1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause) 2 /* Copyright (C) 2015-2019 Netronome Systems, Inc. */ 3 4 /* 5 * nfp_net_common.c 6 * Netronome network device driver: Common functions between PF and VF 7 * Authors: Jakub Kicinski <jakub.kicinski@netronome.com> 8 * Jason McMullan <jason.mcmullan@netronome.com> 9 * Rolf Neugebauer <rolf.neugebauer@netronome.com> 10 * Brad Petrus <brad.petrus@netronome.com> 11 * Chris Telfer <chris.telfer@netronome.com> 12 */ 13 14 #include <linux/bitfield.h> 15 #include <linux/bpf.h> 16 #include <linux/module.h> 17 #include <linux/kernel.h> 18 #include <linux/init.h> 19 #include <linux/fs.h> 20 #include <linux/netdevice.h> 21 #include <linux/etherdevice.h> 22 #include <linux/interrupt.h> 23 #include <linux/ip.h> 24 #include <linux/ipv6.h> 25 #include <linux/mm.h> 26 #include <linux/overflow.h> 27 #include <linux/page_ref.h> 28 #include <linux/pci.h> 29 #include <linux/pci_regs.h> 30 #include <linux/ethtool.h> 31 #include <linux/log2.h> 32 #include <linux/if_vlan.h> 33 #include <linux/if_bridge.h> 34 #include <linux/random.h> 35 #include <linux/vmalloc.h> 36 #include <linux/ktime.h> 37 38 #include <net/tls.h> 39 #include <net/vxlan.h> 40 #include <net/xdp_sock_drv.h> 41 #include <net/xfrm.h> 42 43 #include "nfpcore/nfp_dev.h" 44 #include "nfpcore/nfp_nsp.h" 45 #include "ccm.h" 46 #include "nfp_app.h" 47 #include "nfp_net_ctrl.h" 48 #include "nfp_net.h" 49 #include "nfp_net_dp.h" 50 #include "nfp_net_sriov.h" 51 #include "nfp_net_xsk.h" 52 #include "nfp_port.h" 53 #include "crypto/crypto.h" 54 #include "crypto/fw.h" 55 56 static int nfp_net_mc_unsync(struct net_device *netdev, const unsigned char *addr); 57 58 /** 59 * nfp_net_get_fw_version() - Read and parse the FW version 60 * @fw_ver: Output fw_version structure to read to 61 * @ctrl_bar: Mapped address of the control BAR 62 */ 63 void nfp_net_get_fw_version(struct nfp_net_fw_version *fw_ver, 64 void __iomem *ctrl_bar) 65 { 66 u32 reg; 67 68 reg = readl(ctrl_bar + NFP_NET_CFG_VERSION); 69 put_unaligned_le32(reg, fw_ver); 70 } 71 72 u32 nfp_qcp_queue_offset(const struct nfp_dev_info *dev_info, u16 queue) 73 { 74 queue &= dev_info->qc_idx_mask; 75 return dev_info->qc_addr_offset + NFP_QCP_QUEUE_ADDR_SZ * queue; 76 } 77 78 /* Firmware reconfig 79 * 80 * Firmware reconfig may take a while so we have two versions of it - 81 * synchronous and asynchronous (posted). All synchronous callers are holding 82 * RTNL so we don't have to worry about serializing them. 83 */ 84 static void nfp_net_reconfig_start(struct nfp_net *nn, u32 update) 85 { 86 nn_writel(nn, NFP_NET_CFG_UPDATE, update); 87 /* ensure update is written before pinging HW */ 88 nn_pci_flush(nn); 89 nfp_qcp_wr_ptr_add(nn->qcp_cfg, 1); 90 nn->reconfig_in_progress_update = update; 91 } 92 93 /* Pass 0 as update to run posted reconfigs. */ 94 static void nfp_net_reconfig_start_async(struct nfp_net *nn, u32 update) 95 { 96 update |= nn->reconfig_posted; 97 nn->reconfig_posted = 0; 98 99 nfp_net_reconfig_start(nn, update); 100 101 nn->reconfig_timer_active = true; 102 mod_timer(&nn->reconfig_timer, jiffies + NFP_NET_POLL_TIMEOUT * HZ); 103 } 104 105 static bool nfp_net_reconfig_check_done(struct nfp_net *nn, bool last_check) 106 { 107 u32 reg; 108 109 reg = nn_readl(nn, NFP_NET_CFG_UPDATE); 110 if (reg == 0) 111 return true; 112 if (reg & NFP_NET_CFG_UPDATE_ERR) { 113 nn_err(nn, "Reconfig error (status: 0x%08x update: 0x%08x ctrl: 0x%08x)\n", 114 reg, nn->reconfig_in_progress_update, 115 nn_readl(nn, NFP_NET_CFG_CTRL)); 116 return true; 117 } else if (last_check) { 118 nn_err(nn, "Reconfig timeout (status: 0x%08x update: 0x%08x ctrl: 0x%08x)\n", 119 reg, nn->reconfig_in_progress_update, 120 nn_readl(nn, NFP_NET_CFG_CTRL)); 121 return true; 122 } 123 124 return false; 125 } 126 127 static bool __nfp_net_reconfig_wait(struct nfp_net *nn, unsigned long deadline) 128 { 129 bool timed_out = false; 130 int i; 131 132 /* Poll update field, waiting for NFP to ack the config. 133 * Do an opportunistic wait-busy loop, afterward sleep. 134 */ 135 for (i = 0; i < 50; i++) { 136 if (nfp_net_reconfig_check_done(nn, false)) 137 return false; 138 udelay(4); 139 } 140 141 while (!nfp_net_reconfig_check_done(nn, timed_out)) { 142 usleep_range(250, 500); 143 timed_out = time_is_before_eq_jiffies(deadline); 144 } 145 146 return timed_out; 147 } 148 149 static int nfp_net_reconfig_wait(struct nfp_net *nn, unsigned long deadline) 150 { 151 if (__nfp_net_reconfig_wait(nn, deadline)) 152 return -EIO; 153 154 if (nn_readl(nn, NFP_NET_CFG_UPDATE) & NFP_NET_CFG_UPDATE_ERR) 155 return -EIO; 156 157 return 0; 158 } 159 160 static void nfp_net_reconfig_timer(struct timer_list *t) 161 { 162 struct nfp_net *nn = from_timer(nn, t, reconfig_timer); 163 164 spin_lock_bh(&nn->reconfig_lock); 165 166 nn->reconfig_timer_active = false; 167 168 /* If sync caller is present it will take over from us */ 169 if (nn->reconfig_sync_present) 170 goto done; 171 172 /* Read reconfig status and report errors */ 173 nfp_net_reconfig_check_done(nn, true); 174 175 if (nn->reconfig_posted) 176 nfp_net_reconfig_start_async(nn, 0); 177 done: 178 spin_unlock_bh(&nn->reconfig_lock); 179 } 180 181 /** 182 * nfp_net_reconfig_post() - Post async reconfig request 183 * @nn: NFP Net device to reconfigure 184 * @update: The value for the update field in the BAR config 185 * 186 * Record FW reconfiguration request. Reconfiguration will be kicked off 187 * whenever reconfiguration machinery is idle. Multiple requests can be 188 * merged together! 189 */ 190 static void nfp_net_reconfig_post(struct nfp_net *nn, u32 update) 191 { 192 spin_lock_bh(&nn->reconfig_lock); 193 194 /* Sync caller will kick off async reconf when it's done, just post */ 195 if (nn->reconfig_sync_present) { 196 nn->reconfig_posted |= update; 197 goto done; 198 } 199 200 /* Opportunistically check if the previous command is done */ 201 if (!nn->reconfig_timer_active || 202 nfp_net_reconfig_check_done(nn, false)) 203 nfp_net_reconfig_start_async(nn, update); 204 else 205 nn->reconfig_posted |= update; 206 done: 207 spin_unlock_bh(&nn->reconfig_lock); 208 } 209 210 static void nfp_net_reconfig_sync_enter(struct nfp_net *nn) 211 { 212 bool cancelled_timer = false; 213 u32 pre_posted_requests; 214 215 spin_lock_bh(&nn->reconfig_lock); 216 217 WARN_ON(nn->reconfig_sync_present); 218 nn->reconfig_sync_present = true; 219 220 if (nn->reconfig_timer_active) { 221 nn->reconfig_timer_active = false; 222 cancelled_timer = true; 223 } 224 pre_posted_requests = nn->reconfig_posted; 225 nn->reconfig_posted = 0; 226 227 spin_unlock_bh(&nn->reconfig_lock); 228 229 if (cancelled_timer) { 230 del_timer_sync(&nn->reconfig_timer); 231 nfp_net_reconfig_wait(nn, nn->reconfig_timer.expires); 232 } 233 234 /* Run the posted reconfigs which were issued before we started */ 235 if (pre_posted_requests) { 236 nfp_net_reconfig_start(nn, pre_posted_requests); 237 nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT); 238 } 239 } 240 241 static void nfp_net_reconfig_wait_posted(struct nfp_net *nn) 242 { 243 nfp_net_reconfig_sync_enter(nn); 244 245 spin_lock_bh(&nn->reconfig_lock); 246 nn->reconfig_sync_present = false; 247 spin_unlock_bh(&nn->reconfig_lock); 248 } 249 250 /** 251 * __nfp_net_reconfig() - Reconfigure the firmware 252 * @nn: NFP Net device to reconfigure 253 * @update: The value for the update field in the BAR config 254 * 255 * Write the update word to the BAR and ping the reconfig queue. The 256 * poll until the firmware has acknowledged the update by zeroing the 257 * update word. 258 * 259 * Return: Negative errno on error, 0 on success 260 */ 261 int __nfp_net_reconfig(struct nfp_net *nn, u32 update) 262 { 263 int ret; 264 265 nfp_net_reconfig_sync_enter(nn); 266 267 nfp_net_reconfig_start(nn, update); 268 ret = nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT); 269 270 spin_lock_bh(&nn->reconfig_lock); 271 272 if (nn->reconfig_posted) 273 nfp_net_reconfig_start_async(nn, 0); 274 275 nn->reconfig_sync_present = false; 276 277 spin_unlock_bh(&nn->reconfig_lock); 278 279 return ret; 280 } 281 282 int nfp_net_reconfig(struct nfp_net *nn, u32 update) 283 { 284 int ret; 285 286 nn_ctrl_bar_lock(nn); 287 ret = __nfp_net_reconfig(nn, update); 288 nn_ctrl_bar_unlock(nn); 289 290 return ret; 291 } 292 293 int nfp_net_mbox_lock(struct nfp_net *nn, unsigned int data_size) 294 { 295 if (nn->tlv_caps.mbox_len < NFP_NET_CFG_MBOX_SIMPLE_VAL + data_size) { 296 nn_err(nn, "mailbox too small for %u of data (%u)\n", 297 data_size, nn->tlv_caps.mbox_len); 298 return -EIO; 299 } 300 301 nn_ctrl_bar_lock(nn); 302 return 0; 303 } 304 305 /** 306 * nfp_net_mbox_reconfig() - Reconfigure the firmware via the mailbox 307 * @nn: NFP Net device to reconfigure 308 * @mbox_cmd: The value for the mailbox command 309 * 310 * Helper function for mailbox updates 311 * 312 * Return: Negative errno on error, 0 on success 313 */ 314 int nfp_net_mbox_reconfig(struct nfp_net *nn, u32 mbox_cmd) 315 { 316 u32 mbox = nn->tlv_caps.mbox_off; 317 int ret; 318 319 nn_writeq(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_CMD, mbox_cmd); 320 321 ret = __nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_MBOX); 322 if (ret) { 323 nn_err(nn, "Mailbox update error\n"); 324 return ret; 325 } 326 327 return -nn_readl(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_RET); 328 } 329 330 void nfp_net_mbox_reconfig_post(struct nfp_net *nn, u32 mbox_cmd) 331 { 332 u32 mbox = nn->tlv_caps.mbox_off; 333 334 nn_writeq(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_CMD, mbox_cmd); 335 336 nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_MBOX); 337 } 338 339 int nfp_net_mbox_reconfig_wait_posted(struct nfp_net *nn) 340 { 341 u32 mbox = nn->tlv_caps.mbox_off; 342 343 nfp_net_reconfig_wait_posted(nn); 344 345 return -nn_readl(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_RET); 346 } 347 348 int nfp_net_mbox_reconfig_and_unlock(struct nfp_net *nn, u32 mbox_cmd) 349 { 350 int ret; 351 352 ret = nfp_net_mbox_reconfig(nn, mbox_cmd); 353 nn_ctrl_bar_unlock(nn); 354 return ret; 355 } 356 357 /* Interrupt configuration and handling 358 */ 359 360 /** 361 * nfp_net_irqs_alloc() - allocates MSI-X irqs 362 * @pdev: PCI device structure 363 * @irq_entries: Array to be initialized and used to hold the irq entries 364 * @min_irqs: Minimal acceptable number of interrupts 365 * @wanted_irqs: Target number of interrupts to allocate 366 * 367 * Return: Number of irqs obtained or 0 on error. 368 */ 369 unsigned int 370 nfp_net_irqs_alloc(struct pci_dev *pdev, struct msix_entry *irq_entries, 371 unsigned int min_irqs, unsigned int wanted_irqs) 372 { 373 unsigned int i; 374 int got_irqs; 375 376 for (i = 0; i < wanted_irqs; i++) 377 irq_entries[i].entry = i; 378 379 got_irqs = pci_enable_msix_range(pdev, irq_entries, 380 min_irqs, wanted_irqs); 381 if (got_irqs < 0) { 382 dev_err(&pdev->dev, "Failed to enable %d-%d MSI-X (err=%d)\n", 383 min_irqs, wanted_irqs, got_irqs); 384 return 0; 385 } 386 387 if (got_irqs < wanted_irqs) 388 dev_warn(&pdev->dev, "Unable to allocate %d IRQs got only %d\n", 389 wanted_irqs, got_irqs); 390 391 return got_irqs; 392 } 393 394 /** 395 * nfp_net_irqs_assign() - Assign interrupts allocated externally to netdev 396 * @nn: NFP Network structure 397 * @irq_entries: Table of allocated interrupts 398 * @n: Size of @irq_entries (number of entries to grab) 399 * 400 * After interrupts are allocated with nfp_net_irqs_alloc() this function 401 * should be called to assign them to a specific netdev (port). 