1 /* 2 * Copyright (C) 2015-2017 Netronome Systems, Inc. 3 * 4 * This software is dual licensed under the GNU General License Version 2, 5 * June 1991 as shown in the file COPYING in the top-level directory of this 6 * source tree or the BSD 2-Clause License provided below. You have the 7 * option to license this software under the complete terms of either license. 8 * 9 * The BSD 2-Clause License: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * 1. Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * 2. Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 */ 33 34 /* 35 * nfp_net_common.c 36 * Netronome network device driver: Common functions between PF and VF 37 * Authors: Jakub Kicinski <jakub.kicinski@netronome.com> 38 * Jason McMullan <jason.mcmullan@netronome.com> 39 * Rolf Neugebauer <rolf.neugebauer@netronome.com> 40 * Brad Petrus <brad.petrus@netronome.com> 41 * Chris Telfer <chris.telfer@netronome.com> 42 */ 43 44 #include <linux/bitfield.h> 45 #include <linux/bpf.h> 46 #include <linux/bpf_trace.h> 47 #include <linux/module.h> 48 #include <linux/kernel.h> 49 #include <linux/init.h> 50 #include <linux/fs.h> 51 #include <linux/netdevice.h> 52 #include <linux/etherdevice.h> 53 #include <linux/interrupt.h> 54 #include <linux/ip.h> 55 #include <linux/ipv6.h> 56 #include <linux/page_ref.h> 57 #include <linux/pci.h> 58 #include <linux/pci_regs.h> 59 #include <linux/msi.h> 60 #include <linux/ethtool.h> 61 #include <linux/log2.h> 62 #include <linux/if_vlan.h> 63 #include <linux/random.h> 64 #include <linux/vmalloc.h> 65 #include <linux/ktime.h> 66 67 #include <net/switchdev.h> 68 #include <net/vxlan.h> 69 70 #include "nfpcore/nfp_nsp.h" 71 #include "nfp_app.h" 72 #include "nfp_net_ctrl.h" 73 #include "nfp_net.h" 74 #include "nfp_net_sriov.h" 75 #include "nfp_port.h" 76 77 /** 78 * nfp_net_get_fw_version() - Read and parse the FW version 79 * @fw_ver: Output fw_version structure to read to 80 * @ctrl_bar: Mapped address of the control BAR 81 */ 82 void nfp_net_get_fw_version(struct nfp_net_fw_version *fw_ver, 83 void __iomem *ctrl_bar) 84 { 85 u32 reg; 86 87 reg = readl(ctrl_bar + NFP_NET_CFG_VERSION); 88 put_unaligned_le32(reg, fw_ver); 89 } 90 91 static dma_addr_t nfp_net_dma_map_rx(struct nfp_net_dp *dp, void *frag) 92 { 93 return dma_map_single_attrs(dp->dev, frag + NFP_NET_RX_BUF_HEADROOM, 94 dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA, 95 dp->rx_dma_dir, DMA_ATTR_SKIP_CPU_SYNC); 96 } 97 98 static void 99 nfp_net_dma_sync_dev_rx(const struct nfp_net_dp *dp, dma_addr_t dma_addr) 100 { 101 dma_sync_single_for_device(dp->dev, dma_addr, 102 dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA, 103 dp->rx_dma_dir); 104 } 105 106 static void nfp_net_dma_unmap_rx(struct nfp_net_dp *dp, dma_addr_t dma_addr) 107 { 108 dma_unmap_single_attrs(dp->dev, dma_addr, 109 dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA, 110 dp->rx_dma_dir, DMA_ATTR_SKIP_CPU_SYNC); 111 } 112 113 static void nfp_net_dma_sync_cpu_rx(struct nfp_net_dp *dp, dma_addr_t dma_addr, 114 unsigned int len) 115 { 116 dma_sync_single_for_cpu(dp->dev, dma_addr - NFP_NET_RX_BUF_HEADROOM, 117 len, dp->rx_dma_dir); 118 } 119 120 /* Firmware reconfig 121 * 122 * Firmware reconfig may take a while so we have two versions of it - 123 * synchronous and asynchronous (posted). All synchronous callers are holding 124 * RTNL so we don't have to worry about serializing them. 125 */ 126 static void nfp_net_reconfig_start(struct nfp_net *nn, u32 update) 127 { 128 nn_writel(nn, NFP_NET_CFG_UPDATE, update); 129 /* ensure update is written before pinging HW */ 130 nn_pci_flush(nn); 131 nfp_qcp_wr_ptr_add(nn->qcp_cfg, 1); 132 } 133 134 /* Pass 0 as update to run posted reconfigs. */ 135 static void nfp_net_reconfig_start_async(struct nfp_net *nn, u32 update) 136 { 137 update |= nn->reconfig_posted; 138 nn->reconfig_posted = 0; 139 140 nfp_net_reconfig_start(nn, update); 141 142 nn->reconfig_timer_active = true; 143 mod_timer(&nn->reconfig_timer, jiffies + NFP_NET_POLL_TIMEOUT * HZ); 144 } 145 146 static bool nfp_net_reconfig_check_done(struct nfp_net *nn, bool last_check) 147 { 148 u32 reg; 149 150 reg = nn_readl(nn, NFP_NET_CFG_UPDATE); 151 if (reg == 0) 152 return true; 153 if (reg & NFP_NET_CFG_UPDATE_ERR) { 154 nn_err(nn, "Reconfig error: 0x%08x\n", reg); 155 return true; 156 } else if (last_check) { 157 nn_err(nn, "Reconfig timeout: 0x%08x\n", reg); 158 return true; 159 } 160 161 return false; 162 } 163 164 static int nfp_net_reconfig_wait(struct nfp_net *nn, unsigned long deadline) 165 { 166 bool timed_out = false; 167 168 /* Poll update field, waiting for NFP to ack the config */ 169 while (!nfp_net_reconfig_check_done(nn, timed_out)) { 170 msleep(1); 171 timed_out = time_is_before_eq_jiffies(deadline); 172 } 173 174 if (nn_readl(nn, NFP_NET_CFG_UPDATE) & NFP_NET_CFG_UPDATE_ERR) 175 return -EIO; 176 177 return timed_out ? -EIO : 0; 178 } 179 180 static void nfp_net_reconfig_timer(struct timer_list *t) 181 { 182 struct nfp_net *nn = from_timer(nn, t, reconfig_timer); 183 184 spin_lock_bh(&nn->reconfig_lock); 185 186 nn->reconfig_timer_active = false; 187 188 /* If sync caller is present it will take over from us */ 189 if (nn->reconfig_sync_present) 190 goto done; 191 192 /* Read reconfig status and report errors */ 193 nfp_net_reconfig_check_done(nn, true); 194 195 if (nn->reconfig_posted) 196 nfp_net_reconfig_start_async(nn, 0); 197 done: 198 spin_unlock_bh(&nn->reconfig_lock); 199 } 200 201 /** 202 * nfp_net_reconfig_post() - Post async reconfig request 203 * @nn: NFP Net device to reconfigure 204 * @update: The value for the update field in the BAR config 205 * 206 * Record FW reconfiguration request. Reconfiguration will be kicked off 207 * whenever reconfiguration machinery is idle. Multiple requests can be 208 * merged together! 209 */ 210 static void nfp_net_reconfig_post(struct nfp_net *nn, u32 update) 211 { 212 spin_lock_bh(&nn->reconfig_lock); 213 214 /* Sync caller will kick off async reconf when it's done, just post */ 215 if (nn->reconfig_sync_present) { 216 nn->reconfig_posted |= update; 217 goto done; 218 } 219 220 /* Opportunistically check if the previous command is done */ 221 if (!nn->reconfig_timer_active || 222 nfp_net_reconfig_check_done(nn, false)) 223 nfp_net_reconfig_start_async(nn, update); 224 else 225 nn->reconfig_posted |= update; 226 done: 227 spin_unlock_bh(&nn->reconfig_lock); 228 } 229 230 /** 231 * nfp_net_reconfig() - Reconfigure the firmware 232 * @nn: NFP Net device to reconfigure 233 * @update: The value for the update field in the BAR config 234 * 235 * Write the update word to the BAR and ping the reconfig queue. The 236 * poll until the firmware has acknowledged the update by zeroing the 237 * update word. 238 * 239 * Return: Negative errno on error, 0 on success 240 */ 241 int nfp_net_reconfig(struct nfp_net *nn, u32 update) 242 { 243 bool cancelled_timer = false; 244 u32 pre_posted_requests; 245 int ret; 246 247 spin_lock_bh(&nn->reconfig_lock); 248 249 nn->reconfig_sync_present = true; 250 251 if (nn->reconfig_timer_active) { 252 del_timer(&nn->reconfig_timer); 253 nn->reconfig_timer_active = false; 254 cancelled_timer = true; 255 } 256 pre_posted_requests = nn->reconfig_posted; 257 nn->reconfig_posted = 0; 258 259 spin_unlock_bh(&nn->reconfig_lock); 260 261 if (cancelled_timer) 262 nfp_net_reconfig_wait(nn, nn->reconfig_timer.expires); 263 264 /* Run the posted reconfigs which were issued before we started */ 265 if (pre_posted_requests) { 266 nfp_net_reconfig_start(nn, pre_posted_requests); 267 nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT); 268 } 269 270 nfp_net_reconfig_start(nn, update); 271 ret = nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT); 272 273 spin_lock_bh(&nn->reconfig_lock); 274 275 if (nn->reconfig_posted) 276 nfp_net_reconfig_start_async(nn, 0); 277 278 nn->reconfig_sync_present = false; 279 280 spin_unlock_bh(&nn->reconfig_lock); 281 282 return ret; 283 } 284 285 /** 286 * nfp_net_reconfig_mbox() - Reconfigure the firmware via the mailbox 287 * @nn: NFP Net device to reconfigure 288 * @mbox_cmd: The value for the mailbox command 289 * 290 * Helper function for mailbox updates 291 * 292 * Return: Negative errno on error, 0 on success 293 */ 294 static int nfp_net_reconfig_mbox(struct nfp_net *nn, u32 mbox_cmd) 295 { 296 int ret; 297 298 nn_writeq(nn, NFP_NET_CFG_MBOX_CMD, mbox_cmd); 299 300 ret = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_MBOX); 301 if (ret) { 302 nn_err(nn, "Mailbox update error\n"); 303 return ret; 304 } 305 306 return -nn_readl(nn, NFP_NET_CFG_MBOX_RET); 307 } 308 309 /* Interrupt configuration and handling 310 */ 311 312 /** 313 * nfp_net_irq_unmask() - Unmask automasked interrupt 314 * @nn: NFP Network structure 315 * @entry_nr: MSI-X table entry 316 * 317 * Clear the ICR for the IRQ entry. 318 */ 319 static void nfp_net_irq_unmask(struct nfp_net *nn, unsigned int entry_nr) 320 { 321 nn_writeb(nn, NFP_NET_CFG_ICR(entry_nr), NFP_NET_CFG_ICR_UNMASKED); 322 nn_pci_flush(nn); 323 } 324 325 /** 326 * nfp_net_irqs_alloc() - allocates MSI-X irqs 327 * @pdev: PCI device structure 328 * @irq_entries: Array to be initialized and used to hold the irq entries 329 * @min_irqs: Minimal acceptable number of interrupts 330 * @wanted_irqs: Target number of interrupts to allocate 331 * 332 * Return: Number of irqs obtained or 0 on error. 333 */ 334 unsigned int 335 nfp_net_irqs_alloc(struct pci_dev *pdev, struct msix_entry *irq_entries, 336 unsigned int min_irqs, unsigned int wanted_irqs) 337 { 338 unsigned int i; 339 int got_irqs; 340 341 for (i = 0; i < wanted_irqs; i++) 342 irq_entries[i].entry = i; 343 344 got_irqs = pci_enable_msix_range(pdev, irq_entries, 345 min_irqs, wanted_irqs); 346 if (got_irqs < 0) { 347 dev_err(&pdev->dev, "Failed to enable %d-%d MSI-X (err=%d)\n", 348 min_irqs, wanted_irqs, got_irqs); 349 return 0; 350 } 351 352 if (got_irqs < wanted_irqs) 353 dev_warn(&pdev->dev, "Unable to allocate %d IRQs got only %d\n", 354 wanted_irqs, got_irqs); 355 356 return got_irqs; 357 } 358 359 /** 360 * nfp_net_irqs_assign() - Assign interrupts allocated externally to netdev 361 * @nn: NFP Network structure 362 * @irq_entries: Table of allocated interrupts 363 * @n: Size of @irq_entries (number of entries to grab) 364 * 365 * After interrupts are allocated with nfp_net_irqs_alloc() this function 366 * should be called to assign them to a specific netdev (port). 367 */ 368 void 369 nfp_net_irqs_assign(struct nfp_net *nn, struct msix_entry *irq_entries, 370 unsigned int n) 371 { 372 struct nfp_net_dp *dp = &nn->dp; 373 374 nn->max_r_vecs = n - NFP_NET_NON_Q_VECTORS; 375 dp->num_r_vecs = nn->max_r_vecs; 376 377 memcpy(nn->irq_entries, irq_entries, sizeof(*irq_entries) * n); 378 379 if (dp->num_rx_rings > dp->num_r_vecs || 380 dp->num_tx_rings > dp->num_r_vecs) 381 dev_warn(nn->dp.dev, "More rings (%d,%d) than vectors (%d).\n", 382 dp->num_rx_rings, dp->num_tx_rings, 383 dp->num_r_vecs); 384 385 dp->num_rx_rings = min(dp->num_r_vecs, dp->num_rx_rings); 386 dp->num_tx_rings = min(dp->num_r_vecs, dp->num_tx_rings); 387 dp->num_stack_tx_rings = dp->num_tx_rings; 388 } 389 390 /** 391 * nfp_net_irqs_disable() - Disable interrupts 392 * @pdev: PCI device structure 393 * 394 * Undoes what @nfp_net_irqs_alloc() does. 395 */ 396 void nfp_net_irqs_disable(struct pci_dev *pdev) 397 { 398 pci_disable_msix(pdev); 399 } 400 401 /** 402 * nfp_net_irq_rxtx() - Interrupt service routine for RX/TX rings. 403 * @irq: Interrupt 404 * @data: Opaque data structure 405 * 406 * Return: Indicate if the interrupt has been handled. 407 */ 408 static irqreturn_t nfp_net_irq_rxtx(int irq, void *data) 409 { 410 struct nfp_net_r_vector *r_vec = data; 411 412 napi_schedule_irqoff(&r_vec->napi); 413 414 /* The FW auto-masks any interrupt, either via the MASK bit in 415 * the MSI-X table or via the per entry ICR field. So there 416 * is no need to disable interrupts here. 417 */ 418 return IRQ_HANDLED; 419 } 420 421 static irqreturn_t nfp_ctrl_irq_rxtx(int irq, void *data) 422 { 423 struct nfp_net_r_vector *r_vec = data; 424 425 tasklet_schedule(&r_vec->tasklet); 426 427 return IRQ_HANDLED; 428 } 429 430 /** 431 * nfp_net_read_link_status() - Reread link status from control BAR 432 * @nn: NFP Network structure 433 */ 434 static void nfp_net_read_link_status(struct nfp_net *nn) 435 { 436 unsigned long flags; 437 bool link_up; 438 u32 sts; 439 440 spin_lock_irqsave(&nn->link_status_lock, flags); 441 442 sts = nn_readl(nn, NFP_NET_CFG_STS); 443 link_up = !!(sts & NFP_NET_CFG_STS_LINK); 444 445 if (nn->link_up == link_up) 446 goto out; 447 448 nn->link_up = link_up; 449 if (nn->port) 450 set_bit(NFP_PORT_CHANGED, &nn->port->flags); 451 452 if (nn->link_up) { 453 netif_carrier_on(nn->dp.netdev); 454 netdev_info(nn->dp.netdev, "NIC Link is Up\n"); 455 } else { 456 netif_carrier_off(nn->dp.netdev); 457 netdev_info(nn->dp.netdev, "NIC Link is Down\n"); 458 } 459 out: 460 spin_unlock_irqrestore(&nn->link_status_lock, flags); 461 } 462 463 /** 464 * nfp_net_irq_lsc() - Interrupt service routine for link state changes 465 * @irq: Interrupt 466 * @data: Opaque data structure 467 * 468 * Return: Indicate if the interrupt has been handled. 469 */ 470 static irqreturn_t nfp_net_irq_lsc(int irq, void *data) 471 { 472 struct nfp_net *nn = data; 473 struct msix_entry *entry; 474 475 entry = &nn->irq_entries[NFP_NET_IRQ_LSC_IDX]; 476 477 nfp_net_read_link_status(nn); 478 479 nfp_net_irq_unmask(nn, entry->entry); 480 481 return IRQ_HANDLED; 482 } 483 484 /** 485 * nfp_net_irq_exn() - Interrupt service routine for exceptions 486 * @irq: Interrupt 487 * @data: Opaque data structure 488 * 489 * Return: Indicate if the interrupt has been handled. 490 */ 491 static irqreturn_t nfp_net_irq_exn(int irq, void *data) 492 { 493 struct nfp_net *nn = data; 494 495 nn_err(nn, "%s: UNIMPLEMENTED.