1 /* 2 * Copyright (C) 2015-2017 Netronome Systems, Inc. 3 * 4 * This software is dual licensed under the GNU General License Version 2, 5 * June 1991 as shown in the file COPYING in the top-level directory of this 6 * source tree or the BSD 2-Clause License provided below. You have the 7 * option to license this software under the complete terms of either license. 8 * 9 * The BSD 2-Clause License: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * 1. Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * 2. Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 */ 33 34 /* 35 * nfp_net_common.c 36 * Netronome network device driver: Common functions between PF and VF 37 * Authors: Jakub Kicinski <jakub.kicinski@netronome.com> 38 * Jason McMullan <jason.mcmullan@netronome.com> 39 * Rolf Neugebauer <rolf.neugebauer@netronome.com> 40 * Brad Petrus <brad.petrus@netronome.com> 41 * Chris Telfer <chris.telfer@netronome.com> 42 */ 43 44 #include <linux/bitfield.h> 45 #include <linux/bpf.h> 46 #include <linux/bpf_trace.h> 47 #include <linux/module.h> 48 #include <linux/kernel.h> 49 #include <linux/init.h> 50 #include <linux/fs.h> 51 #include <linux/netdevice.h> 52 #include <linux/etherdevice.h> 53 #include <linux/interrupt.h> 54 #include <linux/ip.h> 55 #include <linux/ipv6.h> 56 #include <linux/page_ref.h> 57 #include <linux/pci.h> 58 #include <linux/pci_regs.h> 59 #include <linux/msi.h> 60 #include <linux/ethtool.h> 61 #include <linux/log2.h> 62 #include <linux/if_vlan.h> 63 #include <linux/random.h> 64 #include <linux/vmalloc.h> 65 #include <linux/ktime.h> 66 67 #include <net/switchdev.h> 68 #include <net/vxlan.h> 69 70 #include "nfpcore/nfp_nsp.h" 71 #include "nfp_app.h" 72 #include "nfp_net_ctrl.h" 73 #include "nfp_net.h" 74 #include "nfp_net_sriov.h" 75 #include "nfp_port.h" 76 77 /** 78 * nfp_net_get_fw_version() - Read and parse the FW version 79 * @fw_ver: Output fw_version structure to read to 80 * @ctrl_bar: Mapped address of the control BAR 81 */ 82 void nfp_net_get_fw_version(struct nfp_net_fw_version *fw_ver, 83 void __iomem *ctrl_bar) 84 { 85 u32 reg; 86 87 reg = readl(ctrl_bar + NFP_NET_CFG_VERSION); 88 put_unaligned_le32(reg, fw_ver); 89 } 90 91 static dma_addr_t nfp_net_dma_map_rx(struct nfp_net_dp *dp, void *frag) 92 { 93 return dma_map_single_attrs(dp->dev, frag + NFP_NET_RX_BUF_HEADROOM, 94 dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA, 95 dp->rx_dma_dir, DMA_ATTR_SKIP_CPU_SYNC); 96 } 97 98 static void 99 nfp_net_dma_sync_dev_rx(const struct nfp_net_dp *dp, dma_addr_t dma_addr) 100 { 101 dma_sync_single_for_device(dp->dev, dma_addr, 102 dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA, 103 dp->rx_dma_dir); 104 } 105 106 static void nfp_net_dma_unmap_rx(struct nfp_net_dp *dp, dma_addr_t dma_addr) 107 { 108 dma_unmap_single_attrs(dp->dev, dma_addr, 109 dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA, 110 dp->rx_dma_dir, DMA_ATTR_SKIP_CPU_SYNC); 111 } 112 113 static void nfp_net_dma_sync_cpu_rx(struct nfp_net_dp *dp, dma_addr_t dma_addr, 114 unsigned int len) 115 { 116 dma_sync_single_for_cpu(dp->dev, dma_addr - NFP_NET_RX_BUF_HEADROOM, 117 len, dp->rx_dma_dir); 118 } 119 120 /* Firmware