402 */ 403 void 404 nfp_net_irqs_assign(struct nfp_net *nn, struct msix_entry *irq_entries, 405 unsigned int n) 406 { 407 struct nfp_net_dp *dp = &nn->dp; 408 409 nn->max_r_vecs = n - NFP_NET_NON_Q_VECTORS; 410 dp->num_r_vecs = nn->max_r_vecs; 411 412 memcpy(nn->irq_entries, irq_entries, sizeof(*irq_entries) * n); 413 414 if (dp->num_rx_rings > dp->num_r_vecs || 415 dp->num_tx_rings > dp->num_r_vecs) 416 dev_warn(nn->dp.dev, "More rings (%d,%d) than vectors (%d).\n", 417 dp->num_rx_rings, dp->num_tx_rings, 418 dp->num_r_vecs); 419 420 dp->num_rx_rings = min(dp->num_r_vecs, dp->num_rx_rings); 421 dp->num_tx_rings = min(dp->num_r_vecs, dp->num_tx_rings); 422 dp->num_stack_tx_rings = dp->num_tx_rings; 423 } 424 425 /** 426 * nfp_net_irqs_disable() - Disable interrupts 427 * @pdev: PCI device structure 428 * 429 * Undoes what @nfp_net_irqs_alloc() does. 430 */ 431 void nfp_net_irqs_disable(struct pci_dev *pdev) 432 { 433 pci_disable_msix(pdev); 434 } 435 436 /** 437 * nfp_net_irq_rxtx() - Interrupt service routine for RX/TX rings. 438 * @irq: Interrupt 439 * @data: Opaque data structure 440 * 441 * Return: Indicate if the interrupt has been handled. 442 */ 443 static irqreturn_t nfp_net_irq_rxtx(int irq, void *data) 444 { 445 struct nfp_net_r_vector *r_vec = data; 446 447 /* Currently we cannot tell if it's a rx or tx interrupt, 448 * since dim does not need accurate event_ctr to calculate, 449 * we just use this counter for both rx and tx dim. 450 */ 451 r_vec->event_ctr++; 452 453 napi_schedule_irqoff(&r_vec->napi); 454 455 /* The FW auto-masks any interrupt, either via the MASK bit in 456 * the MSI-X table or via the per entry ICR field. So there 457 * is no need to disable interrupts here. 458 */ 459 return IRQ_HANDLED; 460 } 461 462 static irqreturn_t nfp_ctrl_irq_rxtx(int irq, void *data) 463 { 464 struct nfp_net_r_vector *r_vec = data; 465 466 tasklet_schedule(&r_vec->tasklet); 467 468 return IRQ_HANDLED; 469 } 470 471 /** 472 * nfp_net_read_link_status() - Reread link status from control BAR 473 * @nn: NFP Network structure 474 */ 475 static void nfp_net_read_link_status(struct nfp_net *nn) 476 { 477 unsigned long flags; 478 bool link_up; 479 u16 sts; 480 481 spin_lock_irqsave(&nn->link_status_lock, flags); 482 483 sts = nn_readw(nn, NFP_NET_CFG_STS); 484 link_up = !!(sts & NFP_NET_CFG_STS_LINK); 485 486 if (nn->link_up == link_up) 487 goto out; 488 489 nn->link_up = link_up; 490 if (nn->port) { 491 set_bit(NFP_PORT_CHANGED, &nn->port->flags); 492 if (nn->port->link_cb) 493 nn->port->link_cb(nn->port); 494 } 495 496 if (nn->link_up) { 497 netif_carrier_on(nn->dp.netdev); 498 netdev_info(nn->dp.netdev, "NIC Link is Up\n"); 499 } else { 500 netif_carrier_off(nn->dp.netdev); 501 netdev_info(nn->dp.netdev, "NIC Link is Down\n"); 502 } 503 out: 504 spin_unlock_irqrestore(&nn->link_status_lock, flags); 505 } 506 507 /** 508 * nfp_net_irq_lsc() - Interrupt service routine for link state changes 509 * @irq: Interrupt 510 * @data: Opaque data structure 511 * 512 * Return: Indicate if the interrupt has been handled. 513 */ 514 static irqreturn_t nfp_net_irq_lsc(int irq, void *data) 515 { 516 struct nfp_net *nn = data; 517 struct msix_entry *entry; 518 519 entry = &nn->irq_entries[NFP_NET_IRQ_LSC_IDX]; 520 521 nfp_net_read_link_status(nn); 522 523 nfp_net_irq_unmask(nn, entry->entry); 524 525 return IRQ_HANDLED; 526 } 527 528 /** 529 * nfp_net_irq_exn() - Interrupt service routine for exceptions 530 * @irq: Interrupt 531 * @data: Opaque data structure 532 * 533 * Return: Indicate if the interrupt has been handled. 534 */ 535 static irqreturn_t nfp_net_irq_exn(int irq, void *data) 536 { 537 struct nfp_net *nn = data; 538 539 nn_err(nn, "%s: UNIMPLEMENTED.\n", __func__); 540 /* XXX TO BE IMPLEMENTED */ 541 return IRQ_HANDLED; 542 } 543 544 /** 545 * nfp_net_aux_irq_request() - Request an auxiliary interrupt (LSC or EXN) 546 * @nn: NFP Network structure 547 * @ctrl_offset: Control BAR offset where IRQ configuration should be written 548 * @format: printf-style format to construct the interrupt name 549 * @name: Pointer to allocated space for interrupt name 550 * @name_sz: Size of space for interrupt name 551 * @vector_idx: Index of MSI-X vector used for this interrupt 552 * @handler: IRQ handler to register for this interrupt 553 */ 554 static int 555 nfp_net_aux_irq_request(struct nfp_net *nn, u32 ctrl_offset, 556 const char *format, char *name, size_t name_sz, 557 unsigned int vector_idx, irq_handler_t handler) 558 { 559 struct msix_entry *entry; 560 int err; 561 562 entry = &nn->irq_entries[vector_idx]; 563 564 snprintf(name, name_sz, format, nfp_net_name(nn)); 565 err = request_irq(entry->vector, handler, 0, name, nn); 566 if (err) { 567 nn_err(nn, "Failed to request IRQ %d (err=%d).\n", 568 entry->vector, err); 569 return err; 570 } 571 nn_writeb(nn, ctrl_offset, entry->entry); 572 nfp_net_irq_unmask(nn, entry->entry); 573 574 return 0; 575 } 576 577 /** 578 * nfp_net_aux_irq_free() - Free an auxiliary interrupt (LSC or EXN) 579 * @nn: NFP Network structure 580 * @ctrl_offset: Control BAR offset where IRQ configuration should be written 581 * @vector_idx: Index of MSI-X vector used for this interrupt 582 */ 583 static void nfp_net_aux_irq_free(struct nfp_net *nn, u32 ctrl_offset, 584 unsigned int vector_idx) 585 { 586 nn_writeb(nn, ctrl_offset, 0xff); 587 nn_pci_flush(nn); 588 free_irq(nn->irq_entries[vector_idx].vector, nn); 589 } 590 591 struct sk_buff * 592 nfp_net_tls_tx(struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec, 593 struct sk_buff *skb, u64 *tls_handle, int *nr_frags) 594 { 595 #ifdef CONFIG_TLS_DEVICE 596 struct nfp_net_tls_offload_ctx *ntls; 597 struct sk_buff *nskb; 598 bool resync_pending; 599 u32 datalen, seq; 600 601 if (likely(!dp->ktls_tx)) 602 return skb; 603 if (!tls_is_skb_tx_device_offloaded(skb)) 604 return skb; 605 606 datalen = skb->len - skb_tcp_all_headers(skb); 607 seq = ntohl(tcp_hdr(skb)->seq); 608 ntls = tls_driver_ctx(skb->sk, TLS_OFFLOAD_CTX_DIR_TX); 609 resync_pending = tls_offload_tx_resync_pending(skb->sk); 610 if (unlikely(resync_pending || ntls->next_seq != seq)) { 611 /* Pure ACK out of order already */ 612 if (!datalen) 613 return skb; 614 615 u64_stats_update_begin(&r_vec->tx_sync); 616 r_vec->tls_tx_fallback++; 617 u64_stats_update_end(&r_vec->tx_sync); 618 619 nskb = tls_encrypt_skb(skb); 620 if (!nskb) { 621 u64_stats_update_begin(&r_vec->tx_sync); 622 r_vec->tls_tx_no_fallback++; 623 u64_stats_update_end(&r_vec->tx_sync); 624 return NULL; 625 } 626 /* encryption wasn't necessary */ 627 if (nskb == skb) 628 return skb; 629 /* we don't re-check ring space */ 630 if (unlikely(skb_is_nonlinear(nskb))) { 631 nn_dp_warn(dp, "tls_encrypt_skb() produced fragmented frame\n"); 632 u64_stats_update_begin(&r_vec->tx_sync); 633 r_vec->tx_errors++; 634 u64_stats_update_end(&r_vec->tx_sync); 635 dev_kfree_skb_any(nskb); 636 return NULL; 637 } 638 639 /* jump forward, a TX may have gotten lost, need to sync TX */ 640 if (!resync_pending && seq - ntls->next_seq < U32_MAX / 4) 641 tls_offload_tx_resync_request(nskb->sk, seq, 642 ntls->next_seq); 643 644 *nr_frags = 0; 645 return nskb; 646 } 647 648 if (datalen) { 649 u64_stats_update_begin(&r_vec->tx_sync); 650 if (!skb_is_gso(skb)) 651 r_vec->hw_tls_tx++; 652 else 653 r_vec->hw_tls_tx += skb_shinfo(skb)->gso_segs; 654 u64_stats_update_end(&r_vec->tx_sync); 655 } 656 657 memcpy(tls_handle, ntls->fw_handle, sizeof(ntls->fw_handle)); 658 ntls->next_seq += datalen; 659 #endif 660 return skb; 661 } 662 663 void nfp_net_tls_tx_undo(struct sk_buff *skb, u64 tls_handle) 664 { 665 #ifdef CONFIG_TLS_DEVICE 666 struct nfp_net_tls_offload_ctx *ntls; 667 u32 datalen, seq; 668 669 if (!tls_handle) 670 return; 671 if (WARN_ON_ONCE(!tls_is_skb_tx_device_offloaded(skb))) 672 return; 673 674 datalen = skb->len - skb_tcp_all_headers(skb); 675 seq = ntohl(tcp_hdr(skb)->seq); 676 677 ntls = tls_driver_ctx(skb->sk, TLS_OFFLOAD_CTX_DIR_TX); 678 if (ntls->next_seq == seq + datalen) 679 ntls->next_seq = seq; 680 else 681 WARN_ON_ONCE(1); 682 #endif 683 } 684 685 static void nfp_net_tx_timeout(struct net_device *netdev, unsigned int txqueue) 686 { 687 struct nfp_net *nn = netdev_priv(netdev); 688 689 nn_warn(nn, "TX watchdog timeout on ring: %u\n", txqueue); 690 } 691 692 /* Receive processing */ 693 static unsigned int 694 nfp_net_calc_fl_bufsz_data(struct nfp_net_dp *dp) 695 { 696 unsigned int fl_bufsz = 0; 697 698 if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC) 699 fl_bufsz += NFP_NET_MAX_PREPEND; 700 else 701 fl_bufsz += dp->rx_offset; 702 fl_bufsz += ETH_HLEN + VLAN_HLEN * 2 + dp->mtu; 703 704 return fl_bufsz; 705 } 706 707 static unsigned int nfp_net_calc_fl_bufsz(struct nfp_net_dp *dp) 708 { 709 unsigned int fl_bufsz; 710 711 fl_bufsz = NFP_NET_RX_BUF_HEADROOM; 712 fl_bufsz += dp->rx_dma_off; 713 fl_bufsz += nfp_net_calc_fl_bufsz_data(dp); 714 715 fl_bufsz = SKB_DATA_ALIGN(fl_bufsz); 716 fl_bufsz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 717 718 return fl_bufsz; 719 } 720 721 static unsigned int nfp_net_calc_fl_bufsz_xsk(struct nfp_net_dp *dp) 722 { 723 unsigned int fl_bufsz; 724 725 fl_bufsz = XDP_PACKET_HEADROOM; 726 fl_bufsz += nfp_net_calc_fl_bufsz_data(dp); 727 728 return fl_bufsz; 729 } 730 731 /* Setup and Configuration 732 */ 733 734 /** 735 * nfp_net_vecs_init() - Assign IRQs and setup rvecs. 736 * @nn: NFP Network structure 737 */ 738 static void nfp_net_vecs_init(struct nfp_net *nn) 739 { 740 int numa_node = dev_to_node(&nn->pdev->dev); 741 struct nfp_net_r_vector *r_vec; 742 unsigned int r; 743 744 nn->lsc_handler = nfp_net_irq_lsc; 745 nn->exn_handler = nfp_net_irq_exn; 746 747 for (r = 0; r < nn->max_r_vecs; r++) { 748 struct msix_entry *entry; 749 750 entry = &nn->irq_entries[NFP_NET_NON_Q_VECTORS + r]; 751 752 r_vec = &nn->r_vecs[r]; 753 r_vec->nfp_net = nn; 754 r_vec->irq_entry = entry->entry; 755 r_vec->irq_vector = entry->vector; 756 757 if (nn->dp.netdev) { 758 r_vec->handler = nfp_net_irq_rxtx; 759 } else { 760 r_vec->handler = nfp_ctrl_irq_rxtx; 761 762 __skb_queue_head_init(&r_vec->queue); 763 spin_lock_init(&r_vec->lock); 764 tasklet_setup(&r_vec->tasklet, nn->dp.ops->ctrl_poll); 765 tasklet_disable(&r_vec->tasklet); 766 } 767 768 cpumask_set_cpu(cpumask_local_spread(r, numa_node), &r_vec->affinity_mask); 769 } 770 } 771 772 static void 773 nfp_net_napi_add(struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec, int idx) 774 { 775 if (dp->netdev) 776 netif_napi_add(dp->netdev, &r_vec->napi, 777 nfp_net_has_xsk_pool_slow(dp, idx) ? dp->ops->xsk_poll : dp->ops->poll); 778 else 779 tasklet_enable(&r_vec->tasklet); 780 } 781 782 static void 783 nfp_net_napi_del(struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec) 784 { 785 if (dp->netdev) 786 netif_napi_del(&r_vec->napi); 787 else 788 tasklet_disable(&r_vec->tasklet); 789 } 790 791 static void 792 nfp_net_vector_assign_rings(struct nfp_net_dp *dp, 793 struct nfp_net_r_vector *r_vec, int idx) 794 { 795 r_vec->rx_ring = idx < dp->num_rx_rings ? &dp->rx_rings[idx] : NULL; 796 r_vec->tx_ring = 797 idx < dp->num_stack_tx_rings ? &dp->tx_rings[idx] : NULL; 798 799 r_vec->xdp_ring = idx < dp->num_tx_rings - dp->num_stack_tx_rings ? 