readl(base + NvRegTxUnderflow); 1682 np->estats.tx_carrier_errors += readl(base + NvRegTxLossCarrier); 1683 np->estats.tx_excess_deferral += readl(base + NvRegTxExcessDef); 1684 np->estats.tx_retry_error += readl(base + NvRegTxRetryErr); 1685 np->estats.rx_frame_error += readl(base + NvRegRxFrameErr); 1686 np->estats.rx_extra_byte += readl(base + NvRegRxExtraByte); 1687 np->estats.rx_late_collision += readl(base + NvRegRxLateCol); 1688 np->estats.rx_runt += readl(base + NvRegRxRunt); 1689 np->estats.rx_frame_too_long += readl(base + NvRegRxFrameTooLong); 1690 np->estats.rx_over_errors += readl(base + NvRegRxOverflow); 1691 np->estats.rx_crc_errors += readl(base + NvRegRxFCSErr); 1692 np->estats.rx_frame_align_error += readl(base + NvRegRxFrameAlignErr); 1693 np->estats.rx_length_error += readl(base + NvRegRxLenErr); 1694 np->estats.rx_unicast += readl(base + NvRegRxUnicast); 1695 np->estats.rx_multicast += readl(base + NvRegRxMulticast); 1696 np->estats.rx_broadcast += readl(base + NvRegRxBroadcast); 1697 np->estats.rx_packets = 1698 np->estats.rx_unicast + 1699 np->estats.rx_multicast + 1700 np->estats.rx_broadcast; 1701 np->estats.rx_errors_total = 1702 np->estats.rx_crc_errors + 1703 np->estats.rx_over_errors + 1704 np->estats.rx_frame_error + 1705 (np->estats.rx_frame_align_error - np->estats.rx_extra_byte) + 1706 np->estats.rx_late_collision + 1707 np->estats.rx_runt + 1708 np->estats.rx_frame_too_long; 1709 np->estats.tx_errors_total = 1710 np->estats.tx_late_collision + 1711 np->estats.tx_fifo_errors + 1712 np->estats.tx_carrier_errors + 1713 np->estats.tx_excess_deferral + 1714 np->estats.tx_retry_error; 1715 1716 if (np->driver_data & DEV_HAS_STATISTICS_V2) { 1717 np->estats.tx_deferral += readl(base + NvRegTxDef); 1718 np->estats.tx_packets += readl(base + NvRegTxFrame); 1719 np->estats.rx_bytes += readl(base + NvRegRxCnt); 1720 np->estats.tx_pause += readl(base + NvRegTxPause); 1721 np->estats.rx_pause += readl(base + NvRegRxPause); 1722 np->estats.rx_drop_frame += readl(base + NvRegRxDropFrame); 1723 np->estats.rx_errors_total += np->estats.rx_drop_frame; 1724 } 1725 1726 if (np->driver_data & DEV_HAS_STATISTICS_V3) { 1727 np->estats.tx_unicast += readl(base + NvRegTxUnicast); 1728 np->estats.tx_multicast += readl(base + NvRegTxMulticast); 1729 np->estats.tx_broadcast += readl(base + NvRegTxBroadcast); 1730 } 1731 } 1732 1733 static void nv_get_stats(int cpu, struct fe_priv *np, 1734 struct rtnl_link_stats64 *storage) 1735 { 1736 struct nv_txrx_stats *src = per_cpu_ptr(np->txrx_stats, cpu); 1737 unsigned int syncp_start; 1738 u64 rx_packets, rx_bytes, rx_dropped, rx_missed_errors; 1739 u64 tx_packets, tx_bytes, tx_dropped; 1740 1741 do { 1742 syncp_start = u64_stats_fetch_begin_irq(&np->swstats_rx_syncp); 1743 rx_packets = src->stat_rx_packets; 1744 rx_bytes = src->stat_rx_bytes; 1745 rx_dropped = src->stat_rx_dropped; 1746 rx_missed_errors = src->stat_rx_missed_errors; 1747 } while (u64_stats_fetch_retry_irq(&np->swstats_rx_syncp, syncp_start)); 1748 1749 storage->rx_packets += rx_packets; 1750 storage->rx_bytes += rx_bytes; 1751 storage->rx_dropped += rx_dropped; 1752 storage->rx_missed_errors += rx_missed_errors; 1753 1754 do { 1755 syncp_start = u64_stats_fetch_begin_irq(&np->swstats_tx_syncp); 1756 tx_packets = src->stat_tx_packets; 1757 tx_bytes = src->stat_tx_bytes; 1758 tx_dropped = src->stat_tx_dropped; 1759 } while (u64_stats_fetch_retry_irq(&np->swstats_tx_syncp, syncp_start)); 1760 1761 storage->tx_packets += tx_packets; 1762 storage->tx_bytes += tx_bytes; 1763 storage->tx_dropped += tx_dropped; 1764 } 1765 1766 /* 1767 * nv_get_stats64: dev->ndo_get_stats64 function 1768 * Get latest stats value from the nic. 1769 * Called with read_lock(&dev_base_lock) held for read - 1770 * only synchronized against unregister_netdevice. 1771 */ 1772 static void 1773 nv_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *storage) 1774 __acquires(&netdev_priv(dev)->hwstats_lock) 1775 __releases(&netdev_priv(dev)->hwstats_lock) 1776 { 1777 struct fe_priv *np = netdev_priv(dev); 1778 int cpu; 1779 1780 /* 1781 * Note: because HW stats are not always available and for 1782 * consistency reasons, the following ifconfig stats are 1783 * managed by software: rx_bytes, tx_bytes, rx_packets and 1784 * tx_packets. The related hardware stats reported by ethtool 1785 * should be equivalent to these ifconfig stats, with 4 1786 * additional bytes per packet (Ethernet FCS CRC), except for 1787 * tx_packets when TSO kicks in. 1788 */ 1789 1790 /* software stats */ 1791 for_each_online_cpu(cpu) 1792 nv_get_stats(cpu, np, storage); 1793 1794 /* If the nic supports hw counters then retrieve latest values */ 1795 if (np->driver_data & DEV_HAS_STATISTICS_V123) { 1796 spin_lock_bh(&np->hwstats_lock); 1797 1798 nv_update_stats(dev); 1799 1800 /* generic stats */ 1801 storage->rx_errors = np->estats.rx_errors_total; 1802 storage->tx_errors = np->estats.tx_errors_total; 1803 1804 /* meaningful only when NIC supports stats v3 */ 1805 storage->multicast = np->estats.rx_multicast; 1806 1807 /* detailed rx_errors */ 1808 storage->rx_length_errors = np->estats.rx_length_error; 1809 storage->rx_over_errors = np->estats.rx_over_errors; 1810 storage->rx_crc_errors = np->estats.rx_crc_errors; 1811 storage->rx_frame_errors = np->estats.rx_frame_align_error; 1812 storage->rx_fifo_errors = np->estats.rx_drop_frame; 1813 1814 /* detailed tx_errors */ 1815 storage->tx_carrier_errors = np->estats.tx_carrier_errors; 1816 storage->tx_fifo_errors = np->estats.tx_fifo_errors; 1817 1818 spin_unlock_bh(&np->hwstats_lock); 1819 } 1820 } 1821 1822 /* 1823 * nv_alloc_rx: fill rx ring entries. 1824 * Return 1 if the allocations for the skbs failed and the 1825 * rx engine is without Available descriptors 1826 */ 1827 static int nv_alloc_rx(struct net_device *dev) 1828 { 1829 struct fe_priv *np = netdev_priv(dev); 1830 struct ring_desc *less_rx; 1831 1832 less_rx = np->get_rx.orig; 1833 if (less_rx-- == np->rx_ring.orig) 1834 less_rx = np->last_rx.orig; 1835 1836 while (np->put_rx.orig != less_rx) { 1837 struct sk_buff *skb = netdev_alloc_skb(dev, np->rx_buf_sz + NV_RX_ALLOC_PAD); 1838 if (likely(skb)) { 1839 np->put_rx_ctx->skb = skb; 1840 np->put_rx_ctx->dma = dma_map_single(&np->pci_dev->dev, 1841 skb->data, 1842 skb_tailroom(skb), 1843 DMA_FROM_DEVICE); 1844 if (unlikely(dma_mapping_error(&np->pci_dev->dev, 1845 np->put_rx_ctx->dma))) { 1846 kfree_skb(skb); 1847 goto packet_dropped; 1848 } 1849 np->put_rx_ctx->dma_len = skb_tailroom(skb); 1850 np->put_rx.orig->buf = cpu_to_le32(np->put_rx_ctx->dma); 1851 wmb(); 1852 np->put_rx.orig->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL); 1853 if (unlikely(np->put_rx.orig++ == np->last_rx.orig)) 1854 np->put_rx.orig = np->rx_ring.orig; 1855 if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx)) 1856 np->put_rx_ctx = np->rx_skb; 1857 } else { 1858 packet_dropped: 1859 u64_stats_update_begin(&np->swstats_rx_syncp); 1860 nv_txrx_stats_inc(stat_rx_dropped); 1861 u64_stats_update_end(&np->swstats_rx_syncp); 1862 return 1; 1863 } 1864 } 1865 return 0; 1866 } 1867 1868 static int nv_alloc_rx_optimized(struct net_device *dev) 1869 { 1870 struct fe_priv *np = netdev_priv(dev); 1871 struct ring_desc_ex *less_rx; 1872 1873 less_rx = np->get_rx.ex; 1874 if (less_rx-- == np->rx_ring.ex) 1875 less_rx = np->last_rx.ex; 1876 1877 while (np->put_rx.ex != less_rx) { 1878 struct sk_buff *skb = netdev_alloc_skb(dev, np->rx_buf_sz + NV_RX_ALLOC_PAD); 1879 if (likely(skb)) { 1880 np->put_rx_ctx->skb = skb; 1881 np->put_rx_ctx->dma = dma_map_single(&np->pci_dev->dev, 1882 skb->data, 1883 skb_tailroom(skb), 1884 DMA_FROM_DEVICE); 1885 if (unlikely(dma_mapping_error(&np->pci_dev->dev, 1886 np->put_rx_ctx->dma))) { 1887 kfree_skb(skb); 1888 goto packet_dropped; 1889 } 1890 np->put_rx_ctx->dma_len = skb_tailroom(skb); 1891 np->put_rx.ex->bufhigh = cpu_to_le32(dma_high(np->put_rx_ctx->dma)); 1892 np->put_rx.ex->buflow = cpu_to_le32(dma_low(np->put_rx_ctx->dma)); 1893 wmb(); 1894 np->put_rx.ex->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL); 1895 if (unlikely(np->put_rx.ex++ == np->last_rx.ex)) 1896 np->put_rx.ex = np->rx_ring.ex; 1897 if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx)) 1898 np->put_rx_ctx = np->rx_skb; 1899 } else { 1900 packet_dropped: 1901 u64_stats_update_begin(&np->swstats_rx_syncp); 1902 nv_txrx_stats_inc(stat_rx_dropped); 1903 u64_stats_update_end(&np->swstats_rx_syncp); 1904 return 1; 1905 } 1906 } 1907 return 0; 1908 } 1909 1910 /* If rx bufs are exhausted called after 50ms to attempt to refresh */ 1911 static void nv_do_rx_refill(struct timer_list *t) 1912 { 1913 struct fe_priv *np = from_timer(np, t, oom_kick); 1914 1915 /* Just reschedule NAPI rx processing */ 1916 napi_schedule(&np->napi); 1917 } 1918 1919 static void nv_init_rx(struct net_device *dev) 1920 { 1921 struct fe_priv *np = netdev_priv(dev); 1922 int i; 1923 1924 np->get_rx = np->rx_ring; 1925 np->put_rx = np->rx_ring; 1926 1927 if (!nv_optimized(np)) 1928 np->last_rx.orig = &np->rx_ring.orig[np->rx_ring_size-1]; 1929 else 1930 np->last_rx.ex = &np->rx_ring.ex[np->rx_ring_size-1]; 1931 np->get_rx_ctx = np->rx_skb; 1932 np->put_rx_ctx = np->rx_skb; 1933 np->last_rx_ctx = &np->rx_skb[np->rx_ring_size-1]; 1934 1935 for (i = 0; i < np->rx_ring_size; i++) { 1936 if (!nv_optimized(np)) { 1937 np->rx_ring.orig[i].flaglen = 0; 1938 np->rx_ring.orig[i].buf = 0; 1939 } else { 1940 np->rx_ring.ex[i].flaglen = 0; 1941 np->rx_ring.ex[i].txvlan = 0; 1942 np->rx_ring.ex[i].bufhigh = 0; 1943 np->rx_ring.ex[i].buflow = 0; 1944 } 1945 np->rx_skb[i].skb = NULL; 1946 np->rx_skb[i].dma = 0; 1947 } 1948 } 1949 1950 static void nv_init_tx(struct net_device *dev) 1951 { 1952 struct fe_priv *np = netdev_priv(dev); 1953 int i; 1954 1955 np->get_tx = np->tx_ring; 1956 np->put_tx = np->tx_ring; 1957 1958 if (!nv_optimized(np)) 1959 np->last_tx.orig = &np->tx_ring.orig[np->tx_ring_size-1]; 1960 else 1961 np->last_tx.ex = &np->tx_ring.ex[np->tx_ring_size-1]; 1962 np->get_tx_ctx = np->tx_skb; 1963 np->put_tx_ctx = np->tx_skb; 1964 np->last_tx_ctx = &np->tx_skb[np->tx_ring_size-1]; 1965 netdev_reset_queue(np->dev); 1966 np->tx_pkts_in_progress = 0; 1967 np->tx_change_owner = NULL; 1968 np->tx_end_flip = NULL; 1969 np->tx_stop = 0; 1970 1971 for (i = 0; i < np->tx_ring_size; i++) { 1972 if (!nv_optimized(np)) { 1973 np->tx_ring.orig[i].flaglen = 0; 1974 np->tx_ring.orig[i].buf = 0; 1975 } else { 1976 np->tx_ring.ex[i].flaglen = 0; 1977 np->tx_ring.ex[i].txvlan = 0; 1978 np->tx_ring.ex[i].bufhigh = 0; 1979 np->tx_ring.ex[i].buflow = 0; 1980 } 1981 np->tx_skb[i].skb = NULL; 1982 np->tx_skb[i].dma = 0; 1983 np->tx_skb[i].dma_len = 0; 1984 np->tx_skb[i].dma_single = 0; 1985 np->tx_skb[i].first_tx_desc = NULL; 1986 np->tx_skb[i].next_tx_ctx = NULL; 1987 } 1988 } 1989 1990 static int nv_init_ring(struct net_device *dev) 1991 { 1992 struct fe_priv *np = netdev_priv(dev); 1993 1994 nv_init_tx(dev); 1995 nv_init_rx(dev); 1996 1997 if (!nv_optimized(np)) 1998 return nv_alloc_rx(dev); 1999 else 2000 return nv_alloc_rx_optimized(dev); 2001 } 2002 2003 static void nv_unmap_txskb(struct fe_priv *np, struct nv_skb_map *tx_skb) 2004 { 2005 if (tx_skb->dma) { 2006 if (tx_skb->dma_single) 2007 dma_unmap_single(&np->pci_dev->dev, tx_skb->dma, 2008 tx_skb->dma_len, 2009 DMA_TO_DEVICE); 2010 else 2011 dma_unmap_page(&np->pci_dev->dev, tx_skb->dma, 2012 tx_skb->dma_len, 2013 DMA_TO_DEVICE); 2014 tx_skb->dma = 0; 2015 } 2016 } 2017 2018 static int nv_release_txskb(struct fe_priv *np, struct nv_skb_map *tx_skb) 2019 { 2020 nv_unmap_txskb(np, tx_skb); 2021 if (tx_skb->skb) { 2022 dev_kfree_skb_any(tx_skb->skb); 2023 tx_skb->skb = NULL; 2024 return 1; 2025 } 2026 return 0; 2027 } 2028 2029 static void nv_drain_tx(struct net_device *dev) 2030 { 2031 struct fe_priv *np = netdev_priv(dev); 2032 unsigned int i; 2033 2034 for (i = 0; i < np->tx_ring_size; i++) { 2035 if (!nv_optimized(np)) { 2036 np->tx_ring.orig[i].flaglen = 0; 2037 np->tx_ring.orig[i].buf = 0; 2038 } else { 2039 np->tx_ring.ex[i].flaglen = 0; 2040 np->tx_ring.ex[i].txvlan = 0; 2041 np->tx_ring.ex[i].bufhigh = 0; 2042 np->tx_ring.ex[i].buflow = 0; 2043 } 2044 if (nv_release_txskb(np, &np->tx_skb[i])) { 2045 u64_stats_update_begin(&np->swstats_tx_syncp); 2046 nv_txrx_stats_inc(stat_tx_dropped); 2047 u64_stats_update_end(&np->swstats_tx_syncp); 2048 } 2049 np->tx_skb[i].dma = 0; 2050 np->tx_skb[i].dma_len = 0; 2051 np->tx_skb[i].dma_single = 0; 2052 np->tx_skb[i].first_tx_desc = NULL; 2053 np->tx_skb[i].next_tx_ctx = NULL; 2054 } 2055 np->tx_pkts_in_progress = 0; 2056 np->tx_change_owner = NULL; 2057 np->tx_end_flip = NULL; 2058 } 2059 2060 static void nv_drain_rx(struct net_device *dev) 2061 { 2062 struct fe_priv *np = netdev_priv(dev); 2063 int i; 2064 2065 for (i = 0; i < np->rx_ring_size; i++) { 2066 if (!nv_optimized(np)) { 2067 np->rx_ring.orig[i].flaglen = 0; 2068 np->rx_ring.orig[i].buf = 0; 2069 } else { 2070 np->rx_ring.ex[i].flaglen = 0; 2071 np->rx_ring.ex[i].txvlan = 0; 2072 np->rx_ring.ex[i].bufhigh = 0; 2073 np->rx_ring.ex[i].buflow = 0; 2074 } 2075 wmb(); 2076 if (np->rx_skb[i].skb) { 2077 dma_unmap_single(&np->pci_dev->dev, np->rx_skb[i].dma, 2078 (skb_end_pointer(np->rx_skb[i].skb) - 2079 np->rx_skb[i].skb->data), 2080 DMA_FROM_DEVICE); 2081 dev_kfree_skb(np->rx_skb[i].skb); 2082 np->rx_skb[i].skb = NULL; 2083 } 2084 } 2085 } 2086 2087 static void nv_drain_rxtx(struct net_device *dev) 2088 { 2089 nv_drain_tx(dev); 2090 nv_drain_rx(dev); 2091 } 2092 2093 static inline u32 nv_get_empty_tx_slots(struct fe_priv *np) 2094 { 2095 return (u32)(np->tx_ring_size - ((np->tx_ring_size + (np->put_tx_ctx - np->get_tx_ctx)) % np->tx_ring_size)); 2096 } 2097 2098 static void nv_legacybackoff_reseed(struct net_device *dev) 2099 { 2100 u8 __iomem *base = get_hwbase(dev); 2101 u32 reg; 2102 u32 low; 2103 int tx_status = 0; 2104 2105 reg = readl(base + NvRegSlotTime) & ~NVREG_SLOTTIME_MASK; 2106 get_random_bytes(&low, sizeof(low)); 2107 reg |= low & NVREG_SLOTTIME_MASK; 2108 2109 /* Need to stop tx before change takes effect. 2110 * Caller has already gained np->lock. 2111 */ 2112 tx_status = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_START; 2113 if (tx_status) 2114 nv_stop_tx(dev); 2115 nv_stop_rx(dev); 2116 writel(reg, base + NvRegSlotTime); 2117 if (tx_status) 2118 nv_start_tx(dev); 2119 nv_start_rx(dev); 2120 } 2121 2122 /* Gear Backoff Seeds */ 2123 #define BACKOFF_SEEDSET_ROWS 8 2124 #define BACKOFF_SEEDSET_LFSRS 15 2125 2126 /* Known Good seed sets */ 2127 static const u32 main_seedset[BACKOFF_SEEDSET_ROWS][BACKOFF_SEEDSET_LFSRS] = { 2128 {145, 155, 165, 175, 185, 196, 235, 245, 255, 265, 275, 285, 660, 690, 874}, 2129 {245, 255, 265, 575, 385, 298, 335, 345, 355, 366, 375, 385, 761, 790, 974}, 2130 {145, 155, 165, 175, 185, 196, 235, 245, 255, 265, 275, 285, 660, 690, 874}, 2131 {245, 255, 265, 575, 385, 298, 335, 345, 355, 366, 375, 386, 761, 790, 974}, 2132 {266, 265, 276, 585, 397, 208, 345, 355, 365, 376, 385, 396, 771, 700, 984}, 2133 {266, 265, 276, 586, 397, 208, 346, 355, 365, 376, 285, 396, 771, 700, 984}, 2134 {366, 365, 376, 686, 497, 308, 447, 455, 466, 476, 485, 496, 871, 800, 84}, 2135 {466, 465, 476, 786, 597, 408, 547, 555, 566, 576, 585, 597, 971, 900, 184} }; 2136 2137 static const u32 gear_seedset[BACKOFF_SEEDSET_ROWS][BACKOFF_SEEDSET_LFSRS] = { 2138 {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295}, 2139 {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395}, 2140 {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 397}, 2141 {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295}, 2142 {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295}, 2143 {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395}, 2144 {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395}, 2145 {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395} }; 2146 2147 static void nv_gear_backoff_reseed(struct net_device *dev) 2148 { 2149 u8 __iomem *base = get_hwbase(dev); 2150 u32 miniseed1, miniseed2, miniseed2_reversed, miniseed3, miniseed3_reversed; 2151 u32 temp, seedset, combinedSeed; 2152 int i; 2153 2154 /* Setup seed for free running LFSR */ 2155 /* We are going to read the time stamp counter 3 times 2156 and swizzle bits around to increase randomness */ 2157 get_random_bytes(&miniseed1, sizeof(miniseed1)); 2158 miniseed1 &= 0x0fff; 2159 if (miniseed1 == 0) 2160 miniseed1 = 0xabc; 2161 2162 get_random_bytes(&miniseed2, sizeof(miniseed2)); 2163 miniseed2 &= 0x0fff; 2164 if (miniseed2 == 0) 2165 miniseed2 = 0xabc; 2166 miniseed2_reversed = 2167 ((miniseed2 & 0xF00) >> 8) | 2168 (miniseed2 & 0x0F0) | 2169 ((miniseed2 & 0x00F) << 8); 2170 2171 get_random_bytes(&miniseed3, sizeof(miniseed3)); 2172 miniseed3 &= 0x0fff; 2173 if (miniseed3 == 0) 2174 miniseed3 = 0xabc; 2175 miniseed3_reversed = 2176 ((miniseed3 & 0xF00) >> 8) | 2177 (miniseed3 & 0x0F0) | 2178 ((miniseed3 & 0x00F) << 8); 2179 2180 combinedSeed = ((miniseed1 ^ miniseed2_reversed) << 12) | 2181 (miniseed2 ^ miniseed3_reversed); 2182 2183 /* Seeds can not be zero */ 2184 if ((combinedSeed & NVREG_BKOFFCTRL_SEED_MASK) == 0) 2185 combinedSeed |= 0x08; 2186 if ((combinedSeed & (NVREG_BKOFFCTRL_SEED_MASK << NVREG_BKOFFCTRL_GEAR)) == 0) 2187 combinedSeed |= 0x8000; 2188 2189 /* No need to disable tx here */ 2190 temp = NVREG_BKOFFCTRL_DEFAULT | (0 << NVREG_BKOFFCTRL_SELECT); 2191 temp |= combinedSeed & NVREG_BKOFFCTRL_SEED_MASK; 2192 temp |= combinedSeed >> NVREG_BKOFFCTRL_GEAR; 2193 writel(temp, base + NvRegBackOffControl); 2194 2195 /* Setup seeds for all gear LFSRs. */ 2196 get_random_bytes(&seedset, sizeof(seedset)); 2197 seedset = seedset % BACKOFF_SEEDSET_ROWS; 2198 for (i = 1; i <= BACKOFF_SEEDSET_LFSRS; i++) { 2199 temp = NVREG_BKOFFCTRL_DEFAULT | (i << NVREG_BKOFFCTRL_SELECT); 2200 temp |= main_seedset[seedset][i-1] & 0x3ff; 2201 temp |= ((gear_seedset[seedset][i-1] & 0x3ff) << NVREG_BKOFFCTRL_GEAR); 2202 writel(temp, base + NvRegBackOffControl); 2203 } 2204 } 2205 2206 /* 2207 * nv_start_xmit: dev->hard_start_xmit function 2208 * Called with netif_tx_lock held. 2209 */ 2210 static netdev_tx_t nv_start_xmit(struct sk_buff *skb, struct net_device *dev) 2211 { 2212 struct fe_priv *np = netdev_priv(dev); 2213 u32 tx_flags = 0; 2214 u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET); 2215 unsigned int fragments = skb_shinfo(skb)->nr_frags; 2216 unsigned int i; 2217 u32 offset = 0; 2218 u32 bcnt; 2219 u32 size = skb_headlen(skb); 2220 u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0); 2221 u32 empty_slots; 2222 struct ring_desc *put_tx; 2223 struct ring_desc *start_tx; 2224 struct ring_desc *prev_tx; 2225 struct nv_skb_map *prev_tx_ctx; 2226 struct nv_skb_map *tmp_tx_ctx = NULL, *start_tx_ctx = NULL; 2227 unsigned long flags; 2228 2229 /* add fragments to entries count */ 2230 for (i = 0; i < fragments; i++) { 2231 u32 frag_size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2232 2233 entries += (frag_size >> NV_TX2_TSO_MAX_SHIFT) + 2234 ((frag_size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0); 2235 } 2236 2237 spin_lock_irqsave(&np->lock, flags); 2238 empty_slots = nv_get_empty_tx_slots(np); 2239 if (unlikely(empty_slots <= entries)) { 2240 netif_stop_queue(dev); 2241 np->tx_stop = 1; 2242 spin_unlock_irqrestore(&np->lock, flags); 2243 return NETDEV_TX_BUSY; 2244 } 2245 spin_unlock_irqrestore(&np->lock, flags); 2246 2247 start_tx = put_tx = np->put_tx.orig; 2248 2249 /* setup the header buffer */ 2250 do { 2251 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size; 2252 np->put_tx_ctx->dma = dma_map_single(&np->pci_dev->dev, 2253 skb->data + offset, bcnt, 2254 DMA_TO_DEVICE); 2255 if (unlikely(dma_mapping_error(&np->pci_dev->dev, 2256 np->put_tx_ctx->dma))) { 2257 /* on DMA mapping error - drop the packet */ 2258 dev_kfree_skb_any(skb); 2259 u64_stats_update_begin(&np->swstats_tx_syncp); 2260 nv_txrx_stats_inc(stat_tx_dropped); 2261 u64_stats_update_end(&np->swstats_tx_syncp); 2262 return NETDEV_TX_OK; 2263 } 2264 np->put_tx_ctx->dma_len = bcnt; 2265 np->put_tx_ctx->dma_single = 1; 2266 put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma); 2267 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags); 2268 2269 tx_flags = np->tx_flags; 2270 offset += bcnt; 2271 size -= bcnt; 2272 if (unlikely(put_tx++ == np->last_tx.orig)) 2273 put_tx = np->tx_ring.orig; 2274 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx)) 2275 np->put_tx_ctx = np->tx_skb; 2276 } while (size); 2277 2278 /* setup the fragments */ 2279 for (i = 0; i < fragments; i++) { 2280 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2281 u32 frag_size = skb_frag_size(frag); 2282 offset = 0; 2283 2284 do { 2285 if (!start_tx_ctx) 2286 start_tx_ctx = tmp_tx_ctx = np->put_tx_ctx; 2287 2288 bcnt = (frag_size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : frag_size; 2289 np->put_tx_ctx->dma = skb_frag_dma_map( 2290 &np->pci_dev->dev, 2291 frag, offset, 2292 bcnt, 2293 DMA_TO_DEVICE); 2294 if (unlikely(dma_mapping_error(&np->pci_dev->dev, 2295 np->put_tx_ctx->dma))) { 2296 2297 /* Unwind the mapped fragments */ 2298 do { 2299 nv_unmap_txskb(np, start_tx_ctx); 2300 if (unlikely(tmp_tx_ctx++ == np->last_tx_ctx)) 2301 tmp_tx_ctx = np->tx_skb; 2302 } while (tmp_tx_ctx != np->put_tx_ctx); 2303 dev_kfree_skb_any(skb); 2304 np->put_tx_ctx = start_tx_ctx; 2305 u64_stats_update_begin(&np->swstats_tx_syncp); 2306 nv_txrx_stats_inc(stat_tx_dropped); 2307 u64_stats_update_end(&np->swstats_tx_syncp); 2308 return NETDEV_TX_OK; 2309 } 2310 2311 np->put_tx_ctx->dma_len = bcnt; 2312 np->put_tx_ctx->dma_single = 0; 2313 put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma); 2314 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags); 2315 2316 offset += bcnt; 2317 frag_size -= bcnt; 2318 if (unlikely(put_tx++ == np->last_tx.orig)) 2319 put_tx = np->tx_ring.orig; 2320 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx)) 2321 np->put_tx_ctx = np->tx_skb; 2322 } while (frag_size); 2323 } 2324 2325 if (unlikely(put_tx == np->tx_ring.orig)) 2326 prev_tx = np->last_tx.orig; 2327 else 2328 prev_tx = put_tx - 1; 2329 2330 if (unlikely(np->put_tx_ctx == np->tx_skb)) 2331 prev_tx_ctx = np->last_tx_ctx; 2332 else 2333 prev_tx_ctx = np->put_tx_ctx - 1; 2334 2335 /* set last fragment flag */ 2336 prev_tx->flaglen |= cpu_to_le32(tx_flags_extra); 2337 2338 /* save skb in this slot's context area */ 2339 prev_tx_ctx->skb = skb; 2340 2341 if (skb_is_gso(skb)) 2342 tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT); 2343 else 2344 tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ? 2345 NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0; 2346 2347 spin_lock_irqsave(&np->lock, flags); 2348 2349 /* set tx flags */ 2350 start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra); 2351 2352 netdev_sent_queue(np->dev, skb->len); 2353 2354 skb_tx_timestamp(skb); 2355 2356 np->put_tx.orig = put_tx; 2357 2358 spin_unlock_irqrestore(&np->lock, flags); 2359 2360 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl); 2361 return NETDEV_TX_OK; 2362 } 2363 2364 static netdev_tx_t nv_start_xmit_optimized(struct sk_buff *skb, 2365 struct net_device *dev) 2366 { 2367 struct fe_priv *np = netdev_priv(dev); 2368 u32 tx_flags = 0; 2369 u32 tx_flags_extra; 2370 unsigned int fragments = skb_shinfo(skb)->nr_frags; 2371 unsigned int i; 2372 u32 offset = 0; 2373 u32 bcnt; 2374 u32 size = skb_headlen(skb); 2375 u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0); 2376 u32 empty_slots; 2377 struct ring_desc_ex *put_tx; 2378 struct ring_desc_ex *start_tx; 2379 struct ring_desc_ex *prev_tx; 2380 struct nv_skb_map *prev_tx_ctx; 2381 struct nv_skb_map *start_tx_ctx = NULL; 2382 struct nv_skb_map *tmp_tx_ctx = NULL; 2383 unsigned long flags; 2384 2385 /* add fragments to entries count */ 2386 for (i = 0; i < fragments; i++) { 2387 u32 frag_size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2388 2389 entries += (frag_size >> NV_TX2_TSO_MAX_SHIFT) + 2390 ((frag_size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0); 2391 } 2392 2393 spin_lock_irqsave(&np->lock, flags); 2394 empty_slots = nv_get_empty_tx_slots(np); 2395 if (unlikely(empty_slots <= entries)) { 2396 netif_stop_queue(dev); 2397 np->tx_stop = 1; 2398 spin_unlock_irqrestore(&np->lock, flags); 2399 return NETDEV_TX_BUSY; 2400 } 2401 spin_unlock_irqrestore(&np->lock, flags); 2402 2403 start_tx = put_tx = np->put_tx.ex; 2404 start_tx_ctx = np->put_tx_ctx; 2405 2406 /* setup the header buffer */ 2407 do { 2408 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size; 2409 np->put_tx_ctx->dma = dma_map_single(&np->pci_dev->dev, 2410 skb->data + offset, bcnt, 2411 DMA_TO_DEVICE); 2412 if (unlikely(dma_mapping_error(&np->pci_dev->dev, 2413 np->put_tx_ctx->dma))) { 2414 /* on DMA mapping error - drop the packet */ 2415 dev_kfree_skb_any(skb); 2416 u64_stats_update_begin(&np->swstats_tx_syncp); 2417 nv_txrx_stats_inc(stat_tx_dropped); 2418 u64_stats_update_end(&np->swstats_tx_syncp); 2419 return NETDEV_TX_OK; 2420 } 2421 np->put_tx_ctx->dma_len = bcnt; 2422 np->put_tx_ctx->dma_single = 1; 2423 put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma)); 2424 put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma)); 2425 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags); 2426 2427 tx_flags = NV_TX2_VALID; 2428 offset += bcnt; 2429 size -= bcnt; 2430 if (unlikely(put_tx++ == np->last_tx.ex)) 2431 put_tx = np->tx_ring.ex; 2432 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx)) 2433 np->put_tx_ctx = np->tx_skb; 2434 } while (size); 2435 2436 /* setup the fragments */ 2437 for (i = 0; i < fragments; i++) { 2438 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2439 u32 frag_size = skb_frag_size(frag); 2440 offset = 0; 2441 2442 do { 2443 bcnt = (frag_size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : frag_size; 2444 if (!start_tx_ctx) 2445 start_tx_ctx = tmp_tx_ctx = np->put_tx_ctx; 2446 np->put_tx_ctx->dma = skb_frag_dma_map( 2447 &np->pci_dev->dev, 2448 frag, offset, 2449 bcnt, 2450 DMA_TO_DEVICE); 2451 2452 if (unlikely(dma_mapping_error(&np->pci_dev->dev, 2453 np->put_tx_ctx->dma))) { 2454 2455 /* Unwind the mapped fragments */ 2456 do { 2457 nv_unmap_txskb(np, start_tx_ctx); 2458 if (unlikely(tmp_tx_ctx++ == np->last_tx_ctx)) 2459 tmp_tx_ctx = np->tx_skb; 2460 } while (tmp_tx_ctx != np->put_tx_ctx); 2461 dev_kfree_skb_any(skb); 2462 np->put_tx_ctx = start_tx_ctx; 2463 u64_stats_update_begin(&np->swstats_tx_syncp); 2464 nv_txrx_stats_inc(stat_tx_dropped); 2465 u64_stats_update_end(&np->swstats_tx_syncp); 2466 return NETDEV_TX_OK; 2467 } 2468 np->put_tx_ctx->dma_len = bcnt; 2469 np->put_tx_ctx->dma_single = 0; 2470 put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma)); 2471 put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma)); 2472 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags); 2473 2474 offset += bcnt; 2475 frag_size -= bcnt; 2476 if (unlikely(put_tx++ == np->last_tx.ex)) 2477 put_tx = np->tx_ring.ex; 2478 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx)) 2479 np->put_tx_ctx = np->tx_skb; 2480 } while (frag_size); 2481 } 2482 2483 if (unlikely(put_tx == np->tx_ring.ex)) 2484 prev_tx = np->last_tx.ex; 2485 else 2486 prev_tx = put_tx - 1; 2487 2488 if (unlikely(np->put_tx_ctx == np->tx_skb)) 2489 prev_tx_ctx = np->last_tx_ctx; 2490 else 2491 prev_tx_ctx = np->put_tx_ctx - 1; 2492 2493 /* set last fragment flag */ 2494 prev_tx->flaglen |= cpu_to_le32(NV_TX2_LASTPACKET); 2495 2496 /* save skb in this slot's context area */ 2497 prev_tx_ctx->skb = skb; 2498 2499 if (skb_is_gso(skb)) 2500 tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT); 2501 else 2502 tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ? 2503 NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0; 2504 2505 /* vlan tag */ 2506 if (skb_vlan_tag_present(skb)) 2507 start_tx->txvlan = cpu_to_le32(NV_TX3_VLAN_TAG_PRESENT | 2508 skb_vlan_tag_get(skb)); 2509 else 2510 start_tx->txvlan = 0; 2511 2512 spin_lock_irqsave(&np->lock, flags); 2513 2514 if (np->tx_limit) { 2515 /* Limit the number of outstanding tx. Setup all fragments, but 2516 * do not set the VALID bit on the first descriptor. Save a pointer 2517 * to that descriptor and also for next skb_map element. 2518 */ 2519 2520 if (np->tx_pkts_in_progress == NV_TX_LIMIT_COUNT) { 2521 if (!np->tx_change_owner) 2522 np->tx_change_owner = start_tx_ctx; 2523 2524 /* remove VALID bit */ 2525 tx_flags &= ~NV_TX2_VALID; 2526 start_tx_ctx->first_tx_desc = start_tx; 2527 start_tx_ctx->next_tx_ctx = np->put_tx_ctx; 2528 np->tx_end_flip = np->put_tx_ctx; 2529 } else { 2530 np->tx_pkts_in_progress++; 2531 } 2532 } 2533 2534 /* set tx flags */ 2535 start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra); 2536 2537 netdev_sent_queue(np->dev, skb->len); 2538 2539 skb_tx_timestamp(skb); 2540 2541 np->put_tx.ex = put_tx; 2542 2543 spin_unlock_irqrestore(&np->lock, flags); 2544 2545 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl); 2546 return NETDEV_TX_OK; 2547 } 2548 2549 static inline void nv_tx_flip_ownership(struct net_device *dev) 2550 { 2551 struct fe_priv *np = netdev_priv(dev); 2552 2553 np->tx_pkts_in_progress--; 2554 if (np->tx_change_owner) { 2555 np->tx_change_owner->first_tx_desc->flaglen |= 2556 cpu_to_le32(NV_TX2_VALID); 2557 np->tx_pkts_in_progress++; 2558 2559 np->tx_change_owner = np->tx_change_owner->next_tx_ctx; 2560 if (np->tx_change_owner == np->tx_end_flip) 2561 np->tx_change_owner = NULL; 2562 2563 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl); 2564 } 2565 } 2566 2567 /* 2568 * nv_tx_done: check for completed packets, release the skbs. 2569 * 2570 * Caller must own np->lock. 2571 */ 2572 static int nv_tx_done(struct net_device *dev, int limit) 2573 { 2574 struct fe_priv *np = netdev_priv(dev); 2575 u32 flags; 2576 int tx_work = 0; 2577 struct ring_desc *orig_get_tx = np->get_tx.orig; 2578 unsigned int bytes_compl = 0; 2579 2580 while ((np->get_tx.orig != np->put_tx.orig) && 2581 !((flags = le32_to_cpu(np->get_tx.orig->flaglen)) & NV_TX_VALID) && 2582 (tx_work < limit)) { 2583 2584 nv_unmap_txskb(np, np->get_tx_ctx); 2585 2586 if (np->desc_ver == DESC_VER_1) { 2587 if (flags & NV_TX_LASTPACKET) { 2588 if (unlikely(flags & NV_TX_ERROR)) { 2589 if ((flags & NV_TX_RETRYERROR) 2590 && !(flags & NV_TX_RETRYCOUNT_MASK)) 2591 nv_legacybackoff_reseed(dev); 2592 } else { 2593 unsigned int len; 2594 2595 u64_stats_update_begin(&np->swstats_tx_syncp); 2596 nv_txrx_stats_inc(stat_tx_packets); 2597 len = np->get_tx_ctx->skb->len; 2598 nv_txrx_stats_add(stat_tx_bytes, len); 2599 u64_stats_update_end(&np->swstats_tx_syncp); 2600 } 2601 bytes_compl += np->get_tx_ctx->skb->len; 2602 dev_kfree_skb_any(np->get_tx_ctx->skb); 2603 np->get_tx_ctx->skb = NULL; 2604 tx_work++; 2605 } 2606 } else { 2607 if (flags & NV_TX2_LASTPACKET) { 2608 if (unlikely(flags & NV_TX2_ERROR)) { 2609 if ((flags & NV_TX2_RETRYERROR) 2610 && !(flags & NV_TX2_RETRYCOUNT_MASK)) 2611 nv_legacybackoff_reseed(dev); 2612 } else { 2613 unsigned int len; 2614 2615 u64_stats_update_begin(&np->swstats_tx_syncp); 2616 nv_txrx_stats_inc(stat_tx_packets); 2617 len = np->get_tx_ctx->skb->len; 2618 nv_txrx_stats_add(stat_tx_bytes, len); 2619 u64_stats_update_end(&np->swstats_tx_syncp); 2620 } 2621 bytes_compl += np->get_tx_ctx->skb->len; 2622 dev_kfree_skb_any(np->get_tx_ctx->skb); 2623 np->get_tx_ctx->skb = NULL; 2624 tx_work++; 2625 } 2626 } 2627 if (unlikely(np->get_tx.orig++ == np->last_tx.orig)) 2628 np->get_tx.orig = np->tx_ring.orig; 2629 if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx)) 2630 np->get_tx_ctx = np->tx_skb; 2631 } 2632 2633 netdev_completed_queue(np->dev, tx_work, bytes_compl); 2634 2635 if (unlikely((np->tx_stop == 1) && (np->get_tx.orig != orig_get_tx))) { 2636 np->tx_stop = 0; 2637 netif_wake_queue(dev); 2638 } 2639 return tx_work; 2640 } 2641 2642 static int nv_tx_done_optimized(struct net_device *dev, int limit) 2643 { 2644 struct fe_priv *np = netdev_priv(dev); 2645 u32 flags; 2646 int tx_work = 0; 2647 struct ring_desc_ex *orig_get_tx = np->get_tx.ex; 2648 unsigned long bytes_cleaned = 0; 2649 2650 while ((np->get_tx.ex != np->put_tx.ex) && 2651 !((flags = le32_to_cpu(np->get_tx.ex->flaglen)) & NV_TX2_VALID) && 2652 (tx_work < limit)) { 2653 2654 nv_unmap_txskb(np, np->get_tx_ctx); 2655 2656 if (flags & NV_TX2_LASTPACKET) { 2657 if (unlikely(flags & NV_TX2_ERROR)) { 2658 if ((flags & NV_TX2_RETRYERROR) 2659 && !(flags & NV_TX2_RETRYCOUNT_MASK)) { 2660 if (np->driver_data & DEV_HAS_GEAR_MODE) 2661 nv_gear_backoff_reseed(dev); 2662 else 2663 nv_legacybackoff_reseed(dev); 2664 } 2665 } else { 2666 unsigned int len; 2667 2668 u64_stats_update_begin(&np->swstats_tx_syncp); 2669 nv_txrx_stats_inc(stat_tx_packets); 2670 len = np->get_tx_ctx->skb->len; 2671 nv_txrx_stats_add(stat_tx_bytes, len); 2672 u64_stats_update_end(&np->swstats_tx_syncp); 2673 } 2674 2675 bytes_cleaned += np->get_tx_ctx->skb->len; 2676 dev_kfree_skb_any(np->get_tx_ctx->skb); 2677 np->get_tx_ctx->skb = NULL; 2678 tx_work++; 2679 2680 if (np->tx_limit) 2681 nv_tx_flip_ownership(dev); 2682 } 2683 2684 if (unlikely(np->get_tx.ex++ == np->last_tx.ex)) 2685 np->get_tx.ex = np->tx_ring.ex; 2686 if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx)) 2687 np->get_tx_ctx = np->tx_skb; 2688 } 2689 2690 netdev_completed_queue(np->dev, tx_work, bytes_cleaned); 2691 2692 if (unlikely((np->tx_stop == 1) && (np->get_tx.ex != orig_get_tx))) { 2693 np->tx_stop = 0; 2694 netif_wake_queue(dev); 2695 } 2696 return tx_work; 2697 } 2698 2699 /* 2700 * nv_tx_timeout: dev->tx_timeout function 2701 * Called with netif_tx_lock held. 2702 */ 2703 static void nv_tx_timeout(struct net_device *dev) 2704 { 2705 struct fe_priv *np = netdev_priv(dev); 2706 u8 __iomem *base = get_hwbase(dev); 2707 u32 status; 2708 union ring_type put_tx; 2709 int saved_tx_limit; 2710 2711 if (np->msi_flags & NV_MSI_X_ENABLED) 2712 status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK; 2713 else 2714 status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK; 2715 2716 netdev_warn(dev, "Got tx_timeout. irq status: %08x\n", status); 2717 2718 if (unlikely(debug_tx_timeout)) { 2719 int i; 2720 2721 netdev_info(dev, "Ring at %lx\n", (unsigned long)np->ring_addr); 2722 netdev_info(dev, "Dumping tx registers\n"); 2723 for (i = 0; i <= np->register_size; i += 32) { 2724 netdev_info(dev, 2725 "%3x: %08x %08x %08x %08x " 2726 "%08x %08x %08x %08x\n", 2727 i, 2728 readl(base + i + 0), readl(base + i + 4), 2729 readl(base + i + 8), readl(base + i + 12), 2730 readl(base + i + 16), readl(base + i + 20), 2731 readl(base + i + 24), readl(base + i + 28)); 2732 } 2733 netdev_info(dev, "Dumping tx ring\n"); 2734 for (i = 0; i < np->tx_ring_size; i += 4) { 2735 if (!nv_optimized(np)) { 2736 netdev_info(dev, 2737 "%03x: %08x %08x // %08x %08x " 2738 "// %08x %08x // %08x %08x\n", 2739 i, 2740 le32_to_cpu(np->tx_ring.orig[i].buf), 2741 le32_to_cpu(np->tx_ring.orig[i].flaglen), 2742 le32_to_cpu(np->tx_ring.orig[i+1].buf), 2743 le32_to_cpu(np->tx_ring.orig[i+1].flaglen), 2744 le32_to_cpu(np->tx_ring.orig[i+2].buf), 2745 le32_to_cpu(np->tx_ring.orig[i+2].flaglen), 2746 le32_to_cpu(np->tx_ring.orig[i+3].buf), 2747 le32_to_cpu(np->tx_ring.orig[i+3].flaglen)); 2748 } else { 2749 netdev_info(dev, 2750 "%03x: %08x %08x %08x " 2751 "// %08x %08x %08x " 2752 "// %08x %08x %08x " 2753 "// %08x %08x %08x\n", 2754 i, 2755 le32_to_cpu(np->tx_ring.ex[i].bufhigh), 2756 le32_to_cpu(np->tx_ring.ex[i].buflow), 2757 le32_to_cpu(np->tx_ring.ex[i].flaglen), 2758 le32_to_cpu(np->tx_ring.ex[i+1].bufhigh), 2759 le32_to_cpu(np->tx_ring.ex[i+1].buflow), 2760 le32_to_cpu(np->tx_ring.ex[i+1].flaglen), 2761 le32_to_cpu(np->tx_ring.ex[i+2].bufhigh), 2762 le32_to_cpu(np->tx_ring.ex[i+2].buflow), 2763 le32_to_cpu(np->tx_ring.ex[i+2].flaglen), 2764 le32_to_cpu(np->tx_ring.ex[i+3].bufhigh), 2765 le32_to_cpu(np->tx_ring.ex[i+3].buflow), 2766 le32_to_cpu(np->tx_ring.ex[i+3].flaglen)); 2767 } 2768 } 2769 } 2770 2771 spin_lock_irq(&np->lock); 2772 2773 /* 1) stop tx engine */ 2774 nv_stop_tx(dev); 2775 2776 /* 2) complete any outstanding tx and do not give HW any limited tx pkts */ 2777 saved_tx_limit = np->tx_limit; 2778 np->tx_limit = 0; /* prevent giving HW any limited pkts */ 2779 np->tx_stop = 0; /* prevent waking tx queue */ 2780 if (!nv_optimized(np)) 2781 nv_tx_done(dev, np->tx_ring_size); 2782 else 2783 nv_tx_done_optimized(dev, np->tx_ring_size); 2784 2785 /* save current HW position */ 2786 if (np->tx_change_owner) 2787 put_tx.ex = np->tx_change_owner->first_tx_desc; 2788 else 2789 put_tx = np->put_tx; 2790 2791 /* 3) clear all tx state */ 2792 nv_drain_tx(dev); 2793 nv_init_tx(dev); 2794 2795 /* 4) restore state to current HW position */ 2796 np->get_tx = np->put_tx = put_tx; 2797 np->tx_limit = saved_tx_limit; 2798 2799 /* 5) restart tx engine */ 2800 nv_start_tx(dev); 2801 netif_wake_queue(dev); 2802 spin_unlock_irq(&np->lock); 2803 } 2804 2805 /* 2806 * Called when the nic notices a mismatch between the actual data len on the 2807 * wire and the len indicated in the 802 header 2808 */ 2809 static int nv_getlen(struct net_device *dev, void *packet, int datalen) 2810 { 2811 int hdrlen; /* length of the 802 header */ 2812 int protolen; /* length as stored in the proto field */ 2813 2814 /* 1) calculate len according to header */ 2815 if (((struct vlan_ethhdr *)packet)->h_vlan_proto == htons(ETH_P_8021Q)) { 2816 protolen = ntohs(((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto); 2817 hdrlen = VLAN_HLEN; 2818 } else { 2819 protolen = ntohs(((struct ethhdr *)packet)->h_proto); 2820 hdrlen = ETH_HLEN; 2821 } 2822 if (protolen > ETH_DATA_LEN) 2823 return datalen; /* Value in proto field not a len, no checks possible */ 2824 2825 protolen += hdrlen; 2826 /* consistency checks: */ 2827 if (datalen > ETH_ZLEN) { 2828 if (datalen >= protolen) { 2829 /* more data on wire than in 802 header, trim of 2830 * additional data. 2831 */ 2832 return protolen; 2833 } else { 2834 /* less data on wire than mentioned in header. 2835 * Discard the packet. 2836 */ 2837 return -1; 2838 } 2839 } else { 2840 /* short packet. Accept only if 802 values are also short */ 2841 if (protolen > ETH_ZLEN) { 2842 return -1; 2843 } 2844 return datalen; 2845 } 2846 } 2847 2848 static void rx_missing_handler(u32 flags, struct fe_priv *np) 2849 { 2850 if (flags & NV_RX_MISSEDFRAME) { 2851 u64_stats_update_begin(&np->swstats_rx_syncp); 2852 nv_txrx_stats_inc(stat_rx_missed_errors); 2853 u64_stats_update_end(&np->swstats_rx_syncp); 2854 } 2855 } 2856 2857 static int nv_rx_process(struct net_device *dev, int limit) 2858 { 2859 struct fe_priv *np = netdev_priv(dev); 2860 u32 flags; 2861 int rx_work = 0; 2862 struct sk_buff *skb; 2863 int len; 2864 2865 while ((np->get_rx.orig != np->put_rx.orig) && 2866 !