reconfig 121 * 122 * Firmware reconfig may take a while so we have two versions of it - 123 * synchronous and asynchronous (posted). All synchronous callers are holding 124 * RTNL so we don't have to worry about serializing them. 125 */ 126 static void nfp_net_reconfig_start(struct nfp_net *nn, u32 update) 127 { 128 nn_writel(nn, NFP_NET_CFG_UPDATE, update); 129 /* ensure update is written before pinging HW */ 130 nn_pci_flush(nn); 131 nfp_qcp_wr_ptr_add(nn->qcp_cfg, 1); 132 } 133 134 /* Pass 0 as update to run posted reconfigs. */ 135 static void nfp_net_reconfig_start_async(struct nfp_net *nn, u32 update) 136 { 137 update |= nn->reconfig_posted; 138 nn->reconfig_posted = 0; 139 140 nfp_net_reconfig_start(nn, update); 141 142 nn->reconfig_timer_active = true; 143 mod_timer(&nn->reconfig_timer, jiffies + NFP_NET_POLL_TIMEOUT * HZ); 144 } 145 146 static bool nfp_net_reconfig_check_done(struct nfp_net *nn, bool last_check) 147 { 148 u32 reg; 149 150 reg = nn_readl(nn, NFP_NET_CFG_UPDATE); 151 if (reg == 0) 152 return true; 153 if (reg & NFP_NET_CFG_UPDATE_ERR) { 154 nn_err(nn, "Reconfig error: 0x%08x\n", reg); 155 return true; 156 } else if (last_check) { 157 nn_err(nn, "Reconfig timeout: 0x%08x\n", reg); 158 return true; 159 } 160 161 return false; 162 } 163 164 static int nfp_net_reconfig_wait(struct nfp_net *nn, unsigned long deadline) 165 { 166 bool timed_out = false; 167 168 /* Poll update field, waiting for NFP to ack the config */ 169 while (!nfp_net_reconfig_check_done(nn, timed_out)) { 170 msleep(1); 171 timed_out = time_is_before_eq_jiffies(deadline); 172 } 173 174 if (nn_readl(nn, NFP_NET_CFG_UPDATE) & NFP_NET_CFG_UPDATE_ERR) 175 return -EIO; 176 177 return timed_out ? -EIO : 0; 178 } 179 180 static void nfp_net_reconfig_timer(struct timer_list *t) 181 { 182 struct nfp_net *nn = from_timer(nn, t, reconfig_timer); 183 184 spin_lock_bh(&nn->reconfig_lock); 185 186 nn->reconfig_timer_active = false; 187 188 /* If sync caller is present it will take over from us */ 189 if (nn->reconfig_sync_present) 190 goto done; 191 192 /* Read reconfig status and report errors */ 193 nfp_net_reconfig_check_done(nn, true); 194 195 if (nn->reconfig_posted) 196 nfp_net_reconfig_start_async(nn, 0); 197 done: 198 spin_unlock_bh(&nn->reconfig_lock); 199 } 200 201 /** 202 * nfp_net_reconfig_post() - Post async reconfig request 203 * @nn: NFP Net device to reconfigure 204 * @update: The value for the update field in the BAR config 205 * 206 * Record FW reconfiguration request. Reconfiguration will be kicked off 207 * whenever reconfiguration machinery is idle. Multiple requests can be 208 * merged together! 209 */ 210 static void nfp_net_reconfig_post(struct nfp_net *nn, u32 update) 211 { 212 spin_lock_bh(&nn->reconfig_lock); 213 214 /* Sync caller will kick off async reconf when it's done, just post */ 215 if (nn->reconfig_sync_present) { 216 nn->reconfig_posted |= update; 217 goto done; 218 } 219 220 /* Opportunistically check if the previous command is done */ 221 if (!nn->reconfig_timer_active || 222 nfp_net_reconfig_check_done(nn, false)) 223 nfp_net_reconfig_start_async(nn, update); 224 else 225 nn->reconfig_posted |= update; 