1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause) 2 /* Copyright (C) 2015-2018 Netronome Systems, Inc. */ 3 4 /* 5 * nfp_net_common.c 6 * Netronome network device driver: Common functions between PF and VF 7 * Authors: Jakub Kicinski <jakub.kicinski@netronome.com> 8 * Jason McMullan <jason.mcmullan@netronome.com> 9 * Rolf Neugebauer <rolf.neugebauer@netronome.com> 10 * Brad Petrus <brad.petrus@netronome.com> 11 * Chris Telfer <chris.telfer@netronome.com> 12 */ 13 14 #include <linux/bitfield.h> 15 #include <linux/bpf.h> 16 #include <linux/bpf_trace.h> 17 #include <linux/module.h> 18 #include <linux/kernel.h> 19 #include <linux/init.h> 20 #include <linux/fs.h> 21 #include <linux/netdevice.h> 22 #include <linux/etherdevice.h> 23 #include <linux/interrupt.h> 24 #include <linux/ip.h> 25 #include <linux/ipv6.h> 26 #include <linux/mm.h> 27 #include <linux/overflow.h> 28 #include <linux/page_ref.h> 29 #include <linux/pci.h> 30 #include <linux/pci_regs.h> 31 #include <linux/msi.h> 32 #include <linux/ethtool.h> 33 #include <linux/log2.h> 34 #include <linux/if_vlan.h> 35 #include <linux/random.h> 36 #include <linux/vmalloc.h> 37 #include <linux/ktime.h> 38 39 #include <net/tls.h> 40 #include <net/vxlan.h> 41 42 #include "nfpcore/nfp_nsp.h" 43 #include "ccm.h" 44 #include "nfp_app.h" 45 #include "nfp_net_ctrl.h" 46 #include "nfp_net.h" 47 #include "nfp_net_sriov.h" 48 #include "nfp_port.h" 49 #include "crypto/crypto.h" 50 51 /** 52 * nfp_net_get_fw_version() - Read and parse the FW version 53 * @fw_ver: Output fw_version structure to read to 54 * @ctrl_bar: Mapped address of the control BAR 55 */ 56 void nfp_net_get_fw_version(struct nfp_net_fw_version *fw_ver, 57 void __iomem *ctrl_bar) 58 { 59 u32 reg; 60 61 reg = readl(ctrl_bar + NFP_NET_CFG_VERSION); 62 put_unaligned_le32(reg, fw_ver); 63 } 64 65 static dma_addr_t nfp_net_dma_map_rx(struct nfp_net_dp *dp, void *frag) 66 { 67 return dma_map_single_attrs(dp->dev, frag + NFP_NET_RX_BUF_HEADROOM, 68 dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA, 69 dp->rx_dma_dir, DMA_ATTR_SKIP_CPU_SYNC); 70 } 71 72 static void 73 nfp_net_dma_sync_dev_rx(const struct nfp_net_dp *dp, dma_addr_t dma_addr) 74 { 75 dma_sync_single_for_device(dp->dev, dma_addr, 76 dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA, 77 dp->rx_dma_dir); 78 } 79 80 static void nfp_net_dma_unmap_rx(struct nfp_net_dp *dp, dma_addr_t dma_addr) 81 { 82 dma_unmap_single_attrs(dp->dev, dma_addr, 83 dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA, 84 dp->rx_dma_dir, DMA_ATTR_SKIP_CPU_SYNC); 85 } 86 87 static void nfp_net_dma_sync_cpu_rx(struct nfp_net_dp *dp, dma_addr_t dma_addr, 88 unsigned int len) 89 { 90 dma_sync_single_for_cpu(dp->dev, dma_addr - NFP_NET_RX_BUF_HEADROOM, 91 len, dp->rx_dma_dir); 92 } 93 94 /* Firmware reconfig 95 * 96 * Firmware reconfig may take a while so we have two versions of it - 97 * synchronous and asynchronous (posted). All synchronous callers are holding 98 * RTNL so we don't have to worry about serializing them. 99 */ 100 static void nfp_net_reconfig_start(struct nfp_net *nn, u32 update) 101 { 102 nn_writel(nn, NFP_NET_CFG_UPDATE, update); 103 /* ensure update is written before pinging HW */ 104 nn_pci_flush(nn); 105 nfp_qcp_wr_ptr_add(nn->qcp_cfg, 1); 106 nn->reconfig_in_progress_update = update; 107 } 108 109 /* Pass 0 as update to run posted reconfigs. */ 110 static void nfp_net_reconfig_start_async(struct nfp_net *nn, u32 update) 111 { 112 update |= nn->reconfig_posted; 113 nn->reconfig_posted = 0; 114 115 nfp_net_reconfig_start(nn, update); 116 117 nn->reconfig_timer_active = true; 118 mod_timer(&nn->reconfig_timer, jiffies + NFP_NET_POLL_TIMEOUT * HZ); 119 } 120 121 static bool nfp_net_reconfig_check_done(struct nfp_net *nn, bool last_check) 122 { 123 u32 reg; 124 125 reg = nn_readl(nn, NFP_NET_CFG_UPDATE); 126 if (reg == 0) 127 return true; 128 if (reg & NFP_NET_CFG_UPDATE_ERR) { 129 nn_err(nn, "Reconfig error (status: 0x%08x update: 0x%08x ctrl: 0x%08x)\n", 130 reg, nn->reconfig_in_progress_update, 131 nn_readl(nn, NFP_NET_CFG_CTRL)); 132 return true; 133 } else if (last_check) { 134 nn_err(nn, "Reconfig timeout (status: 0x%08x update: 0x%08x ctrl: 0x%08x)\n", 135 reg, nn->reconfig_in_progress_update, 136 nn_readl(nn, NFP_NET_CFG_CTRL)); 137 return true; 138 } 139 140 return false; 141 } 142 143 static bool __nfp_net_reconfig_wait(struct nfp_net *nn, unsigned long deadline) 144 { 145 bool timed_out = false; 146 int i; 147 148 /* Poll update field, waiting for NFP to ack the config. 149 * Do an opportunistic wait-busy loop, afterward sleep. 150 */ 151 for (i = 0; i < 50; i++) { 152 if (nfp_net_reconfig_check_done(nn, false)) 153 return false; 154 udelay(4); 155 } 156 157 while (!nfp_net_reconfig_check_done(nn, timed_out)) { 158 usleep_range(250, 500); 159 timed_out = time_is_before_eq_jiffies(deadline); 160 } 161 162 return timed_out; 163 } 164 165 static int nfp_net_reconfig_wait(struct nfp_net *nn, unsigned long deadline) 166 { 167 if (__nfp_net_reconfig_wait(nn, deadline)) 168 return -EIO; 169 170 if (nn_readl(nn, NFP_NET_CFG_UPDATE) & NFP_NET_CFG_UPDATE_ERR) 171 return -EIO; 172 173 return 0; 174 } 175 176 static void nfp_net_reconfig_timer(struct timer_list *t) 177 { 178 struct nfp_net *nn = from_timer(nn, t, reconfig_timer); 179 180 spin_lock_bh(&nn->reconfig_lock); 181 182 nn->reconfig_timer_active = false; 183 184 /* If sync caller is present it will take over from us */ 185 if (nn->reconfig_sync_present) 186 goto done; 187 188 /* Read reconfig status and report errors */ 189 nfp_net_reconfig_check_done(nn, true); 190 191 if (nn->reconfig_posted) 192 nfp_net_reconfig_start_async(nn, 0); 193 done: 194 spin_unlock_bh(&nn->reconfig_lock); 195 } 196 197 /** 198 * nfp_net_reconfig_post() - Post async reconfig request 199 * @nn: NFP Net device to reconfigure 200 * @update: The value for the update field in the BAR config 201 * 202 * Record FW reconfiguration request. Reconfiguration will be kicked off 203 * whenever reconfiguration machinery is idle. Multiple requests can be 204 * merged together! 205 */ 206 static void nfp_net_reconfig_post(struct nfp_net *nn, u32 update) 207 { 208 spin_lock_bh(&nn->reconfig_lock); 209 210 /* Sync caller will kick off async reconf when it's done, just post */ 211 if (nn->reconfig_sync_present) { 212 nn->reconfig_posted |= update; 213 goto done; 214 } 215 216 /* Opportunistically check if the previous command is done */ 217 if (!nn->reconfig_timer_active || 218 nfp_net_reconfig_check_done(nn, false)) 219 nfp_net_reconfig_start_async(nn, update); 220 else 221 nn->reconfig_posted |= update; 222 done: 223 spin_unlock_bh(&nn->reconfig_lock); 224 } 225 226 static void nfp_net_reconfig_sync_enter(struct nfp_net *nn) 227 { 228 bool cancelled_timer = false; 229 u32 pre_posted_requests; 230 231 spin_lock_bh(&nn->reconfig_lock); 232 233 WARN_ON(nn->reconfig_sync_present); 234 nn->reconfig_sync_present = true; 235 236 if (nn->reconfig_timer_active) { 237 nn->reconfig_timer_active = false; 238 cancelled_timer = true; 239 } 240 pre_posted_requests = nn->reconfig_posted; 241 nn->reconfig_posted = 0; 242 243 spin_unlock_bh(&nn->reconfig_lock); 244 245 if (cancelled_timer) { 246 del_timer_sync(&nn->reconfig_timer); 247 nfp_net_reconfig_wait(nn, nn->reconfig_timer.expires); 248 } 249 250 /* Run the posted reconfigs which were issued before we started */ 251 if (pre_posted_requests) { 252 nfp_net_reconfig_start(nn, pre_posted_requests); 253 nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT); 254 } 255 } 256 257 static void nfp_net_reconfig_wait_posted(struct nfp_net *nn) 258 { 259 nfp_net_reconfig_sync_enter(nn); 260 261 spin_lock_bh(&nn->reconfig_lock); 262 nn->reconfig_sync_present = false; 263 spin_unlock_bh(&nn->reconfig_lock); 264 } 265 266 /** 267 * __nfp_net_reconfig() - Reconfigure the firmware 268 * @nn: NFP Net device to reconfigure 269 * @update: The value for the update field in the BAR config 270 * 271 * Write the update word to the BAR and ping the reconfig queue. The 272 * poll until the firmware has acknowledged the update by zeroing the 273 * update word. 274 * 275 * Return: Negative errno on error, 0 on success 276 */ 277 int __nfp_net_reconfig(struct nfp_net *nn, u32 update) 278 { 279 int ret; 280 281 nfp_net_reconfig_sync_enter(nn); 282 283 nfp_net_reconfig_start(nn, update); 284 ret = nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT); 285 286 spin_lock_bh(&nn->reconfig_lock); 287 288 if (nn->reconfig_posted) 289 nfp_net_reconfig_start_async(nn, 0); 290 291 nn->reconfig_sync_present = false; 292 293 spin_unlock_bh(&nn->reconfig_lock); 294 295 return ret; 296 } 297 298 int nfp_net_reconfig(struct nfp_net *nn, u32 update) 299 { 300 int ret; 301 302 nn_ctrl_bar_lock(nn); 303 ret = __nfp_net_reconfig(nn, update); 304 nn_ctrl_bar_unlock(nn); 305 306 return ret; 307 } 308 309 int nfp_net_mbox_lock(struct nfp_net *nn, unsigned int data_size) 310 { 311 if (nn->tlv_caps.mbox_len < NFP_NET_CFG_MBOX_SIMPLE_VAL + data_size) { 312 nn_err(nn, "mailbox too small for %u of data (%u)\n", 313 data_size, nn->tlv_caps.mbox_len); 314 return -EIO; 315 } 316 317 nn_ctrl_bar_lock(nn); 318 return 0; 319 } 320 321 /** 322 * nfp_net_mbox_reconfig() - Reconfigure the firmware via the mailbox 323 * @nn: NFP Net device to reconfigure 324 * @mbox_cmd: The value for the mailbox command 325 * 326 * Helper function for mailbox updates 327 * 328 * Return: Negative errno on error, 0 on success 329 */ 330 int nfp_net_mbox_reconfig(struct nfp_net *nn, u32 mbox_cmd) 331 { 332 u32 mbox = nn->tlv_caps.mbox_off; 333 int ret; 334 335 nn_writeq(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_CMD, mbox_cmd); 336 337 ret = __nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_MBOX); 338 if (ret) { 339 nn_err(nn, "Mailbox update error\n"); 340 return ret; 341 } 342 343 return -nn_readl(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_RET); 344 } 345 346 void nfp_net_mbox_reconfig_post(struct nfp_net *nn, u32 mbox_cmd) 347 { 348 u32 mbox = nn->tlv_caps.mbox_off; 349 350 nn_writeq(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_CMD, mbox_cmd); 351 352 nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_MBOX); 353 } 354 355 int nfp_net_mbox_reconfig_wait_posted(struct nfp_net *nn) 356 { 357 u32 mbox = nn->tlv_caps.mbox_off; 358 359 nfp_net_reconfig_wait_posted(nn); 360 361 return -nn_readl(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_RET); 362 } 363 364 int nfp_net_mbox_reconfig_and_unlock(struct nfp_net *nn, u32 mbox_cmd) 365 { 366 int ret; 367 368 ret = nfp_net_mbox_reconfig(nn, mbox_cmd); 369 nn_ctrl_bar_unlock(nn); 370 return ret; 371 } 372 373 /* Interrupt configuration and handling 374 */ 375 376 /** 377 * nfp_net_irq_unmask() - Unmask automasked interrupt 378 * @nn: NFP Network structure 379 * @entry_nr: MSI-X table entry 380 * 381 * Clear the ICR for the IRQ entry. 382 */ 383 static void nfp_net_irq_unmask(struct nfp_net *nn, unsigned int entry_nr) 384 { 385 nn_writeb(nn, NFP_NET_CFG_ICR(entry_nr), NFP_NET_CFG_ICR_UNMASKED); 386 nn_pci_flush(nn); 387 } 388 389 /** 390 * nfp_net_irqs_alloc() - allocates MSI-X irqs 391 * @pdev: PCI device structure 392 * @irq_entries: Array to be initialized and used to hold the irq entries 393 * @min_irqs: Minimal acceptable number of interrupts 394 * @wanted_irqs: Target number of interrupts to allocate 395 * 396 * Return: Number of irqs obtained or 0 on error. 397 */ 398 unsigned int 399 nfp_net_irqs_alloc(struct pci_dev *pdev, struct msix_entry *irq_entries, 400 unsigned int min_irqs, unsigned int wanted_irqs) 401 { 402 unsigned int i; 403 int got_irqs; 404 405 for (i = 0; i < wanted_irqs; i++) 406 irq_entries[i].entry = i; 407 408 got_irqs = pci_enable_msix_range(pdev, irq_entries, 409 min_irqs, wanted_irqs); 410 if (got_irqs < 0) { 411 dev_err(&pdev->dev, "Failed to enable %d-%d MSI-X (err=%d)\n", 412 min_irqs, wanted_irqs, got_irqs); 413 return 0; 414 } 415 416 if (got_irqs < wanted_irqs) 417 dev_warn(&pdev->dev, "Unable to allocate %d IRQs got only %d\n", 418 wanted_irqs, got_irqs); 419 420 return got_irqs; 421 } 422 423 /** 424 * nfp_net_irqs_assign() - Assign interrupts allocated externally to netdev 425 * @nn: NFP Network structure 426 * @irq_entries: Table of allocated interrupts 427 * @n: Size of @irq_entries (number of entries to grab) 428 * 429 * After interrupts are allocated with nfp_net_irqs_alloc() this function 430 * should be called to assign them to a specific netdev (port). 431 */ 432 void 433 nfp_net_irqs_assign(struct nfp_net *nn, struct msix_entry *irq_entries, 434 unsigned int n) 435 { 436 struct nfp_net_dp *dp = &nn->dp; 437 438 nn->max_r_vecs = n - NFP_NET_NON_Q_VECTORS; 439 dp->num_r_vecs = nn->max_r_vecs; 440 441 memcpy(nn->irq_entries, irq_entries, sizeof(*irq_entries) * n); 442 443 if (dp->num_rx_rings > dp->num_r_vecs || 444 dp->num_tx_rings > dp->num_r_vecs) 445 dev_warn(nn->dp.dev, "More rings (%d,%d) than vectors (%d).\n", 446 dp->num_rx_rings, dp->num_tx_rings, 447 dp->num_r_vecs); 448 449 dp->num_rx_rings = min(dp->num_r_vecs, dp->num_rx_rings); 450 dp->num_tx_rings = min(dp->num_r_vecs, dp->num_tx_rings); 451 dp->num_stack_tx_rings = dp->num_tx_rings; 452 } 453 454 /** 455 * nfp_net_irqs_disable() - Disable interrupts 456 * @pdev: PCI device structure 457 * 458 * Undoes what @nfp_net_irqs_alloc() does. 459 */ 460 void nfp_net_irqs_disable(struct pci_dev *pdev) 461 { 462 pci_disable_msix(pdev); 463 } 464 465 /** 466 * nfp_net_irq_rxtx() - Interrupt service routine for RX/TX rings. 467 * @irq: Interrupt 468 * @data: Opaque data structure 469 * 470 * Return: Indicate if the interrupt has been handled. 471 */ 472 static irqreturn_t nfp_net_irq_rxtx(int irq, void *data) 473 { 474 struct nfp_net_r_vector *r_vec = data; 475 476 napi_schedule_irqoff(&r_vec->napi); 477 478 /* The FW auto-masks any interrupt, either via the MASK bit in 479 * the MSI-X table or via the per entry ICR field. So there 480 * is no need to disable interrupts here. 481 */ 482 return IRQ_HANDLED; 483 } 484 485 static irqreturn_t nfp_ctrl_irq_rxtx(int irq, void *data) 486 { 487 struct nfp_net_r_vector *r_vec = data; 488 489 tasklet_schedule(&r_vec->tasklet); 490 491 return IRQ_HANDLED; 492 } 493 494 /** 495 * nfp_net_read_link_status() - Reread link status from control BAR 496 * @nn: NFP Network structure 497 */ 498 static void nfp_net_read_link_status(struct nfp_net *nn) 499 { 500 unsigned long flags; 501 bool link_up; 502 u32 sts; 503 504 spin_lock_irqsave(&nn->link_status_lock, flags); 505 506 sts = nn_readl(nn, NFP_NET_CFG_STS); 507 link_up = !!(sts & NFP_NET_CFG_STS_LINK); 508 509 if (nn->link_up == link_up) 510 goto out; 511 512 nn->link_up = link_up; 513 if (nn->port) 514 set_bit(NFP_PORT_CHANGED, &nn->port->flags); 515 516 if (nn->link_up) { 517 netif_carrier_on(nn->dp.netdev); 518 netdev_info(nn->dp.netdev, "NIC Link is Up\n"); 519 } else { 520 netif_carrier_off(nn->dp.netdev); 521 netdev_info(nn->dp.netdev, "NIC Link is Down\n"); 522 } 523 out: 524 spin_unlock_irqrestore(&nn->link_status_lock, flags); 525 } 526 527 /** 528 * nfp_net_irq_lsc() - Interrupt service routine for link state changes 529 * @irq: Interrupt 530 * @data: Opaque data structure 531 * 532 * Return: Indicate if the interrupt has been handled. 