800 &dp->tx_rings[dp->num_stack_tx_rings + idx] : NULL; 801 802 if (nfp_net_has_xsk_pool_slow(dp, idx) || r_vec->xsk_pool) { 803 r_vec->xsk_pool = dp->xdp_prog ? dp->xsk_pools[idx] : NULL; 804 805 if (r_vec->xsk_pool) 806 xsk_pool_set_rxq_info(r_vec->xsk_pool, 807 &r_vec->rx_ring->xdp_rxq); 808 809 nfp_net_napi_del(dp, r_vec); 810 nfp_net_napi_add(dp, r_vec, idx); 811 } 812 } 813 814 static int 815 nfp_net_prepare_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec, 816 int idx) 817 { 818 int err; 819 820 nfp_net_napi_add(&nn->dp, r_vec, idx); 821 822 snprintf(r_vec->name, sizeof(r_vec->name), 823 "%s-rxtx-%d", nfp_net_name(nn), idx); 824 err = request_irq(r_vec->irq_vector, r_vec->handler, 0, r_vec->name, 825 r_vec); 826 if (err) { 827 nfp_net_napi_del(&nn->dp, r_vec); 828 nn_err(nn, "Error requesting IRQ %d\n", r_vec->irq_vector); 829 return err; 830 } 831 disable_irq(r_vec->irq_vector); 832 833 irq_set_affinity_hint(r_vec->irq_vector, &r_vec->affinity_mask); 834 835 nn_dbg(nn, "RV%02d: irq=%03d/%03d\n", idx, r_vec->irq_vector, 836 r_vec->irq_entry); 837 838 return 0; 839 } 840 841 static void 842 nfp_net_cleanup_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec) 843 { 844 irq_set_affinity_hint(r_vec->irq_vector, NULL); 845 nfp_net_napi_del(&nn->dp, r_vec); 846 free_irq(r_vec->irq_vector, r_vec); 847 } 848 849 /** 850 * nfp_net_rss_write_itbl() - Write RSS indirection table to device 851 * @nn: NFP Net device to reconfigure 852 */ 853 void nfp_net_rss_write_itbl(struct nfp_net *nn) 854 { 855 int i; 856 857 for (i = 0; i < NFP_NET_CFG_RSS_ITBL_SZ; i += 4) 858 nn_writel(nn, NFP_NET_CFG_RSS_ITBL + i, 859 get_unaligned_le32(nn->rss_itbl + i)); 860 } 861 862 /** 863 * nfp_net_rss_write_key() - Write RSS hash key to device 864 * @nn: NFP Net device to reconfigure 865 */ 866 void nfp_net_rss_write_key(struct nfp_net *nn) 867 { 868 int i; 869 870 for (i = 0; i < nfp_net_rss_key_sz(nn); i += 4) 871 nn_writel(nn, NFP_NET_CFG_RSS_KEY + i, 872 get_unaligned_le32(nn->rss_key + i)); 873 } 874 875 /** 876 * nfp_net_coalesce_write_cfg() - Write irq coalescence configuration to HW 877 * @nn: NFP Net device to reconfigure 878 */ 879 void nfp_net_coalesce_write_cfg(struct nfp_net *nn) 880 { 881 u8 i; 882 u32 factor; 883 u32 value; 884 885 /* Compute factor used to convert coalesce '_usecs' parameters to 886 * ME timestamp ticks. There are 16 ME clock cycles for each timestamp 887 * count. 888 */ 889 factor = nn->tlv_caps.me_freq_mhz / 16; 890 891 /* copy RX interrupt coalesce parameters */ 892 value = (nn->rx_coalesce_max_frames << 16) | 893 (factor * nn->rx_coalesce_usecs); 894 for (i = 0; i < nn->dp.num_rx_rings; i++) 895 nn_writel(nn, NFP_NET_CFG_RXR_IRQ_MOD(i), value); 896 897 /* copy TX interrupt coalesce parameters */ 898 value = (nn->tx_coalesce_max_frames << 16) | 899 (factor * nn->tx_coalesce_usecs); 900 for (i = 0; i < nn->dp.num_tx_rings; i++) 901 nn_writel(nn, NFP_NET_CFG_TXR_IRQ_MOD(i), value); 902 } 903 904 /** 905 * nfp_net_write_mac_addr() - Write mac address to the device control BAR 906 * @nn: NFP Net device to reconfigure 907 * @addr: MAC address to write 908 * 909 * Writes the MAC address from the netdev to the device control BAR. Does not 910 * perform the required reconfig. We do a bit of byte swapping dance because 911 * firmware is LE. 912 */ 913 static void nfp_net_write_mac_addr(struct nfp_net *nn, const u8 *addr) 914 { 915 nn_writel(nn, NFP_NET_CFG_MACADDR + 0, get_unaligned_be32(addr)); 916 nn_writew(nn, NFP_NET_CFG_MACADDR + 6, get_unaligned_be16(addr + 4)); 917 } 918 919 /** 920 * nfp_net_clear_config_and_disable() - Clear control BAR and disable NFP 921 * @nn: NFP Net device to reconfigure 922 * 923 * Warning: must be fully idempotent. 924 */ 925 static void nfp_net_clear_config_and_disable(struct nfp_net *nn) 926 { 927 u32 new_ctrl, new_ctrl_w1, update; 928 unsigned int r; 929 int err; 930 931 new_ctrl = nn->dp.ctrl; 932 new_ctrl &= ~NFP_NET_CFG_CTRL_ENABLE; 933 update = NFP_NET_CFG_UPDATE_GEN; 934 update |= NFP_NET_CFG_UPDATE_MSIX; 935 update |= NFP_NET_CFG_UPDATE_RING; 936 937 if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG) 938 new_ctrl &= ~NFP_NET_CFG_CTRL_RINGCFG; 939 940 if (!(nn->cap_w1 & NFP_NET_CFG_CTRL_FREELIST_EN)) { 941 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0); 942 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0); 943 } 944 945 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 946 err = nfp_net_reconfig(nn, update); 947 if (err) 948 nn_err(nn, "Could not disable device: %d\n", err); 949 950 if (nn->cap_w1 & NFP_NET_CFG_CTRL_FREELIST_EN) { 951 new_ctrl_w1 = nn->dp.ctrl_w1; 952 new_ctrl_w1 &= ~NFP_NET_CFG_CTRL_FREELIST_EN; 953 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0); 954 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0); 955 956 nn_writel(nn, NFP_NET_CFG_CTRL_WORD1, new_ctrl_w1); 957 err = nfp_net_reconfig(nn, update); 958 if (err) 959 nn_err(nn, "Could not disable FREELIST_EN: %d\n", err); 960 nn->dp.ctrl_w1 = new_ctrl_w1; 961 } 962 963 for (r = 0; r < nn->dp.num_rx_rings; r++) { 964 nfp_net_rx_ring_reset(&nn->dp.rx_rings[r]); 965 if (nfp_net_has_xsk_pool_slow(&nn->dp, nn->dp.rx_rings[r].idx)) 966 nfp_net_xsk_rx_bufs_free(&nn->dp.rx_rings[r]); 967 } 968 for (r = 0; r < nn->dp.num_tx_rings; r++) 969 nfp_net_tx_ring_reset(&nn->dp, &nn->dp.tx_rings[r]); 970 for (r = 0; r < nn->dp.num_r_vecs; r++) 971 nfp_net_vec_clear_ring_data(nn, r); 972 973 nn->dp.ctrl = new_ctrl; 974 } 975 976 /** 977 * nfp_net_set_config_and_enable() - Write control BAR and enable NFP 978 * @nn: NFP Net device to reconfigure 979 */ 980 static int nfp_net_set_config_and_enable(struct nfp_net *nn) 981 { 982 u32 bufsz, new_ctrl, new_ctrl_w1, update = 0; 983 unsigned int r; 984 int err; 985 986 new_ctrl = nn->dp.ctrl; 987 new_ctrl_w1 = nn->dp.ctrl_w1; 988 989 if (nn->dp.ctrl & NFP_NET_CFG_CTRL_RSS_ANY) { 990 nfp_net_rss_write_key(nn); 991 nfp_net_rss_write_itbl(nn); 992 nn_writel(nn, NFP_NET_CFG_RSS_CTRL, nn->rss_cfg); 993 update |= NFP_NET_CFG_UPDATE_RSS; 994 } 995 996 if (nn->dp.ctrl & NFP_NET_CFG_CTRL_IRQMOD) { 997 nfp_net_coalesce_write_cfg(nn); 998 update |= NFP_NET_CFG_UPDATE_IRQMOD; 999 } 1000 1001 for (r = 0; r < nn->dp.num_tx_rings; r++) 1002 nfp_net_tx_ring_hw_cfg_write(nn, &nn->dp.tx_rings[r], r); 1003 for (r = 0; r < nn->dp.num_rx_rings; r++) 1004 nfp_net_rx_ring_hw_cfg_write(nn, &nn->dp.rx_rings[r], r); 1005 1006 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 1007 U64_MAX >> (64 - nn->dp.num_tx_rings)); 1008 1009 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 1010 U64_MAX >> (64 - nn->dp.num_rx_rings)); 1011 1012 if (nn->dp.netdev) 1013 nfp_net_write_mac_addr(nn, nn->dp.netdev->dev_addr); 1014 1015 nn_writel(nn, NFP_NET_CFG_MTU, nn->dp.mtu); 1016 1017 bufsz = nn->dp.fl_bufsz - nn->dp.rx_dma_off - NFP_NET_RX_BUF_NON_DATA; 1018 nn_writel(nn, NFP_NET_CFG_FLBUFSZ, bufsz); 1019 1020 /* Enable device 1021 * Step 1: Replace the CTRL_ENABLE by NFP_NET_CFG_CTRL_FREELIST_EN if 1022 * FREELIST_EN exits. 1023 */ 1024 if (nn->cap_w1 & NFP_NET_CFG_CTRL_FREELIST_EN) 1025 new_ctrl_w1 |= NFP_NET_CFG_CTRL_FREELIST_EN; 1026 else 1027 new_ctrl |= NFP_NET_CFG_CTRL_ENABLE; 1028 update |= NFP_NET_CFG_UPDATE_GEN; 1029 update |= NFP_NET_CFG_UPDATE_MSIX; 1030 update |= NFP_NET_CFG_UPDATE_RING; 1031 if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG) 1032 new_ctrl |= NFP_NET_CFG_CTRL_RINGCFG; 1033 1034 /* Step 2: Send the configuration and write the freelist. 1035 * - The freelist only need to be written once. 1036 */ 1037 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 1038 nn_writel(nn, NFP_NET_CFG_CTRL_WORD1, new_ctrl_w1); 1039 err = nfp_net_reconfig(nn, update); 1040 if (err) { 1041 nfp_net_clear_config_and_disable(nn); 1042 return err; 1043 } 1044 1045 nn->dp.ctrl = new_ctrl; 1046 nn->dp.ctrl_w1 = new_ctrl_w1; 1047 1048 for (r = 0; r < nn->dp.num_rx_rings; r++) 1049 nfp_net_rx_ring_fill_freelist(&nn->dp, &nn->dp.rx_rings[r]); 1050 1051 /* Step 3: Do the NFP_NET_CFG_CTRL_ENABLE. Send the configuration. 1052 */ 1053 if (nn->cap_w1 & NFP_NET_CFG_CTRL_FREELIST_EN) { 1054 new_ctrl |= NFP_NET_CFG_CTRL_ENABLE; 1055 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 1056 1057 err = nfp_net_reconfig(nn, update); 1058 if (err) { 1059 nfp_net_clear_config_and_disable(nn); 1060 return err; 1061 } 1062 nn->dp.ctrl = new_ctrl; 1063 } 1064 1065 return 0; 1066 } 1067 1068 /** 1069 * nfp_net_close_stack() - Quiesce the stack (part of close) 1070 * @nn: NFP Net device to reconfigure 1071 */ 1072 static void nfp_net_close_stack(struct nfp_net *nn) 1073 { 1074 struct nfp_net_r_vector *r_vec; 1075 unsigned int r; 1076 1077 disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector); 1078 netif_carrier_off(nn->dp.netdev); 1079 nn->link_up = false; 1080 1081 for (r = 0; r < nn->dp.num_r_vecs; r++) { 1082 r_vec = &nn->r_vecs[r]; 1083 1084 disable_irq(r_vec->irq_vector); 1085 napi_disable(&r_vec->napi); 1086 1087 if (r_vec->rx_ring) 1088 cancel_work_sync(&r_vec->rx_dim.work); 1089 1090 if (r_vec->tx_ring) 1091 cancel_work_sync(&r_vec->tx_dim.work); 1092 } 1093 1094 netif_tx_disable(nn->dp.netdev); 1095 } 1096 1097 /** 1098 * nfp_net_close_free_all() - Free all runtime resources 1099 * @nn: NFP Net device to reconfigure 1100 */ 1101 static void nfp_net_close_free_all(struct nfp_net *nn) 1102 { 1103 unsigned int r; 1104 1105 nfp_net_tx_rings_free(&nn->dp); 1106 nfp_net_rx_rings_free(&nn->dp); 1107 1108 for (r = 0; r < nn->dp.num_r_vecs; r++) 1109 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); 1110 1111 nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX); 1112 nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX); 1113 } 1114 1115 /** 1116 * nfp_net_netdev_close() - Called when the device is downed 1117 * @netdev: netdev structure 1118 */ 1119 static int nfp_net_netdev_close(struct net_device *netdev) 1120 { 1121 struct nfp_net *nn = netdev_priv(netdev); 1122 1123 /* Step 1: Disable RX and TX rings from the Linux kernel perspective 1124 */ 1125 nfp_net_close_stack(nn); 1126 1127 /* Step 2: Tell NFP 1128 */ 1129 if (nn->cap_w1 & NFP_NET_CFG_CTRL_MCAST_FILTER) 1130 __dev_mc_unsync(netdev, nfp_net_mc_unsync); 1131 1132 nfp_net_clear_config_and_disable(nn); 1133 nfp_port_configure(netdev, false); 1134 1135 /* Step 3: Free resources 1136 */ 1137 nfp_net_close_free_all(nn); 1138 1139 nn_dbg(nn, "%s down", netdev->name); 1140 return 0; 1141 } 1142 1143 void nfp_ctrl_close(struct nfp_net *nn) 1144 { 1145 int r; 1146 1147 rtnl_lock(); 1148 1149 for (r = 0; r < nn->dp.num_r_vecs; r++) { 1150 disable_irq(nn->r_vecs[r].irq_vector); 1151 tasklet_disable(&nn->r_vecs[r].tasklet); 1152 } 1153 1154 nfp_net_clear_config_and_disable(nn); 1155 1156 nfp_net_close_free_all(nn); 1157 1158 rtnl_unlock(); 1159 } 1160 1161 static void nfp_net_rx_dim_work(struct work_struct *work) 1162 { 1163 struct nfp_net_r_vector *r_vec; 1164 unsigned int factor, value; 1165 struct dim_cq_moder moder; 1166 struct nfp_net *nn; 1167 struct dim *dim; 1168 1169 dim = container_of(work, struct dim, work); 1170 moder = net_dim_get_rx_moderation(dim->mode, dim->profile_ix); 1171 r_vec = container_of(dim, struct nfp_net_r_vector, rx_dim); 1172 nn = r_vec->nfp_net; 1173 1174 /* Compute factor used to convert coalesce '_usecs' parameters to 1175 * ME timestamp ticks. There are 16 ME clock cycles for each timestamp 1176 * count. 