226 done: 227 spin_unlock_bh(&nn->reconfig_lock); 228 } 229 230 /** 231 * nfp_net_reconfig() - Reconfigure the firmware 232 * @nn: NFP Net device to reconfigure 233 * @update: The value for the update field in the BAR config 234 * 235 * Write the update word to the BAR and ping the reconfig queue. The 236 * poll until the firmware has acknowledged the update by zeroing the 237 * update word. 238 * 239 * Return: Negative errno on error, 0 on success 240 */ 241 int nfp_net_reconfig(struct nfp_net *nn, u32 update) 242 { 243 bool cancelled_timer = false; 244 u32 pre_posted_requests; 245 int ret; 246 247 spin_lock_bh(&nn->reconfig_lock); 248 249 nn->reconfig_sync_present = true; 250 251 if (nn->reconfig_timer_active) { 252 del_timer(&nn->reconfig_timer); 253 nn->reconfig_timer_active = false; 254 cancelled_timer = true; 255 } 256 pre_posted_requests = nn->reconfig_posted; 257 nn->reconfig_posted = 0; 258 259 spin_unlock_bh(&nn->reconfig_lock); 260 261 if (cancelled_timer) 262 nfp_net_reconfig_wait(nn, nn->reconfig_timer.expires); 263 264 /* Run the posted reconfigs which were issued before we started */ 265 if (pre_posted_requests) { 266 nfp_net_reconfig_start(nn, pre_posted_requests); 267 nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT); 268 } 269 270 nfp_net_reconfig_start(nn, update); 271 ret = nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT); 272 273 spin_lock_bh(&nn->reconfig_lock); 274 275 if (nn->reconfig_posted) 276 nfp_net_reconfig_start_async(nn, 0); 277 278 nn->reconfig_sync_present = false; 279 280 spin_unlock_bh(&nn->reconfig_lock); 281 282 return ret; 283 } 284 285 /** 286 * nfp_net_reconfig_mbox() - Reconfigure the firmware via the mailbox 287 * @nn: NFP Net device to reconfigure 288 * @mbox_cmd: The value for the mailbox command 289 * 290 * Helper function for mailbox updates 291 * 292 * Return: Negative errno on error, 0 on success 293 */ 294 static int nfp_net_reconfig_mbox(struct nfp_net *nn, u32 mbox_cmd) 295 { 296 int ret; 297 298 nn_writeq(nn, NFP_NET_CFG_MBOX_CMD, mbox_cmd); 299 300 ret = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_MBOX); 301 if (ret) { 302 nn_err(nn, "Mailbox update error\n"); 303 return ret; 304 } 305 306 return -nn_readl(nn, NFP_NET_CFG_MBOX_RET); 307 } 308 309 /* Interrupt configuration and handling 310 */ 311 312 /** 313 * nfp_net_irq_unmask() - Unmask automasked interrupt 314 * @nn: NFP Network structure 315 * @entry_nr: MSI-X table entry 316 * 317 * Clear the ICR for the IRQ entry. 318 */ 319 static void nfp_net_irq_unmask(struct nfp_net *nn, unsigned int entry_nr) 320 { 321 nn_writeb(nn, NFP_NET_CFG_ICR(entry_nr), NFP_NET_CFG_ICR_UNMASKED); 322 nn_pci_flush(nn); 323 } 324 325 /** 326 * nfp_net_irqs_alloc() - allocates MSI-X irqs 327 * @pdev: PCI device structure 328 * @irq_entries: Array to be initialized and used to hold the irq entries 329 * @min_irqs: Minimal acceptable number of interrupts 330 * @wanted_irqs: Target number of interrupts to allocate 331 * 332 * Return: Number of irqs obtained or 0 on error. 