((flags = le32_to_cpu(np->get_rx.orig->flaglen)) & NV_RX_AVAIL) && 2867 (rx_work < limit)) { 2868 2869 /* 2870 * the packet is for us - immediately tear down the pci mapping. 2871 * TODO: check if a prefetch of the first cacheline improves 2872 * the performance. 2873 */ 2874 dma_unmap_single(&np->pci_dev->dev, np->get_rx_ctx->dma, 2875 np->get_rx_ctx->dma_len, 2876 DMA_FROM_DEVICE); 2877 skb = np->get_rx_ctx->skb; 2878 np->get_rx_ctx->skb = NULL; 2879 2880 /* look at what we actually got: */ 2881 if (np->desc_ver == DESC_VER_1) { 2882 if (likely(flags & NV_RX_DESCRIPTORVALID)) { 2883 len = flags & LEN_MASK_V1; 2884 if (unlikely(flags & NV_RX_ERROR)) { 2885 if ((flags & NV_RX_ERROR_MASK) == NV_RX_ERROR4) { 2886 len = nv_getlen(dev, skb->data, len); 2887 if (len < 0) { 2888 dev_kfree_skb(skb); 2889 goto next_pkt; 2890 } 2891 } 2892 /* framing errors are soft errors */ 2893 else if ((flags & NV_RX_ERROR_MASK) == NV_RX_FRAMINGERR) { 2894 if (flags & NV_RX_SUBTRACT1) 2895 len--; 2896 } 2897 /* the rest are hard errors */ 2898 else { 2899 rx_missing_handler(flags, np); 2900 dev_kfree_skb(skb); 2901 goto next_pkt; 2902 } 2903 } 2904 } else { 2905 dev_kfree_skb(skb); 2906 goto next_pkt; 2907 } 2908 } else { 2909 if (likely(flags & NV_RX2_DESCRIPTORVALID)) { 2910 len = flags & LEN_MASK_V2; 2911 if (unlikely(flags & NV_RX2_ERROR)) { 2912 if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_ERROR4) { 2913 len = nv_getlen(dev, skb->data, len); 2914 if (len < 0) { 2915 dev_kfree_skb(skb); 2916 goto next_pkt; 2917 } 2918 } 2919 /* framing errors are soft errors */ 2920 else if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_FRAMINGERR) { 2921 if (flags & NV_RX2_SUBTRACT1) 2922 len--; 2923 } 2924 /* the rest are hard errors */ 2925 else { 2926 dev_kfree_skb(skb); 2927 goto next_pkt; 2928 } 2929 } 2930 if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */ 2931 ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */ 2932 skb->ip_summed = CHECKSUM_UNNECESSARY; 2933 } else { 2934 dev_kfree_skb(skb); 2935 goto next_pkt; 2936 } 2937 } 2938 /* got a valid packet - forward it to the network core */ 2939 skb_put(skb, len); 2940 skb->protocol = eth_type_trans(skb, dev); 2941 napi_gro_receive(&np->napi, skb); 2942 u64_stats_update_begin(&np->swstats_rx_syncp); 2943 nv_txrx_stats_inc(stat_rx_packets); 2944 nv_txrx_stats_add(stat_rx_bytes, len); 2945 u64_stats_update_end(&np->swstats_rx_syncp); 2946 next_pkt: 2947 if (unlikely(np->get_rx.orig++ == np->last_rx.orig)) 2948 np->get_rx.orig = np->rx_ring.orig; 2949 if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx)) 2950 np->get_rx_ctx = np->rx_skb; 2951 2952 rx_work++; 2953 } 2954 2955 return rx_work; 2956 } 2957 2958 static int nv_rx_process_optimized(struct net_device *dev, int limit) 2959 { 2960 struct fe_priv *np = netdev_priv(dev); 2961 u32 flags; 2962 u32 vlanflags = 0; 2963 int rx_work = 0; 2964 struct sk_buff *skb; 2965 int len; 2966 2967 while ((np->get_rx.ex != np->put_rx.ex) && 2968 !((flags = le32_to_cpu(np->get_rx.ex->flaglen)) & NV_RX2_AVAIL) && 2969 (rx_work < limit)) { 2970 2971 /* 2972 * the packet is for us - immediately tear down the pci mapping. 2973 * TODO: check if a prefetch of the first cacheline improves 2974 * the performance. 2975 */ 2976 dma_unmap_single(&np->pci_dev->dev, np->get_rx_ctx->dma, 2977 np->get_rx_ctx->dma_len, 2978 DMA_FROM_DEVICE); 2979 skb = np->get_rx_ctx->skb; 2980 np->get_rx_ctx->skb = NULL; 2981 2982 /* look at what we actually got: */ 2983 if (likely(flags & NV_RX2_DESCRIPTORVALID)) { 2984 len = flags & LEN_MASK_V2; 2985 if (unlikely(flags & NV_RX2_ERROR)) { 2986 if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_ERROR4) { 2987 len = nv_getlen(dev, skb->data, len); 2988 if (len < 0) { 2989 dev_kfree_skb(skb); 2990 goto next_pkt; 2991 } 2992 } 2993 /* framing errors are soft errors */ 2994 else if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_FRAMINGERR) { 2995 if (flags & NV_RX2_SUBTRACT1) 2996 len--; 2997 } 2998 /* the rest are hard errors */ 2999 else { 3000 dev_kfree_skb(skb); 3001 goto next_pkt; 3002 } 3003 } 3004 3005 if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */ 3006 ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */ 3007 skb->ip_summed = CHECKSUM_UNNECESSARY; 3008 3009 /* got a valid packet - forward it to the network core */ 3010 skb_put(skb, len); 3011 skb->protocol = eth_type_trans(skb, dev); 3012 prefetch(skb->data); 3013 3014 vlanflags = le32_to_cpu(np->get_rx.ex->buflow); 3015 3016 /* 3017 * There's need to check for NETIF_F_HW_VLAN_CTAG_RX 3018 * here. Even if vlan rx accel is disabled, 3019 * NV_RX3_VLAN_TAG_PRESENT is pseudo randomly set. 3020 */ 3021 if (dev->features & NETIF_F_HW_VLAN_CTAG_RX && 3022 vlanflags & NV_RX3_VLAN_TAG_PRESENT) { 3023 u16 vid = vlanflags & NV_RX3_VLAN_TAG_MASK; 3024 3025 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 3026 } 3027 napi_gro_receive(&np->napi, skb); 3028 u64_stats_update_begin(&np->swstats_rx_syncp); 3029 nv_txrx_stats_inc(stat_rx_packets); 3030 nv_txrx_stats_add(stat_rx_bytes, len); 3031 u64_stats_update_end(&np->swstats_rx_syncp); 3032 } else { 3033 dev_kfree_skb(skb); 3034 } 3035 next_pkt: 3036 if (unlikely(np->get_rx.ex++ == np->last_rx.ex)) 3037 np->get_rx.ex = np->rx_ring.ex; 3038 if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx)) 3039 np->get_rx_ctx = np->rx_skb; 3040 3041 rx_work++; 3042 } 3043 3044 return rx_work; 3045 } 3046 3047 static void set_bufsize(struct net_device *dev) 3048 { 3049 struct fe_priv *np = netdev_priv(dev); 3050 3051 if (dev->mtu <= ETH_DATA_LEN) 3052 np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS; 3053 else 3054 np->rx_buf_sz = dev->mtu + NV_RX_HEADERS; 3055 } 3056 3057 /* 3058 * nv_change_mtu: dev->change_mtu function 3059 * Called with dev_base_lock held for read. 3060 */ 3061 static int nv_change_mtu(struct net_device *dev, int new_mtu) 3062 { 3063 struct fe_priv *np = netdev_priv(dev); 3064 int old_mtu; 3065 3066 old_mtu = dev->mtu; 3067 dev->mtu = new_mtu; 3068 3069 /* return early if the buffer sizes will not change */ 3070 if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN) 3071 return 0; 3072 3073 /* synchronized against open : rtnl_lock() held by caller */ 3074 if (netif_running(dev)) { 3075 u8 __iomem *base = get_hwbase(dev); 3076 /* 3077 * It seems that the nic preloads valid ring entries into an 3078 * internal buffer. The procedure for flushing everything is 3079 * guessed, there is probably a simpler approach. 3080 * Changing the MTU is a rare event, it shouldn't matter. 3081 */ 3082 nv_disable_irq(dev); 3083 nv_napi_disable(dev); 3084 netif_tx_lock_bh(dev); 3085 netif_addr_lock(dev); 3086 spin_lock(&np->lock); 3087 /* stop engines */ 3088 nv_stop_rxtx(dev); 3089 nv_txrx_reset(dev); 3090 /* drain rx queue */ 3091 nv_drain_rxtx(dev); 3092 /* reinit driver view of the rx queue */ 3093 set_bufsize(dev); 3094 if (nv_init_ring(dev)) { 3095 if (!np->in_shutdown) 3096 mod_timer(&np->oom_kick, jiffies + OOM_REFILL); 3097 } 3098 /* reinit nic view of the rx queue */ 3099 writel(np->rx_buf_sz, base + NvRegOffloadConfig); 3100 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING); 3101 writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT), 3102 base + NvRegRingSizes); 3103 pci_push(base); 3104 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl); 3105 pci_push(base); 3106 3107 /* restart rx engine */ 3108 nv_start_rxtx(dev); 3109 spin_unlock(&np->lock); 3110 netif_addr_unlock(dev); 3111 netif_tx_unlock_bh(dev); 3112 nv_napi_enable(dev); 3113 nv_enable_irq(dev); 3114 } 3115 return 0; 3116 } 3117 3118 static void nv_copy_mac_to_hw(struct net_device *dev) 3119 { 3120 u8 __iomem *base = get_hwbase(dev); 3121 u32 mac[2]; 3122 3123 mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) + 3124 (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24); 3125 mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8); 3126 3127 writel(mac[0], base + NvRegMacAddrA); 3128 writel(mac[1], base + NvRegMacAddrB); 3129 } 3130 3131 /* 3132 * nv_set_mac_address: dev->set_mac_address function 3133 * Called with rtnl_lock() held. 3134 */ 3135 static int nv_set_mac_address(struct net_device *dev, void *addr) 3136 { 3137 struct fe_priv *np = netdev_priv(dev); 3138 struct sockaddr *macaddr = (struct sockaddr *)addr; 3139 3140 if (!is_valid_ether_addr(macaddr->sa_data)) 3141 return -EADDRNOTAVAIL; 3142 3143 /* synchronized against open : rtnl_lock() held by caller */ 3144 memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN); 3145 3146 if (netif_running(dev)) { 3147 netif_tx_lock_bh(dev); 3148 netif_addr_lock(dev); 3149 spin_lock_irq(&np->lock); 3150 3151 /* stop rx engine */ 3152 nv_stop_rx(dev); 3153 3154 /* set mac address */ 3155 nv_copy_mac_to_hw(dev); 3156 3157 /* restart rx engine */ 3158 nv_start_rx(dev); 3159 spin_unlock_irq(&np->lock); 3160 netif_addr_unlock(dev); 3161 netif_tx_unlock_bh(dev); 3162 } else { 3163 nv_copy_mac_to_hw(dev); 3164 } 3165 return 0; 3166 } 3167 3168 /* 3169 * nv_set_multicast: dev->set_multicast function 3170 * Called with netif_tx_lock held. 3171 */ 3172 static void nv_set_multicast(struct net_device *dev) 3173 { 3174 struct fe_priv *np = netdev_priv(dev); 3175 u8 __iomem *base = get_hwbase(dev); 3176 u32 addr[2]; 3177 u32 mask[2]; 3178 u32 pff = readl(base + NvRegPacketFilterFlags) & NVREG_PFF_PAUSE_RX; 3179 3180 memset(addr, 0, sizeof(addr)); 3181 memset(mask, 0, sizeof(mask)); 3182 3183 if (dev->flags & IFF_PROMISC) { 3184 pff |= NVREG_PFF_PROMISC; 3185 } else { 3186 pff |= NVREG_PFF_MYADDR; 3187 3188 if (dev->flags & IFF_ALLMULTI || !netdev_mc_empty(dev)) { 3189 u32 alwaysOff[2]; 3190 u32 alwaysOn[2]; 3191 3192 alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff; 3193 if (dev->flags & IFF_ALLMULTI) { 3194 alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0; 3195 } else { 3196 struct netdev_hw_addr *ha; 3197 3198 netdev_for_each_mc_addr(ha, dev) { 3199 unsigned char *hw_addr = ha->addr; 3200 u32 a, b; 3201 3202 a = le32_to_cpu(*(__le32 *) hw_addr); 3203 b = le16_to_cpu(*(__le16 *) (&hw_addr[4])); 3204 alwaysOn[0] &= a; 3205 alwaysOff[0] &= ~a; 3206 alwaysOn[1] &= b; 3207 alwaysOff[1] &= ~b; 3208 } 3209 } 3210 addr[0] = alwaysOn[0]; 3211 addr[1] = alwaysOn[1]; 3212 mask[0] = alwaysOn[0] | alwaysOff[0]; 3213 mask[1] = alwaysOn[1] | alwaysOff[1]; 3214 } else { 3215 mask[0] = NVREG_MCASTMASKA_NONE; 3216 mask[1] = NVREG_MCASTMASKB_NONE; 3217 } 3218 } 3219 addr[0] |= NVREG_MCASTADDRA_FORCE; 3220 pff |= NVREG_PFF_ALWAYS; 3221 spin_lock_irq(&np->lock); 3222 nv_stop_rx(dev); 3223 writel(addr[0], base + NvRegMulticastAddrA); 3224 writel(addr[1], base + NvRegMulticastAddrB); 3225 writel(mask[0], base + NvRegMulticastMaskA); 3226 writel(mask[1], base + NvRegMulticastMaskB); 3227 writel(pff, base + NvRegPacketFilterFlags); 3228 nv_start_rx(dev); 3229 spin_unlock_irq(&np->lock); 3230 } 3231 3232 static void nv_update_pause(struct net_device *dev, u32 pause_flags) 3233 { 3234 struct fe_priv *np = netdev_priv(dev); 3235 u8 __iomem *base = get_hwbase(dev); 3236 3237 np->pause_flags &= ~(NV_PAUSEFRAME_TX_ENABLE | NV_PAUSEFRAME_RX_ENABLE); 3238 3239 if (np->pause_flags & NV_PAUSEFRAME_RX_CAPABLE) { 3240 u32 pff = readl(base + NvRegPacketFilterFlags) & ~NVREG_PFF_PAUSE_RX; 3241 if (pause_flags & NV_PAUSEFRAME_RX_ENABLE) { 3242 writel(pff|NVREG_PFF_PAUSE_RX, base + NvRegPacketFilterFlags); 3243 np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE; 3244 } else { 3245 writel(pff, base + NvRegPacketFilterFlags); 3246 } 3247 } 3248 if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE) { 3249 u32 regmisc = readl(base + NvRegMisc1) & ~NVREG_MISC1_PAUSE_TX; 3250 if (pause_flags & NV_PAUSEFRAME_TX_ENABLE) { 3251 u32 pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V1; 3252 if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V2) 3253 pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V2; 3254 if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V3) { 3255 pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V3; 3256 /* limit the number of tx pause frames to a default of 8 */ 3257 writel(readl(base + NvRegTxPauseFrameLimit)|NVREG_TX_PAUSEFRAMELIMIT_ENABLE, base + NvRegTxPauseFrameLimit); 3258 } 3259 writel(pause_enable, base + NvRegTxPauseFrame); 3260 writel(regmisc|NVREG_MISC1_PAUSE_TX, base + NvRegMisc1); 3261 np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE; 3262 } else { 3263 writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame); 3264 writel(regmisc, base + NvRegMisc1); 3265 } 3266 } 3267 } 3268 3269 static void nv_force_linkspeed(struct net_device *dev, int speed, int duplex) 3270 { 3271 struct fe_priv *np = netdev_priv(dev); 3272 u8 __iomem *base = get_hwbase(dev); 3273 u32 phyreg, txreg; 3274 int mii_status; 3275 3276 np->linkspeed = NVREG_LINKSPEED_FORCE|speed; 3277 np->duplex = duplex; 3278 3279 /* see if gigabit phy */ 3280 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ); 3281 if (mii_status & PHY_GIGABIT) { 3282 np->gigabit = PHY_GIGABIT; 3283 phyreg = readl(base + NvRegSlotTime); 3284 phyreg &= ~(0x3FF00); 3285 if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10) 3286 phyreg |= NVREG_SLOTTIME_10_100_FULL; 3287 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100) 3288 phyreg |= NVREG_SLOTTIME_10_100_FULL; 3289 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000) 3290 phyreg |= NVREG_SLOTTIME_1000_FULL; 3291 writel(phyreg, base + NvRegSlotTime); 3292 } 3293 3294 phyreg = readl(base + NvRegPhyInterface); 3295 phyreg &= ~(PHY_HALF|PHY_100|PHY_1000); 3296 if (np->duplex == 0) 3297 phyreg |= PHY_HALF; 3298 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100) 3299 phyreg |= PHY_100; 3300 else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == 3301 NVREG_LINKSPEED_1000) 3302 phyreg |= PHY_1000; 3303 writel(phyreg, base + NvRegPhyInterface); 3304 3305 if (phyreg & PHY_RGMII) { 3306 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == 3307 NVREG_LINKSPEED_1000) 3308 txreg = NVREG_TX_DEFERRAL_RGMII_1000; 3309 else 3310 txreg = NVREG_TX_DEFERRAL_RGMII_10_100; 3311 } else { 3312 txreg = NVREG_TX_DEFERRAL_DEFAULT; 3313 } 3314 writel(txreg, base + NvRegTxDeferral); 3315 3316 if (np->desc_ver == DESC_VER_1) { 3317 txreg = NVREG_TX_WM_DESC1_DEFAULT; 3318 } else { 3319 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == 3320 NVREG_LINKSPEED_1000) 3321 txreg = NVREG_TX_WM_DESC2_3_1000; 3322 else 3323 txreg = NVREG_TX_WM_DESC2_3_DEFAULT; 3324 } 3325 writel(txreg, base + NvRegTxWatermark); 3326 3327 writel(NVREG_MISC1_FORCE | (np->duplex ? 0 : NVREG_MISC1_HD), 3328 base + NvRegMisc1); 3329 pci_push(base); 3330 writel(np->linkspeed, base + NvRegLinkSpeed); 3331 pci_push(base); 3332 } 3333 3334 /** 3335 * nv_update_linkspeed - Setup the MAC according to the link partner 3336 * @dev: Network device to be configured 3337 * 3338 * The function queries the PHY and checks if there is a link partner. 3339 * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is 3340 * set to 10 MBit HD. 3341 * 3342 * The function returns 0 if there is no link partner and 1 if there is 3343 * a good link partner. 3344 */ 3345 static int nv_update_linkspeed(struct net_device *dev) 3346 { 3347 struct fe_priv *np = netdev_priv(dev); 3348 u8 __iomem *base = get_hwbase(dev); 3349 int adv = 0; 3350 int lpa = 0; 3351 int adv_lpa, adv_pause, lpa_pause; 3352 int newls = np->linkspeed; 3353 int newdup = np->duplex; 3354 int mii_status; 3355 u32 bmcr; 3356 int retval = 0; 3357 u32 control_1000, status_1000, phyreg, pause_flags, txreg; 3358 u32 txrxFlags = 0; 3359 u32 phy_exp; 3360 3361 /* If device loopback is enabled, set carrier on and enable max link 3362 * speed. 3363 */ 3364 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); 3365 if (bmcr & BMCR_LOOPBACK) { 3366 if (netif_running(dev)) { 3367 nv_force_linkspeed(dev, NVREG_LINKSPEED_1000, 1); 3368 if (!netif_carrier_ok(dev)) 3369 netif_carrier_on(dev); 3370 } 3371 return 1; 3372 } 3373 3374 /* BMSR_LSTATUS is latched, read it twice: 3375 * we want the current value. 3376 */ 3377 mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ); 3378 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ); 3379 3380 if (!(mii_status & BMSR_LSTATUS)) { 3381 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10; 3382 newdup = 0; 3383 retval = 0; 3384 goto set_speed; 3385 } 3386 3387 if (np->autoneg == 0) { 3388 if (np->fixed_mode & LPA_100FULL) { 3389 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100; 3390 newdup = 1; 3391 } else if (np->fixed_mode & LPA_100HALF) { 3392 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100; 3393 newdup = 0; 3394 } else if (np->fixed_mode & LPA_10FULL) { 3395 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10; 3396 newdup = 1; 3397 } else { 3398 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10; 3399 newdup = 0; 3400 } 3401 retval = 1; 3402 goto set_speed; 3403 } 3404 /* check auto negotiation is complete */ 3405 if (!(mii_status & BMSR_ANEGCOMPLETE)) { 3406 /* still in autonegotiation - configure nic for 10 MBit HD and wait. */ 3407 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10; 3408 newdup = 0; 3409 retval = 0; 3410 goto set_speed; 3411 } 3412 3413 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ); 3414 lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ); 3415 3416 retval = 1; 3417 if (np->gigabit == PHY_GIGABIT) { 3418 control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ); 3419 status_1000 = mii_rw(dev, np->phyaddr, MII_STAT1000, MII_READ); 3420 3421 if ((control_1000 & ADVERTISE_1000FULL) && 3422 (status_1000 & LPA_1000FULL)) { 3423 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000; 3424 newdup = 1; 3425 goto set_speed; 3426 } 3427 } 3428 3429 /* FIXME: handle parallel detection properly */ 3430 adv_lpa = lpa & adv; 3431 if (adv_lpa & LPA_100FULL) { 3432 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100; 3433 newdup = 1; 3434 } else if (adv_lpa & LPA_100HALF) { 3435 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100; 3436 newdup = 0; 3437 } else if (adv_lpa & LPA_10FULL) { 3438 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10; 3439 newdup = 1; 3440 } else if (adv_lpa & LPA_10HALF) { 3441 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10; 3442 newdup = 0; 3443 } else { 3444 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10; 3445 newdup = 0; 3446 } 3447 3448 set_speed: 3449 if (np->duplex == newdup && np->linkspeed == newls) 3450 return retval; 3451 3452 np->duplex = newdup; 3453 np->linkspeed = newls; 3454 3455 /* The transmitter and receiver must be restarted for safe update */ 3456 if (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_START) { 3457 txrxFlags |= NV_RESTART_TX; 3458 nv_stop_tx(dev); 3459 } 3460 if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) { 3461 txrxFlags |= NV_RESTART_RX; 3462 nv_stop_rx(dev); 3463 } 3464 3465 if (np->gigabit == PHY_GIGABIT) { 3466 phyreg = readl(base + NvRegSlotTime); 3467 phyreg &= ~(0x3FF00); 3468 if (((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10) || 3469 ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100)) 3470 phyreg |= NVREG_SLOTTIME_10_100_FULL; 3471 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000) 3472 phyreg |= NVREG_SLOTTIME_1000_FULL; 3473 writel(phyreg, base + NvRegSlotTime); 3474 } 3475 3476 phyreg = readl(base + NvRegPhyInterface); 3477 phyreg &= ~(PHY_HALF|PHY_100|PHY_1000); 3478 if (np->duplex == 0) 3479 phyreg |= PHY_HALF; 3480 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100) 3481 phyreg |= PHY_100; 3482 else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000) 3483 phyreg |= PHY_1000; 3484 writel(phyreg, base + NvRegPhyInterface); 3485 3486 phy_exp = mii_rw(dev, np->phyaddr, MII_EXPANSION, MII_READ) & EXPANSION_NWAY; /* autoneg capable */ 3487 if (phyreg & PHY_RGMII) { 3488 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000) { 3489 txreg = NVREG_TX_DEFERRAL_RGMII_1000; 3490 } else { 3491 if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX)) { 3492 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_10) 3493 txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_10; 3494 else 3495 txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_100; 3496 } else { 3497 txreg = NVREG_TX_DEFERRAL_RGMII_10_100; 3498 } 3499 } 3500 } else { 3501 if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX)) 3502 txreg = NVREG_TX_DEFERRAL_MII_STRETCH; 3503 else 3504 txreg = NVREG_TX_DEFERRAL_DEFAULT; 3505 } 3506 writel(txreg, base + NvRegTxDeferral); 3507 3508 if (np->desc_ver == DESC_VER_1) { 3509 txreg = NVREG_TX_WM_DESC1_DEFAULT; 3510 } else { 3511 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000) 3512 txreg = NVREG_TX_WM_DESC2_3_1000; 3513 else 3514 txreg = NVREG_TX_WM_DESC2_3_DEFAULT; 3515 } 3516 writel(txreg, base + NvRegTxWatermark); 3517 3518 writel(NVREG_MISC1_FORCE | (np->duplex ? 