1 /* 2 * Copyright (C) 2015-2017 Netronome Systems, Inc. 3 * 4 * This software is dual licensed under the GNU General License Version 2, 5 * June 1991 as shown in the file COPYING in the top-level directory of this 6 * source tree or the BSD 2-Clause License provided below. You have the 7 * option to license this software under the complete terms of either license. 8 * 9 * The BSD 2-Clause License: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * 1. Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * 2. Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 */ 33 34 /* 35 * nfp_net_common.c 36 * Netronome network device driver: Common functions between PF and VF 37 * Authors: Jakub Kicinski <jakub.kicinski@netronome.com> 38 * Jason McMullan <jason.mcmullan@netronome.com> 39 * Rolf Neugebauer <rolf.neugebauer@netronome.com> 40 * Brad Petrus <brad.petrus@netronome.com> 41 * Chris Telfer <chris.telfer@netronome.com> 42 */ 43 44 #include <linux/bitfield.h> 45 #include <linux/bpf.h> 46 #include <linux/bpf_trace.h> 47 #include <linux/module.h> 48 #include <linux/kernel.h> 49 #include <linux/init.h> 50 #include <linux/fs.h> 51 #include <linux/netdevice.h> 52 #include <linux/etherdevice.h> 53 #include <linux/interrupt.h> 54 #include <linux/ip.h> 55 #include <linux/ipv6.h> 56 #include <linux/page_ref.h> 57 #include <linux/pci.h> 58 #include <linux/pci_regs.h> 59 #include <linux/msi.h> 60 #include <linux/ethtool.h> 61 #include <linux/log2.h> 62 #include <linux/if_vlan.h> 63 #include <linux/random.h> 64 65 #include <linux/ktime.h> 66 67 #include <net/pkt_cls.h> 68 #include <net/vxlan.h> 69 70 #include "nfpcore/nfp_nsp.h" 71 #include "nfp_net_ctrl.h" 72 #include "nfp_net.h" 73 74 /** 75 * nfp_net_get_fw_version() - Read and parse the FW version 76 * @fw_ver: Output fw_version structure to read to 77 * @ctrl_bar: Mapped address of the control BAR 78 */ 79 void nfp_net_get_fw_version(struct nfp_net_fw_version *fw_ver, 80 void __iomem *ctrl_bar) 81 { 82 u32 reg; 83 84 reg = readl(ctrl_bar + NFP_NET_CFG_VERSION); 85 put_unaligned_le32(reg, fw_ver); 86 } 87 88 static dma_addr_t nfp_net_dma_map_rx(struct nfp_net_dp *dp, void *frag) 89 { 90 return dma_map_single_attrs(dp->dev, frag + NFP_NET_RX_BUF_HEADROOM, 91 dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA, 92 dp->rx_dma_dir, DMA_ATTR_SKIP_CPU_SYNC); 93 } 94 95 static void 96 nfp_net_dma_sync_dev_rx(const struct nfp_net_dp *dp, dma_addr_t dma_addr) 97 { 98 dma_sync_single_for_device(dp->dev, dma_addr, 99 dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA, 100 dp->rx_dma_dir); 101 } 102 103 static void nfp_net_dma_unmap_rx(struct nfp_net_dp *dp, dma_addr_t dma_addr) 104 { 105 dma_unmap_single_attrs(dp->dev, dma_addr, 106 dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA, 107 dp->rx_dma_dir, DMA_ATTR_SKIP_CPU_SYNC); 108 } 109 110 static void nfp_net_dma_sync_cpu_rx(struct nfp_net_dp *dp, dma_addr_t dma_addr, 111 unsigned int len) 112 { 113 dma_sync_single_for_cpu(dp->dev, dma_addr - NFP_NET_RX_BUF_HEADROOM, 114 len, dp->rx_dma_dir); 115 } 116 117 /* Firmware reconfig 118 * 119 * Firmware reconfig may take a while so we have two versions of it - 120 * synchronous and asynchronous (posted). All synchronous callers are holding 121 * RTNL so we don't have to worry about serializing them. 122 */ 123 static void nfp_net_reconfig_start(struct nfp_net *nn, u32 update) 124 { 125 nn_writel(nn, NFP_NET_CFG_UPDATE, update); 126 /* ensure update is written before pinging HW */ 127 nn_pci_flush(nn); 128 nfp_qcp_wr_ptr_add(nn->qcp_cfg, 1); 129 } 130 131 /* Pass 0 as update to run posted reconfigs. */ 132 static void nfp_net_reconfig_start_async(struct nfp_net *nn, u32 update) 133 { 134 update |= nn->reconfig_posted; 135 nn->reconfig_posted = 0; 136 137 nfp_net_reconfig_start(nn, update); 138 139 nn->reconfig_timer_active = true; 140 mod_timer(&nn->reconfig_timer, jiffies + NFP_NET_POLL_TIMEOUT * HZ); 141 } 142 143 static bool nfp_net_reconfig_check_done(struct nfp_net *nn, bool last_check) 144 { 145 u32 reg; 146 147 reg = nn_readl(nn, NFP_NET_CFG_UPDATE); 148 if (reg == 0) 149 return true; 150 if (reg & NFP_NET_CFG_UPDATE_ERR) { 151 nn_err(nn, "Reconfig error: 0x%08x\n", reg); 152 return true; 153 } else if (last_check) { 154 nn_err(nn, "Reconfig timeout: 0x%08x\n", reg); 155 return true; 156 } 157 158 return false; 159 } 160 161 static int nfp_net_reconfig_wait(struct nfp_net *nn, unsigned long deadline) 162 { 163 bool timed_out = false; 164 165 /* Poll update field, waiting for NFP to ack the config */ 166 while (!nfp_net_reconfig_check_done(nn, timed_out)) { 167 msleep(1); 168 timed_out = time_is_before_eq_jiffies(deadline); 169 } 170 171 if (nn_readl(nn, NFP_NET_CFG_UPDATE) & NFP_NET_CFG_UPDATE_ERR) 172 return -EIO; 173 174 return timed_out ? -EIO : 0; 175 } 176 177 static void nfp_net_reconfig_timer(unsigned long data) 178 { 179 struct nfp_net *nn = (void *)data; 180 181 spin_lock_bh(&nn->reconfig_lock); 182 183 nn->reconfig_timer_active = false; 184 185 /* If sync caller is present it will take over from us */ 186 if (nn->reconfig_sync_present) 187 goto done; 188 189 /* Read reconfig status and report errors */ 190 nfp_net_reconfig_check_done(nn, true); 191 192 if (nn->reconfig_posted) 193 nfp_net_reconfig_start_async(nn, 0); 194 done: 195 spin_unlock_bh(&nn->reconfig_lock); 196 } 197 198 /** 199 * nfp_net_reconfig_post() - Post async reconfig request 200 * @nn: NFP Net device to reconfigure 201 * @update: The value for the update field in the BAR config 202 * 203 * Record FW reconfiguration request. Reconfiguration will be kicked off 204 * whenever reconfiguration machinery is idle. Multiple requests can be 205 * merged together! 206 */ 207 static void nfp_net_reconfig_post(struct nfp_net *nn, u32 update) 208 { 209 spin_lock_bh(&nn->reconfig_lock); 210 211 /* Sync caller will kick off async reconf when it's done, just post */ 212 if (nn->reconfig_sync_present) { 213 nn->reconfig_posted |= update; 214 goto done; 215 } 216 217 /* Opportunistically check if the previous command is done */ 218 if (!nn->reconfig_timer_active || 219 nfp_net_reconfig_check_done(nn, false)) 220 nfp_net_reconfig_start_async(nn, update); 221 else 222 nn->reconfig_posted |= update; 223 done: 224 spin_unlock_bh(&nn->reconfig_lock); 225 } 226 227 /** 228 * nfp_net_reconfig() - Reconfigure the firmware 229 * @nn: NFP Net device to reconfigure 230 * @update: The value for the update field in the BAR config 231 * 232 * Write the update word to the BAR and ping the reconfig queue. The 233 * poll until the firmware has acknowledged the update by zeroing the 234 * update word. 235 * 236 * Return: Negative errno on error, 0 on success 237 */ 238 int nfp_net_reconfig(struct nfp_net *nn, u32 update) 239 { 240 bool cancelled_timer = false; 241 u32 pre_posted_requests; 242 int ret; 243 244 spin_lock_bh(&nn->reconfig_lock); 245 246 nn->reconfig_sync_present = true; 247 248 if (nn->reconfig_timer_active) { 249 del_timer(&nn->reconfig_timer); 250 nn->reconfig_timer_active = false; 251 cancelled_timer = true; 252 } 253 pre_posted_requests = nn->reconfig_posted; 254 nn->reconfig_posted = 0; 255 256 spin_unlock_bh(&nn->reconfig_lock); 257 258 if (cancelled_timer) 259 nfp_net_reconfig_wait(nn, nn->reconfig_timer.expires); 260 261 /* Run the posted reconfigs which were issued before we started */ 262 if (pre_posted_requests) { 263 nfp_net_reconfig_start(nn, pre_posted_requests); 264 nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT); 265 } 266 267 nfp_net_reconfig_start(nn, update); 268 ret = nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT); 269 270 spin_lock_bh(&nn->reconfig_lock); 271 272 if (nn->reconfig_posted) 273 nfp_net_reconfig_start_async(nn, 0); 274 275 nn->reconfig_sync_present = false; 276 277 spin_unlock_bh(&nn->reconfig_lock); 278 279 return ret; 280 } 281 282 /* Interrupt configuration and handling 283 */ 284 285 /** 286 * nfp_net_irq_unmask() - Unmask automasked interrupt 287 * @nn: NFP Network structure 288 * @entry_nr: MSI-X table entry 289 * 290 * Clear the ICR for the IRQ entry. 291 */ 292 static void nfp_net_irq_unmask(struct nfp_net *nn, unsigned int entry_nr) 293 { 294 nn_writeb(nn, NFP_NET_CFG_ICR(entry_nr), NFP_NET_CFG_ICR_UNMASKED); 295 nn_pci_flush(nn); 296 } 297 298 /** 299 * nfp_net_irqs_alloc() - allocates MSI-X irqs 300 * @pdev: PCI device structure 301 * @irq_entries: Array to be initialized and used to hold the irq entries 302 * @min_irqs: Minimal acceptable number of interrupts 303 * @wanted_irqs: Target number of interrupts to allocate 304 * 305 * Return: Number of irqs obtained or 0 on error. 306 */ 307 unsigned int 308 nfp_net_irqs_alloc(struct pci_dev *pdev, struct msix_entry *irq_entries, 309 unsigned int min_irqs, unsigned int wanted_irqs) 310 { 311 unsigned int i; 312 int got_irqs; 313 314 for (i = 0; i < wanted_irqs; i++) 315 irq_entries[i].entry = i; 316 317 got_irqs = pci_enable_msix_range(pdev, irq_entries, 318 min_irqs, wanted_irqs); 319 if (got_irqs < 0) { 320 dev_err(&pdev->dev, "Failed to enable %d-%d MSI-X (err=%d)\n", 321 min_irqs, wanted_irqs, got_irqs); 322 return 0; 323 } 324 325 if (got_irqs < wanted_irqs) 326 dev_warn(&pdev->dev, "Unable to allocate %d IRQs got only %d\n", 327 wanted_irqs, got_irqs); 328 329 return got_irqs; 330 } 331 332 /** 333 * nfp_net_irqs_assign() - Assign interrupts allocated externally to netdev 334 * @nn: NFP Network structure 335 * @irq_entries: Table of allocated interrupts 336 * @n: Size of @irq_entries (number of entries to grab) 337 * 338 * After interrupts are allocated with nfp_net_irqs_alloc() this function 339 * should be called to assign them to a specific netdev (port). 340 */ 341 void 342 nfp_net_irqs_assign(struct nfp_net *nn, struct msix_entry *irq_entries, 343 unsigned int n) 344 { 345 struct nfp_net_dp *dp = &nn->dp; 346 347 nn->max_r_vecs = n - NFP_NET_NON_Q_VECTORS; 348 dp->num_r_vecs = nn->max_r_vecs; 349 350 memcpy(nn->irq_entries, irq_entries, sizeof(*irq_entries) * n); 351 352 if (dp->num_rx_rings > dp->num_r_vecs || 353 dp->num_tx_rings > dp->num_r_vecs) 354 dev_warn(nn->dp.dev, "More rings (%d,%d) than vectors (%d).\n", 355 dp->num_rx_rings, dp->num_tx_rings, 356 dp->num_r_vecs); 357 358 dp->num_rx_rings = min(dp->num_r_vecs, dp->num_rx_rings); 359 dp->num_tx_rings = min(dp->num_r_vecs, dp->num_tx_rings); 360 dp->num_stack_tx_rings = dp->num_tx_rings; 361 } 362 363 /** 364 * nfp_net_irqs_disable() - Disable interrupts 365 * @pdev: PCI device structure 366 * 367 * Undoes what @nfp_net_irqs_alloc() does. 368 */ 369 void nfp_net_irqs_disable(struct pci_dev *pdev) 370 { 371 pci_disable_msix(pdev); 372 } 373 374 /** 375 * nfp_net_irq_rxtx() - Interrupt service routine for RX/TX rings. 376 * @irq: Interrupt 377 * @data: Opaque data structure 378 * 379 * Return: Indicate if the interrupt has been handled. 380 */ 381 static irqreturn_t nfp_net_irq_rxtx(int irq, void *data) 382 { 383 struct nfp_net_r_vector *r_vec = data; 384 385 napi_schedule_irqoff(&r_vec->napi); 386 387 /* The FW auto-masks any interrupt, either via the MASK bit in 388 * the MSI-X table or via the per entry ICR field. So there 389 * is no need to disable interrupts here. 390 */ 391 return IRQ_HANDLED; 392 } 393 394 bool nfp_net_link_changed_read_clear(struct nfp_net *nn) 395 { 396 unsigned long flags; 397 bool ret; 398 399 spin_lock_irqsave(&nn->link_status_lock, flags); 400 ret = nn->link_changed; 401 nn->link_changed = false; 402 spin_unlock_irqrestore(&nn->link_status_lock, flags); 403 404 return ret; 405 } 406 407 /** 408 * nfp_net_read_link_status() - Reread link status from control BAR 409 * @nn: NFP Network structure 410 */ 411 static void nfp_net_read_link_status(struct nfp_net *nn) 412 { 413 unsigned long flags; 414 bool link_up; 415 u32 sts; 416 417 spin_lock_irqsave(&nn->link_status_lock, flags); 418 419 sts = nn_readl(nn, NFP_NET_CFG_STS); 420 link_up = !!(sts & NFP_NET_CFG_STS_LINK); 421 422 if (nn->link_up == link_up) 423 goto out; 424 425 nn->link_up = link_up; 426 nn->link_changed = true; 427 428 if (nn->link_up) { 429 netif_carrier_on(nn->dp.netdev); 430 netdev_info(nn->dp.netdev, "NIC Link is Up\n"); 431 } else { 432 netif_carrier_off(nn->dp.netdev); 433 netdev_info(nn->dp.netdev, "NIC Link is Down\n"); 434 } 435 out: 436 spin_unlock_irqrestore(&nn->link_status_lock, flags); 437 } 438 439 /** 440 * nfp_net_irq_lsc() - Interrupt service routine for link state changes 441 * @irq: Interrupt 442 * @data: Opaque data structure 443 * 444 * Return: Indicate if the interrupt has been handled. 