333 */ 334 unsigned int 335 nfp_net_irqs_alloc(struct pci_dev *pdev, struct msix_entry *irq_entries, 336 unsigned int min_irqs, unsigned int wanted_irqs) 337 { 338 unsigned int i; 339 int got_irqs; 340 341 for (i = 0; i < wanted_irqs; i++) 342 irq_entries[i].entry = i; 343 344 got_irqs = pci_enable_msix_range(pdev, irq_entries, 345 min_irqs, wanted_irqs); 346 if (got_irqs < 0) { 347 dev_err(&pdev->dev, "Failed to enable %d-%d MSI-X (err=%d)\n", 348 min_irqs, wanted_irqs, got_irqs); 349 return 0; 350 } 351 352 if (got_irqs < wanted_irqs) 353 dev_warn(&pdev->dev, "Unable to allocate %d IRQs got only %d\n", 354 wanted_irqs, got_irqs); 355 356 return got_irqs; 357 } 358 359 /** 360 * nfp_net_irqs_assign() - Assign interrupts allocated externally to netdev 361 * @nn: NFP Network structure 362 * @irq_entries: Table of allocated interrupts 363 * @n: Size of @irq_entries (number of entries to grab) 364 * 365 * After interrupts are allocated with nfp_net_irqs_alloc() this function 366 * should be called to assign them to a specific netdev (port). 367 */ 368 void 369 nfp_net_irqs_assign(struct nfp_net *nn, struct msix_entry *irq_entries, 370 unsigned int n) 371 { 372 struct nfp_net_dp *dp = &nn->dp; 373 374 nn->max_r_vecs = n - NFP_NET_NON_Q_VECTORS; 375 dp->num_r_vecs = nn->max_r_vecs; 376 377 memcpy(nn->irq_entries, irq_entries, sizeof(*irq_entries) * n); 378 379 if (dp->num_rx_rings > dp->num_r_vecs || 380 dp->num_tx_rings > dp->num_r_vecs) 381 dev_warn(nn->dp.dev, "More rings (%d,%d) than vectors (%d).\n", 382 dp->num_rx_rings, dp->num_tx_rings, 383 dp->num_r_vecs); 384 385 dp->num_rx_rings = min(dp->num_r_vecs, dp->num_rx_rings); 386 dp->num_tx_rings = min(dp->num_r_vecs, dp->num_tx_rings); 387 dp->num_stack_tx_rings = dp->num_tx_rings; 388 } 389 390 /** 391 * nfp_net_irqs_disable() - Disable interrupts 392 * @pdev: PCI device structure 393 * 394 * Undoes what @nfp_net_irqs_alloc() does. 395 */ 396 void nfp_net_irqs_disable(struct pci_dev *pdev) 397 { 398 pci_disable_msix(pdev); 399 } 400 401 /** 402 * nfp_net_irq_rxtx() - Interrupt service routine for RX/TX rings. 403 * @irq: Interrupt 404 * @data: Opaque data structure 405 * 406 * Return: Indicate if the interrupt has been handled. 407 */ 408 static irqreturn_t nfp_net_irq_rxtx(int irq, void *data) 409 { 410 struct nfp_net_r_vector *r_vec = data; 411 412 napi_schedule_irqoff(&r_vec->napi); 413 414 /* The FW auto-masks any interrupt, either via the MASK bit in 415 * the MSI-X table or via the per entry ICR field. So there 416 * is no need to disable interrupts here. 417 */ 418 return IRQ_HANDLED; 419 } 420 421 static irqreturn_t nfp_ctrl_irq_rxtx(int irq, void *data) 422 { 423 struct nfp_net_r_vector *r_vec = data; 424 425 tasklet_schedule(&r_vec->tasklet); 426 427 return IRQ_HANDLED; 428 } 429 430 /** 431 * nfp_net_read_link_status() - Reread link status from control BAR 432 * @nn: NFP Network structure 433 */ 434 static void nfp_net_read_link_status(struct nfp_net *nn) 435 { 436 unsigned long flags; 437 bool link_up; 438 u32 sts; 439 440 spin_lock_irqsave(&nn->link_status_lock, flags); 441 442 sts = nn_readl(nn, NFP_NET_CFG_STS); 443 link_up = !!