0 : NVREG_MISC1_HD), 3519 base + NvRegMisc1); 3520 pci_push(base); 3521 writel(np->linkspeed, base + NvRegLinkSpeed); 3522 pci_push(base); 3523 3524 pause_flags = 0; 3525 /* setup pause frame */ 3526 if (netif_running(dev) && (np->duplex != 0)) { 3527 if (np->autoneg && np->pause_flags & NV_PAUSEFRAME_AUTONEG) { 3528 adv_pause = adv & (ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM); 3529 lpa_pause = lpa & (LPA_PAUSE_CAP | LPA_PAUSE_ASYM); 3530 3531 switch (adv_pause) { 3532 case ADVERTISE_PAUSE_CAP: 3533 if (lpa_pause & LPA_PAUSE_CAP) { 3534 pause_flags |= NV_PAUSEFRAME_RX_ENABLE; 3535 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) 3536 pause_flags |= NV_PAUSEFRAME_TX_ENABLE; 3537 } 3538 break; 3539 case ADVERTISE_PAUSE_ASYM: 3540 if (lpa_pause == (LPA_PAUSE_CAP | LPA_PAUSE_ASYM)) 3541 pause_flags |= NV_PAUSEFRAME_TX_ENABLE; 3542 break; 3543 case ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM: 3544 if (lpa_pause & LPA_PAUSE_CAP) { 3545 pause_flags |= NV_PAUSEFRAME_RX_ENABLE; 3546 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) 3547 pause_flags |= NV_PAUSEFRAME_TX_ENABLE; 3548 } 3549 if (lpa_pause == LPA_PAUSE_ASYM) 3550 pause_flags |= NV_PAUSEFRAME_RX_ENABLE; 3551 break; 3552 } 3553 } else { 3554 pause_flags = np->pause_flags; 3555 } 3556 } 3557 nv_update_pause(dev, pause_flags); 3558 3559 if (txrxFlags & NV_RESTART_TX) 3560 nv_start_tx(dev); 3561 if (txrxFlags & NV_RESTART_RX) 3562 nv_start_rx(dev); 3563 3564 return retval; 3565 } 3566 3567 static void nv_linkchange(struct net_device *dev) 3568 { 3569 if (nv_update_linkspeed(dev)) { 3570 if (!netif_carrier_ok(dev)) { 3571 netif_carrier_on(dev); 3572 netdev_info(dev, "link up\n"); 3573 nv_txrx_gate(dev, false); 3574 nv_start_rx(dev); 3575 } 3576 } else { 3577 if (netif_carrier_ok(dev)) { 3578 netif_carrier_off(dev); 3579 netdev_info(dev, "link down\n"); 3580 nv_txrx_gate(dev, true); 3581 nv_stop_rx(dev); 3582 } 3583 } 3584 } 3585 3586 static void nv_link_irq(struct net_device *dev) 3587 { 3588 u8 __iomem *base = get_hwbase(dev); 3589 u32 miistat; 3590 3591 miistat = readl(base + NvRegMIIStatus); 3592 writel(NVREG_MIISTAT_LINKCHANGE, base + NvRegMIIStatus); 3593 3594 if (miistat & (NVREG_MIISTAT_LINKCHANGE)) 3595 nv_linkchange(dev); 3596 } 3597 3598 static void nv_msi_workaround(struct fe_priv *np) 3599 { 3600 3601 /* Need to toggle the msi irq mask within the ethernet device, 3602 * otherwise, future interrupts will not be detected. 3603 */ 3604 if (np->msi_flags & NV_MSI_ENABLED) { 3605 u8 __iomem *base = np->base; 3606 3607 writel(0, base + NvRegMSIIrqMask); 3608 writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask); 3609 } 3610 } 3611 3612 static inline int nv_change_interrupt_mode(struct net_device *dev, int total_work) 3613 { 3614 struct fe_priv *np = netdev_priv(dev); 3615 3616 if (optimization_mode == NV_OPTIMIZATION_MODE_DYNAMIC) { 3617 if (total_work > NV_DYNAMIC_THRESHOLD) { 3618 /* transition to poll based interrupts */ 3619 np->quiet_count = 0; 3620 if (np->irqmask != NVREG_IRQMASK_CPU) { 3621 np->irqmask = NVREG_IRQMASK_CPU; 3622 return 1; 3623 } 3624 } else { 3625 if (np->quiet_count < NV_DYNAMIC_MAX_QUIET_COUNT) { 3626 np->quiet_count++; 3627 } else { 3628 /* reached a period of low activity, switch 3629 to per tx/rx packet interrupts */ 3630 if (np->irqmask != NVREG_IRQMASK_THROUGHPUT) { 3631 np->irqmask = NVREG_IRQMASK_THROUGHPUT; 3632 return 1; 3633 } 3634 } 3635 } 3636 } 3637 return 0; 3638 } 3639 3640 static irqreturn_t nv_nic_irq(int foo, void *data) 3641 { 3642 struct net_device *dev = (struct net_device *) data; 3643 struct fe_priv *np = netdev_priv(dev); 3644 u8 __iomem *base = get_hwbase(dev); 3645 3646 if (!(np->msi_flags & NV_MSI_X_ENABLED)) { 3647 np->events = readl(base + NvRegIrqStatus); 3648 writel(np->events, base + NvRegIrqStatus); 3649 } else { 3650 np->events = readl(base + NvRegMSIXIrqStatus); 3651 writel(np->events, base + NvRegMSIXIrqStatus); 3652 } 3653 if (!(np->events & np->irqmask)) 3654 return IRQ_NONE; 3655 3656 nv_msi_workaround(np); 3657 3658 if (napi_schedule_prep(&np->napi)) { 3659 /* 3660 * Disable further irq's (msix not enabled with napi) 3661 */ 3662 writel(0, base + NvRegIrqMask); 3663 __napi_schedule(&np->napi); 3664 } 3665 3666 return IRQ_HANDLED; 3667 } 3668 3669 /* All _optimized functions are used to help increase performance 3670 * (reduce CPU and increase throughput). They use descripter version 3, 3671 * compiler directives, and reduce memory accesses. 3672 */ 3673 static irqreturn_t nv_nic_irq_optimized(int foo, void *data) 3674 { 3675 struct net_device *dev = (struct net_device *) data; 3676 struct fe_priv *np = netdev_priv(dev); 3677 u8 __iomem *base = get_hwbase(dev); 3678 3679 if (!(np->msi_flags & NV_MSI_X_ENABLED)) { 3680 np->events = readl(base + NvRegIrqStatus); 3681 writel(np->events, base + NvRegIrqStatus); 3682 } else { 3683 np->events = readl(base + NvRegMSIXIrqStatus); 3684 writel(np->events, base + NvRegMSIXIrqStatus); 3685 } 3686 if (!(np->events & np->irqmask)) 3687 return IRQ_NONE; 3688 3689 nv_msi_workaround(np); 3690 3691 if (napi_schedule_prep(&np->napi)) { 3692 /* 3693 * Disable further irq's (msix not enabled with napi) 3694 */ 3695 writel(0, base + NvRegIrqMask); 3696 __napi_schedule(&np->napi); 3697 } 3698 3699 return IRQ_HANDLED; 3700 } 3701 3702 static irqreturn_t nv_nic_irq_tx(int foo, void *data) 3703 { 3704 struct net_device *dev = (struct net_device *) data; 3705 struct fe_priv *np = netdev_priv(dev); 3706 u8 __iomem *base = get_hwbase(dev); 3707 u32 events; 3708 int i; 3709 unsigned long flags; 3710 3711 for (i = 0;; i++) { 3712 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL; 3713 writel(events, base + NvRegMSIXIrqStatus); 3714 netdev_dbg(dev, "tx irq events: %08x\n", events); 3715 if (!(events & np->irqmask)) 3716 break; 3717 3718 spin_lock_irqsave(&np->lock, flags); 3719 nv_tx_done_optimized(dev, TX_WORK_PER_LOOP); 3720 spin_unlock_irqrestore(&np->lock, flags); 3721 3722 if (unlikely(i > max_interrupt_work)) { 3723 spin_lock_irqsave(&np->lock, flags); 3724 /* disable interrupts on the nic */ 3725 writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask); 3726 pci_push(base); 3727 3728 if (!np->in_shutdown) { 3729 np->nic_poll_irq |= NVREG_IRQ_TX_ALL; 3730 mod_timer(&np->nic_poll, jiffies + POLL_WAIT); 3731 } 3732 spin_unlock_irqrestore(&np->lock, flags); 3733 netdev_dbg(dev, "%s: too many iterations (%d)\n", 3734 __func__, i); 3735 break; 3736 } 3737 3738 } 3739 3740 return IRQ_RETVAL(i); 3741 } 3742 3743 static int nv_napi_poll(struct napi_struct *napi, int budget) 3744 { 3745 struct fe_priv *np = container_of(napi, struct fe_priv, napi); 3746 struct net_device *dev = np->dev; 3747 u8 __iomem *base = get_hwbase(dev); 3748 unsigned long flags; 3749 int retcode; 3750 int rx_count, tx_work = 0, rx_work = 0; 3751 3752 do { 3753 if (!nv_optimized(np)) { 3754 spin_lock_irqsave(&np->lock, flags); 3755 tx_work += nv_tx_done(dev, np->tx_ring_size); 3756 spin_unlock_irqrestore(&np->lock, flags); 3757 3758 rx_count = nv_rx_process(dev, budget - rx_work); 3759 retcode = nv_alloc_rx(dev); 3760 } else { 3761 spin_lock_irqsave(&np->lock, flags); 3762 tx_work += nv_tx_done_optimized(dev, np->tx_ring_size); 3763 spin_unlock_irqrestore(&np->lock, flags); 3764 3765 rx_count = nv_rx_process_optimized(dev, 3766 budget - rx_work); 3767 retcode = nv_alloc_rx_optimized(dev); 3768 } 3769 } while (retcode == 0 && 3770 rx_count > 0 && (rx_work += rx_count) < budget); 3771 3772 if (retcode) { 3773 spin_lock_irqsave(&np->lock, flags); 3774 if (!np->in_shutdown) 3775 mod_timer(&np->oom_kick, jiffies + OOM_REFILL); 3776 spin_unlock_irqrestore(&np->lock, flags); 3777 } 3778 3779 nv_change_interrupt_mode(dev, tx_work + rx_work); 3780 3781 if (unlikely(np->events & NVREG_IRQ_LINK)) { 3782 spin_lock_irqsave(&np->lock, flags); 3783 nv_link_irq(dev); 3784 spin_unlock_irqrestore(&np->lock, flags); 3785 } 3786 if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) { 3787 spin_lock_irqsave(&np->lock, flags); 3788 nv_linkchange(dev); 3789 spin_unlock_irqrestore(&np->lock, flags); 3790 np->link_timeout = jiffies + LINK_TIMEOUT; 3791 } 3792 if (unlikely(np->events & NVREG_IRQ_RECOVER_ERROR)) { 3793 spin_lock_irqsave(&np->lock, flags); 3794 if (!np->in_shutdown) { 3795 np->nic_poll_irq = np->irqmask; 3796 np->recover_error = 1; 3797 mod_timer(&np->nic_poll, jiffies + POLL_WAIT); 3798 } 3799 spin_unlock_irqrestore(&np->lock, flags); 3800 napi_complete(napi); 3801 return rx_work; 3802 } 3803 3804 if (rx_work < budget) { 3805 /* re-enable interrupts 3806 (msix not enabled in napi) */ 3807 napi_complete_done(napi, rx_work); 3808 3809 writel(np->irqmask, base + NvRegIrqMask); 3810 } 3811 return rx_work; 3812 } 3813 3814 static irqreturn_t nv_nic_irq_rx(int foo, void *data) 3815 { 3816 struct net_device *dev = (struct net_device *) data; 3817 struct fe_priv *np = netdev_priv(dev); 3818 u8 __iomem *base = get_hwbase(dev); 3819 u32 events; 3820 int i; 3821 unsigned long flags; 3822 3823 for (i = 0;; i++) { 3824 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL; 3825 writel(events, base + NvRegMSIXIrqStatus); 3826 netdev_dbg(dev, "rx irq events: %08x\n", events); 3827 if (!(events & np->irqmask)) 3828 break; 3829 3830 if (nv_rx_process_optimized(dev, RX_WORK_PER_LOOP)) { 3831 if (unlikely(nv_alloc_rx_optimized(dev))) { 3832 spin_lock_irqsave(&np->lock, flags); 3833 if (!np->in_shutdown) 3834 mod_timer(&np->oom_kick, jiffies + OOM_REFILL); 3835 spin_unlock_irqrestore(&np->lock, flags); 3836 } 3837 } 3838 3839 if (unlikely(i > max_interrupt_work)) { 3840 spin_lock_irqsave(&np->lock, flags); 3841 /* disable interrupts on the nic */ 3842 writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask); 3843 pci_push(base); 3844 3845 if (!np->in_shutdown) { 3846 np->nic_poll_irq |= NVREG_IRQ_RX_ALL; 3847 mod_timer(&np->nic_poll, jiffies + POLL_WAIT); 3848 } 3849 spin_unlock_irqrestore(&np->lock, flags); 3850 netdev_dbg(dev, "%s: too many iterations (%d)\n", 3851 __func__, i); 3852 break; 3853 } 3854 } 3855 3856 return IRQ_RETVAL(i); 3857 } 3858 3859 static irqreturn_t nv_nic_irq_other(int foo, void *data) 3860 { 3861 struct net_device *dev = (struct net_device *) data; 3862 struct fe_priv *np = netdev_priv(dev); 3863 u8 __iomem *base = get_hwbase(dev); 3864 u32 events; 3865 int i; 3866 unsigned long flags; 3867 3868 for (i = 0;; i++) { 3869 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER; 3870 writel(events, base + NvRegMSIXIrqStatus); 3871 netdev_dbg(dev, "irq events: %08x\n", events); 3872 if (!(events & np->irqmask)) 3873 break; 3874 3875 /* check tx in case we reached max loop limit in tx isr */ 3876 spin_lock_irqsave(&np->lock, flags); 3877 nv_tx_done_optimized(dev, TX_WORK_PER_LOOP); 3878 spin_unlock_irqrestore(&np->lock, flags); 3879 3880 if (events & NVREG_IRQ_LINK) { 3881 spin_lock_irqsave(&np->lock, flags); 3882 nv_link_irq(dev); 3883 spin_unlock_irqrestore(&np->lock, flags); 3884 } 3885 if (np->need_linktimer && time_after(jiffies, np->link_timeout)) { 3886 spin_lock_irqsave(&np->lock, flags); 3887 nv_linkchange(dev); 3888 spin_unlock_irqrestore(&np->lock, flags); 3889 np->link_timeout = jiffies + LINK_TIMEOUT; 3890 } 3891 if (events & NVREG_IRQ_RECOVER_ERROR) { 3892 spin_lock_irqsave(&np->lock, flags); 3893 /* disable interrupts on the nic */ 3894 writel(NVREG_IRQ_OTHER, base + NvRegIrqMask); 3895 pci_push(base); 3896 3897 if (!np->in_shutdown) { 3898 np->nic_poll_irq |= NVREG_IRQ_OTHER; 3899 np->recover_error = 1; 3900 mod_timer(&np->nic_poll, jiffies + POLL_WAIT); 3901 } 3902 spin_unlock_irqrestore(&np->lock, flags); 3903 break; 3904 } 3905 if (unlikely(i > max_interrupt_work)) { 3906 spin_lock_irqsave(&np->lock, flags); 3907 /* disable interrupts on the nic */ 3908 writel(NVREG_IRQ_OTHER, base + NvRegIrqMask); 3909 pci_push(base); 3910 3911 if (!np->in_shutdown) { 3912 np->nic_poll_irq |= NVREG_IRQ_OTHER; 3913 mod_timer(&np->nic_poll, jiffies + POLL_WAIT); 3914 } 3915 spin_unlock_irqrestore(&np->lock, flags); 3916 netdev_dbg(dev, "%s: too many iterations (%d)\n", 3917 __func__, i); 3918 break; 3919 } 3920 3921 } 3922 3923 return IRQ_RETVAL(i); 3924 } 3925 3926 static irqreturn_t nv_nic_irq_test(int foo, void *data) 3927 { 3928 struct net_device *dev = (struct net_device *) data; 3929 struct fe_priv *np = netdev_priv(dev); 3930 u8 __iomem *base = get_hwbase(dev); 3931 u32 events; 3932 3933 if (!(np->msi_flags & NV_MSI_X_ENABLED)) { 3934 events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK; 3935 writel(events & NVREG_IRQ_TIMER, base + NvRegIrqStatus); 3936 } else { 3937 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK; 3938 writel(events & NVREG_IRQ_TIMER, base + NvRegMSIXIrqStatus); 3939 } 3940 pci_push(base); 3941 if (!(events & NVREG_IRQ_TIMER)) 3942 return IRQ_RETVAL(0); 3943 3944 nv_msi_workaround(np); 3945 3946 spin_lock(&np->lock); 3947 np->intr_test = 1; 3948 spin_unlock(&np->lock); 3949 3950 return IRQ_RETVAL(1); 3951 } 3952 3953 static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask) 3954 { 3955 u8 __iomem *base = get_hwbase(dev); 3956 int i; 3957 u32 msixmap = 0; 3958 3959 /* Each interrupt bit can be mapped to a MSIX vector (4 bits). 3960 * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents 3961 * the remaining 8 interrupts. 3962 */ 3963 for (i = 0; i < 8; i++) { 3964 if ((irqmask >> i) & 0x1) 3965 msixmap |= vector << (i << 2); 3966 } 3967 writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0); 3968 3969 msixmap = 0; 3970 for (i = 0; i < 8; i++) { 3971 if ((irqmask >> (i + 8)) & 0x1) 3972 msixmap |= vector << (i << 2); 3973 } 3974 writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1); 3975 } 3976 3977 static int nv_request_irq(struct net_device *dev, int intr_test) 3978 { 3979 struct fe_priv *np = get_nvpriv(dev); 3980 u8 __iomem *base = get_hwbase(dev); 3981 int ret; 3982 int i; 3983 irqreturn_t (*handler)(int foo, void *data); 3984 3985 if (intr_test) { 3986 handler = nv_nic_irq_test; 3987 } else { 3988 if (nv_optimized(np)) 3989 handler = nv_nic_irq_optimized; 3990 else 3991 handler = nv_nic_irq; 3992 } 3993 3994 if (np->msi_flags & NV_MSI_X_CAPABLE) { 3995 for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) 3996 np->msi_x_entry[i].entry = i; 3997 ret = pci_enable_msix_range(np->pci_dev, 3998 np->msi_x_entry, 3999 np->msi_flags & NV_MSI_X_VECTORS_MASK, 4000 np->msi_flags & NV_MSI_X_VECTORS_MASK); 4001 if (ret > 0) { 4002 np->msi_flags |= NV_MSI_X_ENABLED; 4003 if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT && !intr_test) { 4004 /* Request irq for rx handling */ 4005 sprintf(np->name_rx, "%s-rx", dev->name); 4006 ret = request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, 4007 nv_nic_irq_rx, IRQF_SHARED, np->name_rx, dev); 4008 if (ret) { 4009 netdev_info(dev, 4010 "request_irq failed for rx %d\n", 4011 ret); 4012 pci_disable_msix(np->pci_dev); 4013 np->msi_flags &= ~NV_MSI_X_ENABLED; 4014 goto out_err; 4015 } 4016 /* Request irq for tx handling */ 4017 sprintf(np->name_tx, "%s-tx", dev->name); 4018 ret = request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, 4019 nv_nic_irq_tx, IRQF_SHARED, np->name_tx, dev); 4020 if (ret) { 4021 netdev_info(dev, 4022 "request_irq failed for tx %d\n", 4023 ret); 4024 pci_disable_msix(np->pci_dev); 4025 np->msi_flags &= ~NV_MSI_X_ENABLED; 4026 goto out_free_rx; 4027 } 4028 /* Request irq for link and timer handling */ 4029 sprintf(np->name_other, "%s-other", dev->name); 4030 ret = request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector, 4031 nv_nic_irq_other, IRQF_SHARED, np->name_other, dev); 4032 if (ret) { 4033 netdev_info(dev, 4034 "request_irq failed for link %d\n", 4035 ret); 4036 pci_disable_msix(np->pci_dev); 4037 np->msi_flags &= ~NV_MSI_X_ENABLED; 4038 goto out_free_tx; 4039 } 4040 /* map interrupts to their respective vector */ 4041 writel(0, base + NvRegMSIXMap0); 4042 writel(0, base + NvRegMSIXMap1); 4043 set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL); 4044 set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL); 4045 set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER); 4046 } else { 4047 /* Request irq for all interrupts */ 4048 ret = request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, 4049 handler, IRQF_SHARED, dev->name, dev); 4050 if (ret) { 4051 netdev_info(dev, 4052 "request_irq failed %d\n", 4053 ret); 4054 pci_disable_msix(np->pci_dev); 4055 np->msi_flags &= ~NV_MSI_X_ENABLED; 4056 goto out_err; 4057 } 4058 4059 /* map interrupts to vector 0 */ 4060 writel(0, base + NvRegMSIXMap0); 4061 writel(0, base + NvRegMSIXMap1); 4062 } 4063 netdev_info(dev, "MSI-X enabled\n"); 4064 return 0; 4065 } 4066 } 4067 if (np->msi_flags & NV_MSI_CAPABLE) { 4068 ret = pci_enable_msi(np->pci_dev); 4069 if (ret == 0) { 4070 np->msi_flags |= NV_MSI_ENABLED; 4071 ret = request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev); 4072 if (ret) { 4073 netdev_info(dev, "request_irq failed %d\n", 4074 ret); 4075 pci_disable_msi(np->pci_dev); 4076 np->msi_flags &= ~NV_MSI_ENABLED; 4077 goto out_err; 4078 } 4079 4080 /* map interrupts to vector 0 */ 4081 writel(0, base + NvRegMSIMap0); 4082 writel(0, base + NvRegMSIMap1); 4083 /* enable msi vector 0 */ 4084 writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask); 4085 netdev_info(dev, "MSI enabled\n"); 4086 return 0; 4087 } 4088 } 4089 4090 if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0) 4091 goto out_err; 