533 */ 534 static irqreturn_t nfp_net_irq_lsc(int irq, void *data) 535 { 536 struct nfp_net *nn = data; 537 struct msix_entry *entry; 538 539 entry = &nn->irq_entries[NFP_NET_IRQ_LSC_IDX]; 540 541 nfp_net_read_link_status(nn); 542 543 nfp_net_irq_unmask(nn, entry->entry); 544 545 return IRQ_HANDLED; 546 } 547 548 /** 549 * nfp_net_irq_exn() - Interrupt service routine for exceptions 550 * @irq: Interrupt 551 * @data: Opaque data structure 552 * 553 * Return: Indicate if the interrupt has been handled. 554 */ 555 static irqreturn_t nfp_net_irq_exn(int irq, void *data) 556 { 557 struct nfp_net *nn = data; 558 559 nn_err(nn, "%s: UNIMPLEMENTED.\n", __func__); 560 /* XXX TO BE IMPLEMENTED */ 561 return IRQ_HANDLED; 562 } 563 564 /** 565 * nfp_net_tx_ring_init() - Fill in the boilerplate for a TX ring 566 * @tx_ring: TX ring structure 567 * @r_vec: IRQ vector servicing this ring 568 * @idx: Ring index 569 * @is_xdp: Is this an XDP TX ring? 570 */ 571 static void 572 nfp_net_tx_ring_init(struct nfp_net_tx_ring *tx_ring, 573 struct nfp_net_r_vector *r_vec, unsigned int idx, 574 bool is_xdp) 575 { 576 struct nfp_net *nn = r_vec->nfp_net; 577 578 tx_ring->idx = idx; 579 tx_ring->r_vec = r_vec; 580 tx_ring->is_xdp = is_xdp; 581 u64_stats_init(&tx_ring->r_vec->tx_sync); 582 583 tx_ring->qcidx = tx_ring->idx * nn->stride_tx; 584 tx_ring->qcp_q = nn->tx_bar + NFP_QCP_QUEUE_OFF(tx_ring->qcidx); 585 } 586 587 /** 588 * nfp_net_rx_ring_init() - Fill in the boilerplate for a RX ring 589 * @rx_ring: RX ring structure 590 * @r_vec: IRQ vector servicing this ring 591 * @idx: Ring index 592 */ 593 static void 594 nfp_net_rx_ring_init(struct nfp_net_rx_ring *rx_ring, 595 struct nfp_net_r_vector *r_vec, unsigned int idx) 596 { 597 struct nfp_net *nn = r_vec->nfp_net; 598 599 rx_ring->idx = idx; 600 rx_ring->r_vec = r_vec; 601 u64_stats_init(&rx_ring->r_vec->rx_sync); 602 603 rx_ring->fl_qcidx = rx_ring->idx * nn->stride_rx; 604 rx_ring->qcp_fl = nn->rx_bar + NFP_QCP_QUEUE_OFF(rx_ring->fl_qcidx); 605 } 606 607 /** 608 * nfp_net_aux_irq_request() - Request an auxiliary interrupt (LSC or EXN) 609 * @nn: NFP Network structure 610 * @ctrl_offset: Control BAR offset where IRQ configuration should be written 611 * @format: printf-style format to construct the interrupt name 612 * @name: Pointer to allocated space for interrupt name 613 * @name_sz: Size of space for interrupt name 614 * @vector_idx: Index of MSI-X vector used for this interrupt 615 * @handler: IRQ handler to register for this interrupt 616 */ 617 static int 618 nfp_net_aux_irq_request(struct nfp_net *nn, u32 ctrl_offset, 619 const char *format, char *name, size_t name_sz, 620 unsigned int vector_idx, irq_handler_t handler) 621 { 622 struct msix_entry *entry; 623 int err; 624 625 entry = &nn->irq_entries[vector_idx]; 626 627 snprintf(name, name_sz, format, nfp_net_name(nn)); 628 err = request_irq(entry->vector, handler, 0, name, nn); 629 if (err) { 630 nn_err(nn, "Failed to request IRQ %d (err=%d).\n", 631 entry->vector, err); 632 return err; 633 } 634 nn_writeb(nn, ctrl_offset, entry->entry); 635 nfp_net_irq_unmask(nn, entry->entry); 636 637 return 0; 638 } 639 640 /** 641 * nfp_net_aux_irq_free() - Free an auxiliary interrupt (LSC or EXN) 642 * @nn: NFP Network structure 643 * @ctrl_offset: Control BAR offset where IRQ configuration should be written 644 * @vector_idx: Index of MSI-X vector used for this interrupt 645 */ 646 static void nfp_net_aux_irq_free(struct nfp_net *nn, u32 ctrl_offset, 647 unsigned int vector_idx) 648 { 649 nn_writeb(nn, ctrl_offset, 0xff); 650 nn_pci_flush(nn); 651 free_irq(nn->irq_entries[vector_idx].vector, nn); 652 } 653 654 /* Transmit 655 * 656 * One queue controller peripheral queue is used for transmit. The 657 * driver en-queues packets for transmit by advancing the write 658 * pointer. The device indicates that packets have transmitted by 659 * advancing the read pointer. The driver maintains a local copy of 660 * the read and write pointer in @struct nfp_net_tx_ring. The driver 661 * keeps @wr_p in sync with the queue controller write pointer and can 662 * determine how many packets have been transmitted by comparing its 663 * copy of the read pointer @rd_p with the read pointer maintained by 664 * the queue controller peripheral. 665 */ 666 667 /** 668 * nfp_net_tx_full() - Check if the TX ring is full 669 * @tx_ring: TX ring to check 670 * @dcnt: Number of descriptors that need to be enqueued (must be >= 1) 671 * 672 * This function checks, based on the *host copy* of read/write 673 * pointer if a given TX ring is full. The real TX queue may have 674 * some newly made available slots. 675 * 676 * Return: True if the ring is full. 677 */ 678 static int nfp_net_tx_full(struct nfp_net_tx_ring *tx_ring, int dcnt) 679 { 680 return (tx_ring->wr_p - tx_ring->rd_p) >= (tx_ring->cnt - dcnt); 681 } 682 683 /* Wrappers for deciding when to stop and restart TX queues */ 684 static int nfp_net_tx_ring_should_wake(struct nfp_net_tx_ring *tx_ring) 685 { 686 return !nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS * 4); 687 } 688 689 static int nfp_net_tx_ring_should_stop(struct nfp_net_tx_ring *tx_ring) 690 { 691 return nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS + 1); 692 } 693 694 /** 695 * nfp_net_tx_ring_stop() - stop tx ring 696 * @nd_q: netdev queue 697 * @tx_ring: driver tx queue structure 698 * 699 * Safely stop TX ring. Remember that while we are running .start_xmit() 700 * someone else may be cleaning the TX ring completions so we need to be 701 * extra careful here. 702 */ 703 static void nfp_net_tx_ring_stop(struct netdev_queue *nd_q, 704 struct nfp_net_tx_ring *tx_ring) 705 { 706 netif_tx_stop_queue(nd_q); 707 708 /* We can race with the TX completion out of NAPI so recheck */ 709 smp_mb(); 710 if (unlikely(nfp_net_tx_ring_should_wake(tx_ring))) 711 netif_tx_start_queue(nd_q); 712 } 713 714 /** 715 * nfp_net_tx_tso() - Set up Tx descriptor for LSO 716 * @r_vec: per-ring structure 717 * @txbuf: Pointer to driver soft TX descriptor 718 * @txd: Pointer to HW TX descriptor 719 * @skb: Pointer to SKB 720 * @md_bytes: Prepend length 721 * 722 * Set up Tx descriptor for LSO, do nothing for non-LSO skbs. 723 * Return error on packet header greater than maximum supported LSO header size. 724 */ 725 static void nfp_net_tx_tso(struct nfp_net_r_vector *r_vec, 726 struct nfp_net_tx_buf *txbuf, 727 struct nfp_net_tx_desc *txd, struct sk_buff *skb, 728 u32 md_bytes) 729 { 730 u32 l3_offset, l4_offset, hdrlen; 731 u16 mss; 732 733 if (!skb_is_gso(skb)) 734 return; 735 736 if (!skb->encapsulation) { 737 l3_offset = skb_network_offset(skb); 738 l4_offset = skb_transport_offset(skb); 739 hdrlen = skb_transport_offset(skb) + tcp_hdrlen(skb); 740 } else { 741 l3_offset = skb_inner_network_offset(skb); 742 l4_offset = skb_inner_transport_offset(skb); 743 hdrlen = skb_inner_transport_header(skb) - skb->data + 744 inner_tcp_hdrlen(skb); 745 } 746 747 txbuf->pkt_cnt = skb_shinfo(skb)->gso_segs; 748 txbuf->real_len += hdrlen * (txbuf->pkt_cnt - 1); 749 750 mss = skb_shinfo(skb)->gso_size & PCIE_DESC_TX_MSS_MASK; 751 txd->l3_offset = l3_offset - md_bytes; 752 txd->l4_offset = l4_offset - md_bytes; 753 txd->lso_hdrlen = hdrlen - md_bytes; 754 txd->mss = cpu_to_le16(mss); 755 txd->flags |= PCIE_DESC_TX_LSO; 756 757 u64_stats_update_begin(&r_vec->tx_sync); 758 r_vec->tx_lso++; 759 u64_stats_update_end(&r_vec->tx_sync); 760 } 761 762 /** 763 * nfp_net_tx_csum() - Set TX CSUM offload flags in TX descriptor 764 * @dp: NFP Net data path struct 765 * @r_vec: per-ring structure 766 * @txbuf: Pointer to driver soft TX descriptor 767 * @txd: Pointer to TX descriptor 768 * @skb: Pointer to SKB 769 * 770 * This function sets the TX checksum flags in the TX descriptor based 771 * on the configuration and the protocol of the packet to be transmitted. 772 */ 773 static void nfp_net_tx_csum(struct nfp_net_dp *dp, 774 struct nfp_net_r_vector *r_vec, 775 struct nfp_net_tx_buf *txbuf, 776 struct nfp_net_tx_desc *txd, struct sk_buff *skb) 777 { 778 struct ipv6hdr *ipv6h; 779 struct iphdr *iph; 780 u8 l4_hdr; 781 782 if (!(dp->ctrl & NFP_NET_CFG_CTRL_TXCSUM)) 783 return; 784 785 if (skb->ip_summed != CHECKSUM_PARTIAL) 786 return; 787 788 txd->flags |= PCIE_DESC_TX_CSUM; 789 if (skb->encapsulation) 790 txd->flags |= PCIE_DESC_TX_ENCAP; 791 792 iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb); 793 ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb); 794 795 if (iph->version == 4) { 796 txd->flags |= PCIE_DESC_TX_IP4_CSUM; 797 l4_hdr = iph->protocol; 798 } else if (ipv6h->version == 6) { 799 l4_hdr = ipv6h->nexthdr; 800 } else { 801 nn_dp_warn(dp, "partial checksum but ipv=%x!\n", iph->version); 802 return; 803 } 804 805 switch (l4_hdr) { 806 case IPPROTO_TCP: 807 txd->flags |= PCIE_DESC_TX_TCP_CSUM; 808 break; 809 case IPPROTO_UDP: 810 txd->flags |= PCIE_DESC_TX_UDP_CSUM; 811 break; 812 default: 813 nn_dp_warn(dp, "partial checksum but l4 proto=%x!\n", l4_hdr); 814 return; 815 } 816 817 u64_stats_update_begin(&r_vec->tx_sync); 818 if (skb->encapsulation) 819 r_vec->hw_csum_tx_inner += txbuf->pkt_cnt; 820 else 821 r_vec->hw_csum_tx += txbuf->pkt_cnt; 822 u64_stats_update_end(&r_vec->tx_sync); 823 } 824 825 #ifdef CONFIG_TLS_DEVICE 826 static struct sk_buff * 827 nfp_net_tls_tx(struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec, 828 struct sk_buff *skb, u64 *tls_handle, int *nr_frags) 829 { 830 struct nfp_net_tls_offload_ctx *ntls; 831 struct sk_buff *nskb; 832 bool resync_pending; 833 u32 datalen, seq; 834 835 if (likely(!dp->ktls_tx)) 836 return skb; 837 if (!skb->sk || !tls_is_sk_tx_device_offloaded(skb->sk)) 838 return skb; 839 840 datalen = skb->len - (skb_transport_offset(skb) + tcp_hdrlen(skb)); 841 seq = ntohl(tcp_hdr(skb)->seq); 842 ntls = tls_driver_ctx(skb->sk, TLS_OFFLOAD_CTX_DIR_TX); 843 resync_pending = tls_offload_tx_resync_pending(skb->sk); 844 if (unlikely(resync_pending || ntls->next_seq != seq)) { 845 /* Pure ACK out of order already */ 846 if (!datalen) 847 return skb; 848 849 u64_stats_update_begin(&r_vec->tx_sync); 850 r_vec->tls_tx_fallback++; 851 u64_stats_update_end(&r_vec->tx_sync); 852 853 nskb = tls_encrypt_skb(skb); 854 if (!nskb) { 855 u64_stats_update_begin(&r_vec->tx_sync); 856 r_vec->tls_tx_no_fallback++; 857 u64_stats_update_end(&r_vec->tx_sync); 858 return NULL; 859 } 860 /* encryption wasn't necessary */ 861 if (nskb == skb) 862 return skb; 863 /* we don't re-check ring space */ 864 if (unlikely(skb_is_nonlinear(nskb))) { 865 nn_dp_warn(dp, "tls_encrypt_skb() produced fragmented frame\n"); 866 u64_stats_update_begin(&r_vec->tx_sync); 867 r_vec->tx_errors++; 868 u64_stats_update_end(&r_vec->tx_sync); 869 dev_kfree_skb_any(nskb); 870 return NULL; 871 } 872 873 /* jump forward, a TX may have gotten lost, need to sync TX */ 874 if (!resync_pending && seq - ntls->next_seq < U32_MAX / 4) 875 tls_offload_tx_resync_request(nskb->sk); 876 877 *nr_frags = 0; 878 return nskb; 879 } 880 881 if (datalen) { 882 u64_stats_update_begin(&r_vec->tx_sync); 883 r_vec->hw_tls_tx++; 884 u64_stats_update_end(&r_vec->tx_sync); 885 } 886 887 memcpy(tls_handle, ntls->fw_handle, sizeof(ntls->fw_handle)); 888 ntls->next_seq += datalen; 889 return skb; 890 } 891 #endif 892 893 static void nfp_net_tx_xmit_more_flush(struct nfp_net_tx_ring *tx_ring) 894 { 895 wmb(); 896 nfp_qcp_wr_ptr_add(tx_ring->qcp_q, tx_ring->wr_ptr_add); 897 tx_ring->wr_ptr_add = 0; 898 } 899 900 static int nfp_net_prep_tx_meta(struct sk_buff *skb, u64 tls_handle) 901 { 902 struct metadata_dst *md_dst = skb_metadata_dst(skb); 903 unsigned char *data; 904 u32 meta_id = 0; 905 int md_bytes; 906 907 if (likely(!md_dst && !tls_handle)) 908 return 0; 909 if (unlikely(md_dst && md_dst->type != METADATA_HW_PORT_MUX)) { 910 if (!tls_handle) 911 return 0; 912 md_dst = NULL; 913 } 914 915 md_bytes = 4 + !!md_dst * 4 + !!tls_handle * 8; 916 917 if (unlikely(skb_cow_head(skb, md_bytes))) 918 return -ENOMEM; 919 920 meta_id = 0; 921 data = skb_push(skb, md_bytes) + md_bytes; 922 if (md_dst) { 923 data -= 4; 924 put_unaligned_be32(md_dst->u.port_info.port_id, data); 925 meta_id = NFP_NET_META_PORTID; 926 } 927 if (tls_handle) { 928 /* conn handle is opaque, we just use u64 to be able to quickly 929 * compare it to zero 930 */ 931 data -= 8; 932 memcpy(data, &tls_handle, sizeof(tls_handle)); 933 meta_id <<= NFP_NET_META_FIELD_SIZE; 934 meta_id |= NFP_NET_META_CONN_HANDLE; 935 } 936 937 data -= 4; 938 put_unaligned_be32(meta_id, data); 939 940 return md_bytes; 941 } 942 943 /** 944 * nfp_net_tx() - Main transmit entry point 945 * @skb: SKB to transmit 946 * @netdev: netdev structure 947 * 948 * Return: NETDEV_TX_OK on success. 949 */ 950 static int nfp_net_tx(struct sk_buff *skb, struct net_device *netdev) 951 { 952 struct nfp_net *nn = netdev_priv(netdev); 953 const struct skb_frag_struct *frag; 954 int f, nr_frags, wr_idx, md_bytes; 955 struct nfp_net_tx_ring *tx_ring; 956 struct nfp_net_r_vector *r_vec; 957 struct nfp_net_tx_buf *txbuf; 958 struct nfp_net_tx_desc *txd; 959 struct netdev_queue *nd_q; 960 struct nfp_net_dp *dp; 961 dma_addr_t dma_addr; 962 unsigned int fsize; 963 u64 tls_handle = 0; 964 u16 qidx; 965 966 dp = &nn->dp; 967 qidx = skb_get_queue_mapping(skb); 968 tx_ring = &dp->tx_rings[qidx]; 969 r_vec = tx_ring->r_vec; 970 971 nr_frags = skb_shinfo(skb)->nr_frags; 972 973 if (unlikely(nfp_net_tx_full(tx_ring, nr_frags + 1))) { 974 nn_dp_warn(dp, "TX ring %d busy. wrp=%u rdp=%u\n", 975 qidx, tx_ring->wr_p, tx_ring->rd_p); 976 nd_q = netdev_get_tx_queue(dp->netdev, qidx); 977 netif_tx_stop_queue(nd_q); 978 nfp_net_tx_xmit_more_flush(tx_ring); 979 u64_stats_update_begin(&r_vec->tx_sync); 980 r_vec->tx_busy++; 981 u64_stats_update_end(&r_vec->tx_sync); 982 return NETDEV_TX_BUSY; 983 } 984 985 #ifdef CONFIG_TLS_DEVICE 986 skb = nfp_net_tls_tx(dp, r_vec, skb, &tls_handle, &nr_frags); 987 if (unlikely(!skb)) { 988 nfp_net_tx_xmit_more_flush(tx_ring); 989 return NETDEV_TX_OK; 990 } 991 #endif 992 993 md_bytes = nfp_net_prep_tx_meta(skb, tls_handle); 994 if (unlikely(md_bytes < 0)) 995 goto err_flush; 996 997 /* Start with the head skbuf */ 998 dma_addr = dma_map_single(dp->dev, skb->data, skb_headlen(skb), 999 DMA_TO_DEVICE); 1000 if (dma_mapping_error(dp->dev, dma_addr)) 1001 goto err_dma_err; 1002 1003 wr_idx = D_IDX(tx_ring, tx_ring->wr_p); 1004 1005 /* Stash the soft descriptor of the head then initialize it */ 1006 txbuf = &tx_ring->txbufs[wr_idx]; 1007 txbuf->skb = skb; 1008 txbuf->dma_addr = dma_addr; 1009 txbuf->fidx = -1; 1010 txbuf->pkt_cnt = 1; 1011 txbuf->real_len = skb->len; 1012 1013 /* Build TX descriptor */ 1014 txd = &tx_ring->txds[wr_idx]; 1015 txd->offset_eop = (nr_frags ? 