445 */ 446 static irqreturn_t nfp_net_irq_lsc(int irq, void *data) 447 { 448 struct nfp_net *nn = data; 449 struct msix_entry *entry; 450 451 entry = &nn->irq_entries[NFP_NET_IRQ_LSC_IDX]; 452 453 nfp_net_read_link_status(nn); 454 455 nfp_net_irq_unmask(nn, entry->entry); 456 457 return IRQ_HANDLED; 458 } 459 460 /** 461 * nfp_net_irq_exn() - Interrupt service routine for exceptions 462 * @irq: Interrupt 463 * @data: Opaque data structure 464 * 465 * Return: Indicate if the interrupt has been handled. 466 */ 467 static irqreturn_t nfp_net_irq_exn(int irq, void *data) 468 { 469 struct nfp_net *nn = data; 470 471 nn_err(nn, "%s: UNIMPLEMENTED.\n", __func__); 472 /* XXX TO BE IMPLEMENTED */ 473 return IRQ_HANDLED; 474 } 475 476 /** 477 * nfp_net_tx_ring_init() - Fill in the boilerplate for a TX ring 478 * @tx_ring: TX ring structure 479 * @r_vec: IRQ vector servicing this ring 480 * @idx: Ring index 481 * @is_xdp: Is this an XDP TX ring? 482 */ 483 static void 484 nfp_net_tx_ring_init(struct nfp_net_tx_ring *tx_ring, 485 struct nfp_net_r_vector *r_vec, unsigned int idx, 486 bool is_xdp) 487 { 488 struct nfp_net *nn = r_vec->nfp_net; 489 490 tx_ring->idx = idx; 491 tx_ring->r_vec = r_vec; 492 tx_ring->is_xdp = is_xdp; 493 494 tx_ring->qcidx = tx_ring->idx * nn->stride_tx; 495 tx_ring->qcp_q = nn->tx_bar + NFP_QCP_QUEUE_OFF(tx_ring->qcidx); 496 } 497 498 /** 499 * nfp_net_rx_ring_init() - Fill in the boilerplate for a RX ring 500 * @rx_ring: RX ring structure 501 * @r_vec: IRQ vector servicing this ring 502 * @idx: Ring index 503 */ 504 static void 505 nfp_net_rx_ring_init(struct nfp_net_rx_ring *rx_ring, 506 struct nfp_net_r_vector *r_vec, unsigned int idx) 507 { 508 struct nfp_net *nn = r_vec->nfp_net; 509 510 rx_ring->idx = idx; 511 rx_ring->r_vec = r_vec; 512 513 rx_ring->fl_qcidx = rx_ring->idx * nn->stride_rx; 514 rx_ring->qcp_fl = nn->rx_bar + NFP_QCP_QUEUE_OFF(rx_ring->fl_qcidx); 515 } 516 517 /** 518 * nfp_net_vecs_init() - Assign IRQs and setup rvecs. 519 * @netdev: netdev structure 520 */ 521 static void nfp_net_vecs_init(struct net_device *netdev) 522 { 523 struct nfp_net *nn = netdev_priv(netdev); 524 struct nfp_net_r_vector *r_vec; 525 int r; 526 527 nn->lsc_handler = nfp_net_irq_lsc; 528 nn->exn_handler = nfp_net_irq_exn; 529 530 for (r = 0; r < nn->max_r_vecs; r++) { 531 struct msix_entry *entry; 532 533 entry = &nn->irq_entries[NFP_NET_NON_Q_VECTORS + r]; 534 535 r_vec = &nn->r_vecs[r]; 536 r_vec->nfp_net = nn; 537 r_vec->handler = nfp_net_irq_rxtx; 538 r_vec->irq_entry = entry->entry; 539 r_vec->irq_vector = entry->vector; 540 541 cpumask_set_cpu(r, &r_vec->affinity_mask); 542 } 543 } 544 545 /** 546 * nfp_net_aux_irq_request() - Request an auxiliary interrupt (LSC or EXN) 547 * @nn: NFP Network structure 548 * @ctrl_offset: Control BAR offset where IRQ configuration should be written 549 * @format: printf-style format to construct the interrupt name 550 * @name: Pointer to allocated space for interrupt name 551 * @name_sz: Size of space for interrupt name 552 * @vector_idx: Index of MSI-X vector used for this interrupt 553 * @handler: IRQ handler to register for this interrupt 554 */ 555 static int 556 nfp_net_aux_irq_request(struct nfp_net *nn, u32 ctrl_offset, 557 const char *format, char *name, size_t name_sz, 558 unsigned int vector_idx, irq_handler_t handler) 559 { 560 struct msix_entry *entry; 561 int err; 562 563 entry = &nn->irq_entries[vector_idx]; 564 565 snprintf(name, name_sz, format, netdev_name(nn->dp.netdev)); 566 err = request_irq(entry->vector, handler, 0, name, nn); 567 if (err) { 568 nn_err(nn, "Failed to request IRQ %d (err=%d).\n", 569 entry->vector, err); 570 return err; 571 } 572 nn_writeb(nn, ctrl_offset, entry->entry); 573 574 return 0; 575 } 576 577 /** 578 * nfp_net_aux_irq_free() - Free an auxiliary interrupt (LSC or EXN) 579 * @nn: NFP Network structure 580 * @ctrl_offset: Control BAR offset where IRQ configuration should be written 581 * @vector_idx: Index of MSI-X vector used for this interrupt 582 */ 583 static void nfp_net_aux_irq_free(struct nfp_net *nn, u32 ctrl_offset, 584 unsigned int vector_idx) 585 { 586 nn_writeb(nn, ctrl_offset, 0xff); 587 free_irq(nn->irq_entries[vector_idx].vector, nn); 588 } 589 590 /* Transmit 591 * 592 * One queue controller peripheral queue is used for transmit. The 593 * driver en-queues packets for transmit by advancing the write 594 * pointer. The device indicates that packets have transmitted by 595 * advancing the read pointer. The driver maintains a local copy of 596 * the read and write pointer in @struct nfp_net_tx_ring. The driver 597 * keeps @wr_p in sync with the queue controller write pointer and can 598 * determine how many packets have been transmitted by comparing its 599 * copy of the read pointer @rd_p with the read pointer maintained by 600 * the queue controller peripheral. 601 */ 602 603 /** 604 * nfp_net_tx_full() - Check if the TX ring is full 605 * @tx_ring: TX ring to check 606 * @dcnt: Number of descriptors that need to be enqueued (must be >= 1) 607 * 608 * This function checks, based on the *host copy* of read/write 609 * pointer if a given TX ring is full. The real TX queue may have 610 * some newly made available slots. 611 * 612 * Return: True if the ring is full. 613 */ 614 static int nfp_net_tx_full(struct nfp_net_tx_ring *tx_ring, int dcnt) 615 { 616 return (tx_ring->wr_p - tx_ring->rd_p) >= (tx_ring->cnt - dcnt); 617 } 618 619 /* Wrappers for deciding when to stop and restart TX queues */ 620 static int nfp_net_tx_ring_should_wake(struct nfp_net_tx_ring *tx_ring) 621 { 622 return !nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS * 4); 623 } 624 625 static int nfp_net_tx_ring_should_stop(struct nfp_net_tx_ring *tx_ring) 626 { 627 return nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS + 1); 628 } 629 630 /** 631 * nfp_net_tx_ring_stop() - stop tx ring 632 * @nd_q: netdev queue 633 * @tx_ring: driver tx queue structure 634 * 635 * Safely stop TX ring. Remember that while we are running .start_xmit() 636 * someone else may be cleaning the TX ring completions so we need to be 637 * extra careful here. 638 */ 639 static void nfp_net_tx_ring_stop(struct netdev_queue *nd_q, 640 struct nfp_net_tx_ring *tx_ring) 641 { 642 netif_tx_stop_queue(nd_q); 643 644 /* We can race with the TX completion out of NAPI so recheck */ 645 smp_mb(); 646 if (unlikely(nfp_net_tx_ring_should_wake(tx_ring))) 647 netif_tx_start_queue(nd_q); 648 } 649 650 /** 651 * nfp_net_tx_tso() - Set up Tx descriptor for LSO 652 * @r_vec: per-ring structure 653 * @txbuf: Pointer to driver soft TX descriptor 654 * @txd: Pointer to HW TX descriptor 655 * @skb: Pointer to SKB 656 * 657 * Set up Tx descriptor for LSO, do nothing for non-LSO skbs. 658 * Return error on packet header greater than maximum supported LSO header size. 659 */ 660 static void nfp_net_tx_tso(struct nfp_net_r_vector *r_vec, 661 struct nfp_net_tx_buf *txbuf, 662 struct nfp_net_tx_desc *txd, struct sk_buff *skb) 663 { 664 u32 hdrlen; 665 u16 mss; 666 667 if (!skb_is_gso(skb)) 668 return; 669 670 if (!skb->encapsulation) 671 hdrlen = skb_transport_offset(skb) + tcp_hdrlen(skb); 672 else 673 hdrlen = skb_inner_transport_header(skb) - skb->data + 674 inner_tcp_hdrlen(skb); 675 676 txbuf->pkt_cnt = skb_shinfo(skb)->gso_segs; 677 txbuf->real_len += hdrlen * (txbuf->pkt_cnt - 1); 678 679 mss = skb_shinfo(skb)->gso_size & PCIE_DESC_TX_MSS_MASK; 680 txd->l4_offset = hdrlen; 681 txd->mss = cpu_to_le16(mss); 682 txd->flags |= PCIE_DESC_TX_LSO; 683 684 u64_stats_update_begin(&r_vec->tx_sync); 685 r_vec->tx_lso++; 686 u64_stats_update_end(&r_vec->tx_sync); 687 } 688 689 /** 690 * nfp_net_tx_csum() - Set TX CSUM offload flags in TX descriptor 691 * @dp: NFP Net data path struct 692 * @r_vec: per-ring structure 693 * @txbuf: Pointer to driver soft TX descriptor 694 * @txd: Pointer to TX descriptor 695 * @skb: Pointer to SKB 696 * 697 * This function sets the TX checksum flags in the TX descriptor based 698 * on the configuration and the protocol of the packet to be transmitted. 699 */ 700 static void nfp_net_tx_csum(struct nfp_net_dp *dp, 701 struct nfp_net_r_vector *r_vec, 702 struct nfp_net_tx_buf *txbuf, 703 struct nfp_net_tx_desc *txd, struct sk_buff *skb) 704 { 705 struct ipv6hdr *ipv6h; 706 struct iphdr *iph; 707 u8 l4_hdr; 708 709 if (!(dp->ctrl & NFP_NET_CFG_CTRL_TXCSUM)) 710 return; 711 712 if (skb->ip_summed != CHECKSUM_PARTIAL) 713 return; 714 715 txd->flags |= PCIE_DESC_TX_CSUM; 716 if (skb->encapsulation) 717 txd->flags |= PCIE_DESC_TX_ENCAP; 718 719 iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb); 720 ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb); 721 722 if (iph->version == 4) { 723 txd->flags |= PCIE_DESC_TX_IP4_CSUM; 724 l4_hdr = iph->protocol; 725 } else if (ipv6h->version == 6) { 726 l4_hdr = ipv6h->nexthdr; 727 } else { 728 nn_dp_warn(dp, "partial checksum but ipv=%x!\n", iph->version); 729 return; 730 } 731 732 switch (l4_hdr) { 733 case IPPROTO_TCP: 734 txd->flags |= PCIE_DESC_TX_TCP_CSUM; 735 break; 736 case IPPROTO_UDP: 737 txd->flags |= PCIE_DESC_TX_UDP_CSUM; 738 break; 739 default: 740 nn_dp_warn(dp, "partial checksum but l4 proto=%x!\n", l4_hdr); 741 return; 742 } 743 744 u64_stats_update_begin(&r_vec->tx_sync); 745 if (skb->encapsulation) 746 r_vec->hw_csum_tx_inner += txbuf->pkt_cnt; 747 else 748 r_vec->hw_csum_tx += txbuf->pkt_cnt; 749 u64_stats_update_end(&r_vec->tx_sync); 750 } 751 752 static void nfp_net_tx_xmit_more_flush(struct nfp_net_tx_ring *tx_ring) 753 { 754 wmb(); 755 nfp_qcp_wr_ptr_add(tx_ring->qcp_q, tx_ring->wr_ptr_add); 756 tx_ring->wr_ptr_add = 0; 757 } 758 759 /** 760 * nfp_net_tx() - Main transmit entry point 761 * @skb: SKB to transmit 762 * @netdev: netdev structure 763 * 764 * Return: NETDEV_TX_OK on success. 765 */ 766 static int nfp_net_tx(struct sk_buff *skb, struct net_device *netdev) 767 { 768 struct nfp_net *nn = netdev_priv(netdev); 769 const struct skb_frag_struct *frag; 770 struct nfp_net_tx_desc *txd, txdg; 771 struct nfp_net_tx_ring *tx_ring; 772 struct nfp_net_r_vector *r_vec; 773 struct nfp_net_tx_buf *txbuf; 774 struct netdev_queue *nd_q; 775 struct nfp_net_dp *dp; 776 dma_addr_t dma_addr; 777 unsigned int fsize; 778 int f, nr_frags; 779 int wr_idx; 780 u16 qidx; 781 782 dp = &nn->dp; 783 qidx = skb_get_queue_mapping(skb); 784 tx_ring = &dp->tx_rings[qidx]; 785 r_vec = tx_ring->r_vec; 786 nd_q = netdev_get_tx_queue(dp->netdev, qidx); 787 788 nr_frags = skb_shinfo(skb)->nr_frags; 789 790 if (unlikely(nfp_net_tx_full(tx_ring, nr_frags + 1))) { 791 nn_dp_warn(dp, "TX ring %d busy. wrp=%u rdp=%u\n", 792 qidx, tx_ring->wr_p, tx_ring->rd_p); 793 netif_tx_stop_queue(nd_q); 794 nfp_net_tx_xmit_more_flush(tx_ring); 795 u64_stats_update_begin(&r_vec->tx_sync); 796 r_vec->tx_busy++; 797 u64_stats_update_end(&r_vec->tx_sync); 798 return NETDEV_TX_BUSY; 799 } 800 801 /* Start with the head skbuf */ 802 dma_addr = dma_map_single(dp->dev, skb->data, skb_headlen(skb), 803 DMA_TO_DEVICE); 804 if (dma_mapping_error(dp->dev, dma_addr)) 805 goto err_free; 806 807 wr_idx = tx_ring->wr_p & (tx_ring->cnt - 1); 808 809 /* Stash the soft descriptor of the head then initialize it */ 810 txbuf = &tx_ring->txbufs[wr_idx]; 811 txbuf->skb = skb; 812 txbuf->dma_addr = dma_addr; 813 txbuf->fidx = -1; 814 txbuf->pkt_cnt = 1; 815 txbuf->real_len = skb->len; 816 817 /* Build TX descriptor */ 818 txd = &tx_ring->txds[wr_idx]; 819 txd->offset_eop = (nr_frags == 0) ? PCIE_DESC_TX_EOP : 0; 820 txd->dma_len = cpu_to_le16(skb_headlen(skb)); 821 nfp_desc_set_dma_addr(txd, dma_addr); 822 txd->data_len = cpu_to_le16(skb->len); 823 824 txd->flags = 0; 825 txd->mss = 0; 826 txd->l4_offset = 0; 827 828 nfp_net_tx_tso(r_vec, txbuf, txd, skb); 829 830 nfp_net_tx_csum(dp, r_vec, txbuf, txd, skb); 831 832 if (skb_vlan_tag_present(skb) && dp->ctrl & NFP_NET_CFG_CTRL_TXVLAN) { 833 txd->flags |= PCIE_DESC_TX_VLAN; 834 txd->vlan = cpu_to_le16(skb_vlan_tag_get(skb)); 835 } 836 837 /* Gather DMA */ 838 if (nr_frags > 0) { 839 /* all descs must match except for in addr, length and eop */ 840 txdg = *txd; 841 842 for (f = 0; f < nr_frags; f++) { 843 frag = &skb_shinfo(skb)->frags[f]; 844 fsize = skb_frag_size(frag); 