4092 4093 return 0; 4094 out_free_tx: 4095 free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, dev); 4096 out_free_rx: 4097 free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, dev); 4098 out_err: 4099 return 1; 4100 } 4101 4102 static void nv_free_irq(struct net_device *dev) 4103 { 4104 struct fe_priv *np = get_nvpriv(dev); 4105 int i; 4106 4107 if (np->msi_flags & NV_MSI_X_ENABLED) { 4108 for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) 4109 free_irq(np->msi_x_entry[i].vector, dev); 4110 pci_disable_msix(np->pci_dev); 4111 np->msi_flags &= ~NV_MSI_X_ENABLED; 4112 } else { 4113 free_irq(np->pci_dev->irq, dev); 4114 if (np->msi_flags & NV_MSI_ENABLED) { 4115 pci_disable_msi(np->pci_dev); 4116 np->msi_flags &= ~NV_MSI_ENABLED; 4117 } 4118 } 4119 } 4120 4121 static void nv_do_nic_poll(struct timer_list *t) 4122 { 4123 struct fe_priv *np = from_timer(np, t, nic_poll); 4124 struct net_device *dev = np->dev; 4125 u8 __iomem *base = get_hwbase(dev); 4126 u32 mask = 0; 4127 unsigned long flags; 4128 unsigned int irq = 0; 4129 4130 /* 4131 * First disable irq(s) and then 4132 * reenable interrupts on the nic, we have to do this before calling 4133 * nv_nic_irq because that may decide to do otherwise 4134 */ 4135 4136 if (!using_multi_irqs(dev)) { 4137 if (np->msi_flags & NV_MSI_X_ENABLED) 4138 irq = np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector; 4139 else 4140 irq = np->pci_dev->irq; 4141 mask = np->irqmask; 4142 } else { 4143 if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) { 4144 irq = np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector; 4145 mask |= NVREG_IRQ_RX_ALL; 4146 } 4147 if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) { 4148 irq = np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector; 4149 mask |= NVREG_IRQ_TX_ALL; 4150 } 4151 if (np->nic_poll_irq & NVREG_IRQ_OTHER) { 4152 irq = np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector; 4153 mask |= NVREG_IRQ_OTHER; 4154 } 4155 } 4156 4157 disable_irq_nosync_lockdep_irqsave(irq, &flags); 4158 synchronize_irq(irq); 4159 4160 if (np->recover_error) { 4161 np->recover_error = 0; 4162 netdev_info(dev, "MAC in recoverable error state\n"); 4163 if (netif_running(dev)) { 4164 netif_tx_lock_bh(dev); 4165 netif_addr_lock(dev); 4166 spin_lock(&np->lock); 4167 /* stop engines */ 4168 nv_stop_rxtx(dev); 4169 if (np->driver_data & DEV_HAS_POWER_CNTRL) 4170 nv_mac_reset(dev); 4171 nv_txrx_reset(dev); 4172 /* drain rx queue */ 4173 nv_drain_rxtx(dev); 4174 /* reinit driver view of the rx queue */ 4175 set_bufsize(dev); 4176 if (nv_init_ring(dev)) { 4177 if (!np->in_shutdown) 4178 mod_timer(&np->oom_kick, jiffies + OOM_REFILL); 4179 } 4180 /* reinit nic view of the rx queue */ 4181 writel(np->rx_buf_sz, base + NvRegOffloadConfig); 4182 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING); 4183 writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT), 4184 base + NvRegRingSizes); 4185 pci_push(base); 4186 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl); 4187 pci_push(base); 4188 /* clear interrupts */ 4189 if (!(np->msi_flags & NV_MSI_X_ENABLED)) 4190 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus); 4191 else 4192 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus); 4193 4194 /* restart rx engine */ 4195 nv_start_rxtx(dev); 4196 spin_unlock(&np->lock); 4197 netif_addr_unlock(dev); 4198 netif_tx_unlock_bh(dev); 4199 } 4200 } 4201 4202 writel(mask, base + NvRegIrqMask); 4203 pci_push(base); 4204 4205 if (!using_multi_irqs(dev)) { 4206 np->nic_poll_irq = 0; 4207 if (nv_optimized(np)) 4208 nv_nic_irq_optimized(0, dev); 4209 else 4210 nv_nic_irq(0, dev); 4211 } else { 4212 if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) { 4213 np->nic_poll_irq &= ~NVREG_IRQ_RX_ALL; 4214 nv_nic_irq_rx(0, dev); 4215 } 4216 if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) { 4217 np->nic_poll_irq &= ~NVREG_IRQ_TX_ALL; 4218 nv_nic_irq_tx(0, dev); 4219 } 4220 if (np->nic_poll_irq & NVREG_IRQ_OTHER) { 4221 np->nic_poll_irq &= ~NVREG_IRQ_OTHER; 4222 nv_nic_irq_other(0, dev); 4223 } 4224 } 4225 4226 enable_irq_lockdep_irqrestore(irq, &flags); 4227 } 4228 4229 #ifdef CONFIG_NET_POLL_CONTROLLER 4230 static void nv_poll_controller(struct net_device *dev) 4231 { 4232 struct fe_priv *np = netdev_priv(dev); 4233 4234 nv_do_nic_poll(&np->nic_poll); 4235 } 4236 #endif 4237 4238 static void nv_do_stats_poll(struct timer_list *t) 4239 __acquires(&netdev_priv(dev)->hwstats_lock) 4240 __releases(&netdev_priv(dev)->hwstats_lock) 4241 { 4242 struct fe_priv *np = from_timer(np, t, stats_poll); 4243 struct net_device *dev = np->dev; 4244 4245 /* If lock is currently taken, the stats are being refreshed 4246 * and hence fresh enough */ 4247 if (spin_trylock(&np->hwstats_lock)) { 4248 nv_update_stats(dev); 4249 spin_unlock(&np->hwstats_lock); 4250 } 4251 4252 if (!np->in_shutdown) 4253 mod_timer(&np->stats_poll, 4254 round_jiffies(jiffies + STATS_INTERVAL)); 4255 } 4256 4257 static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 4258 { 4259 struct fe_priv *np = netdev_priv(dev); 4260 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 4261 strlcpy(info->version, FORCEDETH_VERSION, sizeof(info->version)); 4262 strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info)); 4263 } 4264 4265 static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo) 4266 { 4267 struct fe_priv *np = netdev_priv(dev); 4268 wolinfo->supported = WAKE_MAGIC; 4269 4270 spin_lock_irq(&np->lock); 4271 if (np->wolenabled) 4272 wolinfo->wolopts = WAKE_MAGIC; 4273 spin_unlock_irq(&np->lock); 4274 } 4275 4276 static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo) 4277 { 4278 struct fe_priv *np = netdev_priv(dev); 4279 u8 __iomem *base = get_hwbase(dev); 4280 u32 flags = 0; 4281 4282 if (wolinfo->wolopts == 0) { 4283 np->wolenabled = 0; 4284 } else if (wolinfo->wolopts & WAKE_MAGIC) { 4285 np->wolenabled = 1; 4286 flags = NVREG_WAKEUPFLAGS_ENABLE; 4287 } 4288 if (netif_running(dev)) { 4289 spin_lock_irq(&np->lock); 4290 writel(flags, base + NvRegWakeUpFlags); 4291 spin_unlock_irq(&np->lock); 4292 } 4293 device_set_wakeup_enable(&np->pci_dev->dev, np->wolenabled); 4294 return 0; 4295 } 4296 4297 static int nv_get_link_ksettings(struct net_device *dev, 4298 struct ethtool_link_ksettings *cmd) 4299 { 4300 struct fe_priv *np = netdev_priv(dev); 4301 u32 speed, supported, advertising; 4302 int adv; 4303 4304 spin_lock_irq(&np->lock); 4305 cmd->base.port = PORT_MII; 4306 if (!netif_running(dev)) { 4307 /* We do not track link speed / duplex setting if the 4308 * interface is disabled. Force a link check */ 4309 if (nv_update_linkspeed(dev)) { 4310 netif_carrier_on(dev); 4311 } else { 4312 netif_carrier_off(dev); 4313 } 4314 } 4315 4316 if (netif_carrier_ok(dev)) { 4317 switch (np->linkspeed & (NVREG_LINKSPEED_MASK)) { 4318 case NVREG_LINKSPEED_10: 4319 speed = SPEED_10; 4320 break; 4321 case NVREG_LINKSPEED_100: 4322 speed = SPEED_100; 4323 break; 4324 case NVREG_LINKSPEED_1000: 4325 speed = SPEED_1000; 4326 break; 4327 default: 4328 speed = -1; 4329 break; 4330 } 4331 cmd->base.duplex = DUPLEX_HALF; 4332 if (np->duplex) 4333 cmd->base.duplex = DUPLEX_FULL; 4334 } else { 4335 speed = SPEED_UNKNOWN; 4336 cmd->base.duplex = DUPLEX_UNKNOWN; 4337 } 4338 cmd->base.speed = speed; 4339 cmd->base.autoneg = np->autoneg; 4340 4341 advertising = ADVERTISED_MII; 4342 if (np->autoneg) { 4343 advertising |= ADVERTISED_Autoneg; 4344 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ); 4345 if (adv & ADVERTISE_10HALF) 4346 advertising |= ADVERTISED_10baseT_Half; 4347 if (adv & ADVERTISE_10FULL) 4348 advertising |= ADVERTISED_10baseT_Full; 4349 if (adv & ADVERTISE_100HALF) 4350 advertising |= ADVERTISED_100baseT_Half; 4351 if (adv & ADVERTISE_100FULL) 4352 advertising |= ADVERTISED_100baseT_Full; 4353 if (np->gigabit == PHY_GIGABIT) { 4354 adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ); 4355 if (adv & ADVERTISE_1000FULL) 4356 advertising |= ADVERTISED_1000baseT_Full; 4357 } 4358 } 4359 supported = (SUPPORTED_Autoneg | 4360 SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | 4361 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | 4362 SUPPORTED_MII); 4363 if (np->gigabit == PHY_GIGABIT) 4364 supported |= SUPPORTED_1000baseT_Full; 4365 4366 cmd->base.phy_address = np->phyaddr; 4367 4368 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported, 4369 supported); 4370 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising, 4371 advertising); 4372 4373 /* ignore maxtxpkt, maxrxpkt for now */ 4374 spin_unlock_irq(&np->lock); 4375 return 0; 4376 } 4377 4378 static int nv_set_link_ksettings(struct net_device *dev, 4379 const struct ethtool_link_ksettings *cmd) 4380 { 4381 struct fe_priv *np = netdev_priv(dev); 4382 u32 speed = cmd->base.speed; 4383 u32 advertising; 4384 4385 ethtool_convert_link_mode_to_legacy_u32(&advertising, 4386 cmd->link_modes.advertising); 4387 4388 if (cmd->base.port != PORT_MII) 4389 return -EINVAL; 4390 if (cmd->base.phy_address != np->phyaddr) { 4391 /* TODO: support switching between multiple phys. Should be 4392 * trivial, but not enabled due to lack of test hardware. */ 4393 return -EINVAL; 4394 } 4395 if (cmd->base.autoneg == AUTONEG_ENABLE) { 4396 u32 mask; 4397 4398 mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | 4399 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full; 4400 if (np->gigabit == PHY_GIGABIT) 4401 mask |= ADVERTISED_1000baseT_Full; 4402 4403 if ((advertising & mask) == 0) 4404 return -EINVAL; 4405 4406 } else if (cmd->base.autoneg == AUTONEG_DISABLE) { 4407 /* Note: autonegotiation disable, speed 1000 intentionally 4408 * forbidden - no one should need that. */ 4409 4410 if (speed != SPEED_10 && speed != SPEED_100) 4411 return -EINVAL; 4412 if (cmd->base.duplex != DUPLEX_HALF && 4413 cmd->base.duplex != DUPLEX_FULL) 4414 return -EINVAL; 4415 } else { 4416 return -EINVAL; 4417 } 4418 4419 netif_carrier_off(dev); 4420 if (netif_running(dev)) { 4421 unsigned long flags; 4422 4423 nv_disable_irq(dev); 4424 netif_tx_lock_bh(dev); 4425 netif_addr_lock(dev); 4426 /* with plain spinlock lockdep complains */ 4427 spin_lock_irqsave(&np->lock, flags); 4428 /* stop engines */ 4429 /* FIXME: 4430 * this can take some time, and interrupts are disabled 4431 * due to spin_lock_irqsave, but let's hope no daemon 4432 * is going to change the settings very often... 4433 * Worst case: 4434 * NV_RXSTOP_DELAY1MAX + NV_TXSTOP_DELAY1MAX 4435 * + some minor delays, which is up to a second approximately 4436 */ 4437 nv_stop_rxtx(dev); 4438 spin_unlock_irqrestore(&np->lock, flags); 4439 netif_addr_unlock(dev); 4440 netif_tx_unlock_bh(dev); 4441 } 4442 4443 if (cmd->base.autoneg == AUTONEG_ENABLE) { 4444 int adv, bmcr; 4445 4446 np->autoneg = 1; 4447 4448 /* advertise only what has been requested */ 4449 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ); 4450 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM); 4451 if (advertising & ADVERTISED_10baseT_Half) 4452 adv |= ADVERTISE_10HALF; 4453 if (advertising & ADVERTISED_10baseT_Full) 4454 adv |= ADVERTISE_10FULL; 4455 if (advertising & ADVERTISED_100baseT_Half) 4456 adv |= ADVERTISE_100HALF; 4457 if (advertising & ADVERTISED_100baseT_Full) 4458 adv |= ADVERTISE_100FULL; 4459 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisements but disable tx pause */ 4460 adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM; 4461 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) 4462 adv |= ADVERTISE_PAUSE_ASYM; 4463 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv); 4464 4465 if (np->gigabit == PHY_GIGABIT) { 4466 adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ); 4467 adv &= ~ADVERTISE_1000FULL; 4468 if (advertising & ADVERTISED_1000baseT_Full) 4469 adv |= ADVERTISE_1000FULL; 4470 mii_rw(dev, np->phyaddr, MII_CTRL1000, adv); 4471 } 4472 4473 if (netif_running(dev)) 4474 netdev_info(dev, "link down\n"); 4475 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); 4476 if (np->phy_model == PHY_MODEL_MARVELL_E3016) { 4477 bmcr |= BMCR_ANENABLE; 4478 /* reset the phy in order for settings to stick, 4479 * and cause autoneg to start */ 4480 if (phy_reset(dev, bmcr)) { 4481 netdev_info(dev, "phy reset failed\n"); 4482 return -EINVAL; 4483 } 4484 } else { 4485 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART); 4486 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr); 4487 } 4488 } else { 4489 int adv, bmcr; 4490 4491 np->autoneg = 0; 4492 4493 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ); 4494 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM); 4495 if (speed == SPEED_10 && cmd->base.duplex == DUPLEX_HALF) 4496 adv |= ADVERTISE_10HALF; 4497 if (speed == SPEED_10 && cmd->base.duplex == DUPLEX_FULL) 4498 adv |= ADVERTISE_10FULL; 4499 if (speed == SPEED_100 && cmd->base.duplex == DUPLEX_HALF) 4500 adv |= ADVERTISE_100HALF; 4501 if (speed == SPEED_100 && cmd->base.duplex == DUPLEX_FULL) 4502 adv |= ADVERTISE_100FULL; 4503 np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE); 4504 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) {/* for rx we set both advertisements but disable tx pause */ 4505 adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM; 4506 np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE; 4507 } 4508 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) { 4509 adv |= ADVERTISE_PAUSE_ASYM; 4510 np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE; 4511 } 4512 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv); 4513 np->fixed_mode = adv; 4514 4515 if (np->gigabit == PHY_GIGABIT) { 4516 adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ); 4517 adv &= ~ADVERTISE_1000FULL; 4518 mii_rw(dev, np->phyaddr, MII_CTRL1000, adv); 4519 } 4520 4521 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); 4522 bmcr &= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_SPEED1000|BMCR_FULLDPLX); 4523 if (np->fixed_mode & (ADVERTISE_10FULL|ADVERTISE_100FULL)) 4524 bmcr |= BMCR_FULLDPLX; 4525 if (np->fixed_mode & (ADVERTISE_100HALF|ADVERTISE_100FULL)) 4526 bmcr |= BMCR_SPEED100; 4527 if (np->phy_oui == PHY_OUI_MARVELL) { 4528 /* reset the phy in order for forced mode settings to stick */ 4529 if (phy_reset(dev, bmcr)) { 4530 netdev_info(dev, "phy reset failed\n"); 4531 return -EINVAL; 4532 } 4533 } else { 4534 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr); 4535 if (netif_running(dev)) { 4536 /* Wait a bit and then reconfigure the nic. */ 4537 udelay(10); 4538 nv_linkchange(dev); 4539 } 4540 } 4541 } 4542 4543 if (netif_running(dev)) { 4544 nv_start_rxtx(dev); 4545 nv_enable_irq(dev); 4546 } 4547 4548 return 0; 4549 } 4550 4551 #define FORCEDETH_REGS_VER 1 4552 4553 static int nv_get_regs_len(struct net_device *dev) 4554 { 4555 struct fe_priv *np = netdev_priv(dev); 4556 return np->register_size; 4557 } 4558 4559 static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf) 4560 { 4561 struct fe_priv *np = netdev_priv(dev); 4562 u8 __iomem *base = get_hwbase(dev); 4563 u32 *rbuf = buf; 4564 int i; 4565 4566 regs->version = FORCEDETH_REGS_VER; 4567 spin_lock_irq(&np->lock); 4568 for (i = 0; i < np->register_size/sizeof(u32); i++) 4569 rbuf[i] = readl(base + i*sizeof(u32)); 4570 spin_unlock_irq(&np->lock); 4571 } 4572 4573 static int nv_nway_reset(struct net_device *dev) 4574 { 4575 struct fe_priv *np = netdev_priv(dev); 4576 int ret; 4577 4578 if (np->autoneg) { 4579 int bmcr; 4580 4581 netif_carrier_off(dev); 4582 if (netif_running(dev)) { 4583 nv_disable_irq(dev); 4584 netif_tx_lock_bh(dev); 4585 netif_addr_lock(dev); 4586 spin_lock(&np->lock); 4587 /* stop engines */ 4588 nv_stop_rxtx(dev); 4589 spin_unlock(&np->lock); 4590 netif_addr_unlock(dev); 4591 netif_tx_unlock_bh(dev); 4592 netdev_info(dev, "link down\n"); 4593 } 4594 4595 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); 4596 if (np->phy_model == PHY_MODEL_MARVELL_E3016) { 4597 bmcr |= BMCR_ANENABLE; 4598 /* reset the phy in order for settings to stick*/ 4599 if (phy_reset(dev, bmcr)) { 4600 netdev_info(dev, "phy reset failed\n"); 4601 return -EINVAL; 4602 } 4603 } else { 4604 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART); 4605 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr); 4606 } 4607 4608 if (netif_running(dev)) { 4609 nv_start_rxtx(dev); 4610 nv_enable_irq(dev); 4611 } 4612 ret = 0; 4613 } else { 4614 ret = -EINVAL; 4615 } 4616 4617 return ret; 4618 } 4619 4620 static void nv_get_ringparam(struct net_device *dev, struct ethtool_ringparam* ring) 4621 { 4622 struct fe_priv *np = netdev_priv(dev); 4623 4624 ring->rx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3; 4625 ring->tx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3; 4626 4627 ring->rx_pending = np->rx_ring_size; 4628 ring->tx_pending = np->tx_ring_size; 4629 } 4630 4631 static int nv_set_ringparam(struct net_device *dev, struct ethtool_ringparam* ring) 4632 { 4633 struct fe_priv *np = netdev_priv(dev); 4634 u8 __iomem *base = get_hwbase(dev); 4635 u8 *rxtx_ring, *rx_skbuff, *tx_skbuff; 4636 dma_addr_t ring_addr; 4637 4638 if (ring->rx_pending < RX_RING_MIN || 4639 ring->tx_pending < TX_RING_MIN || 4640 ring->rx_mini_pending != 0 || 4641 ring->rx_jumbo_pending != 0 || 4642 (np->desc_ver == DESC_VER_1 && 4643 (ring->rx_pending > RING_MAX_DESC_VER_1 || 4644 ring->tx_pending > RING_MAX_DESC_VER_1)) || 4645 (np->desc_ver != DESC_VER_1 && 4646 (ring->rx_pending > RING_MAX_DESC_VER_2_3 || 4647 ring->tx_pending > RING_MAX_DESC_VER_2_3))) { 4648 return -EINVAL; 4649 } 4650 4651 /* allocate new rings */ 4652 if (!nv_optimized(np)) { 4653 rxtx_ring = dma_alloc_coherent(&np->pci_dev->dev, 4654 sizeof(struct ring_desc) * 4655 (ring->rx_pending + 4656 ring->tx_pending), 4657 &ring_addr, GFP_ATOMIC); 4658 } else { 4659 rxtx_ring = dma_alloc_coherent(&np->pci_dev->dev, 4660 sizeof(struct ring_desc_ex) * 4661 (ring->rx_pending + 4662 ring->tx_pending), 4663 &ring_addr, GFP_ATOMIC); 4664 } 4665 rx_skbuff = kmalloc_array(ring->rx_pending, sizeof(struct nv_skb_map), 4666 GFP_KERNEL); 4667 tx_skbuff = kmalloc_array(ring->tx_pending, sizeof(struct nv_skb_map), 4668 GFP_KERNEL); 4669 if (!rxtx_ring || !rx_skbuff || !tx_skbuff) { 4670 /* fall back to old rings */ 4671 if (!nv_optimized(np)) { 4672 if (rxtx_ring) 4673 dma_free_coherent(&np->pci_dev->dev, 4674 sizeof(struct ring_desc) * 4675 (ring->rx_pending + 4676 ring->tx_pending), 4677 rxtx_ring, ring_addr); 4678 } else { 4679 if (rxtx_ring) 4680 dma_free_coherent(&np->pci_dev->dev, 4681 sizeof(struct ring_desc_ex) * 4682 (ring->rx_pending + 4683 ring->tx_pending), 4684 rxtx_ring, ring_addr); 4685 } 4686 4687 kfree(rx_skbuff); 4688 kfree(tx_skbuff); 4689 goto exit; 4690 } 4691 4692 if (netif_running(dev)) { 4693 nv_disable_irq(dev); 4694 nv_napi_disable(dev); 4695 netif_tx_lock_bh(dev); 4696 netif_addr_lock(dev); 4697 spin_lock(&np->lock); 4698 /* stop engines */ 4699 nv_stop_rxtx(dev); 4700 nv_txrx_reset(dev); 4701 /* drain queues */ 4702 nv_drain_rxtx(dev); 4703 /* delete queues */ 4704 free_rings(dev); 4705 } 4706 4707 /* set new values */ 4708 np->rx_ring_size = ring->rx_pending; 4709 np->tx_ring_size = ring->tx_pending; 4710 4711 if (!nv_optimized(np)) { 4712 np->rx_ring.orig = (struct ring_desc *)rxtx_ring; 4713 np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size]; 4714 } else { 4715 np->rx_ring.ex = (struct ring_desc_ex *)rxtx_ring; 4716 np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size]; 4717 } 4718 np->rx_skb = (struct nv_skb_map *)rx_skbuff; 4719 np->tx_skb = (struct nv_skb_map *)tx_skbuff; 4720 np->ring_addr = ring_addr; 4721 4722 memset(np->rx_skb, 0, sizeof(struct nv_skb_map) * np->rx_ring_size); 4723 memset(np->tx_skb, 0, sizeof(struct nv_skb_map) * np->tx_ring_size); 4724 4725 if (netif_running(dev)) { 4726 /* reinit driver view of the queues */ 4727 set_bufsize(dev); 4728 if (nv_init_ring(dev)) { 4729 if (!np->in_shutdown) 4730 mod_timer(&np->oom_kick, jiffies + OOM_REFILL); 4731 } 4732 4733 /* reinit nic view of the queues */ 4734 writel(np->rx_buf_sz, base + NvRegOffloadConfig); 4735 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING); 4736 writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT), 4737 base + NvRegRingSizes); 4738 pci_push(base); 4739 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl); 4740 pci_push(base); 4741 4742 /* restart engines */ 4743 nv_start_rxtx(dev); 4744 spin_unlock(&np->lock); 4745 netif_addr_unlock(dev); 4746 netif_tx_unlock_bh(dev); 4747 nv_napi_enable(dev); 4748 nv_enable_irq(dev); 4749 } 4750 return 0; 4751 exit: 4752 return -ENOMEM; 4753 } 4754 4755 static void nv_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause) 4756 { 4757 struct fe_priv *np = netdev_priv(dev); 4758 4759 pause->autoneg = (np->pause_flags & NV_PAUSEFRAME_AUTONEG) != 0; 4760 pause->rx_pause = (np->pause_flags & NV_PAUSEFRAME_RX_ENABLE) != 0; 4761 pause->tx_pause = (np->pause_flags & NV_PAUSEFRAME_TX_ENABLE) != 0; 4762 } 4763 4764 static int nv_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause) 4765 { 4766 struct fe_priv *np = netdev_priv(dev); 4767 int adv, bmcr; 4768 4769 if ((!np->autoneg && np->duplex == 0) || 4770 (np->autoneg && !pause->autoneg && np->duplex == 0)) { 4771 netdev_info(dev, "can not set pause settings when forced link is in half duplex\n"); 4772 return -EINVAL; 4773 } 4774 if (pause->tx_pause && !