\n", __func__); 496 /* XXX TO BE IMPLEMENTED */ 497 return IRQ_HANDLED; 498 } 499 500 /** 501 * nfp_net_tx_ring_init() - Fill in the boilerplate for a TX ring 502 * @tx_ring: TX ring structure 503 * @r_vec: IRQ vector servicing this ring 504 * @idx: Ring index 505 * @is_xdp: Is this an XDP TX ring? 506 */ 507 static void 508 nfp_net_tx_ring_init(struct nfp_net_tx_ring *tx_ring, 509 struct nfp_net_r_vector *r_vec, unsigned int idx, 510 bool is_xdp) 511 { 512 struct nfp_net *nn = r_vec->nfp_net; 513 514 tx_ring->idx = idx; 515 tx_ring->r_vec = r_vec; 516 tx_ring->is_xdp = is_xdp; 517 u64_stats_init(&tx_ring->r_vec->tx_sync); 518 519 tx_ring->qcidx = tx_ring->idx * nn->stride_tx; 520 tx_ring->qcp_q = nn->tx_bar + NFP_QCP_QUEUE_OFF(tx_ring->qcidx); 521 } 522 523 /** 524 * nfp_net_rx_ring_init() - Fill in the boilerplate for a RX ring 525 * @rx_ring: RX ring structure 526 * @r_vec: IRQ vector servicing this ring 527 * @idx: Ring index 528 */ 529 static void 530 nfp_net_rx_ring_init(struct nfp_net_rx_ring *rx_ring, 531 struct nfp_net_r_vector *r_vec, unsigned int idx) 532 { 533 struct nfp_net *nn = r_vec->nfp_net; 534 535 rx_ring->idx = idx; 536 rx_ring->r_vec = r_vec; 537 u64_stats_init(&rx_ring->r_vec->rx_sync); 538 539 rx_ring->fl_qcidx = rx_ring->idx * nn->stride_rx; 540 rx_ring->qcp_fl = nn->rx_bar + NFP_QCP_QUEUE_OFF(rx_ring->fl_qcidx); 541 } 542 543 /** 544 * nfp_net_aux_irq_request() - Request an auxiliary interrupt (LSC or EXN) 545 * @nn: NFP Network structure 546 * @ctrl_offset: Control BAR offset where IRQ configuration should be written 547 * @format: printf-style format to construct the interrupt name 548 * @name: Pointer to allocated space for interrupt name 549 * @name_sz: Size of space for interrupt name 550 * @vector_idx: Index of MSI-X vector used for this interrupt 551 * @handler: IRQ handler to register for this interrupt 552 */ 553 static int 554 nfp_net_aux_irq_request(struct nfp_net *nn, u32 ctrl_offset, 555 const char *format, char *name, size_t name_sz, 556 unsigned int vector_idx, irq_handler_t handler) 557 { 558 struct msix_entry *entry; 559 int err; 560 561 entry = &nn->irq_entries[vector_idx]; 562 563 snprintf(name, name_sz, format, nfp_net_name(nn)); 564 err = request_irq(entry->vector, handler, 0, name, nn); 565 if (err) { 566 nn_err(nn, "Failed to request IRQ %d (err=%d).\n", 567 entry->vector, err); 568 return err; 569 } 570 nn_writeb(nn, ctrl_offset, entry->entry); 571 572 return 0; 573 } 574 575 /** 576 * nfp_net_aux_irq_free() - Free an auxiliary interrupt (LSC or EXN) 577 * @nn: NFP Network structure 578 * @ctrl_offset: Control BAR offset where IRQ configuration should be written 579 * @vector_idx: Index of MSI-X vector used for this interrupt 580 */ 581 static void nfp_net_aux_irq_free(struct nfp_net *nn, u32 ctrl_offset, 582 unsigned int vector_idx) 583 { 584 nn_writeb(nn, ctrl_offset, 0xff); 585 free_irq(nn->irq_entries[vector_idx].vector, nn); 586 } 587 588 /* Transmit 589 * 590 * One queue controller peripheral queue is used for transmit. The 591 * driver en-queues packets for transmit by advancing the write 592 * pointer. The device indicates that packets have transmitted by 593 * advancing the read pointer. The driver maintains a local copy of 594 * the read and write pointer in @struct nfp_net_tx_ring. The driver 595 * keeps @wr_p in sync with the queue controller write pointer and can 596 * determine how many packets have been transmitted by comparing its 597 * copy of the read pointer @rd_p with the read pointer maintained by 598 * the queue controller peripheral. 599 */ 600 601 /** 602 * nfp_net_tx_full() - Check if the TX ring is full 603 * @tx_ring: TX ring to check 604 * @dcnt: Number of descriptors that need to be enqueued (must be >= 1) 605 * 606 * This function checks, based on the *host copy* of read/write 607 * pointer if a given TX ring is full. The real TX queue may have 608 * some newly made available slots. 609 * 610 * Return: True if the ring is full. 611 */ 612 static int nfp_net_tx_full(struct nfp_net_tx_ring *tx_ring, int dcnt) 613 { 614 return (tx_ring->wr_p - tx_ring->rd_p) >= (tx_ring->cnt - dcnt); 615 } 616 617 /* Wrappers for deciding when to stop and restart TX queues */ 618 static int nfp_net_tx_ring_should_wake(struct nfp_net_tx_ring *tx_ring) 619 { 620 return !nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS * 4); 621 } 622 623 static int nfp_net_tx_ring_should_stop(struct nfp_net_tx_ring *tx_ring) 624 { 625 return nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS + 1); 626 } 627 628 /** 629 * nfp_net_tx_ring_stop() - stop tx ring 630 * @nd_q: netdev queue 631 * @tx_ring: driver tx queue structure 632 * 633 * Safely stop TX ring. Remember that while we are running .start_xmit() 634 * someone else may be cleaning the TX ring completions so we need to be 635 * extra careful here. 636 */ 637 static void nfp_net_tx_ring_stop(struct netdev_queue *nd_q, 638 struct nfp_net_tx_ring *tx_ring) 639 { 640 netif_tx_stop_queue(nd_q); 641 642 /* We can race with the TX completion out of NAPI so recheck */ 643 smp_mb(); 644 if (unlikely(nfp_net_tx_ring_should_wake(tx_ring))) 645 netif_tx_start_queue(nd_q); 646 } 647 648 /** 649 * nfp_net_tx_tso() - Set up Tx descriptor for LSO 650 * @r_vec: per-ring structure 651 * @txbuf: Pointer to driver soft TX descriptor 652 * @txd: Pointer to HW TX descriptor 653 * @skb: Pointer to SKB 654 * 655 * Set up Tx descriptor for LSO, do nothing for non-LSO skbs. 656 * Return error on packet header greater than maximum supported LSO header size. 657 */ 658 static void nfp_net_tx_tso(struct nfp_net_r_vector *r_vec, 659 struct nfp_net_tx_buf *txbuf, 660 struct nfp_net_tx_desc *txd, struct sk_buff *skb) 661 { 662 u32 hdrlen; 663 u16 mss; 664 665 if (!skb_is_gso(skb)) 666 return; 667 668 if (!skb->encapsulation) { 669 txd->l3_offset = skb_network_offset(skb); 670 txd->l4_offset = skb_transport_offset(skb); 671 hdrlen = skb_transport_offset(skb) + tcp_hdrlen(skb); 672 } else { 673 txd->l3_offset = skb_inner_network_offset(skb); 674 txd->l4_offset = skb_inner_transport_offset(skb); 675 hdrlen = skb_inner_transport_header(skb) - skb->data + 676 inner_tcp_hdrlen(skb); 677 } 678 679 txbuf->pkt_cnt = skb_shinfo(skb)->gso_segs; 680 txbuf->real_len += hdrlen * (txbuf->pkt_cnt - 1); 681 682 mss = skb_shinfo(skb)->gso_size & PCIE_DESC_TX_MSS_MASK; 683 txd->lso_hdrlen = hdrlen; 684 txd->mss = cpu_to_le16(mss); 685 txd->flags |= PCIE_DESC_TX_LSO; 686 687 u64_stats_update_begin(&r_vec->tx_sync); 688 r_vec->tx_lso++; 689 u64_stats_update_end(&r_vec->tx_sync); 690 } 691 692 /** 693 * nfp_net_tx_csum() - Set TX CSUM offload flags in TX descriptor 694 * @dp: NFP Net data path struct 695 * @r_vec: per-ring structure 696 * @txbuf: Pointer to driver soft TX descriptor 697 * @txd: Pointer to TX descriptor 698 * @skb: Pointer to SKB 699 * 700 * This function sets the TX checksum flags in the TX descriptor based 701 * on the configuration and the protocol of the packet to be transmitted. 702 */ 703 static void nfp_net_tx_csum(struct nfp_net_dp *dp, 704 struct nfp_net_r_vector *r_vec, 705 struct nfp_net_tx_buf *txbuf, 706 struct nfp_net_tx_desc *txd, struct sk_buff *skb) 707 { 708 struct ipv6hdr *ipv6h; 709 struct iphdr *iph; 710 u8 l4_hdr; 711 712 if (!(dp->ctrl & NFP_NET_CFG_CTRL_TXCSUM)) 713 return; 714 715 if (skb->ip_summed != CHECKSUM_PARTIAL) 716 return; 717 718 txd->flags |= PCIE_DESC_TX_CSUM; 719 if (skb->encapsulation) 720 txd->flags |= PCIE_DESC_TX_ENCAP; 721 722 iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb); 723 ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb); 724 725 if (iph->version == 4) { 726 txd->flags |= PCIE_DESC_TX_IP4_CSUM; 727 l4_hdr = iph->protocol; 728 } else if (ipv6h->version == 6) { 729 l4_hdr = ipv6h->nexthdr; 730 } else { 731 nn_dp_warn(dp, "partial checksum but ipv=%x!\n", iph->version); 732 return; 733 } 734 735 switch (l4_hdr) { 736 case IPPROTO_TCP: 737 txd->flags |= PCIE_DESC_TX_TCP_CSUM; 738 break; 739 case IPPROTO_UDP: 740 txd->flags |= PCIE_DESC_TX_UDP_CSUM; 741 break; 742 default: 743 nn_dp_warn(dp, "partial checksum but l4 proto=%x!\n", l4_hdr); 744 return; 745 } 746 747 u64_stats_update_begin(&r_vec->tx_sync); 748 if (skb->encapsulation) 749 r_vec->hw_csum_tx_inner += txbuf->pkt_cnt; 750 else 751 r_vec->hw_csum_tx += txbuf->pkt_cnt; 752 u64_stats_update_end(&r_vec->tx_sync); 753 } 754 755 static void nfp_net_tx_xmit_more_flush(struct nfp_net_tx_ring *tx_ring) 756 { 757 wmb(); 758 nfp_qcp_wr_ptr_add(tx_ring->qcp_q, tx_ring->wr_ptr_add); 759 tx_ring->wr_ptr_add = 0; 760 } 761 762 static int nfp_net_prep_port_id(struct sk_buff *skb) 763 { 764 struct metadata_dst *md_dst = skb_metadata_dst(skb); 765 unsigned char *data; 766 767 if (likely(!md_dst)) 768 return 0; 769 if (unlikely(md_dst->type != METADATA_HW_PORT_MUX)) 770 return 0; 771 772 if (unlikely(skb_cow_head(skb, 8))) 773 return -ENOMEM; 774 775 data = skb_push(skb, 8); 776 put_unaligned_be32(NFP_NET_META_PORTID, data); 777 put_unaligned_be32(md_dst->u.port_info.port_id, data + 4); 778 779 return 8; 780 } 781 782 /** 783 * nfp_net_tx() - Main transmit entry point 784 * @skb: SKB to transmit 785 * @netdev: netdev structure 786 * 787 * Return: NETDEV_TX_OK on success. 788 */ 789 static int nfp_net_tx(struct sk_buff *skb, struct net_device *netdev) 790 { 791 struct nfp_net *nn = netdev_priv(netdev); 792 const struct skb_frag_struct *frag; 793 struct nfp_net_tx_desc *txd, txdg; 794 int f, nr_frags, wr_idx, md_bytes; 795 struct nfp_net_tx_ring *tx_ring; 796 struct nfp_net_r_vector *r_vec; 797 struct nfp_net_tx_buf *txbuf; 798 struct netdev_queue *nd_q; 799 struct nfp_net_dp *dp; 800 dma_addr_t dma_addr; 801 unsigned int fsize; 802 u16 qidx; 803 804 dp = &nn->dp; 805 qidx = skb_get_queue_mapping(skb); 806 tx_ring = &dp->tx_rings[qidx]; 807 r_vec = tx_ring->r_vec; 808 nd_q = netdev_get_tx_queue(dp->netdev, qidx); 809 810 nr_frags = skb_shinfo(skb)->nr_frags; 811 812 if (unlikely(nfp_net_tx_full(tx_ring, nr_frags + 1))) { 813 nn_dp_warn(dp, "TX ring %d busy. wrp=%u rdp=%u\n", 814 qidx, tx_ring->wr_p, tx_ring->rd_p); 815 netif_tx_stop_queue(nd_q); 816 nfp_net_tx_xmit_more_flush(tx_ring); 817 u64_stats_update_begin(&r_vec->tx_sync); 818 r_vec->tx_busy++; 819 u64_stats_update_end(&r_vec->tx_sync); 820 return NETDEV_TX_BUSY; 821 } 822 823 md_bytes = nfp_net_prep_port_id(skb); 824 if (unlikely(md_bytes < 0)) { 825 nfp_net_tx_xmit_more_flush(tx_ring); 826 dev_kfree_skb_any(skb); 827 return NETDEV_TX_OK; 828 } 829 830 /* Start with the head skbuf */ 831 dma_addr = dma_map_single(dp->dev, skb->data, skb_headlen(skb), 832 DMA_TO_DEVICE); 833 if (dma_mapping_error(dp->dev, dma_addr)) 834 goto err_free; 835 836 wr_idx = D_IDX(tx_ring, tx_ring->wr_p); 837 838 /* Stash the soft descriptor of the head then initialize it */ 839 txbuf = &tx_ring->txbufs[wr_idx]; 840 txbuf->skb = skb; 841 txbuf->dma_addr = dma_addr; 842 txbuf->fidx = -1; 843 txbuf->pkt_cnt = 1; 844 txbuf->real_len = skb->len; 845 846 /* Build TX descriptor */ 847 txd = &tx_ring->txds[wr_idx]; 848 txd->offset_eop = (nr_frags ? 0 : PCIE_DESC_TX_EOP) | md_bytes; 849 txd->dma_len = cpu_to_le16(skb_headlen(skb)); 850 nfp_desc_set_dma_addr(txd, dma_addr); 851 txd->data_len = cpu_to_le16(skb->len); 852 853 txd->flags = 0; 854 txd->mss = 0; 855 txd->lso_hdrlen = 0; 856 857 /* Do not reorder - tso may adjust pkt cnt, vlan may override fields */ 858 nfp_net_tx_tso(r_vec, txbuf, txd, skb); 859 nfp_net_tx_csum(dp, r_vec, txbuf, txd, skb); 860 if (skb_vlan_tag_present(skb) && dp->ctrl & NFP_NET_CFG_CTRL_TXVLAN) { 861 txd->flags |= PCIE_DESC_TX_VLAN; 862 txd->vlan = cpu_to_le16(skb_vlan_tag_get(skb)); 863 } 864 865 /* Gather DMA */ 866 if (nr_frags > 0) { 867 /* all descs must match except for in addr, length and eop */ 868 txdg = *txd; 869 870 for (f = 0; f < nr_frags; f++) { 871 frag = &skb_shinfo(skb)->frags[f]; 872 fsize = skb_frag_size(frag); 873 874 dma_addr = skb_frag_dma_map(dp->dev, frag, 0, 875 fsize, DMA_TO_DEVICE); 876 if (dma_mapping_error(dp->dev, dma_addr)) 877 goto err_unmap; 878 879 wr_idx = D_IDX(tx_ring, wr_idx + 1); 880 tx_ring->txbufs[wr_idx].skb = skb; 881 tx_ring->txbufs[wr_idx].dma_addr = dma_addr; 882 tx_ring->txbufs[wr_idx].fidx = f; 883 884 txd = &tx_ring->txds[wr_idx]; 885 *txd = txdg; 886 txd->dma_len = cpu_to_le16(fsize); 887 nfp_desc_set_dma_addr(txd, dma_addr); 888 txd->offset_eop |= 889 (f == nr_frags - 1) ? PCIE_DESC_TX_EOP : 0; 890 } 891 892 u64_stats_update_begin(&r_vec->tx_sync); 893 r_vec->tx_gather++; 894 u64_stats_update_end(&r_vec->tx_sync); 895 } 896 897 netdev_tx_sent_queue(nd_q, txbuf->real_len); 898 899 skb_tx_timestamp(skb); 900 901 tx_ring->wr_p += nr_frags + 1; 902 if (nfp_net_tx_ring_should_stop(tx_ring)) 903 nfp_net_tx_ring_stop(nd_q, tx_ring); 904 905 tx_ring->wr_ptr_add += nr_frags + 1; 906 if (!skb->xmit_more || netif_xmit_stopped(nd_q)) 907 nfp_net_tx_xmit_more_flush(tx_ring); 908 909 return NETDEV_TX_OK; 910 911 err_unmap: 912 while (--f >= 0) { 913 frag = &skb_shinfo(skb)->frags[f]; 914 dma_unmap_page(dp->dev, tx_ring->txbufs[wr_idx].dma_addr, 915 skb_frag_size(frag), DMA_TO_DEVICE); 916 tx_ring->txbufs[wr_idx].skb = NULL; 917 tx_ring->txbufs[wr_idx].dma_addr = 0; 918 tx_ring->txbufs[wr_idx].fidx = -2; 919 wr_idx = wr_idx - 1; 920 if (wr_idx < 0) 921 wr_idx += tx_ring->cnt; 922 } 923 dma_unmap_single(dp->dev, tx_ring->txbufs[wr_idx].dma_addr, 924 skb_headlen(skb), DMA_TO_DEVICE); 925 tx_ring->txbufs[wr_idx].skb = NULL; 926 tx_ring->txbufs[wr_idx].dma_addr = 0; 927 tx_ring->txbufs[wr_idx].fidx = -2; 928 err_free: 929 nn_dp_warn(dp, "Failed to map DMA TX buffer\n"); 930 nfp_net_tx_xmit_more_flush(tx_ring); 931 u64_stats_update_begin(&r_vec->tx_sync); 932 r_vec->tx_errors++; 933 u64_stats_update_end(&r_vec->tx_sync); 934 dev_kfree_skb_any(skb); 935 return NETDEV_TX_OK; 936 } 937 938 /** 939 * nfp_net_tx_complete() - Handled completed TX packets 940 * @tx_ring: TX ring structure 941 * 942 * Return: Number of completed TX descriptors 943 */ 944 static void nfp_net_tx_complete(struct nfp_net_tx_ring *tx_ring) 945 { 946 struct nfp_net_r_vector *r_vec = tx_ring->r_vec; 947 struct nfp_net_dp *dp = &r_vec->nfp_net->dp; 948 const struct skb_frag_struct *frag; 949 struct netdev_queue *nd_q; 950 u32 done_pkts = 0, done_bytes = 0; 951 struct sk_buff *skb; 952 int todo, nr_frags; 