845 846 dma_addr = skb_frag_dma_map(dp->dev, frag, 0, 847 fsize, DMA_TO_DEVICE); 848 if (dma_mapping_error(dp->dev, dma_addr)) 849 goto err_unmap; 850 851 wr_idx = (wr_idx + 1) & (tx_ring->cnt - 1); 852 tx_ring->txbufs[wr_idx].skb = skb; 853 tx_ring->txbufs[wr_idx].dma_addr = dma_addr; 854 tx_ring->txbufs[wr_idx].fidx = f; 855 856 txd = &tx_ring->txds[wr_idx]; 857 *txd = txdg; 858 txd->dma_len = cpu_to_le16(fsize); 859 nfp_desc_set_dma_addr(txd, dma_addr); 860 txd->offset_eop = 861 (f == nr_frags - 1) ? PCIE_DESC_TX_EOP : 0; 862 } 863 864 u64_stats_update_begin(&r_vec->tx_sync); 865 r_vec->tx_gather++; 866 u64_stats_update_end(&r_vec->tx_sync); 867 } 868 869 netdev_tx_sent_queue(nd_q, txbuf->real_len); 870 871 tx_ring->wr_p += nr_frags + 1; 872 if (nfp_net_tx_ring_should_stop(tx_ring)) 873 nfp_net_tx_ring_stop(nd_q, tx_ring); 874 875 tx_ring->wr_ptr_add += nr_frags + 1; 876 if (!skb->xmit_more || netif_xmit_stopped(nd_q)) 877 nfp_net_tx_xmit_more_flush(tx_ring); 878 879 skb_tx_timestamp(skb); 880 881 return NETDEV_TX_OK; 882 883 err_unmap: 884 --f; 885 while (f >= 0) { 886 frag = &skb_shinfo(skb)->frags[f]; 887 dma_unmap_page(dp->dev, tx_ring->txbufs[wr_idx].dma_addr, 888 skb_frag_size(frag), DMA_TO_DEVICE); 889 tx_ring->txbufs[wr_idx].skb = NULL; 890 tx_ring->txbufs[wr_idx].dma_addr = 0; 891 tx_ring->txbufs[wr_idx].fidx = -2; 892 wr_idx = wr_idx - 1; 893 if (wr_idx < 0) 894 wr_idx += tx_ring->cnt; 895 } 896 dma_unmap_single(dp->dev, tx_ring->txbufs[wr_idx].dma_addr, 897 skb_headlen(skb), DMA_TO_DEVICE); 898 tx_ring->txbufs[wr_idx].skb = NULL; 899 tx_ring->txbufs[wr_idx].dma_addr = 0; 900 tx_ring->txbufs[wr_idx].fidx = -2; 901 err_free: 902 nn_dp_warn(dp, "Failed to map DMA TX buffer\n"); 903 nfp_net_tx_xmit_more_flush(tx_ring); 904 u64_stats_update_begin(&r_vec->tx_sync); 905 r_vec->tx_errors++; 906 u64_stats_update_end(&r_vec->tx_sync); 907 dev_kfree_skb_any(skb); 908 return NETDEV_TX_OK; 909 } 910 911 /** 912 * nfp_net_tx_complete() - Handled completed TX packets 913 * @tx_ring: TX ring structure 914 * 915 * Return: Number of completed TX descriptors 916 */ 917 static void nfp_net_tx_complete(struct nfp_net_tx_ring *tx_ring) 918 { 919 struct nfp_net_r_vector *r_vec = tx_ring->r_vec; 920 struct nfp_net_dp *dp = &r_vec->nfp_net->dp; 921 const struct skb_frag_struct *frag; 922 struct netdev_queue *nd_q; 923 u32 done_pkts = 0, done_bytes = 0; 924 struct sk_buff *skb; 925 int todo, nr_frags; 926 u32 qcp_rd_p; 927 int fidx; 928 int idx; 929 930 if (tx_ring->wr_p == tx_ring->rd_p) 931 return; 932 933 /* Work out how many descriptors have been transmitted */ 934 qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q); 935 936 if (qcp_rd_p == tx_ring->qcp_rd_p) 937 return; 938 939 if (qcp_rd_p > tx_ring->qcp_rd_p) 940 todo = qcp_rd_p - tx_ring->qcp_rd_p; 941 else 942 todo = qcp_rd_p + tx_ring->cnt - tx_ring->qcp_rd_p; 943 944 while (todo--) { 945 idx = tx_ring->rd_p & (tx_ring->cnt - 1); 946 tx_ring->rd_p++; 947 948 skb = tx_ring->txbufs[idx].skb; 949 if (!skb) 950 continue; 951 952 nr_frags = skb_shinfo(skb)->nr_frags; 953 fidx = tx_ring->txbufs[idx].fidx; 954 955 if (fidx == -1) { 956 /* unmap head */ 957 dma_unmap_single(dp->dev, tx_ring->txbufs[idx].dma_addr, 958 skb_headlen(skb), DMA_TO_DEVICE); 959 960 done_pkts += tx_ring->txbufs[idx].pkt_cnt; 961 done_bytes += tx_ring->txbufs[idx].real_len; 962 } else { 963 /* unmap fragment */ 964 frag = &skb_shinfo(skb)->frags[fidx]; 965 dma_unmap_page(dp->dev, tx_ring->txbufs[idx].dma_addr, 966 skb_frag_size(frag), DMA_TO_DEVICE); 967 } 968 969 /* check for last gather fragment */ 970 if (fidx == nr_frags - 1) 971 dev_kfree_skb_any(skb); 972 973 tx_ring->txbufs[idx].dma_addr = 0; 974 tx_ring->txbufs[idx].skb = NULL; 975 tx_ring->txbufs[idx].fidx = -2; 976 } 977 978 tx_ring->qcp_rd_p = qcp_rd_p; 979 980 u64_stats_update_begin(&r_vec->tx_sync); 981 r_vec->tx_bytes += done_bytes; 982 r_vec->tx_pkts += done_pkts; 983 u64_stats_update_end(&r_vec->tx_sync); 984 985 nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx); 986 netdev_tx_completed_queue(nd_q, done_pkts, done_bytes); 987 if (nfp_net_tx_ring_should_wake(tx_ring)) { 988 /* Make sure TX thread will see updated tx_ring->rd_p */ 989 smp_mb(); 990 991 if (unlikely(netif_tx_queue_stopped(nd_q))) 992 netif_tx_wake_queue(nd_q); 993 } 994 995 WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt, 996 "TX ring corruption rd_p=%u wr_p=%u cnt=%u\n", 997 tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt); 998 } 999 1000 static void nfp_net_xdp_complete(struct nfp_net_tx_ring *tx_ring) 1001 { 1002 struct nfp_net_r_vector *r_vec = tx_ring->r_vec; 1003 u32 done_pkts = 0, done_bytes = 0; 1004 int idx, todo; 1005 u32 qcp_rd_p; 1006 1007 if (tx_ring->wr_p == tx_ring->rd_p) 1008 return; 1009 1010 /* Work out how many descriptors have been transmitted */ 1011 qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q); 1012 1013 if (qcp_rd_p == tx_ring->qcp_rd_p) 1014 return; 1015 1016 if (qcp_rd_p > tx_ring->qcp_rd_p) 1017 todo = qcp_rd_p - tx_ring->qcp_rd_p; 1018 else 1019 todo = qcp_rd_p + tx_ring->cnt - tx_ring->qcp_rd_p; 1020 1021 done_pkts = todo; 1022 while (todo--) { 1023 idx = tx_ring->rd_p & (tx_ring->cnt - 1); 1024 tx_ring->rd_p++; 1025 1026 done_bytes += tx_ring->txbufs[idx].real_len; 1027 } 1028 1029 tx_ring->qcp_rd_p = qcp_rd_p; 1030 1031 u64_stats_update_begin(&r_vec->tx_sync); 1032 r_vec->tx_bytes += done_bytes; 1033 r_vec->tx_pkts += done_pkts; 1034 u64_stats_update_end(&r_vec->tx_sync); 1035 1036 WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt, 1037 "TX ring corruption rd_p=%u wr_p=%u cnt=%u\n", 1038 tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt); 1039 } 1040 1041 /** 1042 * nfp_net_tx_ring_reset() - Free any untransmitted buffers and reset pointers 1043 * @dp: NFP Net data path struct 1044 * @tx_ring: TX ring structure 1045 * 1046 * Assumes that the device is stopped 1047 */ 1048 static void 1049 nfp_net_tx_ring_reset(struct nfp_net_dp *dp, struct nfp_net_tx_ring *tx_ring) 1050 { 1051 const struct skb_frag_struct *frag; 1052 struct netdev_queue *nd_q; 1053 1054 while (!tx_ring->is_xdp && tx_ring->rd_p != tx_ring->wr_p) { 1055 struct nfp_net_tx_buf *tx_buf; 1056 struct sk_buff *skb; 1057 int idx, nr_frags; 1058 1059 idx = tx_ring->rd_p & (tx_ring->cnt - 1); 1060 tx_buf = &tx_ring->txbufs[idx]; 1061 1062 skb = tx_ring->txbufs[idx].skb; 1063 nr_frags = skb_shinfo(skb)->nr_frags; 1064 1065 if (tx_buf->fidx == -1) { 1066 /* unmap head */ 1067 dma_unmap_single(dp->dev, tx_buf->dma_addr, 1068 skb_headlen(skb), DMA_TO_DEVICE); 1069 } else { 1070 /* unmap fragment */ 1071 frag = &skb_shinfo(skb)->frags[tx_buf->fidx]; 1072 dma_unmap_page(dp->dev, tx_buf->dma_addr, 1073 skb_frag_size(frag), DMA_TO_DEVICE); 1074 } 1075 1076 /* check for last gather fragment */ 1077 if (tx_buf->fidx == nr_frags - 1) 1078 dev_kfree_skb_any(skb); 1079 1080 tx_buf->dma_addr = 0; 1081 tx_buf->skb = NULL; 1082 tx_buf->fidx = -2; 1083 1084 tx_ring->qcp_rd_p++; 1085 tx_ring->rd_p++; 1086 } 1087 1088 memset(tx_ring->txds, 0, sizeof(*tx_ring->txds) * tx_ring->cnt); 1089 tx_ring->wr_p = 0; 1090 tx_ring->rd_p = 0; 1091 tx_ring->qcp_rd_p = 0; 1092 tx_ring->wr_ptr_add = 0; 1093 1094 if (tx_ring->is_xdp) 1095 return; 1096 1097 nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx); 1098 netdev_tx_reset_queue(nd_q); 1099 } 1100 1101 static void nfp_net_tx_timeout(struct net_device *netdev) 1102 { 1103 struct nfp_net *nn = netdev_priv(netdev); 1104 int i; 1105 1106 for (i = 0; i < nn->dp.netdev->real_num_tx_queues; i++) { 1107 if (!netif_tx_queue_stopped(netdev_get_tx_queue(netdev, i))) 1108 continue; 1109 nn_warn(nn, "TX timeout on ring: %d\n", i); 1110 } 1111 nn_warn(nn, "TX watchdog timeout\n"); 1112 } 1113 1114 /* Receive processing 1115 */ 1116 static unsigned int 1117 nfp_net_calc_fl_bufsz(struct nfp_net_dp *dp) 1118 { 1119 unsigned int fl_bufsz; 1120 1121 fl_bufsz = NFP_NET_RX_BUF_HEADROOM; 1122 fl_bufsz += dp->rx_dma_off; 1123 if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC) 1124 fl_bufsz += NFP_NET_MAX_PREPEND; 1125 else 1126 fl_bufsz += dp->rx_offset; 1127 fl_bufsz += ETH_HLEN + VLAN_HLEN * 2 + dp->mtu; 1128 1129 fl_bufsz = SKB_DATA_ALIGN(fl_bufsz); 1130 fl_bufsz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 1131 1132 return fl_bufsz; 1133 } 1134 1135 static void 1136 nfp_net_free_frag(void *frag, bool xdp) 1137 { 1138 if (!xdp) 1139 skb_free_frag(frag); 1140 else 1141 __free_page(virt_to_page(frag)); 1142 } 1143 1144 /** 1145 * nfp_net_rx_alloc_one() - Allocate and map page frag for RX 1146 * @dp: NFP Net data path struct 1147 * @dma_addr: Pointer to storage for DMA address (output param) 1148 * 1149 * This function will allcate a new page frag, map it for DMA. 1150 * 1151 * Return: allocated page frag or NULL on failure. 1152 */ 1153 static void *nfp_net_rx_alloc_one(struct nfp_net_dp *dp, dma_addr_t *dma_addr) 1154 { 1155 void *frag; 1156 1157 if (!dp->xdp_prog) 1158 frag = netdev_alloc_frag(dp->fl_bufsz); 1159 else 1160 frag = page_address(alloc_page(GFP_KERNEL | __GFP_COLD)); 1161 if (!frag) { 1162 nn_dp_warn(dp, "Failed to alloc receive page frag\n"); 1163 return NULL; 1164 } 1165 1166 *dma_addr = nfp_net_dma_map_rx(dp, frag); 1167 if (dma_mapping_error(dp->dev, *dma_addr)) { 1168 nfp_net_free_frag(frag, dp->xdp_prog); 1169 nn_dp_warn(dp, "Failed to map DMA RX buffer\n"); 1170 return NULL; 1171 } 1172 1173 return frag; 1174 } 1175 1176 static void *nfp_net_napi_alloc_one(struct nfp_net_dp *dp, dma_addr_t *dma_addr) 1177 { 1178 void *frag; 1179 1180 if (!dp->xdp_prog) 1181 frag = napi_alloc_frag(dp->fl_bufsz); 1182 else 1183 frag = page_address(alloc_page(GFP_ATOMIC | __GFP_COLD)); 1184 if (!frag) { 1185 nn_dp_warn(dp, "Failed to alloc receive page frag\n"); 1186 return NULL; 1187 } 1188 1189 *dma_addr = nfp_net_dma_map_rx(dp, frag); 1190 if (dma_mapping_error(dp->dev, *dma_addr)) { 1191 nfp_net_free_frag(frag, dp->xdp_prog); 1192 nn_dp_warn(dp, "Failed to map DMA RX buffer\n"); 1193 return NULL; 1194 } 1195 1196 return frag; 1197 } 1198 1199 /** 1200 * nfp_net_rx_give_one() - Put mapped skb on the software and hardware rings 1201 * @dp: NFP Net data path struct 1202 * @rx_ring: RX ring structure 1203 * @frag: page fragment buffer 1204 * @dma_addr: DMA address of skb mapping 1205 */ 1206 static void nfp_net_rx_give_one(const struct nfp_net_dp *dp, 1207 struct nfp_net_rx_ring *rx_ring, 1208 void *frag, dma_addr_t dma_addr) 1209 { 1210 unsigned int wr_idx; 1211 1212 wr_idx = rx_ring->wr_p & (rx_ring->cnt - 1); 1213 1214 nfp_net_dma_sync_dev_rx(dp, dma_addr); 1215 1216 /* Stash SKB and DMA address away */ 1217 rx_ring->rxbufs[wr_idx].frag = frag; 1218 rx_ring->rxbufs[wr_idx].dma_addr = dma_addr; 1219 1220 /* Fill freelist descriptor */ 1221 rx_ring->rxds[wr_idx].fld.reserved = 0; 1222 rx_ring->rxds[wr_idx].fld.meta_len_dd = 0; 1223 nfp_desc_set_dma_addr(&rx_ring->rxds[wr_idx].fld, 1224 dma_addr + dp->rx_dma_off); 1225 1226 rx_ring->wr_p++; 1227 rx_ring->wr_ptr_add++; 1228 if (rx_ring->wr_ptr_add >= NFP_NET_FL_BATCH) { 1229 /* Update write pointer of the freelist queue. Make 1230 * sure all writes are flushed before telling the hardware. 1231 */ 1232 wmb(); 1233 nfp_qcp_wr_ptr_add(rx_ring->qcp_fl, rx_ring->wr_ptr_add); 1234 rx_ring->wr_ptr_add = 0; 1235 } 1236 } 1237 1238 /** 1239 * nfp_net_rx_ring_reset() - Reflect in SW state of freelist after disable 1240 * @rx_ring: RX ring structure 1241 * 1242 * Warning: Do *not* call if ring buffers were never put on the FW freelist 1243 * (i.e. device was not enabled)! 1244 */ 1245 static void nfp_net_rx_ring_reset(struct nfp_net_rx_ring *rx_ring) 1246 { 1247 unsigned int wr_idx, last_idx; 1248 1249 /* Move the empty entry to the end of the list */ 1250 wr_idx = rx_ring->wr_p & (rx_ring->cnt - 1); 1251 last_idx = rx_ring->cnt - 1; 1252 rx_ring->rxbufs[wr_idx].dma_addr = rx_ring->rxbufs[last_idx].dma_addr; 1253 rx_ring->rxbufs[wr_idx].frag = rx_ring->rxbufs[last_idx].frag; 1254 rx_ring->rxbufs[last_idx].dma_addr = 0; 1255 rx_ring->rxbufs[last_idx].frag = NULL; 1256 1257 memset(rx_ring->rxds, 0, sizeof(*rx_ring->rxds) * rx_ring->cnt); 1258 rx_ring->wr_p = 0; 1259 rx_ring->rd_p = 0; 1260 rx_ring->wr_ptr_add = 0; 1261 } 1262 1263 /** 1264 * nfp_net_rx_ring_bufs_free() - Free any buffers currently on the RX ring 1265 * @dp: NFP Net data path struct 1266 * @rx_ring: RX ring to remove buffers from 1267 * 1268 * Assumes that the device is stopped and buffers are in [0, ring->cnt - 1) 1269 * entries. After device is disabled nfp_net_rx_ring_reset() must be called 1270 * to restore required ring geometry. 