1177 */ 1178 factor = nn->tlv_caps.me_freq_mhz / 16; 1179 if (nfp_net_coalesce_para_check(factor * moder.usec) || 1180 nfp_net_coalesce_para_check(moder.pkts)) 1181 return; 1182 1183 /* copy RX interrupt coalesce parameters */ 1184 value = (moder.pkts << 16) | (factor * moder.usec); 1185 nn_writel(nn, NFP_NET_CFG_RXR_IRQ_MOD(r_vec->rx_ring->idx), value); 1186 (void)nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_IRQMOD); 1187 1188 dim->state = DIM_START_MEASURE; 1189 } 1190 1191 static void nfp_net_tx_dim_work(struct work_struct *work) 1192 { 1193 struct nfp_net_r_vector *r_vec; 1194 unsigned int factor, value; 1195 struct dim_cq_moder moder; 1196 struct nfp_net *nn; 1197 struct dim *dim; 1198 1199 dim = container_of(work, struct dim, work); 1200 moder = net_dim_get_tx_moderation(dim->mode, dim->profile_ix); 1201 r_vec = container_of(dim, struct nfp_net_r_vector, tx_dim); 1202 nn = r_vec->nfp_net; 1203 1204 /* Compute factor used to convert coalesce '_usecs' parameters to 1205 * ME timestamp ticks. There are 16 ME clock cycles for each timestamp 1206 * count. 1207 */ 1208 factor = nn->tlv_caps.me_freq_mhz / 16; 1209 if (nfp_net_coalesce_para_check(factor * moder.usec) || 1210 nfp_net_coalesce_para_check(moder.pkts)) 1211 return; 1212 1213 /* copy TX interrupt coalesce parameters */ 1214 value = (moder.pkts << 16) | (factor * moder.usec); 1215 nn_writel(nn, NFP_NET_CFG_TXR_IRQ_MOD(r_vec->tx_ring->idx), value); 1216 (void)nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_IRQMOD); 1217 1218 dim->state = DIM_START_MEASURE; 1219 } 1220 1221 /** 1222 * nfp_net_open_stack() - Start the device from stack's perspective 1223 * @nn: NFP Net device to reconfigure 1224 */ 1225 static void nfp_net_open_stack(struct nfp_net *nn) 1226 { 1227 struct nfp_net_r_vector *r_vec; 1228 unsigned int r; 1229 1230 for (r = 0; r < nn->dp.num_r_vecs; r++) { 1231 r_vec = &nn->r_vecs[r]; 1232 1233 if (r_vec->rx_ring) { 1234 INIT_WORK(&r_vec->rx_dim.work, nfp_net_rx_dim_work); 1235 r_vec->rx_dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 1236 } 1237 1238 if (r_vec->tx_ring) { 1239 INIT_WORK(&r_vec->tx_dim.work, nfp_net_tx_dim_work); 1240 r_vec->tx_dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 1241 } 1242 1243 napi_enable(&r_vec->napi); 1244 enable_irq(r_vec->irq_vector); 1245 } 1246 1247 netif_tx_wake_all_queues(nn->dp.netdev); 1248 1249 enable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector); 1250 nfp_net_read_link_status(nn); 1251 } 1252 1253 static int nfp_net_open_alloc_all(struct nfp_net *nn) 1254 { 1255 int err, r; 1256 1257 err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_EXN, "%s-exn", 1258 nn->exn_name, sizeof(nn->exn_name), 1259 NFP_NET_IRQ_EXN_IDX, nn->exn_handler); 1260 if (err) 1261 return err; 1262 err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_LSC, "%s-lsc", 1263 nn->lsc_name, sizeof(nn->lsc_name), 1264 NFP_NET_IRQ_LSC_IDX, nn->lsc_handler); 1265 if (err) 1266 goto err_free_exn; 1267 disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector); 1268 1269 for (r = 0; r < nn->dp.num_r_vecs; r++) { 1270 err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r); 1271 if (err) 1272 goto err_cleanup_vec_p; 1273 } 1274 1275 err = nfp_net_rx_rings_prepare(nn, &nn->dp); 1276 if (err) 1277 goto err_cleanup_vec; 1278 1279 err = nfp_net_tx_rings_prepare(nn, &nn->dp); 1280 if (err) 1281 goto err_free_rx_rings; 1282 1283 for (r = 0; r < nn->max_r_vecs; r++) 1284 nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r); 1285 1286 return 0; 1287 1288 err_free_rx_rings: 1289 nfp_net_rx_rings_free(&nn->dp); 1290 err_cleanup_vec: 1291 r = nn->dp.num_r_vecs; 1292 err_cleanup_vec_p: 1293 while (r--) 1294 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); 1295 nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX); 1296 err_free_exn: 1297 nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX); 1298 return err; 1299 } 1300 1301 static int nfp_net_netdev_open(struct net_device *netdev) 1302 { 1303 struct nfp_net *nn = netdev_priv(netdev); 1304 int err; 1305 1306 /* Step 1: Allocate resources for rings and the like 1307 * - Request interrupts 1308 * - Allocate RX and TX ring resources 1309 * - Setup initial RSS table 1310 */ 1311 err = nfp_net_open_alloc_all(nn); 1312 if (err) 1313 return err; 1314 1315 err = netif_set_real_num_tx_queues(netdev, nn->dp.num_stack_tx_rings); 1316 if (err) 1317 goto err_free_all; 1318 1319 err = netif_set_real_num_rx_queues(netdev, nn->dp.num_rx_rings); 1320 if (err) 1321 goto err_free_all; 1322 1323 /* Step 2: Configure the NFP 1324 * - Ifup the physical interface if it exists 1325 * - Enable rings from 0 to tx_rings/rx_rings - 1. 1326 * - Write MAC address (in case it changed) 1327 * - Set the MTU 1328 * - Set the Freelist buffer size 1329 * - Enable the FW 1330 */ 1331 err = nfp_port_configure(netdev, true); 1332 if (err) 1333 goto err_free_all; 1334 1335 err = nfp_net_set_config_and_enable(nn); 1336 if (err) 1337 goto err_port_disable; 1338 1339 /* Step 3: Enable for kernel 1340 * - put some freelist descriptors on each RX ring 1341 * - enable NAPI on each ring 1342 * - enable all TX queues 1343 * - set link state 1344 */ 1345 nfp_net_open_stack(nn); 1346 1347 return 0; 1348 1349 err_port_disable: 1350 nfp_port_configure(netdev, false); 1351 err_free_all: 1352 nfp_net_close_free_all(nn); 1353 return err; 1354 } 1355 1356 int nfp_ctrl_open(struct nfp_net *nn) 1357 { 1358 int err, r; 1359 1360 /* ring dumping depends on vNICs being opened/closed under rtnl */ 1361 rtnl_lock(); 1362 1363 err = nfp_net_open_alloc_all(nn); 1364 if (err) 1365 goto err_unlock; 1366 1367 err = nfp_net_set_config_and_enable(nn); 1368 if (err) 1369 goto err_free_all; 1370 1371 for (r = 0; r < nn->dp.num_r_vecs; r++) 1372 enable_irq(nn->r_vecs[r].irq_vector); 1373 1374 rtnl_unlock(); 1375 1376 return 0; 1377 1378 err_free_all: 1379 nfp_net_close_free_all(nn); 1380 err_unlock: 1381 rtnl_unlock(); 1382 return err; 1383 } 1384 1385 int nfp_net_sched_mbox_amsg_work(struct nfp_net *nn, u32 cmd, const void *data, size_t len, 1386 int (*cb)(struct nfp_net *, struct nfp_mbox_amsg_entry *)) 1387 { 1388 struct nfp_mbox_amsg_entry *entry; 1389 1390 entry = kmalloc(sizeof(*entry) + len, GFP_ATOMIC); 1391 if (!entry) 1392 return -ENOMEM; 1393 1394 memcpy(entry->msg, data, len); 1395 entry->cmd = cmd; 1396 entry->cfg = cb; 1397 1398 spin_lock_bh(&nn->mbox_amsg.lock); 1399 list_add_tail(&entry->list, &nn->mbox_amsg.list); 1400 spin_unlock_bh(&nn->mbox_amsg.lock); 1401 1402 schedule_work(&nn->mbox_amsg.work); 1403 1404 return 0; 1405 } 1406 1407 static void nfp_net_mbox_amsg_work(struct work_struct *work) 1408 { 1409 struct nfp_net *nn = container_of(work, struct nfp_net, mbox_amsg.work); 1410 struct nfp_mbox_amsg_entry *entry, *tmp; 1411 struct list_head tmp_list; 1412 1413 INIT_LIST_HEAD(&tmp_list); 1414 1415 spin_lock_bh(&nn->mbox_amsg.lock); 1416 list_splice_init(&nn->mbox_amsg.list, &tmp_list); 1417 spin_unlock_bh(&nn->mbox_amsg.lock); 1418 1419 list_for_each_entry_safe(entry, tmp, &tmp_list, list) { 1420 int err = entry->cfg(nn, entry); 1421 1422 if (err) 1423 nn_err(nn, "Config cmd %d to HW failed %d.\n", entry->cmd, err); 1424 1425 list_del(&entry->list); 1426 kfree(entry); 1427 } 1428 } 1429 1430 static int nfp_net_mc_cfg(struct nfp_net *nn, struct nfp_mbox_amsg_entry *entry) 1431 { 1432 unsigned char *addr = entry->msg; 1433 int ret; 1434 1435 ret = nfp_net_mbox_lock(nn, NFP_NET_CFG_MULTICAST_SZ); 1436 if (ret) 1437 return ret; 1438 1439 nn_writel(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_MULTICAST_MAC_HI, 1440 get_unaligned_be32(addr)); 1441 nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_MULTICAST_MAC_LO, 1442 get_unaligned_be16(addr + 4)); 1443 1444 return nfp_net_mbox_reconfig_and_unlock(nn, entry->cmd); 1445 } 1446 1447 static int nfp_net_mc_sync(struct net_device *netdev, const unsigned char *addr) 1448 { 1449 struct nfp_net *nn = netdev_priv(netdev); 1450 1451 if (netdev_mc_count(netdev) > NFP_NET_CFG_MAC_MC_MAX) { 1452 nn_err(nn, "Requested number of MC addresses (%d) exceeds maximum (%d).\n", 1453 netdev_mc_count(netdev), NFP_NET_CFG_MAC_MC_MAX); 1454 return -EINVAL; 1455 } 1456 1457 return nfp_net_sched_mbox_amsg_work(nn, NFP_NET_CFG_MBOX_CMD_MULTICAST_ADD, addr, 1458 NFP_NET_CFG_MULTICAST_SZ, nfp_net_mc_cfg); 1459 } 1460 1461 static int nfp_net_mc_unsync(struct net_device *netdev, const unsigned char *addr) 1462 { 1463 struct nfp_net *nn = netdev_priv(netdev); 1464 1465 return nfp_net_sched_mbox_amsg_work(nn, NFP_NET_CFG_MBOX_CMD_MULTICAST_DEL, addr, 1466 NFP_NET_CFG_MULTICAST_SZ, nfp_net_mc_cfg); 1467 } 1468 1469 static void nfp_net_set_rx_mode(struct net_device *netdev) 1470 { 1471 struct nfp_net *nn = netdev_priv(netdev); 1472 u32 new_ctrl, new_ctrl_w1; 1473 1474 new_ctrl = nn->dp.ctrl; 1475 new_ctrl_w1 = nn->dp.ctrl_w1; 1476 1477 if (!netdev_mc_empty(netdev) || netdev->flags & IFF_ALLMULTI) 1478 new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_L2MC; 1479 else 1480 new_ctrl &= ~NFP_NET_CFG_CTRL_L2MC; 1481 1482 if (netdev->flags & IFF_ALLMULTI) 1483 new_ctrl_w1 &= ~NFP_NET_CFG_CTRL_MCAST_FILTER; 1484 else 1485 new_ctrl_w1 |= nn->cap_w1 & NFP_NET_CFG_CTRL_MCAST_FILTER; 1486 1487 if (netdev->flags & IFF_PROMISC) { 1488 if (nn->cap & NFP_NET_CFG_CTRL_PROMISC) 1489 new_ctrl |= NFP_NET_CFG_CTRL_PROMISC; 1490 else 1491 nn_warn(nn, "FW does not support promiscuous mode\n"); 1492 } else { 1493 new_ctrl &= ~NFP_NET_CFG_CTRL_PROMISC; 1494 } 1495 1496 if ((nn->cap_w1 & NFP_NET_CFG_CTRL_MCAST_FILTER) && 1497 __dev_mc_sync(netdev, nfp_net_mc_sync, nfp_net_mc_unsync)) 1498 netdev_err(netdev, "Sync mc address failed\n"); 1499 1500 if (new_ctrl == nn->dp.ctrl && new_ctrl_w1 == nn->dp.ctrl_w1) 1501 return; 1502 1503 if (new_ctrl != nn->dp.ctrl) 1504 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 1505 if (new_ctrl_w1 != nn->dp.ctrl_w1) 1506 nn_writel(nn, NFP_NET_CFG_CTRL_WORD1, new_ctrl_w1); 1507 nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_GEN); 1508 1509 nn->dp.ctrl = new_ctrl; 1510 nn->dp.ctrl_w1 = new_ctrl_w1; 1511 } 1512 1513 static void nfp_net_rss_init_itbl(struct nfp_net *nn) 1514 { 1515 int i; 1516 1517 for (i = 0; i < sizeof(nn->rss_itbl); i++) 1518 