0 : PCIE_DESC_TX_EOP) | md_bytes; 1016 txd->dma_len = cpu_to_le16(skb_headlen(skb)); 1017 nfp_desc_set_dma_addr(txd, dma_addr); 1018 txd->data_len = cpu_to_le16(skb->len); 1019 1020 txd->flags = 0; 1021 txd->mss = 0; 1022 txd->lso_hdrlen = 0; 1023 1024 /* Do not reorder - tso may adjust pkt cnt, vlan may override fields */ 1025 nfp_net_tx_tso(r_vec, txbuf, txd, skb, md_bytes); 1026 nfp_net_tx_csum(dp, r_vec, txbuf, txd, skb); 1027 if (skb_vlan_tag_present(skb) && dp->ctrl & NFP_NET_CFG_CTRL_TXVLAN) { 1028 txd->flags |= PCIE_DESC_TX_VLAN; 1029 txd->vlan = cpu_to_le16(skb_vlan_tag_get(skb)); 1030 } 1031 1032 /* Gather DMA */ 1033 if (nr_frags > 0) { 1034 __le64 second_half; 1035 1036 /* all descs must match except for in addr, length and eop */ 1037 second_half = txd->vals8[1]; 1038 1039 for (f = 0; f < nr_frags; f++) { 1040 frag = &skb_shinfo(skb)->frags[f]; 1041 fsize = skb_frag_size(frag); 1042 1043 dma_addr = skb_frag_dma_map(dp->dev, frag, 0, 1044 fsize, DMA_TO_DEVICE); 1045 if (dma_mapping_error(dp->dev, dma_addr)) 1046 goto err_unmap; 1047 1048 wr_idx = D_IDX(tx_ring, wr_idx + 1); 1049 tx_ring->txbufs[wr_idx].skb = skb; 1050 tx_ring->txbufs[wr_idx].dma_addr = dma_addr; 1051 tx_ring->txbufs[wr_idx].fidx = f; 1052 1053 txd = &tx_ring->txds[wr_idx]; 1054 txd->dma_len = cpu_to_le16(fsize); 1055 nfp_desc_set_dma_addr(txd, dma_addr); 1056 txd->offset_eop = md_bytes | 1057 ((f == nr_frags - 1) ? PCIE_DESC_TX_EOP : 0); 1058 txd->vals8[1] = second_half; 1059 } 1060 1061 u64_stats_update_begin(&r_vec->tx_sync); 1062 r_vec->tx_gather++; 1063 u64_stats_update_end(&r_vec->tx_sync); 1064 } 1065 1066 skb_tx_timestamp(skb); 1067 1068 nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx); 1069 1070 tx_ring->wr_p += nr_frags + 1; 1071 if (nfp_net_tx_ring_should_stop(tx_ring)) 1072 nfp_net_tx_ring_stop(nd_q, tx_ring); 1073 1074 tx_ring->wr_ptr_add += nr_frags + 1; 1075 if (__netdev_tx_sent_queue(nd_q, txbuf->real_len, netdev_xmit_more())) 1076 nfp_net_tx_xmit_more_flush(tx_ring); 1077 1078 return NETDEV_TX_OK; 1079 1080 err_unmap: 1081 while (--f >= 0) { 1082 frag = &skb_shinfo(skb)->frags[f]; 1083 dma_unmap_page(dp->dev, tx_ring->txbufs[wr_idx].dma_addr, 1084 skb_frag_size(frag), DMA_TO_DEVICE); 1085 tx_ring->txbufs[wr_idx].skb = NULL; 1086 tx_ring->txbufs[wr_idx].dma_addr = 0; 1087 tx_ring->txbufs[wr_idx].fidx = -2; 1088 wr_idx = wr_idx - 1; 1089 if (wr_idx < 0) 1090 wr_idx += tx_ring->cnt; 1091 } 1092 dma_unmap_single(dp->dev, tx_ring->txbufs[wr_idx].dma_addr, 1093 skb_headlen(skb), DMA_TO_DEVICE); 1094 tx_ring->txbufs[wr_idx].skb = NULL; 1095 tx_ring->txbufs[wr_idx].dma_addr = 0; 1096 tx_ring->txbufs[wr_idx].fidx = -2; 1097 err_dma_err: 1098 nn_dp_warn(dp, "Failed to map DMA TX buffer\n"); 1099 err_flush: 1100 nfp_net_tx_xmit_more_flush(tx_ring); 1101 u64_stats_update_begin(&r_vec->tx_sync); 1102 r_vec->tx_errors++; 1103 u64_stats_update_end(&r_vec->tx_sync); 1104 dev_kfree_skb_any(skb); 1105 return NETDEV_TX_OK; 1106 } 1107 1108 /** 1109 * nfp_net_tx_complete() - Handled completed TX packets 1110 * @tx_ring: TX ring structure 1111 * @budget: NAPI budget (only used as bool to determine if in NAPI context) 1112 */ 1113 static void nfp_net_tx_complete(struct nfp_net_tx_ring *tx_ring, int budget) 1114 { 1115 struct nfp_net_r_vector *r_vec = tx_ring->r_vec; 1116 struct nfp_net_dp *dp = &r_vec->nfp_net->dp; 1117 struct netdev_queue *nd_q; 1118 u32 done_pkts = 0, done_bytes = 0; 1119 u32 qcp_rd_p; 1120 int todo; 1121 1122 if (tx_ring->wr_p == tx_ring->rd_p) 1123 return; 1124 1125 /* Work out how many descriptors have been transmitted */ 1126 qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q); 1127 1128 if (qcp_rd_p == tx_ring->qcp_rd_p) 1129 return; 1130 1131 todo = D_IDX(tx_ring, qcp_rd_p - tx_ring->qcp_rd_p); 1132 1133 while (todo--) { 1134 const struct skb_frag_struct *frag; 1135 struct nfp_net_tx_buf *tx_buf; 1136 struct sk_buff *skb; 1137 int fidx, nr_frags; 1138 int idx; 1139 1140 idx = D_IDX(tx_ring, tx_ring->rd_p++); 1141 tx_buf = &tx_ring->txbufs[idx]; 1142 1143 skb = tx_buf->skb; 1144 if (!skb) 1145 continue; 1146 1147 nr_frags = skb_shinfo(skb)->nr_frags; 1148 fidx = tx_buf->fidx; 1149 1150 if (fidx == -1) { 1151 /* unmap head */ 1152 dma_unmap_single(dp->dev, tx_buf->dma_addr, 1153 skb_headlen(skb), DMA_TO_DEVICE); 1154 1155 done_pkts += tx_buf->pkt_cnt; 1156 done_bytes += tx_buf->real_len; 1157 } else { 1158 /* unmap fragment */ 1159 frag = &skb_shinfo(skb)->frags[fidx]; 1160 dma_unmap_page(dp->dev, tx_buf->dma_addr, 1161 skb_frag_size(frag), DMA_TO_DEVICE); 1162 } 1163 1164 /* check for last gather fragment */ 1165 if (fidx == nr_frags - 1) 1166 napi_consume_skb(skb, budget); 1167 1168 tx_buf->dma_addr = 0; 1169 tx_buf->skb = NULL; 1170 tx_buf->fidx = -2; 1171 } 1172 1173 tx_ring->qcp_rd_p = qcp_rd_p; 1174 1175 u64_stats_update_begin(&r_vec->tx_sync); 1176 r_vec->tx_bytes += done_bytes; 1177 r_vec->tx_pkts += done_pkts; 1178 u64_stats_update_end(&r_vec->tx_sync); 1179 1180 if (!dp->netdev) 1181 return; 1182 1183 nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx); 1184 netdev_tx_completed_queue(nd_q, done_pkts, done_bytes); 1185 if (nfp_net_tx_ring_should_wake(tx_ring)) { 1186 /* Make sure TX thread will see updated tx_ring->rd_p */ 1187 smp_mb(); 1188 1189 if (unlikely(netif_tx_queue_stopped(nd_q))) 1190 netif_tx_wake_queue(nd_q); 1191 } 1192 1193 WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt, 1194 "TX ring corruption rd_p=%u wr_p=%u cnt=%u\n", 1195 tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt); 1196 } 1197 1198 static bool nfp_net_xdp_complete(struct nfp_net_tx_ring *tx_ring) 1199 { 1200 struct nfp_net_r_vector *r_vec = tx_ring->r_vec; 1201 u32 done_pkts = 0, done_bytes = 0; 1202 bool done_all; 1203 int idx, todo; 1204 u32 qcp_rd_p; 1205 1206 /* Work out how many descriptors have been transmitted */ 1207 qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q); 1208 1209 if (qcp_rd_p == tx_ring->qcp_rd_p) 1210 return true; 1211 1212 todo = D_IDX(tx_ring, qcp_rd_p - tx_ring->qcp_rd_p); 1213 1214 done_all = todo <= NFP_NET_XDP_MAX_COMPLETE; 1215 todo = min(todo, NFP_NET_XDP_MAX_COMPLETE); 1216 1217 tx_ring->qcp_rd_p = D_IDX(tx_ring, tx_ring->qcp_rd_p + todo); 1218 1219 done_pkts = todo; 1220 while (todo--) { 1221 idx = D_IDX(tx_ring, tx_ring->rd_p); 1222 tx_ring->rd_p++; 1223 1224 done_bytes += tx_ring->txbufs[idx].real_len; 1225 } 1226 1227 u64_stats_update_begin(&r_vec->tx_sync); 1228 r_vec->tx_bytes += done_bytes; 1229 r_vec->tx_pkts += done_pkts; 1230 u64_stats_update_end(&r_vec->tx_sync); 1231 1232 WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt, 1233 "XDP TX ring corruption rd_p=%u wr_p=%u cnt=%u\n", 1234 tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt); 1235 1236 return done_all; 1237 } 1238 1239 /** 1240 * nfp_net_tx_ring_reset() - Free any untransmitted buffers and reset pointers 1241 * @dp: NFP Net data path struct 1242 * @tx_ring: TX ring structure 1243 * 1244 * Assumes that the device is stopped, must be idempotent. 1245 */ 1246 static void 1247 nfp_net_tx_ring_reset(struct nfp_net_dp *dp, struct nfp_net_tx_ring *tx_ring) 1248 { 1249 const struct skb_frag_struct *frag; 1250 struct netdev_queue *nd_q; 1251 1252 while (!tx_ring->is_xdp && tx_ring->rd_p != tx_ring->wr_p) { 1253 struct nfp_net_tx_buf *tx_buf; 1254 struct sk_buff *skb; 1255 int idx, nr_frags; 1256 1257 idx = D_IDX(tx_ring, tx_ring->rd_p); 1258 tx_buf = &tx_ring->txbufs[idx]; 1259 1260 skb = tx_ring->txbufs[idx].skb; 1261 nr_frags = skb_shinfo(skb)->nr_frags; 1262 1263 if (tx_buf->fidx == -1) { 1264 /* unmap head */ 1265 dma_unmap_single(dp->dev, tx_buf->dma_addr, 1266 skb_headlen(skb), DMA_TO_DEVICE); 1267 } else { 1268 /* unmap fragment */ 1269 frag = &skb_shinfo(skb)->frags[tx_buf->fidx]; 1270 dma_unmap_page(dp->dev, tx_buf->dma_addr, 1271 skb_frag_size(frag), DMA_TO_DEVICE); 1272 } 1273 1274 /* check for last gather fragment */ 1275 if (tx_buf->fidx == nr_frags - 1) 1276 dev_kfree_skb_any(skb); 1277 1278 tx_buf->dma_addr = 0; 1279 tx_buf->skb = NULL; 1280 tx_buf->fidx = -2; 1281 1282 tx_ring->qcp_rd_p++; 1283 tx_ring->rd_p++; 1284 } 1285 1286 memset(tx_ring->txds, 0, tx_ring->size); 1287 tx_ring->wr_p = 0; 1288 tx_ring->rd_p = 0; 1289 tx_ring->qcp_rd_p = 0; 1290 tx_ring->wr_ptr_add = 0; 1291 1292 if (tx_ring->is_xdp || !dp->netdev) 1293 return; 1294 1295 nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx); 1296 netdev_tx_reset_queue(nd_q); 1297 } 1298 1299 static void nfp_net_tx_timeout(struct net_device *netdev) 1300 { 1301 struct nfp_net *nn = netdev_priv(netdev); 1302 int i; 1303 1304 for (i = 0; i < nn->dp.netdev->real_num_tx_queues; i++) { 1305 if (!netif_tx_queue_stopped(netdev_get_tx_queue(netdev, i))) 1306 continue; 1307 nn_warn(nn, "TX timeout on ring: %d\n", i); 1308 } 1309 nn_warn(nn, "TX watchdog timeout\n"); 1310 } 1311 1312 /* Receive processing 1313 */ 1314 static unsigned int 1315 nfp_net_calc_fl_bufsz(struct nfp_net_dp *dp) 1316 { 1317 unsigned int fl_bufsz; 1318 1319 fl_bufsz = NFP_NET_RX_BUF_HEADROOM; 1320 fl_bufsz += dp->rx_dma_off; 1321 if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC) 1322 fl_bufsz += NFP_NET_MAX_PREPEND; 1323 else 1324 fl_bufsz += dp->rx_offset; 1325 fl_bufsz += ETH_HLEN + VLAN_HLEN * 2 + dp->mtu; 1326 1327 fl_bufsz = SKB_DATA_ALIGN(fl_bufsz); 1328 fl_bufsz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 1329 1330 return fl_bufsz; 1331 } 1332 1333 static void 1334 nfp_net_free_frag(void *frag, bool xdp) 1335 { 1336 if (!xdp) 1337 skb_free_frag(frag); 1338 else 1339 __free_page(virt_to_page(frag)); 1340 } 1341 1342 /** 1343 * nfp_net_rx_alloc_one() - Allocate and map page frag for RX 1344 * @dp: NFP Net data path struct 1345 * @dma_addr: Pointer to storage for DMA address (output param) 1346 * 1347 * This function will allcate a new page frag, map it for DMA. 1348 * 1349 * Return: allocated page frag or NULL on failure. 1350 */ 1351 static void *nfp_net_rx_alloc_one(struct nfp_net_dp *dp, dma_addr_t *dma_addr) 1352 { 1353 void *frag; 1354 1355 if (!dp->xdp_prog) { 1356 frag = netdev_alloc_frag(dp->fl_bufsz); 1357 } else { 1358 struct page *page; 1359 1360 page = alloc_page(GFP_KERNEL); 1361 frag = page ? page_address(page) : NULL; 1362 } 1363 if (!frag) { 1364 nn_dp_warn(dp, "Failed to alloc receive page frag\n"); 1365 return NULL; 1366 } 1367 1368 *dma_addr = nfp_net_dma_map_rx(dp, frag); 1369 if (dma_mapping_error(dp->dev, *dma_addr)) { 1370 nfp_net_free_frag(frag, dp->xdp_prog); 1371 nn_dp_warn(dp, "Failed to map DMA RX buffer\n"); 1372 return NULL; 1373 } 1374 1375 return frag; 1376 } 1377 1378 static void *nfp_net_napi_alloc_one(struct nfp_net_dp *dp, dma_addr_t *dma_addr) 1379 { 1380 void *frag; 1381 1382 if (!dp->xdp_prog) { 1383 frag = napi_alloc_frag(dp->fl_bufsz); 1384 if (unlikely(!frag)) 1385 return NULL; 1386 } else { 1387 struct page *page; 1388 1389 page = dev_alloc_page(); 1390 if (unlikely(!page)) 1391 return NULL; 1392 frag = page_address(page); 1393 } 1394 1395 *dma_addr = nfp_net_dma_map_rx(dp, frag); 1396 if (dma_mapping_error(dp->dev, *dma_addr)) { 1397 nfp_net_free_frag(frag, dp->xdp_prog); 1398 nn_dp_warn(dp, "Failed to map DMA RX buffer\n"); 1399 return NULL; 1400 } 1401 1402 return frag; 1403 } 1404 1405 /** 1406 * nfp_net_rx_give_one() - Put mapped skb on the software and hardware rings 1407 * @dp: NFP Net data path struct 1408 * @rx_ring: RX ring structure 1409 * @frag: page fragment buffer 1410 * @dma_addr: DMA address of skb mapping 1411 */ 1412 static void nfp_net_rx_give_one(const struct nfp_net_dp *dp, 1413 struct nfp_net_rx_ring *rx_ring, 1414 void *frag, dma_addr_t dma_addr) 1415 { 1416 unsigned int wr_idx; 1417 1418 wr_idx = D_IDX(rx_ring, rx_ring->wr_p); 1419 1420 nfp_net_dma_sync_dev_rx(dp, dma_addr); 1421 1422 /* Stash SKB and DMA address away */ 1423 rx_ring->rxbufs[wr_idx].frag = frag; 1424 rx_ring->rxbufs[wr_idx].dma_addr = dma_addr; 1425 1426 /* Fill freelist descriptor */ 1427 rx_ring->rxds[wr_idx].fld.reserved = 0; 1428 rx_ring->rxds[wr_idx].fld.meta_len_dd = 0; 1429 nfp_desc_set_dma_addr(&rx_ring->rxds[wr_idx].fld, 1430 dma_addr + dp->rx_dma_off); 1431 1432 rx_ring->wr_p++; 1433 if (!(rx_ring->wr_p % NFP_NET_FL_BATCH)) { 1434 /* Update write pointer of the freelist queue. Make 1435 * sure all writes are flushed before telling the hardware. 1436 */ 1437 wmb(); 1438 nfp_qcp_wr_ptr_add(rx_ring->qcp_fl, NFP_NET_FL_BATCH); 1439 } 1440 } 1441 1442 /** 1443 * nfp_net_rx_ring_reset() - Reflect in SW state of freelist after disable 1444 * @rx_ring: RX ring structure 1445 * 1446 * Assumes that the device is stopped, must be idempotent. 1447 */ 1448 static void nfp_net_rx_ring_reset(struct nfp_net_rx_ring *rx_ring) 1449 { 1450 unsigned int wr_idx, last_idx; 1451 1452 /* wr_p == rd_p means ring was never fed FL bufs. RX rings are always 1453 * kept at cnt - 1 FL bufs. 1454 */ 1455 if (rx_ring->wr_p == 0 && rx_ring->rd_p == 0) 1456 return; 1457 1458 /* Move the empty entry to the end of the list */ 1459 wr_idx = D_IDX(rx_ring, rx_ring->wr_p); 1460 last_idx = rx_ring->cnt - 1; 1461 rx_ring->rxbufs[wr_idx].dma_addr = rx_ring->rxbufs[last_idx].dma_addr; 1462 rx_ring->rxbufs[wr_idx].frag = rx_ring->rxbufs[last_idx].frag; 1463 rx_ring->rxbufs[last_idx].dma_addr = 0; 1464 rx_ring->rxbufs[last_idx].frag = NULL; 1465 1466 memset(rx_ring->rxds, 0, rx_ring->size); 1467 rx_ring->wr_p = 0; 1468 rx_ring->rd_p = 0; 1469 } 1470 1471 /** 1472 * nfp_net_rx_ring_bufs_free() - Free any buffers currently on the RX ring 1473 * @dp: NFP Net data path struct 1474 * @rx_ring: RX ring to remove buffers from 1475 * 1476 * Assumes that the device is stopped and buffers are in [0, ring->cnt - 1) 1477 * entries. After device is disabled nfp_net_rx_ring_reset() must be called 1478 * to restore required ring geometry. 1479 */ 1480 static void 1481 nfp_net_rx_ring_bufs_free(struct nfp_net_dp *dp, 1482 struct nfp_net_rx_ring *rx_ring) 1483 { 1484 unsigned int i; 1485 1486 for (i = 0; i < rx_ring->cnt - 1; i++) { 1487 /* NULL skb can only happen when initial filling of the ring 1488 * fails to allocate enough buffers and calls here to free 1489 * already allocated ones. 1490 */ 1491 if (!rx_ring->rxbufs[i].frag) 1492 continue; 1493 1494 nfp_net_dma_unmap_rx(dp, rx_ring->rxbufs[i].dma_addr); 1495 nfp_net_free_frag(rx_ring->rxbufs[i].frag, dp->xdp_prog); 1496 rx_ring->rxbufs[i].dma_addr = 0; 1497 rx_ring->rxbufs[i].frag = NULL; 1498 } 1499 } 1500 1501 /** 1502 * nfp_net_rx_ring_bufs_alloc() - Fill RX ring with buffers (don't give to FW) 1503 * @dp: NFP Net data path struct 1504 * @rx_ring: RX ring to remove buffers from 1505 */ 1506 static int 1507 nfp_net_rx_ring_bufs_alloc(struct nfp_net_dp *dp, 1508 struct nfp_net_rx_ring *rx_ring) 1509 { 1510 struct nfp_net_rx_buf *rxbufs; 1511 unsigned int i; 1512 1513 rxbufs = rx_ring->rxbufs; 1514 1515 for (i = 0; i < rx_ring->cnt - 1; i++) { 1516 rxbufs[i].frag = nfp_net_rx_alloc_one(dp, &rxbufs[i].dma_addr); 1517 if (!rxbufs[i].frag) { 1518 nfp_net_rx_ring_bufs_free(dp, rx_ring); 1519 return -ENOMEM; 1520 } 1521 } 1522 1523 return 0; 1524 } 1525 1526 /** 1527 * nfp_net_rx_ring_fill_freelist() - Give buffers from the ring to FW 1528 * @dp: NFP Net data path struct 1529 * @rx_ring: RX ring to fill 1530 */ 1531 static void 1532 nfp_net_rx_ring_fill_freelist(struct nfp_net_dp *dp, 1533 struct nfp_net_rx_ring *rx_ring) 1534 { 1535 unsigned int i; 1536 1537 for (i = 0; i < rx_ring->cnt - 1; i++) 1538 nfp_net_rx_give_one(dp, rx_ring, rx_ring->rxbufs[i].frag, 1539 rx_ring->rxbufs[i].dma_addr); 1540 } 1541 1542 /** 1543 * nfp_net_rx_csum_has_errors() - group check if rxd has any csum errors 1544 * @flags: RX descriptor flags field in CPU byte order 1545 */ 1546 static int nfp_net_rx_csum_has_errors(u16 flags) 1547 { 1548 u16 csum_all_checked, csum_all_ok; 1549 1550 csum_all_checked = flags & __PCIE_DESC_RX_CSUM_ALL; 1551 csum_all_ok = flags & __PCIE_DESC_RX_CSUM_ALL_OK; 1552 1553 return csum_all_checked != (csum_all_ok << PCIE_DESC_RX_CSUM_OK_SHIFT); 1554 } 1555 1556 /** 1557 * nfp_net_rx_csum() - set SKB checksum field based on RX descriptor flags 1558 * @dp: NFP Net data path struct 1559 * @r_vec: per-ring structure 1560 * @rxd: Pointer to RX descriptor 1561 * @meta: Parsed metadata prepend 1562 * @skb: Pointer to SKB 1563 */ 1564 static void nfp_net_rx_csum(struct nfp_net_dp *dp, 1565 struct nfp_net_r_vector *r_vec, 1566 struct nfp_net_rx_desc *rxd, 1567 struct nfp_meta_parsed *meta, struct sk_buff *skb) 1568 { 1569 skb_checksum_none_assert(skb); 1570 1571 if (!