953 u32 qcp_rd_p; 954 int fidx; 955 int idx; 956 957 if (tx_ring->wr_p == tx_ring->rd_p) 958 return; 959 960 /* Work out how many descriptors have been transmitted */ 961 qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q); 962 963 if (qcp_rd_p == tx_ring->qcp_rd_p) 964 return; 965 966 todo = D_IDX(tx_ring, qcp_rd_p - tx_ring->qcp_rd_p); 967 968 while (todo--) { 969 idx = D_IDX(tx_ring, tx_ring->rd_p++); 970 971 skb = tx_ring->txbufs[idx].skb; 972 if (!skb) 973 continue; 974 975 nr_frags = skb_shinfo(skb)->nr_frags; 976 fidx = tx_ring->txbufs[idx].fidx; 977 978 if (fidx == -1) { 979 /* unmap head */ 980 dma_unmap_single(dp->dev, tx_ring->txbufs[idx].dma_addr, 981 skb_headlen(skb), DMA_TO_DEVICE); 982 983 done_pkts += tx_ring->txbufs[idx].pkt_cnt; 984 done_bytes += tx_ring->txbufs[idx].real_len; 985 } else { 986 /* unmap fragment */ 987 frag = &skb_shinfo(skb)->frags[fidx]; 988 dma_unmap_page(dp->dev, tx_ring->txbufs[idx].dma_addr, 989 skb_frag_size(frag), DMA_TO_DEVICE); 990 } 991 992 /* check for last gather fragment */ 993 if (fidx == nr_frags - 1) 994 dev_consume_skb_any(skb); 995 996 tx_ring->txbufs[idx].dma_addr = 0; 997 tx_ring->txbufs[idx].skb = NULL; 998 tx_ring->txbufs[idx].fidx = -2; 999 } 1000 1001 tx_ring->qcp_rd_p = qcp_rd_p; 1002 1003 u64_stats_update_begin(&r_vec->tx_sync); 1004 r_vec->tx_bytes += done_bytes; 1005 r_vec->tx_pkts += done_pkts; 1006 u64_stats_update_end(&r_vec->tx_sync); 1007 1008 if (!dp->netdev) 1009 return; 1010 1011 nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx); 1012 netdev_tx_completed_queue(nd_q, done_pkts, done_bytes); 1013 if (nfp_net_tx_ring_should_wake(tx_ring)) { 1014 /* Make sure TX thread will see updated tx_ring->rd_p */ 1015 smp_mb(); 1016 1017 if (unlikely(netif_tx_queue_stopped(nd_q))) 1018 netif_tx_wake_queue(nd_q); 1019 } 1020 1021 WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt, 1022 "TX ring corruption rd_p=%u wr_p=%u cnt=%u\n", 1023 tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt); 1024 } 1025 1026 static bool nfp_net_xdp_complete(struct nfp_net_tx_ring *tx_ring) 1027 { 1028 struct nfp_net_r_vector *r_vec = tx_ring->r_vec; 1029 u32 done_pkts = 0, done_bytes = 0; 1030 bool done_all; 1031 int idx, todo; 1032 u32 qcp_rd_p; 1033 1034 /* Work out how many descriptors have been transmitted */ 1035 qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q); 1036 1037 if (qcp_rd_p == tx_ring->qcp_rd_p) 1038 return true; 1039 1040 todo = D_IDX(tx_ring, qcp_rd_p - tx_ring->qcp_rd_p); 1041 1042 done_all = todo <= NFP_NET_XDP_MAX_COMPLETE; 1043 todo = min(todo, NFP_NET_XDP_MAX_COMPLETE); 1044 1045 tx_ring->qcp_rd_p = D_IDX(tx_ring, tx_ring->qcp_rd_p + todo); 1046 1047 done_pkts = todo; 1048 while (todo--) { 1049 idx = D_IDX(tx_ring, tx_ring->rd_p); 1050 tx_ring->rd_p++; 1051 1052 done_bytes += tx_ring->txbufs[idx].real_len; 1053 } 1054 1055 u64_stats_update_begin(&r_vec->tx_sync); 1056 r_vec->tx_bytes += done_bytes; 1057 r_vec->tx_pkts += done_pkts; 1058 u64_stats_update_end(&r_vec->tx_sync); 1059 1060 WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt, 1061 "XDP TX ring corruption rd_p=%u wr_p=%u cnt=%u\n", 1062 tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt); 1063 1064 return done_all; 1065 } 1066 1067 /** 1068 * nfp_net_tx_ring_reset() - Free any untransmitted buffers and reset pointers 1069 * @dp: NFP Net data path struct 1070 * @tx_ring: TX ring structure 1071 * 1072 * Assumes that the device is stopped 1073 */ 1074 static void 1075 nfp_net_tx_ring_reset(struct nfp_net_dp *dp, struct nfp_net_tx_ring *tx_ring) 1076 { 1077 const struct skb_frag_struct *frag; 1078 struct netdev_queue *nd_q; 1079 1080 while (!tx_ring->is_xdp && tx_ring->rd_p != tx_ring->wr_p) { 1081 struct nfp_net_tx_buf *tx_buf; 1082 struct sk_buff *skb; 1083 int idx, nr_frags; 1084 1085 idx = D_IDX(tx_ring, tx_ring->rd_p); 1086 tx_buf = &tx_ring->txbufs[idx]; 1087 1088 skb = tx_ring->txbufs[idx].skb; 1089 nr_frags = skb_shinfo(skb)->nr_frags; 1090 1091 if (tx_buf->fidx == -1) { 1092 /* unmap head */ 1093 dma_unmap_single(dp->dev, tx_buf->dma_addr, 1094 skb_headlen(skb), DMA_TO_DEVICE); 1095 } else { 1096 /* unmap fragment */ 1097 frag = &skb_shinfo(skb)->frags[tx_buf->fidx]; 1098 dma_unmap_page(dp->dev, tx_buf->dma_addr, 1099 skb_frag_size(frag), DMA_TO_DEVICE); 1100 } 1101 1102 /* check for last gather fragment */ 1103 if (tx_buf->fidx == nr_frags - 1) 1104 dev_kfree_skb_any(skb); 1105 1106 tx_buf->dma_addr = 0; 1107 tx_buf->skb = NULL; 1108 tx_buf->fidx = -2; 1109 1110 tx_ring->qcp_rd_p++; 1111 tx_ring->rd_p++; 1112 } 1113 1114 memset(tx_ring->txds, 0, sizeof(*tx_ring->txds) * tx_ring->cnt); 1115 tx_ring->wr_p = 0; 1116 tx_ring->rd_p = 0; 1117 tx_ring->qcp_rd_p = 0; 1118 tx_ring->wr_ptr_add = 0; 1119 1120 if (tx_ring->is_xdp || !dp->netdev) 1121 return; 1122 1123 nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx); 1124 netdev_tx_reset_queue(nd_q); 1125 } 1126 1127 static void nfp_net_tx_timeout(struct net_device *netdev) 1128 { 1129 struct nfp_net *nn = netdev_priv(netdev); 1130 int i; 1131 1132 for (i = 0; i < nn->dp.netdev->real_num_tx_queues; i++) { 1133 if (!netif_tx_queue_stopped(netdev_get_tx_queue(netdev, i))) 1134 continue; 1135 nn_warn(nn, "TX timeout on ring: %d\n", i); 1136 } 1137 nn_warn(nn, "TX watchdog timeout\n"); 1138 } 1139 1140 /* Receive processing 1141 */ 1142 static unsigned int 1143 nfp_net_calc_fl_bufsz(struct nfp_net_dp *dp) 1144 { 1145 unsigned int fl_bufsz; 1146 1147 fl_bufsz = NFP_NET_RX_BUF_HEADROOM; 1148 fl_bufsz += dp->rx_dma_off; 1149 if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC) 1150 fl_bufsz += NFP_NET_MAX_PREPEND; 1151 else 1152 fl_bufsz += dp->rx_offset; 1153 fl_bufsz += ETH_HLEN + VLAN_HLEN * 2 + dp->mtu; 1154 1155 fl_bufsz = SKB_DATA_ALIGN(fl_bufsz); 1156 fl_bufsz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 1157 1158 return fl_bufsz; 1159 } 1160 1161 static void 1162 nfp_net_free_frag(void *frag, bool xdp) 1163 { 1164 if (!xdp) 1165 skb_free_frag(frag); 1166 else 1167 __free_page(virt_to_page(frag)); 1168 } 1169 1170 /** 1171 * nfp_net_rx_alloc_one() - Allocate and map page frag for RX 1172 * @dp: NFP Net data path struct 1173 * @dma_addr: Pointer to storage for DMA address (output param) 1174 * 1175 * This function will allcate a new page frag, map it for DMA. 1176 * 1177 * Return: allocated page frag or NULL on failure. 1178 */ 1179 static void *nfp_net_rx_alloc_one(struct nfp_net_dp *dp, dma_addr_t *dma_addr) 1180 { 1181 void *frag; 1182 1183 if (!dp->xdp_prog) { 1184 frag = netdev_alloc_frag(dp->fl_bufsz); 1185 } else { 1186 struct page *page; 1187 1188 page = alloc_page(GFP_KERNEL | __GFP_COLD); 1189 frag = page ? page_address(page) : NULL; 1190 } 1191 if (!frag) { 1192 nn_dp_warn(dp, "Failed to alloc receive page frag\n"); 1193 return NULL; 1194 } 1195 1196 *dma_addr = nfp_net_dma_map_rx(dp, frag); 1197 if (dma_mapping_error(dp->dev, *dma_addr)) { 1198 nfp_net_free_frag(frag, dp->xdp_prog); 1199 nn_dp_warn(dp, "Failed to map DMA RX buffer\n"); 1200 return NULL; 1201 } 1202 1203 return frag; 1204 } 1205 1206 static void *nfp_net_napi_alloc_one(struct nfp_net_dp *dp, dma_addr_t *dma_addr) 1207 { 1208 void *frag; 1209 1210 if (!dp->xdp_prog) { 1211 frag = napi_alloc_frag(dp->fl_bufsz); 1212 } else { 1213 struct page *page; 1214 1215 page = alloc_page(GFP_ATOMIC | __GFP_COLD); 1216 frag = page ? page_address(page) : NULL; 1217 } 1218 if (!frag) { 1219 nn_dp_warn(dp, "Failed to alloc receive page frag\n"); 1220 return NULL; 1221 } 1222 1223 *dma_addr = nfp_net_dma_map_rx(dp, frag); 1224 if (dma_mapping_error(dp->dev, *dma_addr)) { 1225 nfp_net_free_frag(frag, dp->xdp_prog); 1226 nn_dp_warn(dp, "Failed to map DMA RX buffer\n"); 1227 return NULL; 1228 } 1229 1230 return frag; 1231 } 1232 1233 /** 1234 * nfp_net_rx_give_one() - Put mapped skb on the software and hardware rings 1235 * @dp: NFP Net data path struct 1236 * @rx_ring: RX ring structure 1237 * @frag: page fragment buffer 1238 * @dma_addr: DMA address of skb mapping 1239 */ 1240 static void nfp_net_rx_give_one(const struct nfp_net_dp *dp, 1241 struct nfp_net_rx_ring *rx_ring, 1242 void *frag, dma_addr_t dma_addr) 1243 { 1244 unsigned int wr_idx; 1245 1246 wr_idx = D_IDX(rx_ring, rx_ring->wr_p); 1247 1248 nfp_net_dma_sync_dev_rx(dp, dma_addr); 1249 1250 /* Stash SKB and DMA address away */ 1251 rx_ring->rxbufs[wr_idx].frag = frag; 1252 rx_ring->rxbufs[wr_idx].dma_addr = dma_addr; 1253 1254 /* Fill freelist descriptor */ 1255 rx_ring->rxds[wr_idx].fld.reserved = 0; 1256 rx_ring->rxds[wr_idx].fld.meta_len_dd = 0; 1257 nfp_desc_set_dma_addr(&rx_ring->rxds[wr_idx].fld, 1258 dma_addr + dp->rx_dma_off); 1259 1260 rx_ring->wr_p++; 1261 if (!(rx_ring->wr_p % NFP_NET_FL_BATCH)) { 1262 /* Update write pointer of the freelist queue. Make 1263 * sure all writes are flushed before telling the hardware. 1264 */ 1265 wmb(); 1266 nfp_qcp_wr_ptr_add(rx_ring->qcp_fl, NFP_NET_FL_BATCH); 1267 } 1268 } 1269 1270 /** 1271 * nfp_net_rx_ring_reset() - Reflect in SW state of freelist after disable 1272 * @rx_ring: RX ring structure 1273 * 1274 * Warning: Do *not* call if ring buffers were never put on the FW freelist 1275 * (i.e. device was not enabled)! 1276 */ 1277 static void nfp_net_rx_ring_reset(struct nfp_net_rx_ring *rx_ring) 1278 { 1279 unsigned int wr_idx, last_idx; 1280 1281 /* Move the empty entry to the end of the list */ 1282 wr_idx = D_IDX(rx_ring, rx_ring->wr_p); 1283 last_idx = rx_ring->cnt - 1; 1284 rx_ring->rxbufs[wr_idx].dma_addr = rx_ring->rxbufs[last_idx].dma_addr; 1285 rx_ring->rxbufs[wr_idx].frag = rx_ring->rxbufs[last_idx].frag; 1286 rx_ring->rxbufs[last_idx].dma_addr = 0; 1287 rx_ring->rxbufs[last_idx].frag = NULL; 1288 1289 memset(rx_ring->rxds, 0, sizeof(*rx_ring->rxds) * rx_ring->cnt); 1290 rx_ring->wr_p = 0; 1291 rx_ring->rd_p = 0; 1292 } 1293 1294 /** 1295 * nfp_net_rx_ring_bufs_free() - Free any buffers currently on the RX ring 1296 * @dp: NFP Net data path struct 1297 * @rx_ring: RX ring to remove buffers from 1298 * 1299 * Assumes that the device is stopped and buffers are in [0, ring->cnt - 1) 1300 * entries. After device is disabled nfp_net_rx_ring_reset() must be called 1301 * to restore required ring geometry. 1302 */ 1303 static void 1304 nfp_net_rx_ring_bufs_free(struct nfp_net_dp *dp, 1305 struct nfp_net_rx_ring *rx_ring) 1306 { 1307 unsigned int i; 1308 1309 for (i = 0; i < rx_ring->cnt - 1; i++) { 1310 /* NULL skb can only happen when initial filling of the ring 1311 * fails to allocate enough buffers and calls here to free 1312 * already allocated ones. 1313 */ 1314 if (!rx_ring->rxbufs[i].frag) 1315 continue; 1316 1317 nfp_net_dma_unmap_rx(dp, rx_ring->rxbufs[i].dma_addr); 1318 nfp_net_free_frag(rx_ring->rxbufs[i].frag, dp->xdp_prog); 1319 rx_ring->rxbufs[i].dma_addr = 0; 1320 rx_ring->rxbufs[i].frag = NULL; 1321 } 1322 } 1323 1324 /** 1325 * nfp_net_rx_ring_bufs_alloc() - Fill RX ring with buffers (don't give to FW) 1326 * @dp: NFP Net data path struct 1327 * @rx_ring: RX ring to remove buffers from 1328 */ 1329 static int 1330 nfp_net_rx_ring_bufs_alloc(struct nfp_net_dp *dp, 1331 struct nfp_net_rx_ring *rx_ring) 1332 { 1333 struct nfp_net_rx_buf *rxbufs; 1334 unsigned int i; 1335 1336 rxbufs = rx_ring->rxbufs; 1337 1338 for (i = 0; i < rx_ring->cnt - 1; i++) { 1339 rxbufs[i].frag = nfp_net_rx_alloc_one(dp, &rxbufs[i].dma_addr); 1340 if (!rxbufs[i].frag) { 1341 nfp_net_rx_ring_bufs_free(dp, rx_ring); 1342 return -ENOMEM; 1343 } 1344 } 1345 1346 return 0; 1347 } 1348 1349 /** 1350 * nfp_net_rx_ring_fill_freelist() - Give buffers from the ring to FW 1351 * @dp: NFP Net data path struct 1352 * @rx_ring: RX ring to fill 1353 */ 1354 static void 1355 nfp_net_rx_ring_fill_freelist(struct nfp_net_dp *dp, 1356 struct nfp_net_rx_ring *rx_ring) 1357 { 1358 unsigned int i; 1359 1360 for (i = 0; i < rx_ring->cnt - 1; i++) 1361 nfp_net_rx_give_one(dp, rx_ring, rx_ring->rxbufs[i].frag, 1362 rx_ring->rxbufs[i].dma_addr); 1363 } 1364 1365 /** 1366 * nfp_net_rx_csum_has_errors() - group check if rxd has any csum errors 1367 * @flags: RX descriptor flags field in CPU byte order 1368 */ 1369 static int nfp_net_rx_csum_has_errors(u16 flags) 1370 { 1371 u16 csum_all_checked, csum_all_ok; 1372 1373 csum_all_checked = flags & __PCIE_DESC_RX_CSUM_ALL; 1374 csum_all_ok = flags & __PCIE_DESC_RX_CSUM_ALL_OK; 1375 1376 return csum_all_checked != (csum_all_ok << PCIE_DESC_RX_CSUM_OK_SHIFT); 1377 } 1378 1379 /** 1380 * nfp_net_rx_csum() - set SKB checksum field based on RX descriptor flags 1381 * @dp: NFP Net data path struct 1382 * @r_vec: per-ring structure 1383 * @rxd: Pointer to RX descriptor 1384 * @meta: Parsed metadata prepend 1385 * @skb: Pointer to SKB 1386 */ 1387 static void nfp_net_rx_csum(struct nfp_net_dp *dp, 1388 struct nfp_net_r_vector *r_vec, 1389 struct nfp_net_rx_desc *rxd, 1390 struct nfp_meta_parsed *meta, struct sk_buff *skb) 1391 { 1392 skb_checksum_none_assert(skb); 1393 1394 if (!(dp->netdev->features & NETIF_F_RXCSUM)) 1395 return; 1396 1397 if (meta->csum_type) { 1398 skb->ip_summed = meta->csum_type; 1399 skb->csum = meta->csum; 1400 u64_stats_update_begin(&r_vec->rx_sync); 1401 r_vec->hw_csum_rx_ok++; 1402 u64_stats_update_end(&r_vec->rx_sync); 1403 return; 1404 } 1405 1406 if (nfp_net_rx_csum_has_errors(le16_to_cpu(rxd->rxd.flags))) { 1407 u64_stats_update_begin(&r_vec->rx_sync); 1408 r_vec->hw_csum_rx_error++; 1409 u64_stats_update_end(&r_vec->rx_sync); 1410 return; 1411 } 1412 1413 /* Assume that the firmware will never report inner CSUM_OK unless outer 1414 * L4 headers were successfully parsed. FW will always report zero UDP 1415 * checksum as CSUM_OK. 1416 */ 1417 if (rxd->rxd.flags & PCIE_DESC_RX_TCP_CSUM_OK || 1418 rxd->rxd.flags & PCIE_DESC_RX_UDP_CSUM_OK) { 1419 __skb_incr_checksum_unnecessary(skb); 1420 u64_stats_update_begin(&r_vec->rx_sync); 1421 r_vec->hw_csum_rx_ok++; 1422 u64_stats_update_end(&r_vec->rx_sync); 1423 } 1424 1425 if (rxd->rxd.flags & PCIE_DESC_RX_I_TCP_CSUM_OK || 1426 rxd->rxd.flags & PCIE_DESC_RX_I_UDP_CSUM_OK) { 1427 __skb_incr_checksum_unnecessary(skb); 1428 u64_stats_update_begin(&r_vec->rx_sync); 1429 r_vec->hw_csum_rx_inner_ok++; 1430 u64_stats_update_end(&r_vec->rx_sync); 1431 } 1432 } 1433 1434 static void 1435 nfp_net_set_hash(struct net_device *netdev, struct nfp_meta_parsed *meta, 1436 unsigned int type, __be32 *hash) 1437 { 1438 if (!