1271 */ 1272 static void 1273 nfp_net_rx_ring_bufs_free(struct nfp_net_dp *dp, 1274 struct nfp_net_rx_ring *rx_ring) 1275 { 1276 unsigned int i; 1277 1278 for (i = 0; i < rx_ring->cnt - 1; i++) { 1279 /* NULL skb can only happen when initial filling of the ring 1280 * fails to allocate enough buffers and calls here to free 1281 * already allocated ones. 1282 */ 1283 if (!rx_ring->rxbufs[i].frag) 1284 continue; 1285 1286 nfp_net_dma_unmap_rx(dp, rx_ring->rxbufs[i].dma_addr); 1287 nfp_net_free_frag(rx_ring->rxbufs[i].frag, dp->xdp_prog); 1288 rx_ring->rxbufs[i].dma_addr = 0; 1289 rx_ring->rxbufs[i].frag = NULL; 1290 } 1291 } 1292 1293 /** 1294 * nfp_net_rx_ring_bufs_alloc() - Fill RX ring with buffers (don't give to FW) 1295 * @dp: NFP Net data path struct 1296 * @rx_ring: RX ring to remove buffers from 1297 */ 1298 static int 1299 nfp_net_rx_ring_bufs_alloc(struct nfp_net_dp *dp, 1300 struct nfp_net_rx_ring *rx_ring) 1301 { 1302 struct nfp_net_rx_buf *rxbufs; 1303 unsigned int i; 1304 1305 rxbufs = rx_ring->rxbufs; 1306 1307 for (i = 0; i < rx_ring->cnt - 1; i++) { 1308 rxbufs[i].frag = nfp_net_rx_alloc_one(dp, &rxbufs[i].dma_addr); 1309 if (!rxbufs[i].frag) { 1310 nfp_net_rx_ring_bufs_free(dp, rx_ring); 1311 return -ENOMEM; 1312 } 1313 } 1314 1315 return 0; 1316 } 1317 1318 /** 1319 * nfp_net_rx_ring_fill_freelist() - Give buffers from the ring to FW 1320 * @dp: NFP Net data path struct 1321 * @rx_ring: RX ring to fill 1322 */ 1323 static void 1324 nfp_net_rx_ring_fill_freelist(struct nfp_net_dp *dp, 1325 struct nfp_net_rx_ring *rx_ring) 1326 { 1327 unsigned int i; 1328 1329 for (i = 0; i < rx_ring->cnt - 1; i++) 1330 nfp_net_rx_give_one(dp, rx_ring, rx_ring->rxbufs[i].frag, 1331 rx_ring->rxbufs[i].dma_addr); 1332 } 1333 1334 /** 1335 * nfp_net_rx_csum_has_errors() - group check if rxd has any csum errors 1336 * @flags: RX descriptor flags field in CPU byte order 1337 */ 1338 static int nfp_net_rx_csum_has_errors(u16 flags) 1339 { 1340 u16 csum_all_checked, csum_all_ok; 1341 1342 csum_all_checked = flags & __PCIE_DESC_RX_CSUM_ALL; 1343 csum_all_ok = flags & __PCIE_DESC_RX_CSUM_ALL_OK; 1344 1345 return csum_all_checked != (csum_all_ok << PCIE_DESC_RX_CSUM_OK_SHIFT); 1346 } 1347 1348 /** 1349 * nfp_net_rx_csum() - set SKB checksum field based on RX descriptor flags 1350 * @dp: NFP Net data path struct 1351 * @r_vec: per-ring structure 1352 * @rxd: Pointer to RX descriptor 1353 * @skb: Pointer to SKB 1354 */ 1355 static void nfp_net_rx_csum(struct nfp_net_dp *dp, 1356 struct nfp_net_r_vector *r_vec, 1357 struct nfp_net_rx_desc *rxd, struct sk_buff *skb) 1358 { 1359 skb_checksum_none_assert(skb); 1360 1361 if (!(dp->netdev->features & NETIF_F_RXCSUM)) 1362 return; 1363 1364 if (nfp_net_rx_csum_has_errors(le16_to_cpu(rxd->rxd.flags))) { 1365 u64_stats_update_begin(&r_vec->rx_sync); 1366 r_vec->hw_csum_rx_error++; 1367 u64_stats_update_end(&r_vec->rx_sync); 1368 return; 1369 } 1370 1371 /* Assume that the firmware will never report inner CSUM_OK unless outer 1372 * L4 headers were successfully parsed. FW will always report zero UDP 1373 * checksum as CSUM_OK. 1374 */ 1375 if (rxd->rxd.flags & PCIE_DESC_RX_TCP_CSUM_OK || 1376 rxd->rxd.flags & PCIE_DESC_RX_UDP_CSUM_OK) { 1377 __skb_incr_checksum_unnecessary(skb); 1378 u64_stats_update_begin(&r_vec->rx_sync); 1379 r_vec->hw_csum_rx_ok++; 1380 u64_stats_update_end(&r_vec->rx_sync); 1381 } 1382 1383 if (rxd->rxd.flags & PCIE_DESC_RX_I_TCP_CSUM_OK || 1384 rxd->rxd.flags & PCIE_DESC_RX_I_UDP_CSUM_OK) { 1385 __skb_incr_checksum_unnecessary(skb); 1386 u64_stats_update_begin(&r_vec->rx_sync); 1387 r_vec->hw_csum_rx_inner_ok++; 1388 u64_stats_update_end(&r_vec->rx_sync); 1389 } 1390 } 1391 1392 static void 1393 nfp_net_set_hash(struct net_device *netdev, struct nfp_meta_parsed *meta, 1394 unsigned int type, __be32 *hash) 1395 { 1396 if (!(netdev->features & NETIF_F_RXHASH)) 1397 return; 1398 1399 switch (type) { 1400 case NFP_NET_RSS_IPV4: 1401 case NFP_NET_RSS_IPV6: 1402 case NFP_NET_RSS_IPV6_EX: 1403 meta->hash_type = PKT_HASH_TYPE_L3; 1404 break; 1405 default: 1406 meta->hash_type = PKT_HASH_TYPE_L4; 1407 break; 1408 } 1409 1410 meta->hash = get_unaligned_be32(hash); 1411 } 1412 1413 static void 1414 nfp_net_set_hash_desc(struct net_device *netdev, struct nfp_meta_parsed *meta, 1415 void *data, struct nfp_net_rx_desc *rxd) 1416 { 1417 struct nfp_net_rx_hash *rx_hash = data; 1418 1419 if (!(rxd->rxd.flags & PCIE_DESC_RX_RSS)) 1420 return; 1421 1422 nfp_net_set_hash(netdev, meta, get_unaligned_be32(&rx_hash->hash_type), 1423 &rx_hash->hash); 1424 } 1425 1426 static void * 1427 nfp_net_parse_meta(struct net_device *netdev, struct nfp_meta_parsed *meta, 1428 void *data, int meta_len) 1429 { 1430 u32 meta_info; 1431 1432 meta_info = get_unaligned_be32(data); 1433 data += 4; 1434 1435 while (meta_info) { 1436 switch (meta_info & NFP_NET_META_FIELD_MASK) { 1437 case NFP_NET_META_HASH: 1438 meta_info >>= NFP_NET_META_FIELD_SIZE; 1439 nfp_net_set_hash(netdev, meta, 1440 meta_info & NFP_NET_META_FIELD_MASK, 1441 (__be32 *)data); 1442 data += 4; 1443 break; 1444 case NFP_NET_META_MARK: 1445 meta->mark = get_unaligned_be32(data); 1446 data += 4; 1447 break; 1448 default: 1449 return NULL; 1450 } 1451 1452 meta_info >>= NFP_NET_META_FIELD_SIZE; 1453 } 1454 1455 return data; 1456 } 1457 1458 static void 1459 nfp_net_rx_drop(const struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec, 1460 struct nfp_net_rx_ring *rx_ring, struct nfp_net_rx_buf *rxbuf, 1461 struct sk_buff *skb) 1462 { 1463 u64_stats_update_begin(&r_vec->rx_sync); 1464 r_vec->rx_drops++; 1465 u64_stats_update_end(&r_vec->rx_sync); 1466 1467 /* skb is build based on the frag, free_skb() would free the frag 1468 * so to be able to reuse it we need an extra ref. 1469 */ 1470 if (skb && rxbuf && skb->head == rxbuf->frag) 1471 page_ref_inc(virt_to_head_page(rxbuf->frag)); 1472 if (rxbuf) 1473 nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag, rxbuf->dma_addr); 1474 if (skb) 1475 dev_kfree_skb_any(skb); 1476 } 1477 1478 static bool 1479 nfp_net_tx_xdp_buf(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring, 1480 struct nfp_net_tx_ring *tx_ring, 1481 struct nfp_net_rx_buf *rxbuf, unsigned int dma_off, 1482 unsigned int pkt_len) 1483 { 1484 struct nfp_net_tx_buf *txbuf; 1485 struct nfp_net_tx_desc *txd; 1486 int wr_idx; 1487 1488 if (unlikely(nfp_net_tx_full(tx_ring, 1))) { 1489 nfp_net_rx_drop(dp, rx_ring->r_vec, rx_ring, rxbuf, NULL); 1490 return false; 1491 } 1492 1493 wr_idx = tx_ring->wr_p & (tx_ring->cnt - 1); 1494 1495 /* Stash the soft descriptor of the head then initialize it */ 1496 txbuf = &tx_ring->txbufs[wr_idx]; 1497 1498 nfp_net_rx_give_one(dp, rx_ring, txbuf->frag, txbuf->dma_addr); 1499 1500 txbuf->frag = rxbuf->frag; 1501 txbuf->dma_addr = rxbuf->dma_addr; 1502 txbuf->fidx = -1; 1503 txbuf->pkt_cnt = 1; 1504 txbuf->real_len = pkt_len; 1505 1506 dma_sync_single_for_device(dp->dev, rxbuf->dma_addr + dma_off, 1507 pkt_len, DMA_BIDIRECTIONAL); 1508 1509 /* Build TX descriptor */ 1510 txd = &tx_ring->txds[wr_idx]; 1511 txd->offset_eop = PCIE_DESC_TX_EOP; 1512 txd->dma_len = cpu_to_le16(pkt_len); 1513 nfp_desc_set_dma_addr(txd, rxbuf->dma_addr + dma_off); 1514 txd->data_len = cpu_to_le16(pkt_len); 1515 1516 txd->flags = 0; 1517 txd->mss = 0; 1518 txd->l4_offset = 0; 1519 1520 tx_ring->wr_p++; 1521 tx_ring->wr_ptr_add++; 1522 return true; 1523 } 1524 1525 static int nfp_net_run_xdp(struct bpf_prog *prog, void *data, void *hard_start, 1526 unsigned int *off, unsigned int *len) 1527 { 1528 struct xdp_buff xdp; 1529 void *orig_data; 1530 int ret; 1531 1532 xdp.data_hard_start = hard_start; 1533 xdp.data = data + *off; 1534 xdp.data_end = data + *off + *len; 1535 1536 orig_data = xdp.data; 1537 ret = bpf_prog_run_xdp(prog, &xdp); 1538 1539 *len -= xdp.data - orig_data; 1540 *off += xdp.data - orig_data; 1541 1542 return ret; 1543 } 1544 1545 /** 1546 * nfp_net_rx() - receive up to @budget packets on @rx_ring 1547 * @rx_ring: RX ring to receive from 1548 * @budget: NAPI budget 1549 * 1550 * Note, this function is separated out from the napi poll function to 1551 * more cleanly separate packet receive code from other bookkeeping 1552 * functions performed in the napi poll function. 1553 * 1554 * Return: Number of packets received. 1555 */ 1556 static int nfp_net_rx(struct nfp_net_rx_ring *rx_ring, int budget) 1557 { 1558 struct nfp_net_r_vector *r_vec = rx_ring->r_vec; 1559 struct nfp_net_dp *dp = &r_vec->nfp_net->dp; 1560 struct nfp_net_tx_ring *tx_ring; 1561 struct bpf_prog *xdp_prog; 1562 unsigned int true_bufsz; 1563 struct sk_buff *skb; 1564 int pkts_polled = 0; 1565 int idx; 1566 1567 rcu_read_lock(); 1568 xdp_prog = READ_ONCE(dp->xdp_prog); 1569 true_bufsz = xdp_prog ? PAGE_SIZE : dp->fl_bufsz; 1570 tx_ring = r_vec->xdp_ring; 1571 1572 while (pkts_polled < budget) { 1573 unsigned int meta_len, data_len, meta_off, pkt_len, pkt_off; 1574 struct nfp_net_rx_buf *rxbuf; 1575 struct nfp_net_rx_desc *rxd; 1576 struct nfp_meta_parsed meta; 1577 dma_addr_t new_dma_addr; 1578 void *new_frag; 1579 1580 idx = rx_ring->rd_p & (rx_ring->cnt - 1); 1581 1582 rxd = &rx_ring->rxds[idx]; 1583 if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD)) 1584 break; 1585 1586 /* Memory barrier to ensure that we won't do other reads 1587 * before the DD bit. 1588 */ 1589 dma_rmb(); 1590 1591 memset(&meta, 0, sizeof(meta)); 1592 1593 rx_ring->rd_p++; 1594 pkts_polled++; 1595 1596 rxbuf = &rx_ring->rxbufs[idx]; 1597 /* < meta_len > 1598 * <-- [rx_offset] --> 1599 * --------------------------------------------------------- 1600 * | [XX] | metadata | packet | XXXX | 1601 * --------------------------------------------------------- 1602 * <---------------- data_len ---------------> 1603 * 1604 * The rx_offset is fixed for all packets, the meta_len can vary 1605 * on a packet by packet basis. If rx_offset is set to zero 1606 * (_RX_OFFSET_DYNAMIC) metadata starts at the beginning of the 1607 * buffer and is immediately followed by the packet (no [XX]). 1608 */ 1609 meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK; 1610 data_len = le16_to_cpu(rxd->rxd.data_len); 1611 pkt_len = data_len - meta_len; 1612 1613 pkt_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_dma_off; 1614 if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC) 1615 pkt_off += meta_len; 1616 else 1617 pkt_off += dp->rx_offset; 1618 meta_off = pkt_off - meta_len; 1619 1620 /* Stats update */ 1621 u64_stats_update_begin(&r_vec->rx_sync); 1622 r_vec->rx_pkts++; 1623 r_vec->rx_bytes += pkt_len; 1624 u64_stats_update_end(&r_vec->rx_sync); 1625 1626 if (unlikely(meta_len > NFP_NET_MAX_PREPEND || 1627 (dp->rx_offset && meta_len > dp->rx_offset))) { 1628 nn_dp_warn(dp, "oversized RX packet metadata %u\n", 1629 meta_len); 1630 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL); 1631 continue; 1632 } 1633 1634 nfp_net_dma_sync_cpu_rx(dp, rxbuf->dma_addr + meta_off, 1635 data_len); 1636 1637 if (!dp->chained_metadata_format) { 1638 nfp_net_set_hash_desc(dp->netdev, &meta, 1639 rxbuf->frag + meta_off, rxd); 1640 } else if (meta_len) { 1641 void *end; 1642 1643 end = nfp_net_parse_meta(dp->netdev, &meta, 1644 rxbuf->frag + meta_off, 1645 meta_len); 1646 if (unlikely(end != rxbuf->frag + pkt_off)) { 1647 nn_dp_warn(dp, "invalid RX packet metadata\n"); 1648 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, 1649 NULL); 1650 continue; 1651 } 1652 } 1653 1654 if (xdp_prog && !