(dp->netdev->features & NETIF_F_RXCSUM)) 1572 return; 1573 1574 if (meta->csum_type) { 1575 skb->ip_summed = meta->csum_type; 1576 skb->csum = meta->csum; 1577 u64_stats_update_begin(&r_vec->rx_sync); 1578 r_vec->hw_csum_rx_complete++; 1579 u64_stats_update_end(&r_vec->rx_sync); 1580 return; 1581 } 1582 1583 if (nfp_net_rx_csum_has_errors(le16_to_cpu(rxd->rxd.flags))) { 1584 u64_stats_update_begin(&r_vec->rx_sync); 1585 r_vec->hw_csum_rx_error++; 1586 u64_stats_update_end(&r_vec->rx_sync); 1587 return; 1588 } 1589 1590 /* Assume that the firmware will never report inner CSUM_OK unless outer 1591 * L4 headers were successfully parsed. FW will always report zero UDP 1592 * checksum as CSUM_OK. 1593 */ 1594 if (rxd->rxd.flags & PCIE_DESC_RX_TCP_CSUM_OK || 1595 rxd->rxd.flags & PCIE_DESC_RX_UDP_CSUM_OK) { 1596 __skb_incr_checksum_unnecessary(skb); 1597 u64_stats_update_begin(&r_vec->rx_sync); 1598 r_vec->hw_csum_rx_ok++; 1599 u64_stats_update_end(&r_vec->rx_sync); 1600 } 1601 1602 if (rxd->rxd.flags & PCIE_DESC_RX_I_TCP_CSUM_OK || 1603 rxd->rxd.flags & PCIE_DESC_RX_I_UDP_CSUM_OK) { 1604 __skb_incr_checksum_unnecessary(skb); 1605 u64_stats_update_begin(&r_vec->rx_sync); 1606 r_vec->hw_csum_rx_inner_ok++; 1607 u64_stats_update_end(&r_vec->rx_sync); 1608 } 1609 } 1610 1611 static void 1612 nfp_net_set_hash(struct net_device *netdev, struct nfp_meta_parsed *meta, 1613 unsigned int type, __be32 *hash) 1614 { 1615 if (!(netdev->features & NETIF_F_RXHASH)) 1616 return; 1617 1618 switch (type) { 1619 case NFP_NET_RSS_IPV4: 1620 case NFP_NET_RSS_IPV6: 1621 case NFP_NET_RSS_IPV6_EX: 1622 meta->hash_type = PKT_HASH_TYPE_L3; 1623 break; 1624 default: 1625 meta->hash_type = PKT_HASH_TYPE_L4; 1626 break; 1627 } 1628 1629 meta->hash = get_unaligned_be32(hash); 1630 } 1631 1632 static void 1633 nfp_net_set_hash_desc(struct net_device *netdev, struct nfp_meta_parsed *meta, 1634 void *data, struct nfp_net_rx_desc *rxd) 1635 { 1636 struct nfp_net_rx_hash *rx_hash = data; 1637 1638 if (!(rxd->rxd.flags & PCIE_DESC_RX_RSS)) 1639 return; 1640 1641 nfp_net_set_hash(netdev, meta, get_unaligned_be32(&rx_hash->hash_type), 1642 &rx_hash->hash); 1643 } 1644 1645 static void * 1646 nfp_net_parse_meta(struct net_device *netdev, struct nfp_meta_parsed *meta, 1647 void *data, int meta_len) 1648 { 1649 u32 meta_info; 1650 1651 meta_info = get_unaligned_be32(data); 1652 data += 4; 1653 1654 while (meta_info) { 1655 switch (meta_info & NFP_NET_META_FIELD_MASK) { 1656 case NFP_NET_META_HASH: 1657 meta_info >>= NFP_NET_META_FIELD_SIZE; 1658 nfp_net_set_hash(netdev, meta, 1659 meta_info & NFP_NET_META_FIELD_MASK, 1660 (__be32 *)data); 1661 data += 4; 1662 break; 1663 case NFP_NET_META_MARK: 1664 meta->mark = get_unaligned_be32(data); 1665 data += 4; 1666 break; 1667 case NFP_NET_META_PORTID: 1668 meta->portid = get_unaligned_be32(data); 1669 data += 4; 1670 break; 1671 case NFP_NET_META_CSUM: 1672 meta->csum_type = CHECKSUM_COMPLETE; 1673 meta->csum = 1674 (__force __wsum)__get_unaligned_cpu32(data); 1675 data += 4; 1676 break; 1677 default: 1678 return NULL; 1679 } 1680 1681 meta_info >>= NFP_NET_META_FIELD_SIZE; 1682 } 1683 1684 return data; 1685 } 1686 1687 static void 1688 nfp_net_rx_drop(const struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec, 1689 struct nfp_net_rx_ring *rx_ring, struct nfp_net_rx_buf *rxbuf, 1690 struct sk_buff *skb) 1691 { 1692 u64_stats_update_begin(&r_vec->rx_sync); 1693 r_vec->rx_drops++; 1694 /* If we have both skb and rxbuf the replacement buffer allocation 1695 * must have failed, count this as an alloc failure. 1696 */ 1697 if (skb && rxbuf) 1698 r_vec->rx_replace_buf_alloc_fail++; 1699 u64_stats_update_end(&r_vec->rx_sync); 1700 1701 /* skb is build based on the frag, free_skb() would free the frag 1702 * so to be able to reuse it we need an extra ref. 1703 */ 1704 if (skb && rxbuf && skb->head == rxbuf->frag) 1705 page_ref_inc(virt_to_head_page(rxbuf->frag)); 1706 if (rxbuf) 1707 nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag, rxbuf->dma_addr); 1708 if (skb) 1709 dev_kfree_skb_any(skb); 1710 } 1711 1712 static bool 1713 nfp_net_tx_xdp_buf(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring, 1714 struct nfp_net_tx_ring *tx_ring, 1715 struct nfp_net_rx_buf *rxbuf, unsigned int dma_off, 1716 unsigned int pkt_len, bool *completed) 1717 { 1718 struct nfp_net_tx_buf *txbuf; 1719 struct nfp_net_tx_desc *txd; 1720 int wr_idx; 1721 1722 if (unlikely(nfp_net_tx_full(tx_ring, 1))) { 1723 if (!*completed) { 1724 nfp_net_xdp_complete(tx_ring); 1725 *completed = true; 1726 } 1727 1728 if (unlikely(nfp_net_tx_full(tx_ring, 1))) { 1729 nfp_net_rx_drop(dp, rx_ring->r_vec, rx_ring, rxbuf, 1730 NULL); 1731 return false; 1732 } 1733 } 1734 1735 wr_idx = D_IDX(tx_ring, tx_ring->wr_p); 1736 1737 /* Stash the soft descriptor of the head then initialize it */ 1738 txbuf = &tx_ring->txbufs[wr_idx]; 1739 1740 nfp_net_rx_give_one(dp, rx_ring, txbuf->frag, txbuf->dma_addr); 1741 1742 txbuf->frag = rxbuf->frag; 1743 txbuf->dma_addr = rxbuf->dma_addr; 1744 txbuf->fidx = -1; 1745 txbuf->pkt_cnt = 1; 1746 txbuf->real_len = pkt_len; 1747 1748 dma_sync_single_for_device(dp->dev, rxbuf->dma_addr + dma_off, 1749 pkt_len, DMA_BIDIRECTIONAL); 1750 1751 /* Build TX descriptor */ 1752 txd = &tx_ring->txds[wr_idx]; 1753 txd->offset_eop = PCIE_DESC_TX_EOP; 1754 txd->dma_len = cpu_to_le16(pkt_len); 1755 nfp_desc_set_dma_addr(txd, rxbuf->dma_addr + dma_off); 1756 txd->data_len = cpu_to_le16(pkt_len); 1757 1758 txd->flags = 0; 1759 txd->mss = 0; 1760 txd->lso_hdrlen = 0; 1761 1762 tx_ring->wr_p++; 1763 tx_ring->wr_ptr_add++; 1764 return true; 1765 } 1766 1767 /** 1768 * nfp_net_rx() - receive up to @budget packets on @rx_ring 1769 * @rx_ring: RX ring to receive from 1770 * @budget: NAPI budget 1771 * 1772 * Note, this function is separated out from the napi poll function to 1773 * more cleanly separate packet receive code from other bookkeeping 1774 * functions performed in the napi poll function. 1775 * 1776 * Return: Number of packets received. 1777 */ 1778 static int nfp_net_rx(struct nfp_net_rx_ring *rx_ring, int budget) 1779 { 1780 struct nfp_net_r_vector *r_vec = rx_ring->r_vec; 1781 struct nfp_net_dp *dp = &r_vec->nfp_net->dp; 1782 struct nfp_net_tx_ring *tx_ring; 1783 struct bpf_prog *xdp_prog; 1784 bool xdp_tx_cmpl = false; 1785 unsigned int true_bufsz; 1786 struct sk_buff *skb; 1787 int pkts_polled = 0; 1788 struct xdp_buff xdp; 1789 int idx; 1790 1791 rcu_read_lock(); 1792 xdp_prog = READ_ONCE(dp->xdp_prog); 1793 true_bufsz = xdp_prog ? PAGE_SIZE : dp->fl_bufsz; 1794 xdp.rxq = &rx_ring->xdp_rxq; 1795 tx_ring = r_vec->xdp_ring; 1796 1797 while (pkts_polled < budget) { 1798 unsigned int meta_len, data_len, meta_off, pkt_len, pkt_off; 1799 struct nfp_net_rx_buf *rxbuf; 1800 struct nfp_net_rx_desc *rxd; 1801 struct nfp_meta_parsed meta; 1802 bool redir_egress = false; 1803 struct net_device *netdev; 1804 dma_addr_t new_dma_addr; 1805 u32 meta_len_xdp = 0; 1806 void *new_frag; 1807 1808 idx = D_IDX(rx_ring, rx_ring->rd_p); 1809 1810 rxd = &rx_ring->rxds[idx]; 1811 if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD)) 1812 break; 1813 1814 /* Memory barrier to ensure that we won't do other reads 1815 * before the DD bit. 1816 */ 1817 dma_rmb(); 1818 1819 memset(&meta, 0, sizeof(meta)); 1820 1821 rx_ring->rd_p++; 1822 pkts_polled++; 1823 1824 rxbuf = &rx_ring->rxbufs[idx]; 1825 /* < meta_len > 1826 * <-- [rx_offset] --> 1827 * --------------------------------------------------------- 1828 * | [XX] | metadata | packet | XXXX | 1829 * --------------------------------------------------------- 1830 * <---------------- data_len ---------------> 1831 * 1832 * The rx_offset is fixed for all packets, the meta_len can vary 1833 * on a packet by packet basis. If rx_offset is set to zero 1834 * (_RX_OFFSET_DYNAMIC) metadata starts at the beginning of the 1835 * buffer and is immediately followed by the packet (no [XX]). 1836 */ 1837 meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK; 1838 data_len = le16_to_cpu(rxd->rxd.data_len); 1839 pkt_len = data_len - meta_len; 1840 1841 pkt_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_dma_off; 1842 if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC) 1843 pkt_off += meta_len; 1844 else 1845 pkt_off += dp->rx_offset; 1846 meta_off = pkt_off - meta_len; 1847 1848 /* Stats update */ 1849 u64_stats_update_begin(&r_vec->rx_sync); 1850 r_vec->rx_pkts++; 1851 r_vec->rx_bytes += pkt_len; 1852 u64_stats_update_end(&r_vec->rx_sync); 1853 1854 if (unlikely(meta_len > NFP_NET_MAX_PREPEND || 1855 (dp->rx_offset && meta_len > dp->rx_offset))) { 1856 nn_dp_warn(dp, "oversized RX packet metadata %u\n", 1857 meta_len); 1858 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL); 1859 continue; 1860 } 1861 1862 nfp_net_dma_sync_cpu_rx(dp, rxbuf->dma_addr + meta_off, 1863 data_len); 1864 1865 if (!dp->chained_metadata_format) { 1866 nfp_net_set_hash_desc(dp->netdev, &meta, 1867 rxbuf->frag + meta_off, rxd); 1868 } else if (meta_len) { 1869 void *end; 1870 1871 end = nfp_net_parse_meta(dp->netdev, &meta, 1872 rxbuf->frag + meta_off, 1873 meta_len); 1874 if (unlikely(end != rxbuf->frag + pkt_off)) { 1875 nn_dp_warn(dp, "invalid RX packet metadata\n"); 1876 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, 1877 NULL); 1878 continue; 1879 } 1880 } 1881 1882 if (xdp_prog && !meta.portid) { 1883 void *orig_data = rxbuf->frag + pkt_off; 1884 unsigned int dma_off; 1885 int act; 1886 1887 xdp.data_hard_start = rxbuf->frag + NFP_NET_RX_BUF_HEADROOM; 1888 xdp.data = orig_data; 1889 xdp.data_meta = orig_data; 1890 xdp.data_end = orig_data + pkt_len; 1891 1892 act = bpf_prog_run_xdp(xdp_prog, &xdp); 1893 1894 pkt_len = xdp.data_end - xdp.data; 1895 pkt_off += xdp.data - orig_data; 1896 1897 switch (act) { 1898 case XDP_PASS: 1899 meta_len_xdp = xdp.data - xdp.data_meta; 1900 break; 1901 case XDP_TX: 1902 dma_off = pkt_off - NFP_NET_RX_BUF_HEADROOM; 1903 if (unlikely(!nfp_net_tx_xdp_buf(dp, rx_ring, 1904 tx_ring, rxbuf, 1905 dma_off, 1906 pkt_len, 1907 &xdp_tx_cmpl))) 1908 trace_xdp_exception(dp->netdev, 1909 xdp_prog, act); 1910 continue; 1911 default: 1912 bpf_warn_invalid_xdp_action(act); 1913 /* fall through */ 1914 case XDP_ABORTED: 1915 trace_xdp_exception(dp->netdev, xdp_prog, act); 1916 /* fall through */ 1917 case XDP_DROP: 1918 nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag, 1919 rxbuf->dma_addr); 1920 continue; 1921 } 1922 } 1923 1924 if (likely(!meta.portid)) { 1925 netdev = dp->netdev; 1926 } else if (meta.portid == NFP_META_PORT_ID_CTRL) { 1927 struct nfp_net *nn = netdev_priv(dp->netdev); 1928 1929 nfp_app_ctrl_rx_raw(nn->app, rxbuf->frag + pkt_off, 1930 pkt_len); 1931 nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag, 1932 rxbuf->dma_addr); 1933 continue; 1934 } else { 1935 struct nfp_net *nn; 1936 1937 nn = netdev_priv(dp->netdev); 1938 netdev = nfp_app_dev_get(nn->app, meta.portid, 1939 &redir_egress); 1940 if (unlikely(!netdev)) { 1941 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, 1942 NULL); 1943 continue; 1944 } 1945 1946 if (nfp_netdev_is_nfp_repr(netdev)) 1947 nfp_repr_inc_rx_stats(netdev, pkt_len); 1948 } 1949 1950 skb = build_skb(rxbuf->frag, true_bufsz); 1951 if (unlikely(!skb)) { 1952 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL); 1953 continue; 1954 } 1955 new_frag = nfp_net_napi_alloc_one(dp, &new_dma_addr); 1956 if (unlikely(!new_frag)) { 1957 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, skb); 1958 continue; 1959 } 1960 1961 nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr); 1962 1963 nfp_net_rx_give_one(dp, rx_ring, new_frag, new_dma_addr); 1964 1965 skb_reserve(skb, pkt_off); 1966 skb_put(skb, pkt_len); 1967 1968 skb->mark = meta.mark; 1969 skb_set_hash(skb, meta.hash, meta.hash_type); 1970 1971 skb_record_rx_queue(skb, rx_ring->idx); 1972 skb->protocol = eth_type_trans(skb, netdev); 1973 1974 nfp_net_rx_csum(dp, r_vec, rxd, &meta, skb); 1975 1976 #ifdef CONFIG_TLS_DEVICE 1977 if (rxd->rxd.flags & PCIE_DESC_RX_DECRYPTED) { 1978 skb->decrypted = true; 1979 u64_stats_update_begin(&r_vec->rx_sync); 1980 r_vec->hw_tls_rx++; 1981 u64_stats_update_end(&r_vec->rx_sync); 1982 } 1983 #endif 1984 1985 if (rxd->rxd.flags & PCIE_DESC_RX_VLAN) 1986 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 1987 le16_to_cpu(rxd->rxd.vlan)); 1988 if (meta_len_xdp) 1989 skb_metadata_set(skb, meta_len_xdp); 1990 1991 if (likely(!redir_egress)) { 1992 napi_gro_receive(&rx_ring->r_vec->napi, skb); 1993 } else { 1994 skb->dev = netdev; 1995 __skb_push(skb, ETH_HLEN); 1996 dev_queue_xmit(skb); 1997 } 1998 } 1999 2000 if (xdp_prog) { 2001 if (tx_ring->wr_ptr_add) 2002 nfp_net_tx_xmit_more_flush(tx_ring); 2003 else if (unlikely(tx_ring->wr_p != tx_ring->rd_p) && 2004 !xdp_tx_cmpl) 2005 if (!nfp_net_xdp_complete(tx_ring)) 2006 pkts_polled = budget; 2007 } 2008 rcu_read_unlock(); 2009 2010 return pkts_polled; 2011 } 2012 2013 /** 2014 * nfp_net_poll() - napi poll function 2015 * @napi: NAPI structure 2016 * @budget: NAPI budget 2017 * 2018 * Return: number of packets polled. 