(sts & NFP_NET_CFG_STS_LINK); 444 445 if (nn->link_up == link_up) 446 goto out; 447 448 nn->link_up = link_up; 449 if (nn->port) 450 set_bit(NFP_PORT_CHANGED, &nn->port->flags); 451 452 if (nn->link_up) { 453 netif_carrier_on(nn->dp.netdev); 454 netdev_info(nn->dp.netdev, "NIC Link is Up\n"); 455 } else { 456 netif_carrier_off(nn->dp.netdev); 457 netdev_info(nn->dp.netdev, "NIC Link is Down\n"); 458 } 459 out: 460 spin_unlock_irqrestore(&nn->link_status_lock, flags); 461 } 462 463 /** 464 * nfp_net_irq_lsc() - Interrupt service routine for link state changes 465 * @irq: Interrupt 466 * @data: Opaque data structure 467 * 468 * Return: Indicate if the interrupt has been handled. 469 */ 470 static irqreturn_t nfp_net_irq_lsc(int irq, void *data) 471 { 472 struct nfp_net *nn = data; 473 struct msix_entry *entry; 474 475 entry = &nn->irq_entries[NFP_NET_IRQ_LSC_IDX]; 476 477 nfp_net_read_link_status(nn); 478 479 nfp_net_irq_unmask(nn, entry->entry); 480 481 return IRQ_HANDLED; 482 } 483 484 /** 485 * nfp_net_irq_exn() - Interrupt service routine for exceptions 486 * @irq: Interrupt 487 * @data: Opaque data structure 488 * 489 * Return: Indicate if the interrupt has been handled. 490 */ 491 static irqreturn_t nfp_net_irq_exn(int irq, void *data) 492 { 493 struct nfp_net *nn = data; 494 495 nn_err(nn, "%s: UNIMPLEMENTED.\n", __func__); 496 /* XXX TO BE IMPLEMENTED */ 497 return IRQ_HANDLED; 498 } 499 500 /** 501 * nfp_net_tx_ring_init() - Fill in the boilerplate for a TX ring 502 * @tx_ring: TX ring structure 503 * @r_vec: IRQ vector servicing this ring 504 * @idx: Ring index 505 * @is_xdp: Is this an XDP TX ring? 506 */ 507 static void 508 nfp_net_tx_ring_init(struct nfp_net_tx_ring *tx_ring, 509 struct nfp_net_r_vector *r_vec, unsigned int idx, 510 bool is_xdp) 511 { 512 struct nfp_net *nn = r_vec->nfp_net; 513 514 tx_ring->idx = idx; 515 tx_ring->r_vec = r_vec; 516 tx_ring->is_xdp = is_xdp; 517 u64_stats_init(&tx_ring->r_vec->tx_sync); 518 519 tx_ring->qcidx = tx_ring->idx * nn->stride_tx; 520 tx_ring->qcp_q = nn->tx_bar + NFP_QCP_QUEUE_OFF(tx_ring->qcidx); 521 } 522 523 /** 524 * nfp_net_rx_ring_init() - Fill in the boilerplate for a RX ring 525 * @rx_ring: RX ring structure 526 * @r_vec: IRQ vector servicing this ring 527 * @idx: Ring index 528 */ 529 static void 530 nfp_net_rx_ring_init(struct nfp_net_rx_ring *rx_ring, 531 struct nfp_net_r_vector *r_vec, unsigned int idx) 532 { 533 struct nfp_net *nn = r_vec->nfp_net; 534 535 rx_ring->idx = idx; 536 rx_ring->r_vec = r_vec; 537 u64_stats_init(&rx_ring->r_vec->rx_sync); 538 539 rx_ring->fl_qcidx = rx_ring->idx * nn->stride_rx; 540 rx_ring->qcp_fl = nn->rx_bar + NFP_QCP_QUEUE_OFF(rx_ring->fl_qcidx); 541 } 542 543 /** 544 * nfp_net_aux_irq_request() - Request an auxiliary interrupt (LSC or EXN) 545 * @nn: NFP Network structure 546 * @ctrl_offset: Control BAR offset where IRQ configuration should be written 547 * @format: printf-style format to construct the interrupt name 548 * @name: Pointer to allocated space for interrupt name 549 * @name_sz: Size of space for interrupt name 550 * @vector_idx: Index of MSI-X vector used for this interrupt 551 * @handler: IRQ handler to register for this interrupt 552 */ 553 static int 554 nfp_net_aux_irq_request(struct nfp_net *nn, u32 ctrl_offset, 555 const char *format, char *name, size_t name_sz, 556 unsigned int vector_idx, irq_handler_t handler) 557 { 558 struct msix_entry *entry; 559 int err; 560 561 entry = &nn->irq_entries[vector_idx]; 562 563 snprintf(name, name_sz, format, nfp_net_name(nn)); 564 err = request_irq(entry->vector, handler, 0, name, nn); 565 if (err) { 566 nn_err(nn, "Failed to request IRQ %d (err=%d).