(np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)) { 4775 netdev_info(dev, "hardware does not support tx pause frames\n"); 4776 return -EINVAL; 4777 } 4778 4779 netif_carrier_off(dev); 4780 if (netif_running(dev)) { 4781 nv_disable_irq(dev); 4782 netif_tx_lock_bh(dev); 4783 netif_addr_lock(dev); 4784 spin_lock(&np->lock); 4785 /* stop engines */ 4786 nv_stop_rxtx(dev); 4787 spin_unlock(&np->lock); 4788 netif_addr_unlock(dev); 4789 netif_tx_unlock_bh(dev); 4790 } 4791 4792 np->pause_flags &= ~(NV_PAUSEFRAME_RX_REQ|NV_PAUSEFRAME_TX_REQ); 4793 if (pause->rx_pause) 4794 np->pause_flags |= NV_PAUSEFRAME_RX_REQ; 4795 if (pause->tx_pause) 4796 np->pause_flags |= NV_PAUSEFRAME_TX_REQ; 4797 4798 if (np->autoneg && pause->autoneg) { 4799 np->pause_flags |= NV_PAUSEFRAME_AUTONEG; 4800 4801 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ); 4802 adv &= ~(ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM); 4803 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisements but disable tx pause */ 4804 adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM; 4805 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) 4806 adv |= ADVERTISE_PAUSE_ASYM; 4807 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv); 4808 4809 if (netif_running(dev)) 4810 netdev_info(dev, "link down\n"); 4811 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); 4812 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART); 4813 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr); 4814 } else { 4815 np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE); 4816 if (pause->rx_pause) 4817 np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE; 4818 if (pause->tx_pause) 4819 np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE; 4820 4821 if (!netif_running(dev)) 4822 nv_update_linkspeed(dev); 4823 else 4824 nv_update_pause(dev, np->pause_flags); 4825 } 4826 4827 if (netif_running(dev)) { 4828 nv_start_rxtx(dev); 4829 nv_enable_irq(dev); 4830 } 4831 return 0; 4832 } 4833 4834 static int nv_set_loopback(struct net_device *dev, netdev_features_t features) 4835 { 4836 struct fe_priv *np = netdev_priv(dev); 4837 unsigned long flags; 4838 u32 miicontrol; 4839 int err, retval = 0; 4840 4841 spin_lock_irqsave(&np->lock, flags); 4842 miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); 4843 if (features & NETIF_F_LOOPBACK) { 4844 if (miicontrol & BMCR_LOOPBACK) { 4845 spin_unlock_irqrestore(&np->lock, flags); 4846 netdev_info(dev, "Loopback already enabled\n"); 4847 return 0; 4848 } 4849 nv_disable_irq(dev); 4850 /* Turn on loopback mode */ 4851 miicontrol |= BMCR_LOOPBACK | BMCR_FULLDPLX | BMCR_SPEED1000; 4852 err = mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol); 4853 if (err) { 4854 retval = PHY_ERROR; 4855 spin_unlock_irqrestore(&np->lock, flags); 4856 phy_init(dev); 4857 } else { 4858 if (netif_running(dev)) { 4859 /* Force 1000 Mbps full-duplex */ 4860 nv_force_linkspeed(dev, NVREG_LINKSPEED_1000, 4861 1); 4862 /* Force link up */ 4863 netif_carrier_on(dev); 4864 } 4865 spin_unlock_irqrestore(&np->lock, flags); 4866 netdev_info(dev, 4867 "Internal PHY loopback mode enabled.\n"); 4868 } 4869 } else { 4870 if (!(miicontrol & BMCR_LOOPBACK)) { 4871 spin_unlock_irqrestore(&np->lock, flags); 4872 netdev_info(dev, "Loopback already disabled\n"); 4873 return 0; 4874 } 4875 nv_disable_irq(dev); 4876 /* Turn off loopback */ 4877 spin_unlock_irqrestore(&np->lock, flags); 4878 netdev_info(dev, "Internal PHY loopback mode disabled.\n"); 4879 phy_init(dev); 4880 } 4881 msleep(500); 4882 spin_lock_irqsave(&np->lock, flags); 4883 nv_enable_irq(dev); 4884 spin_unlock_irqrestore(&np->lock, flags); 4885 4886 return retval; 4887 } 4888 4889 static netdev_features_t nv_fix_features(struct net_device *dev, 4890 netdev_features_t features) 4891 { 4892 /* vlan is dependent on rx checksum offload */ 4893 if (features & (NETIF_F_HW_VLAN_CTAG_TX|NETIF_F_HW_VLAN_CTAG_RX)) 4894 features |= NETIF_F_RXCSUM; 4895 4896 return features; 4897 } 4898 4899 static void nv_vlan_mode(struct net_device *dev, netdev_features_t features) 4900 { 4901 struct fe_priv *np = get_nvpriv(dev); 4902 4903 spin_lock_irq(&np->lock); 4904 4905 if (features & NETIF_F_HW_VLAN_CTAG_RX) 4906 np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP; 4907 else 4908 np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP; 4909 4910 if (features & NETIF_F_HW_VLAN_CTAG_TX) 4911 np->txrxctl_bits |= NVREG_TXRXCTL_VLANINS; 4912 else 4913 np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS; 4914 4915 writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl); 4916 4917 spin_unlock_irq(&np->lock); 4918 } 4919 4920 static int nv_set_features(struct net_device *dev, netdev_features_t features) 4921 { 4922 struct fe_priv *np = netdev_priv(dev); 4923 u8 __iomem *base = get_hwbase(dev); 4924 netdev_features_t changed = dev->features ^ features; 4925 int retval; 4926 4927 if ((changed & NETIF_F_LOOPBACK) && netif_running(dev)) { 4928 retval = nv_set_loopback(dev, features); 4929 if (retval != 0) 4930 return retval; 4931 } 4932 4933 if (changed & NETIF_F_RXCSUM) { 4934 spin_lock_irq(&np->lock); 4935 4936 if (features & NETIF_F_RXCSUM) 4937 np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK; 4938 else 4939 np->txrxctl_bits &= ~NVREG_TXRXCTL_RXCHECK; 4940 4941 if (netif_running(dev)) 4942 writel(np->txrxctl_bits, base + NvRegTxRxControl); 4943 4944 spin_unlock_irq(&np->lock); 4945 } 4946 4947 if (changed & (NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX)) 4948 nv_vlan_mode(dev, features); 4949 4950 return 0; 4951 } 4952 4953 static int nv_get_sset_count(struct net_device *dev, int sset) 4954 { 4955 struct fe_priv *np = netdev_priv(dev); 4956 4957 switch (sset) { 4958 case ETH_SS_TEST: 4959 if (np->driver_data & DEV_HAS_TEST_EXTENDED) 4960 return NV_TEST_COUNT_EXTENDED; 4961 else 4962 return NV_TEST_COUNT_BASE; 4963 case ETH_SS_STATS: 4964 if (np->driver_data & DEV_HAS_STATISTICS_V3) 4965 return NV_DEV_STATISTICS_V3_COUNT; 4966 else if (np->driver_data & DEV_HAS_STATISTICS_V2) 4967 return NV_DEV_STATISTICS_V2_COUNT; 4968 else if (np->driver_data & DEV_HAS_STATISTICS_V1) 4969 return NV_DEV_STATISTICS_V1_COUNT; 4970 else 4971 return 0; 4972 default: 4973 return -EOPNOTSUPP; 4974 } 4975 } 4976 4977 static void nv_get_ethtool_stats(struct net_device *dev, 4978 struct ethtool_stats *estats, u64 *buffer) 4979 __acquires(&netdev_priv(dev)->hwstats_lock) 4980 __releases(&netdev_priv(dev)->hwstats_lock) 4981 { 4982 struct fe_priv *np = netdev_priv(dev); 4983 4984 spin_lock_bh(&np->hwstats_lock); 4985 nv_update_stats(dev); 4986 memcpy(buffer, &np->estats, 4987 nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(u64)); 4988 spin_unlock_bh(&np->hwstats_lock); 4989 } 4990 4991 static int nv_link_test(struct net_device *dev) 4992 { 4993 struct fe_priv *np = netdev_priv(dev); 4994 int mii_status; 4995 4996 mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ); 4997 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ); 4998 4999 /* check phy link status */ 5000 if (!(mii_status & BMSR_LSTATUS)) 5001 return 0; 5002 else 5003 return 1; 5004 } 5005 5006 static int nv_register_test(struct net_device *dev) 5007 { 5008 u8 __iomem *base = get_hwbase(dev); 5009 int i = 0; 5010 u32 orig_read, new_read; 5011 5012 do { 5013 orig_read = readl(base + nv_registers_test[i].reg); 5014 5015 /* xor with mask to toggle bits */ 5016 orig_read ^= nv_registers_test[i].mask; 5017 5018 writel(orig_read, base + nv_registers_test[i].reg); 5019 5020 new_read = readl(base + nv_registers_test[i].reg); 5021 5022 if ((new_read & nv_registers_test[i].mask) != (orig_read & nv_registers_test[i].mask)) 5023 return 0; 5024 5025 /* restore original value */ 5026 orig_read ^= nv_registers_test[i].mask; 5027 writel(orig_read, base + nv_registers_test[i].reg); 5028 5029 } while (nv_registers_test[++i].reg != 0); 5030 5031 return 1; 5032 } 5033 5034 static int nv_interrupt_test(struct net_device *dev) 5035 { 5036 struct fe_priv *np = netdev_priv(dev); 5037 u8 __iomem *base = get_hwbase(dev); 5038 int ret = 1; 5039 int testcnt; 5040 u32 save_msi_flags, save_poll_interval = 0; 5041 5042 if (netif_running(dev)) { 5043 /* free current irq */ 5044 nv_free_irq(dev); 5045 save_poll_interval = readl(base+NvRegPollingInterval); 5046 } 5047 5048 /* flag to test interrupt handler */ 5049 np->intr_test = 0; 5050 5051 /* setup test irq */ 5052 save_msi_flags = np->msi_flags; 5053 np->msi_flags &= ~NV_MSI_X_VECTORS_MASK; 5054 np->msi_flags |= 0x001; /* setup 1 vector */ 5055 if (nv_request_irq(dev, 1)) 5056 return 0; 5057 5058 /* setup timer interrupt */ 5059 writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval); 5060 writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6); 5061 5062 nv_enable_hw_interrupts(dev, NVREG_IRQ_TIMER); 5063 5064 /* wait for at least one interrupt */ 5065 msleep(100); 5066 5067 spin_lock_irq(&np->lock); 5068 5069 /* flag should be set within ISR */ 5070 testcnt = np->intr_test; 5071 if (!testcnt) 5072 ret = 2; 5073 5074 nv_disable_hw_interrupts(dev, NVREG_IRQ_TIMER); 5075 if (!(np->msi_flags & NV_MSI_X_ENABLED)) 5076 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus); 5077 else 5078 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus); 5079 5080 spin_unlock_irq(&np->lock); 5081 5082 nv_free_irq(dev); 5083 5084 np->msi_flags = save_msi_flags; 5085 5086 if (netif_running(dev)) { 5087 writel(save_poll_interval, base + NvRegPollingInterval); 5088 writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6); 5089 /* restore original irq */ 5090 if (nv_request_irq(dev, 0)) 5091 return 0; 5092 } 5093 5094 return ret; 5095 } 5096 5097 static int nv_loopback_test(struct net_device *dev) 5098 { 5099 struct fe_priv *np = netdev_priv(dev); 5100 u8 __iomem *base = get_hwbase(dev); 5101 struct sk_buff *tx_skb, *rx_skb; 5102 dma_addr_t test_dma_addr; 5103 u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET); 5104 u32 flags; 5105 int len, i, pkt_len; 5106 u8 *pkt_data; 5107 u32 filter_flags = 0; 5108 u32 misc1_flags = 0; 5109 int ret = 1; 5110 5111 if (netif_running(dev)) { 5112 nv_disable_irq(dev); 5113 filter_flags = readl(base + NvRegPacketFilterFlags); 5114 misc1_flags = readl(base + NvRegMisc1); 5115 } else { 5116 nv_txrx_reset(dev); 5117 } 5118 5119 /* reinit driver view of the rx queue */ 5120 set_bufsize(dev); 5121 nv_init_ring(dev); 5122 5123 /* setup hardware for loopback */ 5124 writel(NVREG_MISC1_FORCE, base + NvRegMisc1); 5125 writel(NVREG_PFF_ALWAYS | NVREG_PFF_LOOPBACK, base + NvRegPacketFilterFlags); 5126 5127 /* reinit nic view of the rx queue */ 5128 writel(np->rx_buf_sz, base + NvRegOffloadConfig); 5129 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING); 5130 writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT), 5131 base + NvRegRingSizes); 5132 pci_push(base); 5133 5134 /* restart rx engine */ 5135 nv_start_rxtx(dev); 5136 5137 /* setup packet for tx */ 5138 pkt_len = ETH_DATA_LEN; 5139 tx_skb = netdev_alloc_skb(dev, pkt_len); 5140 if (!tx_skb) { 5141 ret = 0; 5142 goto out; 5143 } 5144 test_dma_addr = dma_map_single(&np->pci_dev->dev, tx_skb->data, 5145 skb_tailroom(tx_skb), 5146 DMA_FROM_DEVICE); 5147 if (unlikely(dma_mapping_error(&np->pci_dev->dev, 5148 test_dma_addr))) { 5149 dev_kfree_skb_any(tx_skb); 5150 goto out; 5151 } 5152 pkt_data = skb_put(tx_skb, pkt_len); 5153 for (i = 0; i < pkt_len; i++) 5154 pkt_data[i] = (u8)(i & 0xff); 5155 5156 if (!nv_optimized(np)) { 5157 np->tx_ring.orig[0].buf = cpu_to_le32(test_dma_addr); 5158 np->tx_ring.orig[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra); 5159 } else { 5160 np->tx_ring.ex[0].bufhigh = cpu_to_le32(dma_high(test_dma_addr)); 5161 np->tx_ring.ex[0].buflow = cpu_to_le32(dma_low(test_dma_addr)); 5162 np->tx_ring.ex[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra); 5163 } 5164 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl); 5165 pci_push(get_hwbase(dev)); 5166 5167 msleep(500); 5168 5169 /* check for rx of the packet */ 5170 if (!nv_optimized(np)) { 5171 flags = le32_to_cpu(np->rx_ring.orig[0].flaglen); 5172 len = nv_descr_getlength(&np->rx_ring.orig[0], np->desc_ver); 5173 5174 } else { 5175 flags = le32_to_cpu(np->rx_ring.ex[0].flaglen); 5176 len = nv_descr_getlength_ex(&np->rx_ring.ex[0], np->desc_ver); 5177 } 5178 5179 if (flags & NV_RX_AVAIL) { 5180 ret = 0; 5181 } else if (np->desc_ver == DESC_VER_1) { 5182 if (flags & NV_RX_ERROR) 5183 ret = 0; 5184 } else { 5185 if (flags & NV_RX2_ERROR) 5186 ret = 0; 5187 } 5188 5189 if (ret) { 5190 if (len != pkt_len) { 5191 ret = 0; 5192 } else { 5193 rx_skb = np->rx_skb[0].skb; 5194 for (i = 0; i < pkt_len; i++) { 5195 if (rx_skb->data[i] != (u8)(i & 0xff)) { 5196 ret = 0; 5197 break; 5198 } 5199 } 5200 } 5201 } 5202 5203 dma_unmap_single(&np->pci_dev->dev, test_dma_addr, 5204 (skb_end_pointer(tx_skb) - tx_skb->data), 5205 DMA_TO_DEVICE); 5206 dev_kfree_skb_any(tx_skb); 5207 out: 5208 /* stop engines */ 5209 nv_stop_rxtx(dev); 5210 nv_txrx_reset(dev); 5211 /* drain rx queue */ 5212 nv_drain_rxtx(dev); 5213 5214 if (netif_running(dev)) { 5215 writel(misc1_flags, base + NvRegMisc1); 5216 writel(filter_flags, base + NvRegPacketFilterFlags); 5217 nv_enable_irq(dev); 5218 } 5219 5220 return ret; 5221 } 5222 5223 static void nv_self_test(struct net_device *dev, struct ethtool_test *test, u64 *buffer) 5224 { 5225 struct fe_priv *np = netdev_priv(dev); 5226 u8 __iomem *base = get_hwbase(dev); 5227 int result, count; 5228 5229 count = nv_get_sset_count(dev, ETH_SS_TEST); 5230 memset(buffer, 0, count * sizeof(u64)); 5231 5232 if (!nv_link_test(dev)) { 5233 test->flags |= ETH_TEST_FL_FAILED; 5234 buffer[0] = 1; 5235 } 5236 5237 if (test->flags & ETH_TEST_FL_OFFLINE) { 5238 if (netif_running(dev)) { 5239 netif_stop_queue(dev); 5240 nv_napi_disable(dev); 5241 netif_tx_lock_bh(dev); 5242 netif_addr_lock(dev); 5243 spin_lock_irq(&np->lock); 5244 nv_disable_hw_interrupts(dev, np->irqmask); 5245 if (!(np->msi_flags & NV_MSI_X_ENABLED)) 5246 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus); 5247 else 5248 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus); 5249 /* stop engines */ 5250 nv_stop_rxtx(dev); 5251 nv_txrx_reset(dev); 5252 /* drain rx queue */ 5253 nv_drain_rxtx(dev); 5254 spin_unlock_irq(&np->lock); 5255 netif_addr_unlock(dev); 5256 netif_tx_unlock_bh(dev); 5257 } 5258 5259 if (!nv_register_test(dev)) { 5260 test->flags |= ETH_TEST_FL_FAILED; 5261 buffer[1] = 1; 5262 } 5263 5264 result = nv_interrupt_test(dev); 5265 if (result != 1) { 5266 test->flags |= ETH_TEST_FL_FAILED; 5267 buffer[2] = 1; 5268 } 5269 if (result == 0) { 5270 /* bail out */ 5271 return; 5272 } 5273 5274 if (count > NV_TEST_COUNT_BASE && !nv_loopback_test(dev)) { 5275 test->flags |= ETH_TEST_FL_FAILED; 5276 buffer[3] = 1; 5277 } 5278 5279 if (netif_running(dev)) { 5280 /* reinit driver view of the rx queue */ 5281 set_bufsize(dev); 5282 if (nv_init_ring(dev)) { 5283 if (!np->in_shutdown) 5284 mod_timer(&np->oom_kick, jiffies + OOM_REFILL); 5285 } 5286 /* reinit nic view of the rx queue */ 5287 writel(np->rx_buf_sz, base + NvRegOffloadConfig); 5288 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING); 5289 writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT), 5290 base + NvRegRingSizes); 5291 pci_push(base); 5292 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl); 5293 pci_push(base); 5294 /* restart rx engine */ 5295 nv_start_rxtx(dev); 5296 netif_start_queue(dev); 5297 nv_napi_enable(dev); 5298 nv_enable_hw_interrupts(dev, np->irqmask); 5299 } 5300 } 5301 } 5302 5303 static void nv_get_strings(struct net_device *dev, u32 stringset, u8 *buffer) 5304 { 5305 switch (stringset) { 5306 case ETH_SS_STATS: 5307 memcpy(buffer, &nv_estats_str, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(struct nv_ethtool_str)); 5308 break; 5309 case ETH_SS_TEST: 5310 memcpy(buffer, &nv_etests_str, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(struct nv_ethtool_str)); 5311 break; 5312 } 5313 } 5314 5315 static const struct ethtool_ops ops = { 5316 .get_drvinfo = nv_get_drvinfo, 5317 .get_link = ethtool_op_get_link, 5318 .get_wol = nv_get_wol, 5319 .set_wol = nv_set_wol, 5320 .get_regs_len = nv_get_regs_len, 5321 .get_regs = nv_get_regs, 5322 .nway_reset = nv_nway_reset, 5323 .get_ringparam = nv_get_ringparam, 5324 .set_ringparam = nv_set_ringparam, 5325 .get_pauseparam = nv_get_pauseparam, 5326 .set_pauseparam = nv_set_pauseparam, 5327 .get_strings = nv_get_strings, 5328 .get_ethtool_stats = nv_get_ethtool_stats, 5329 .get_sset_count = nv_get_sset_count, 5330 .self_test = nv_self_test, 5331 .get_ts_info = ethtool_op_get_ts_info, 5332 .get_link_ksettings = nv_get_link_ksettings, 5333 .set_link_ksettings = nv_set_link_ksettings, 5334 }; 5335 5336 /* The mgmt unit and driver use a semaphore to access the phy during init */ 5337 static int nv_mgmt_acquire_sema(struct net_device *dev) 5338 { 5339 struct fe_priv *np = netdev_priv(dev); 5340 u8 __iomem *base = get_hwbase(dev); 5341 int i; 5342 u32 tx_ctrl, mgmt_sema; 5343 5344 for (i = 0; i < 10; i++) { 5345 mgmt_sema = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_SEMA_MASK; 5346 if (mgmt_sema == NVREG_XMITCTL_MGMT_SEMA_FREE) 5347 break; 5348 msleep(500); 5349 } 