2019 */ 2020 static int nfp_net_poll(struct napi_struct *napi, int budget) 2021 { 2022 struct nfp_net_r_vector *r_vec = 2023 container_of(napi, struct nfp_net_r_vector, napi); 2024 unsigned int pkts_polled = 0; 2025 2026 if (r_vec->tx_ring) 2027 nfp_net_tx_complete(r_vec->tx_ring, budget); 2028 if (r_vec->rx_ring) 2029 pkts_polled = nfp_net_rx(r_vec->rx_ring, budget); 2030 2031 if (pkts_polled < budget) 2032 if (napi_complete_done(napi, pkts_polled)) 2033 nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry); 2034 2035 return pkts_polled; 2036 } 2037 2038 /* Control device data path 2039 */ 2040 2041 static bool 2042 nfp_ctrl_tx_one(struct nfp_net *nn, struct nfp_net_r_vector *r_vec, 2043 struct sk_buff *skb, bool old) 2044 { 2045 unsigned int real_len = skb->len, meta_len = 0; 2046 struct nfp_net_tx_ring *tx_ring; 2047 struct nfp_net_tx_buf *txbuf; 2048 struct nfp_net_tx_desc *txd; 2049 struct nfp_net_dp *dp; 2050 dma_addr_t dma_addr; 2051 int wr_idx; 2052 2053 dp = &r_vec->nfp_net->dp; 2054 tx_ring = r_vec->tx_ring; 2055 2056 if (WARN_ON_ONCE(skb_shinfo(skb)->nr_frags)) { 2057 nn_dp_warn(dp, "Driver's CTRL TX does not implement gather\n"); 2058 goto err_free; 2059 } 2060 2061 if (unlikely(nfp_net_tx_full(tx_ring, 1))) { 2062 u64_stats_update_begin(&r_vec->tx_sync); 2063 r_vec->tx_busy++; 2064 u64_stats_update_end(&r_vec->tx_sync); 2065 if (!old) 2066 __skb_queue_tail(&r_vec->queue, skb); 2067 else 2068 __skb_queue_head(&r_vec->queue, skb); 2069 return true; 2070 } 2071 2072 if (nfp_app_ctrl_has_meta(nn->app)) { 2073 if (unlikely(skb_headroom(skb) < 8)) { 2074 nn_dp_warn(dp, "CTRL TX on skb without headroom\n"); 2075 goto err_free; 2076 } 2077 meta_len = 8; 2078 put_unaligned_be32(NFP_META_PORT_ID_CTRL, skb_push(skb, 4)); 2079 put_unaligned_be32(NFP_NET_META_PORTID, skb_push(skb, 4)); 2080 } 2081 2082 /* Start with the head skbuf */ 2083 dma_addr = dma_map_single(dp->dev, skb->data, skb_headlen(skb), 2084 DMA_TO_DEVICE); 2085 if (dma_mapping_error(dp->dev, dma_addr)) 2086 goto err_dma_warn; 2087 2088 wr_idx = D_IDX(tx_ring, tx_ring->wr_p); 2089 2090 /* Stash the soft descriptor of the head then initialize it */ 2091 txbuf = &tx_ring->txbufs[wr_idx]; 2092 txbuf->skb = skb; 2093 txbuf->dma_addr = dma_addr; 2094 txbuf->fidx = -1; 2095 txbuf->pkt_cnt = 1; 2096 txbuf->real_len = real_len; 2097 2098 /* Build TX descriptor */ 2099 txd = &tx_ring->txds[wr_idx]; 2100 txd->offset_eop = meta_len | PCIE_DESC_TX_EOP; 2101 txd->dma_len = cpu_to_le16(skb_headlen(skb)); 2102 nfp_desc_set_dma_addr(txd, dma_addr); 2103 txd->data_len = cpu_to_le16(skb->len); 2104 2105 txd->flags = 0; 2106 txd->mss = 0; 2107 txd->lso_hdrlen = 0; 2108 2109 tx_ring->wr_p++; 2110 tx_ring->wr_ptr_add++; 2111 nfp_net_tx_xmit_more_flush(tx_ring); 2112 2113 return false; 2114 2115 err_dma_warn: 2116 nn_dp_warn(dp, "Failed to DMA map TX CTRL buffer\n"); 2117 err_free: 2118 u64_stats_update_begin(&r_vec->tx_sync); 2119 r_vec->tx_errors++; 2120 u64_stats_update_end(&r_vec->tx_sync); 2121 dev_kfree_skb_any(skb); 2122 return false; 2123 } 2124 2125 bool __nfp_ctrl_tx(struct nfp_net *nn, struct sk_buff *skb) 2126 { 2127 struct nfp_net_r_vector *r_vec = &nn->r_vecs[0]; 2128 2129 return nfp_ctrl_tx_one(nn, r_vec, skb, false); 2130 } 2131 2132 bool nfp_ctrl_tx(struct nfp_net *nn, struct sk_buff *skb) 2133 { 2134 struct nfp_net_r_vector *r_vec = &nn->r_vecs[0]; 2135 bool ret; 2136 2137 spin_lock_bh(&r_vec->lock); 2138 ret = nfp_ctrl_tx_one(nn, r_vec, skb, false); 2139 spin_unlock_bh(&r_vec->lock); 2140 2141 return ret; 2142 } 2143 2144 static void __nfp_ctrl_tx_queued(struct nfp_net_r_vector *r_vec) 2145 { 2146 struct sk_buff *skb; 2147 2148 while ((skb = __skb_dequeue(&r_vec->queue))) 2149 if (nfp_ctrl_tx_one(r_vec->nfp_net, r_vec, skb, true)) 2150 return; 2151 } 2152 2153 static bool 2154 nfp_ctrl_meta_ok(struct nfp_net *nn, void *data, unsigned int meta_len) 2155 { 2156 u32 meta_type, meta_tag; 2157 2158 if (!nfp_app_ctrl_has_meta(nn->app)) 2159 return !meta_len; 2160 2161 if (meta_len != 8) 2162 return false; 2163 2164 meta_type = get_unaligned_be32(data); 2165 meta_tag = get_unaligned_be32(data + 4); 2166 2167 return (meta_type == NFP_NET_META_PORTID && 2168 meta_tag == NFP_META_PORT_ID_CTRL); 2169 } 2170 2171 static bool 2172 nfp_ctrl_rx_one(struct nfp_net *nn, struct nfp_net_dp *dp, 2173 struct nfp_net_r_vector *r_vec, struct nfp_net_rx_ring *rx_ring) 2174 { 2175 unsigned int meta_len, data_len, meta_off, pkt_len, pkt_off; 2176 struct nfp_net_rx_buf *rxbuf; 2177 struct nfp_net_rx_desc *rxd; 2178 dma_addr_t new_dma_addr; 2179 struct sk_buff *skb; 2180 void *new_frag; 2181 int idx; 2182 2183 idx = D_IDX(rx_ring, rx_ring->rd_p); 2184 2185 rxd = &rx_ring->rxds[idx]; 2186 if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD)) 2187 return false; 2188 2189 /* Memory barrier to ensure that we won't do other reads 2190 * before the DD bit. 2191 */ 2192 dma_rmb(); 2193 2194 rx_ring->rd_p++; 2195 2196 rxbuf = &rx_ring->rxbufs[idx]; 2197 meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK; 2198 data_len = le16_to_cpu(rxd->rxd.data_len); 2199 pkt_len = data_len - meta_len; 2200 2201 pkt_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_dma_off; 2202 if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC) 2203 pkt_off += meta_len; 2204 else 2205 pkt_off += dp->rx_offset; 2206 meta_off = pkt_off - meta_len; 2207 2208 /* Stats update */ 2209 u64_stats_update_begin(&r_vec->rx_sync); 2210 r_vec->rx_pkts++; 2211 r_vec->rx_bytes += pkt_len; 2212 u64_stats_update_end(&r_vec->rx_sync); 2213 2214 nfp_net_dma_sync_cpu_rx(dp, rxbuf->dma_addr + meta_off, data_len); 2215 2216 if (unlikely(!nfp_ctrl_meta_ok(nn, rxbuf->frag + meta_off, meta_len))) { 2217 nn_dp_warn(dp, "incorrect metadata for ctrl packet (%d)\n", 2218 meta_len); 2219 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL); 2220 return true; 2221 } 2222 2223 skb = build_skb(rxbuf->frag, dp->fl_bufsz); 2224 if (unlikely(!skb)) { 2225 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL); 2226 return true; 2227 } 2228 new_frag = nfp_net_napi_alloc_one(dp, &new_dma_addr); 2229 if (unlikely(!new_frag)) { 2230 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, skb); 2231 return true; 2232 } 2233 2234 nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr); 2235 2236 nfp_net_rx_give_one(dp, rx_ring, new_frag, new_dma_addr); 2237 2238 skb_reserve(skb, pkt_off); 2239 skb_put(skb, pkt_len); 2240 2241 nfp_app_ctrl_rx(nn->app, skb); 2242 2243 return true; 2244 } 2245 2246 static bool nfp_ctrl_rx(struct nfp_net_r_vector *r_vec) 2247 { 2248 struct nfp_net_rx_ring *rx_ring = r_vec->rx_ring; 2249 struct nfp_net *nn = r_vec->nfp_net; 2250 struct nfp_net_dp *dp = &nn->dp; 2251 unsigned int budget = 512; 2252 2253 while (nfp_ctrl_rx_one(nn, dp, r_vec, rx_ring) && budget--) 2254 continue; 2255 2256 return budget; 2257 } 2258 2259 static void nfp_ctrl_poll(unsigned long arg) 2260 { 2261 struct nfp_net_r_vector *r_vec = (void *)arg; 2262 2263 spin_lock(&r_vec->lock); 2264 nfp_net_tx_complete(r_vec->tx_ring, 0); 2265 __nfp_ctrl_tx_queued(r_vec); 2266 spin_unlock(&r_vec->lock); 2267 2268 if (nfp_ctrl_rx(r_vec)) { 2269 nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry); 2270 } else { 2271 tasklet_schedule(&r_vec->tasklet); 2272 nn_dp_warn(&r_vec->nfp_net->dp, 2273 "control message budget exceeded!\n"); 2274 } 2275 } 2276 2277 /* Setup and Configuration 2278 */ 2279 2280 /** 2281 * nfp_net_vecs_init() - Assign IRQs and setup rvecs. 2282 * @nn: NFP Network structure 2283 */ 2284 static void nfp_net_vecs_init(struct nfp_net *nn) 2285 { 2286 struct nfp_net_r_vector *r_vec; 2287 int r; 2288 2289 nn->lsc_handler = nfp_net_irq_lsc; 2290 nn->exn_handler = nfp_net_irq_exn; 2291 2292 for (r = 0; r < nn->max_r_vecs; r++) { 2293 struct msix_entry *entry; 2294 2295 entry = &nn->irq_entries[NFP_NET_NON_Q_VECTORS + r]; 2296 2297 r_vec = &nn->r_vecs[r]; 2298 r_vec->nfp_net = nn; 2299 r_vec->irq_entry = entry->entry; 2300 r_vec->irq_vector = entry->vector; 2301 2302 if (nn->dp.netdev) { 2303 r_vec->handler = nfp_net_irq_rxtx; 2304 } else { 2305 r_vec->handler = nfp_ctrl_irq_rxtx; 2306 2307 __skb_queue_head_init(&r_vec->queue); 2308 spin_lock_init(&r_vec->lock); 2309 tasklet_init(&r_vec->tasklet, nfp_ctrl_poll, 2310 (unsigned long)r_vec); 2311 tasklet_disable(&r_vec->tasklet); 2312 } 2313 2314 cpumask_set_cpu(r, &r_vec->affinity_mask); 2315 } 2316 } 2317 2318 /** 2319 * nfp_net_tx_ring_free() - Free resources allocated to a TX ring 2320 * @tx_ring: TX ring to free 2321 */ 2322 static void nfp_net_tx_ring_free(struct nfp_net_tx_ring *tx_ring) 2323 { 2324 struct nfp_net_r_vector *r_vec = tx_ring->r_vec; 2325 struct nfp_net_dp *dp = &r_vec->nfp_net->dp; 2326 2327 kvfree(tx_ring->txbufs); 2328 2329 if (tx_ring->txds) 2330 dma_free_coherent(dp->dev, tx_ring->size, 2331 tx_ring->txds, tx_ring->dma); 2332 2333 tx_ring->cnt = 0; 2334 tx_ring->txbufs = NULL; 2335 tx_ring->txds = NULL; 2336 tx_ring->dma = 0; 2337 tx_ring->size = 0; 2338 } 2339 2340 /** 2341 * nfp_net_tx_ring_alloc() - Allocate resource for a TX ring 2342 * @dp: NFP Net data path struct 2343 * @tx_ring: TX Ring structure to allocate 2344 * 2345 * Return: 0 on success, negative errno otherwise. 2346 */ 2347 static int 2348 nfp_net_tx_ring_alloc(struct nfp_net_dp *dp, struct nfp_net_tx_ring *tx_ring) 2349 { 2350 struct nfp_net_r_vector *r_vec = tx_ring->r_vec; 2351 2352 tx_ring->cnt = dp->txd_cnt; 2353 2354 tx_ring->size = array_size(tx_ring->cnt, sizeof(*tx_ring->txds)); 2355 tx_ring->txds = dma_alloc_coherent(dp->dev, tx_ring->size, 2356 &tx_ring->dma, 2357 GFP_KERNEL | __GFP_NOWARN); 2358 if (!tx_ring->txds) { 2359 netdev_warn(dp->netdev, "failed to allocate TX descriptor ring memory, requested descriptor count: %d, consider lowering descriptor count\n", 2360 tx_ring->cnt); 2361 goto err_alloc; 2362 } 2363 2364 tx_ring->txbufs = kvcalloc(tx_ring->cnt, sizeof(*tx_ring->txbufs), 2365 GFP_KERNEL); 2366 if (!tx_ring->txbufs) 2367 goto err_alloc; 2368 2369 if (!tx_ring->is_xdp && dp->netdev) 2370 netif_set_xps_queue(dp->netdev, &r_vec->affinity_mask, 2371 tx_ring->idx); 2372 2373 return 0; 2374 2375 err_alloc: 2376 nfp_net_tx_ring_free(tx_ring); 2377 return -ENOMEM; 2378 } 2379 2380 static void 2381 nfp_net_tx_ring_bufs_free(struct nfp_net_dp *dp, 2382 struct nfp_net_tx_ring *tx_ring) 2383 { 2384 unsigned int i; 2385 2386 if (!tx_ring->is_xdp) 2387 return; 2388 2389 for (i = 0; i < tx_ring->cnt; i++) { 2390 if (!tx_ring->txbufs[i].frag) 2391 return; 2392 2393 nfp_net_dma_unmap_rx(dp, tx_ring->txbufs[i].dma_addr); 2394 __free_page(virt_to_page(tx_ring->txbufs[i].frag)); 2395 } 2396 } 2397 2398 static int 2399 nfp_net_tx_ring_bufs_alloc(struct nfp_net_dp *dp, 2400 struct nfp_net_tx_ring *tx_ring) 2401 { 2402 struct nfp_net_tx_buf *txbufs = tx_ring->txbufs; 2403 unsigned int i; 2404 2405 if (!tx_ring->is_xdp) 2406 return 0; 2407 2408 for (i = 0; i < tx_ring->cnt; i++) { 2409 txbufs[i].frag = nfp_net_rx_alloc_one(dp, &txbufs[i].dma_addr); 2410 if (!txbufs[i].frag) { 2411 nfp_net_tx_ring_bufs_free(dp, tx_ring); 2412 return -ENOMEM; 2413 } 2414 } 2415 2416 return 0; 2417 } 2418 2419 static int nfp_net_tx_rings_prepare(struct nfp_net *nn, struct nfp_net_dp *dp) 2420 { 2421 unsigned int r; 2422 2423 dp->tx_rings = kcalloc(dp->num_tx_rings, sizeof(*dp->tx_rings), 2424 GFP_KERNEL); 2425 if (!dp->tx_rings) 2426 return -ENOMEM; 2427 2428 for (r = 0; r < dp->num_tx_rings; r++) { 2429 int bias = 0; 2430 2431 if (r >= dp->num_stack_tx_rings) 2432 bias = dp->num_stack_tx_rings; 2433 2434 nfp_net_tx_ring_init(&dp->tx_rings[r], &nn->r_vecs[r - bias], 2435 r, bias); 2436 2437 if (nfp_net_tx_ring_alloc(dp, &dp->tx_rings[r])) 2438 goto err_free_prev; 2439 2440 if (nfp_net_tx_ring_bufs_alloc(dp, &dp->tx_rings[r])) 2441 goto err_free_ring; 2442 } 2443 2444 return 0; 2445 2446 err_free_prev: 2447 while (r--) { 2448 nfp_net_tx_ring_bufs_free(dp, &dp->tx_rings[r]); 2449 err_free_ring: 2450 nfp_net_tx_ring_free(&dp->tx_rings[r]); 2451 } 2452 kfree(dp->tx_rings); 2453 return -ENOMEM; 2454 } 2455 2456 static void nfp_net_tx_rings_free(struct nfp_net_dp *dp) 2457 { 2458 unsigned int r; 2459 2460 for (r = 0; r < dp->num_tx_rings; r++) { 2461 nfp_net_tx_ring_bufs_free(dp, &dp->tx_rings[r]); 2462 nfp_net_tx_ring_free(&dp->tx_rings[r]); 2463 } 2464 2465 kfree(dp->tx_rings); 2466 } 2467 2468 /** 2469 * nfp_net_rx_ring_free() - Free resources allocated to a RX ring 2470 * @rx_ring: RX ring to free 2471 */ 2472 static void nfp_net_rx_ring_free(struct nfp_net_rx_ring *rx_ring) 2473 { 2474 struct nfp_net_r_vector *r_vec = rx_ring->r_vec; 2475 struct nfp_net_dp *dp = &r_vec->nfp_net->dp; 2476 2477 if (dp->netdev) 2478 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 2479 kvfree(rx_ring->rxbufs); 2480 2481 if (rx_ring->rxds) 2482 dma_free_coherent(dp->dev, rx_ring->size, 2483 rx_ring->rxds, rx_ring->dma); 2484 2485 rx_ring->cnt = 0; 2486 rx_ring->rxbufs = NULL; 2487 rx_ring->rxds = NULL; 2488 rx_ring->dma = 0; 2489 rx_ring->size = 0; 2490 } 2491 2492 /** 2493 * nfp_net_rx_ring_alloc() - Allocate resource for a RX ring 2494 * @dp: NFP Net data path struct 2495 * @rx_ring: RX ring to allocate 2496 * 2497 * Return: 0 on success, negative errno otherwise. 2498 */ 2499 static int 2500 nfp_net_rx_ring_alloc(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring) 2501 { 2502 int err; 2503 2504 if (dp->netdev) { 2505 err = xdp_rxq_info_reg(&rx_ring->xdp_rxq, dp->netdev, 2506 rx_ring->idx); 2507 if (err < 0) 2508 return err; 2509 } 2510 2511 rx_ring->cnt = dp->rxd_cnt; 2512 rx_ring->size = array_size(rx_ring->cnt, sizeof(*rx_ring->rxds)); 2513 rx_ring->rxds = dma_alloc_coherent(dp->dev, rx_ring->size, 2514 &rx_ring->dma, 2515 GFP_KERNEL | __GFP_NOWARN); 2516 if (!rx_ring->rxds) { 2517 netdev_warn(dp->netdev, "failed to allocate RX descriptor ring memory, requested descriptor count: %d, consider lowering descriptor count\n", 2518 rx_ring->cnt); 2519 goto err_alloc; 2520 } 2521 2522 rx_ring->rxbufs = kvcalloc(rx_ring->cnt, sizeof(*rx_ring->rxbufs), 2523 GFP_KERNEL); 2524 if (!rx_ring->rxbufs) 2525 goto err_alloc; 2526 2527 return 0; 2528 2529 err_alloc: 2530 nfp_net_rx_ring_free(rx_ring); 2531 return -ENOMEM; 2532 } 2533 2534 static int nfp_net_rx_rings_prepare(struct nfp_net *nn, struct nfp_net_dp *dp) 2535 { 2536 unsigned int r; 2537 2538 dp->rx_rings = kcalloc(dp->num_rx_rings, sizeof(*dp->rx_rings), 2539 GFP_KERNEL); 2540 if (!dp->rx_rings) 2541 return -ENOMEM; 2542 2543 for (r = 0; r < dp->num_rx_rings; r++) { 2544 nfp_net_rx_ring_init(&dp->rx_rings[r], &nn->r_vecs[r], r); 2545 2546 if (nfp_net_rx_ring_alloc(dp, &dp->rx_rings[r])) 2547 goto err_free_prev; 2548 2549 if (nfp_net_rx_ring_bufs_alloc(dp, &dp->rx_rings[r])) 2550 goto err_free_ring; 2551 } 2552 2553 return 0; 2554 2555 err_free_prev: 2556 while (r--) { 2557 nfp_net_rx_ring_bufs_free(dp, &dp->rx_rings[r]); 2558 err_free_ring: 2559 nfp_net_rx_ring_free(&dp->rx_rings[r]); 2560 } 2561 kfree(dp->rx_rings); 2562 return -ENOMEM; 2563 } 2564 2565 static void nfp_net_rx_rings_free(struct nfp_net_dp *dp) 2566 { 2567 unsigned int r; 2568 2569 for (r = 0; r < dp->num_rx_rings; r++) { 2570 nfp_net_rx_ring_bufs_free(dp, &dp->rx_rings[r]); 2571 nfp_net_rx_ring_free(&dp->rx_rings[r]); 2572 } 2573 2574 kfree(dp->rx_rings); 2575 } 2576 2577 static void 2578 nfp_net_vector_assign_rings(struct nfp_net_dp *dp, 2579 struct nfp_net_r_vector *r_vec, int idx) 2580 { 2581 r_vec->rx_ring = idx < dp->num_rx_rings ? &dp->rx_rings[idx] : NULL; 2582 r_vec->tx_ring = 2583 idx < dp->num_stack_tx_rings ? &dp->tx_rings[idx] : NULL; 2584 2585 r_vec->xdp_ring = idx < dp->num_tx_rings - dp->num_stack_tx_rings ? 2586 &dp->tx_rings[dp->num_stack_tx_rings + idx] : NULL; 2587 } 2588 2589 static int 2590 nfp_net_prepare_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec, 2591 int idx) 2592 { 2593 int err; 2594 2595 /* Setup NAPI */ 2596 if (nn->dp.netdev) 2597 netif_napi_add(nn->dp.netdev, &r_vec->napi, 2598 nfp_net_poll, NAPI_POLL_WEIGHT); 2599 else 2600 tasklet_enable(&r_vec->tasklet); 2601 2602 snprintf(r_vec->name, sizeof(r_vec->name), 2603 "%s-rxtx-%d", nfp_net_name(nn), idx); 2604 err = request_irq(r_vec->irq_vector, r_vec->handler, 0, r_vec->name, 2605 r_vec); 2606 if (err) { 2607 if (nn->dp.netdev) 2608 netif_napi_del(&r_vec->napi); 2609 else 2610 tasklet_disable(&r_vec->tasklet); 2611 2612 nn_err(nn, "Error requesting IRQ %d\n", r_vec->irq_vector); 2613 return err; 2614 } 2615 disable_irq(r_vec->irq_vector); 2616 2617 irq_set_affinity_hint(r_vec->irq_vector, &r_vec->affinity_mask); 2618 2619 nn_dbg(nn, "RV%02d: irq=%03d/%03d\n", idx, r_vec->irq_vector, 2620 r_vec->irq_entry); 2621 2622 return 0; 2623 } 2624 2625 static void 2626 nfp_net_cleanup_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec) 2627 { 2628 irq_set_affinity_hint(r_vec->irq_vector, NULL); 2629 if (nn->dp.netdev) 2630 netif_napi_del(&r_vec->napi); 2631 else 2632 tasklet_disable(&r_vec->tasklet); 2633 2634 free_irq(r_vec->irq_vector, r_vec); 2635 } 2636 2637 /** 2638 * nfp_net_rss_write_itbl() - Write RSS indirection table to device 2639 * @nn: NFP Net device to reconfigure 2640 */ 2641 void nfp_net_rss_write_itbl(struct nfp_net *nn) 2642 { 2643 int i; 2644 2645 for (i = 0; i < NFP_NET_CFG_RSS_ITBL_SZ; i += 4) 2646 nn_writel(nn, NFP_NET_CFG_RSS_ITBL + i, 2647 get_unaligned_le32(nn->rss_itbl + i)); 2648 } 2649 2650 /** 2651 * nfp_net_rss_write_key() - Write RSS hash key to device 2652 * @nn: NFP Net device to reconfigure 2653 */ 2654 void nfp_net_rss_write_key(struct nfp_net *nn) 2655 { 2656 int i; 2657 2658 for (i = 0; i < nfp_net_rss_key_sz(nn); i += 4) 2659 nn_writel(nn, NFP_NET_CFG_RSS_KEY + i, 2660 get_unaligned_le32(nn->rss_key + i)); 2661 } 2662 2663 /** 2664 * nfp_net_coalesce_write_cfg() - Write irq coalescence configuration to HW 2665 * @nn: NFP Net device to reconfigure 2666 */ 2667 void nfp_net_coalesce_write_cfg(struct nfp_net *nn) 2668 { 2669 u8 i; 2670 u32 factor; 2671 u32 value; 2672 2673 /* Compute factor used to convert coalesce '_usecs' parameters to 2674 * ME timestamp ticks. There are 16 ME clock cycles for each timestamp 2675 * count. 