nn->rss_itbl[i] = 1519 ethtool_rxfh_indir_default(i, nn->dp.num_rx_rings); 1520 } 1521 1522 static void nfp_net_dp_swap(struct nfp_net *nn, struct nfp_net_dp *dp) 1523 { 1524 struct nfp_net_dp new_dp = *dp; 1525 1526 *dp = nn->dp; 1527 nn->dp = new_dp; 1528 1529 nn->dp.netdev->mtu = new_dp.mtu; 1530 1531 if (!netif_is_rxfh_configured(nn->dp.netdev)) 1532 nfp_net_rss_init_itbl(nn); 1533 } 1534 1535 static int nfp_net_dp_swap_enable(struct nfp_net *nn, struct nfp_net_dp *dp) 1536 { 1537 unsigned int r; 1538 int err; 1539 1540 nfp_net_dp_swap(nn, dp); 1541 1542 for (r = 0; r < nn->max_r_vecs; r++) 1543 nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r); 1544 1545 err = netif_set_real_num_queues(nn->dp.netdev, 1546 nn->dp.num_stack_tx_rings, 1547 nn->dp.num_rx_rings); 1548 if (err) 1549 return err; 1550 1551 return nfp_net_set_config_and_enable(nn); 1552 } 1553 1554 struct nfp_net_dp *nfp_net_clone_dp(struct nfp_net *nn) 1555 { 1556 struct nfp_net_dp *new; 1557 1558 new = kmalloc(sizeof(*new), GFP_KERNEL); 1559 if (!new) 1560 return NULL; 1561 1562 *new = nn->dp; 1563 1564 new->xsk_pools = kmemdup(new->xsk_pools, 1565 array_size(nn->max_r_vecs, 1566 sizeof(new->xsk_pools)), 1567 GFP_KERNEL); 1568 if (!new->xsk_pools) { 1569 kfree(new); 1570 return NULL; 1571 } 1572 1573 /* Clear things which need to be recomputed */ 1574 new->fl_bufsz = 0; 1575 new->tx_rings = NULL; 1576 new->rx_rings = NULL; 1577 new->num_r_vecs = 0; 1578 new->num_stack_tx_rings = 0; 1579 new->txrwb = NULL; 1580 new->txrwb_dma = 0; 1581 1582 return new; 1583 } 1584 1585 static void nfp_net_free_dp(struct nfp_net_dp *dp) 1586 { 1587 kfree(dp->xsk_pools); 1588 kfree(dp); 1589 } 1590 1591 static int 1592 nfp_net_check_config(struct nfp_net *nn, struct nfp_net_dp *dp, 1593 struct netlink_ext_ack *extack) 1594 { 1595 unsigned int r, xsk_min_fl_bufsz; 1596 1597 /* XDP-enabled tests */ 1598 if (!dp->xdp_prog) 1599 return 0; 1600 if (dp->fl_bufsz > PAGE_SIZE) { 1601 NL_SET_ERR_MSG_MOD(extack, "MTU too large w/ XDP enabled"); 1602 return -EINVAL; 1603 } 1604 if (dp->num_tx_rings > nn->max_tx_rings) { 1605 NL_SET_ERR_MSG_MOD(extack, "Insufficient number of TX rings w/ XDP enabled"); 1606 return -EINVAL; 1607 } 1608 1609 xsk_min_fl_bufsz = nfp_net_calc_fl_bufsz_xsk(dp); 1610 for (r = 0; r < nn->max_r_vecs; r++) { 1611 if (!dp->xsk_pools[r]) 1612 continue; 1613 1614 if (xsk_pool_get_rx_frame_size(dp->xsk_pools[r]) < xsk_min_fl_bufsz) { 1615 NL_SET_ERR_MSG_MOD(extack, 1616 "XSK buffer pool chunk size too small"); 1617 return -EINVAL; 1618 } 1619 } 1620 1621 return 0; 1622 } 1623 1624 int nfp_net_ring_reconfig(struct nfp_net *nn, struct nfp_net_dp *dp, 1625 struct netlink_ext_ack *extack) 1626 { 1627 int r, err; 1628 1629 dp->fl_bufsz = nfp_net_calc_fl_bufsz(dp); 1630 1631 dp->num_stack_tx_rings = dp->num_tx_rings; 1632 if (dp->xdp_prog) 1633 dp->num_stack_tx_rings -= dp->num_rx_rings; 1634 1635 dp->num_r_vecs = max(dp->num_rx_rings, dp->num_stack_tx_rings); 1636 1637 err = nfp_net_check_config(nn, dp, extack); 1638 if (err) 1639 goto exit_free_dp; 1640 1641 if (!netif_running(dp->netdev)) { 1642 nfp_net_dp_swap(nn, dp); 1643 err = 0; 1644 goto exit_free_dp; 1645 } 1646 1647 /* Prepare new rings */ 1648 for (r = nn->dp.num_r_vecs; r < dp->num_r_vecs; r++) { 1649 err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r); 1650 if (err) { 1651 dp->num_r_vecs = r; 1652 goto err_cleanup_vecs; 1653 } 1654 } 1655 1656 err = nfp_net_rx_rings_prepare(nn, dp); 1657 if (err) 1658 goto err_cleanup_vecs; 1659 1660 err = nfp_net_tx_rings_prepare(nn, dp); 1661 if (err) 1662 goto err_free_rx; 1663 1664 /* Stop device, swap in new rings, try to start the firmware */ 1665 nfp_net_close_stack(nn); 1666 nfp_net_clear_config_and_disable(nn); 1667 1668 err = nfp_net_dp_swap_enable(nn, dp); 1669 if (err) { 1670 int err2; 1671 1672 nfp_net_clear_config_and_disable(nn); 1673 1674 /* Try with old configuration and old rings */ 1675 err2 = nfp_net_dp_swap_enable(nn, dp); 1676 if (err2) 1677 nn_err(nn, "Can't restore ring config - FW communication failed (%d,%d)\n", 1678 err, err2); 1679 } 1680 for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--) 1681 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); 1682 1683 nfp_net_rx_rings_free(dp); 1684 nfp_net_tx_rings_free(dp); 1685 1686 nfp_net_open_stack(nn); 1687 exit_free_dp: 1688 nfp_net_free_dp(dp); 1689 1690 return err; 1691 1692 err_free_rx: 1693 nfp_net_rx_rings_free(dp); 1694 err_cleanup_vecs: 1695 for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--) 1696 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); 1697 nfp_net_free_dp(dp); 1698 return err; 1699 } 1700 1701 static int nfp_net_change_mtu(struct net_device *netdev, int new_mtu) 1702 { 1703 struct nfp_net *nn = netdev_priv(netdev); 1704 struct nfp_net_dp *dp; 1705 int err; 1706 1707 err = nfp_app_check_mtu(nn->app, netdev, new_mtu); 1708 if (err) 1709 return err; 1710 1711 dp = nfp_net_clone_dp(nn); 1712 if (!dp) 1713 return -ENOMEM; 1714 1715 dp->mtu = new_mtu; 1716 1717 return nfp_net_ring_reconfig(nn, dp, NULL); 1718 } 1719 1720 static int 1721 nfp_net_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) 1722 { 1723 const u32 cmd = NFP_NET_CFG_MBOX_CMD_CTAG_FILTER_ADD; 1724 struct nfp_net *nn = netdev_priv(netdev); 1725 int err; 1726 1727 /* Priority tagged packets with vlan id 0 are processed by the 1728 * NFP as untagged packets 1729 */ 1730 if (!vid) 1731 return 0; 1732 1733 err = nfp_net_mbox_lock(nn, NFP_NET_CFG_VLAN_FILTER_SZ); 1734 if (err) 1735 return err; 1736 1737 nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_VID, vid); 1738 nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_PROTO, 1739 ETH_P_8021Q); 1740 1741 return nfp_net_mbox_reconfig_and_unlock(nn, cmd); 1742 } 1743 1744 static int 1745 nfp_net_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) 1746 { 1747 const u32 cmd = NFP_NET_CFG_MBOX_CMD_CTAG_FILTER_KILL; 1748 struct nfp_net *nn = netdev_priv(netdev); 1749 int err; 1750 1751 /* Priority tagged packets with vlan id 0 are processed by the 1752 * NFP as untagged packets 1753 */ 1754 if (!vid) 1755 return 0; 1756 1757 err = nfp_net_mbox_lock(nn, NFP_NET_CFG_VLAN_FILTER_SZ); 1758 if (err) 1759 return err; 1760 1761 nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_VID, vid); 1762 nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_PROTO, 1763 ETH_P_8021Q); 1764 1765 return nfp_net_mbox_reconfig_and_unlock(nn, cmd); 1766 } 1767 1768 static void 1769 nfp_net_fs_fill_v4(struct nfp_net *nn, struct nfp_fs_entry *entry, u32 op, u32 *addr) 1770 { 1771 unsigned int i; 1772 1773 union { 1774 struct { 1775 __be16 loc; 1776 u8 k_proto, m_proto; 1777 __be32 k_sip, m_sip, k_dip, m_dip; 1778 __be16 k_sport, m_sport, k_dport, m_dport; 1779 }; 1780 __be32 val[7]; 1781 } v4_rule; 1782 1783 nn_writel(nn, *addr, op); 1784 *addr += sizeof(u32); 1785 1786 v4_rule.loc = cpu_to_be16(entry->loc); 1787 v4_rule.k_proto = entry->key.l4_proto; 1788 v4_rule.m_proto = entry->msk.l4_proto; 1789 v4_rule.k_sip = entry->key.sip4; 1790 v4_rule.m_sip = entry->msk.sip4; 1791 v4_rule.k_dip = entry->key.dip4; 1792 v4_rule.m_dip = entry->msk.dip4; 1793 v4_rule.k_sport = entry->key.sport; 1794 v4_rule.m_sport = entry->msk.sport; 1795 v4_rule.k_dport = entry->key.dport; 1796 v4_rule.m_dport = entry->msk.dport; 1797 1798 for (i = 0; i < ARRAY_SIZE(v4_rule.val); i++, *addr += sizeof(__be32)) 1799 nn_writel(nn, *addr, be32_to_cpu(v4_rule.val[i])); 1800 } 1801 1802 static void 1803 nfp_net_fs_fill_v6(struct nfp_net *nn, struct nfp_fs_entry *entry, u32 op, u32 *addr) 1804 { 1805 unsigned int i; 1806 1807 union { 1808 struct { 1809 __be16 loc; 1810 u8 k_proto, m_proto; 1811 __be32 k_sip[4], m_sip[4], k_dip[4], m_dip[4]; 1812 __be16 k_sport, m_sport, k_dport, m_dport; 1813 }; 1814 __be32 val[19]; 1815 } v6_rule; 1816 1817 nn_writel(nn, *addr, op); 1818 *addr += sizeof(u32); 1819 1820 v6_rule.loc = cpu_to_be16(entry->loc); 1821 v6_rule.k_proto = entry->key.l4_proto; 1822 v6_rule.m_proto = entry->msk.l4_proto; 1823 for (i = 0; i < 4; i++) { 1824 v6_rule.k_sip[i] = entry->key.sip6[i]; 1825 v6_rule.m_sip[i] = entry->msk.sip6[i]; 1826 v6_rule.k_dip[i] = entry->key.dip6[i]; 1827 v6_rule.m_dip[i] = entry->msk.dip6[i]; 1828 } 1829 v6_rule.k_sport = entry->key.sport; 1830 v6_rule.m_sport = entry->msk.sport; 1831 v6_rule.k_dport = entry->key.dport; 1832 v6_rule.m_dport = entry->msk.dport; 1833 1834 for (i = 0; i < ARRAY_SIZE(v6_rule.val); i++, *addr += sizeof(__be32)) 1835 nn_writel(nn, *addr, be32_to_cpu(v6_rule.val[i])); 1836 } 1837 1838 #define NFP_FS_QUEUE_ID GENMASK(22, 16) 1839 #define NFP_FS_ACT GENMASK(15, 0) 1840 #define NFP_FS_ACT_DROP BIT(0) 1841 #define NFP_FS_ACT_Q BIT(1) 1842 static void 1843 nfp_net_fs_fill_act(struct nfp_net *nn, struct nfp_fs_entry *entry, u32 addr) 1844 { 1845 u32 action = 0; /* 0 means default passthrough */ 1846 1847 if (entry->action == RX_CLS_FLOW_DISC) 1848 action = NFP_FS_ACT_DROP; 1849 else if (!(entry->flow_type & FLOW_RSS)) 1850 action = FIELD_PREP(NFP_FS_QUEUE_ID, entry->action) | NFP_FS_ACT_Q; 1851 1852 nn_writel(nn, addr, action); 1853 } 1854 1855 int nfp_net_fs_add_hw(struct nfp_net *nn, struct nfp_fs_entry *entry) 1856 { 1857 u32 addr = nn->tlv_caps.mbox_off + NFP_NET_CFG_MBOX_SIMPLE_VAL; 1858 int err; 1859 1860 err = nfp_net_mbox_lock(nn, NFP_NET_CFG_FS_SZ); 1861 if (err) 1862 return err; 1863 1864 switch (entry->flow_type & ~FLOW_RSS) { 1865 case TCP_V4_FLOW: 1866 case UDP_V4_FLOW: 1867 case SCTP_V4_FLOW: 1868 case IPV4_USER_FLOW: 1869 nfp_net_fs_fill_v4(nn, entry, NFP_NET_CFG_MBOX_CMD_FS_ADD_V4, &addr); 1870 break; 1871 case TCP_V6_FLOW: 1872 case UDP_V6_FLOW: 1873 case SCTP_V6_FLOW: 1874 case IPV6_USER_FLOW: 1875 nfp_net_fs_fill_v6(nn, entry, NFP_NET_CFG_MBOX_CMD_FS_ADD_V6, &addr); 1876 break; 1877 case ETHER_FLOW: 1878 nn_writel(nn, addr, NFP_NET_CFG_MBOX_CMD_FS_ADD_ETHTYPE); 1879 addr += sizeof(u32); 1880 nn_writew(nn, addr, be16_to_cpu(entry->key.l3_proto)); 1881 addr += sizeof(u32); 1882 break; 1883 } 1884 1885 nfp_net_fs_fill_act(nn, entry, addr); 1886 1887 err = nfp_net_mbox_reconfig_and_unlock(nn, NFP_NET_CFG_MBOX_CMD_FLOW_STEER); 1888 if (err) { 1889 nn_err(nn, "Add new fs rule failed with %d\n", err); 1890 return -EIO; 1891 } 1892 1893 return 0; 1894 } 1895 1896 int nfp_net_fs_del_hw(struct nfp_net *nn, struct nfp_fs_entry *entry) 1897 { 1898 u32 addr = nn->tlv_caps.mbox_off + NFP_NET_CFG_MBOX_SIMPLE_VAL; 1899 int err; 1900 1901 err = nfp_net_mbox_lock(nn, NFP_NET_CFG_FS_SZ); 1902 if (err) 1903 return err; 1904 1905 switch (entry->flow_type & ~FLOW_RSS) { 1906 case TCP_V4_FLOW: 1907 case UDP_V4_FLOW: 1908 case SCTP_V4_FLOW: 1909 case IPV4_USER_FLOW: 1910 nfp_net_fs_fill_v4(nn, entry, NFP_NET_CFG_MBOX_CMD_FS_DEL_V4, &addr); 1911 break; 1912 case TCP_V6_FLOW: 1913 case UDP_V6_FLOW: 1914 case SCTP_V6_FLOW: 1915 case IPV6_USER_FLOW: 1916 nfp_net_fs_fill_v6(nn, entry, NFP_NET_CFG_MBOX_CMD_FS_DEL_V6, &addr); 1917 break; 1918 case ETHER_FLOW: 1919 nn_writel(nn, addr, NFP_NET_CFG_MBOX_CMD_FS_DEL_ETHTYPE); 1920 addr += sizeof(u32); 1921 nn_writew(nn, addr, be16_to_cpu(entry->key.l3_proto)); 