5350 5351 if (mgmt_sema != NVREG_XMITCTL_MGMT_SEMA_FREE) 5352 return 0; 5353 5354 for (i = 0; i < 2; i++) { 5355 tx_ctrl = readl(base + NvRegTransmitterControl); 5356 tx_ctrl |= NVREG_XMITCTL_HOST_SEMA_ACQ; 5357 writel(tx_ctrl, base + NvRegTransmitterControl); 5358 5359 /* verify that semaphore was acquired */ 5360 tx_ctrl = readl(base + NvRegTransmitterControl); 5361 if (((tx_ctrl & NVREG_XMITCTL_HOST_SEMA_MASK) == NVREG_XMITCTL_HOST_SEMA_ACQ) && 5362 ((tx_ctrl & NVREG_XMITCTL_MGMT_SEMA_MASK) == NVREG_XMITCTL_MGMT_SEMA_FREE)) { 5363 np->mgmt_sema = 1; 5364 return 1; 5365 } else 5366 udelay(50); 5367 } 5368 5369 return 0; 5370 } 5371 5372 static void nv_mgmt_release_sema(struct net_device *dev) 5373 { 5374 struct fe_priv *np = netdev_priv(dev); 5375 u8 __iomem *base = get_hwbase(dev); 5376 u32 tx_ctrl; 5377 5378 if (np->driver_data & DEV_HAS_MGMT_UNIT) { 5379 if (np->mgmt_sema) { 5380 tx_ctrl = readl(base + NvRegTransmitterControl); 5381 tx_ctrl &= ~NVREG_XMITCTL_HOST_SEMA_ACQ; 5382 writel(tx_ctrl, base + NvRegTransmitterControl); 5383 } 5384 } 5385 } 5386 5387 5388 static int nv_mgmt_get_version(struct net_device *dev) 5389 { 5390 struct fe_priv *np = netdev_priv(dev); 5391 u8 __iomem *base = get_hwbase(dev); 5392 u32 data_ready = readl(base + NvRegTransmitterControl); 5393 u32 data_ready2 = 0; 5394 unsigned long start; 5395 int ready = 0; 5396 5397 writel(NVREG_MGMTUNITGETVERSION, base + NvRegMgmtUnitGetVersion); 5398 writel(data_ready ^ NVREG_XMITCTL_DATA_START, base + NvRegTransmitterControl); 5399 start = jiffies; 5400 while (time_before(jiffies, start + 5*HZ)) { 5401 data_ready2 = readl(base + NvRegTransmitterControl); 5402 if ((data_ready & NVREG_XMITCTL_DATA_READY) != (data_ready2 & NVREG_XMITCTL_DATA_READY)) { 5403 ready = 1; 5404 break; 5405 } 5406 schedule_timeout_uninterruptible(1); 5407 } 5408 5409 if (!ready || (data_ready2 & NVREG_XMITCTL_DATA_ERROR)) 5410 return 0; 5411 5412 np->mgmt_version = readl(base + NvRegMgmtUnitVersion) & NVREG_MGMTUNITVERSION; 5413 5414 return 1; 5415 } 5416 5417 static int nv_open(struct net_device *dev) 5418 { 5419 struct fe_priv *np = netdev_priv(dev); 5420 u8 __iomem *base = get_hwbase(dev); 5421 int ret = 1; 5422 int oom, i; 5423 u32 low; 5424 5425 /* power up phy */ 5426 mii_rw(dev, np->phyaddr, MII_BMCR, 5427 mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ) & ~BMCR_PDOWN); 5428 5429 nv_txrx_gate(dev, false); 5430 /* erase previous misconfiguration */ 5431 if (np->driver_data & DEV_HAS_POWER_CNTRL) 5432 nv_mac_reset(dev); 5433 writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA); 5434 writel(0, base + NvRegMulticastAddrB); 5435 writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA); 5436 writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB); 5437 writel(0, base + NvRegPacketFilterFlags); 5438 5439 writel(0, base + NvRegTransmitterControl); 5440 writel(0, base + NvRegReceiverControl); 5441 5442 writel(0, base + NvRegAdapterControl); 5443 5444 if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE) 5445 writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame); 5446 5447 /* initialize descriptor rings */ 5448 set_bufsize(dev); 5449 oom = nv_init_ring(dev); 5450 5451 writel(0, base + NvRegLinkSpeed); 5452 writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll); 5453 nv_txrx_reset(dev); 5454 writel(0, base + NvRegUnknownSetupReg6); 5455 5456 np->in_shutdown = 0; 5457 5458 /* give hw rings */ 5459 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING); 5460 writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT), 5461 base + NvRegRingSizes); 5462 5463 writel(np->linkspeed, base + NvRegLinkSpeed); 5464 if (np->desc_ver == DESC_VER_1) 5465 writel(NVREG_TX_WM_DESC1_DEFAULT, base + NvRegTxWatermark); 5466 else 5467 writel(NVREG_TX_WM_DESC2_3_DEFAULT, base + NvRegTxWatermark); 5468 writel(np->txrxctl_bits, base + NvRegTxRxControl); 5469 writel(np->vlanctl_bits, base + NvRegVlanControl); 5470 pci_push(base); 5471 writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl); 5472 if (reg_delay(dev, NvRegUnknownSetupReg5, 5473 NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31, 5474 NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX)) 5475 netdev_info(dev, 5476 "%s: SetupReg5, Bit 31 remained off\n", __func__); 5477 5478 writel(0, base + NvRegMIIMask); 5479 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus); 5480 writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus); 5481 5482 writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1); 5483 writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus); 5484 writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags); 5485 writel(np->rx_buf_sz, base + NvRegOffloadConfig); 5486 5487 writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus); 5488 5489 get_random_bytes(&low, sizeof(low)); 5490 low &= NVREG_SLOTTIME_MASK; 5491 if (np->desc_ver == DESC_VER_1) { 5492 writel(low|NVREG_SLOTTIME_DEFAULT, base + NvRegSlotTime); 5493 } else { 5494 if (!(np->driver_data & DEV_HAS_GEAR_MODE)) { 5495 /* setup legacy backoff */ 5496 writel(NVREG_SLOTTIME_LEGBF_ENABLED|NVREG_SLOTTIME_10_100_FULL|low, base + NvRegSlotTime); 5497 } else { 5498 writel(NVREG_SLOTTIME_10_100_FULL, base + NvRegSlotTime); 5499 nv_gear_backoff_reseed(dev); 5500 } 5501 } 5502 writel(NVREG_TX_DEFERRAL_DEFAULT, base + NvRegTxDeferral); 5503 writel(NVREG_RX_DEFERRAL_DEFAULT, base + NvRegRxDeferral); 5504 if (poll_interval == -1) { 5505 if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT) 5506 writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval); 5507 else 5508 writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval); 5509 } else 5510 writel(poll_interval & 0xFFFF, base + NvRegPollingInterval); 5511 writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6); 5512 writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING, 5513 base + NvRegAdapterControl); 5514 writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed); 5515 writel(NVREG_MII_LINKCHANGE, base + NvRegMIIMask); 5516 if (np->wolenabled) 5517 writel(NVREG_WAKEUPFLAGS_ENABLE , base + NvRegWakeUpFlags); 5518 5519 i = readl(base + NvRegPowerState); 5520 if ((i & NVREG_POWERSTATE_POWEREDUP) == 0) 5521 writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState); 5522 5523 pci_push(base); 5524 udelay(10); 5525 writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState); 5526 5527 nv_disable_hw_interrupts(dev, np->irqmask); 5528 pci_push(base); 5529 writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus); 5530 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus); 5531 pci_push(base); 5532 5533 if (nv_request_irq(dev, 0)) 5534 goto out_drain; 5535 5536 /* ask for interrupts */ 5537 nv_enable_hw_interrupts(dev, np->irqmask); 5538 5539 spin_lock_irq(&np->lock); 5540 writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA); 5541 writel(0, base + NvRegMulticastAddrB); 5542 writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA); 5543 writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB); 5544 writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags); 5545 /* One manual link speed update: Interrupts are enabled, future link 5546 * speed changes cause interrupts and are handled by nv_link_irq(). 5547 */ 5548 readl(base + NvRegMIIStatus); 5549 writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus); 5550 5551 /* set linkspeed to invalid value, thus force nv_update_linkspeed 5552 * to init hw */ 5553 np->linkspeed = 0; 5554 ret = nv_update_linkspeed(dev); 5555 nv_start_rxtx(dev); 5556 netif_start_queue(dev); 5557 nv_napi_enable(dev); 5558 5559 if (ret) { 5560 netif_carrier_on(dev); 5561 } else { 5562 netdev_info(dev, "no link during initialization\n"); 5563 netif_carrier_off(dev); 5564 } 5565 if (oom) 5566 mod_timer(&np->oom_kick, jiffies + OOM_REFILL); 5567 5568 /* start statistics timer */ 5569 if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3)) 5570 mod_timer(&np->stats_poll, 5571 round_jiffies(jiffies + STATS_INTERVAL)); 5572 5573 spin_unlock_irq(&np->lock); 5574 5575 /* If the loopback feature was set while the device was down, make sure 5576 * that it's set correctly now. 5577 */ 5578 if (dev->features & NETIF_F_LOOPBACK) 5579 nv_set_loopback(dev, dev->features); 5580 5581 return 0; 5582 out_drain: 5583 nv_drain_rxtx(dev); 5584 return ret; 5585 } 5586 5587 static int nv_close(struct net_device *dev) 5588 { 5589 struct fe_priv *np = netdev_priv(dev); 5590 u8 __iomem *base; 5591 5592 spin_lock_irq(&np->lock); 5593 np->in_shutdown = 1; 5594 spin_unlock_irq(&np->lock); 5595 nv_napi_disable(dev); 5596 synchronize_irq(np->pci_dev->irq); 5597 5598 del_timer_sync(&np->oom_kick); 5599 del_timer_sync(&np->nic_poll); 5600 del_timer_sync(&np->stats_poll); 5601 5602 netif_stop_queue(dev); 5603 spin_lock_irq(&np->lock); 5604 nv_update_pause(dev, 0); /* otherwise stop_tx bricks NIC */ 5605 nv_stop_rxtx(dev); 5606 nv_txrx_reset(dev); 5607 5608 /* disable interrupts on the nic or we will lock up */ 5609 base = get_hwbase(dev); 5610 nv_disable_hw_interrupts(dev, np->irqmask); 5611 pci_push(base); 5612 5613 spin_unlock_irq(&np->lock); 5614 5615 nv_free_irq(dev); 5616 5617 nv_drain_rxtx(dev); 5618 5619 if (np->wolenabled || !phy_power_down) { 5620 nv_txrx_gate(dev, false); 5621 writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags); 5622 nv_start_rx(dev); 5623 } else { 5624 /* power down phy */ 5625 mii_rw(dev, np->phyaddr, MII_BMCR, 5626 mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ)|BMCR_PDOWN); 5627 nv_txrx_gate(dev, true); 5628 } 5629 5630 /* FIXME: power down nic */ 5631 5632 return 0; 5633 } 5634 5635 static const struct net_device_ops nv_netdev_ops = { 5636 .ndo_open = nv_open, 5637 .ndo_stop = nv_close, 5638 .ndo_get_stats64 = nv_get_stats64, 5639 .ndo_start_xmit = nv_start_xmit, 5640 .ndo_tx_timeout = nv_tx_timeout, 5641 .ndo_change_mtu = nv_change_mtu, 5642 .ndo_fix_features = nv_fix_features, 5643 .ndo_set_features = nv_set_features, 5644 .ndo_validate_addr = eth_validate_addr, 5645 .ndo_set_mac_address = nv_set_mac_address, 5646 .ndo_set_rx_mode = nv_set_multicast, 5647 #ifdef CONFIG_NET_POLL_CONTROLLER 5648 .ndo_poll_controller = nv_poll_controller, 5649 #endif 5650 }; 5651 5652 static const struct net_device_ops nv_netdev_ops_optimized = { 5653 .ndo_open = nv_open, 5654 .ndo_stop = nv_close, 5655 .ndo_get_stats64 = nv_get_stats64, 5656 .ndo_start_xmit = nv_start_xmit_optimized, 5657 .ndo_tx_timeout = nv_tx_timeout, 5658 .ndo_change_mtu = nv_change_mtu, 5659 .ndo_fix_features = nv_fix_features, 5660 .ndo_set_features = nv_set_features, 5661 .ndo_validate_addr = eth_validate_addr, 5662 .ndo_set_mac_address = nv_set_mac_address, 5663 .ndo_set_rx_mode = nv_set_multicast, 5664 #ifdef CONFIG_NET_POLL_CONTROLLER 5665 .ndo_poll_controller = nv_poll_controller, 5666 #endif 5667 }; 5668 5669 static int nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id) 5670 { 5671 struct net_device *dev; 5672 struct fe_priv *np; 5673 unsigned long addr; 5674 u8 __iomem *base; 5675 int err, i; 5676 u32 powerstate, txreg; 5677 u32 phystate_orig = 0, phystate; 5678 int phyinitialized = 0; 5679 static int printed_version; 5680 5681 if (!printed_version++) 5682 pr_info("Reverse Engineered nForce ethernet driver. Version %s.\n", 5683 FORCEDETH_VERSION); 5684 5685 dev = alloc_etherdev(sizeof(struct fe_priv)); 5686 err = -ENOMEM; 5687 if (!dev) 5688 goto out; 5689 5690 np = netdev_priv(dev); 5691 np->dev = dev; 5692 np->pci_dev = pci_dev; 5693 spin_lock_init(&np->lock); 5694 spin_lock_init(&np->hwstats_lock); 5695 SET_NETDEV_DEV(dev, &pci_dev->dev); 5696 u64_stats_init(&np->swstats_rx_syncp); 5697 u64_stats_init(&np->swstats_tx_syncp); 5698 np->txrx_stats = alloc_percpu(struct nv_txrx_stats); 5699 if (!np->txrx_stats) { 5700 pr_err("np->txrx_stats, alloc memory error.\n"); 5701 err = -ENOMEM; 5702 goto out_alloc_percpu; 5703 } 5704 5705 timer_setup(&np->oom_kick, nv_do_rx_refill, 0); 5706 timer_setup(&np->nic_poll, nv_do_nic_poll, 0); 5707 timer_setup(&np->stats_poll, nv_do_stats_poll, TIMER_DEFERRABLE); 5708 5709 err = pci_enable_device(pci_dev); 5710 if (err) 5711 goto out_free; 5712 5713 pci_set_master(pci_dev); 5714 5715 err = pci_request_regions(pci_dev, DRV_NAME); 5716 if (err < 0) 5717 goto out_disable; 5718 5719 if (id->driver_data & (DEV_HAS_VLAN|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3)) 5720 np->register_size = NV_PCI_REGSZ_VER3; 5721 else if (id->driver_data & DEV_HAS_STATISTICS_V1) 5722 np->register_size = NV_PCI_REGSZ_VER2; 5723 else 5724 np->register_size = NV_PCI_REGSZ_VER1; 5725 5726 err = -EINVAL; 5727 addr = 0; 5728 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) { 5729 if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM && 5730 pci_resource_len(pci_dev, i) >= np->register_size) { 5731 addr = pci_resource_start(pci_dev, i); 5732 break; 5733 } 5734 } 5735 if (i == DEVICE_COUNT_RESOURCE) { 5736 dev_info(&pci_dev->dev, "Couldn't find register window\n"); 5737 goto out_relreg; 5738 } 5739 5740 /* copy of driver data */ 5741 np->driver_data = id->driver_data; 5742 /* copy of device id */ 5743 np->device_id = id->device; 5744 5745 /* handle different descriptor versions */ 5746 if (id->driver_data & DEV_HAS_HIGH_DMA) { 5747 /* packet format 3: supports 40-bit addressing */ 5748 np->desc_ver = DESC_VER_3; 5749 np->txrxctl_bits = NVREG_TXRXCTL_DESC_3; 5750 if (dma_64bit) { 5751 if (pci_set_dma_mask(pci_dev, DMA_BIT_MASK(39))) 5752 dev_info(&pci_dev->dev, 5753 "64-bit DMA failed, using 32-bit addressing\n"); 5754 else 5755 dev->features |= NETIF_F_HIGHDMA; 5756 if (pci_set_consistent_dma_mask(pci_dev, DMA_BIT_MASK(39))) { 5757 dev_info(&pci_dev->dev, 5758 "64-bit DMA (consistent) failed, using 32-bit ring buffers\n"); 5759 } 5760 } 5761 } else if (id->driver_data & DEV_HAS_LARGEDESC) { 5762 /* packet format 2: supports jumbo frames */ 5763 np->desc_ver = DESC_VER_2; 5764 np->txrxctl_bits = NVREG_TXRXCTL_DESC_2; 5765 } else { 5766 /* original packet format */ 5767 np->desc_ver = DESC_VER_1; 5768 np->txrxctl_bits = NVREG_TXRXCTL_DESC_1; 5769 } 5770 5771 np->pkt_limit = NV_PKTLIMIT_1; 5772 if (id->driver_data & DEV_HAS_LARGEDESC) 5773 np->pkt_limit = NV_PKTLIMIT_2; 5774 5775 if (id->driver_data & DEV_HAS_CHECKSUM) { 5776 np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK; 5777 dev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_SG | 5778 NETIF_F_TSO | NETIF_F_RXCSUM; 5779 } 5780 5781 np->vlanctl_bits = 0; 5782 if (id->driver_data & DEV_HAS_VLAN) { 5783 np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE; 5784 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX | 5785 NETIF_F_HW_VLAN_CTAG_TX; 5786 } 5787 5788 dev->features |= dev->hw_features; 5789 5790 /* Add loopback capability to the device. */ 5791 dev->hw_features |= NETIF_F_LOOPBACK; 5792 5793 /* MTU range: 64 - 1500 or 9100 */ 5794 dev->min_mtu = ETH_ZLEN + ETH_FCS_LEN; 5795 dev->max_mtu = np->pkt_limit; 5796 5797 np->pause_flags = NV_PAUSEFRAME_RX_CAPABLE | NV_PAUSEFRAME_RX_REQ | NV_PAUSEFRAME_AUTONEG; 5798 if ((id->driver_data & DEV_HAS_PAUSEFRAME_TX_V1) || 5799 (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V2) || 5800 (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V3)) { 5801 np->pause_flags |= NV_PAUSEFRAME_TX_CAPABLE | NV_PAUSEFRAME_TX_REQ; 5802 } 5803 5804 err = -ENOMEM; 5805 np->base = ioremap(addr, np->register_size); 5806 if (!np->base) 5807 goto out_relreg; 5808 5809 np->rx_ring_size = RX_RING_DEFAULT; 5810 np->tx_ring_size = TX_RING_DEFAULT; 5811 5812 if (!nv_optimized(np)) { 5813 np->rx_ring.orig = dma_alloc_coherent(&pci_dev->dev, 5814 sizeof(struct ring_desc) * 5815 (np->rx_ring_size + 5816 np->tx_ring_size), 5817 &np->ring_addr, 5818 GFP_KERNEL); 5819 if (!np->rx_ring.orig) 5820 goto out_unmap; 5821 np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size]; 5822 } else { 5823 np->rx_ring.ex = dma_alloc_coherent(&pci_dev->dev, 5824 sizeof(struct ring_desc_ex) * 5825 (np->rx_ring_size + 5826 np->tx_ring_size), 5827 &np->ring_addr, GFP_KERNEL); 5828 if (!np->rx_ring.ex) 5829 goto out_unmap; 5830 np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size]; 5831 } 5832 np->rx_skb = kcalloc(np->rx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL); 5833 np->tx_skb = kcalloc(np->tx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL); 5834 if (!np->rx_skb || !np->tx_skb) 5835 goto out_freering; 5836 5837 if (!nv_optimized(np)) 5838 dev->netdev_ops = &nv_netdev_ops; 5839 else 5840 dev->netdev_ops = &nv_netdev_ops_optimized; 5841 5842 netif_napi_add(dev, &np->napi, nv_napi_poll, RX_WORK_PER_LOOP); 5843 dev->ethtool_ops = &ops; 5844 dev->watchdog_timeo = NV_WATCHDOG_TIMEO; 5845 5846 pci_set_drvdata(pci_dev, dev); 5847 5848 /* read the mac address */ 5849 base = get_hwbase(dev); 5850 np->orig_mac[0] = readl(base + NvRegMacAddrA); 5851 np->orig_mac[1] = readl(base + NvRegMacAddrB); 5852 5853 /* check the workaround bit for correct mac address order */ 5854 txreg = readl(base + NvRegTransmitPoll); 5855 if (id->driver_data & DEV_HAS_CORRECT_MACADDR) { 5856 /* mac address is already in correct order */ 5857 dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff; 5858 dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff; 5859 dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff; 5860 dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff; 5861 dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff; 5862 dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff; 5863 } else if (txreg & NVREG_TRANSMITPOLL_MAC_ADDR_REV) { 5864 /* mac address is already in correct order */ 5865 dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff; 5866 dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff; 5867 dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff; 5868 dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff; 5869 dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff; 5870 dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff; 5871 /* 5872 * Set orig mac address back to the reversed version. 5873 * This flag will be cleared during low power transition. 5874 * Therefore, we should always put back the reversed address. 5875 */ 5876 np->orig_mac[0] = (dev->dev_addr[5] << 0) + (dev->dev_addr[4] << 8) + 5877 (dev->dev_addr[3] << 16) + (dev->dev_addr[2] << 24); 5878 np->orig_mac[1] = (dev->dev_addr[1] << 0) + (dev->dev_addr[0] << 8); 5879 } else { 5880 /* need to reverse mac address to correct order */ 5881 dev->dev_addr[0] = (np->orig_mac[1] >> 8) & 0xff; 5882 dev->dev_addr[1] = (np->orig_mac[1] >> 0) & 0xff; 5883 dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff; 5884 dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff; 5885 dev->dev_addr[4] = (np->orig_mac[0] >> 8) & 0xff; 5886 dev->dev_addr[5] = (np->orig_mac[0] >> 0) & 0xff; 5887 writel(txreg|NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll); 5888 dev_dbg(&pci_dev->dev, 5889 "%s: set workaround bit for reversed mac addr\n", 5890 __func__); 5891 } 5892 5893 if (!is_valid_ether_addr(dev->dev_addr)) { 5894 /* 5895 * Bad mac address. At least one bios sets the mac address 5896 * to 01:23:45:67:89:ab 5897 */ 5898 dev_err(&pci_dev->dev, 5899 "Invalid MAC address detected: %pM - Please complain to your hardware vendor.