2676 */ 2677 factor = nn->tlv_caps.me_freq_mhz / 16; 2678 2679 /* copy RX interrupt coalesce parameters */ 2680 value = (nn->rx_coalesce_max_frames << 16) | 2681 (factor * nn->rx_coalesce_usecs); 2682 for (i = 0; i < nn->dp.num_rx_rings; i++) 2683 nn_writel(nn, NFP_NET_CFG_RXR_IRQ_MOD(i), value); 2684 2685 /* copy TX interrupt coalesce parameters */ 2686 value = (nn->tx_coalesce_max_frames << 16) | 2687 (factor * nn->tx_coalesce_usecs); 2688 for (i = 0; i < nn->dp.num_tx_rings; i++) 2689 nn_writel(nn, NFP_NET_CFG_TXR_IRQ_MOD(i), value); 2690 } 2691 2692 /** 2693 * nfp_net_write_mac_addr() - Write mac address to the device control BAR 2694 * @nn: NFP Net device to reconfigure 2695 * @addr: MAC address to write 2696 * 2697 * Writes the MAC address from the netdev to the device control BAR. Does not 2698 * perform the required reconfig. We do a bit of byte swapping dance because 2699 * firmware is LE. 2700 */ 2701 static void nfp_net_write_mac_addr(struct nfp_net *nn, const u8 *addr) 2702 { 2703 nn_writel(nn, NFP_NET_CFG_MACADDR + 0, get_unaligned_be32(addr)); 2704 nn_writew(nn, NFP_NET_CFG_MACADDR + 6, get_unaligned_be16(addr + 4)); 2705 } 2706 2707 static void nfp_net_vec_clear_ring_data(struct nfp_net *nn, unsigned int idx) 2708 { 2709 nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), 0); 2710 nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), 0); 2711 nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), 0); 2712 2713 nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), 0); 2714 nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), 0); 2715 nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), 0); 2716 } 2717 2718 /** 2719 * nfp_net_clear_config_and_disable() - Clear control BAR and disable NFP 2720 * @nn: NFP Net device to reconfigure 2721 * 2722 * Warning: must be fully idempotent. 2723 */ 2724 static void nfp_net_clear_config_and_disable(struct nfp_net *nn) 2725 { 2726 u32 new_ctrl, update; 2727 unsigned int r; 2728 int err; 2729 2730 new_ctrl = nn->dp.ctrl; 2731 new_ctrl &= ~NFP_NET_CFG_CTRL_ENABLE; 2732 update = NFP_NET_CFG_UPDATE_GEN; 2733 update |= NFP_NET_CFG_UPDATE_MSIX; 2734 update |= NFP_NET_CFG_UPDATE_RING; 2735 2736 if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG) 2737 new_ctrl &= ~NFP_NET_CFG_CTRL_RINGCFG; 2738 2739 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0); 2740 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0); 2741 2742 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 2743 err = nfp_net_reconfig(nn, update); 2744 if (err) 2745 nn_err(nn, "Could not disable device: %d\n", err); 2746 2747 for (r = 0; r < nn->dp.num_rx_rings; r++) 2748 nfp_net_rx_ring_reset(&nn->dp.rx_rings[r]); 2749 for (r = 0; r < nn->dp.num_tx_rings; r++) 2750 nfp_net_tx_ring_reset(&nn->dp, &nn->dp.tx_rings[r]); 2751 for (r = 0; r < nn->dp.num_r_vecs; r++) 2752 nfp_net_vec_clear_ring_data(nn, r); 2753 2754 nn->dp.ctrl = new_ctrl; 2755 } 2756 2757 static void 2758 nfp_net_rx_ring_hw_cfg_write(struct nfp_net *nn, 2759 struct nfp_net_rx_ring *rx_ring, unsigned int idx) 2760 { 2761 /* Write the DMA address, size and MSI-X info to the device */ 2762 nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), rx_ring->dma); 2763 nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), ilog2(rx_ring->cnt)); 2764 nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), rx_ring->r_vec->irq_entry); 2765 } 2766 2767 static void 2768 nfp_net_tx_ring_hw_cfg_write(struct nfp_net *nn, 2769 struct nfp_net_tx_ring *tx_ring, unsigned int idx) 2770 { 2771 nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), tx_ring->dma); 2772 nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), ilog2(tx_ring->cnt)); 2773 nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), tx_ring->r_vec->irq_entry); 2774 } 2775 2776 /** 2777 * nfp_net_set_config_and_enable() - Write control BAR and enable NFP 2778 * @nn: NFP Net device to reconfigure 2779 */ 2780 static int nfp_net_set_config_and_enable(struct nfp_net *nn) 2781 { 2782 u32 bufsz, new_ctrl, update = 0; 2783 unsigned int r; 2784 int err; 2785 2786 new_ctrl = nn->dp.ctrl; 2787 2788 if (nn->dp.ctrl & NFP_NET_CFG_CTRL_RSS_ANY) { 2789 nfp_net_rss_write_key(nn); 2790 nfp_net_rss_write_itbl(nn); 2791 nn_writel(nn, NFP_NET_CFG_RSS_CTRL, nn->rss_cfg); 2792 update |= NFP_NET_CFG_UPDATE_RSS; 2793 } 2794 2795 if (nn->dp.ctrl & NFP_NET_CFG_CTRL_IRQMOD) { 2796 nfp_net_coalesce_write_cfg(nn); 2797 update |= NFP_NET_CFG_UPDATE_IRQMOD; 2798 } 2799 2800 for (r = 0; r < nn->dp.num_tx_rings; r++) 2801 nfp_net_tx_ring_hw_cfg_write(nn, &nn->dp.tx_rings[r], r); 2802 for (r = 0; r < nn->dp.num_rx_rings; r++) 2803 nfp_net_rx_ring_hw_cfg_write(nn, &nn->dp.rx_rings[r], r); 2804 2805 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, nn->dp.num_tx_rings == 64 ? 2806 0xffffffffffffffffULL : ((u64)1 << nn->dp.num_tx_rings) - 1); 2807 2808 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, nn->dp.num_rx_rings == 64 ? 2809 0xffffffffffffffffULL : ((u64)1 << nn->dp.num_rx_rings) - 1); 2810 2811 if (nn->dp.netdev) 2812 nfp_net_write_mac_addr(nn, nn->dp.netdev->dev_addr); 2813 2814 nn_writel(nn, NFP_NET_CFG_MTU, nn->dp.mtu); 2815 2816 bufsz = nn->dp.fl_bufsz - nn->dp.rx_dma_off - NFP_NET_RX_BUF_NON_DATA; 2817 nn_writel(nn, NFP_NET_CFG_FLBUFSZ, bufsz); 2818 2819 /* Enable device */ 2820 new_ctrl |= NFP_NET_CFG_CTRL_ENABLE; 2821 update |= NFP_NET_CFG_UPDATE_GEN; 2822 update |= NFP_NET_CFG_UPDATE_MSIX; 2823 update |= NFP_NET_CFG_UPDATE_RING; 2824 if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG) 2825 new_ctrl |= NFP_NET_CFG_CTRL_RINGCFG; 2826 2827 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 2828 err = nfp_net_reconfig(nn, update); 2829 if (err) { 2830 nfp_net_clear_config_and_disable(nn); 2831 return err; 2832 } 2833 2834 nn->dp.ctrl = new_ctrl; 2835 2836 for (r = 0; r < nn->dp.num_rx_rings; r++) 2837 nfp_net_rx_ring_fill_freelist(&nn->dp, &nn->dp.rx_rings[r]); 2838 2839 /* Since reconfiguration requests while NFP is down are ignored we 2840 * have to wipe the entire VXLAN configuration and reinitialize it. 2841 */ 2842 if (nn->dp.ctrl & NFP_NET_CFG_CTRL_VXLAN) { 2843 memset(&nn->vxlan_ports, 0, sizeof(nn->vxlan_ports)); 2844 memset(&nn->vxlan_usecnt, 0, sizeof(nn->vxlan_usecnt)); 2845 udp_tunnel_get_rx_info(nn->dp.netdev); 2846 } 2847 2848 return 0; 2849 } 2850 2851 /** 2852 * nfp_net_close_stack() - Quiesce the stack (part of close) 2853 * @nn: NFP Net device to reconfigure 2854 */ 2855 static void nfp_net_close_stack(struct nfp_net *nn) 2856 { 2857 unsigned int r; 2858 2859 disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector); 2860 netif_carrier_off(nn->dp.netdev); 2861 nn->link_up = false; 2862 2863 for (r = 0; r < nn->dp.num_r_vecs; r++) { 2864 disable_irq(nn->r_vecs[r].irq_vector); 2865 napi_disable(&nn->r_vecs[r].napi); 2866 } 2867 2868 netif_tx_disable(nn->dp.netdev); 2869 } 2870 2871 /** 2872 * nfp_net_close_free_all() - Free all runtime resources 2873 * @nn: NFP Net device to reconfigure 2874 */ 2875 static void nfp_net_close_free_all(struct nfp_net *nn) 2876 { 2877 unsigned int r; 2878 2879 nfp_net_tx_rings_free(&nn->dp); 2880 nfp_net_rx_rings_free(&nn->dp); 2881 2882 for (r = 0; r < nn->dp.num_r_vecs; r++) 2883 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); 2884 2885 nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX); 2886 nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX); 2887 } 2888 2889 /** 2890 * nfp_net_netdev_close() - Called when the device is downed 2891 * @netdev: netdev structure 2892 */ 2893 static int nfp_net_netdev_close(struct net_device *netdev) 2894 { 2895 struct nfp_net *nn = netdev_priv(netdev); 2896 2897 /* Step 1: Disable RX and TX rings from the Linux kernel perspective 2898 */ 2899 nfp_net_close_stack(nn); 2900 2901 /* Step 2: Tell NFP 2902 */ 2903 nfp_net_clear_config_and_disable(nn); 2904 nfp_port_configure(netdev, false); 2905 2906 /* Step 3: Free resources 2907 */ 2908 nfp_net_close_free_all(nn); 2909 2910 nn_dbg(nn, "%s down", netdev->name); 2911 return 0; 2912 } 2913 2914 void nfp_ctrl_close(struct nfp_net *nn) 2915 { 2916 int r; 2917 2918 rtnl_lock(); 2919 2920 for (r = 0; r < nn->dp.num_r_vecs; r++) { 2921 disable_irq(nn->r_vecs[r].irq_vector); 2922 tasklet_disable(&nn->r_vecs[r].tasklet); 2923 } 2924 2925 nfp_net_clear_config_and_disable(nn); 2926 2927 nfp_net_close_free_all(nn); 2928 2929 rtnl_unlock(); 2930 } 2931 2932 /** 2933 * nfp_net_open_stack() - Start the device from stack's perspective 2934 * @nn: NFP Net device to reconfigure 2935 */ 2936 static void nfp_net_open_stack(struct nfp_net *nn) 2937 { 2938 unsigned int r; 2939 2940 for (r = 0; r < nn->dp.num_r_vecs; r++) { 2941 napi_enable(&nn->r_vecs[r].napi); 2942 enable_irq(nn->r_vecs[r].irq_vector); 2943 } 2944 2945 netif_tx_wake_all_queues(nn->dp.netdev); 2946 2947 enable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector); 2948 nfp_net_read_link_status(nn); 2949 } 2950 2951 static int nfp_net_open_alloc_all(struct nfp_net *nn) 2952 { 2953 int err, r; 2954 2955 err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_EXN, "%s-exn", 2956 nn->exn_name, sizeof(nn->exn_name), 2957 NFP_NET_IRQ_EXN_IDX, nn->exn_handler); 2958 if (err) 2959 return err; 2960 err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_LSC, "%s-lsc", 2961 nn->lsc_name, sizeof(nn->lsc_name), 2962 NFP_NET_IRQ_LSC_IDX, nn->lsc_handler); 2963 if (err) 2964 goto err_free_exn; 2965 disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector); 2966 2967 for (r = 0; r < nn->dp.num_r_vecs; r++) { 2968 err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r); 2969 if (err) 2970 goto err_cleanup_vec_p; 2971 } 2972 2973 err = nfp_net_rx_rings_prepare(nn, &nn->dp); 2974 if (err) 2975 goto err_cleanup_vec; 2976 2977 err = nfp_net_tx_rings_prepare(nn, &nn->dp); 2978 if (err) 2979 goto err_free_rx_rings; 2980 2981 for (r = 0; r < nn->max_r_vecs; r++) 2982 nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r); 2983 2984 return 0; 2985 2986 err_free_rx_rings: 2987 nfp_net_rx_rings_free(&nn->dp); 2988 err_cleanup_vec: 2989 r = nn->dp.num_r_vecs; 2990 err_cleanup_vec_p: 2991 while (r--) 2992 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); 2993 nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX); 2994 err_free_exn: 2995 nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX); 2996 return err; 2997 } 2998 2999 static int nfp_net_netdev_open(struct net_device *netdev) 3000 { 3001 struct nfp_net *nn = netdev_priv(netdev); 3002 int err; 3003 3004 /* Step 1: Allocate resources for rings and the like 3005 * - Request interrupts 3006 * - Allocate RX and TX ring resources 3007 * - Setup initial RSS table 3008 */ 3009 err = nfp_net_open_alloc_all(nn); 3010 if (err) 3011 return err; 3012 3013 err = netif_set_real_num_tx_queues(netdev, nn->dp.num_stack_tx_rings); 3014 if (err) 3015 goto err_free_all; 3016 3017 err = netif_set_real_num_rx_queues(netdev, nn->dp.num_rx_rings); 3018 if (err) 3019 goto err_free_all; 3020 3021 /* Step 2: Configure the NFP 3022 * - Ifup the physical interface if it exists 3023 * - Enable rings from 0 to tx_rings/rx_rings - 1. 3024 * - Write MAC address (in case it changed) 3025 * - Set the MTU 3026 * - Set the Freelist buffer size 3027 * - Enable the FW 3028 */ 3029 err = nfp_port_configure(netdev, true); 3030 if (err) 3031 goto err_free_all; 3032 3033 err = nfp_net_set_config_and_enable(nn); 3034 if (err) 3035 goto err_port_disable; 3036 3037 /* Step 3: Enable for kernel 3038 * - put some freelist descriptors on each RX ring 3039 * - enable NAPI on each ring 3040 * - enable all TX queues 3041 * - set link state 3042 */ 3043 nfp_net_open_stack(nn); 3044 3045 return 0; 3046 3047 err_port_disable: 3048 nfp_port_configure(netdev, false); 3049 err_free_all: 3050 nfp_net_close_free_all(nn); 3051 return err; 3052 } 3053 3054 int nfp_ctrl_open(struct nfp_net *nn) 3055 { 3056 int err, r; 3057 3058 /* ring dumping depends on vNICs being opened/closed under rtnl */ 3059 rtnl_lock(); 3060 3061 err = nfp_net_open_alloc_all(nn); 3062 if (err) 3063 goto err_unlock; 3064 3065 err = nfp_net_set_config_and_enable(nn); 3066 if (err) 3067 goto err_free_all; 3068 3069 for (r = 0; r < nn->dp.num_r_vecs; r++) 3070 enable_irq(nn->r_vecs[r].irq_vector); 3071 3072 rtnl_unlock(); 3073 3074 return 0; 3075 3076 err_free_all: 3077 nfp_net_close_free_all(nn); 3078 err_unlock: 3079 rtnl_unlock(); 3080 return err; 3081 } 3082 3083 static void nfp_net_set_rx_mode(struct net_device *netdev) 3084 { 3085 struct nfp_net *nn = netdev_priv(netdev); 3086 u32 new_ctrl; 3087 3088 new_ctrl = nn->dp.ctrl; 3089 3090 if (!netdev_mc_empty(netdev) || netdev->flags & IFF_ALLMULTI) 3091 new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_L2MC; 3092 else 3093 new_ctrl &= ~NFP_NET_CFG_CTRL_L2MC; 3094 3095 if (netdev->flags & IFF_PROMISC) { 3096 if (nn->cap & NFP_NET_CFG_CTRL_PROMISC) 3097 new_ctrl |= NFP_NET_CFG_CTRL_PROMISC; 3098 else 3099 nn_warn(nn, "FW does not support promiscuous mode\n"); 3100 } else { 3101 new_ctrl &= ~NFP_NET_CFG_CTRL_PROMISC; 3102 } 3103 3104 if (new_ctrl == nn->dp.ctrl) 3105 return; 3106 3107 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 3108 nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_GEN); 3109 3110 nn->dp.ctrl = new_ctrl; 3111 } 3112 3113 static void nfp_net_rss_init_itbl(struct nfp_net *nn) 3114 { 3115 int i; 3116 3117 for (i = 0; i < sizeof(nn->rss_itbl); i++) 3118 nn->rss_itbl[i] = 3119 ethtool_rxfh_indir_default(i, nn->dp.num_rx_rings); 3120 } 3121 3122 static void nfp_net_dp_swap(struct nfp_net *nn, struct nfp_net_dp *dp) 3123 { 3124 struct nfp_net_dp new_dp = *dp; 3125 3126 *dp = nn->dp; 3127 nn->dp = new_dp; 3128 3129 nn->dp.netdev->mtu = new_dp.mtu; 3130 3131 if (!netif_is_rxfh_configured(nn->dp.netdev)) 3132 nfp_net_rss_init_itbl(nn); 3133 } 3134 3135 static int nfp_net_dp_swap_enable(struct nfp_net *nn, struct nfp_net_dp *dp) 3136 { 3137 unsigned int r; 3138 int err; 3139 3140 nfp_net_dp_swap(nn, dp); 3141 3142 for (r = 0; r < nn->max_r_vecs; r++) 3143 nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r); 3144 3145 err = netif_set_real_num_rx_queues(nn->dp.netdev, nn->dp.num_rx_rings); 3146 if (err) 3147 return err; 3148 3149 if (nn->dp.netdev->real_num_tx_queues != nn->dp.num_stack_tx_rings) { 3150 err = netif_set_real_num_tx_queues(nn->dp.netdev, 3151 nn->dp.num_stack_tx_rings); 3152 if (err) 3153 return err; 3154 } 3155 3156 return nfp_net_set_config_and_enable(nn); 3157 } 3158 3159 struct nfp_net_dp *nfp_net_clone_dp(struct nfp_net *nn) 3160 { 3161 struct nfp_net_dp *new; 3162 3163 new = kmalloc(sizeof(*new), GFP_KERNEL); 3164 if (!new) 3165 return NULL; 3166 3167 *new = nn->dp; 3168 3169 /* Clear things which need to be recomputed */ 3170 new->fl_bufsz = 0; 3171 new->tx_rings = NULL; 3172 new->rx_rings = NULL; 3173 new->num_r_vecs = 0; 3174 new->num_stack_tx_rings = 0; 3175 3176 return new; 3177 } 3178 3179 static int 3180 nfp_net_check_config(struct nfp_net *nn, struct nfp_net_dp *dp, 3181 struct netlink_ext_ack *extack) 3182 { 3183 /* XDP-enabled tests */ 3184 if (!dp->xdp_prog) 3185 return 0; 3186 if (dp->fl_bufsz > PAGE_SIZE) { 3187 NL_SET_ERR_MSG_MOD(extack, "MTU too large w/ XDP enabled"); 3188 return -EINVAL; 3189 } 3190 if (dp->num_tx_rings > nn->max_tx_rings) { 3191 NL_SET_ERR_MSG_MOD(extack, "Insufficient number of TX rings w/ XDP enabled"); 3192 return -EINVAL; 3193 } 3194 3195 return 0; 3196 } 3197 3198 int nfp_net_ring_reconfig(struct nfp_net *nn, struct nfp_net_dp *dp, 3199 struct netlink_ext_ack *extack) 3200 { 3201 int r, err; 3202 3203 dp->fl_bufsz = nfp_net_calc_fl_bufsz(dp); 3204 3205 dp->num_stack_tx_rings = dp->num_tx_rings; 3206 if (dp->xdp_prog) 3207 dp->num_stack_tx_rings -= dp->num_rx_rings; 3208 3209 dp->num_r_vecs = max(dp->num_rx_rings, dp->num_stack_tx_rings); 3210 3211 err = nfp_net_check_config(nn, dp, extack); 3212 if (err) 3213 goto exit_free_dp; 3214 3215 if (!netif_running(dp->netdev)) { 3216 nfp_net_dp_swap(nn, dp); 3217 err = 0; 3218 goto exit_free_dp; 3219 } 3220 3221 /* Prepare new rings */ 3222 for (r = nn->dp.num_r_vecs; r < dp->num_r_vecs; r++) { 3223 err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r); 3224 if (err) { 3225 dp->num_r_vecs = r; 3226 goto err_cleanup_vecs; 3227 } 3228 } 3229 3230 err = nfp_net_rx_rings_prepare(nn, dp); 3231 if (err) 3232 goto err_cleanup_vecs; 3233 3234 err = nfp_net_tx_rings_prepare(nn, dp); 3235 if (err) 3236 goto err_free_rx; 3237 3238 /* Stop device, swap in new rings, try to start the firmware */ 3239 nfp_net_close_stack(nn); 3240 nfp_net_clear_config_and_disable(nn); 3241 3242 err = nfp_net_dp_swap_enable(nn, dp); 3243 if (err) { 3244 int err2; 3245 3246 nfp_net_clear_config_and_disable(nn); 3247 3248 /* Try with old configuration and old rings */ 3249 err2 = nfp_net_dp_swap_enable(nn, dp); 3250 if (err2) 3251 nn_err(nn, "Can't restore ring config - FW communication failed (%d,%d)\n", 3252 err, err2); 3253 } 3254 for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--) 3255 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); 3256 3257 nfp_net_rx_rings_free(dp); 3258 nfp_net_tx_rings_free(dp); 3259 3260 nfp_net_open_stack(nn); 3261 exit_free_dp: 3262 kfree(dp); 3263 3264 return err; 3265 3266 err_free_rx: 3267 nfp_net_rx_rings_free(dp); 3268 err_cleanup_vecs: 3269 for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--) 3270 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); 3271 kfree(dp); 3272 return err; 3273 } 3274 3275 static int nfp_net_change_mtu(struct net_device *netdev, int new_mtu) 3276 { 3277 struct nfp_net *nn = netdev_priv(netdev); 3278 struct nfp_net_dp *dp; 3279 int err; 3280 3281 err = nfp_app_check_mtu(nn->app, netdev, new_mtu); 3282 if (err) 3283 return err; 3284 3285 dp = nfp_net_clone_dp(nn); 3286 if (!dp) 3287 return -ENOMEM; 3288 3289 dp->mtu = new_mtu; 3290 3291 return nfp_net_ring_reconfig(nn, dp, NULL); 3292 } 3293 3294 static int 3295 nfp_net_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) 3296 { 3297 const u32 cmd = NFP_NET_CFG_MBOX_CMD_CTAG_FILTER_ADD; 3298 struct nfp_net *nn = netdev_priv(netdev); 3299 int err; 3300 3301 /* Priority tagged packets with vlan id 0 are processed by the 3302 * NFP as untagged packets 3303 */ 3304 if (!vid) 3305 return 0; 3306 3307 err = nfp_net_mbox_lock(nn, NFP_NET_CFG_VLAN_FILTER_SZ); 3308 if (err) 3309 return err; 3310 3311 nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_VID, vid); 3312 nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_PROTO, 3313 ETH_P_8021Q); 3314 3315 return nfp_net_mbox_reconfig_and_unlock(nn, cmd); 3316 } 3317 3318 static int 3319 nfp_net_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) 3320 { 3321 const u32 cmd = NFP_NET_CFG_MBOX_CMD_CTAG_FILTER_KILL; 3322 struct nfp_net *nn = netdev_priv(netdev); 3323 int err; 3324 3325 /* Priority tagged packets with vlan id 0 are processed by the 3326 * NFP as untagged packets 3327 */ 3328 if (!vid) 3329 return 0; 3330 3331 err = nfp_net_mbox_lock(nn, NFP_NET_CFG_VLAN_FILTER_SZ); 3332 if (err) 3333 return err; 3334 3335 nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_VID, vid); 3336 nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_PROTO, 3337 ETH_P_8021Q); 3338 3339 return nfp_net_mbox_reconfig_and_unlock(nn, cmd); 3340 } 3341 3342 static void nfp_net_stat64(struct net_device *netdev, 3343 struct rtnl_link_stats64 *stats) 3344 { 3345 struct nfp_net *nn = netdev_priv(netdev); 3346 int r; 3347 3348 /* Collect software stats */ 3349 for (r = 0; r < nn->max_r_vecs; r++) { 3350 struct nfp_net_r_vector *r_vec = &nn->r_vecs[r]; 3351 u64 data[3]; 3352 unsigned int start; 3353 3354 do { 3355 start = u64_stats_fetch_begin(&r_vec->rx_sync); 3356 data[0] = r_vec->rx_pkts; 3357 data[1] = r_vec->rx_bytes; 3358 data[2] = r_vec->rx_drops; 3359 } while (u64_stats_fetch_retry(&r_vec->rx_sync, start)); 3360 stats->rx_packets += data[0]; 3361 stats->rx_bytes += data[1]; 3362 stats->rx_dropped += data[2]; 3363 3364 do { 3365 start = u64_stats_fetch_begin(&r_vec->tx_sync); 3366 data[0] = r_vec->tx_pkts; 3367 data[1] = r_vec->tx_bytes; 3368 data[2] = r_vec->tx_errors; 3369 } while (u64_stats_fetch_retry(&r_vec->tx_sync, start)); 3370 stats->tx_packets += data[0]; 3371 stats->tx_bytes += data[1]; 3372 stats->tx_errors += data[2]; 3373 } 3374 3375 /* Add in device stats */ 3376 stats->multicast += nn_readq(nn, NFP_NET_CFG_STATS_RX_MC_FRAMES); 3377 stats->rx_dropped += nn_readq(nn, NFP_NET_CFG_STATS_RX_DISCARDS); 3378 stats->rx_errors += nn_readq(nn, NFP_NET_CFG_STATS_RX_ERRORS); 3379 3380 stats->tx_dropped += nn_readq(nn, NFP_NET_CFG_STATS_TX_DISCARDS); 3381 stats->tx_errors += nn_readq(nn, NFP_NET_CFG_STATS_TX_ERRORS); 3382 } 3383 3384 static int nfp_net_set_features(struct net_device *netdev, 3385 netdev_features_t features) 3386 { 3387 netdev_features_t changed = netdev->features ^ features; 3388 struct nfp_net *nn = netdev_priv(netdev); 3389 u32 new_ctrl; 3390 int err; 3391 3392 /* Assume this is not called with features we have not advertised */ 3393 3394 new_ctrl = nn->dp.ctrl; 3395 3396 if (changed & NETIF_F_RXCSUM) { 3397 if (features & NETIF_F_RXCSUM) 3398 new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY; 3399 else 3400 new_ctrl &= ~NFP_NET_CFG_CTRL_RXCSUM_ANY; 3401 } 3402 3403 if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) { 3404 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) 3405 new_ctrl |= NFP_NET_CFG_CTRL_TXCSUM; 3406 else 3407 new_ctrl &= ~NFP_NET_CFG_CTRL_TXCSUM; 3408 } 3409 3410 if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) { 3411 if (features & (NETIF_F_TSO | NETIF_F_TSO6)) 3412 new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_LSO2 ?: 3413 NFP_NET_CFG_CTRL_LSO; 3414 else 3415 new_ctrl &= ~NFP_NET_CFG_CTRL_LSO_ANY; 3416 } 3417 3418 if (changed & NETIF_F_HW_VLAN_CTAG_RX) { 3419 if (features & NETIF_F_HW_VLAN_CTAG_RX) 3420 new_ctrl |= NFP_NET_CFG_CTRL_RXVLAN; 3421 else 3422 new_ctrl &= ~NFP_NET_CFG_CTRL_RXVLAN; 3423 } 3424 3425 if (changed & NETIF_F_HW_VLAN_CTAG_TX) { 3426 if (features & NETIF_F_HW_VLAN_CTAG_TX) 3427 new_ctrl |= NFP_NET_CFG_CTRL_TXVLAN; 3428 else 3429 new_ctrl &= ~NFP_NET_CFG_CTRL_TXVLAN; 3430 } 3431 3432 if (changed & NETIF_F_HW_VLAN_CTAG_FILTER) { 3433 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) 3434 new_ctrl |= NFP_NET_CFG_CTRL_CTAG_FILTER; 3435 else 3436 new_ctrl &= ~NFP_NET_CFG_CTRL_CTAG_FILTER; 3437 } 3438 3439 if (changed & NETIF_F_SG) { 3440 if (features & NETIF_F_SG) 3441 new_ctrl |= NFP_NET_CFG_CTRL_GATHER; 3442 else 3443 new_ctrl &= ~NFP_NET_CFG_CTRL_GATHER; 3444 } 3445 3446 err = nfp_port_set_features(netdev, features); 3447 if (err) 3448 return err; 3449 3450 nn_dbg(nn, "Feature change 0x%llx -> 0x%llx (changed=0x%llx)\n", 3451 netdev->features, features, changed); 3452 3453 if (new_ctrl == nn->dp.ctrl) 3454 return 0; 3455 3456 nn_dbg(nn, "NIC ctrl: 0x%x -> 0x%x\n", nn->dp.ctrl, new_ctrl); 3457 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 3458 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_GEN); 3459 if (err) 3460 return err; 3461 3462 nn->dp.ctrl = new_ctrl; 3463 3464 return 0; 3465 } 3466 3467 static netdev_features_t 3468 nfp_net_features_check(struct sk_buff *skb, struct net_device *dev, 3469 netdev_features_t features) 3470 { 3471 u8 l4_hdr; 3472 3473 /* We can't do TSO over double tagged packets (802.1AD) */ 3474 features &= vlan_features_check(skb, features); 3475 3476 if (!skb->encapsulation) 3477 return features; 3478 3479 /* Ensure that inner L4 header offset fits into TX descriptor field */ 3480 if (skb_is_gso(skb)) { 3481 u32 hdrlen; 3482 3483 hdrlen = skb_inner_transport_header(skb) - skb->data + 3484 inner_tcp_hdrlen(skb); 3485 3486 /* Assume worst case scenario of having longest possible 3487 * metadata prepend - 8B 3488 */ 3489 if (unlikely(hdrlen > NFP_NET_LSO_MAX_HDR_SZ - 8)) 3490 features &= ~NETIF_F_GSO_MASK; 3491 } 3492 3493 /* VXLAN/GRE check */ 3494 switch (vlan_get_protocol(skb)) { 3495 case htons(ETH_P_IP): 3496 l4_hdr = ip_hdr(skb)->protocol; 3497 break; 3498 case htons(ETH_P_IPV6): 3499 l4_hdr = ipv6_hdr(skb)->nexthdr; 3500 break; 3501 default: 3502 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3503 } 3504 3505 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER || 3506 skb->inner_protocol != htons(ETH_P_TEB) || 3507 (l4_hdr != IPPROTO_UDP && l4_hdr != IPPROTO_GRE) || 3508 (l4_hdr == IPPROTO_UDP && 3509 (skb_inner_mac_header(skb) - skb_transport_header(skb) != 3510 sizeof(struct udphdr) + sizeof(struct vxlanhdr)))) 3511 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3512 3513 return features; 3514 } 3515 3516 static int 3517 nfp_net_get_phys_port_name(struct net_device *netdev, char *name, size_t len) 3518 { 3519 struct nfp_net *nn = netdev_priv(netdev); 3520 int n; 3521 3522 /* If port is defined, devlink_port is registered and devlink core 3523 * is taking care of name formatting. 3524 */ 3525 if (nn->port) 3526 return -EOPNOTSUPP; 3527 3528 if (nn->dp.is_vf || nn->vnic_no_name) 3529 return -EOPNOTSUPP; 3530 3531 n = snprintf(name, len, "n%d", nn->id); 3532 if (n >= len) 3533 return -EINVAL; 3534 3535 return 0; 3536 } 3537 3538 /** 3539 * nfp_net_set_vxlan_port() - set vxlan port in SW and reconfigure HW 3540 * @nn: NFP Net device to reconfigure 3541 * @idx: Index into the port table where new port should be written 3542 * @port: UDP port to configure (pass zero to remove VXLAN port) 3543 */ 3544 static void nfp_net_set_vxlan_port(struct nfp_net *nn, int idx, __be16 port) 3545 { 3546 int i; 3547 3548 nn->vxlan_ports[idx] = port; 3549 3550 if (!(nn->dp.ctrl & NFP_NET_CFG_CTRL_VXLAN)) 3551 return; 3552 3553 BUILD_BUG_ON(NFP_NET_N_VXLAN_PORTS & 1); 3554 for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i += 2) 3555 nn_writel(nn, NFP_NET_CFG_VXLAN_PORT + i * sizeof(port), 3556 be16_to_cpu(nn->vxlan_ports[i + 1]) << 16 | 3557 be16_to_cpu(nn->vxlan_ports[i])); 3558 3559 nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_VXLAN); 3560 } 3561 3562 /** 3563 * nfp_net_find_vxlan_idx() - find table entry of the port or a free one 3564 * @nn: NFP Network structure 3565 * @port: UDP port to look for 3566 * 3567 * Return: if the port is already in the table -- it's position; 3568 * if the port is not in the table -- free position to use; 3569 * if the table is full -- -ENOSPC. 3570 */ 3571 static int nfp_net_find_vxlan_idx(struct nfp_net *nn, __be16 port) 3572 { 3573 int i, free_idx = -ENOSPC; 3574 3575 for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i++) { 3576 if (nn->vxlan_ports[i] == port) 3577 return i; 3578 if (!nn->vxlan_usecnt[i]) 3579 free_idx = i; 3580 } 3581 3582 return free_idx; 3583 } 3584 3585 static void nfp_net_add_vxlan_port(struct net_device *netdev, 3586 struct udp_tunnel_info *ti) 3587 { 3588 struct nfp_net *nn = netdev_priv(netdev); 3589 int idx; 3590 3591 if (ti->type != UDP_TUNNEL_TYPE_VXLAN) 3592 return; 3593 3594 idx = nfp_net_find_vxlan_idx(nn, ti->port); 3595 if (idx == -ENOSPC) 3596 return; 3597 3598 if (!nn->vxlan_usecnt[idx]++) 3599 nfp_net_set_vxlan_port(nn, idx, ti->port); 3600 } 3601 3602 static void nfp_net_del_vxlan_port(struct net_device *netdev, 3603 struct udp_tunnel_info *ti) 3604 { 3605 struct nfp_net *nn = netdev_priv(netdev); 3606 int idx; 3607 3608 if (ti->type != UDP_TUNNEL_TYPE_VXLAN) 3609 return; 3610 3611 idx = nfp_net_find_vxlan_idx(nn, ti->port); 3612 if (idx == -ENOSPC || !nn->vxlan_usecnt[idx]) 3613 return; 3614 3615 if (!--nn->vxlan_usecnt[idx]) 3616 nfp_net_set_vxlan_port(nn, idx, 0); 3617 } 3618 3619 static int nfp_net_xdp_setup_drv(struct nfp_net *nn, struct netdev_bpf *bpf) 3620 { 3621 struct bpf_prog *prog = bpf->prog; 3622 struct nfp_net_dp *dp; 3623 int err; 3624 3625 if (!xdp_attachment_flags_ok(&nn->xdp, bpf)) 3626 return -EBUSY; 3627 3628 if (!prog == !nn->dp.xdp_prog) { 3629 WRITE_ONCE(nn->dp.xdp_prog, prog); 3630 xdp_attachment_setup(&nn->xdp, bpf); 3631 return 0; 3632 } 3633 3634 dp = nfp_net_clone_dp(nn); 3635 if (!dp) 3636 return -ENOMEM; 3637 3638 dp->xdp_prog = prog; 3639 dp->num_tx_rings += prog ? nn->dp.num_rx_rings : -nn->dp.num_rx_rings; 3640 dp->rx_dma_dir = prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE; 3641 dp->rx_dma_off = prog ? XDP_PACKET_HEADROOM - nn->dp.rx_offset : 0; 3642 3643 /* We need RX reconfig to remap the buffers (BIDIR vs FROM_DEV) */ 3644 err = nfp_net_ring_reconfig(nn, dp, bpf->extack); 3645 if (err) 3646 return err; 3647 3648 xdp_attachment_setup(&nn->xdp, bpf); 3649 return 0; 3650 } 3651 3652 static int nfp_net_xdp_setup_hw(struct nfp_net *nn, struct netdev_bpf *bpf) 3653 { 3654 int err; 3655 3656 if (!xdp_attachment_flags_ok(&nn->xdp_hw, bpf)) 3657 return -EBUSY; 3658 3659 err = nfp_app_xdp_offload(nn->app, nn, bpf->prog, bpf->extack); 3660 if (err) 3661 return err; 3662 3663 xdp_attachment_setup(&nn->xdp_hw, bpf); 3664 return 0; 3665 } 3666 3667 static int nfp_net_xdp(struct net_device *netdev, struct netdev_bpf *xdp) 3668 { 3669 struct nfp_net *nn = netdev_priv(netdev); 3670 3671 switch (xdp->command) { 3672 case XDP_SETUP_PROG: 3673 return nfp_net_xdp_setup_drv(nn, xdp); 3674 case XDP_SETUP_PROG_HW: 3675 return nfp_net_xdp_setup_hw(nn, xdp); 3676 case XDP_QUERY_PROG: 3677 return xdp_attachment_query(&nn->xdp, xdp); 3678 case XDP_QUERY_PROG_HW: 3679 return xdp_attachment_query(&nn->xdp_hw, xdp); 3680 default: 3681 return nfp_app_bpf(nn->app, nn, xdp); 3682 } 3683 } 3684 3685 static int nfp_net_set_mac_address(struct net_device *netdev, void *addr) 3686 { 3687 struct nfp_net *nn = netdev_priv(netdev); 3688 struct sockaddr *saddr = addr; 3689 int err; 3690 3691 err = eth_prepare_mac_addr_change(netdev, addr); 3692 if (err) 3693 return err; 3694 3695 nfp_net_write_mac_addr(nn, saddr->sa_data); 3696 3697 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_MACADDR); 3698 if (err) 3699 return err; 3700 3701 eth_commit_mac_addr_change(netdev, addr); 3702 3703 return 0; 3704 } 3705 3706 const struct net_device_ops nfp_net_netdev_ops = { 3707 .ndo_init = nfp_app_ndo_init, 3708 .ndo_uninit = nfp_app_ndo_uninit, 3709 .ndo_open = nfp_net_netdev_open, 3710 .ndo_stop = nfp_net_netdev_close, 3711 .ndo_start_xmit = nfp_net_tx, 3712 .ndo_get_stats64 = nfp_net_stat64, 3713 .ndo_vlan_rx_add_vid = nfp_net_vlan_rx_add_vid, 3714 .ndo_vlan_rx_kill_vid = nfp_net_vlan_rx_kill_vid, 3715 .ndo_set_vf_mac = nfp_app_set_vf_mac, 3716 .ndo_set_vf_vlan = nfp_app_set_vf_vlan, 3717 .ndo_set_vf_spoofchk = nfp_app_set_vf_spoofchk, 3718 .ndo_set_vf_trust = nfp_app_set_vf_trust, 3719 .ndo_get_vf_config = nfp_app_get_vf_config, 3720 .ndo_set_vf_link_state = nfp_app_set_vf_link_state, 3721 .ndo_setup_tc = nfp_port_setup_tc, 3722 .ndo_tx_timeout = nfp_net_tx_timeout, 3723 .ndo_set_rx_mode = nfp_net_set_rx_mode, 3724 .ndo_change_mtu = nfp_net_change_mtu, 3725 .ndo_set_mac_address = nfp_net_set_mac_address, 3726 .ndo_set_features = nfp_net_set_features, 3727 .ndo_features_check = nfp_net_features_check, 3728 .ndo_get_phys_port_name = nfp_net_get_phys_port_name, 3729 .ndo_udp_tunnel_add = nfp_net_add_vxlan_port, 3730 .ndo_udp_tunnel_del = nfp_net_del_vxlan_port, 3731 .ndo_bpf = nfp_net_xdp, 3732 .ndo_get_devlink_port = nfp_devlink_get_devlink_port, 3733 }; 3734 3735 /** 3736 * nfp_net_info() - Print general info about the NIC 3737 * @nn: NFP Net device to reconfigure 3738 */ 3739 void nfp_net_info(struct nfp_net *nn) 3740 { 3741 nn_info(nn, "Netronome NFP-6xxx %sNetdev: TxQs=%d/%d RxQs=%d/%d\n", 3742 nn->dp.is_vf ? "VF " : "", 3743 nn->dp.num_tx_rings, nn->max_tx_rings, 3744 nn->dp.num_rx_rings, nn->max_rx_rings); 3745 nn_info(nn, "VER: %d.