1922 addr += sizeof(u32); 1923 break; 1924 } 1925 1926 nfp_net_fs_fill_act(nn, entry, addr); 1927 1928 err = nfp_net_mbox_reconfig_and_unlock(nn, NFP_NET_CFG_MBOX_CMD_FLOW_STEER); 1929 if (err) { 1930 nn_err(nn, "Delete fs rule failed with %d\n", err); 1931 return -EIO; 1932 } 1933 1934 return 0; 1935 } 1936 1937 static void nfp_net_fs_clean(struct nfp_net *nn) 1938 { 1939 struct nfp_fs_entry *entry, *tmp; 1940 1941 list_for_each_entry_safe(entry, tmp, &nn->fs.list, node) { 1942 nfp_net_fs_del_hw(nn, entry); 1943 list_del(&entry->node); 1944 kfree(entry); 1945 } 1946 } 1947 1948 static void nfp_net_stat64(struct net_device *netdev, 1949 struct rtnl_link_stats64 *stats) 1950 { 1951 struct nfp_net *nn = netdev_priv(netdev); 1952 int r; 1953 1954 /* Collect software stats */ 1955 for (r = 0; r < nn->max_r_vecs; r++) { 1956 struct nfp_net_r_vector *r_vec = &nn->r_vecs[r]; 1957 u64 data[3]; 1958 unsigned int start; 1959 1960 do { 1961 start = u64_stats_fetch_begin(&r_vec->rx_sync); 1962 data[0] = r_vec->rx_pkts; 1963 data[1] = r_vec->rx_bytes; 1964 data[2] = r_vec->rx_drops; 1965 } while (u64_stats_fetch_retry(&r_vec->rx_sync, start)); 1966 stats->rx_packets += data[0]; 1967 stats->rx_bytes += data[1]; 1968 stats->rx_dropped += data[2]; 1969 1970 do { 1971 start = u64_stats_fetch_begin(&r_vec->tx_sync); 1972 data[0] = r_vec->tx_pkts; 1973 data[1] = r_vec->tx_bytes; 1974 data[2] = r_vec->tx_errors; 1975 } while (u64_stats_fetch_retry(&r_vec->tx_sync, start)); 1976 stats->tx_packets += data[0]; 1977 stats->tx_bytes += data[1]; 1978 stats->tx_errors += data[2]; 1979 } 1980 1981 /* Add in device stats */ 1982 stats->multicast += nn_readq(nn, NFP_NET_CFG_STATS_RX_MC_FRAMES); 1983 stats->rx_dropped += nn_readq(nn, NFP_NET_CFG_STATS_RX_DISCARDS); 1984 stats->rx_errors += nn_readq(nn, NFP_NET_CFG_STATS_RX_ERRORS); 1985 1986 stats->tx_dropped += nn_readq(nn, NFP_NET_CFG_STATS_TX_DISCARDS); 1987 stats->tx_errors += nn_readq(nn, NFP_NET_CFG_STATS_TX_ERRORS); 1988 } 1989 1990 static int nfp_net_set_features(struct net_device *netdev, 1991 netdev_features_t features) 1992 { 1993 netdev_features_t changed = netdev->features ^ features; 1994 struct nfp_net *nn = netdev_priv(netdev); 1995 u32 new_ctrl; 1996 int err; 1997 1998 /* Assume this is not called with features we have not advertised */ 1999 2000 new_ctrl = nn->dp.ctrl; 2001 2002 if (changed & NETIF_F_RXCSUM) { 2003 if (features & NETIF_F_RXCSUM) 2004 new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY; 2005 else 2006 new_ctrl &= ~NFP_NET_CFG_CTRL_RXCSUM_ANY; 2007 } 2008 2009 if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) { 2010 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) 2011 new_ctrl |= NFP_NET_CFG_CTRL_TXCSUM; 2012 else 2013 new_ctrl &= ~NFP_NET_CFG_CTRL_TXCSUM; 2014 } 2015 2016 if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) { 2017 if (features & (NETIF_F_TSO | NETIF_F_TSO6)) 2018 new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_LSO2 ?: 2019 NFP_NET_CFG_CTRL_LSO; 2020 else 2021 new_ctrl &= ~NFP_NET_CFG_CTRL_LSO_ANY; 2022 } 2023 2024 if (changed & NETIF_F_HW_VLAN_CTAG_RX) { 2025 if (features & NETIF_F_HW_VLAN_CTAG_RX) 2026 new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXVLAN_V2 ?: 2027 NFP_NET_CFG_CTRL_RXVLAN; 2028 else 2029 new_ctrl &= ~NFP_NET_CFG_CTRL_RXVLAN_ANY; 2030 } 2031 2032 if (changed & NETIF_F_HW_VLAN_CTAG_TX) { 2033 if (features & NETIF_F_HW_VLAN_CTAG_TX) 2034 new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_TXVLAN_V2 ?: 2035 NFP_NET_CFG_CTRL_TXVLAN; 2036 else 2037 new_ctrl &= ~NFP_NET_CFG_CTRL_TXVLAN_ANY; 2038 } 2039 2040 if (changed & NETIF_F_HW_VLAN_CTAG_FILTER) { 2041 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) 2042 new_ctrl |= NFP_NET_CFG_CTRL_CTAG_FILTER; 2043 else 2044 new_ctrl &= ~NFP_NET_CFG_CTRL_CTAG_FILTER; 2045 } 2046 2047 if (changed & NETIF_F_HW_VLAN_STAG_RX) { 2048 if (features & NETIF_F_HW_VLAN_STAG_RX) 2049 new_ctrl |= NFP_NET_CFG_CTRL_RXQINQ; 2050 else 2051 new_ctrl &= ~NFP_NET_CFG_CTRL_RXQINQ; 2052 } 2053 2054 if (changed & NETIF_F_SG) { 2055 if (features & NETIF_F_SG) 2056 new_ctrl |= NFP_NET_CFG_CTRL_GATHER; 2057 else 2058 new_ctrl &= ~NFP_NET_CFG_CTRL_GATHER; 2059 } 2060 2061 err = nfp_port_set_features(netdev, features); 2062 if (err) 2063 return err; 2064 2065 nn_dbg(nn, "Feature change 0x%llx -> 0x%llx (changed=0x%llx)\n", 2066 netdev->features, features, changed); 2067 2068 if (new_ctrl == nn->dp.ctrl) 2069 return 0; 2070 2071 nn_dbg(nn, "NIC ctrl: 0x%x -> 0x%x\n", nn->dp.ctrl, new_ctrl); 2072 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 2073 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_GEN); 2074 if (err) 2075 return err; 2076 2077 nn->dp.ctrl = new_ctrl; 2078 2079 return 0; 2080 } 2081 2082 static netdev_features_t 2083 nfp_net_fix_features(struct net_device *netdev, 2084 netdev_features_t features) 2085 { 2086 if ((features & NETIF_F_HW_VLAN_CTAG_RX) && 2087 (features & NETIF_F_HW_VLAN_STAG_RX)) { 2088 if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX) { 2089 features &= ~NETIF_F_HW_VLAN_CTAG_RX; 2090 netdev->wanted_features &= ~NETIF_F_HW_VLAN_CTAG_RX; 2091 netdev_warn(netdev, 2092 "S-tag and C-tag stripping can't be enabled at the same time. Enabling S-tag stripping and disabling C-tag stripping\n"); 2093 } else if (netdev->features & NETIF_F_HW_VLAN_STAG_RX) { 2094 features &= ~NETIF_F_HW_VLAN_STAG_RX; 2095 netdev->wanted_features &= ~NETIF_F_HW_VLAN_STAG_RX; 2096 netdev_warn(netdev, 2097 "S-tag and C-tag stripping can't be enabled at the same time. Enabling C-tag stripping and disabling S-tag stripping\n"); 2098 } 2099 } 2100 return features; 2101 } 2102 2103 static netdev_features_t 2104 nfp_net_features_check(struct sk_buff *skb, struct net_device *dev, 2105 netdev_features_t features) 2106 { 2107 u8 l4_hdr; 2108 2109 /* We can't do TSO over double tagged packets (802.1AD) */ 2110 features &= vlan_features_check(skb, features); 2111 2112 if (!skb->encapsulation) 2113 return features; 2114 2115 /* Ensure that inner L4 header offset fits into TX descriptor field */ 2116 if (skb_is_gso(skb)) { 2117 u32 hdrlen; 2118 2119 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) 2120 hdrlen = skb_inner_transport_offset(skb) + sizeof(struct udphdr); 2121 else 2122 hdrlen = skb_inner_tcp_all_headers(skb); 2123 2124 /* Assume worst case scenario of having longest possible 2125 * metadata prepend - 8B 2126 */ 2127 if (unlikely(hdrlen > NFP_NET_LSO_MAX_HDR_SZ - 8)) 2128 features &= ~NETIF_F_GSO_MASK; 2129 } 2130 2131 if (xfrm_offload(skb)) 2132 return features; 2133 2134 /* VXLAN/GRE check */ 2135 switch (vlan_get_protocol(skb)) { 2136 case htons(ETH_P_IP): 2137 l4_hdr = ip_hdr(skb)->protocol; 2138 break; 2139 case htons(ETH_P_IPV6): 2140 l4_hdr = ipv6_hdr(skb)->nexthdr; 2141 break; 2142 default: 2143 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 2144 } 2145 2146 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER || 2147 skb->inner_protocol != htons(ETH_P_TEB) || 2148 (l4_hdr != IPPROTO_UDP && l4_hdr != IPPROTO_GRE) || 2149 (l4_hdr == IPPROTO_UDP && 2150 (skb_inner_mac_header(skb) - skb_transport_header(skb) != 2151 sizeof(struct udphdr) + sizeof(struct vxlanhdr)))) 2152 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 2153 2154 return features; 2155 } 2156 2157 static int 2158 nfp_net_get_phys_port_name(struct net_device *netdev, char *name, size_t len) 2159 { 2160 struct nfp_net *nn = netdev_priv(netdev); 2161 int n; 2162 2163 /* If port is defined, devlink_port is registered and devlink core 2164 * is taking care of name formatting. 2165 */ 2166 if (nn->port) 2167 return -EOPNOTSUPP; 2168 2169 if (nn->dp.is_vf || nn->vnic_no_name) 2170 return -EOPNOTSUPP; 2171 2172 n = snprintf(name, len, "n%d", nn->id); 2173 if (n >= len) 2174 return -EINVAL; 2175 2176 return 0; 2177 } 2178 2179 static int nfp_net_xdp_setup_drv(struct nfp_net *nn, struct netdev_bpf *bpf) 2180 { 2181 struct bpf_prog *prog = bpf->prog; 2182 struct nfp_net_dp *dp; 2183 int err; 2184 2185 if (!prog == !nn->dp.xdp_prog) { 2186 WRITE_ONCE(nn->dp.xdp_prog, prog); 2187 xdp_attachment_setup(&nn->xdp, bpf); 2188 return 0; 2189 } 2190 2191 dp = nfp_net_clone_dp(nn); 2192 if (!dp) 2193 return -ENOMEM; 2194 2195 dp->xdp_prog = prog; 2196 dp->num_tx_rings += prog ? nn->dp.num_rx_rings : -nn->dp.num_rx_rings; 2197 dp->rx_dma_dir = prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE; 2198 dp->rx_dma_off = prog ? XDP_PACKET_HEADROOM - nn->dp.rx_offset : 0; 2199 2200 /* We need RX reconfig to remap the buffers (BIDIR vs FROM_DEV) */ 2201 err = nfp_net_ring_reconfig(nn, dp, bpf->extack); 2202 if (err) 2203 return err; 2204 2205 xdp_attachment_setup(&nn->xdp, bpf); 2206 return 0; 2207 } 2208 2209 static int nfp_net_xdp_setup_hw(struct nfp_net *nn, struct netdev_bpf *bpf) 2210 { 2211 int err; 2212 2213 err = nfp_app_xdp_offload(nn->app, nn, bpf->prog, bpf->extack); 2214 if (err) 2215 return err; 2216 2217 xdp_attachment_setup(&nn->xdp_hw, bpf); 2218 return 0; 2219 } 2220 2221 static int nfp_net_xdp(struct net_device *netdev, struct netdev_bpf *xdp) 2222 { 2223 struct nfp_net *nn = netdev_priv(netdev); 2224 2225 switch (xdp->command) { 2226 case XDP_SETUP_PROG: 2227 return nfp_net_xdp_setup_drv(nn, xdp); 2228 case XDP_SETUP_PROG_HW: 2229 return nfp_net_xdp_setup_hw(nn, xdp); 2230 case XDP_SETUP_XSK_POOL: 2231 return nfp_net_xsk_setup_pool(netdev, xdp->xsk.pool, 2232 xdp->xsk.queue_id); 2233 default: 2234 return nfp_app_bpf(nn->app, nn, xdp); 2235 } 2236 } 2237 2238 static int nfp_net_set_mac_address(struct net_device *netdev, void *addr) 2239 { 2240 struct nfp_net *nn = netdev_priv(netdev); 2241 struct sockaddr *saddr = addr; 2242 int err; 2243 2244 err = eth_prepare_mac_addr_change(netdev, addr); 2245 if (err) 2246 return err; 2247 2248 nfp_net_write_mac_addr(nn, saddr->sa_data); 2249 2250 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_MACADDR); 2251 if (err) 2252 return err; 2253 2254 eth_commit_mac_addr_change(netdev, addr); 2255 2256 return 0; 2257 } 2258 2259 static int nfp_net_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 2260 struct net_device *dev, u32 filter_mask, 2261 int nlflags) 2262 { 2263 struct nfp_net *nn = netdev_priv(dev); 2264 u16 mode; 2265 2266 if (!(nn->cap & NFP_NET_CFG_CTRL_VEPA)) 2267 return -EOPNOTSUPP; 2268 2269 mode = (nn->dp.ctrl & NFP_NET_CFG_CTRL_VEPA) ? 2270 BRIDGE_MODE_VEPA : BRIDGE_MODE_VEB; 2271 2272 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, mode, 0, 0, 2273 nlflags, filter_mask, NULL); 2274 } 2275 2276 static int nfp_net_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 2277 u16 flags, struct netlink_ext_ack *extack) 2278 { 2279 struct nfp_net *nn = netdev_priv(dev); 2280 struct nlattr *attr, *br_spec; 2281 int rem, err; 2282 u32 new_ctrl; 2283 u16 mode; 2284 2285 if (!