(rxd->rxd.flags & PCIE_DESC_RX_BPF && 1655 dp->bpf_offload_xdp)) { 1656 unsigned int dma_off; 1657 void *hard_start; 1658 int act; 1659 1660 hard_start = rxbuf->frag + NFP_NET_RX_BUF_HEADROOM; 1661 1662 act = nfp_net_run_xdp(xdp_prog, rxbuf->frag, hard_start, 1663 &pkt_off, &pkt_len); 1664 switch (act) { 1665 case XDP_PASS: 1666 break; 1667 case XDP_TX: 1668 dma_off = pkt_off - NFP_NET_RX_BUF_HEADROOM; 1669 if (unlikely(!nfp_net_tx_xdp_buf(dp, rx_ring, 1670 tx_ring, rxbuf, 1671 dma_off, 1672 pkt_len))) 1673 trace_xdp_exception(dp->netdev, 1674 xdp_prog, act); 1675 continue; 1676 default: 1677 bpf_warn_invalid_xdp_action(act); 1678 case XDP_ABORTED: 1679 trace_xdp_exception(dp->netdev, xdp_prog, act); 1680 case XDP_DROP: 1681 nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag, 1682 rxbuf->dma_addr); 1683 continue; 1684 } 1685 } 1686 1687 skb = build_skb(rxbuf->frag, true_bufsz); 1688 if (unlikely(!skb)) { 1689 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL); 1690 continue; 1691 } 1692 new_frag = nfp_net_napi_alloc_one(dp, &new_dma_addr); 1693 if (unlikely(!new_frag)) { 1694 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, skb); 1695 continue; 1696 } 1697 1698 nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr); 1699 1700 nfp_net_rx_give_one(dp, rx_ring, new_frag, new_dma_addr); 1701 1702 skb_reserve(skb, pkt_off); 1703 skb_put(skb, pkt_len); 1704 1705 skb->mark = meta.mark; 1706 skb_set_hash(skb, meta.hash, meta.hash_type); 1707 1708 skb_record_rx_queue(skb, rx_ring->idx); 1709 skb->protocol = eth_type_trans(skb, dp->netdev); 1710 1711 nfp_net_rx_csum(dp, r_vec, rxd, skb); 1712 1713 if (rxd->rxd.flags & PCIE_DESC_RX_VLAN) 1714 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 1715 le16_to_cpu(rxd->rxd.vlan)); 1716 1717 napi_gro_receive(&rx_ring->r_vec->napi, skb); 1718 } 1719 1720 if (xdp_prog && tx_ring->wr_ptr_add) 1721 nfp_net_tx_xmit_more_flush(tx_ring); 1722 rcu_read_unlock(); 1723 1724 return pkts_polled; 1725 } 1726 1727 /** 1728 * nfp_net_poll() - napi poll function 1729 * @napi: NAPI structure 1730 * @budget: NAPI budget 1731 * 1732 * Return: number of packets polled. 1733 */ 1734 static int nfp_net_poll(struct napi_struct *napi, int budget) 1735 { 1736 struct nfp_net_r_vector *r_vec = 1737 container_of(napi, struct nfp_net_r_vector, napi); 1738 unsigned int pkts_polled = 0; 1739 1740 if (r_vec->tx_ring) 1741 nfp_net_tx_complete(r_vec->tx_ring); 1742 if (r_vec->rx_ring) { 1743 pkts_polled = nfp_net_rx(r_vec->rx_ring, budget); 1744 if (r_vec->xdp_ring) 1745 nfp_net_xdp_complete(r_vec->xdp_ring); 1746 } 1747 1748 if (pkts_polled < budget) 1749 if (napi_complete_done(napi, pkts_polled)) 1750 nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry); 1751 1752 return pkts_polled; 1753 } 1754 1755 /* Setup and Configuration 1756 */ 1757 1758 /** 1759 * nfp_net_tx_ring_free() - Free resources allocated to a TX ring 1760 * @tx_ring: TX ring to free 1761 */ 1762 static void nfp_net_tx_ring_free(struct nfp_net_tx_ring *tx_ring) 1763 { 1764 struct nfp_net_r_vector *r_vec = tx_ring->r_vec; 1765 struct nfp_net_dp *dp = &r_vec->nfp_net->dp; 1766 1767 kfree(tx_ring->txbufs); 1768 1769 if (tx_ring->txds) 1770 dma_free_coherent(dp->dev, tx_ring->size, 1771 tx_ring->txds, tx_ring->dma); 1772 1773 tx_ring->cnt = 0; 1774 tx_ring->txbufs = NULL; 1775 tx_ring->txds = NULL; 1776 tx_ring->dma = 0; 1777 tx_ring->size = 0; 1778 } 1779 1780 /** 1781 * nfp_net_tx_ring_alloc() - Allocate resource for a TX ring 1782 * @dp: NFP Net data path struct 1783 * @tx_ring: TX Ring structure to allocate 1784 * 1785 * Return: 0 on success, negative errno otherwise. 1786 */ 1787 static int 1788 nfp_net_tx_ring_alloc(struct nfp_net_dp *dp, struct nfp_net_tx_ring *tx_ring) 1789 { 1790 struct nfp_net_r_vector *r_vec = tx_ring->r_vec; 1791 int sz; 1792 1793 tx_ring->cnt = dp->txd_cnt; 1794 1795 tx_ring->size = sizeof(*tx_ring->txds) * tx_ring->cnt; 1796 tx_ring->txds = dma_zalloc_coherent(dp->dev, tx_ring->size, 1797 &tx_ring->dma, GFP_KERNEL); 1798 if (!tx_ring->txds) 1799 goto err_alloc; 1800 1801 sz = sizeof(*tx_ring->txbufs) * tx_ring->cnt; 1802 tx_ring->txbufs = kzalloc(sz, GFP_KERNEL); 1803 if (!tx_ring->txbufs) 1804 goto err_alloc; 1805 1806 if (!tx_ring->is_xdp) 1807 netif_set_xps_queue(dp->netdev, &r_vec->affinity_mask, 1808 tx_ring->idx); 1809 1810 return 0; 1811 1812 err_alloc: 1813 nfp_net_tx_ring_free(tx_ring); 1814 return -ENOMEM; 1815 } 1816 1817 static void 1818 nfp_net_tx_ring_bufs_free(struct nfp_net_dp *dp, 1819 struct nfp_net_tx_ring *tx_ring) 1820 { 1821 unsigned int i; 1822 1823 if (!tx_ring->is_xdp) 1824 return; 1825 1826 for (i = 0; i < tx_ring->cnt; i++) { 1827 if (!tx_ring->txbufs[i].frag) 1828 return; 1829 1830 nfp_net_dma_unmap_rx(dp, tx_ring->txbufs[i].dma_addr); 1831 __free_page(virt_to_page(tx_ring->txbufs[i].frag)); 1832 } 1833 } 1834 1835 static int 1836 nfp_net_tx_ring_bufs_alloc(struct nfp_net_dp *dp, 1837 struct nfp_net_tx_ring *tx_ring) 1838 { 1839 struct nfp_net_tx_buf *txbufs = tx_ring->txbufs; 1840 unsigned int i; 1841 1842 if (!tx_ring->is_xdp) 1843 return 0; 1844 1845 for (i = 0; i < tx_ring->cnt; i++) { 1846 txbufs[i].frag = nfp_net_rx_alloc_one(dp, &txbufs[i].dma_addr); 1847 if (!txbufs[i].frag) { 1848 nfp_net_tx_ring_bufs_free(dp, tx_ring); 1849 return -ENOMEM; 1850 } 1851 } 1852 1853 return 0; 1854 } 1855 1856 static int nfp_net_tx_rings_prepare(struct nfp_net *nn, struct nfp_net_dp *dp) 1857 { 1858 unsigned int r; 1859 1860 dp->tx_rings = kcalloc(dp->num_tx_rings, sizeof(*dp->tx_rings), 1861 GFP_KERNEL); 1862 if (!dp->tx_rings) 1863 return -ENOMEM; 1864 1865 for (r = 0; r < dp->num_tx_rings; r++) { 1866 int bias = 0; 1867 1868 if (r >= dp->num_stack_tx_rings) 1869 bias = dp->num_stack_tx_rings; 1870 1871 nfp_net_tx_ring_init(&dp->tx_rings[r], &nn->r_vecs[r - bias], 1872 r, bias); 1873 1874 if (nfp_net_tx_ring_alloc(dp, &dp->tx_rings[r])) 1875 goto err_free_prev; 1876 1877 if (nfp_net_tx_ring_bufs_alloc(dp, &dp->tx_rings[r])) 1878 goto err_free_ring; 1879 } 1880 1881 return 0; 1882 1883 err_free_prev: 1884 while (r--) { 1885 nfp_net_tx_ring_bufs_free(dp, &dp->tx_rings[r]); 1886 err_free_ring: 1887 nfp_net_tx_ring_free(&dp->tx_rings[r]); 1888 } 1889 kfree(dp->tx_rings); 1890 return -ENOMEM; 1891 } 1892 1893 static void nfp_net_tx_rings_free(struct nfp_net_dp *dp) 1894 { 1895 unsigned int r; 1896 1897 for (r = 0; r < dp->num_tx_rings; r++) { 1898 nfp_net_tx_ring_bufs_free(dp, &dp->tx_rings[r]); 1899 nfp_net_tx_ring_free(&dp->tx_rings[r]); 1900 } 1901 1902 kfree(dp->tx_rings); 1903 } 1904 1905 /** 1906 * nfp_net_rx_ring_free() - Free resources allocated to a RX ring 1907 * @rx_ring: RX ring to free 1908 */ 1909 static void nfp_net_rx_ring_free(struct nfp_net_rx_ring *rx_ring) 1910 { 1911 struct nfp_net_r_vector *r_vec = rx_ring->r_vec; 1912 struct nfp_net_dp *dp = &r_vec->nfp_net->dp; 1913 1914 kfree(rx_ring->rxbufs); 1915 1916 if (rx_ring->rxds) 1917 dma_free_coherent(dp->dev, rx_ring->size, 1918 rx_ring->rxds, rx_ring->dma); 1919 1920 rx_ring->cnt = 0; 1921 rx_ring->rxbufs = NULL; 1922 rx_ring->rxds = NULL; 1923 rx_ring->dma = 0; 1924 rx_ring->size = 0; 1925 } 1926 1927 /** 1928 * nfp_net_rx_ring_alloc() - Allocate resource for a RX ring 1929 * @dp: NFP Net data path struct 1930 * @rx_ring: RX ring to allocate 1931 * 1932 * Return: 0 on success, negative errno otherwise. 1933 */ 1934 static int 1935 nfp_net_rx_ring_alloc(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring) 1936 { 1937 int sz; 1938 1939 rx_ring->cnt = dp->rxd_cnt; 1940 rx_ring->size = sizeof(*rx_ring->rxds) * rx_ring->cnt; 1941 rx_ring->rxds = dma_zalloc_coherent(dp->dev, rx_ring->size, 1942 &rx_ring->dma, GFP_KERNEL); 1943 if (!rx_ring->rxds) 1944 goto err_alloc; 1945 1946 sz = sizeof(*rx_ring->rxbufs) * rx_ring->cnt; 1947 rx_ring->rxbufs = kzalloc(sz, GFP_KERNEL); 1948 if (!rx_ring->rxbufs) 1949 goto err_alloc; 1950 1951 return 0; 1952 1953 err_alloc: 1954 nfp_net_rx_ring_free(rx_ring); 1955 return -ENOMEM; 1956 } 1957 1958 static int nfp_net_rx_rings_prepare(struct nfp_net *nn, struct nfp_net_dp *dp) 1959 { 1960 unsigned int r; 1961 1962 dp->rx_rings = kcalloc(dp->num_rx_rings, sizeof(*dp->rx_rings), 1963 GFP_KERNEL); 1964 if (!dp->rx_rings) 1965 return -ENOMEM; 1966 1967 for (r = 0; r < dp->num_rx_rings; r++) { 1968 nfp_net_rx_ring_init(&dp->rx_rings[r], &nn->r_vecs[r], r); 1969 1970 if (nfp_net_rx_ring_alloc(dp, &dp->rx_rings[r])) 1971 goto err_free_prev; 1972 1973 if (nfp_net_rx_ring_bufs_alloc(dp, &dp->rx_rings[r])) 1974 goto err_free_ring; 1975 } 1976 1977 return 0; 1978 1979 err_free_prev: 1980 while (r--) { 1981 nfp_net_rx_ring_bufs_free(dp, &dp->rx_rings[r]); 1982 err_free_ring: 1983 nfp_net_rx_ring_free(&dp->rx_rings[r]); 1984 } 1985 kfree(dp->rx_rings); 1986 return -ENOMEM; 1987 } 1988 1989 static void nfp_net_rx_rings_free(struct nfp_net_dp *dp) 1990 { 1991 unsigned int r; 1992 1993 for (r = 0; r < dp->num_rx_rings; r++) { 1994 nfp_net_rx_ring_bufs_free(dp, &dp->rx_rings[r]); 1995 nfp_net_rx_ring_free(&dp->rx_rings[r]); 1996 } 1997 1998 kfree(dp->rx_rings); 1999 } 2000 2001 static void 2002 nfp_net_vector_assign_rings(struct nfp_net_dp *dp, 2003 struct nfp_net_r_vector *r_vec, int idx) 2004 { 2005 r_vec->rx_ring = idx < dp->num_rx_rings ? &dp->rx_rings[idx] : NULL; 2006 r_vec->tx_ring = 2007 idx < dp->num_stack_tx_rings ? &dp->tx_rings[idx] : NULL; 2008 2009 r_vec->xdp_ring = idx < dp->num_tx_rings - dp->num_stack_tx_rings ? 2010 &dp->tx_rings[dp->num_stack_tx_rings + idx] : NULL; 2011 } 2012 2013 static int 2014 nfp_net_prepare_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec, 2015 int idx) 2016 { 2017 int err; 2018 2019 /* Setup NAPI */ 2020 netif_napi_add(nn->dp.netdev, &r_vec->napi, 2021 nfp_net_poll, NAPI_POLL_WEIGHT); 2022 2023 snprintf(r_vec->name, sizeof(r_vec->name), 2024 "%s-rxtx-%d", nn->dp.netdev->name, idx); 2025 err = request_irq(r_vec->irq_vector, r_vec->handler, 0, r_vec->name, 2026 r_vec); 2027 if (err) { 2028 netif_napi_del(&r_vec->napi); 2029 nn_err(nn, "Error requesting IRQ %d\n", r_vec->irq_vector); 2030 return err; 2031 } 2032 disable_irq(r_vec->irq_vector); 2033 2034 irq_set_affinity_hint(r_vec->irq_vector, &r_vec->affinity_mask); 2035 2036 nn_dbg(nn, "RV%02d: irq=%03d/%03d\n", idx, r_vec->irq_vector, 2037 r_vec->irq_entry); 2038 2039 return 0; 2040 } 2041 2042 static void 2043 nfp_net_cleanup_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec) 2044 { 2045 irq_set_affinity_hint(r_vec->irq_vector, NULL); 2046 netif_napi_del(&r_vec->napi); 2047 free_irq(r_vec->irq_vector, r_vec); 2048 } 2049 2050 /** 2051 * nfp_net_rss_write_itbl() - Write RSS indirection table to device 2052 * @nn: NFP Net device to reconfigure 2053 */ 2054 void nfp_net_rss_write_itbl(struct nfp_net *nn) 2055 { 2056 int i; 2057 2058 for (i = 0; i < NFP_NET_CFG_RSS_ITBL_SZ; i += 4) 2059 nn_writel(nn, NFP_NET_CFG_RSS_ITBL + i, 2060 get_unaligned_le32(nn->rss_itbl + i)); 2061 } 2062 2063 /** 2064 * nfp_net_rss_write_key() - Write RSS hash key to device 2065 * @nn: NFP Net device to reconfigure 2066 */ 2067 void nfp_net_rss_write_key(struct nfp_net *nn) 2068 { 2069 int i; 2070 2071 for (i = 0; i < nfp_net_rss_key_sz(nn); i += 4) 2072 nn_writel(nn, NFP_NET_CFG_RSS_KEY + i, 2073 get_unaligned_le32(nn->rss_key + i)); 2074 } 2075 2076 /** 2077 * nfp_net_coalesce_write_cfg() - Write irq coalescence configuration to HW 2078 * @nn: NFP Net device to reconfigure 2079 */ 2080 void nfp_net_coalesce_write_cfg(struct nfp_net *nn) 2081 { 2082 u8 i; 2083 u32 factor; 2084 u32 value; 2085 2086 /* Compute factor used to convert coalesce '_usecs' parameters to 2087 * ME timestamp ticks. There are 16 ME clock cycles for each timestamp 2088 * count. 