(netdev->features & NETIF_F_RXHASH)) 1439 return; 1440 1441 switch (type) { 1442 case NFP_NET_RSS_IPV4: 1443 case NFP_NET_RSS_IPV6: 1444 case NFP_NET_RSS_IPV6_EX: 1445 meta->hash_type = PKT_HASH_TYPE_L3; 1446 break; 1447 default: 1448 meta->hash_type = PKT_HASH_TYPE_L4; 1449 break; 1450 } 1451 1452 meta->hash = get_unaligned_be32(hash); 1453 } 1454 1455 static void 1456 nfp_net_set_hash_desc(struct net_device *netdev, struct nfp_meta_parsed *meta, 1457 void *data, struct nfp_net_rx_desc *rxd) 1458 { 1459 struct nfp_net_rx_hash *rx_hash = data; 1460 1461 if (!(rxd->rxd.flags & PCIE_DESC_RX_RSS)) 1462 return; 1463 1464 nfp_net_set_hash(netdev, meta, get_unaligned_be32(&rx_hash->hash_type), 1465 &rx_hash->hash); 1466 } 1467 1468 static void * 1469 nfp_net_parse_meta(struct net_device *netdev, struct nfp_meta_parsed *meta, 1470 void *data, int meta_len) 1471 { 1472 u32 meta_info; 1473 1474 meta_info = get_unaligned_be32(data); 1475 data += 4; 1476 1477 while (meta_info) { 1478 switch (meta_info & NFP_NET_META_FIELD_MASK) { 1479 case NFP_NET_META_HASH: 1480 meta_info >>= NFP_NET_META_FIELD_SIZE; 1481 nfp_net_set_hash(netdev, meta, 1482 meta_info & NFP_NET_META_FIELD_MASK, 1483 (__be32 *)data); 1484 data += 4; 1485 break; 1486 case NFP_NET_META_MARK: 1487 meta->mark = get_unaligned_be32(data); 1488 data += 4; 1489 break; 1490 case NFP_NET_META_PORTID: 1491 meta->portid = get_unaligned_be32(data); 1492 data += 4; 1493 break; 1494 case NFP_NET_META_CSUM: 1495 meta->csum_type = CHECKSUM_COMPLETE; 1496 meta->csum = 1497 (__force __wsum)__get_unaligned_cpu32(data); 1498 data += 4; 1499 break; 1500 default: 1501 return NULL; 1502 } 1503 1504 meta_info >>= NFP_NET_META_FIELD_SIZE; 1505 } 1506 1507 return data; 1508 } 1509 1510 static void 1511 nfp_net_rx_drop(const struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec, 1512 struct nfp_net_rx_ring *rx_ring, struct nfp_net_rx_buf *rxbuf, 1513 struct sk_buff *skb) 1514 { 1515 u64_stats_update_begin(&r_vec->rx_sync); 1516 r_vec->rx_drops++; 1517 u64_stats_update_end(&r_vec->rx_sync); 1518 1519 /* skb is build based on the frag, free_skb() would free the frag 1520 * so to be able to reuse it we need an extra ref. 1521 */ 1522 if (skb && rxbuf && skb->head == rxbuf->frag) 1523 page_ref_inc(virt_to_head_page(rxbuf->frag)); 1524 if (rxbuf) 1525 nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag, rxbuf->dma_addr); 1526 if (skb) 1527 dev_kfree_skb_any(skb); 1528 } 1529 1530 static bool 1531 nfp_net_tx_xdp_buf(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring, 1532 struct nfp_net_tx_ring *tx_ring, 1533 struct nfp_net_rx_buf *rxbuf, unsigned int dma_off, 1534 unsigned int pkt_len, bool *completed) 1535 { 1536 struct nfp_net_tx_buf *txbuf; 1537 struct nfp_net_tx_desc *txd; 1538 int wr_idx; 1539 1540 if (unlikely(nfp_net_tx_full(tx_ring, 1))) { 1541 if (!*completed) { 1542 nfp_net_xdp_complete(tx_ring); 1543 *completed = true; 1544 } 1545 1546 if (unlikely(nfp_net_tx_full(tx_ring, 1))) { 1547 nfp_net_rx_drop(dp, rx_ring->r_vec, rx_ring, rxbuf, 1548 NULL); 1549 return false; 1550 } 1551 } 1552 1553 wr_idx = D_IDX(tx_ring, tx_ring->wr_p); 1554 1555 /* Stash the soft descriptor of the head then initialize it */ 1556 txbuf = &tx_ring->txbufs[wr_idx]; 1557 1558 nfp_net_rx_give_one(dp, rx_ring, txbuf->frag, txbuf->dma_addr); 1559 1560 txbuf->frag = rxbuf->frag; 1561 txbuf->dma_addr = rxbuf->dma_addr; 1562 txbuf->fidx = -1; 1563 txbuf->pkt_cnt = 1; 1564 txbuf->real_len = pkt_len; 1565 1566 dma_sync_single_for_device(dp->dev, rxbuf->dma_addr + dma_off, 1567 pkt_len, DMA_BIDIRECTIONAL); 1568 1569 /* Build TX descriptor */ 1570 txd = &tx_ring->txds[wr_idx]; 1571 txd->offset_eop = PCIE_DESC_TX_EOP; 1572 txd->dma_len = cpu_to_le16(pkt_len); 1573 nfp_desc_set_dma_addr(txd, rxbuf->dma_addr + dma_off); 1574 txd->data_len = cpu_to_le16(pkt_len); 1575 1576 txd->flags = 0; 1577 txd->mss = 0; 1578 txd->lso_hdrlen = 0; 1579 1580 tx_ring->wr_p++; 1581 tx_ring->wr_ptr_add++; 1582 return true; 1583 } 1584 1585 /** 1586 * nfp_net_rx() - receive up to @budget packets on @rx_ring 1587 * @rx_ring: RX ring to receive from 1588 * @budget: NAPI budget 1589 * 1590 * Note, this function is separated out from the napi poll function to 1591 * more cleanly separate packet receive code from other bookkeeping 1592 * functions performed in the napi poll function. 1593 * 1594 * Return: Number of packets received. 1595 */ 1596 static int nfp_net_rx(struct nfp_net_rx_ring *rx_ring, int budget) 1597 { 1598 struct nfp_net_r_vector *r_vec = rx_ring->r_vec; 1599 struct nfp_net_dp *dp = &r_vec->nfp_net->dp; 1600 struct nfp_net_tx_ring *tx_ring; 1601 struct bpf_prog *xdp_prog; 1602 bool xdp_tx_cmpl = false; 1603 unsigned int true_bufsz; 1604 struct sk_buff *skb; 1605 int pkts_polled = 0; 1606 int idx; 1607 1608 rcu_read_lock(); 1609 xdp_prog = READ_ONCE(dp->xdp_prog); 1610 true_bufsz = xdp_prog ? PAGE_SIZE : dp->fl_bufsz; 1611 tx_ring = r_vec->xdp_ring; 1612 1613 while (pkts_polled < budget) { 1614 unsigned int meta_len, data_len, meta_off, pkt_len, pkt_off; 1615 struct nfp_net_rx_buf *rxbuf; 1616 struct nfp_net_rx_desc *rxd; 1617 struct nfp_meta_parsed meta; 1618 struct net_device *netdev; 1619 dma_addr_t new_dma_addr; 1620 u32 meta_len_xdp = 0; 1621 void *new_frag; 1622 1623 idx = D_IDX(rx_ring, rx_ring->rd_p); 1624 1625 rxd = &rx_ring->rxds[idx]; 1626 if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD)) 1627 break; 1628 1629 /* Memory barrier to ensure that we won't do other reads 1630 * before the DD bit. 1631 */ 1632 dma_rmb(); 1633 1634 memset(&meta, 0, sizeof(meta)); 1635 1636 rx_ring->rd_p++; 1637 pkts_polled++; 1638 1639 rxbuf = &rx_ring->rxbufs[idx]; 1640 /* < meta_len > 1641 * <-- [rx_offset] --> 1642 * --------------------------------------------------------- 1643 * | [XX] | metadata | packet | XXXX | 1644 * --------------------------------------------------------- 1645 * <---------------- data_len ---------------> 1646 * 1647 * The rx_offset is fixed for all packets, the meta_len can vary 1648 * on a packet by packet basis. If rx_offset is set to zero 1649 * (_RX_OFFSET_DYNAMIC) metadata starts at the beginning of the 1650 * buffer and is immediately followed by the packet (no [XX]). 1651 */ 1652 meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK; 1653 data_len = le16_to_cpu(rxd->rxd.data_len); 1654 pkt_len = data_len - meta_len; 1655 1656 pkt_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_dma_off; 1657 if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC) 1658 pkt_off += meta_len; 1659 else 1660 pkt_off += dp->rx_offset; 1661 meta_off = pkt_off - meta_len; 1662 1663 /* Stats update */ 1664 u64_stats_update_begin(&r_vec->rx_sync); 1665 r_vec->rx_pkts++; 1666 r_vec->rx_bytes += pkt_len; 1667 u64_stats_update_end(&r_vec->rx_sync); 1668 1669 if (unlikely(meta_len > NFP_NET_MAX_PREPEND || 1670 (dp->rx_offset && meta_len > dp->rx_offset))) { 1671 nn_dp_warn(dp, "oversized RX packet metadata %u\n", 1672 meta_len); 1673 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL); 1674 continue; 1675 } 1676 1677 nfp_net_dma_sync_cpu_rx(dp, rxbuf->dma_addr + meta_off, 1678 data_len); 1679 1680 if (!dp->chained_metadata_format) { 1681 nfp_net_set_hash_desc(dp->netdev, &meta, 1682 rxbuf->frag + meta_off, rxd); 1683 } else if (meta_len) { 1684 void *end; 1685 1686 end = nfp_net_parse_meta(dp->netdev, &meta, 1687 rxbuf->frag + meta_off, 1688 meta_len); 1689 if (unlikely(end != rxbuf->frag + pkt_off)) { 1690 nn_dp_warn(dp, "invalid RX packet metadata\n"); 1691 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, 1692 NULL); 1693 continue; 1694 } 1695 } 1696 1697 if (xdp_prog && !(rxd->rxd.flags & PCIE_DESC_RX_BPF && 1698 dp->bpf_offload_xdp) && !meta.portid) { 1699 void *orig_data = rxbuf->frag + pkt_off; 1700 unsigned int dma_off; 1701 struct xdp_buff xdp; 1702 int act; 1703 1704 xdp.data_hard_start = rxbuf->frag + NFP_NET_RX_BUF_HEADROOM; 1705 xdp.data = orig_data; 1706 xdp.data_meta = orig_data; 1707 xdp.data_end = orig_data + pkt_len; 1708 1709 act = bpf_prog_run_xdp(xdp_prog, &xdp); 1710 1711 pkt_len -= xdp.data - orig_data; 1712 pkt_off += xdp.data - orig_data; 1713 1714 switch (act) { 1715 case XDP_PASS: 1716 meta_len_xdp = xdp.data - xdp.data_meta; 1717 break; 1718 case XDP_TX: 1719 dma_off = pkt_off - NFP_NET_RX_BUF_HEADROOM; 1720 if (unlikely(!nfp_net_tx_xdp_buf(dp, rx_ring, 1721 tx_ring, rxbuf, 1722 dma_off, 1723 pkt_len, 1724 &xdp_tx_cmpl))) 1725 trace_xdp_exception(dp->netdev, 1726 xdp_prog, act); 1727 continue; 1728 default: 1729 bpf_warn_invalid_xdp_action(act); 1730 /* fall through */ 1731 case XDP_ABORTED: 1732 trace_xdp_exception(dp->netdev, xdp_prog, act); 1733 /* fall through */ 1734 case XDP_DROP: 1735 nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag, 1736 rxbuf->dma_addr); 1737 continue; 1738 } 1739 } 1740 1741 skb = build_skb(rxbuf->frag, true_bufsz); 1742 if (unlikely(!skb)) { 1743 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL); 1744 continue; 1745 } 1746 new_frag = nfp_net_napi_alloc_one(dp, &new_dma_addr); 1747 if (unlikely(!new_frag)) { 1748 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, skb); 1749 continue; 1750 } 1751 1752 nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr); 1753 1754 nfp_net_rx_give_one(dp, rx_ring, new_frag, new_dma_addr); 1755 1756 if (likely(!meta.portid)) { 1757 netdev = dp->netdev; 1758 } else { 1759 struct nfp_net *nn; 1760 1761 nn = netdev_priv(dp->netdev); 1762 netdev = nfp_app_repr_get(nn->app, meta.portid); 1763 if (unlikely(!netdev)) { 1764 nfp_net_rx_drop(dp, r_vec, rx_ring, NULL, skb); 1765 continue; 1766 } 1767 nfp_repr_inc_rx_stats(netdev, pkt_len); 1768 } 1769 1770 skb_reserve(skb, pkt_off); 1771 skb_put(skb, pkt_len); 1772 1773 skb->mark = meta.mark; 1774 skb_set_hash(skb, meta.hash, meta.hash_type); 1775 1776 skb_record_rx_queue(skb, rx_ring->idx); 1777 skb->protocol = eth_type_trans(skb, netdev); 1778 1779 nfp_net_rx_csum(dp, r_vec, rxd, &meta, skb); 1780 1781 if (rxd->rxd.flags & PCIE_DESC_RX_VLAN) 1782 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 1783 le16_to_cpu(rxd->rxd.vlan)); 1784 if (meta_len_xdp) 1785 skb_metadata_set(skb, meta_len_xdp); 1786 1787 napi_gro_receive(&rx_ring->r_vec->napi, skb); 1788 } 1789 1790 if (xdp_prog) { 1791 if (tx_ring->wr_ptr_add) 1792 nfp_net_tx_xmit_more_flush(tx_ring); 1793 else if (unlikely(tx_ring->wr_p != tx_ring->rd_p) && 1794 !xdp_tx_cmpl) 1795 if (!nfp_net_xdp_complete(tx_ring)) 1796 pkts_polled = budget; 1797 } 1798 rcu_read_unlock(); 1799 1800 return pkts_polled; 1801 } 1802 1803 /** 1804 * nfp_net_poll() - napi poll function 1805 * @napi: NAPI structure 1806 * @budget: NAPI budget 1807 * 1808 * Return: number of packets polled. 1809 */ 1810 static int nfp_net_poll(struct napi_struct *napi, int budget) 1811 { 1812 struct nfp_net_r_vector *r_vec = 1813 container_of(napi, struct nfp_net_r_vector, napi); 1814 unsigned int pkts_polled = 0; 1815 1816 if (r_vec->tx_ring) 1817 nfp_net_tx_complete(r_vec->tx_ring); 1818 if (r_vec->rx_ring) 1819 pkts_polled = nfp_net_rx(r_vec->rx_ring, budget); 1820 1821 if (pkts_polled < budget) 1822 if (napi_complete_done(napi, pkts_polled)) 1823 nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry); 1824 1825 return pkts_polled; 1826 } 1827 1828 /* Control device data path 1829 */ 1830 1831 static bool 1832 nfp_ctrl_tx_one(struct nfp_net *nn, struct nfp_net_r_vector *r_vec, 1833 struct sk_buff *skb, bool old) 1834 { 1835 unsigned int real_len = skb->len, meta_len = 0; 1836 struct nfp_net_tx_ring *tx_ring; 1837 struct nfp_net_tx_buf *txbuf; 1838 struct nfp_net_tx_desc *txd; 1839 struct nfp_net_dp *dp; 1840 dma_addr_t dma_addr; 1841 int wr_idx; 1842 1843 dp = &r_vec->nfp_net->dp; 1844 tx_ring = r_vec->tx_ring; 1845 1846 if (WARN_ON_ONCE(skb_shinfo(skb)->nr_frags)) { 1847 nn_dp_warn(dp, "Driver's CTRL TX does not implement gather\n"); 1848 goto err_free; 1849 } 1850 1851 if (unlikely(nfp_net_tx_full(tx_ring, 1))) { 1852 u64_stats_update_begin(&r_vec->tx_sync); 1853 r_vec->tx_busy++; 1854 u64_stats_update_end(&r_vec->tx_sync); 1855 if (!old) 1856 __skb_queue_tail(&r_vec->queue, skb); 1857 else 1858 __skb_queue_head(&r_vec->queue, skb); 1859 return true; 1860 } 1861 1862 if (nfp_app_ctrl_has_meta(nn->app)) { 1863 if (unlikely(skb_headroom(skb) < 8)) { 1864 nn_dp_warn(dp, "CTRL TX on skb without headroom\n"); 1865 goto err_free; 1866 } 1867 meta_len = 8; 1868 put_unaligned_be32(NFP_META_PORT_ID_CTRL, skb_push(skb, 4)); 1869 put_unaligned_be32(NFP_NET_META_PORTID, skb_push(skb, 4)); 1870 } 1871 1872 /* Start with the head skbuf */ 1873 dma_addr = dma_map_single(dp->dev, skb->data, skb_headlen(skb), 1874 DMA_TO_DEVICE); 1875 if (dma_mapping_error(dp->dev, dma_addr)) 1876 goto err_dma_warn; 1877 1878 wr_idx = D_IDX(tx_ring, tx_ring->wr_p); 1879 1880 /* Stash the soft descriptor of the head then initialize it */ 1881 txbuf = &tx_ring->txbufs[wr_idx]; 1882 txbuf->skb = skb; 1883 txbuf->dma_addr = dma_addr; 1884 txbuf->fidx = -1; 1885 txbuf->pkt_cnt = 1; 1886 txbuf->real_len = real_len; 1887 1888 /* Build TX descriptor */ 1889 txd = &tx_ring->txds[wr_idx]; 1890 txd->offset_eop = meta_len | PCIE_DESC_TX_EOP; 1891 txd->dma_len = cpu_to_le16(skb_headlen(skb)); 1892 nfp_desc_set_dma_addr(txd, dma_addr); 1893 txd->data_len = cpu_to_le16(skb->len); 1894 1895 txd->flags = 0; 1896 txd->mss = 0; 1897 txd->lso_hdrlen = 0; 1898 1899 tx_ring->wr_p++; 1900 tx_ring->wr_ptr_add++; 1901 nfp_net_tx_xmit_more_flush(tx_ring); 1902 1903 return false; 1904 1905 err_dma_warn: 1906 nn_dp_warn(dp, "Failed to DMA map TX CTRL buffer\n"); 1907 err_free: 1908 u64_stats_update_begin(&r_vec->tx_sync); 1909 r_vec->tx_errors++; 1910 u64_stats_update_end(&r_vec->tx_sync); 1911 dev_kfree_skb_any(skb); 1912 return false; 1913 } 1914 1915 bool nfp_ctrl_tx(struct nfp_net *nn, struct sk_buff *skb) 1916 { 1917 struct nfp_net_r_vector *r_vec = &nn->r_vecs[0]; 1918 bool ret; 1919 1920 spin_lock_bh(&r_vec->lock); 1921 ret = nfp_ctrl_tx_one(nn, r_vec, skb, false); 1922 spin_unlock_bh(&r_vec->lock); 1923 1924 return ret; 1925 } 1926 1927 static void __nfp_ctrl_tx_queued(struct nfp_net_r_vector *r_vec) 1928 { 1929 struct sk_buff *skb; 1930 1931 while ((skb = __skb_dequeue(&r_vec->queue))) 1932 if (nfp_ctrl_tx_one(r_vec->nfp_net, r_vec, skb, true)) 1933 return; 1934 } 1935 1936 static bool 1937 nfp_ctrl_meta_ok(struct nfp_net *nn, void *data, unsigned int meta_len) 1938 { 1939 u32 meta_type, meta_tag; 1940 1941 if (!nfp_app_ctrl_has_meta(nn->app)) 1942 return !meta_len; 1943 1944 if (meta_len != 8) 1945 return false; 1946 1947 meta_type = get_unaligned_be32(data); 1948 meta_tag = get_unaligned_be32(data + 4); 1949 1950 return (meta_type == NFP_NET_META_PORTID && 1951 meta_tag == NFP_META_PORT_ID_CTRL); 1952 } 1953 1954 static bool 1955 nfp_ctrl_rx_one(struct nfp_net *nn, struct nfp_net_dp *dp, 1956 struct nfp_net_r_vector *r_vec, struct nfp_net_rx_ring *rx_ring) 1957 { 1958 unsigned int meta_len, data_len, meta_off, pkt_len, pkt_off; 1959 struct nfp_net_rx_buf *rxbuf; 1960 struct nfp_net_rx_desc *rxd; 1961 dma_addr_t new_dma_addr; 1962 struct sk_buff *skb; 1963 void *new_frag; 1964 int idx; 1965 1966 idx = D_IDX(rx_ring, rx_ring->rd_p); 1967 1968 rxd = &rx_ring->rxds[idx]; 1969 if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD)) 1970 return false; 1971 1972 /* Memory barrier to ensure that we won't do other reads 1973 * before the DD bit. 1974 */ 1975 dma_rmb(); 1976 1977 rx_ring->rd_p++; 1978 1979 rxbuf = &rx_ring->rxbufs[idx]; 1980 meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK; 1981 data_len = le16_to_cpu(rxd->rxd.data_len); 1982 pkt_len = data_len - meta_len; 1983 1984 pkt_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_dma_off; 1985 if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC) 1986 pkt_off += meta_len; 1987 else 1988 pkt_off += dp->rx_offset; 1989 meta_off = pkt_off - meta_len; 1990 1991 /* Stats update */ 1992 u64_stats_update_begin(&r_vec->rx_sync); 1993 r_vec->rx_pkts++; 1994 r_vec->rx_bytes += pkt_len; 1995 u64_stats_update_end(&r_vec->rx_sync); 1996 1997 nfp_net_dma_sync_cpu_rx(dp, rxbuf->dma_addr + meta_off, data_len); 1998 1999 if (unlikely(!nfp_ctrl_meta_ok(nn, rxbuf->frag + meta_off, meta_len))) { 2000 nn_dp_warn(dp, "incorrect metadata for ctrl packet (%d)\n", 2001 meta_len); 2002 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL); 2003 return true; 2004 } 2005 2006 skb = build_skb(rxbuf->frag, dp->fl_bufsz); 2007 if (unlikely(!skb)) { 2008 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL); 2009 return true; 2010 } 2011 new_frag = nfp_net_napi_alloc_one(dp, &new_dma_addr); 2012 if (unlikely(!new_frag)) { 2013 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, skb); 2014 return true; 2015 } 2016 2017 nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr); 2018 2019 nfp_net_rx_give_one(dp, rx_ring, new_frag, new_dma_addr); 2020 2021 skb_reserve(skb, pkt_off); 2022 skb_put(skb, pkt_len); 2023 2024 nfp_app_ctrl_rx(nn->app, skb); 2025 2026 return true; 2027 } 2028 2029 static void nfp_ctrl_rx(struct nfp_net_r_vector *r_vec) 2030 { 2031 struct nfp_net_rx_ring *rx_ring = r_vec->rx_ring; 2032 struct nfp_net *nn = r_vec->nfp_net; 2033 struct nfp_net_dp *dp = &nn->dp; 2034 2035 while (nfp_ctrl_rx_one(nn, dp, r_vec, rx_ring)) 2036 continue; 2037 } 2038 2039 static void nfp_ctrl_poll(unsigned long arg) 2040 { 2041 struct nfp_net_r_vector *r_vec = (void *)arg; 2042 2043 spin_lock_bh(&r_vec->lock); 2044 nfp_net_tx_complete(r_vec->tx_ring); 2045 __nfp_ctrl_tx_queued(r_vec); 2046 spin_unlock_bh(&r_vec->lock); 2047 2048 nfp_ctrl_rx(r_vec); 2049 2050 nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry); 2051 } 2052 2053 /* Setup and Configuration 2054 */ 2055 2056 /** 2057 * nfp_net_vecs_init() - Assign IRQs and setup rvecs. 2058 * @nn: NFP Network structure 2059 */ 2060 static void nfp_net_vecs_init(struct nfp_net *nn) 2061 { 2062 struct nfp_net_r_vector *r_vec; 2063 int r; 2064 2065 nn->lsc_handler = nfp_net_irq_lsc; 2066 nn->exn_handler = nfp_net_irq_exn; 2067 2068 for (r = 0; r < nn->max_r_vecs; r++) { 2069 struct msix_entry *entry; 2070 2071 entry = &nn->irq_entries[NFP_NET_NON_Q_VECTORS + r]; 2072 2073 r_vec = &nn->r_vecs[r]; 2074 r_vec->nfp_net = nn; 2075 r_vec->irq_entry = entry->entry; 2076 r_vec->irq_vector = entry->vector; 2077 2078 if (nn->dp.netdev) { 2079 r_vec->handler = nfp_net_irq_rxtx; 2080 } else { 2081 r_vec->handler = nfp_ctrl_irq_rxtx; 2082 2083 __skb_queue_head_init(&r_vec->queue); 2084 spin_lock_init(&r_vec->lock); 2085 tasklet_init(&r_vec->tasklet, nfp_ctrl_poll, 2086 (unsigned long)r_vec); 2087 tasklet_disable(&r_vec->tasklet); 2088 } 2089 2090 cpumask_set_cpu(r, &r_vec->affinity_mask); 2091 } 2092 } 2093 2094 /** 2095 * nfp_net_tx_ring_free() - Free resources allocated to a TX ring 2096 * @tx_ring: TX ring to free 2097 */ 2098 static void nfp_net_tx_ring_free(struct nfp_net_tx_ring *tx_ring) 2099 { 2100 struct nfp_net_r_vector *r_vec = tx_ring->r_vec; 2101 struct nfp_net_dp *dp = &r_vec->nfp_net->dp; 2102 2103 kfree(tx_ring->txbufs); 2104 2105 if (tx_ring->txds) 2106 dma_free_coherent(dp->dev, tx_ring->size, 2107 tx_ring->txds, tx_ring->dma); 2108 2109 tx_ring->cnt = 0; 2110 tx_ring->txbufs = NULL; 2111 tx_ring->txds = NULL; 2112 tx_ring->dma = 0; 2113 tx_ring->size = 0; 2114 } 2115 2116 /** 2117 * nfp_net_tx_ring_alloc() - Allocate resource for a TX ring 2118 * @dp: NFP Net data path struct 2119 * @tx_ring: TX Ring structure to allocate 2120 * 2121 * Return: 0 on success, negative errno otherwise. 2122 */ 2123 static int 2124 nfp_net_tx_ring_alloc(struct nfp_net_dp *dp, struct nfp_net_tx_ring *tx_ring) 2125 { 2126 struct nfp_net_r_vector *r_vec = tx_ring->r_vec; 2127 int sz; 2128 2129 tx_ring->cnt = dp->txd_cnt; 2130 2131 tx_ring->size = sizeof(*tx_ring->txds) * tx_ring->cnt; 2132 tx_ring->txds = dma_zalloc_coherent(dp->dev, tx_ring->size, 2133 &tx_ring->dma, GFP_KERNEL); 2134 if (!tx_ring->txds) 2135 goto err_alloc; 2136 2137 sz = sizeof(*tx_ring->txbufs) * tx_ring->cnt; 2138 tx_ring->txbufs = kzalloc(sz, GFP_KERNEL); 2139 if (!tx_ring->txbufs) 2140 goto err_alloc; 2141 2142 if (!tx_ring->is_xdp && dp->netdev) 2143 netif_set_xps_queue(dp->netdev, &r_vec->affinity_mask, 2144 tx_ring->idx); 2145 2146 return 0; 2147 2148 err_alloc: 2149 nfp_net_tx_ring_free(tx_ring); 2150 return -ENOMEM; 2151 } 2152 2153 static void 2154 nfp_net_tx_ring_bufs_free(struct nfp_net_dp *dp, 2155 struct nfp_net_tx_ring *tx_ring) 2156 { 2157 unsigned int i; 2158 2159 if (!tx_ring->is_xdp) 2160 return; 2161 2162 for (i = 0; i < tx_ring->cnt; i++) { 2163 if (!tx_ring->txbufs[i].frag) 2164 return; 2165 2166 nfp_net_dma_unmap_rx(dp, tx_ring->txbufs[i].dma_addr); 2167 __free_page(virt_to_page(tx_ring->txbufs[i].frag)); 2168 } 2169 } 2170 2171 static int 2172 nfp_net_tx_ring_bufs_alloc(struct nfp_net_dp *dp, 2173 struct nfp_net_tx_ring *tx_ring) 2174 { 2175 struct nfp_net_tx_buf *txbufs = tx_ring->txbufs; 2176 unsigned int i; 2177 2178 if (!tx_ring->is_xdp) 2179 return 0; 2180 2181 for (i = 0; i < tx_ring->cnt; i++) { 2182 txbufs[i].frag = nfp_net_rx_alloc_one(dp, &txbufs[i].dma_addr); 2183 if (!txbufs[i].frag) { 2184 nfp_net_tx_ring_bufs_free(dp, tx_ring); 2185 return -ENOMEM; 2186 } 2187 } 2188 2189 return 0; 2190 } 2191 2192 static int nfp_net_tx_rings_prepare(struct nfp_net *nn, struct nfp_net_dp *dp) 2193 { 2194 unsigned int r; 2195 2196 dp->tx_rings = kcalloc(dp->num_tx_rings, sizeof(*dp->tx_rings), 2197 GFP_KERNEL); 2198 if (!dp->tx_rings) 2199 return -ENOMEM; 2200 2201 for (r = 0; r < dp->num_tx_rings; r++) { 2202 int bias = 0; 2203 2204 if (r >= dp->num_stack_tx_rings) 2205 bias = dp->num_stack_tx_rings; 2206 2207 nfp_net_tx_ring_init(&dp->tx_rings[r], &nn->r_vecs[r - bias], 2208 r, bias); 2209 2210 if (nfp_net_tx_ring_alloc(dp, &dp->tx_rings[r])) 2211 goto err_free_prev; 2212 2213 if (nfp_net_tx_ring_bufs_alloc(dp, &dp->tx_rings[r])) 2214 goto err_free_ring; 2215 } 2216 2217 return 0; 2218 2219 err_free_prev: 2220 while (r--) { 2221 nfp_net_tx_ring_bufs_free(dp, &dp->tx_rings[r]); 2222 err_free_ring: 2223 nfp_net_tx_ring_free(&dp->tx_rings[r]); 2224 } 2225 kfree(dp->tx_rings); 2226 return -ENOMEM; 2227 } 2228 2229 static void nfp_net_tx_rings_free(struct nfp_net_dp *dp) 2230 { 2231 unsigned int r; 2232 2233 for (r = 0; r < dp->num_tx_rings; r++) { 2234 nfp_net_tx_ring_bufs_free(dp, &dp->tx_rings[r]); 2235 nfp_net_tx_ring_free(&dp->tx_rings[r]); 2236 } 2237 2238 kfree(dp->tx_rings); 2239 } 2240 2241 /** 2242 * nfp_net_rx_ring_free() - Free resources allocated to a RX ring 2243 * @rx_ring: RX ring to free 2244 */ 2245 static void nfp_net_rx_ring_free(struct nfp_net_rx_ring *rx_ring) 2246 { 2247 struct nfp_net_r_vector *r_vec = rx_ring->r_vec; 2248 struct nfp_net_dp *dp = &r_vec->nfp_net->dp; 2249 2250 kfree(rx_ring->rxbufs); 2251 2252 if (rx_ring->rxds) 2253 dma_free_coherent(dp->dev, rx_ring->size, 2254 rx_ring->rxds, rx_ring->dma); 2255 2256 rx_ring->cnt = 0; 2257 rx_ring->rxbufs = NULL; 2258 rx_ring->rxds = NULL; 2259 rx_ring->dma = 0; 2260 rx_ring->size = 0; 2261 } 2262 2263 /** 2264 * nfp_net_rx_ring_alloc() - Allocate resource for a RX ring 2265 * @dp: NFP Net data path struct 2266 * @rx_ring: RX ring to allocate 2267 * 2268 * Return: 0 on success, negative errno otherwise. 2269 */ 2270 static int 2271 nfp_net_rx_ring_alloc(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring) 2272 { 2273 int sz; 2274 2275 rx_ring->cnt = dp->rxd_cnt; 2276 rx_ring->size = sizeof(*rx_ring->rxds) * rx_ring->cnt; 2277 rx_ring->rxds = dma_zalloc_coherent(dp->dev, rx_ring->size, 2278 &rx_ring->dma, GFP_KERNEL); 2279 if (!rx_ring->rxds) 2280 goto err_alloc; 2281 2282 sz = sizeof(*rx_ring->rxbufs) * rx_ring->cnt; 2283 rx_ring->rxbufs = kzalloc(sz, GFP_KERNEL); 2284 if (!rx_ring->rxbufs) 2285 goto err_alloc; 2286 2287 return 0; 2288 2289 err_alloc: 2290 nfp_net_rx_ring_free(rx_ring); 2291 return -ENOMEM; 2292 } 2293 2294 static int nfp_net_rx_rings_prepare(struct nfp_net *nn, struct nfp_net_dp *dp) 2295 { 2296 unsigned int r; 2297 2298 dp->rx_rings = kcalloc(dp->num_rx_rings, sizeof(*dp->rx_rings), 2299 GFP_KERNEL); 2300 if (!dp->rx_rings) 2301 return -ENOMEM; 2302 2303 for (r = 0; r < dp->num_rx_rings; r++) { 2304 nfp_net_rx_ring_init(&dp->rx_rings[r], &nn->r_vecs[r], r); 2305 2306 if (nfp_net_rx_ring_alloc(dp, &dp->rx_rings[r])) 2307 goto err_free_prev; 2308 2309 if (nfp_net_rx_ring_bufs_alloc(dp, &dp->rx_rings[r])) 2310 goto err_free_ring; 2311 } 2312 2313 return 0; 2314 2315 err_free_prev: 2316 while (r--) { 2317 nfp_net_rx_ring_bufs_free(dp, &dp->rx_rings[r]); 2318 err_free_ring: 2319 nfp_net_rx_ring_free(&dp->rx_rings[r]); 2320 } 2321 kfree(dp->rx_rings); 2322 return -ENOMEM; 2323 } 2324 2325 static void nfp_net_rx_rings_free(struct nfp_net_dp *dp) 2326 { 2327 unsigned int r; 2328 2329 for (r = 0; r < dp->num_rx_rings; r++) { 2330 nfp_net_rx_ring_bufs_free(dp, &dp->rx_rings[r]); 2331 nfp_net_rx_ring_free(&dp->rx_rings[r]); 2332 } 2333 2334 kfree(dp->rx_rings); 2335 } 2336 2337 static void 2338 nfp_net_vector_assign_rings(struct nfp_net_dp *dp, 2339 struct nfp_net_r_vector *r_vec, int idx) 2340 { 2341 r_vec->rx_ring = idx < dp->num_rx_rings ? &dp->rx_rings[idx] : NULL; 2342 r_vec->tx_ring = 2343 idx < dp->num_stack_tx_rings ? &dp->tx_rings[idx] : NULL; 2344 2345 r_vec->xdp_ring = idx < dp->num_tx_rings - dp->num_stack_tx_rings ? 2346 &dp->tx_rings[dp->num_stack_tx_rings + idx] : NULL; 2347 } 2348 2349 static int 2350 nfp_net_prepare_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec, 2351 int idx) 2352 { 2353 int err; 2354 2355 /* Setup NAPI */ 2356 if (nn->dp.netdev) 2357 netif_napi_add(nn->dp.netdev, &r_vec->napi, 2358 nfp_net_poll, NAPI_POLL_WEIGHT); 2359 else 2360 tasklet_enable(&r_vec->tasklet); 2361 2362 snprintf(r_vec->name, sizeof(r_vec->name), 2363 "%s-rxtx-%d", nfp_net_name(nn), idx); 2364 err = request_irq(r_vec->irq_vector, r_vec->handler, 0, r_vec->name, 2365 r_vec); 2366 if (err) { 2367 if (nn->dp.netdev) 2368 netif_napi_del(&r_vec->napi); 2369 else 2370 tasklet_disable(&r_vec->tasklet); 2371 2372 nn_err(nn, "Error requesting IRQ %d\n", r_vec->irq_vector); 2373 return err; 2374 } 2375 disable_irq(r_vec->irq_vector); 2376 2377 irq_set_affinity_hint(r_vec->irq_vector, &r_vec->affinity_mask); 2378 2379 nn_dbg(nn, "RV%02d: irq=%03d/%03d\n", idx, r_vec->irq_vector, 2380 r_vec->irq_entry); 2381 2382 return 0; 2383 } 2384 2385 static void 2386 nfp_net_cleanup_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec) 2387 { 2388 irq_set_affinity_hint(r_vec->irq_vector, NULL); 2389 if (nn->dp.netdev) 2390 netif_napi_del(&r_vec->napi); 2391 else 2392 tasklet_disable(&r_vec->tasklet); 2393 2394 free_irq(r_vec->irq_vector, r_vec); 2395 } 2396 2397 /** 2398 * nfp_net_rss_write_itbl() - Write RSS indirection table to device 2399 * @nn: NFP Net device to reconfigure 2400 */ 2401 void nfp_net_rss_write_itbl(struct nfp_net *nn) 2402 { 2403 int i; 2404 2405 for (i = 0; i < NFP_NET_CFG_RSS_ITBL_SZ; i += 4) 2406 nn_writel(nn, NFP_NET_CFG_RSS_ITBL + i, 2407 get_unaligned_le32(nn->rss_itbl + i)); 2408 } 2409 2410 /** 2411 * nfp_net_rss_write_key() - Write RSS hash key to device 2412 * @nn: NFP Net device to reconfigure 2413 */ 2414 void nfp_net_rss_write_key(struct nfp_net *nn) 2415 { 2416 int i; 2417 2418 for (i = 0; i < nfp_net_rss_key_sz(nn); i += 4) 2419 nn_writel(nn, NFP_NET_CFG_RSS_KEY + i, 2420 get_unaligned_le32(nn->rss_key + i)); 2421 } 2422 2423 /** 2424 * nfp_net_coalesce_write_cfg() - Write irq coalescence configuration to HW 2425 * @nn: NFP Net device to reconfigure 2426 */ 2427 void nfp_net_coalesce_write_cfg(struct nfp_net *nn) 2428 { 2429 u8 i; 2430 u32 factor; 2431 u32 value; 2432 2433 /* Compute factor used to convert coalesce '_usecs' parameters to 2434 * ME timestamp ticks. There are 16 ME clock cycles for each timestamp 2435 * count. 