(nn->cap & NFP_NET_CFG_CTRL_VEPA)) 2286 return -EOPNOTSUPP; 2287 2288 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 2289 if (!br_spec) 2290 return -EINVAL; 2291 2292 nla_for_each_nested(attr, br_spec, rem) { 2293 if (nla_type(attr) != IFLA_BRIDGE_MODE) 2294 continue; 2295 2296 new_ctrl = nn->dp.ctrl; 2297 mode = nla_get_u16(attr); 2298 if (mode == BRIDGE_MODE_VEPA) 2299 new_ctrl |= NFP_NET_CFG_CTRL_VEPA; 2300 else if (mode == BRIDGE_MODE_VEB) 2301 new_ctrl &= ~NFP_NET_CFG_CTRL_VEPA; 2302 else 2303 return -EOPNOTSUPP; 2304 2305 if (new_ctrl == nn->dp.ctrl) 2306 return 0; 2307 2308 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 2309 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_GEN); 2310 if (!err) 2311 nn->dp.ctrl = new_ctrl; 2312 2313 return err; 2314 } 2315 2316 return -EINVAL; 2317 } 2318 2319 const struct net_device_ops nfp_nfd3_netdev_ops = { 2320 .ndo_init = nfp_app_ndo_init, 2321 .ndo_uninit = nfp_app_ndo_uninit, 2322 .ndo_open = nfp_net_netdev_open, 2323 .ndo_stop = nfp_net_netdev_close, 2324 .ndo_start_xmit = nfp_net_tx, 2325 .ndo_get_stats64 = nfp_net_stat64, 2326 .ndo_vlan_rx_add_vid = nfp_net_vlan_rx_add_vid, 2327 .ndo_vlan_rx_kill_vid = nfp_net_vlan_rx_kill_vid, 2328 .ndo_set_vf_mac = nfp_app_set_vf_mac, 2329 .ndo_set_vf_vlan = nfp_app_set_vf_vlan, 2330 .ndo_set_vf_rate = nfp_app_set_vf_rate, 2331 .ndo_set_vf_spoofchk = nfp_app_set_vf_spoofchk, 2332 .ndo_set_vf_trust = nfp_app_set_vf_trust, 2333 .ndo_get_vf_config = nfp_app_get_vf_config, 2334 .ndo_set_vf_link_state = nfp_app_set_vf_link_state, 2335 .ndo_setup_tc = nfp_port_setup_tc, 2336 .ndo_tx_timeout = nfp_net_tx_timeout, 2337 .ndo_set_rx_mode = nfp_net_set_rx_mode, 2338 .ndo_change_mtu = nfp_net_change_mtu, 2339 .ndo_set_mac_address = nfp_net_set_mac_address, 2340 .ndo_set_features = nfp_net_set_features, 2341 .ndo_fix_features = nfp_net_fix_features, 2342 .ndo_features_check = nfp_net_features_check, 2343 .ndo_get_phys_port_name = nfp_net_get_phys_port_name, 2344 .ndo_bpf = nfp_net_xdp, 2345 .ndo_xsk_wakeup = nfp_net_xsk_wakeup, 2346 .ndo_bridge_getlink = nfp_net_bridge_getlink, 2347 .ndo_bridge_setlink = nfp_net_bridge_setlink, 2348 }; 2349 2350 const struct net_device_ops nfp_nfdk_netdev_ops = { 2351 .ndo_init = nfp_app_ndo_init, 2352 .ndo_uninit = nfp_app_ndo_uninit, 2353 .ndo_open = nfp_net_netdev_open, 2354 .ndo_stop = nfp_net_netdev_close, 2355 .ndo_start_xmit = nfp_net_tx, 2356 .ndo_get_stats64 = nfp_net_stat64, 2357 .ndo_vlan_rx_add_vid = nfp_net_vlan_rx_add_vid, 2358 .ndo_vlan_rx_kill_vid = nfp_net_vlan_rx_kill_vid, 2359 .ndo_set_vf_mac = nfp_app_set_vf_mac, 2360 .ndo_set_vf_vlan = nfp_app_set_vf_vlan, 2361 .ndo_set_vf_rate = nfp_app_set_vf_rate, 2362 .ndo_set_vf_spoofchk = nfp_app_set_vf_spoofchk, 2363 .ndo_set_vf_trust = nfp_app_set_vf_trust, 2364 .ndo_get_vf_config = nfp_app_get_vf_config, 2365 .ndo_set_vf_link_state = nfp_app_set_vf_link_state, 2366 .ndo_setup_tc = nfp_port_setup_tc, 2367 .ndo_tx_timeout = nfp_net_tx_timeout, 2368 .ndo_set_rx_mode = nfp_net_set_rx_mode, 2369 .ndo_change_mtu = nfp_net_change_mtu, 2370 .ndo_set_mac_address = nfp_net_set_mac_address, 2371 .ndo_set_features = nfp_net_set_features, 2372 .ndo_fix_features = nfp_net_fix_features, 2373 .ndo_features_check = nfp_net_features_check, 2374 .ndo_get_phys_port_name = nfp_net_get_phys_port_name, 2375 .ndo_bpf = nfp_net_xdp, 2376 .ndo_bridge_getlink = nfp_net_bridge_getlink, 2377 .ndo_bridge_setlink = nfp_net_bridge_setlink, 2378 }; 2379 2380 static int nfp_udp_tunnel_sync(struct net_device *netdev, unsigned int table) 2381 { 2382 struct nfp_net *nn = netdev_priv(netdev); 2383 int i; 2384 2385 BUILD_BUG_ON(NFP_NET_N_VXLAN_PORTS & 1); 2386 for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i += 2) { 2387 struct udp_tunnel_info ti0, ti1; 2388 2389 udp_tunnel_nic_get_port(netdev, table, i, &ti0); 2390 udp_tunnel_nic_get_port(netdev, table, i + 1, &ti1); 2391 2392 nn_writel(nn, NFP_NET_CFG_VXLAN_PORT + i * sizeof(ti0.port), 2393 be16_to_cpu(ti1.port) << 16 | be16_to_cpu(ti0.port)); 2394 } 2395 2396 return nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_VXLAN); 2397 } 2398 2399 static const struct udp_tunnel_nic_info nfp_udp_tunnels = { 2400 .sync_table = nfp_udp_tunnel_sync, 2401 .flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP | 2402 UDP_TUNNEL_NIC_INFO_OPEN_ONLY, 2403 .tables = { 2404 { 2405 .n_entries = NFP_NET_N_VXLAN_PORTS, 2406 .tunnel_types = UDP_TUNNEL_TYPE_VXLAN, 2407 }, 2408 }, 2409 }; 2410 2411 /** 2412 * nfp_net_info() - Print general info about the NIC 2413 * @nn: NFP Net device to reconfigure 2414 */ 2415 void nfp_net_info(struct nfp_net *nn) 2416 { 2417 nn_info(nn, "NFP-6xxx %sNetdev: TxQs=%d/%d RxQs=%d/%d\n", 2418 nn->dp.is_vf ? "VF " : "", 2419 nn->dp.num_tx_rings, nn->max_tx_rings, 2420 nn->dp.num_rx_rings, nn->max_rx_rings); 2421 nn_info(nn, "VER: %d.%d.%d.%d, Maximum supported MTU: %d\n", 2422 nn->fw_ver.extend, nn->fw_ver.class, 2423 nn->fw_ver.major, nn->fw_ver.minor, 2424 nn->max_mtu); 2425 nn_info(nn, "CAP: %#x %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", 2426 nn->cap, 2427 nn->cap & NFP_NET_CFG_CTRL_PROMISC ? "PROMISC " : "", 2428 nn->cap & NFP_NET_CFG_CTRL_L2BC ? "L2BCFILT " : "", 2429 nn->cap & NFP_NET_CFG_CTRL_L2MC ? "L2MCFILT " : "", 2430 nn->cap & NFP_NET_CFG_CTRL_RXCSUM ? "RXCSUM " : "", 2431 nn->cap & NFP_NET_CFG_CTRL_TXCSUM ? "TXCSUM " : "", 2432 nn->cap & NFP_NET_CFG_CTRL_RXVLAN ? "RXVLAN " : "", 2433 nn->cap & NFP_NET_CFG_CTRL_TXVLAN ? "TXVLAN " : "", 2434 nn->cap & NFP_NET_CFG_CTRL_RXQINQ ? "RXQINQ " : "", 2435 nn->cap & NFP_NET_CFG_CTRL_RXVLAN_V2 ? "RXVLANv2 " : "", 2436 nn->cap & NFP_NET_CFG_CTRL_TXVLAN_V2 ? "TXVLANv2 " : "", 2437 nn->cap & NFP_NET_CFG_CTRL_SCATTER ? "SCATTER " : "", 2438 nn->cap & NFP_NET_CFG_CTRL_GATHER ? "GATHER " : "", 2439 nn->cap & NFP_NET_CFG_CTRL_LSO ? "TSO1 " : "", 2440 nn->cap & NFP_NET_CFG_CTRL_LSO2 ? "TSO2 " : "", 2441 nn->cap & NFP_NET_CFG_CTRL_RSS ? "RSS1 " : "", 2442 nn->cap & NFP_NET_CFG_CTRL_RSS2 ? "RSS2 " : "", 2443 nn->cap & NFP_NET_CFG_CTRL_CTAG_FILTER ? "CTAG_FILTER " : "", 2444 nn->cap & NFP_NET_CFG_CTRL_MSIXAUTO ? "AUTOMASK " : "", 2445 nn->cap & NFP_NET_CFG_CTRL_IRQMOD ? "IRQMOD " : "", 2446 nn->cap & NFP_NET_CFG_CTRL_TXRWB ? "TXRWB " : "", 2447 nn->cap & NFP_NET_CFG_CTRL_VEPA ? "VEPA " : "", 2448 nn->cap & NFP_NET_CFG_CTRL_VXLAN ? "VXLAN " : "", 2449 nn->cap & NFP_NET_CFG_CTRL_NVGRE ? "NVGRE " : "", 2450 nn->cap & NFP_NET_CFG_CTRL_CSUM_COMPLETE ? 2451 "RXCSUM_COMPLETE " : "", 2452 nn->cap & NFP_NET_CFG_CTRL_LIVE_ADDR ? "LIVE_ADDR " : "", 2453 nn->cap_w1 & NFP_NET_CFG_CTRL_MCAST_FILTER ? "MULTICAST_FILTER " : "", 2454 nn->cap_w1 & NFP_NET_CFG_CTRL_USO ? "USO " : "", 2455 nfp_app_extra_cap(nn->app, nn)); 2456 } 2457 2458 /** 2459 * nfp_net_alloc() - Allocate netdev and related structure 2460 * @pdev: PCI device 2461 * @dev_info: NFP ASIC params 2462 * @ctrl_bar: PCI IOMEM with vNIC config memory 2463 * @needs_netdev: Whether to allocate a netdev for this vNIC 2464 * @max_tx_rings: Maximum number of TX rings supported by device 2465 * @max_rx_rings: Maximum number of RX rings supported by device 2466 * 2467 * This function allocates a netdev device and fills in the initial 2468 * part of the @struct nfp_net structure. In case of control device 2469 * nfp_net structure is allocated without the netdev. 2470 * 2471 * Return: NFP Net device structure, or ERR_PTR on error. 2472 */ 2473 struct nfp_net * 2474 nfp_net_alloc(struct pci_dev *pdev, const struct nfp_dev_info *dev_info, 2475 void __iomem *ctrl_bar, bool needs_netdev, 2476 unsigned int max_tx_rings, unsigned int max_rx_rings) 2477 { 2478 u64 dma_mask = dma_get_mask(&pdev->dev); 2479 struct nfp_net *nn; 2480 int err; 2481 2482 if (needs_netdev) { 2483 struct net_device *netdev; 2484 2485 netdev = alloc_etherdev_mqs(sizeof(struct nfp_net), 2486 max_tx_rings, max_rx_rings); 2487 if (!netdev) 2488 return ERR_PTR(-ENOMEM); 2489 2490 SET_NETDEV_DEV(netdev, &pdev->dev); 2491 nn = netdev_priv(netdev); 2492 nn->dp.netdev = netdev; 2493 } else { 2494 nn = vzalloc(sizeof(*nn)); 2495 if (!nn) 2496 return ERR_PTR(-ENOMEM); 2497 } 2498 2499 nn->dp.dev = &pdev->dev; 2500 nn->dp.ctrl_bar = ctrl_bar; 2501 nn->dev_info = dev_info; 2502 nn->pdev = pdev; 2503 nfp_net_get_fw_version(&nn->fw_ver, ctrl_bar); 2504 2505 switch (FIELD_GET(NFP_NET_CFG_VERSION_DP_MASK, nn->fw_ver.extend)) { 2506 case NFP_NET_CFG_VERSION_DP_NFD3: 2507 nn->dp.ops = &nfp_nfd3_ops; 2508 break; 2509 case NFP_NET_CFG_VERSION_DP_NFDK: 2510 if (nn->fw_ver.major < 5) { 2511 dev_err(&pdev->dev, 2512 "NFDK must use ABI 5 or newer, found: %d\n", 2513 nn->fw_ver.major); 2514 err = -EINVAL; 2515 goto err_free_nn; 2516 } 2517 nn->dp.ops = &nfp_nfdk_ops; 2518 break; 2519 default: 2520 err = -EINVAL; 2521 goto err_free_nn; 2522 } 2523 2524 if ((dma_mask & nn->dp.ops->dma_mask) != dma_mask) { 2525 dev_err(&pdev->dev, 2526 "DMA mask of loaded firmware: %llx, required DMA mask: %llx\n", 2527 nn->dp.ops->dma_mask, dma_mask); 2528 err = -EINVAL; 2529 goto err_free_nn; 2530 } 2531 2532 nn->max_tx_rings = max_tx_rings; 2533 nn->max_rx_rings = max_rx_rings; 2534 2535 nn->dp.num_tx_rings = min_t(unsigned int, 2536 max_tx_rings, num_online_cpus()); 2537 nn->dp.num_rx_rings = min_t(unsigned int, max_rx_rings, 2538 netif_get_num_default_rss_queues()); 2539 2540 nn->dp.num_r_vecs = max(nn->dp.num_tx_rings, nn->dp.num_rx_rings); 2541 nn->dp.num_r_vecs = min_t(unsigned int, 2542 nn->dp.num_r_vecs, num_online_cpus()); 2543 nn->max_r_vecs = nn->dp.num_r_vecs; 2544 2545 nn->dp.xsk_pools = kcalloc(nn->max_r_vecs, sizeof(nn->dp.xsk_pools), 2546 GFP_KERNEL); 2547 if (!nn->dp.xsk_pools) { 2548 err = -ENOMEM; 2549 goto err_free_nn; 2550 } 2551 2552 nn->dp.txd_cnt = NFP_NET_TX_DESCS_DEFAULT; 2553 nn->dp.rxd_cnt = NFP_NET_RX_DESCS_DEFAULT; 2554 2555 sema_init(&nn->bar_lock, 1); 2556 2557 spin_lock_init(&nn->reconfig_lock); 2558 spin_lock_init(&nn->link_status_lock); 2559 2560 timer_setup(&nn->reconfig_timer, nfp_net_reconfig_timer, 0); 2561 2562 err = nfp_net_tlv_caps_parse(&nn->pdev->dev, nn->dp.ctrl_bar, 2563 &nn->tlv_caps); 2564 if (err) 2565 goto err_free_nn; 2566 2567 err = nfp_ccm_mbox_alloc(nn); 2568 if (err) 2569 goto err_free_nn; 2570 2571 return nn; 2572 2573 err_free_nn: 2574 if (nn->dp.netdev) 2575 free_netdev(nn->dp.netdev); 2576 else 2577 vfree(nn); 2578 return ERR_PTR(err); 2579 } 2580 2581 /** 2582 * nfp_net_free() - Undo what @nfp_net_alloc() did 2583 * @nn: NFP Net device to reconfigure 2584 */ 2585 void nfp_net_free(struct nfp_net *nn) 2586 { 2587 WARN_ON(timer_pending(&nn->reconfig_timer) || nn->reconfig_posted); 2588 nfp_ccm_mbox_free(nn); 2589 2590 kfree(nn->dp.xsk_pools); 2591 if (nn->dp.netdev) 2592 free_netdev(nn->dp.netdev); 2593 else 2594 vfree(nn); 2595 } 2596 2597 /** 2598 * nfp_net_rss_key_sz() - Get current size of the RSS key 2599 * @nn: NFP Net device instance 2600 * 2601 * Return: size of the RSS key for currently selected hash function. 