\n", 5900 dev->dev_addr); 5901 eth_hw_addr_random(dev); 5902 dev_err(&pci_dev->dev, 5903 "Using random MAC address: %pM\n", dev->dev_addr); 5904 } 5905 5906 /* set mac address */ 5907 nv_copy_mac_to_hw(dev); 5908 5909 /* disable WOL */ 5910 writel(0, base + NvRegWakeUpFlags); 5911 np->wolenabled = 0; 5912 device_set_wakeup_enable(&pci_dev->dev, false); 5913 5914 if (id->driver_data & DEV_HAS_POWER_CNTRL) { 5915 5916 /* take phy and nic out of low power mode */ 5917 powerstate = readl(base + NvRegPowerState2); 5918 powerstate &= ~NVREG_POWERSTATE2_POWERUP_MASK; 5919 if ((id->driver_data & DEV_NEED_LOW_POWER_FIX) && 5920 pci_dev->revision >= 0xA3) 5921 powerstate |= NVREG_POWERSTATE2_POWERUP_REV_A3; 5922 writel(powerstate, base + NvRegPowerState2); 5923 } 5924 5925 if (np->desc_ver == DESC_VER_1) 5926 np->tx_flags = NV_TX_VALID; 5927 else 5928 np->tx_flags = NV_TX2_VALID; 5929 5930 np->msi_flags = 0; 5931 if ((id->driver_data & DEV_HAS_MSI) && msi) 5932 np->msi_flags |= NV_MSI_CAPABLE; 5933 5934 if ((id->driver_data & DEV_HAS_MSI_X) && msix) { 5935 /* msix has had reported issues when modifying irqmask 5936 as in the case of napi, therefore, disable for now 5937 */ 5938 #if 0 5939 np->msi_flags |= NV_MSI_X_CAPABLE; 5940 #endif 5941 } 5942 5943 if (optimization_mode == NV_OPTIMIZATION_MODE_CPU) { 5944 np->irqmask = NVREG_IRQMASK_CPU; 5945 if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */ 5946 np->msi_flags |= 0x0001; 5947 } else if (optimization_mode == NV_OPTIMIZATION_MODE_DYNAMIC && 5948 !(id->driver_data & DEV_NEED_TIMERIRQ)) { 5949 /* start off in throughput mode */ 5950 np->irqmask = NVREG_IRQMASK_THROUGHPUT; 5951 /* remove support for msix mode */ 5952 np->msi_flags &= ~NV_MSI_X_CAPABLE; 5953 } else { 5954 optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT; 5955 np->irqmask = NVREG_IRQMASK_THROUGHPUT; 5956 if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */ 5957 np->msi_flags |= 0x0003; 5958 } 5959 5960 if (id->driver_data & DEV_NEED_TIMERIRQ) 5961 np->irqmask |= NVREG_IRQ_TIMER; 5962 if (id->driver_data & DEV_NEED_LINKTIMER) { 5963 np->need_linktimer = 1; 5964 np->link_timeout = jiffies + LINK_TIMEOUT; 5965 } else { 5966 np->need_linktimer = 0; 5967 } 5968 5969 /* Limit the number of tx's outstanding for hw bug */ 5970 if (id->driver_data & DEV_NEED_TX_LIMIT) { 5971 np->tx_limit = 1; 5972 if (((id->driver_data & DEV_NEED_TX_LIMIT2) == DEV_NEED_TX_LIMIT2) && 5973 pci_dev->revision >= 0xA2) 5974 np->tx_limit = 0; 5975 } 5976 5977 /* clear phy state and temporarily halt phy interrupts */ 5978 writel(0, base + NvRegMIIMask); 5979 phystate = readl(base + NvRegAdapterControl); 5980 if (phystate & NVREG_ADAPTCTL_RUNNING) { 5981 phystate_orig = 1; 5982 phystate &= ~NVREG_ADAPTCTL_RUNNING; 5983 writel(phystate, base + NvRegAdapterControl); 5984 } 5985 writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus); 5986 5987 if (id->driver_data & DEV_HAS_MGMT_UNIT) { 5988 /* management unit running on the mac? */ 5989 if ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_ST) && 5990 (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_PHY_INIT) && 5991 nv_mgmt_acquire_sema(dev) && 5992 nv_mgmt_get_version(dev)) { 5993 np->mac_in_use = 1; 5994 if (np->mgmt_version > 0) 5995 np->mac_in_use = readl(base + NvRegMgmtUnitControl) & NVREG_MGMTUNITCONTROL_INUSE; 5996 /* management unit setup the phy already? */ 5997 if (np->mac_in_use && 5998 ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_MASK) == 5999 NVREG_XMITCTL_SYNC_PHY_INIT)) { 6000 /* phy is inited by mgmt unit */ 6001 phyinitialized = 1; 6002 } else { 6003 /* we need to init the phy */ 6004 } 6005 } 6006 } 6007 6008 /* find a suitable phy */ 6009 for (i = 1; i <= 32; i++) { 6010 int id1, id2; 6011 int phyaddr = i & 0x1F; 6012 6013 spin_lock_irq(&np->lock); 6014 id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ); 6015 spin_unlock_irq(&np->lock); 6016 if (id1 < 0 || id1 == 0xffff) 6017 continue; 6018 spin_lock_irq(&np->lock); 6019 id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ); 6020 spin_unlock_irq(&np->lock); 6021 if (id2 < 0 || id2 == 0xffff) 6022 continue; 6023 6024 np->phy_model = id2 & PHYID2_MODEL_MASK; 6025 id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT; 6026 id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT; 6027 np->phyaddr = phyaddr; 6028 np->phy_oui = id1 | id2; 6029 6030 /* Realtek hardcoded phy id1 to all zero's on certain phys */ 6031 if (np->phy_oui == PHY_OUI_REALTEK2) 6032 np->phy_oui = PHY_OUI_REALTEK; 6033 /* Setup phy revision for Realtek */ 6034 if (np->phy_oui == PHY_OUI_REALTEK && np->phy_model == PHY_MODEL_REALTEK_8211) 6035 np->phy_rev = mii_rw(dev, phyaddr, MII_RESV1, MII_READ) & PHY_REV_MASK; 6036 6037 break; 6038 } 6039 if (i == 33) { 6040 dev_info(&pci_dev->dev, "open: Could not find a valid PHY\n"); 6041 goto out_error; 6042 } 6043 6044 if (!phyinitialized) { 6045 /* reset it */ 6046 phy_init(dev); 6047 } else { 6048 /* see if it is a gigabit phy */ 6049 u32 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ); 6050 if (mii_status & PHY_GIGABIT) 6051 np->gigabit = PHY_GIGABIT; 6052 } 6053 6054 /* set default link speed settings */ 6055 np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10; 6056 np->duplex = 0; 6057 np->autoneg = 1; 6058 6059 err = register_netdev(dev); 6060 if (err) { 6061 dev_info(&pci_dev->dev, "unable to register netdev: %d\n", err); 6062 goto out_error; 6063 } 6064 6065 netif_carrier_off(dev); 6066 6067 /* Some NICs freeze when TX pause is enabled while NIC is 6068 * down, and this stays across warm reboots. The sequence 6069 * below should be enough to recover from that state. 6070 */ 6071 nv_update_pause(dev, 0); 6072 nv_start_tx(dev); 6073 nv_stop_tx(dev); 6074 6075 if (id->driver_data & DEV_HAS_VLAN) 6076 nv_vlan_mode(dev, dev->features); 6077 6078 dev_info(&pci_dev->dev, "ifname %s, PHY OUI 0x%x @ %d, addr %pM\n", 6079 dev->name, np->phy_oui, np->phyaddr, dev->dev_addr); 6080 6081 dev_info(&pci_dev->dev, "%s%s%s%s%s%s%s%s%s%s%sdesc-v%u\n", 6082 dev->features & NETIF_F_HIGHDMA ? "highdma " : "", 6083 dev->features & (NETIF_F_IP_CSUM | NETIF_F_SG) ? 6084 "csum " : "", 6085 dev->features & (NETIF_F_HW_VLAN_CTAG_RX | 6086 NETIF_F_HW_VLAN_CTAG_TX) ? 6087 "vlan " : "", 6088 dev->features & (NETIF_F_LOOPBACK) ? 6089 "loopback " : "", 6090 id->driver_data & DEV_HAS_POWER_CNTRL ? "pwrctl " : "", 6091 id->driver_data & DEV_HAS_MGMT_UNIT ? "mgmt " : "", 6092 id->driver_data & DEV_NEED_TIMERIRQ ? "timirq " : "", 6093 np->gigabit == PHY_GIGABIT ? "gbit " : "", 6094 np->need_linktimer ? "lnktim " : "", 6095 np->msi_flags & NV_MSI_CAPABLE ? "msi " : "", 6096 np->msi_flags & NV_MSI_X_CAPABLE ? "msi-x " : "", 6097 np->desc_ver); 6098 6099 return 0; 6100 6101 out_error: 6102 if (phystate_orig) 6103 writel(phystate|NVREG_ADAPTCTL_RUNNING, base + NvRegAdapterControl); 6104 out_freering: 6105 free_rings(dev); 6106 out_unmap: 6107 iounmap(get_hwbase(dev)); 6108 out_relreg: 6109 pci_release_regions(pci_dev); 6110 out_disable: 6111 pci_disable_device(pci_dev); 6112 out_free: 6113 free_percpu(np->txrx_stats); 6114 out_alloc_percpu: 6115 free_netdev(dev); 6116 out: 6117 return err; 6118 } 6119 6120 static void nv_restore_phy(struct net_device *dev) 6121 { 6122 struct fe_priv *np = netdev_priv(dev); 6123 u16 phy_reserved, mii_control; 6124 6125 if (np->phy_oui == PHY_OUI_REALTEK && 6126 np->phy_model == PHY_MODEL_REALTEK_8201 && 6127 phy_cross == NV_CROSSOVER_DETECTION_DISABLED) { 6128 mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3); 6129 phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, MII_READ); 6130 phy_reserved &= ~PHY_REALTEK_INIT_MSK1; 6131 phy_reserved |= PHY_REALTEK_INIT8; 6132 mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, phy_reserved); 6133 mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1); 6134 6135 /* restart auto negotiation */ 6136 mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); 6137 mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE); 6138 mii_rw(dev, np->phyaddr, MII_BMCR, mii_control); 6139 } 6140 } 6141 6142 static void nv_restore_mac_addr(struct pci_dev *pci_dev) 6143 { 6144 struct net_device *dev = pci_get_drvdata(pci_dev); 6145 struct fe_priv *np = netdev_priv(dev); 6146 u8 __iomem *base = get_hwbase(dev); 6147 6148 /* special op: write back the misordered MAC address - otherwise 6149 * the next nv_probe would see a wrong address. 6150 */ 6151 writel(np->orig_mac[0], base + NvRegMacAddrA); 6152 writel(np->orig_mac[1], base + NvRegMacAddrB); 6153 writel(readl(base + NvRegTransmitPoll) & ~NVREG_TRANSMITPOLL_MAC_ADDR_REV, 6154 base + NvRegTransmitPoll); 6155 } 6156 6157 static void nv_remove(struct pci_dev *pci_dev) 6158 { 6159 struct net_device *dev = pci_get_drvdata(pci_dev); 6160 struct fe_priv *np = netdev_priv(dev); 6161 6162 free_percpu(np->txrx_stats); 6163 6164 unregister_netdev(dev); 6165 6166 nv_restore_mac_addr(pci_dev); 6167 6168 /* restore any phy related changes */ 6169 nv_restore_phy(dev); 6170 6171 nv_mgmt_release_sema(dev); 6172 6173 /* free all structures */ 6174 free_rings(dev); 6175 iounmap(get_hwbase(dev)); 6176 pci_release_regions(pci_dev); 6177 pci_disable_device(pci_dev); 6178 free_netdev(dev); 6179 } 6180 6181 #ifdef CONFIG_PM_SLEEP 6182 static int nv_suspend(struct device *device) 6183 { 6184 struct net_device *dev = dev_get_drvdata(device); 6185 struct fe_priv *np = netdev_priv(dev); 6186 u8 __iomem *base = get_hwbase(dev); 6187 int i; 6188 6189 if (netif_running(dev)) { 6190 /* Gross. */ 6191 nv_close(dev); 6192 } 6193 netif_device_detach(dev); 6194 6195 /* save non-pci configuration space */ 6196 for (i = 0; i <= np->register_size/sizeof(u32); i++) 6197 np->saved_config_space[i] = readl(base + i*sizeof(u32)); 6198 6199 return 0; 6200 } 6201 6202 static int nv_resume(struct device *device) 6203 { 6204 struct pci_dev *pdev = to_pci_dev(device); 6205 struct net_device *dev = pci_get_drvdata(pdev); 6206 struct fe_priv *np = netdev_priv(dev); 6207 u8 __iomem *base = get_hwbase(dev); 6208 int i, rc = 0; 6209 6210 /* restore non-pci configuration space */ 6211 for (i = 0; i <= np->register_size/sizeof(u32); i++) 6212 writel(np->saved_config_space[i], base+i*sizeof(u32)); 6213 6214 if (np->driver_data & DEV_NEED_MSI_FIX) 6215 pci_write_config_dword(pdev, NV_MSI_PRIV_OFFSET, NV_MSI_PRIV_VALUE); 6216 6217 /* restore phy state, including autoneg */ 6218 phy_init(dev); 6219 6220 netif_device_attach(dev); 6221 if (netif_running(dev)) { 6222 rc = nv_open(dev); 6223 nv_set_multicast(dev); 6224 } 6225 return rc; 6226 } 6227 6228 static SIMPLE_DEV_PM_OPS(nv_pm_ops, nv_suspend, nv_resume); 6229 #define NV_PM_OPS (&nv_pm_ops) 6230 6231 #else 6232 #define NV_PM_OPS NULL 6233 #endif /* CONFIG_PM_SLEEP */ 6234 6235 #ifdef CONFIG_PM 6236 static void nv_shutdown(struct pci_dev *pdev) 6237 { 6238 struct net_device *dev = pci_get_drvdata(pdev); 6239 struct fe_priv *np = netdev_priv(dev); 6240 6241 if (netif_running(dev)) 6242 nv_close(dev); 6243 6244 /* 6245 * Restore the MAC so a kernel started by kexec won't get confused. 6246 * If we really go for poweroff, we must not restore the MAC, 6247 * otherwise the MAC for WOL will be reversed at least on some boards. 6248 */ 6249 if (system_state != SYSTEM_POWER_OFF) 6250 nv_restore_mac_addr(pdev); 6251 6252 pci_disable_device(pdev); 6253 /* 6254 * Apparently it is not possible to reinitialise from D3 hot, 6255 * only put the device into D3 if we really go for poweroff. 6256 */ 6257 if (system_state == SYSTEM_POWER_OFF) { 6258 pci_wake_from_d3(pdev, np->wolenabled); 6259 pci_set_power_state(pdev, PCI_D3hot); 6260 } 6261 } 6262 #else 6263 #define nv_shutdown NULL 6264 #endif /* CONFIG_PM */ 6265 6266 static const struct pci_device_id pci_tbl[] = { 6267 { /* nForce Ethernet Controller */ 6268 PCI_DEVICE(0x10DE, 0x01C3), 6269 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER, 6270 }, 6271 { /* nForce2 Ethernet Controller */ 6272 PCI_DEVICE(0x10DE, 0x0066), 6273 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER, 6274 }, 6275 { /* nForce3 Ethernet Controller */ 6276 PCI_DEVICE(0x10DE, 0x00D6), 6277 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER, 6278 }, 6279 { /* nForce3 Ethernet Controller */ 6280 PCI_DEVICE(0x10DE, 0x0086), 6281 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM, 6282 }, 6283 { /* nForce3 Ethernet Controller */ 6284 PCI_DEVICE(0x10DE, 0x008C), 6285 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM, 6286 }, 6287 { /* nForce3 Ethernet Controller */ 6288 PCI_DEVICE(0x10DE, 0x00E6), 6289 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM, 6290 }, 6291 { /* nForce3 Ethernet Controller */ 6292 PCI_DEVICE(0x10DE, 0x00DF), 6293 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM, 6294 }, 6295 { /* CK804 Ethernet Controller */ 6296 PCI_DEVICE(0x10DE, 0x0056), 6297 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT, 6298 }, 6299 { /* CK804 Ethernet Controller */ 6300 PCI_DEVICE(0x10DE, 0x0057), 6301 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT, 6302 }, 6303 { /* MCP04 Ethernet Controller */ 6304 PCI_DEVICE(0x10DE, 0x0037), 6305 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT, 6306 }, 6307 { /* MCP04 Ethernet Controller */ 6308 PCI_DEVICE(0x10DE, 0x0038), 6309 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT, 6310 }, 6311 { /* MCP51 Ethernet Controller */ 6312 PCI_DEVICE(0x10DE, 0x0268), 6313 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1|DEV_NEED_LOW_POWER_FIX, 6314 }, 6315 { /* MCP51 Ethernet Controller */ 6316 PCI_DEVICE(0x10DE, 0x0269), 6317 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1|DEV_NEED_LOW_POWER_FIX, 6318 }, 6319 { /* MCP55 Ethernet Controller */ 6320 PCI_DEVICE(0x10DE, 0x0372), 6321 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_NEED_TX_LIMIT|DEV_NEED_MSI_FIX, 6322 }, 6323 { /* MCP55 Ethernet Controller */ 6324 PCI_DEVICE(0x10DE, 0x0373), 6325 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_NEED_TX_LIMIT|DEV_NEED_MSI_FIX, 6326 }, 6327 { /* MCP61 Ethernet Controller */ 6328 PCI_DEVICE(0x10DE, 0x03E5), 6329 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX, 6330 }, 6331 { /* MCP61 Ethernet Controller */ 6332 PCI_DEVICE(0x10DE, 0x03E6), 6333 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX, 6334 }, 6335 { /* MCP61 Ethernet Controller */ 6336 PCI_DEVICE(0x10DE, 0x03EE), 6337 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX, 6338 }, 6339 { /* MCP61 Ethernet Controller */ 6340 PCI_DEVICE(0x10DE, 0x03EF), 6341 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX, 6342 }, 6343 { /* MCP65 Ethernet Controller */ 6344 PCI_DEVICE(0x10DE, 0x0450), 6345 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX, 6346 }, 6347 { /* MCP65 Ethernet Controller */ 6348 PCI_DEVICE(0x10DE, 0x0451), 6349 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX, 6350 }, 6351 { /* MCP65 Ethernet Controller */ 6352 PCI_DEVICE(0x10DE, 0x0452), 6353 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX, 6354 }, 6355 { /* MCP65 Ethernet Controller */ 6356 PCI_DEVICE(0x10DE, 0x0453), 6357 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX, 6358 }, 6359 { /* MCP67 Ethernet Controller */ 6360 PCI_DEVICE(0x10DE, 0x054C), 6361 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX, 6362 }, 6363 { /* MCP67 Ethernet Controller */ 6364 PCI_DEVICE(0x10DE, 0x054D), 6365 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX, 6366 }, 6367 { /* MCP67 Ethernet Controller */ 6368 PCI_DEVICE(0x10DE, 0x054E), 6369 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX, 6370 }, 6371 { /* MCP67 Ethernet Controller */ 6372 PCI_DEVICE(0x10DE, 0x054F), 6373 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX, 6374 }, 6375 { /* MCP73 Ethernet Controller */ 6376 PCI_DEVICE(0x10DE, 0x07DC), 6377 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX, 6378 }, 6379 { /* MCP73 Ethernet Controller */ 6380 PCI_DEVICE(0x10DE, 0x07DD), 6381 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX, 6382 }, 6383 { /* MCP73 Ethernet Controller */ 6384 PCI_DEVICE(0x10DE, 0x07DE), 6385 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX, 6386 }, 6387 { /* MCP73 Ethernet Controller */ 6388 PCI_DEVICE(0x10DE, 0x07DF), 6389 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX, 6390 }, 6391 { /* MCP77 Ethernet Controller */ 6392 PCI_DEVICE(0x10DE, 0x0760), 6393 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX, 6394 }, 6395 { /* MCP77 Ethernet Controller */ 6396 PCI_DEVICE(0x10DE, 0x0761), 6397 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX, 6398 }, 6399 { /* MCP77 Ethernet Controller */ 6400 PCI_DEVICE(0x10DE, 0x0762), 6401 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX, 6402 }, 6403 { /* MCP77 Ethernet Controller */ 6404 PCI_DEVICE(0x10DE, 0x0763), 6405 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX, 6406 }, 6407 { /* MCP79 Ethernet Controller */ 6408 PCI_DEVICE(0x10DE, 0x0AB0), 6409 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX, 6410 }, 6411 { /* MCP79 Ethernet Controller */ 6412 PCI_DEVICE(0x10DE, 0x0AB1), 6413 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX, 6414 }, 6415 { /* MCP79 Ethernet Controller */ 6416 PCI_DEVICE(0x10DE, 0x0AB2), 6417 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX, 6418 }, 6419 { /* MCP79 Ethernet Controller */ 6420 PCI_DEVICE(0x10DE, 0x0AB3), 6421 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX, 6422 }, 6423 { /* MCP89 Ethernet Controller */ 6424 PCI_DEVICE(0x10DE, 0x0D7D), 6425 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX, 6426 }, 6427 {0,}, 6428 }; 6429 6430 static struct pci_driver forcedeth_pci_driver = { 6431 .name = DRV_NAME, 6432 .id_table = pci_tbl, 6433 .probe = nv_probe, 6434 .remove = nv_remove, 6435 .shutdown = nv_shutdown, 6436 .driver.pm = NV_PM_OPS, 6437 }; 6438 6439 module_param(max_interrupt_work, int, 0); 6440 MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt"); 6441 module_param(optimization_mode, int, 0); 6442 MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer. In dynamic mode (2), the mode toggles between throughput and CPU mode based on network load."); 6443 module_param(poll_interval, int, 0); 6444 MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535."); 6445 module_param(msi, int, 0); 6446 MODULE_PARM_DESC(msi, "MSI interrupts are enabled by setting to 1 and disabled by setting to 0."); 6447 module_param(msix, int, 0); 6448 MODULE_PARM_DESC(msix, "MSIX interrupts are enabled by setting to 1 and disabled by setting to 0."); 6449 module_param(dma_64bit, int, 0); 6450 MODULE_PARM_DESC(dma_64bit, "High DMA is enabled by setting to 1 and disabled by setting to 0."); 6451 module_param(phy_cross, int, 0); 6452 MODULE_PARM_DESC(phy_cross, "Phy crossover detection for Realtek 8201 phy is enabled by setting to 1 and disabled by setting to 0."); 6453 module_param(phy_power_down, int, 0); 6454 MODULE_PARM_DESC(phy_power_down, "Power down phy and disable link when interface is down (1), or leave phy powered up (0)."); 6455 module_param(debug_tx_timeout, bool, 0); 6456 MODULE_PARM_DESC(debug_tx_timeout, 6457 "Dump tx related registers and ring when tx_timeout happens"); 6458 6459 module_pci_driver(forcedeth_pci_driver); 6460 MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>"); 6461 MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver"); 6462 MODULE_LICENSE("GPL"); 6463 MODULE_DEVICE_TABLE(pci, pci_tbl); 6464