2089 */ 2090 factor = nn->me_freq_mhz / 16; 2091 2092 /* copy RX interrupt coalesce parameters */ 2093 value = (nn->rx_coalesce_max_frames << 16) | 2094 (factor * nn->rx_coalesce_usecs); 2095 for (i = 0; i < nn->dp.num_rx_rings; i++) 2096 nn_writel(nn, NFP_NET_CFG_RXR_IRQ_MOD(i), value); 2097 2098 /* copy TX interrupt coalesce parameters */ 2099 value = (nn->tx_coalesce_max_frames << 16) | 2100 (factor * nn->tx_coalesce_usecs); 2101 for (i = 0; i < nn->dp.num_tx_rings; i++) 2102 nn_writel(nn, NFP_NET_CFG_TXR_IRQ_MOD(i), value); 2103 } 2104 2105 /** 2106 * nfp_net_write_mac_addr() - Write mac address to the device control BAR 2107 * @nn: NFP Net device to reconfigure 2108 * 2109 * Writes the MAC address from the netdev to the device control BAR. Does not 2110 * perform the required reconfig. We do a bit of byte swapping dance because 2111 * firmware is LE. 2112 */ 2113 static void nfp_net_write_mac_addr(struct nfp_net *nn) 2114 { 2115 nn_writel(nn, NFP_NET_CFG_MACADDR + 0, 2116 get_unaligned_be32(nn->dp.netdev->dev_addr)); 2117 nn_writew(nn, NFP_NET_CFG_MACADDR + 6, 2118 get_unaligned_be16(nn->dp.netdev->dev_addr + 4)); 2119 } 2120 2121 static void nfp_net_vec_clear_ring_data(struct nfp_net *nn, unsigned int idx) 2122 { 2123 nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), 0); 2124 nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), 0); 2125 nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), 0); 2126 2127 nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), 0); 2128 nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), 0); 2129 nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), 0); 2130 } 2131 2132 /** 2133 * nfp_net_clear_config_and_disable() - Clear control BAR and disable NFP 2134 * @nn: NFP Net device to reconfigure 2135 */ 2136 static void nfp_net_clear_config_and_disable(struct nfp_net *nn) 2137 { 2138 u32 new_ctrl, update; 2139 unsigned int r; 2140 int err; 2141 2142 new_ctrl = nn->dp.ctrl; 2143 new_ctrl &= ~NFP_NET_CFG_CTRL_ENABLE; 2144 update = NFP_NET_CFG_UPDATE_GEN; 2145 update |= NFP_NET_CFG_UPDATE_MSIX; 2146 update |= NFP_NET_CFG_UPDATE_RING; 2147 2148 if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG) 2149 new_ctrl &= ~NFP_NET_CFG_CTRL_RINGCFG; 2150 2151 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0); 2152 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0); 2153 2154 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 2155 err = nfp_net_reconfig(nn, update); 2156 if (err) 2157 nn_err(nn, "Could not disable device: %d\n", err); 2158 2159 for (r = 0; r < nn->dp.num_rx_rings; r++) 2160 nfp_net_rx_ring_reset(&nn->dp.rx_rings[r]); 2161 for (r = 0; r < nn->dp.num_tx_rings; r++) 2162 nfp_net_tx_ring_reset(&nn->dp, &nn->dp.tx_rings[r]); 2163 for (r = 0; r < nn->dp.num_r_vecs; r++) 2164 nfp_net_vec_clear_ring_data(nn, r); 2165 2166 nn->dp.ctrl = new_ctrl; 2167 } 2168 2169 static void 2170 nfp_net_rx_ring_hw_cfg_write(struct nfp_net *nn, 2171 struct nfp_net_rx_ring *rx_ring, unsigned int idx) 2172 { 2173 /* Write the DMA address, size and MSI-X info to the device */ 2174 nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), rx_ring->dma); 2175 nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), ilog2(rx_ring->cnt)); 2176 nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), rx_ring->r_vec->irq_entry); 2177 } 2178 2179 static void 2180 nfp_net_tx_ring_hw_cfg_write(struct nfp_net *nn, 2181 struct nfp_net_tx_ring *tx_ring, unsigned int idx) 2182 { 2183 nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), tx_ring->dma); 2184 nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), ilog2(tx_ring->cnt)); 2185 nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), tx_ring->r_vec->irq_entry); 2186 } 2187 2188 /** 2189 * nfp_net_set_config_and_enable() - Write control BAR and enable NFP 2190 * @nn: NFP Net device to reconfigure 2191 */ 2192 static int nfp_net_set_config_and_enable(struct nfp_net *nn) 2193 { 2194 u32 bufsz, new_ctrl, update = 0; 2195 unsigned int r; 2196 int err; 2197 2198 new_ctrl = nn->dp.ctrl; 2199 2200 if (nn->cap & NFP_NET_CFG_CTRL_RSS) { 2201 nfp_net_rss_write_key(nn); 2202 nfp_net_rss_write_itbl(nn); 2203 nn_writel(nn, NFP_NET_CFG_RSS_CTRL, nn->rss_cfg); 2204 update |= NFP_NET_CFG_UPDATE_RSS; 2205 } 2206 2207 if (nn->cap & NFP_NET_CFG_CTRL_IRQMOD) { 2208 nfp_net_coalesce_write_cfg(nn); 2209 2210 new_ctrl |= NFP_NET_CFG_CTRL_IRQMOD; 2211 update |= NFP_NET_CFG_UPDATE_IRQMOD; 2212 } 2213 2214 for (r = 0; r < nn->dp.num_tx_rings; r++) 2215 nfp_net_tx_ring_hw_cfg_write(nn, &nn->dp.tx_rings[r], r); 2216 for (r = 0; r < nn->dp.num_rx_rings; r++) 2217 nfp_net_rx_ring_hw_cfg_write(nn, &nn->dp.rx_rings[r], r); 2218 2219 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, nn->dp.num_tx_rings == 64 ? 2220 0xffffffffffffffffULL : ((u64)1 << nn->dp.num_tx_rings) - 1); 2221 2222 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, nn->dp.num_rx_rings == 64 ? 2223 0xffffffffffffffffULL : ((u64)1 << nn->dp.num_rx_rings) - 1); 2224 2225 nfp_net_write_mac_addr(nn); 2226 2227 nn_writel(nn, NFP_NET_CFG_MTU, nn->dp.netdev->mtu); 2228 2229 bufsz = nn->dp.fl_bufsz - nn->dp.rx_dma_off - NFP_NET_RX_BUF_NON_DATA; 2230 nn_writel(nn, NFP_NET_CFG_FLBUFSZ, bufsz); 2231 2232 /* Enable device */ 2233 new_ctrl |= NFP_NET_CFG_CTRL_ENABLE; 2234 update |= NFP_NET_CFG_UPDATE_GEN; 2235 update |= NFP_NET_CFG_UPDATE_MSIX; 2236 update |= NFP_NET_CFG_UPDATE_RING; 2237 if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG) 2238 new_ctrl |= NFP_NET_CFG_CTRL_RINGCFG; 2239 2240 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 2241 err = nfp_net_reconfig(nn, update); 2242 if (err) { 2243 nfp_net_clear_config_and_disable(nn); 2244 return err; 2245 } 2246 2247 nn->dp.ctrl = new_ctrl; 2248 2249 for (r = 0; r < nn->dp.num_rx_rings; r++) 2250 nfp_net_rx_ring_fill_freelist(&nn->dp, &nn->dp.rx_rings[r]); 2251 2252 /* Since reconfiguration requests while NFP is down are ignored we 2253 * have to wipe the entire VXLAN configuration and reinitialize it. 2254 */ 2255 if (nn->dp.ctrl & NFP_NET_CFG_CTRL_VXLAN) { 2256 memset(&nn->vxlan_ports, 0, sizeof(nn->vxlan_ports)); 2257 memset(&nn->vxlan_usecnt, 0, sizeof(nn->vxlan_usecnt)); 2258 udp_tunnel_get_rx_info(nn->dp.netdev); 2259 } 2260 2261 return 0; 2262 } 2263 2264 /** 2265 * nfp_net_open_stack() - Start the device from stack's perspective 2266 * @nn: NFP Net device to reconfigure 2267 */ 2268 static void nfp_net_open_stack(struct nfp_net *nn) 2269 { 2270 unsigned int r; 2271 2272 for (r = 0; r < nn->dp.num_r_vecs; r++) { 2273 napi_enable(&nn->r_vecs[r].napi); 2274 enable_irq(nn->r_vecs[r].irq_vector); 2275 } 2276 2277 netif_tx_wake_all_queues(nn->dp.netdev); 2278 2279 enable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector); 2280 nfp_net_read_link_status(nn); 2281 } 2282 2283 static int nfp_net_netdev_open(struct net_device *netdev) 2284 { 2285 struct nfp_net *nn = netdev_priv(netdev); 2286 int err, r; 2287 2288 /* Step 1: Allocate resources for rings and the like 2289 * - Request interrupts 2290 * - Allocate RX and TX ring resources 2291 * - Setup initial RSS table 2292 */ 2293 err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_EXN, "%s-exn", 2294 nn->exn_name, sizeof(nn->exn_name), 2295 NFP_NET_IRQ_EXN_IDX, nn->exn_handler); 2296 if (err) 2297 return err; 2298 err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_LSC, "%s-lsc", 2299 nn->lsc_name, sizeof(nn->lsc_name), 2300 NFP_NET_IRQ_LSC_IDX, nn->lsc_handler); 2301 if (err) 2302 goto err_free_exn; 2303 disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector); 2304 2305 for (r = 0; r < nn->dp.num_r_vecs; r++) { 2306 err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r); 2307 if (err) 2308 goto err_cleanup_vec_p; 2309 } 2310 2311 err = nfp_net_rx_rings_prepare(nn, &nn->dp); 2312 if (err) 2313 goto err_cleanup_vec; 2314 2315 err = nfp_net_tx_rings_prepare(nn, &nn->dp); 2316 if (err) 2317 goto err_free_rx_rings; 2318 2319 for (r = 0; r < nn->max_r_vecs; r++) 2320 nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r); 2321 2322 err = netif_set_real_num_tx_queues(netdev, nn->dp.num_stack_tx_rings); 2323 if (err) 2324 goto err_free_rings; 2325 2326 err = netif_set_real_num_rx_queues(netdev, nn->dp.num_rx_rings); 2327 if (err) 2328 goto err_free_rings; 2329 2330 /* Step 2: Configure the NFP 2331 * - Enable rings from 0 to tx_rings/rx_rings - 1. 2332 * - Write MAC address (in case it changed) 2333 * - Set the MTU 2334 * - Set the Freelist buffer size 2335 * - Enable the FW 2336 */ 2337 err = nfp_net_set_config_and_enable(nn); 2338 if (err) 2339 goto err_free_rings; 2340 2341 /* Step 3: Enable for kernel 2342 * - put some freelist descriptors on each RX ring 2343 * - enable NAPI on each ring 2344 * - enable all TX queues 2345 * - set link state 2346 */ 2347 nfp_net_open_stack(nn); 2348 2349 return 0; 2350 2351 err_free_rings: 2352 nfp_net_tx_rings_free(&nn->dp); 2353 err_free_rx_rings: 2354 nfp_net_rx_rings_free(&nn->dp); 2355 err_cleanup_vec: 2356 r = nn->dp.num_r_vecs; 2357 err_cleanup_vec_p: 2358 while (r--) 2359 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); 2360 nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX); 2361 err_free_exn: 2362 nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX); 2363 return err; 2364 } 2365 2366 /** 2367 * nfp_net_close_stack() - Quiescent the stack (part of close) 2368 * @nn: NFP Net device to reconfigure 2369 */ 2370 static void nfp_net_close_stack(struct nfp_net *nn) 2371 { 2372 unsigned int r; 2373 2374 disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector); 2375 netif_carrier_off(nn->dp.netdev); 2376 nn->link_up = false; 2377 2378 for (r = 0; r < nn->dp.num_r_vecs; r++) { 2379 disable_irq(nn->r_vecs[r].irq_vector); 2380 napi_disable(&nn->r_vecs[r].napi); 2381 } 2382 2383 netif_tx_disable(nn->dp.netdev); 2384 } 2385 2386 /** 2387 * nfp_net_close_free_all() - Free all runtime resources 2388 * @nn: NFP Net device to reconfigure 2389 */ 2390 static void nfp_net_close_free_all(struct nfp_net *nn) 2391 { 2392 unsigned int r; 2393 2394 for (r = 0; r < nn->dp.num_rx_rings; r++) { 2395 nfp_net_rx_ring_bufs_free(&nn->dp, &nn->dp.rx_rings[r]); 2396 nfp_net_rx_ring_free(&nn->dp.rx_rings[r]); 2397 } 2398 for (r = 0; r < nn->dp.num_tx_rings; r++) { 2399 nfp_net_tx_ring_bufs_free(&nn->dp, &nn->dp.tx_rings[r]); 2400 nfp_net_tx_ring_free(&nn->dp.tx_rings[r]); 2401 } 2402 for (r = 0; r < nn->dp.num_r_vecs; r++) 2403 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); 2404 2405 kfree(nn->dp.rx_rings); 2406 kfree(nn->dp.tx_rings); 2407 2408 nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX); 2409 nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX); 2410 } 2411 2412 /** 2413 * nfp_net_netdev_close() - Called when the device is downed 2414 * @netdev: netdev structure 2415 */ 2416 static int nfp_net_netdev_close(struct net_device *netdev) 2417 { 2418 struct nfp_net *nn = netdev_priv(netdev); 2419 2420 /* Step 1: Disable RX and TX rings from the Linux kernel perspective 2421 */ 2422 nfp_net_close_stack(nn); 2423 2424 /* Step 2: Tell NFP 2425 */ 2426 nfp_net_clear_config_and_disable(nn); 2427 2428 /* Step 3: Free resources 2429 */ 2430 nfp_net_close_free_all(nn); 2431 2432 nn_dbg(nn, "%s down", netdev->name); 2433 return 0; 2434 } 2435 2436 static void nfp_net_set_rx_mode(struct net_device *netdev) 2437 { 2438 struct nfp_net *nn = netdev_priv(netdev); 2439 u32 new_ctrl; 2440 2441 new_ctrl = nn->dp.ctrl; 2442 2443 if (netdev->flags & IFF_PROMISC) { 2444 if (nn->cap & NFP_NET_CFG_CTRL_PROMISC) 2445 new_ctrl |= NFP_NET_CFG_CTRL_PROMISC; 2446 else 2447 nn_warn(nn, "FW does not support promiscuous mode\n"); 2448 } else { 2449 new_ctrl &= ~NFP_NET_CFG_CTRL_PROMISC; 2450 } 2451 2452 if (new_ctrl == nn->dp.ctrl) 2453 return; 2454 2455 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 2456 nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_GEN); 2457 2458 nn->dp.ctrl = new_ctrl; 2459 } 2460 2461 static void nfp_net_rss_init_itbl(struct nfp_net *nn) 2462 { 2463 int i; 2464 2465 for (i = 0; i < sizeof(nn->rss_itbl); i++) 2466 nn->rss_itbl[i] = 2467 ethtool_rxfh_indir_default(i, nn->dp.num_rx_rings); 2468 } 2469 2470 static void nfp_net_dp_swap(struct nfp_net *nn, struct nfp_net_dp *dp) 2471 { 2472 struct nfp_net_dp new_dp = *dp; 2473 2474 *dp = nn->dp; 2475 nn->dp = new_dp; 2476 2477 nn->dp.netdev->mtu = new_dp.mtu; 2478 2479 if (!netif_is_rxfh_configured(nn->dp.netdev)) 2480 nfp_net_rss_init_itbl(nn); 2481 } 2482 2483 static int nfp_net_dp_swap_enable(struct nfp_net *nn, struct nfp_net_dp *dp) 2484 { 2485 unsigned int r; 2486 int err; 2487 2488 nfp_net_dp_swap(nn, dp); 2489 2490 for (r = 0; r < nn->max_r_vecs; r++) 2491 nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r); 2492 2493 err = netif_set_real_num_rx_queues(nn->dp.netdev, nn->dp.num_rx_rings); 2494 if (err) 2495 return err; 2496 2497 if (nn->dp.netdev->real_num_tx_queues != nn->dp.num_stack_tx_rings) { 2498 err = netif_set_real_num_tx_queues(nn->dp.netdev, 2499 nn->dp.num_stack_tx_rings); 2500 if (err) 2501 return err; 2502 } 2503 2504 return nfp_net_set_config_and_enable(nn); 2505 } 2506 2507 struct nfp_net_dp *nfp_net_clone_dp(struct nfp_net *nn) 2508 { 2509 struct nfp_net_dp *new; 2510 2511 new = kmalloc(sizeof(*new), GFP_KERNEL); 2512 if (!new) 2513 return NULL; 2514 2515 *new = nn->dp; 2516 2517 /* Clear things which need to be recomputed */ 2518 new->fl_bufsz = 0; 2519 new->tx_rings = NULL; 2520 new->rx_rings = NULL; 2521 new->num_r_vecs = 0; 2522 new->num_stack_tx_rings = 0; 2523 2524 return new; 2525 } 2526 2527 static int 2528 nfp_net_check_config(struct nfp_net *nn, struct nfp_net_dp *dp, 2529 struct netlink_ext_ack *extack) 2530 { 2531 /* XDP-enabled tests */ 2532 if (!dp->xdp_prog) 2533 return 0; 2534 if (dp->fl_bufsz > PAGE_SIZE) { 2535 NL_SET_ERR_MSG_MOD(extack, "MTU too large w/ XDP enabled"); 2536 return -EINVAL; 2537 } 2538 if (dp->num_tx_rings > nn->max_tx_rings) { 2539 NL_SET_ERR_MSG_MOD(extack, "Insufficient number of TX rings w/ XDP enabled"); 2540 return -EINVAL; 2541 } 2542 2543 return 0; 2544 } 2545 2546 int nfp_net_ring_reconfig(struct nfp_net *nn, struct nfp_net_dp *dp, 2547 struct netlink_ext_ack *extack) 2548 { 2549 int r, err; 2550 2551 dp->fl_bufsz = nfp_net_calc_fl_bufsz(dp); 2552 2553 dp->num_stack_tx_rings = dp->num_tx_rings; 2554 if (dp->xdp_prog) 2555 dp->num_stack_tx_rings -= dp->num_rx_rings; 2556 2557 dp->num_r_vecs = max(dp->num_rx_rings, dp->num_stack_tx_rings); 2558 2559 err = nfp_net_check_config(nn, dp, extack); 2560 if (err) 2561 goto exit_free_dp; 2562 2563 if (!netif_running(dp->netdev)) { 2564 nfp_net_dp_swap(nn, dp); 2565 err = 0; 2566 goto exit_free_dp; 2567 } 2568 2569 /* Prepare new rings */ 2570 for (r = nn->dp.num_r_vecs; r < dp->num_r_vecs; r++) { 2571 err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r); 2572 if (err) { 2573 dp->num_r_vecs = r; 2574 goto err_cleanup_vecs; 2575 } 2576 } 2577 2578 err = nfp_net_rx_rings_prepare(nn, dp); 2579 if (err) 2580 goto err_cleanup_vecs; 2581 2582 err = nfp_net_tx_rings_prepare(nn, dp); 2583 if (err) 2584 goto err_free_rx; 2585 2586 /* Stop device, swap in new rings, try to start the firmware */ 2587 nfp_net_close_stack(nn); 2588 nfp_net_clear_config_and_disable(nn); 2589 2590 err = nfp_net_dp_swap_enable(nn, dp); 2591 if (err) { 2592 int err2; 2593 2594 nfp_net_clear_config_and_disable(nn); 2595 2596 /* Try with old configuration and old rings */ 2597 err2 = nfp_net_dp_swap_enable(nn, dp); 2598 if (err2) 2599 nn_err(nn, "Can't restore ring config - FW communication failed (%d,%d)\n", 2600 err, err2); 2601 } 2602 for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--) 2603 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); 2604 2605 nfp_net_rx_rings_free(dp); 2606 nfp_net_tx_rings_free(dp); 2607 2608 nfp_net_open_stack(nn); 2609 exit_free_dp: 2610 kfree(dp); 2611 2612 return err; 2613 2614 err_free_rx: 2615 nfp_net_rx_rings_free(dp); 2616 err_cleanup_vecs: 2617 for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--) 2618 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); 2619 kfree(dp); 2620 return err; 2621 } 2622 2623 static int nfp_net_change_mtu(struct net_device *netdev, int new_mtu) 2624 { 2625 struct nfp_net *nn = netdev_priv(netdev); 2626 struct nfp_net_dp *dp; 2627 2628 dp = nfp_net_clone_dp(nn); 2629 if (!dp) 2630 return -ENOMEM; 2631 2632 dp->mtu = new_mtu; 2633 2634 return nfp_net_ring_reconfig(nn, dp, NULL); 2635 } 2636 2637 static void nfp_net_stat64(struct net_device *netdev, 2638 struct rtnl_link_stats64 *stats) 2639 { 2640 struct nfp_net *nn = netdev_priv(netdev); 2641 int r; 2642 2643 for (r = 0; r < nn->dp.num_r_vecs; r++) { 2644 struct nfp_net_r_vector *r_vec = &nn->r_vecs[r]; 2645 u64 data[3]; 2646 unsigned int start; 2647 2648 do { 2649 start = u64_stats_fetch_begin(&r_vec->rx_sync); 2650 data[0] = r_vec->rx_pkts; 2651 data[1] = r_vec->rx_bytes; 2652 data[2] = r_vec->rx_drops; 2653 } while (u64_stats_fetch_retry(&r_vec->rx_sync, start)); 2654 stats->rx_packets += data[0]; 2655 stats->rx_bytes += data[1]; 2656 stats->rx_dropped += data[2]; 2657 2658 do { 2659 start = u64_stats_fetch_begin(&r_vec->tx_sync); 2660 data[0] = r_vec->tx_pkts; 2661 data[1] = r_vec->tx_bytes; 2662 data[2] = r_vec->tx_errors; 2663 } while (u64_stats_fetch_retry(&r_vec->tx_sync, start)); 2664 stats->tx_packets += data[0]; 2665 stats->tx_bytes += data[1]; 2666 stats->tx_errors += data[2]; 2667 } 2668 } 2669 2670 static bool nfp_net_ebpf_capable(struct nfp_net *nn) 2671 { 2672 if (nn->cap & NFP_NET_CFG_CTRL_BPF && 2673 nn_readb(nn, NFP_NET_CFG_BPF_ABI) == NFP_NET_BPF_ABI) 2674 return true; 2675 return false; 2676 } 2677 2678 static int 2679 nfp_net_setup_tc(struct net_device *netdev, u32 handle, __be16 proto, 2680 struct tc_to_netdev *tc) 2681 { 2682 struct nfp_net *nn = netdev_priv(netdev); 2683 2684 if (TC_H_MAJ(handle) != TC_H_MAJ(TC_H_INGRESS)) 2685 return -EOPNOTSUPP; 2686 if (proto != htons(ETH_P_ALL)) 2687 return -EOPNOTSUPP; 2688 2689 if (tc->type == TC_SETUP_CLSBPF && nfp_net_ebpf_capable(nn)) { 2690 if (!nn->dp.bpf_offload_xdp) 2691 return nfp_net_bpf_offload(nn, tc->cls_bpf); 2692 else 2693 return -EBUSY; 2694 } 2695 2696 return -EINVAL; 2697 } 2698 2699 static int nfp_net_set_features(struct net_device *netdev, 2700 netdev_features_t features) 2701 { 2702 netdev_features_t changed = netdev->features ^ features; 2703 struct nfp_net *nn = netdev_priv(netdev); 2704 u32 new_ctrl; 2705 int err; 2706 2707 /* Assume this is not called with features we have not advertised */ 2708 2709 new_ctrl = nn->dp.ctrl; 2710 2711 if (changed & NETIF_F_RXCSUM) { 2712 if (features & NETIF_F_RXCSUM) 2713 new_ctrl |= NFP_NET_CFG_CTRL_RXCSUM; 2714 else 2715 new_ctrl &= ~NFP_NET_CFG_CTRL_RXCSUM; 2716 } 2717 2718 if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) { 2719 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) 2720 new_ctrl |= NFP_NET_CFG_CTRL_TXCSUM; 2721 else 2722 new_ctrl &= ~NFP_NET_CFG_CTRL_TXCSUM; 2723 } 2724 2725 if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) { 2726 if (features & (NETIF_F_TSO | NETIF_F_TSO6)) 2727 new_ctrl |= NFP_NET_CFG_CTRL_LSO; 2728 else 2729 new_ctrl &= ~NFP_NET_CFG_CTRL_LSO; 2730 } 2731 2732 if (changed & NETIF_F_HW_VLAN_CTAG_RX) { 2733 if (features & NETIF_F_HW_VLAN_CTAG_RX) 2734 new_ctrl |= NFP_NET_CFG_CTRL_RXVLAN; 2735 else 2736 new_ctrl &= ~NFP_NET_CFG_CTRL_RXVLAN; 2737 } 2738 2739 if (changed & NETIF_F_HW_VLAN_CTAG_TX) { 2740 if (features & NETIF_F_HW_VLAN_CTAG_TX) 2741 new_ctrl |= NFP_NET_CFG_CTRL_TXVLAN; 2742 else 2743 new_ctrl &= ~NFP_NET_CFG_CTRL_TXVLAN; 2744 } 2745 2746 if (changed & NETIF_F_SG) { 2747 if (features & NETIF_F_SG) 2748 new_ctrl |= NFP_NET_CFG_CTRL_GATHER; 2749 else 2750 new_ctrl &= ~NFP_NET_CFG_CTRL_GATHER; 2751 } 2752 2753 if (changed & NETIF_F_HW_TC && nn->dp.ctrl & NFP_NET_CFG_CTRL_BPF) { 2754 nn_err(nn, "Cannot disable HW TC offload while in use\n"); 2755 return -EBUSY; 2756 } 2757 2758 nn_dbg(nn, "Feature change 0x%llx -> 0x%llx (changed=0x%llx)\n", 2759 netdev->features, features, changed); 2760 2761 if (new_ctrl == nn->dp.ctrl) 2762 return 0; 2763 2764 nn_dbg(nn, "NIC ctrl: 0x%x -> 0x%x\n", nn->dp.ctrl, new_ctrl); 2765 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 2766 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_GEN); 2767 if (err) 2768 return err; 2769 2770 nn->dp.ctrl = new_ctrl; 2771 2772 return 0; 2773 } 2774 2775 static netdev_features_t 2776 nfp_net_features_check(struct sk_buff *skb, struct net_device *dev, 2777 netdev_features_t features) 2778 { 2779 u8 l4_hdr; 2780 2781 /* We can't do TSO over double tagged packets (802.1AD) */ 2782 features &= vlan_features_check(skb, features); 2783 2784 if (!skb->encapsulation) 2785 return features; 2786 2787 /* Ensure that inner L4 header offset fits into TX descriptor field */ 2788 if (skb_is_gso(skb)) { 2789 u32 hdrlen; 2790 2791 hdrlen = skb_inner_transport_header(skb) - skb->data + 2792 inner_tcp_hdrlen(skb); 2793 2794 if (unlikely(hdrlen > NFP_NET_LSO_MAX_HDR_SZ)) 2795 features &= ~NETIF_F_GSO_MASK; 2796 } 2797 2798 /* VXLAN/GRE check */ 2799 switch (vlan_get_protocol(skb)) { 2800 case htons(ETH_P_IP): 2801 l4_hdr = ip_hdr(skb)->protocol; 2802 break; 2803 case htons(ETH_P_IPV6): 2804 l4_hdr = ipv6_hdr(skb)->nexthdr; 2805 break; 2806 default: 2807 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 2808 } 2809 2810 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER || 2811 skb->inner_protocol != htons(ETH_P_TEB) || 2812 (l4_hdr != IPPROTO_UDP && l4_hdr != IPPROTO_GRE) || 2813 (l4_hdr == IPPROTO_UDP && 2814 (skb_inner_mac_header(skb) - skb_transport_header(skb) != 2815 sizeof(struct udphdr) + sizeof(struct vxlanhdr)))) 2816 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 2817 2818 return features; 2819 } 2820 2821 static int 2822 nfp_net_get_phys_port_name(struct net_device *netdev, char *name, size_t len) 2823 { 2824 struct nfp_net *nn = netdev_priv(netdev); 2825 int err; 2826 2827 if (!nn->eth_port) 2828 return -EOPNOTSUPP; 2829 2830 if (!nn->eth_port->is_split) 2831 err = snprintf(name, len, "p%d", nn->eth_port->label_port); 2832 else 2833 err = snprintf(name, len, "p%ds%d", nn->eth_port->label_port, 2834 nn->eth_port->label_subport); 2835 if (err >= len) 2836 return -EINVAL; 2837 2838 return 0; 2839 } 2840 2841 /** 2842 * nfp_net_set_vxlan_port() - set vxlan port in SW and reconfigure HW 2843 * @nn: NFP Net device to reconfigure 2844 * @idx: Index into the port table where new port should be written 2845 * @port: UDP port to configure (pass zero to remove VXLAN port) 2846 */ 2847 static void nfp_net_set_vxlan_port(struct nfp_net *nn, int idx, __be16 port) 2848 { 2849 int i; 2850 2851 nn->vxlan_ports[idx] = port; 2852 2853 if (!(nn->dp.ctrl & NFP_NET_CFG_CTRL_VXLAN)) 2854 return; 2855 2856 BUILD_BUG_ON(NFP_NET_N_VXLAN_PORTS & 1); 2857 for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i += 2) 2858 nn_writel(nn, NFP_NET_CFG_VXLAN_PORT + i * sizeof(port), 2859 be16_to_cpu(nn->vxlan_ports[i + 1]) << 16 | 2860 be16_to_cpu(nn->vxlan_ports[i])); 2861 2862 nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_VXLAN); 2863 } 2864 2865 /** 2866 * nfp_net_find_vxlan_idx() - find table entry of the port or a free one 2867 * @nn: NFP Network structure 2868 * @port: UDP port to look for 2869 * 2870 * Return: if the port is already in the table -- it's position; 2871 * if the port is not in the table -- free position to use; 2872 * if the table is full -- -ENOSPC. 2873 */ 2874 static int nfp_net_find_vxlan_idx(struct nfp_net *nn, __be16 port) 2875 { 2876 int i, free_idx = -ENOSPC; 2877 2878 for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i++) { 2879 if (nn->vxlan_ports[i] == port) 2880 return i; 2881 if (!nn->vxlan_usecnt[i]) 2882 free_idx = i; 2883 } 2884 2885 return free_idx; 2886 } 2887 2888 static void nfp_net_add_vxlan_port(struct net_device *netdev, 2889 struct udp_tunnel_info *ti) 2890 { 2891 struct nfp_net *nn = netdev_priv(netdev); 2892 int idx; 2893 2894 if (ti->type != UDP_TUNNEL_TYPE_VXLAN) 2895 return; 2896 2897 idx = nfp_net_find_vxlan_idx(nn, ti->port); 2898 if (idx == -ENOSPC) 2899 return; 2900 2901 if (!nn->vxlan_usecnt[idx]++) 2902 nfp_net_set_vxlan_port(nn, idx, ti->port); 2903 } 2904 2905 static void nfp_net_del_vxlan_port(struct net_device *netdev, 2906 struct udp_tunnel_info *ti) 2907 { 2908 struct nfp_net *nn = netdev_priv(netdev); 2909 int idx; 2910 2911 if (ti->type != UDP_TUNNEL_TYPE_VXLAN) 2912 return; 2913 2914 idx = nfp_net_find_vxlan_idx(nn, ti->port); 2915 if (idx == -ENOSPC || !nn->vxlan_usecnt[idx]) 2916 return; 2917 2918 if (!