\n", 567 entry->vector, err); 568 return err; 569 } 570 nn_writeb(nn, ctrl_offset, entry->entry); 571 nfp_net_irq_unmask(nn, entry->entry); 572 573 return 0; 574 } 575 576 /** 577 * nfp_net_aux_irq_free() - Free an auxiliary interrupt (LSC or EXN) 578 * @nn: NFP Network structure 579 * @ctrl_offset: Control BAR offset where IRQ configuration should be written 580 * @vector_idx: Index of MSI-X vector used for this interrupt 581 */ 582 static void nfp_net_aux_irq_free(struct nfp_net *nn, u32 ctrl_offset, 583 unsigned int vector_idx) 584 { 585 nn_writeb(nn, ctrl_offset, 0xff); 586 nn_pci_flush(nn); 587 free_irq(nn->irq_entries[vector_idx].vector, nn); 588 } 589 590 /* Transmit 591 * 592 * One queue controller peripheral queue is used for transmit. The 593 * driver en-queues packets for transmit by advancing the write 594 * pointer. The device indicates that packets have transmitted by 595 * advancing the read pointer. The driver maintains a local copy of 596 * the read and write pointer in @struct nfp_net_tx_ring. The driver 597 * keeps @wr_p in sync with the queue controller write pointer and can 598 * determine how many packets have been transmitted by comparing its 599 * copy of the read pointer @rd_p with the read pointer maintained by 600 * the queue controller peripheral. 601 */ 602 603 /** 604 * nfp_net_tx_full() - Check if the TX ring is full 605 * @tx_ring: TX ring to check 606 * @dcnt: Number of descriptors that need to be enqueued (must be >= 1) 607 * 608 * This function checks, based on the *host copy* of read/write 609 * pointer if a given TX ring is full. The real TX queue may have 610 * some newly made available slots. 611 * 612 * Return: True if the ring is full. 613 */ 614 static int nfp_net_tx_full(struct nfp_net_tx_ring *tx_ring, int dcnt) 615 { 616 return (tx_ring->wr_p - tx_ring->rd_p) >= (tx_ring->cnt - dcnt); 617 } 618 619 /* Wrappers for deciding when to stop and restart TX queues */ 620 static int nfp_net_tx_ring_should_wake(struct nfp_net_tx_ring *tx_ring) 621 { 622 return !nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS * 4); 623 } 624 625 static int nfp_net_tx_ring_should_stop(struct nfp_net_tx_ring *tx_ring) 626 { 627 return nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS + 1); 628 } 629 630 /** 631 * nfp_net_tx_ring_stop() - stop tx ring 632 * @nd_q: netdev queue 633 * @tx_ring: driver tx queue structure 634 * 635 * Safely stop TX ring. Remember that while we are running .start_xmit() 636 * someone else may be cleaning the TX ring completions so we need to be 637 * extra careful here. 638 */ 639 static void nfp_net_tx_ring_stop(struct netdev_queue *nd_q, 640 struct nfp_net_tx_ring *tx_ring) 641 { 642 netif_tx_stop_queue(nd_q); 643 644 /* We can race with the TX completion out of NAPI so recheck */ 645 smp_mb(); 646 if (unlikely(nfp_net_tx_ring_should_wake(tx_ring))) 