%d.%d.%d, Maximum supported MTU: %d\n", 3746 nn->fw_ver.resv, nn->fw_ver.class, 3747 nn->fw_ver.major, nn->fw_ver.minor, 3748 nn->max_mtu); 3749 nn_info(nn, "CAP: %#x %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", 3750 nn->cap, 3751 nn->cap & NFP_NET_CFG_CTRL_PROMISC ? "PROMISC " : "", 3752 nn->cap & NFP_NET_CFG_CTRL_L2BC ? "L2BCFILT " : "", 3753 nn->cap & NFP_NET_CFG_CTRL_L2MC ? "L2MCFILT " : "", 3754 nn->cap & NFP_NET_CFG_CTRL_RXCSUM ? "RXCSUM " : "", 3755 nn->cap & NFP_NET_CFG_CTRL_TXCSUM ? "TXCSUM " : "", 3756 nn->cap & NFP_NET_CFG_CTRL_RXVLAN ? "RXVLAN " : "", 3757 nn->cap & NFP_NET_CFG_CTRL_TXVLAN ? "TXVLAN " : "", 3758 nn->cap & NFP_NET_CFG_CTRL_SCATTER ? "SCATTER " : "", 3759 nn->cap & NFP_NET_CFG_CTRL_GATHER ? "GATHER " : "", 3760 nn->cap & NFP_NET_CFG_CTRL_LSO ? "TSO1 " : "", 3761 nn->cap & NFP_NET_CFG_CTRL_LSO2 ? "TSO2 " : "", 3762 nn->cap & NFP_NET_CFG_CTRL_RSS ? "RSS1 " : "", 3763 nn->cap & NFP_NET_CFG_CTRL_RSS2 ? "RSS2 " : "", 3764 nn->cap & NFP_NET_CFG_CTRL_CTAG_FILTER ? "CTAG_FILTER " : "", 3765 nn->cap & NFP_NET_CFG_CTRL_MSIXAUTO ? "AUTOMASK " : "", 3766 nn->cap & NFP_NET_CFG_CTRL_IRQMOD ? "IRQMOD " : "", 3767 nn->cap & NFP_NET_CFG_CTRL_VXLAN ? "VXLAN " : "", 3768 nn->cap & NFP_NET_CFG_CTRL_NVGRE ? "NVGRE " : "", 3769 nn->cap & NFP_NET_CFG_CTRL_CSUM_COMPLETE ? 3770 "RXCSUM_COMPLETE " : "", 3771 nn->cap & NFP_NET_CFG_CTRL_LIVE_ADDR ? "LIVE_ADDR " : "", 3772 nfp_app_extra_cap(nn->app, nn)); 3773 } 3774 3775 /** 3776 * nfp_net_alloc() - Allocate netdev and related structure 3777 * @pdev: PCI device 3778 * @ctrl_bar: PCI IOMEM with vNIC config memory 3779 * @needs_netdev: Whether to allocate a netdev for this vNIC 3780 * @max_tx_rings: Maximum number of TX rings supported by device 3781 * @max_rx_rings: Maximum number of RX rings supported by device 3782 * 3783 * This function allocates a netdev device and fills in the initial 3784 * part of the @struct nfp_net structure. In case of control device 3785 * nfp_net structure is allocated without the netdev. 3786 * 3787 * Return: NFP Net device structure, or ERR_PTR on error. 3788 */ 3789 struct nfp_net * 3790 nfp_net_alloc(struct pci_dev *pdev, void __iomem *ctrl_bar, bool needs_netdev, 3791 unsigned int max_tx_rings, unsigned int max_rx_rings) 3792 { 3793 struct nfp_net *nn; 3794 int err; 3795 3796 if (needs_netdev) { 3797 struct net_device *netdev; 3798 3799 netdev = alloc_etherdev_mqs(sizeof(struct nfp_net), 3800 max_tx_rings, max_rx_rings); 3801 if (!netdev) 3802 return ERR_PTR(-ENOMEM); 3803 3804 SET_NETDEV_DEV(netdev, &pdev->dev); 3805 nn = netdev_priv(netdev); 3806 nn->dp.netdev = netdev; 3807 } else { 3808 nn = vzalloc(sizeof(*nn)); 3809 if (!nn) 3810 return ERR_PTR(-ENOMEM); 3811 } 3812 3813 nn->dp.dev = &pdev->dev; 3814 nn->dp.ctrl_bar = ctrl_bar; 3815 nn->pdev = pdev; 3816 3817 nn->max_tx_rings = max_tx_rings; 3818 nn->max_rx_rings = max_rx_rings; 3819 3820 nn->dp.num_tx_rings = min_t(unsigned int, 3821 max_tx_rings, num_online_cpus()); 3822 nn->dp.num_rx_rings = min_t(unsigned int, max_rx_rings, 3823 netif_get_num_default_rss_queues()); 3824 3825 nn->dp.num_r_vecs = max(nn->dp.num_tx_rings, nn->dp.num_rx_rings); 3826 nn->dp.num_r_vecs = min_t(unsigned int, 3827 nn->dp.num_r_vecs, num_online_cpus()); 3828 3829 nn->dp.txd_cnt = NFP_NET_TX_DESCS_DEFAULT; 3830 nn->dp.rxd_cnt = NFP_NET_RX_DESCS_DEFAULT; 3831 3832 sema_init(&nn->bar_lock, 1); 3833 3834 spin_lock_init(&nn->reconfig_lock); 3835 spin_lock_init(&nn->link_status_lock); 3836 3837 timer_setup(&nn->reconfig_timer, nfp_net_reconfig_timer, 0); 3838 3839 err = nfp_net_tlv_caps_parse(&nn->pdev->dev, nn->dp.ctrl_bar, 3840 &nn->tlv_caps); 3841 if (err) 3842 goto err_free_nn; 3843 3844 err = nfp_ccm_mbox_alloc(nn); 3845 if (err) 3846 goto err_free_nn; 3847 3848 return nn; 3849 3850 err_free_nn: 3851 if (nn->dp.netdev) 3852 free_netdev(nn->dp.netdev); 3853 else 3854 vfree(nn); 3855 return ERR_PTR(err); 3856 } 3857 3858 /** 3859 * nfp_net_free() - Undo what @nfp_net_alloc() did 3860 * @nn: NFP Net device to reconfigure 3861 */ 3862 void nfp_net_free(struct nfp_net *nn) 3863 { 3864 WARN_ON(timer_pending(&nn->reconfig_timer) || nn->reconfig_posted); 3865 nfp_ccm_mbox_free(nn); 3866 3867 if (nn->dp.netdev) 3868 free_netdev(nn->dp.netdev); 3869 else 3870 vfree(nn); 3871 } 3872 3873 /** 3874 * nfp_net_rss_key_sz() - Get current size of the RSS key 3875 * @nn: NFP Net device instance 3876 * 3877 * Return: size of the RSS key for currently selected hash function. 3878 */ 3879 unsigned int nfp_net_rss_key_sz(struct nfp_net *nn) 3880 { 3881 switch (nn->rss_hfunc) { 3882 case ETH_RSS_HASH_TOP: 3883 return NFP_NET_CFG_RSS_KEY_SZ; 3884 case ETH_RSS_HASH_XOR: 3885 return 0; 3886 case ETH_RSS_HASH_CRC32: 3887 return 4; 3888 } 3889 3890 nn_warn(nn, "Unknown hash function: %u\n", nn->rss_hfunc); 3891 return 0; 3892 } 3893 3894 /** 3895 * nfp_net_rss_init() - Set the initial RSS parameters 3896 * @nn: NFP Net device to reconfigure 3897 */ 3898 static void nfp_net_rss_init(struct nfp_net *nn) 3899 { 3900 unsigned long func_bit, rss_cap_hfunc; 3901 u32 reg; 3902 3903 /* Read the RSS function capability and select first supported func */ 3904 reg = nn_readl(nn, NFP_NET_CFG_RSS_CAP); 3905 rss_cap_hfunc = FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC, reg); 3906 if (!rss_cap_hfunc) 3907 rss_cap_hfunc = FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC, 3908 NFP_NET_CFG_RSS_TOEPLITZ); 3909 3910 func_bit = find_first_bit(&rss_cap_hfunc, NFP_NET_CFG_RSS_HFUNCS); 3911 if (func_bit == NFP_NET_CFG_RSS_HFUNCS) { 3912 dev_warn(nn->dp.dev, 3913 "Bad RSS config, defaulting to Toeplitz hash\n"); 3914 func_bit = ETH_RSS_HASH_TOP_BIT; 3915 } 3916 nn->rss_hfunc = 1 << func_bit; 3917 3918 netdev_rss_key_fill(nn->rss_key, nfp_net_rss_key_sz(nn)); 3919 3920 nfp_net_rss_init_itbl(nn); 3921 3922 /* Enable IPv4/IPv6 TCP by default */ 3923 nn->rss_cfg = NFP_NET_CFG_RSS_IPV4_TCP | 3924 NFP_NET_CFG_RSS_IPV6_TCP | 3925 FIELD_PREP(NFP_NET_CFG_RSS_HFUNC, nn->rss_hfunc) | 3926 NFP_NET_CFG_RSS_MASK; 3927 } 3928 3929 /** 3930 * nfp_net_irqmod_init() - Set the initial IRQ moderation parameters 3931 * @nn: NFP Net device to reconfigure 3932 */ 3933 static void nfp_net_irqmod_init(struct nfp_net *nn) 3934 { 3935 nn->rx_coalesce_usecs = 50; 3936 nn->rx_coalesce_max_frames = 64; 3937 nn->tx_coalesce_usecs = 50; 3938 nn->tx_coalesce_max_frames = 64; 3939 } 3940 3941 static void nfp_net_netdev_init(struct nfp_net *nn) 3942 { 3943 struct net_device *netdev = nn->dp.netdev; 3944 3945 nfp_net_write_mac_addr(nn, nn->dp.netdev->dev_addr); 3946 3947 netdev->mtu = nn->dp.mtu; 3948 3949 /* Advertise/enable offloads based on capabilities 3950 * 3951 * Note: netdev->features show the currently enabled features 3952 * and netdev->hw_features advertises which features are 3953 * supported. By default we enable most features. 3954 */ 3955 if (nn->cap & NFP_NET_CFG_CTRL_LIVE_ADDR) 3956 netdev->priv_flags |= IFF_LIVE_ADDR_CHANGE; 3957 3958 netdev->hw_features = NETIF_F_HIGHDMA; 3959 if (nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY) { 3960 netdev->hw_features |= NETIF_F_RXCSUM; 3961 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY; 3962 } 3963 if (nn->cap & NFP_NET_CFG_CTRL_TXCSUM) { 3964 netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM; 3965 nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXCSUM; 3966 } 3967 if (nn->cap & NFP_NET_CFG_CTRL_GATHER) { 3968 netdev->hw_features |= NETIF_F_SG; 3969 nn->dp.ctrl |= NFP_NET_CFG_CTRL_GATHER; 3970 } 3971 if ((nn->cap & NFP_NET_CFG_CTRL_LSO && nn->fw_ver.major > 2) || 3972 nn->cap & NFP_NET_CFG_CTRL_LSO2) { 3973 netdev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6; 3974 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_LSO2 ?: 3975 NFP_NET_CFG_CTRL_LSO; 3976 } 3977 if (nn->cap & NFP_NET_CFG_CTRL_RSS_ANY) 3978 netdev->hw_features |= NETIF_F_RXHASH; 3979 if (nn->cap & NFP_NET_CFG_CTRL_VXLAN) { 3980 if (nn->cap & NFP_NET_CFG_CTRL_LSO) 3981 netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL; 3982 nn->dp.ctrl |= NFP_NET_CFG_CTRL_VXLAN; 3983 } 3984 if (nn->cap & NFP_NET_CFG_CTRL_NVGRE) { 3985 if (nn->cap & NFP_NET_CFG_CTRL_LSO) 3986 netdev->hw_features |= NETIF_F_GSO_GRE; 3987 nn->dp.ctrl |= NFP_NET_CFG_CTRL_NVGRE; 3988 } 3989 if (nn->cap & (NFP_NET_CFG_CTRL_VXLAN | NFP_NET_CFG_CTRL_NVGRE)) 3990 netdev->hw_enc_features = netdev->hw_features; 3991 3992 netdev->vlan_features = netdev->hw_features; 3993 3994 if (nn->cap & NFP_NET_CFG_CTRL_RXVLAN) { 3995 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 3996 nn->dp.ctrl |= NFP_NET_CFG_CTRL_RXVLAN; 3997 } 3998 if (nn->cap & NFP_NET_CFG_CTRL_TXVLAN) { 3999 if (nn->cap & NFP_NET_CFG_CTRL_LSO2) { 4000 nn_warn(nn, "Device advertises both TSO2 and TXVLAN. Refusing to enable TXVLAN.\n"); 4001 } else { 4002 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 4003 nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXVLAN; 4004 } 4005 } 4006 if (nn->cap & NFP_NET_CFG_CTRL_CTAG_FILTER) { 4007 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER; 4008 nn->dp.ctrl |= NFP_NET_CFG_CTRL_CTAG_FILTER; 4009 } 4010 4011 netdev->features = netdev->hw_features; 4012 4013 if (nfp_app_has_tc(nn->app) && nn->port) 4014 netdev->hw_features |= NETIF_F_HW_TC; 4015 4016 /* Advertise but disable TSO by default. */ 4017 netdev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6); 4018 nn->dp.ctrl &= ~NFP_NET_CFG_CTRL_LSO_ANY; 4019 4020 /* Finalise the netdev setup */ 4021 netdev->netdev_ops = &nfp_net_netdev_ops; 4022 netdev->watchdog_timeo = msecs_to_jiffies(5 * 1000); 4023 4024 /* MTU range: 68 - hw-specific max */ 4025 netdev->min_mtu = ETH_MIN_MTU; 4026 netdev->max_mtu = nn->max_mtu; 4027 4028 netdev->gso_max_segs = NFP_NET_LSO_MAX_SEGS; 4029 4030 netif_carrier_off(netdev); 4031 4032 nfp_net_set_ethtool_ops(netdev); 4033 } 4034 4035 static int nfp_net_read_caps(struct nfp_net *nn) 4036 { 4037 /* Get some of the read-only fields from the BAR */ 4038 nn->cap = nn_readl(nn, NFP_NET_CFG_CAP); 4039 nn->max_mtu = nn_readl(nn, NFP_NET_CFG_MAX_MTU); 4040 4041 /* ABI 4.x and ctrl vNIC always use chained metadata, in other cases 4042 * we allow use of non-chained metadata if RSS(v1) is the only 4043 * advertised capability requiring metadata. 4044 */ 4045 nn->dp.chained_metadata_format = nn->fw_ver.major == 4 || 4046 !nn->dp.netdev || 4047 !(nn->cap & NFP_NET_CFG_CTRL_RSS) || 4048 nn->cap & NFP_NET_CFG_CTRL_CHAIN_META; 4049 /* RSS(v1) uses non-chained metadata format, except in ABI 4.x where 4050 * it has the same meaning as RSSv2. 4051 */ 4052 if (nn->dp.chained_metadata_format && nn->fw_ver.major != 4) 4053 nn->cap &= ~NFP_NET_CFG_CTRL_RSS; 4054 4055 /* Determine RX packet/metadata boundary offset */ 4056 if (nn->fw_ver.major >= 2) { 4057 u32 reg; 4058 4059 reg = nn_readl(nn, NFP_NET_CFG_RX_OFFSET); 4060 if (reg > NFP_NET_MAX_PREPEND) { 4061 nn_err(nn, "Invalid rx offset: %d\n", reg); 4062 return -EINVAL; 4063 } 4064 nn->dp.rx_offset = reg; 4065 } else { 4066 nn->dp.rx_offset = NFP_NET_RX_OFFSET; 4067 } 4068 4069 /* For control vNICs mask out the capabilities app doesn't want. */ 4070 if (!nn->dp.netdev) 4071 nn->cap &= nn->app->type->ctrl_cap_mask; 4072 4073 return 0; 4074 } 4075 4076 /** 4077 * nfp_net_init() - Initialise/finalise the nfp_net structure 4078 * @nn: NFP Net device structure 4079 * 4080 * Return: 0 on success or negative errno on error. 4081 */ 4082 int nfp_net_init(struct nfp_net *nn) 4083 { 4084 int err; 4085 4086 nn->dp.rx_dma_dir = DMA_FROM_DEVICE; 4087 4088 err = nfp_net_read_caps(nn); 4089 if (err) 4090 return err; 4091 4092 /* Set default MTU and Freelist buffer size */ 4093 if (!nfp_net_is_data_vnic(nn) && nn->app->ctrl_mtu) { 4094 if (nn->app->ctrl_mtu <= nn->max_mtu) { 4095 nn->dp.mtu = nn->app->ctrl_mtu; 4096 } else { 4097 if (nn->app->ctrl_mtu != NFP_APP_CTRL_MTU_MAX) 4098 nn_warn(nn, "app requested MTU above max supported %u > %u\n", 4099 nn->app->ctrl_mtu, nn->max_mtu); 4100 nn->dp.mtu = nn->max_mtu; 4101 } 4102 } else if (nn->max_mtu < NFP_NET_DEFAULT_MTU) { 4103 nn->dp.mtu = nn->max_mtu; 4104 } else { 4105 nn->dp.mtu = NFP_NET_DEFAULT_MTU; 4106 } 4107 nn->dp.fl_bufsz = nfp_net_calc_fl_bufsz(&nn->dp); 4108 4109 if (nfp_app_ctrl_uses_data_vnics(nn->app)) 4110 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_CMSG_DATA; 4111 4112 if (nn->cap & NFP_NET_CFG_CTRL_RSS_ANY) { 4113 nfp_net_rss_init(nn); 4114 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RSS2 ?: 4115 NFP_NET_CFG_CTRL_RSS; 4116 } 4117 4118 /* Allow L2 Broadcast and Multicast through by default, if supported */ 4119 if (nn->cap & NFP_NET_CFG_CTRL_L2BC) 4120 nn->dp.ctrl |= NFP_NET_CFG_CTRL_L2BC; 4121 4122 /* Allow IRQ moderation, if supported */ 4123 if (nn->cap & NFP_NET_CFG_CTRL_IRQMOD) { 4124 nfp_net_irqmod_init(nn); 4125 nn->dp.ctrl |= NFP_NET_CFG_CTRL_IRQMOD; 4126 } 4127 4128 /* Stash the re-configuration queue away. First odd queue in TX Bar */ 4129 nn->qcp_cfg = nn->tx_bar + NFP_QCP_QUEUE_ADDR_SZ; 4130 4131 /* Make sure the FW knows the netdev is supposed to be disabled here */ 4132 nn_writel(nn, NFP_NET_CFG_CTRL, 0); 4133 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0); 4134 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0); 4135 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_RING | 4136 NFP_NET_CFG_UPDATE_GEN); 4137 if (err) 4138 return err; 4139 4140 if (nn->dp.netdev) { 4141 nfp_net_netdev_init(nn); 4142 4143 err = nfp_ccm_mbox_init(nn); 4144 if (err) 4145 return err; 4146 4147 err = nfp_net_tls_init(nn); 4148 if (err) 4149 goto err_clean_mbox; 4150 } 4151 4152 nfp_net_vecs_init(nn); 4153 4154 if (!nn->dp.netdev) 4155 return 0; 4156 return register_netdev(nn->dp.netdev); 4157 4158 err_clean_mbox: 4159 nfp_ccm_mbox_clean(nn); 4160 return err; 4161 } 4162 4163 /** 4164 * nfp_net_clean() - Undo what nfp_net_init() did. 4165 * @nn: NFP Net device structure 4166 */ 4167 void nfp_net_clean(struct nfp_net *nn) 4168 { 4169 if (!nn->dp.netdev) 4170 return; 4171 4172 unregister_netdev(nn->dp.netdev); 4173 nfp_ccm_mbox_clean(nn); 4174 nfp_net_reconfig_wait_posted(nn); 4175 } 4176