--nn->vxlan_usecnt[idx]) 2919 nfp_net_set_vxlan_port(nn, idx, 0); 2920 } 2921 2922 static int nfp_net_xdp_offload(struct nfp_net *nn, struct bpf_prog *prog) 2923 { 2924 struct tc_cls_bpf_offload cmd = { 2925 .prog = prog, 2926 }; 2927 int ret; 2928 2929 if (!nfp_net_ebpf_capable(nn)) 2930 return -EINVAL; 2931 2932 if (nn->dp.ctrl & NFP_NET_CFG_CTRL_BPF) { 2933 if (!nn->dp.bpf_offload_xdp) 2934 return prog ? -EBUSY : 0; 2935 cmd.command = prog ? TC_CLSBPF_REPLACE : TC_CLSBPF_DESTROY; 2936 } else { 2937 if (!prog) 2938 return 0; 2939 cmd.command = TC_CLSBPF_ADD; 2940 } 2941 2942 ret = nfp_net_bpf_offload(nn, &cmd); 2943 /* Stop offload if replace not possible */ 2944 if (ret && cmd.command == TC_CLSBPF_REPLACE) 2945 nfp_net_xdp_offload(nn, NULL); 2946 nn->dp.bpf_offload_xdp = prog && !ret; 2947 return ret; 2948 } 2949 2950 static int nfp_net_xdp_setup(struct nfp_net *nn, struct netdev_xdp *xdp) 2951 { 2952 struct bpf_prog *old_prog = nn->dp.xdp_prog; 2953 struct bpf_prog *prog = xdp->prog; 2954 struct nfp_net_dp *dp; 2955 int err; 2956 2957 if (!prog && !nn->dp.xdp_prog) 2958 return 0; 2959 if (prog && nn->dp.xdp_prog) { 2960 prog = xchg(&nn->dp.xdp_prog, prog); 2961 bpf_prog_put(prog); 2962 nfp_net_xdp_offload(nn, nn->dp.xdp_prog); 2963 return 0; 2964 } 2965 2966 dp = nfp_net_clone_dp(nn); 2967 if (!dp) 2968 return -ENOMEM; 2969 2970 dp->xdp_prog = prog; 2971 dp->num_tx_rings += prog ? nn->dp.num_rx_rings : -nn->dp.num_rx_rings; 2972 dp->rx_dma_dir = prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE; 2973 dp->rx_dma_off = prog ? XDP_PACKET_HEADROOM - nn->dp.rx_offset : 0; 2974 2975 /* We need RX reconfig to remap the buffers (BIDIR vs FROM_DEV) */ 2976 err = nfp_net_ring_reconfig(nn, dp, xdp->extack); 2977 if (err) 2978 return err; 2979 2980 if (old_prog) 2981 bpf_prog_put(old_prog); 2982 2983 nfp_net_xdp_offload(nn, nn->dp.xdp_prog); 2984 2985 return 0; 2986 } 2987 2988 static int nfp_net_xdp(struct net_device *netdev, struct netdev_xdp *xdp) 2989 { 2990 struct nfp_net *nn = netdev_priv(netdev); 2991 2992 switch (xdp->command) { 2993 case XDP_SETUP_PROG: 2994 return nfp_net_xdp_setup(nn, xdp); 2995 case XDP_QUERY_PROG: 2996 xdp->prog_attached = !!nn->dp.xdp_prog; 2997 return 0; 2998 default: 2999 return -EINVAL; 3000 } 3001 } 3002 3003 static const struct net_device_ops nfp_net_netdev_ops = { 3004 .ndo_open = nfp_net_netdev_open, 3005 .ndo_stop = nfp_net_netdev_close, 3006 .ndo_start_xmit = nfp_net_tx, 3007 .ndo_get_stats64 = nfp_net_stat64, 3008 .ndo_setup_tc = nfp_net_setup_tc, 3009 .ndo_tx_timeout = nfp_net_tx_timeout, 3010 .ndo_set_rx_mode = nfp_net_set_rx_mode, 3011 .ndo_change_mtu = nfp_net_change_mtu, 3012 .ndo_set_mac_address = eth_mac_addr, 3013 .ndo_set_features = nfp_net_set_features, 3014 .ndo_features_check = nfp_net_features_check, 3015 .ndo_get_phys_port_name = nfp_net_get_phys_port_name, 3016 .ndo_udp_tunnel_add = nfp_net_add_vxlan_port, 3017 .ndo_udp_tunnel_del = nfp_net_del_vxlan_port, 3018 .ndo_xdp = nfp_net_xdp, 3019 }; 3020 3021 /** 3022 * nfp_net_info() - Print general info about the NIC 3023 * @nn: NFP Net device to reconfigure 3024 */ 3025 void nfp_net_info(struct nfp_net *nn) 3026 { 3027 nn_info(nn, "Netronome NFP-6xxx %sNetdev: TxQs=%d/%d RxQs=%d/%d\n", 3028 nn->dp.is_vf ? "VF " : "", 3029 nn->dp.num_tx_rings, nn->max_tx_rings, 3030 nn->dp.num_rx_rings, nn->max_rx_rings); 3031 nn_info(nn, "VER: %d.%d.%d.%d, Maximum supported MTU: %d\n", 3032 nn->fw_ver.resv, nn->fw_ver.class, 3033 nn->fw_ver.major, nn->fw_ver.minor, 3034 nn->max_mtu); 3035 nn_info(nn, "CAP: %#x %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", 3036 nn->cap, 3037 nn->cap & NFP_NET_CFG_CTRL_PROMISC ? "PROMISC " : "", 3038 nn->cap & NFP_NET_CFG_CTRL_L2BC ? "L2BCFILT " : "", 3039 nn->cap & NFP_NET_CFG_CTRL_L2MC ? "L2MCFILT " : "", 3040 nn->cap & NFP_NET_CFG_CTRL_RXCSUM ? "RXCSUM " : "", 3041 nn->cap & NFP_NET_CFG_CTRL_TXCSUM ? "TXCSUM " : "", 3042 nn->cap & NFP_NET_CFG_CTRL_RXVLAN ? "RXVLAN " : "", 3043 nn->cap & NFP_NET_CFG_CTRL_TXVLAN ? "TXVLAN " : "", 3044 nn->cap & NFP_NET_CFG_CTRL_SCATTER ? "SCATTER " : "", 3045 nn->cap & NFP_NET_CFG_CTRL_GATHER ? "GATHER " : "", 3046 nn->cap & NFP_NET_CFG_CTRL_LSO ? "TSO " : "", 3047 nn->cap & NFP_NET_CFG_CTRL_RSS ? "RSS " : "", 3048 nn->cap & NFP_NET_CFG_CTRL_L2SWITCH ? "L2SWITCH " : "", 3049 nn->cap & NFP_NET_CFG_CTRL_MSIXAUTO ? "AUTOMASK " : "", 3050 nn->cap & NFP_NET_CFG_CTRL_IRQMOD ? "IRQMOD " : "", 3051 nn->cap & NFP_NET_CFG_CTRL_VXLAN ? "VXLAN " : "", 3052 nn->cap & NFP_NET_CFG_CTRL_NVGRE ? "NVGRE " : "", 3053 nfp_net_ebpf_capable(nn) ? "BPF " : ""); 3054 } 3055 3056 /** 3057 * nfp_net_netdev_alloc() - Allocate netdev and related structure 3058 * @pdev: PCI device 3059 * @max_tx_rings: Maximum number of TX rings supported by device 3060 * @max_rx_rings: Maximum number of RX rings supported by device 3061 * 3062 * This function allocates a netdev device and fills in the initial 3063 * part of the @struct nfp_net structure. 3064 * 3065 * Return: NFP Net device structure, or ERR_PTR on error. 3066 */ 3067 struct nfp_net *nfp_net_netdev_alloc(struct pci_dev *pdev, 3068 unsigned int max_tx_rings, 3069 unsigned int max_rx_rings) 3070 { 3071 struct net_device *netdev; 3072 struct nfp_net *nn; 3073 3074 netdev = alloc_etherdev_mqs(sizeof(struct nfp_net), 3075 max_tx_rings, max_rx_rings); 3076 if (!netdev) 3077 return ERR_PTR(-ENOMEM); 3078 3079 SET_NETDEV_DEV(netdev, &pdev->dev); 3080 nn = netdev_priv(netdev); 3081 3082 nn->dp.netdev = netdev; 3083 nn->dp.dev = &pdev->dev; 3084 nn->pdev = pdev; 3085 3086 nn->max_tx_rings = max_tx_rings; 3087 nn->max_rx_rings = max_rx_rings; 3088 3089 nn->dp.num_tx_rings = min_t(unsigned int, 3090 max_tx_rings, num_online_cpus()); 3091 nn->dp.num_rx_rings = min_t(unsigned int, max_rx_rings, 3092 netif_get_num_default_rss_queues()); 3093 3094 nn->dp.num_r_vecs = max(nn->dp.num_tx_rings, nn->dp.num_rx_rings); 3095 nn->dp.num_r_vecs = min_t(unsigned int, 3096 nn->dp.num_r_vecs, num_online_cpus()); 3097 3098 nn->dp.txd_cnt = NFP_NET_TX_DESCS_DEFAULT; 3099 nn->dp.rxd_cnt = NFP_NET_RX_DESCS_DEFAULT; 3100 3101 spin_lock_init(&nn->reconfig_lock); 3102 spin_lock_init(&nn->rx_filter_lock); 3103 spin_lock_init(&nn->link_status_lock); 3104 3105 setup_timer(&nn->reconfig_timer, 3106 nfp_net_reconfig_timer, (unsigned long)nn); 3107 setup_timer(&nn->rx_filter_stats_timer, 3108 nfp_net_filter_stats_timer, (unsigned long)nn); 3109 3110 return nn; 3111 } 3112 3113 /** 3114 * nfp_net_netdev_free() - Undo what @nfp_net_netdev_alloc() did 3115 * @nn: NFP Net device to reconfigure 3116 */ 3117 void nfp_net_netdev_free(struct nfp_net *nn) 3118 { 3119 free_netdev(nn->dp.netdev); 3120 } 3121 3122 /** 3123 * nfp_net_rss_key_sz() - Get current size of the RSS key 3124 * @nn: NFP Net device instance 3125 * 3126 * Return: size of the RSS key for currently selected hash function. 3127 */ 3128 unsigned int nfp_net_rss_key_sz(struct nfp_net *nn) 3129 { 3130 switch (nn->rss_hfunc) { 3131 case ETH_RSS_HASH_TOP: 3132 return NFP_NET_CFG_RSS_KEY_SZ; 3133 case ETH_RSS_HASH_XOR: 3134 return 0; 3135 case ETH_RSS_HASH_CRC32: 3136 return 4; 3137 } 3138 3139 nn_warn(nn, "Unknown hash function: %u\n", nn->rss_hfunc); 3140 return 0; 3141 } 3142 3143 /** 3144 * nfp_net_rss_init() - Set the initial RSS parameters 3145 * @nn: NFP Net device to reconfigure 3146 */ 3147 static void nfp_net_rss_init(struct nfp_net *nn) 3148 { 3149 unsigned long func_bit, rss_cap_hfunc; 3150 u32 reg; 3151 3152 /* Read the RSS function capability and select first supported func */ 3153 reg = nn_readl(nn, NFP_NET_CFG_RSS_CAP); 3154 rss_cap_hfunc = FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC, reg); 3155 if (!rss_cap_hfunc) 3156 rss_cap_hfunc = FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC, 3157 NFP_NET_CFG_RSS_TOEPLITZ); 3158 3159 func_bit = find_first_bit(&rss_cap_hfunc, NFP_NET_CFG_RSS_HFUNCS); 3160 if (func_bit == NFP_NET_CFG_RSS_HFUNCS) { 3161 dev_warn(nn->dp.dev, 3162 "Bad RSS config, defaulting to Toeplitz hash\n"); 3163 func_bit = ETH_RSS_HASH_TOP_BIT; 3164 } 3165 nn->rss_hfunc = 1 << func_bit; 3166 3167 netdev_rss_key_fill(nn->rss_key, nfp_net_rss_key_sz(nn)); 3168 3169 nfp_net_rss_init_itbl(nn); 3170 3171 /* Enable IPv4/IPv6 TCP by default */ 3172 nn->rss_cfg = NFP_NET_CFG_RSS_IPV4_TCP | 3173 NFP_NET_CFG_RSS_IPV6_TCP | 3174 FIELD_PREP(NFP_NET_CFG_RSS_HFUNC, nn->rss_hfunc) | 3175 NFP_NET_CFG_RSS_MASK; 3176 } 3177 3178 /** 3179 * nfp_net_irqmod_init() - Set the initial IRQ moderation parameters 3180 * @nn: NFP Net device to reconfigure 3181 */ 3182 static void nfp_net_irqmod_init(struct nfp_net *nn) 3183 { 3184 nn->rx_coalesce_usecs = 50; 3185 nn->rx_coalesce_max_frames = 64; 3186 nn->tx_coalesce_usecs = 50; 3187 nn->tx_coalesce_max_frames = 64; 3188 } 3189 3190 /** 3191 * nfp_net_netdev_init() - Initialise/finalise the netdev structure 3192 * @netdev: netdev structure 3193 * 3194 * Return: 0 on success or negative errno on error. 3195 */ 3196 int nfp_net_netdev_init(struct net_device *netdev) 3197 { 3198 struct nfp_net *nn = netdev_priv(netdev); 3199 int err; 3200 3201 nn->dp.chained_metadata_format = nn->fw_ver.major > 3; 3202 3203 nn->dp.rx_dma_dir = DMA_FROM_DEVICE; 3204 3205 /* Get some of the read-only fields from the BAR */ 3206 nn->cap = nn_readl(nn, NFP_NET_CFG_CAP); 3207 nn->max_mtu = nn_readl(nn, NFP_NET_CFG_MAX_MTU); 3208 3209 nfp_net_write_mac_addr(nn); 3210 3211 /* Determine RX packet/metadata boundary offset */ 3212 if (nn->fw_ver.major >= 2) { 3213 u32 reg; 3214 3215 reg = nn_readl(nn, NFP_NET_CFG_RX_OFFSET); 3216 if (reg > NFP_NET_MAX_PREPEND) { 3217 nn_err(nn, "Invalid rx offset: %d\n", reg); 3218 return -EINVAL; 3219 } 3220 nn->dp.rx_offset = reg; 3221 } else { 3222 nn->dp.rx_offset = NFP_NET_RX_OFFSET; 3223 } 3224 3225 /* Set default MTU and Freelist buffer size */ 3226 if (nn->max_mtu < NFP_NET_DEFAULT_MTU) 3227 netdev->mtu = nn->max_mtu; 3228 else 3229 netdev->mtu = NFP_NET_DEFAULT_MTU; 3230 nn->dp.mtu = netdev->mtu; 3231 nn->dp.fl_bufsz = nfp_net_calc_fl_bufsz(&nn->dp); 3232 3233 /* Advertise/enable offloads based on capabilities 3234 * 3235 * Note: netdev->features show the currently enabled features 3236 * and netdev->hw_features advertises which features are 3237 * supported. By default we enable most features. 3238 */ 3239 netdev->hw_features = NETIF_F_HIGHDMA; 3240 if (nn->cap & NFP_NET_CFG_CTRL_RXCSUM) { 3241 netdev->hw_features |= NETIF_F_RXCSUM; 3242 nn->dp.ctrl |= NFP_NET_CFG_CTRL_RXCSUM; 3243 } 3244 if (nn->cap & NFP_NET_CFG_CTRL_TXCSUM) { 3245 netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM; 3246 nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXCSUM; 3247 } 3248 if (nn->cap & NFP_NET_CFG_CTRL_GATHER) { 3249 netdev->hw_features |= NETIF_F_SG; 3250 nn->dp.ctrl |= NFP_NET_CFG_CTRL_GATHER; 3251 } 3252 if ((nn->cap & NFP_NET_CFG_CTRL_LSO) && nn->fw_ver.major > 2) { 3253 netdev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6; 3254 nn->dp.ctrl |= NFP_NET_CFG_CTRL_LSO; 3255 } 3256 if (nn->cap & NFP_NET_CFG_CTRL_RSS) { 3257 netdev->hw_features |= NETIF_F_RXHASH; 3258 nfp_net_rss_init(nn); 3259 nn->dp.ctrl |= NFP_NET_CFG_CTRL_RSS; 3260 } 3261 if (nn->cap & NFP_NET_CFG_CTRL_VXLAN && 3262 nn->cap & NFP_NET_CFG_CTRL_NVGRE) { 3263 if (nn->cap & NFP_NET_CFG_CTRL_LSO) 3264 netdev->hw_features |= NETIF_F_GSO_GRE | 3265 NETIF_F_GSO_UDP_TUNNEL; 3266 nn->dp.ctrl |= NFP_NET_CFG_CTRL_VXLAN | NFP_NET_CFG_CTRL_NVGRE; 3267 3268 netdev->hw_enc_features = netdev->hw_features; 3269 } 3270 3271 netdev->vlan_features = netdev->hw_features; 3272 3273 if (nn->cap & NFP_NET_CFG_CTRL_RXVLAN) { 3274 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 3275 nn->dp.ctrl |= NFP_NET_CFG_CTRL_RXVLAN; 3276 } 3277 if (nn->cap & NFP_NET_CFG_CTRL_TXVLAN) { 3278 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 3279 nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXVLAN; 3280 } 3281 3282 netdev->features = netdev->hw_features; 3283 3284 if (nfp_net_ebpf_capable(nn)) 3285 netdev->hw_features |= NETIF_F_HW_TC; 3286 3287 /* Advertise but disable TSO by default. */ 3288 netdev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6); 3289 3290 /* Allow L2 Broadcast and Multicast through by default, if supported */ 3291 if (nn->cap & NFP_NET_CFG_CTRL_L2BC) 3292 nn->dp.ctrl |= NFP_NET_CFG_CTRL_L2BC; 3293 if (nn->cap & NFP_NET_CFG_CTRL_L2MC) 3294 nn->dp.ctrl |= NFP_NET_CFG_CTRL_L2MC; 3295 3296 /* Allow IRQ moderation, if supported */ 3297 if (nn->cap & NFP_NET_CFG_CTRL_IRQMOD) { 3298 nfp_net_irqmod_init(nn); 3299 nn->dp.ctrl |= NFP_NET_CFG_CTRL_IRQMOD; 3300 } 3301 3302 /* Stash the re-configuration queue away. First odd queue in TX Bar */ 3303 nn->qcp_cfg = nn->tx_bar + NFP_QCP_QUEUE_ADDR_SZ; 3304 3305 /* Make sure the FW knows the netdev is supposed to be disabled here */ 3306 nn_writel(nn, NFP_NET_CFG_CTRL, 0); 3307 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0); 3308 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0); 3309 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_RING | 3310 NFP_NET_CFG_UPDATE_GEN); 3311 if (err) 3312 return err; 3313 3314 /* Finalise the netdev setup */ 3315 netdev->netdev_ops = &nfp_net_netdev_ops; 3316 netdev->watchdog_timeo = msecs_to_jiffies(5 * 1000); 3317 3318 /* MTU range: 68 - hw-specific max */ 3319 netdev->min_mtu = ETH_MIN_MTU; 3320 netdev->max_mtu = nn->max_mtu; 3321 3322 netif_carrier_off(netdev); 3323 3324 nfp_net_set_ethtool_ops(netdev); 3325 nfp_net_vecs_init(netdev); 3326 3327 return register_netdev(netdev); 3328 } 3329 3330 /** 3331 * nfp_net_netdev_clean() - Undo what nfp_net_netdev_init() did. 3332 * @netdev: netdev structure 3333 */ 3334 void nfp_net_netdev_clean(struct net_device *netdev) 3335 { 3336 struct nfp_net *nn = netdev_priv(netdev); 3337 3338 unregister_netdev(nn->dp.netdev); 3339 3340 if (nn->dp.xdp_prog) 3341 bpf_prog_put(nn->dp.xdp_prog); 3342 if (nn->dp.bpf_offload_xdp) 3343 nfp_net_xdp_offload(nn, NULL); 3344 } 3345