2602 */ 2603 unsigned int nfp_net_rss_key_sz(struct nfp_net *nn) 2604 { 2605 switch (nn->rss_hfunc) { 2606 case ETH_RSS_HASH_TOP: 2607 return NFP_NET_CFG_RSS_KEY_SZ; 2608 case ETH_RSS_HASH_XOR: 2609 return 0; 2610 case ETH_RSS_HASH_CRC32: 2611 return 4; 2612 } 2613 2614 nn_warn(nn, "Unknown hash function: %u\n", nn->rss_hfunc); 2615 return 0; 2616 } 2617 2618 /** 2619 * nfp_net_rss_init() - Set the initial RSS parameters 2620 * @nn: NFP Net device to reconfigure 2621 */ 2622 static void nfp_net_rss_init(struct nfp_net *nn) 2623 { 2624 unsigned long func_bit, rss_cap_hfunc; 2625 u32 reg; 2626 2627 /* Read the RSS function capability and select first supported func */ 2628 reg = nn_readl(nn, NFP_NET_CFG_RSS_CAP); 2629 rss_cap_hfunc = FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC, reg); 2630 if (!rss_cap_hfunc) 2631 rss_cap_hfunc = FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC, 2632 NFP_NET_CFG_RSS_TOEPLITZ); 2633 2634 func_bit = find_first_bit(&rss_cap_hfunc, NFP_NET_CFG_RSS_HFUNCS); 2635 if (func_bit == NFP_NET_CFG_RSS_HFUNCS) { 2636 dev_warn(nn->dp.dev, 2637 "Bad RSS config, defaulting to Toeplitz hash\n"); 2638 func_bit = ETH_RSS_HASH_TOP_BIT; 2639 } 2640 nn->rss_hfunc = 1 << func_bit; 2641 2642 netdev_rss_key_fill(nn->rss_key, nfp_net_rss_key_sz(nn)); 2643 2644 nfp_net_rss_init_itbl(nn); 2645 2646 /* Enable IPv4/IPv6 TCP by default */ 2647 nn->rss_cfg = NFP_NET_CFG_RSS_IPV4_TCP | 2648 NFP_NET_CFG_RSS_IPV6_TCP | 2649 NFP_NET_CFG_RSS_IPV4_UDP | 2650 NFP_NET_CFG_RSS_IPV6_UDP | 2651 FIELD_PREP(NFP_NET_CFG_RSS_HFUNC, nn->rss_hfunc) | 2652 NFP_NET_CFG_RSS_MASK; 2653 } 2654 2655 /** 2656 * nfp_net_irqmod_init() - Set the initial IRQ moderation parameters 2657 * @nn: NFP Net device to reconfigure 2658 */ 2659 static void nfp_net_irqmod_init(struct nfp_net *nn) 2660 { 2661 nn->rx_coalesce_usecs = 50; 2662 nn->rx_coalesce_max_frames = 64; 2663 nn->tx_coalesce_usecs = 50; 2664 nn->tx_coalesce_max_frames = 64; 2665 2666 nn->rx_coalesce_adapt_on = true; 2667 nn->tx_coalesce_adapt_on = true; 2668 } 2669 2670 static void nfp_net_netdev_init(struct nfp_net *nn) 2671 { 2672 struct net_device *netdev = nn->dp.netdev; 2673 2674 nfp_net_write_mac_addr(nn, nn->dp.netdev->dev_addr); 2675 2676 netdev->mtu = nn->dp.mtu; 2677 2678 /* Advertise/enable offloads based on capabilities 2679 * 2680 * Note: netdev->features show the currently enabled features 2681 * and netdev->hw_features advertises which features are 2682 * supported. By default we enable most features. 2683 */ 2684 if (nn->cap & NFP_NET_CFG_CTRL_LIVE_ADDR) 2685 netdev->priv_flags |= IFF_LIVE_ADDR_CHANGE; 2686 2687 netdev->hw_features = NETIF_F_HIGHDMA; 2688 if (nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY) { 2689 netdev->hw_features |= NETIF_F_RXCSUM; 2690 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY; 2691 } 2692 if (nn->cap & NFP_NET_CFG_CTRL_TXCSUM) { 2693 netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM; 2694 nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXCSUM; 2695 } 2696 if (nn->cap & NFP_NET_CFG_CTRL_GATHER) { 2697 netdev->hw_features |= NETIF_F_SG; 2698 nn->dp.ctrl |= NFP_NET_CFG_CTRL_GATHER; 2699 } 2700 if ((nn->cap & NFP_NET_CFG_CTRL_LSO && nn->fw_ver.major > 2) || 2701 nn->cap & NFP_NET_CFG_CTRL_LSO2) { 2702 netdev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6; 2703 if (nn->cap_w1 & NFP_NET_CFG_CTRL_USO) 2704 netdev->hw_features |= NETIF_F_GSO_UDP_L4; 2705 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_LSO2 ?: 2706 NFP_NET_CFG_CTRL_LSO; 2707 } 2708 if (nn->cap & NFP_NET_CFG_CTRL_RSS_ANY) 2709 netdev->hw_features |= NETIF_F_RXHASH; 2710 2711 #ifdef CONFIG_NFP_NET_IPSEC 2712 if (nn->cap_w1 & NFP_NET_CFG_CTRL_IPSEC) 2713 netdev->hw_features |= NETIF_F_HW_ESP | NETIF_F_HW_ESP_TX_CSUM; 2714 #endif 2715 2716 if (nn->cap & NFP_NET_CFG_CTRL_VXLAN) { 2717 if (nn->cap & NFP_NET_CFG_CTRL_LSO) { 2718 netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL | 2719 NETIF_F_GSO_UDP_TUNNEL_CSUM | 2720 NETIF_F_GSO_PARTIAL; 2721 netdev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM; 2722 } 2723 netdev->udp_tunnel_nic_info = &nfp_udp_tunnels; 2724 nn->dp.ctrl |= NFP_NET_CFG_CTRL_VXLAN; 2725 } 2726 if (nn->cap & NFP_NET_CFG_CTRL_NVGRE) { 2727 if (nn->cap & NFP_NET_CFG_CTRL_LSO) 2728 netdev->hw_features |= NETIF_F_GSO_GRE; 2729 nn->dp.ctrl |= NFP_NET_CFG_CTRL_NVGRE; 2730 } 2731 if (nn->cap & (NFP_NET_CFG_CTRL_VXLAN | NFP_NET_CFG_CTRL_NVGRE)) 2732 netdev->hw_enc_features = netdev->hw_features; 2733 2734 netdev->vlan_features = netdev->hw_features; 2735 2736 if (nn->cap & NFP_NET_CFG_CTRL_RXVLAN_ANY) { 2737 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 2738 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXVLAN_V2 ?: 2739 NFP_NET_CFG_CTRL_RXVLAN; 2740 } 2741 if (nn->cap & NFP_NET_CFG_CTRL_TXVLAN_ANY) { 2742 if (nn->cap & NFP_NET_CFG_CTRL_LSO2) { 2743 nn_warn(nn, "Device advertises both TSO2 and TXVLAN. Refusing to enable TXVLAN.\n"); 2744 } else { 2745 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 2746 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_TXVLAN_V2 ?: 2747 NFP_NET_CFG_CTRL_TXVLAN; 2748 } 2749 } 2750 if (nn->cap & NFP_NET_CFG_CTRL_CTAG_FILTER) { 2751 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER; 2752 nn->dp.ctrl |= NFP_NET_CFG_CTRL_CTAG_FILTER; 2753 } 2754 if (nn->cap & NFP_NET_CFG_CTRL_RXQINQ) { 2755 netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX; 2756 nn->dp.ctrl |= NFP_NET_CFG_CTRL_RXQINQ; 2757 } 2758 2759 netdev->features = netdev->hw_features; 2760 2761 if (nfp_app_has_tc(nn->app) && nn->port) 2762 netdev->hw_features |= NETIF_F_HW_TC; 2763 2764 /* C-Tag strip and S-Tag strip can't be supported simultaneously, 2765 * so enable C-Tag strip and disable S-Tag strip by default. 2766 */ 2767 netdev->features &= ~NETIF_F_HW_VLAN_STAG_RX; 2768 nn->dp.ctrl &= ~NFP_NET_CFG_CTRL_RXQINQ; 2769 2770 netdev->xdp_features = NETDEV_XDP_ACT_BASIC; 2771 if (nn->app && nn->app->type->id == NFP_APP_BPF_NIC) 2772 netdev->xdp_features |= NETDEV_XDP_ACT_HW_OFFLOAD; 2773 2774 /* Finalise the netdev setup */ 2775 switch (nn->dp.ops->version) { 2776 case NFP_NFD_VER_NFD3: 2777 netdev->netdev_ops = &nfp_nfd3_netdev_ops; 2778 netdev->xdp_features |= NETDEV_XDP_ACT_XSK_ZEROCOPY; 2779 netdev->xdp_features |= NETDEV_XDP_ACT_REDIRECT; 2780 break; 2781 case NFP_NFD_VER_NFDK: 2782 netdev->netdev_ops = &nfp_nfdk_netdev_ops; 2783 break; 2784 } 2785 2786 netdev->watchdog_timeo = msecs_to_jiffies(5 * 1000); 2787 2788 /* MTU range: 68 - hw-specific max */ 2789 netdev->min_mtu = ETH_MIN_MTU; 2790 netdev->max_mtu = nn->max_mtu; 2791 2792 netif_set_tso_max_segs(netdev, NFP_NET_LSO_MAX_SEGS); 2793 2794 netif_carrier_off(netdev); 2795 2796 nfp_net_set_ethtool_ops(netdev); 2797 } 2798 2799 static int nfp_net_read_caps(struct nfp_net *nn) 2800 { 2801 /* Get some of the read-only fields from the BAR */ 2802 nn->cap = nn_readl(nn, NFP_NET_CFG_CAP); 2803 nn->cap_w1 = nn_readl(nn, NFP_NET_CFG_CAP_WORD1); 2804 nn->max_mtu = nn_readl(nn, NFP_NET_CFG_MAX_MTU); 2805 2806 /* ABI 4.x and ctrl vNIC always use chained metadata, in other cases 2807 * we allow use of non-chained metadata if RSS(v1) is the only 2808 * advertised capability requiring metadata. 2809 */ 2810 nn->dp.chained_metadata_format = nn->fw_ver.major == 4 || 2811 !nn->dp.netdev || 2812 !(nn->cap & NFP_NET_CFG_CTRL_RSS) || 2813 nn->cap & NFP_NET_CFG_CTRL_CHAIN_META; 2814 /* RSS(v1) uses non-chained metadata format, except in ABI 4.x where 2815 * it has the same meaning as RSSv2. 2816 */ 2817 if (nn->dp.chained_metadata_format && nn->fw_ver.major != 4) 2818 nn->cap &= ~NFP_NET_CFG_CTRL_RSS; 2819 2820 /* Determine RX packet/metadata boundary offset */ 2821 if (nn->fw_ver.major >= 2) { 2822 u32 reg; 2823 2824 reg = nn_readl(nn, NFP_NET_CFG_RX_OFFSET); 2825 if (reg > NFP_NET_MAX_PREPEND) { 2826 nn_err(nn, "Invalid rx offset: %d\n", reg); 2827 return -EINVAL; 2828 } 2829 nn->dp.rx_offset = reg; 2830 } else { 2831 nn->dp.rx_offset = NFP_NET_RX_OFFSET; 2832 } 2833 2834 /* Mask out NFD-version-specific features */ 2835 nn->cap &= nn->dp.ops->cap_mask; 2836 2837 /* For control vNICs mask out the capabilities app doesn't want. */ 2838 if (!nn->dp.netdev) 2839 nn->cap &= nn->app->type->ctrl_cap_mask; 2840 2841 return 0; 2842 } 2843 2844 /** 2845 * nfp_net_init() - Initialise/finalise the nfp_net structure 2846 * @nn: NFP Net device structure 2847 * 2848 * Return: 0 on success or negative errno on error. 2849 */ 2850 int nfp_net_init(struct nfp_net *nn) 2851 { 2852 int err; 2853 2854 nn->dp.rx_dma_dir = DMA_FROM_DEVICE; 2855 2856 err = nfp_net_read_caps(nn); 2857 if (err) 2858 return err; 2859 2860 /* Set default MTU and Freelist buffer size */ 2861 if (!nfp_net_is_data_vnic(nn) && nn->app->ctrl_mtu) { 2862 nn->dp.mtu = min(nn->app->ctrl_mtu, nn->max_mtu); 2863 } else if (nn->max_mtu < NFP_NET_DEFAULT_MTU) { 2864 nn->dp.mtu = nn->max_mtu; 2865 } else { 2866 nn->dp.mtu = NFP_NET_DEFAULT_MTU; 2867 } 2868 nn->dp.fl_bufsz = nfp_net_calc_fl_bufsz(&nn->dp); 2869 2870 if (nfp_app_ctrl_uses_data_vnics(nn->app)) 2871 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_CMSG_DATA; 2872 2873 if (nn->cap & NFP_NET_CFG_CTRL_RSS_ANY) { 2874 nfp_net_rss_init(nn); 2875 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RSS2 ?: 2876 NFP_NET_CFG_CTRL_RSS; 2877 } 2878 2879 /* Allow L2 Broadcast and Multicast through by default, if supported */ 2880 if (nn->cap & NFP_NET_CFG_CTRL_L2BC) 2881 nn->dp.ctrl |= NFP_NET_CFG_CTRL_L2BC; 2882 2883 /* Allow IRQ moderation, if supported */ 2884 if (nn->cap & NFP_NET_CFG_CTRL_IRQMOD) { 2885 nfp_net_irqmod_init(nn); 2886 nn->dp.ctrl |= NFP_NET_CFG_CTRL_IRQMOD; 2887 } 2888 2889 /* Enable TX pointer writeback, if supported */ 2890 if (nn->cap & NFP_NET_CFG_CTRL_TXRWB) 2891 nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXRWB; 2892 2893 if (nn->cap_w1 & NFP_NET_CFG_CTRL_MCAST_FILTER) 2894 nn->dp.ctrl_w1 |= NFP_NET_CFG_CTRL_MCAST_FILTER; 2895 2896 /* Stash the re-configuration queue away. First odd queue in TX Bar */ 2897 nn->qcp_cfg = nn->tx_bar + NFP_QCP_QUEUE_ADDR_SZ; 2898 2899 /* Make sure the FW knows the netdev is supposed to be disabled here */ 2900 nn_writel(nn, NFP_NET_CFG_CTRL, 0); 2901 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0); 2902 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0); 2903 nn_writel(nn, NFP_NET_CFG_CTRL_WORD1, 0); 2904 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_RING | 2905 NFP_NET_CFG_UPDATE_GEN); 2906 if (err) 2907 return err; 2908 2909 if (nn->dp.netdev) { 2910 nfp_net_netdev_init(nn); 2911 2912 err = nfp_ccm_mbox_init(nn); 2913 if (err) 2914 return err; 2915 2916 err = nfp_net_tls_init(nn); 2917 if (err) 2918 goto err_clean_mbox; 2919 2920 nfp_net_ipsec_init(nn); 2921 } 2922 2923 nfp_net_vecs_init(nn); 2924 2925 if (!nn->dp.netdev) 2926 return 0; 2927 2928 spin_lock_init(&nn->mbox_amsg.lock); 2929 INIT_LIST_HEAD(&nn->mbox_amsg.list); 2930 INIT_WORK(&nn->mbox_amsg.work, nfp_net_mbox_amsg_work); 2931 2932 INIT_LIST_HEAD(&nn->fs.list); 2933 2934 return register_netdev(nn->dp.netdev); 2935 2936 err_clean_mbox: 2937 nfp_ccm_mbox_clean(nn); 2938 return err; 2939 } 2940 2941 /** 2942 * nfp_net_clean() - Undo what nfp_net_init() did. 2943 * @nn: NFP Net device structure 2944 */ 2945 void nfp_net_clean(struct nfp_net *nn) 2946 { 2947 if (!nn->dp.netdev) 2948 return; 2949 2950 unregister_netdev(nn->dp.netdev); 2951 nfp_net_ipsec_clean(nn); 2952 nfp_ccm_mbox_clean(nn); 2953 nfp_net_fs_clean(nn); 2954 flush_work(&nn->mbox_amsg.work); 2955 nfp_net_reconfig_wait_posted(nn); 2956 } 2957