2436 */ 2437 factor = nn->me_freq_mhz / 16; 2438 2439 /* copy RX interrupt coalesce parameters */ 2440 value = (nn->rx_coalesce_max_frames << 16) | 2441 (factor * nn->rx_coalesce_usecs); 2442 for (i = 0; i < nn->dp.num_rx_rings; i++) 2443 nn_writel(nn, NFP_NET_CFG_RXR_IRQ_MOD(i), value); 2444 2445 /* copy TX interrupt coalesce parameters */ 2446 value = (nn->tx_coalesce_max_frames << 16) | 2447 (factor * nn->tx_coalesce_usecs); 2448 for (i = 0; i < nn->dp.num_tx_rings; i++) 2449 nn_writel(nn, NFP_NET_CFG_TXR_IRQ_MOD(i), value); 2450 } 2451 2452 /** 2453 * nfp_net_write_mac_addr() - Write mac address to the device control BAR 2454 * @nn: NFP Net device to reconfigure 2455 * @addr: MAC address to write 2456 * 2457 * Writes the MAC address from the netdev to the device control BAR. Does not 2458 * perform the required reconfig. We do a bit of byte swapping dance because 2459 * firmware is LE. 2460 */ 2461 static void nfp_net_write_mac_addr(struct nfp_net *nn, const u8 *addr) 2462 { 2463 nn_writel(nn, NFP_NET_CFG_MACADDR + 0, get_unaligned_be32(addr)); 2464 nn_writew(nn, NFP_NET_CFG_MACADDR + 6, get_unaligned_be16(addr + 4)); 2465 } 2466 2467 static void nfp_net_vec_clear_ring_data(struct nfp_net *nn, unsigned int idx) 2468 { 2469 nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), 0); 2470 nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), 0); 2471 nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), 0); 2472 2473 nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), 0); 2474 nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), 0); 2475 nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), 0); 2476 } 2477 2478 /** 2479 * nfp_net_clear_config_and_disable() - Clear control BAR and disable NFP 2480 * @nn: NFP Net device to reconfigure 2481 */ 2482 static void nfp_net_clear_config_and_disable(struct nfp_net *nn) 2483 { 2484 u32 new_ctrl, update; 2485 unsigned int r; 2486 int err; 2487 2488 new_ctrl = nn->dp.ctrl; 2489 new_ctrl &= ~NFP_NET_CFG_CTRL_ENABLE; 2490 update = NFP_NET_CFG_UPDATE_GEN; 2491 update |= NFP_NET_CFG_UPDATE_MSIX; 2492 update |= NFP_NET_CFG_UPDATE_RING; 2493 2494 if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG) 2495 new_ctrl &= ~NFP_NET_CFG_CTRL_RINGCFG; 2496 2497 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0); 2498 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0); 2499 2500 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 2501 err = nfp_net_reconfig(nn, update); 2502 if (err) 2503 nn_err(nn, "Could not disable device: %d\n", err); 2504 2505 for (r = 0; r < nn->dp.num_rx_rings; r++) 2506 nfp_net_rx_ring_reset(&nn->dp.rx_rings[r]); 2507 for (r = 0; r < nn->dp.num_tx_rings; r++) 2508 nfp_net_tx_ring_reset(&nn->dp, &nn->dp.tx_rings[r]); 2509 for (r = 0; r < nn->dp.num_r_vecs; r++) 2510 nfp_net_vec_clear_ring_data(nn, r); 2511 2512 nn->dp.ctrl = new_ctrl; 2513 } 2514 2515 static void 2516 nfp_net_rx_ring_hw_cfg_write(struct nfp_net *nn, 2517 struct nfp_net_rx_ring *rx_ring, unsigned int idx) 2518 { 2519 /* Write the DMA address, size and MSI-X info to the device */ 2520 nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), rx_ring->dma); 2521 nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), ilog2(rx_ring->cnt)); 2522 nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), rx_ring->r_vec->irq_entry); 2523 } 2524 2525 static void 2526 nfp_net_tx_ring_hw_cfg_write(struct nfp_net *nn, 2527 struct nfp_net_tx_ring *tx_ring, unsigned int idx) 2528 { 2529 nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), tx_ring->dma); 2530 nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), ilog2(tx_ring->cnt)); 2531 nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), tx_ring->r_vec->irq_entry); 2532 } 2533 2534 /** 2535 * nfp_net_set_config_and_enable() - Write control BAR and enable NFP 2536 * @nn: NFP Net device to reconfigure 2537 */ 2538 static int nfp_net_set_config_and_enable(struct nfp_net *nn) 2539 { 2540 u32 bufsz, new_ctrl, update = 0; 2541 unsigned int r; 2542 int err; 2543 2544 new_ctrl = nn->dp.ctrl; 2545 2546 if (nn->dp.ctrl & NFP_NET_CFG_CTRL_RSS_ANY) { 2547 nfp_net_rss_write_key(nn); 2548 nfp_net_rss_write_itbl(nn); 2549 nn_writel(nn, NFP_NET_CFG_RSS_CTRL, nn->rss_cfg); 2550 update |= NFP_NET_CFG_UPDATE_RSS; 2551 } 2552 2553 if (nn->dp.ctrl & NFP_NET_CFG_CTRL_IRQMOD) { 2554 nfp_net_coalesce_write_cfg(nn); 2555 update |= NFP_NET_CFG_UPDATE_IRQMOD; 2556 } 2557 2558 for (r = 0; r < nn->dp.num_tx_rings; r++) 2559 nfp_net_tx_ring_hw_cfg_write(nn, &nn->dp.tx_rings[r], r); 2560 for (r = 0; r < nn->dp.num_rx_rings; r++) 2561 nfp_net_rx_ring_hw_cfg_write(nn, &nn->dp.rx_rings[r], r); 2562 2563 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, nn->dp.num_tx_rings == 64 ? 2564 0xffffffffffffffffULL : ((u64)1 << nn->dp.num_tx_rings) - 1); 2565 2566 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, nn->dp.num_rx_rings == 64 ? 2567 0xffffffffffffffffULL : ((u64)1 << nn->dp.num_rx_rings) - 1); 2568 2569 if (nn->dp.netdev) 2570 nfp_net_write_mac_addr(nn, nn->dp.netdev->dev_addr); 2571 2572 nn_writel(nn, NFP_NET_CFG_MTU, nn->dp.mtu); 2573 2574 bufsz = nn->dp.fl_bufsz - nn->dp.rx_dma_off - NFP_NET_RX_BUF_NON_DATA; 2575 nn_writel(nn, NFP_NET_CFG_FLBUFSZ, bufsz); 2576 2577 /* Enable device */ 2578 new_ctrl |= NFP_NET_CFG_CTRL_ENABLE; 2579 update |= NFP_NET_CFG_UPDATE_GEN; 2580 update |= NFP_NET_CFG_UPDATE_MSIX; 2581 update |= NFP_NET_CFG_UPDATE_RING; 2582 if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG) 2583 new_ctrl |= NFP_NET_CFG_CTRL_RINGCFG; 2584 2585 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 2586 err = nfp_net_reconfig(nn, update); 2587 if (err) { 2588 nfp_net_clear_config_and_disable(nn); 2589 return err; 2590 } 2591 2592 nn->dp.ctrl = new_ctrl; 2593 2594 for (r = 0; r < nn->dp.num_rx_rings; r++) 2595 nfp_net_rx_ring_fill_freelist(&nn->dp, &nn->dp.rx_rings[r]); 2596 2597 /* Since reconfiguration requests while NFP is down are ignored we 2598 * have to wipe the entire VXLAN configuration and reinitialize it. 2599 */ 2600 if (nn->dp.ctrl & NFP_NET_CFG_CTRL_VXLAN) { 2601 memset(&nn->vxlan_ports, 0, sizeof(nn->vxlan_ports)); 2602 memset(&nn->vxlan_usecnt, 0, sizeof(nn->vxlan_usecnt)); 2603 udp_tunnel_get_rx_info(nn->dp.netdev); 2604 } 2605 2606 return 0; 2607 } 2608 2609 /** 2610 * nfp_net_close_stack() - Quiesce the stack (part of close) 2611 * @nn: NFP Net device to reconfigure 2612 */ 2613 static void nfp_net_close_stack(struct nfp_net *nn) 2614 { 2615 unsigned int r; 2616 2617 disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector); 2618 netif_carrier_off(nn->dp.netdev); 2619 nn->link_up = false; 2620 2621 for (r = 0; r < nn->dp.num_r_vecs; r++) { 2622 disable_irq(nn->r_vecs[r].irq_vector); 2623 napi_disable(&nn->r_vecs[r].napi); 2624 } 2625 2626 netif_tx_disable(nn->dp.netdev); 2627 } 2628 2629 /** 2630 * nfp_net_close_free_all() - Free all runtime resources 2631 * @nn: NFP Net device to reconfigure 2632 */ 2633 static void nfp_net_close_free_all(struct nfp_net *nn) 2634 { 2635 unsigned int r; 2636 2637 nfp_net_tx_rings_free(&nn->dp); 2638 nfp_net_rx_rings_free(&nn->dp); 2639 2640 for (r = 0; r < nn->dp.num_r_vecs; r++) 2641 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); 2642 2643 nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX); 2644 nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX); 2645 } 2646 2647 /** 2648 * nfp_net_netdev_close() - Called when the device is downed 2649 * @netdev: netdev structure 2650 */ 2651 static int nfp_net_netdev_close(struct net_device *netdev) 2652 { 2653 struct nfp_net *nn = netdev_priv(netdev); 2654 2655 /* Step 1: Disable RX and TX rings from the Linux kernel perspective 2656 */ 2657 nfp_net_close_stack(nn); 2658 2659 /* Step 2: Tell NFP 2660 */ 2661 nfp_net_clear_config_and_disable(nn); 2662 nfp_port_configure(netdev, false); 2663 2664 /* Step 3: Free resources 2665 */ 2666 nfp_net_close_free_all(nn); 2667 2668 nn_dbg(nn, "%s down", netdev->name); 2669 return 0; 2670 } 2671 2672 void nfp_ctrl_close(struct nfp_net *nn) 2673 { 2674 int r; 2675 2676 rtnl_lock(); 2677 2678 for (r = 0; r < nn->dp.num_r_vecs; r++) { 2679 disable_irq(nn->r_vecs[r].irq_vector); 2680 tasklet_disable(&nn->r_vecs[r].tasklet); 2681 } 2682 2683 nfp_net_clear_config_and_disable(nn); 2684 2685 nfp_net_close_free_all(nn); 2686 2687 rtnl_unlock(); 2688 } 2689 2690 /** 2691 * nfp_net_open_stack() - Start the device from stack's perspective 2692 * @nn: NFP Net device to reconfigure 2693 */ 2694 static void nfp_net_open_stack(struct nfp_net *nn) 2695 { 2696 unsigned int r; 2697 2698 for (r = 0; r < nn->dp.num_r_vecs; r++) { 2699 napi_enable(&nn->r_vecs[r].napi); 2700 enable_irq(nn->r_vecs[r].irq_vector); 2701 } 2702 2703 netif_tx_wake_all_queues(nn->dp.netdev); 2704 2705 enable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector); 2706 nfp_net_read_link_status(nn); 2707 } 2708 2709 static int nfp_net_open_alloc_all(struct nfp_net *nn) 2710 { 2711 int err, r; 2712 2713 err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_EXN, "%s-exn", 2714 nn->exn_name, sizeof(nn->exn_name), 2715 NFP_NET_IRQ_EXN_IDX, nn->exn_handler); 2716 if (err) 2717 return err; 2718 err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_LSC, "%s-lsc", 2719 nn->lsc_name, sizeof(nn->lsc_name), 2720 NFP_NET_IRQ_LSC_IDX, nn->lsc_handler); 2721 if (err) 2722 goto err_free_exn; 2723 disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector); 2724 2725 for (r = 0; r < nn->dp.num_r_vecs; r++) { 2726 err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r); 2727 if (err) 2728 goto err_cleanup_vec_p; 2729 } 2730 2731 err = nfp_net_rx_rings_prepare(nn, &nn->dp); 2732 if (err) 2733 goto err_cleanup_vec; 2734 2735 err = nfp_net_tx_rings_prepare(nn, &nn->dp); 2736 if (err) 2737 goto err_free_rx_rings; 2738 2739 for (r = 0; r < nn->max_r_vecs; r++) 2740 nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r); 2741 2742 return 0; 2743 2744 err_free_rx_rings: 2745 nfp_net_rx_rings_free(&nn->dp); 2746 err_cleanup_vec: 2747 r = nn->dp.num_r_vecs; 2748 err_cleanup_vec_p: 2749 while (r--) 2750 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); 2751 nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX); 2752 err_free_exn: 2753 nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX); 2754 return err; 2755 } 2756 2757 static int nfp_net_netdev_open(struct net_device *netdev) 2758 { 2759 struct nfp_net *nn = netdev_priv(netdev); 2760 int err; 2761 2762 /* Step 1: Allocate resources for rings and the like 2763 * - Request interrupts 2764 * - Allocate RX and TX ring resources 2765 * - Setup initial RSS table 2766 */ 2767 err = nfp_net_open_alloc_all(nn); 2768 if (err) 2769 return err; 2770 2771 err = netif_set_real_num_tx_queues(netdev, nn->dp.num_stack_tx_rings); 2772 if (err) 2773 goto err_free_all; 2774 2775 err = netif_set_real_num_rx_queues(netdev, nn->dp.num_rx_rings); 2776 if (err) 2777 goto err_free_all; 2778 2779 /* Step 2: Configure the NFP 2780 * - Ifup the physical interface if it exists 2781 * - Enable rings from 0 to tx_rings/rx_rings - 1. 2782 * - Write MAC address (in case it changed) 2783 * - Set the MTU 2784 * - Set the Freelist buffer size 2785 * - Enable the FW 2786 */ 2787 err = nfp_port_configure(netdev, true); 2788 if (err) 2789 goto err_free_all; 2790 2791 err = nfp_net_set_config_and_enable(nn); 2792 if (err) 2793 goto err_port_disable; 2794 2795 /* Step 3: Enable for kernel 2796 * - put some freelist descriptors on each RX ring 2797 * - enable NAPI on each ring 2798 * - enable all TX queues 2799 * - set link state 2800 */ 2801 nfp_net_open_stack(nn); 2802 2803 return 0; 2804 2805 err_port_disable: 2806 nfp_port_configure(netdev, false); 2807 err_free_all: 2808 nfp_net_close_free_all(nn); 2809 return err; 2810 } 2811 2812 int nfp_ctrl_open(struct nfp_net *nn) 2813 { 2814 int err, r; 2815 2816 /* ring dumping depends on vNICs being opened/closed under rtnl */ 2817 rtnl_lock(); 2818 2819 err = nfp_net_open_alloc_all(nn); 2820 if (err) 2821 goto err_unlock; 2822 2823 err = nfp_net_set_config_and_enable(nn); 2824 if (err) 2825 goto err_free_all; 2826 2827 for (r = 0; r < nn->dp.num_r_vecs; r++) 2828 enable_irq(nn->r_vecs[r].irq_vector); 2829 2830 rtnl_unlock(); 2831 2832 return 0; 2833 2834 err_free_all: 2835 nfp_net_close_free_all(nn); 2836 err_unlock: 2837 rtnl_unlock(); 2838 return err; 2839 } 2840 2841 static void nfp_net_set_rx_mode(struct net_device *netdev) 2842 { 2843 struct nfp_net *nn = netdev_priv(netdev); 2844 u32 new_ctrl; 2845 2846 new_ctrl = nn->dp.ctrl; 2847 2848 if (netdev->flags & IFF_PROMISC) { 2849 if (nn->cap & NFP_NET_CFG_CTRL_PROMISC) 2850 new_ctrl |= NFP_NET_CFG_CTRL_PROMISC; 2851 else 2852 nn_warn(nn, "FW does not support promiscuous mode\n"); 2853 } else { 2854 new_ctrl &= ~NFP_NET_CFG_CTRL_PROMISC; 2855 } 2856 2857 if (new_ctrl == nn->dp.ctrl) 2858 return; 2859 2860 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 2861 nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_GEN); 2862 2863 nn->dp.ctrl = new_ctrl; 2864 } 2865 2866 static void nfp_net_rss_init_itbl(struct nfp_net *nn) 2867 { 2868 int i; 2869 2870 for (i = 0; i < sizeof(nn->rss_itbl); i++) 2871 nn->rss_itbl[i] = 2872 ethtool_rxfh_indir_default(i, nn->dp.num_rx_rings); 2873 } 2874 2875 static void nfp_net_dp_swap(struct nfp_net *nn, struct nfp_net_dp *dp) 2876 { 2877 struct nfp_net_dp new_dp = *dp; 2878 2879 *dp = nn->dp; 2880 nn->dp = new_dp; 2881 2882 nn->dp.netdev->mtu = new_dp.mtu; 2883 2884 if (!netif_is_rxfh_configured(nn->dp.netdev)) 2885 nfp_net_rss_init_itbl(nn); 2886 } 2887 2888 static int nfp_net_dp_swap_enable(struct nfp_net *nn, struct nfp_net_dp *dp) 2889 { 2890 unsigned int r; 2891 int err; 2892 2893 nfp_net_dp_swap(nn, dp); 2894 2895 for (r = 0; r < nn->max_r_vecs; r++) 2896 nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r); 2897 2898 err = netif_set_real_num_rx_queues(nn->dp.netdev, nn->dp.num_rx_rings); 2899 if (err) 2900 return err; 2901 2902 if (nn->dp.netdev->real_num_tx_queues != nn->dp.num_stack_tx_rings) { 2903 err = netif_set_real_num_tx_queues(nn->dp.netdev, 2904 nn->dp.num_stack_tx_rings); 2905 if (err) 2906 return err; 2907 } 2908 2909 return nfp_net_set_config_and_enable(nn); 2910 } 2911 2912 struct nfp_net_dp *nfp_net_clone_dp(struct nfp_net *nn) 2913 { 2914 struct nfp_net_dp *new; 2915 2916 new = kmalloc(sizeof(*new), GFP_KERNEL); 2917 if (!new) 2918 return NULL; 2919 2920 *new = nn->dp; 2921 2922 /* Clear things which need to be recomputed */ 2923 new->fl_bufsz = 0; 2924 new->tx_rings = NULL; 2925 new->rx_rings = NULL; 2926 new->num_r_vecs = 0; 2927 new->num_stack_tx_rings = 0; 2928 2929 return new; 2930 } 2931 2932 static int 2933 nfp_net_check_config(struct nfp_net *nn, struct nfp_net_dp *dp, 2934 struct netlink_ext_ack *extack) 2935 { 2936 /* XDP-enabled tests */ 2937 if (!dp->xdp_prog) 2938 return 0; 2939 if (dp->fl_bufsz > PAGE_SIZE) { 2940 NL_SET_ERR_MSG_MOD(extack, "MTU too large w/ XDP enabled"); 2941 return -EINVAL; 2942 } 2943 if (dp->num_tx_rings > nn->max_tx_rings) { 2944 NL_SET_ERR_MSG_MOD(extack, "Insufficient number of TX rings w/ XDP enabled"); 2945 return -EINVAL; 2946 } 2947 2948 return 0; 2949 } 2950 2951 int nfp_net_ring_reconfig(struct nfp_net *nn, struct nfp_net_dp *dp, 2952 struct netlink_ext_ack *extack) 2953 { 2954 int r, err; 2955 2956 dp->fl_bufsz = nfp_net_calc_fl_bufsz(dp); 2957 2958 dp->num_stack_tx_rings = dp->num_tx_rings; 2959 if (dp->xdp_prog) 2960 dp->num_stack_tx_rings -= dp->num_rx_rings; 2961 2962 dp->num_r_vecs = max(dp->num_rx_rings, dp->num_stack_tx_rings); 2963 2964 err = nfp_net_check_config(nn, dp, extack); 2965 if (err) 2966 goto exit_free_dp; 2967 2968 if (!netif_running(dp->netdev)) { 2969 nfp_net_dp_swap(nn, dp); 2970 err = 0; 2971 goto exit_free_dp; 2972 } 2973 2974 /* Prepare new rings */ 2975 for (r = nn->dp.num_r_vecs; r < dp->num_r_vecs; r++) { 2976 err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r); 2977 if (err) { 2978 dp->num_r_vecs = r; 2979 goto err_cleanup_vecs; 2980 } 2981 } 2982 2983 err = nfp_net_rx_rings_prepare(nn, dp); 2984 if (err) 2985 goto err_cleanup_vecs; 2986 2987 err = nfp_net_tx_rings_prepare(nn, dp); 2988 if (err) 2989 goto err_free_rx; 2990 2991 /* Stop device, swap in new rings, try to start the firmware */ 2992 nfp_net_close_stack(nn); 2993 nfp_net_clear_config_and_disable(nn); 2994 2995 err = nfp_net_dp_swap_enable(nn, dp); 2996 if (err) { 2997 int err2; 2998 2999 nfp_net_clear_config_and_disable(nn); 3000 3001 /* Try with old configuration and old rings */ 3002 err2 = nfp_net_dp_swap_enable(nn, dp); 3003 if (err2) 3004 nn_err(nn, "Can't restore ring config - FW communication failed (%d,%d)\n", 3005 err, err2); 3006 } 3007 for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--) 3008 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); 3009 3010 nfp_net_rx_rings_free(dp); 3011 nfp_net_tx_rings_free(dp); 3012 3013 nfp_net_open_stack(nn); 3014 exit_free_dp: 3015 kfree(dp); 3016 3017 return err; 3018 3019 err_free_rx: 3020 nfp_net_rx_rings_free(dp); 3021 err_cleanup_vecs: 3022 for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--) 3023 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); 3024 kfree(dp); 3025 return err; 3026 } 3027 3028 static int nfp_net_change_mtu(struct net_device *netdev, int new_mtu) 3029 { 3030 struct nfp_net *nn = netdev_priv(netdev); 3031 struct nfp_net_dp *dp; 3032 3033 dp = nfp_net_clone_dp(nn); 3034 if (!dp) 3035 return -ENOMEM; 3036 3037 dp->mtu = new_mtu; 3038 3039 return nfp_net_ring_reconfig(nn, dp, NULL); 3040 } 3041 3042 static int 3043 nfp_net_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) 3044 { 3045 struct nfp_net *nn = netdev_priv(netdev); 3046 3047 /* Priority tagged packets with vlan id 0 are processed by the 3048 * NFP as untagged packets 3049 */ 3050 if (!vid) 3051 return 0; 3052 3053 nn_writew(nn, NFP_NET_CFG_VLAN_FILTER_VID, vid); 3054 nn_writew(nn, NFP_NET_CFG_VLAN_FILTER_PROTO, ETH_P_8021Q); 3055 3056 return nfp_net_reconfig_mbox(nn, NFP_NET_CFG_MBOX_CMD_CTAG_FILTER_ADD); 3057 } 3058 3059 static int 3060 nfp_net_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) 3061 { 3062 struct nfp_net *nn = netdev_priv(netdev); 3063 3064 /* Priority tagged packets with vlan id 0 are processed by the 3065 * NFP as untagged packets 3066 */ 3067 if (!vid) 3068 return 0; 3069 3070 nn_writew(nn, NFP_NET_CFG_VLAN_FILTER_VID, vid); 3071 nn_writew(nn, NFP_NET_CFG_VLAN_FILTER_PROTO, ETH_P_8021Q); 3072 3073 return nfp_net_reconfig_mbox(nn, NFP_NET_CFG_MBOX_CMD_CTAG_FILTER_KILL); 3074 } 3075 3076 static void nfp_net_stat64(struct net_device *netdev, 3077 struct rtnl_link_stats64 *stats) 3078 { 3079 struct nfp_net *nn = netdev_priv(netdev); 3080 int r; 3081 3082 for (r = 0; r < nn->dp.num_r_vecs; r++) { 3083 struct nfp_net_r_vector *r_vec = &nn->r_vecs[r]; 3084 u64 data[3]; 3085 unsigned int start; 3086 3087 do { 3088 start = u64_stats_fetch_begin(&r_vec->rx_sync); 3089 data[0] = r_vec->rx_pkts; 3090 data[1] = r_vec->rx_bytes; 3091 data[2] = r_vec->rx_drops; 3092 } while (u64_stats_fetch_retry(&r_vec->rx_sync, start)); 3093 stats->rx_packets += data[0]; 3094 stats->rx_bytes += data[1]; 3095 stats->rx_dropped += data[2]; 3096 3097 do { 3098 start = u64_stats_fetch_begin(&r_vec->tx_sync); 3099 data[0] = r_vec->tx_pkts; 3100 data[1] = r_vec->tx_bytes; 3101 data[2] = r_vec->tx_errors; 3102 } while (u64_stats_fetch_retry(&r_vec->tx_sync, start)); 3103 stats->tx_packets += data[0]; 3104 stats->tx_bytes += data[1]; 3105 stats->tx_errors += data[2]; 3106 } 3107 } 3108 3109 static int nfp_net_set_features(struct net_device *netdev, 3110 netdev_features_t features) 3111 { 3112 netdev_features_t changed = netdev->features ^ features; 3113 struct nfp_net *nn = netdev_priv(netdev); 3114 u32 new_ctrl; 3115 int err; 3116 3117 /* Assume this is not called with features we have not advertised */ 3118 3119 new_ctrl = nn->dp.ctrl; 3120 3121 if (changed & NETIF_F_RXCSUM) { 3122 if (features & NETIF_F_RXCSUM) 3123 new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY; 3124 else 3125 new_ctrl &= ~NFP_NET_CFG_CTRL_RXCSUM_ANY; 3126 } 3127 3128 if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) { 3129 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) 3130 new_ctrl |= NFP_NET_CFG_CTRL_TXCSUM; 3131 else 3132 new_ctrl &= ~NFP_NET_CFG_CTRL_TXCSUM; 3133 } 3134 3135 if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) { 3136 if (features & (NETIF_F_TSO | NETIF_F_TSO6)) 3137 new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_LSO2 ?: 3138 NFP_NET_CFG_CTRL_LSO; 3139 else 3140 new_ctrl &= ~NFP_NET_CFG_CTRL_LSO_ANY; 3141 } 3142 3143 if (changed & NETIF_F_HW_VLAN_CTAG_RX) { 3144 if (features & NETIF_F_HW_VLAN_CTAG_RX) 3145 new_ctrl |= NFP_NET_CFG_CTRL_RXVLAN; 3146 else 3147 new_ctrl &= ~NFP_NET_CFG_CTRL_RXVLAN; 3148 } 3149 3150 if (changed & NETIF_F_HW_VLAN_CTAG_TX) { 3151 if (features & NETIF_F_HW_VLAN_CTAG_TX) 3152 new_ctrl |= NFP_NET_CFG_CTRL_TXVLAN; 3153 else 3154 new_ctrl &= ~NFP_NET_CFG_CTRL_TXVLAN; 3155 } 3156 3157 if (changed & NETIF_F_HW_VLAN_CTAG_FILTER) { 3158 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) 3159 new_ctrl |= NFP_NET_CFG_CTRL_CTAG_FILTER; 3160 else 3161 new_ctrl &= ~NFP_NET_CFG_CTRL_CTAG_FILTER; 3162 } 3163 3164 if (changed & NETIF_F_SG) { 3165 if (features & NETIF_F_SG) 3166 new_ctrl |= NFP_NET_CFG_CTRL_GATHER; 3167 else 3168 new_ctrl &= ~NFP_NET_CFG_CTRL_GATHER; 3169 } 3170 3171 if (changed & NETIF_F_HW_TC && nfp_app_tc_busy(nn->app, nn)) { 3172 nn_err(nn, "Cannot disable HW TC offload while in use\n"); 3173 return -EBUSY; 3174 } 3175 3176 nn_dbg(nn, "Feature change 0x%llx -> 0x%llx (changed=0x%llx)\n", 3177 netdev->features, features, changed); 3178 3179 if (new_ctrl == nn->dp.ctrl) 3180 return 0; 3181 3182 nn_dbg(nn, "NIC ctrl: 0x%x -> 0x%x\n", nn->dp.ctrl, new_ctrl); 3183 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 3184 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_GEN); 3185 if (err) 3186 return err; 3187 3188 nn->dp.ctrl = new_ctrl; 3189 3190 return 0; 3191 } 3192 3193 static netdev_features_t 3194 nfp_net_features_check(struct sk_buff *skb, struct net_device *dev, 3195 netdev_features_t features) 3196 { 3197 u8 l4_hdr; 3198 3199 /* We can't do TSO over double tagged packets (802.1AD) */ 3200 features &= vlan_features_check(skb, features); 3201 3202 if (!skb->encapsulation) 3203 return features; 3204 3205 /* Ensure that inner L4 header offset fits into TX descriptor field */ 3206 if (skb_is_gso(skb)) { 3207 u32 hdrlen; 3208 3209 hdrlen = skb_inner_transport_header(skb) - skb->data + 3210 inner_tcp_hdrlen(skb); 3211 3212 if (unlikely(hdrlen > NFP_NET_LSO_MAX_HDR_SZ)) 3213 features &= ~NETIF_F_GSO_MASK; 3214 } 3215 3216 /* VXLAN/GRE check */ 3217 switch (vlan_get_protocol(skb)) { 3218 case htons(ETH_P_IP): 3219 l4_hdr = ip_hdr(skb)->protocol; 3220 break; 3221 case htons(ETH_P_IPV6): 3222 l4_hdr = ipv6_hdr(skb)->nexthdr; 3223 break; 3224 default: 3225 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3226 } 3227 3228 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER || 3229 skb->inner_protocol != htons(ETH_P_TEB) || 3230 (l4_hdr != IPPROTO_UDP && l4_hdr != IPPROTO_GRE) || 3231 (l4_hdr == IPPROTO_UDP && 3232 (skb_inner_mac_header(skb) - skb_transport_header(skb) != 3233 sizeof(struct udphdr) + sizeof(struct vxlanhdr)))) 3234 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3235 3236 return features; 3237 } 3238 3239 /** 3240 * nfp_net_set_vxlan_port() - set vxlan port in SW and reconfigure HW 3241 * @nn: NFP Net device to reconfigure 3242 * @idx: Index into the port table where new port should be written 3243 * @port: UDP port to configure (pass zero to remove VXLAN port) 3244 */ 3245 static void nfp_net_set_vxlan_port(struct nfp_net *nn, int idx, __be16 port) 3246 { 3247 int i; 3248 3249 nn->vxlan_ports[idx] = port; 3250 3251 if (!(nn->dp.ctrl & NFP_NET_CFG_CTRL_VXLAN)) 3252 return; 3253 3254 BUILD_BUG_ON(NFP_NET_N_VXLAN_PORTS & 1); 3255 for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i += 2) 3256 nn_writel(nn, NFP_NET_CFG_VXLAN_PORT + i * sizeof(port), 3257 be16_to_cpu(nn->vxlan_ports[i + 1]) << 16 | 3258 be16_to_cpu(nn->vxlan_ports[i])); 3259 3260 nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_VXLAN); 3261 } 3262 3263 /** 3264 * nfp_net_find_vxlan_idx() - find table entry of the port or a free one 3265 * @nn: NFP Network structure 3266 * @port: UDP port to look for 3267 * 3268 * Return: if the port is already in the table -- it's position; 3269 * if the port is not in the table -- free position to use; 3270 * if the table is full -- -ENOSPC. 3271 */ 3272 static int nfp_net_find_vxlan_idx(struct nfp_net *nn, __be16 port) 3273 { 3274 int i, free_idx = -ENOSPC; 3275 3276 for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i++) { 3277 if (nn->vxlan_ports[i] == port) 3278 return i; 3279 if (!nn->vxlan_usecnt[i]) 3280 free_idx = i; 3281 } 3282 3283 return free_idx; 3284 } 3285 3286 static void nfp_net_add_vxlan_port(struct net_device *netdev, 3287 struct udp_tunnel_info *ti) 3288 { 3289 struct nfp_net *nn = netdev_priv(netdev); 3290 int idx; 3291 3292 if (ti->type != UDP_TUNNEL_TYPE_VXLAN) 3293 return; 3294 3295 idx = nfp_net_find_vxlan_idx(nn, ti->port); 3296 if (idx == -ENOSPC) 3297 return; 3298 3299 if (!nn->vxlan_usecnt[idx]++) 3300 nfp_net_set_vxlan_port(nn, idx, ti->port); 3301 } 3302 3303 static void nfp_net_del_vxlan_port(struct net_device *netdev, 3304 struct udp_tunnel_info *ti) 3305 { 3306 struct nfp_net *nn = netdev_priv(netdev); 3307 int idx; 3308 3309 if (ti->type != UDP_TUNNEL_TYPE_VXLAN) 3310 return; 3311 3312 idx = nfp_net_find_vxlan_idx(nn, ti->port); 3313 if (idx == -ENOSPC || !nn->vxlan_usecnt[idx]) 3314 return; 3315 3316 if (!--nn->vxlan_usecnt[idx]) 3317 nfp_net_set_vxlan_port(nn, idx, 0); 3318 } 3319 3320 static int 3321 nfp_net_xdp_setup_drv(struct nfp_net *nn, struct bpf_prog *prog, 3322 struct netlink_ext_ack *extack) 3323 { 3324 struct nfp_net_dp *dp; 3325 3326 if (!prog == !nn->dp.xdp_prog) { 3327 WRITE_ONCE(nn->dp.xdp_prog, prog); 3328 return 0; 3329 } 3330 3331 dp = nfp_net_clone_dp(nn); 3332 if (!dp) 3333 return -ENOMEM; 3334 3335 dp->xdp_prog = prog; 3336 dp->num_tx_rings += prog ? nn->dp.num_rx_rings : -nn->dp.num_rx_rings; 3337 dp->rx_dma_dir = prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE; 3338 dp->rx_dma_off = prog ? XDP_PACKET_HEADROOM - nn->dp.rx_offset : 0; 3339 3340 /* We need RX reconfig to remap the buffers (BIDIR vs FROM_DEV) */ 3341 return nfp_net_ring_reconfig(nn, dp, extack); 3342 } 3343 3344 static int 3345 nfp_net_xdp_setup(struct nfp_net *nn, struct bpf_prog *prog, u32 flags, 3346 struct netlink_ext_ack *extack) 3347 { 3348 struct bpf_prog *drv_prog, *offload_prog; 3349 int err; 3350 3351 if (nn->xdp_prog && (flags ^ nn->xdp_flags) & XDP_FLAGS_MODES) 3352 return -EBUSY; 3353 3354 /* Load both when no flags set to allow easy activation of driver path 3355 * when program is replaced by one which can't be offloaded. 3356 */ 3357 drv_prog = flags & XDP_FLAGS_HW_MODE ? NULL : prog; 3358 offload_prog = flags & XDP_FLAGS_DRV_MODE ? NULL : prog; 3359 3360 err = nfp_net_xdp_setup_drv(nn, drv_prog, extack); 3361 if (err) 3362 return err; 3363 3364 err = nfp_app_xdp_offload(nn->app, nn, offload_prog); 3365 if (err && flags & XDP_FLAGS_HW_MODE) 3366 return err; 3367 3368 if (nn->xdp_prog) 3369 bpf_prog_put(nn->xdp_prog); 3370 nn->xdp_prog = prog; 3371 nn->xdp_flags = flags; 3372 3373 return 0; 3374 } 3375 3376 static int nfp_net_xdp(struct net_device *netdev, struct netdev_xdp *xdp) 3377 { 3378 struct nfp_net *nn = netdev_priv(netdev); 3379 3380 switch (xdp->command) { 3381 case XDP_SETUP_PROG: 3382 case XDP_SETUP_PROG_HW: 3383 return nfp_net_xdp_setup(nn, xdp->prog, xdp->flags, 3384 xdp->extack); 3385 case XDP_QUERY_PROG: 3386 xdp->prog_attached = !!nn->xdp_prog; 3387 if (nn->dp.bpf_offload_xdp) 3388 xdp->prog_attached = XDP_ATTACHED_HW; 3389 xdp->prog_id = nn->xdp_prog ? nn->xdp_prog->aux->id : 0; 3390 return 0; 3391 default: 3392 return -EINVAL; 3393 } 3394 } 3395 3396 static int nfp_net_set_mac_address(struct net_device *netdev, void *addr) 3397 { 3398 struct nfp_net *nn = netdev_priv(netdev); 3399 struct sockaddr *saddr = addr; 3400 int err; 3401 3402 err = eth_prepare_mac_addr_change(netdev, addr); 3403 if (err) 3404 return err; 3405 3406 nfp_net_write_mac_addr(nn, saddr->sa_data); 3407 3408 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_MACADDR); 3409 if (err) 3410 return err; 3411 3412 eth_commit_mac_addr_change(netdev, addr); 3413 3414 return 0; 3415 } 3416 3417 const struct net_device_ops nfp_net_netdev_ops = { 3418 .ndo_open = nfp_net_netdev_open, 3419 .ndo_stop = nfp_net_netdev_close, 3420 .ndo_start_xmit = nfp_net_tx, 3421 .ndo_get_stats64 = nfp_net_stat64, 3422 .ndo_vlan_rx_add_vid = nfp_net_vlan_rx_add_vid, 3423 .ndo_vlan_rx_kill_vid = nfp_net_vlan_rx_kill_vid, 3424 .ndo_set_vf_mac = nfp_app_set_vf_mac, 3425 .ndo_set_vf_vlan = nfp_app_set_vf_vlan, 3426 .ndo_set_vf_spoofchk = nfp_app_set_vf_spoofchk, 3427 .ndo_get_vf_config = nfp_app_get_vf_config, 3428 .ndo_set_vf_link_state = nfp_app_set_vf_link_state, 3429 .ndo_setup_tc = nfp_port_setup_tc, 3430 .ndo_tx_timeout = nfp_net_tx_timeout, 3431 .ndo_set_rx_mode = nfp_net_set_rx_mode, 3432 .ndo_change_mtu = nfp_net_change_mtu, 3433 .ndo_set_mac_address = nfp_net_set_mac_address, 3434 .ndo_set_features = nfp_net_set_features, 3435 .ndo_features_check = nfp_net_features_check, 3436 .ndo_get_phys_port_name = nfp_port_get_phys_port_name, 3437 .ndo_udp_tunnel_add = nfp_net_add_vxlan_port, 3438 .ndo_udp_tunnel_del = nfp_net_del_vxlan_port, 3439 .ndo_xdp = nfp_net_xdp, 3440 }; 3441 3442 /** 3443 * nfp_net_info() - Print general info about the NIC 3444 * @nn: NFP Net device to reconfigure 3445 */ 3446 void nfp_net_info(struct nfp_net *nn) 3447 { 3448 nn_info(nn, "Netronome NFP-6xxx %sNetdev: TxQs=%d/%d RxQs=%d/%d\n", 3449 nn->dp.is_vf ? "VF " : "", 3450 nn->dp.num_tx_rings, nn->max_tx_rings, 3451 nn->dp.num_rx_rings, nn->max_rx_rings); 3452 nn_info(nn, "VER: %d.%d.%d.%d, Maximum supported MTU: %d\n", 3453 nn->fw_ver.resv, nn->fw_ver.class, 3454 nn->fw_ver.major, nn->fw_ver.minor, 3455 nn->max_mtu); 3456 nn_info(nn, "CAP: %#x %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", 3457 nn->cap, 3458 nn->cap & NFP_NET_CFG_CTRL_PROMISC ? "PROMISC " : "", 3459 nn->cap & NFP_NET_CFG_CTRL_L2BC ? "L2BCFILT " : "", 3460 nn->cap & NFP_NET_CFG_CTRL_L2MC ? "L2MCFILT " : "", 3461 nn->cap & NFP_NET_CFG_CTRL_RXCSUM ? "RXCSUM " : "", 3462 nn->cap & NFP_NET_CFG_CTRL_TXCSUM ? "TXCSUM " : "", 3463 nn->cap & NFP_NET_CFG_CTRL_RXVLAN ? "RXVLAN " : "", 3464 nn->cap & NFP_NET_CFG_CTRL_TXVLAN ? "TXVLAN " : "", 3465 nn->cap & NFP_NET_CFG_CTRL_SCATTER ? "SCATTER " : "", 3466 nn->cap & NFP_NET_CFG_CTRL_GATHER ? "GATHER " : "", 3467 nn->cap & NFP_NET_CFG_CTRL_LSO ? "TSO1 " : "", 3468 nn->cap & NFP_NET_CFG_CTRL_LSO2 ? "TSO2 " : "", 3469 nn->cap & NFP_NET_CFG_CTRL_RSS ? "RSS1 " : "", 3470 nn->cap & NFP_NET_CFG_CTRL_RSS2 ? "RSS2 " : "", 3471 nn->cap & NFP_NET_CFG_CTRL_CTAG_FILTER ? "CTAG_FILTER " : "", 3472 nn->cap & NFP_NET_CFG_CTRL_L2SWITCH ? "L2SWITCH " : "", 3473 nn->cap & NFP_NET_CFG_CTRL_MSIXAUTO ? "AUTOMASK " : "", 3474 nn->cap & NFP_NET_CFG_CTRL_IRQMOD ? "IRQMOD " : "", 3475 nn->cap & NFP_NET_CFG_CTRL_VXLAN ? "VXLAN " : "", 3476 nn->cap & NFP_NET_CFG_CTRL_NVGRE ? "NVGRE " : "", 3477 nn->cap & NFP_NET_CFG_CTRL_CSUM_COMPLETE ? 3478 "RXCSUM_COMPLETE " : "", 3479 nn->cap & NFP_NET_CFG_CTRL_LIVE_ADDR ? "LIVE_ADDR " : "", 3480 nfp_app_extra_cap(nn->app, nn)); 3481 } 3482 3483 /** 3484 * nfp_net_alloc() - Allocate netdev and related structure 3485 * @pdev: PCI device 3486 * @needs_netdev: Whether to allocate a netdev for this vNIC 3487 * @max_tx_rings: Maximum number of TX rings supported by device 3488 * @max_rx_rings: Maximum number of RX rings supported by device 3489 * 3490 * This function allocates a netdev device and fills in the initial 3491 * part of the @struct nfp_net structure. In case of control device 3492 * nfp_net structure is allocated without the netdev. 3493 * 3494 * Return: NFP Net device structure, or ERR_PTR on error. 3495 */ 3496 struct nfp_net *nfp_net_alloc(struct pci_dev *pdev, bool needs_netdev, 3497 unsigned int max_tx_rings, 3498 unsigned int max_rx_rings) 3499 { 3500 struct nfp_net *nn; 3501 3502 if (needs_netdev) { 3503 struct net_device *netdev; 3504 3505 netdev = alloc_etherdev_mqs(sizeof(struct nfp_net), 3506 max_tx_rings, max_rx_rings); 3507 if (!netdev) 3508 return ERR_PTR(-ENOMEM); 3509 3510 SET_NETDEV_DEV(netdev, &pdev->dev); 3511 nn = netdev_priv(netdev); 3512 nn->dp.netdev = netdev; 3513 } else { 3514 nn = vzalloc(sizeof(*nn)); 3515 if (!nn) 3516 return ERR_PTR(-ENOMEM); 3517 } 3518 3519 nn->dp.dev = &pdev->dev; 3520 nn->pdev = pdev; 3521 3522 nn->max_tx_rings = max_tx_rings; 3523 nn->max_rx_rings = max_rx_rings; 3524 3525 nn->dp.num_tx_rings = min_t(unsigned int, 3526 max_tx_rings, num_online_cpus()); 3527 nn->dp.num_rx_rings = min_t(unsigned int, max_rx_rings, 3528 netif_get_num_default_rss_queues()); 3529 3530 nn->dp.num_r_vecs = max(nn->dp.num_tx_rings, nn->dp.num_rx_rings); 3531 nn->dp.num_r_vecs = min_t(unsigned int, 3532 nn->dp.num_r_vecs, num_online_cpus()); 3533 3534 nn->dp.txd_cnt = NFP_NET_TX_DESCS_DEFAULT; 3535 nn->dp.rxd_cnt = NFP_NET_RX_DESCS_DEFAULT; 3536 3537 spin_lock_init(&nn->reconfig_lock); 3538 spin_lock_init(&nn->link_status_lock); 3539 3540 timer_setup(&nn->reconfig_timer, nfp_net_reconfig_timer, 0); 3541 3542 return nn; 3543 } 3544 3545 /** 3546 * nfp_net_free() - Undo what @nfp_net_alloc() did 3547 * @nn: NFP Net device to reconfigure 3548 */ 3549 void nfp_net_free(struct nfp_net *nn) 3550 { 3551 if (nn->xdp_prog) 3552 bpf_prog_put(nn->xdp_prog); 3553 3554 if (nn->dp.netdev) 3555 free_netdev(nn->dp.netdev); 3556 else 3557 vfree(nn); 3558 } 3559 3560 /** 3561 * nfp_net_rss_key_sz() - Get current size of the RSS key 3562 * @nn: NFP Net device instance 3563 * 3564 * Return: size of the RSS key for currently selected hash function. 3565 */ 3566 unsigned int nfp_net_rss_key_sz(struct nfp_net *nn) 3567 { 3568 switch (nn->rss_hfunc) { 3569 case ETH_RSS_HASH_TOP: 3570 return NFP_NET_CFG_RSS_KEY_SZ; 3571 case ETH_RSS_HASH_XOR: 3572 return 0; 3573 case ETH_RSS_HASH_CRC32: 3574 return 4; 3575 } 3576 3577 nn_warn(nn, "Unknown hash function: %u\n", nn->rss_hfunc); 3578 return 0; 3579 } 3580 3581 /** 3582 * nfp_net_rss_init() - Set the initial RSS parameters 3583 * @nn: NFP Net device to reconfigure 3584 */ 3585 static void nfp_net_rss_init(struct nfp_net *nn) 3586 { 3587 unsigned long func_bit, rss_cap_hfunc; 3588 u32 reg; 3589 3590 /* Read the RSS function capability and select first supported func */ 3591 reg = nn_readl(nn, NFP_NET_CFG_RSS_CAP); 3592 rss_cap_hfunc = FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC, reg); 3593 if (!rss_cap_hfunc) 3594 rss_cap_hfunc = FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC, 3595 NFP_NET_CFG_RSS_TOEPLITZ); 3596 3597 func_bit = find_first_bit(&rss_cap_hfunc, NFP_NET_CFG_RSS_HFUNCS); 3598 if (func_bit == NFP_NET_CFG_RSS_HFUNCS) { 3599 dev_warn(nn->dp.dev, 3600 "Bad RSS config, defaulting to Toeplitz hash\n"); 3601 func_bit = ETH_RSS_HASH_TOP_BIT; 3602 } 3603 nn->rss_hfunc = 1 << func_bit; 3604 3605 netdev_rss_key_fill(nn->rss_key, nfp_net_rss_key_sz(nn)); 3606 3607 nfp_net_rss_init_itbl(nn); 3608 3609 /* Enable IPv4/IPv6 TCP by default */ 3610 nn->rss_cfg = NFP_NET_CFG_RSS_IPV4_TCP | 3611 NFP_NET_CFG_RSS_IPV6_TCP | 3612 FIELD_PREP(NFP_NET_CFG_RSS_HFUNC, nn->rss_hfunc) | 3613 NFP_NET_CFG_RSS_MASK; 3614 } 3615 3616 /** 3617 * nfp_net_irqmod_init() - Set the initial IRQ moderation parameters 3618 * @nn: NFP Net device to reconfigure 3619 */ 3620 static void nfp_net_irqmod_init(struct nfp_net *nn) 3621 { 3622 nn->rx_coalesce_usecs = 50; 3623 nn->rx_coalesce_max_frames = 64; 3624 nn->tx_coalesce_usecs = 50; 3625 nn->tx_coalesce_max_frames = 64; 3626 } 3627 3628 static void nfp_net_netdev_init(struct nfp_net *nn) 3629 { 3630 struct net_device *netdev = nn->dp.netdev; 3631 3632 nfp_net_write_mac_addr(nn, nn->dp.netdev->dev_addr); 3633 3634 netdev->mtu = nn->dp.mtu; 3635 3636 /* Advertise/enable offloads based on capabilities 3637 * 3638 * Note: netdev->features show the currently enabled features 3639 * and netdev->hw_features advertises which features are 3640 * supported. By default we enable most features. 3641 */ 3642 if (nn->cap & NFP_NET_CFG_CTRL_LIVE_ADDR) 3643 netdev->priv_flags |= IFF_LIVE_ADDR_CHANGE; 3644 3645 netdev->hw_features = NETIF_F_HIGHDMA; 3646 if (nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY) { 3647 netdev->hw_features |= NETIF_F_RXCSUM; 3648 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY; 3649 } 3650 if (nn->cap & NFP_NET_CFG_CTRL_TXCSUM) { 3651 netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM; 3652 nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXCSUM; 3653 } 3654 if (nn->cap & NFP_NET_CFG_CTRL_GATHER) { 3655 netdev->hw_features |= NETIF_F_SG; 3656 nn->dp.ctrl |= NFP_NET_CFG_CTRL_GATHER; 3657 } 3658 if ((nn->cap & NFP_NET_CFG_CTRL_LSO && nn->fw_ver.major > 2) || 3659 nn->cap & NFP_NET_CFG_CTRL_LSO2) { 3660 netdev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6; 3661 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_LSO2 ?: 3662 NFP_NET_CFG_CTRL_LSO; 3663 } 3664 if (nn->cap & NFP_NET_CFG_CTRL_RSS_ANY) 3665 netdev->hw_features |= NETIF_F_RXHASH; 3666 if (nn->cap & NFP_NET_CFG_CTRL_VXLAN && 3667 nn->cap & NFP_NET_CFG_CTRL_NVGRE) { 3668 if (nn->cap & NFP_NET_CFG_CTRL_LSO) 3669 netdev->hw_features |= NETIF_F_GSO_GRE | 3670 NETIF_F_GSO_UDP_TUNNEL; 3671 nn->dp.ctrl |= NFP_NET_CFG_CTRL_VXLAN | NFP_NET_CFG_CTRL_NVGRE; 3672 3673 netdev->hw_enc_features = netdev->hw_features; 3674 } 3675 3676 netdev->vlan_features = netdev->hw_features; 3677 3678 if (nn->cap & NFP_NET_CFG_CTRL_RXVLAN) { 3679 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 3680 nn->dp.ctrl |= NFP_NET_CFG_CTRL_RXVLAN; 3681 } 3682 if (nn->cap & NFP_NET_CFG_CTRL_TXVLAN) { 3683 if (nn->cap & NFP_NET_CFG_CTRL_LSO2) { 3684 nn_warn(nn, "Device advertises both TSO2 and TXVLAN. Refusing to enable TXVLAN.\n"); 3685 } else { 3686 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 3687 nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXVLAN; 3688 } 3689 } 3690 if (nn->cap & NFP_NET_CFG_CTRL_CTAG_FILTER) { 3691 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER; 3692 nn->dp.ctrl |= NFP_NET_CFG_CTRL_CTAG_FILTER; 3693 } 3694 3695 netdev->features = netdev->hw_features; 3696 3697 if (nfp_app_has_tc(nn->app)) 3698 netdev->hw_features |= NETIF_F_HW_TC; 3699 3700 /* Advertise but disable TSO by default. */ 3701 netdev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6); 3702 nn->dp.ctrl &= ~NFP_NET_CFG_CTRL_LSO_ANY; 3703 3704 /* Finalise the netdev setup */ 3705 netdev->netdev_ops = &nfp_net_netdev_ops; 3706 netdev->watchdog_timeo = msecs_to_jiffies(5 * 1000); 3707 3708 SWITCHDEV_SET_OPS(netdev, &nfp_port_switchdev_ops); 3709 3710 /* MTU range: 68 - hw-specific max */ 3711 netdev->min_mtu = ETH_MIN_MTU; 3712 netdev->max_mtu = nn->max_mtu; 3713 3714 netif_carrier_off(netdev); 3715 3716 nfp_net_set_ethtool_ops(netdev); 3717 } 3718 3719 /** 3720 * nfp_net_init() - Initialise/finalise the nfp_net structure 3721 * @nn: NFP Net device structure 3722 * 3723 * Return: 0 on success or negative errno on error. 3724 */ 3725 int nfp_net_init(struct nfp_net *nn) 3726 { 3727 int err; 3728 3729 nn->dp.rx_dma_dir = DMA_FROM_DEVICE; 3730 3731 /* Get some of the read-only fields from the BAR */ 3732 nn->cap = nn_readl(nn, NFP_NET_CFG_CAP); 3733 nn->max_mtu = nn_readl(nn, NFP_NET_CFG_MAX_MTU); 3734 3735 /* ABI 4.x and ctrl vNIC always use chained metadata, in other cases 3736 * we allow use of non-chained metadata if RSS(v1) is the only 3737 * advertised capability requiring metadata. 3738 */ 3739 nn->dp.chained_metadata_format = nn->fw_ver.major == 4 || 3740 !nn->dp.netdev || 3741 !(nn->cap & NFP_NET_CFG_CTRL_RSS) || 3742 nn->cap & NFP_NET_CFG_CTRL_CHAIN_META; 3743 /* RSS(v1) uses non-chained metadata format, except in ABI 4.x where 3744 * it has the same meaning as RSSv2. 3745 */ 3746 if (nn->dp.chained_metadata_format && nn->fw_ver.major != 4) 3747 nn->cap &= ~NFP_NET_CFG_CTRL_RSS; 3748 3749 /* Determine RX packet/metadata boundary offset */ 3750 if (nn->fw_ver.major >= 2) { 3751 u32 reg; 3752 3753 reg = nn_readl(nn, NFP_NET_CFG_RX_OFFSET); 3754 if (reg > NFP_NET_MAX_PREPEND) { 3755 nn_err(nn, "Invalid rx offset: %d\n", reg); 3756 return -EINVAL; 3757 } 3758 nn->dp.rx_offset = reg; 3759 } else { 3760 nn->dp.rx_offset = NFP_NET_RX_OFFSET; 3761 } 3762 3763 /* Set default MTU and Freelist buffer size */ 3764 if (nn->max_mtu < NFP_NET_DEFAULT_MTU) 3765 nn->dp.mtu = nn->max_mtu; 3766 else 3767 nn->dp.mtu = NFP_NET_DEFAULT_MTU; 3768 nn->dp.fl_bufsz = nfp_net_calc_fl_bufsz(&nn->dp); 3769 3770 if (nn->cap & NFP_NET_CFG_CTRL_RSS_ANY) { 3771 nfp_net_rss_init(nn); 3772 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RSS2 ?: 3773 NFP_NET_CFG_CTRL_RSS; 3774 } 3775 3776 /* Allow L2 Broadcast and Multicast through by default, if supported */ 3777 if (nn->cap & NFP_NET_CFG_CTRL_L2BC) 3778 nn->dp.ctrl |= NFP_NET_CFG_CTRL_L2BC; 3779 if (nn->cap & NFP_NET_CFG_CTRL_L2MC) 3780 nn->dp.ctrl |= NFP_NET_CFG_CTRL_L2MC; 3781 3782 /* Allow IRQ moderation, if supported */ 3783 if (nn->cap & NFP_NET_CFG_CTRL_IRQMOD) { 3784 nfp_net_irqmod_init(nn); 3785 nn->dp.ctrl |= NFP_NET_CFG_CTRL_IRQMOD; 3786 } 3787 3788 if (nn->dp.netdev) 3789 nfp_net_netdev_init(nn); 3790 3791 /* Stash the re-configuration queue away. First odd queue in TX Bar */ 3792 nn->qcp_cfg = nn->tx_bar + NFP_QCP_QUEUE_ADDR_SZ; 3793 3794 /* Make sure the FW knows the netdev is supposed to be disabled here */ 3795 nn_writel(nn, NFP_NET_CFG_CTRL, 0); 3796 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0); 3797 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0); 3798 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_RING | 3799 NFP_NET_CFG_UPDATE_GEN); 3800 if (err) 3801 return err; 3802 3803 nfp_net_vecs_init(nn); 3804 3805 if (!nn->dp.netdev) 3806 return 0; 3807 return register_netdev(nn->dp.netdev); 3808 } 3809 3810 /** 3811 * nfp_net_clean() - Undo what nfp_net_init() did. 3812 * @nn: NFP Net device structure 3813 */ 3814 void nfp_net_clean(struct nfp_net *nn) 3815 { 3816 if (!nn->dp.netdev) 3817 return; 3818 3819 unregister_netdev(nn->dp.netdev); 3820 } 3821