647 netif_tx_start_queue(nd_q); 648 } 649 650 /** 651 * nfp_net_tx_tso() - Set up Tx descriptor for LSO 652 * @r_vec: per-ring structure 653 * @txbuf: Pointer to driver soft TX descriptor 654 * @txd: Pointer to HW TX descriptor 655 * @skb: Pointer to SKB 656 * 657 * Set up Tx descriptor for LSO, do nothing for non-LSO skbs. 658 * Return error on packet header greater than maximum supported LSO header size. 659 */ 660 static void nfp_net_tx_tso(struct nfp_net_r_vector *r_vec, 661 struct nfp_net_tx_buf *txbuf, 662 struct nfp_net_tx_desc *txd, struct sk_buff *skb) 663 { 664 u32 hdrlen; 665 u16 mss; 666 667 if (!skb_is_gso(skb)) 668 return; 669 670 if (!skb->encapsulation) { 671 txd->l3_offset = skb_network_offset(skb); 672 txd->l4_offset = skb_transport_offset(skb); 673 hdrlen = skb_transport_offset(skb) + tcp_hdrlen(skb); 674 } else { 675 txd->l3_offset = skb_inner_network_offset(skb); 676 txd->l4_offset = skb_inner_transport_offset(skb); 677 hdrlen = skb_inner_transport_header(skb) - skb->data + 678 inner_tcp_hdrlen(skb); 679 } 680 681 txbuf->pkt_cnt = skb_shinfo(skb)->gso_segs; 682 txbuf->real_len += hdrlen * (txbuf->pkt_cnt - 1); 683 684 mss = skb_shinfo(skb)->gso_size & PCIE_DESC_TX_MSS_MASK; 685 txd->lso_hdrlen = hdrlen; 686 txd->mss = cpu_to_le16(mss); 687 txd->flags |= PCIE_DESC_TX_LSO; 688 689 u64_stats_update_begin(&r_vec->tx_sync); 690 r_vec->tx_lso++; 691 u64_stats_update_end(&r_vec->tx_sync); 692 } 693 694 /** 695 * nfp_net_tx_csum() - Set TX CSUM offload flags in TX descriptor 696 * @dp: NFP Net data path struct 697 * @r_vec: per-ring structure 698 * @txbuf: Pointer to driver soft TX descriptor 699 * @txd: Pointer to TX descriptor 700 * @skb: Pointer to SKB 701 * 702 * This function sets the TX checksum flags in the TX descriptor based 703 * on the configuration and the protocol of the packet to be transmitted. 704 */ 705 static void nfp_net_tx_csum(struct nfp_net_dp *dp, 706 struct nfp_net_r_vector *r_vec, 707 struct nfp_net_tx_buf *txbuf, 708 struct nfp_net_tx_desc *txd, struct sk_buff *skb) 709 { 710 struct ipv6hdr *ipv6h; 711 struct iphdr *iph; 712 u8 l4_hdr; 713 714 if (!(dp->ctrl & NFP_NET_CFG_CTRL_TXCSUM)) 715 return; 716 717 if (skb->ip_summed != CHECKSUM_PARTIAL) 718 return; 719 720 txd->flags |= PCIE_DESC_TX_CSUM; 721 if (skb->encapsulation) 722 txd->flags |= PCIE_DESC_TX_ENCAP; 723 724 iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb); 725 ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb); 726 727 if (iph->version == 4) { 728 txd->flags |= PCIE_DESC_TX_IP4_CSUM; 729 l4_hdr = iph->protocol; 730 } else if (ipv6h->version == 6) { 731 l4_hdr = ipv6h->nexthdr; 732 } else { 733 nn_dp_warn(dp, "partial checksum but ipv=%x!\n", iph->version); 734 return; 735 } 736 737 switch (l4_hdr) { 738 case IPPROTO_TCP: 739 txd->flags |= PCIE_DESC_TX_TCP_CSUM; 740 break; 741 case IPPROTO_UDP: 742 txd->flags |= PCIE_DESC_TX_UDP_CSUM; 743 break; 744 default: 745 nn_dp_warn(dp, "partial checksum but l4 proto=%x!\n", l4_hdr); 746 return; 747 } 748 749 u64_stats_update_begin(&r_vec->tx_sync); 750 if (skb->encapsulation) 751 r_vec->hw_csum_tx_inner += txbuf->pkt_cnt; 752 else 753 r_vec->hw_csum_tx += txbuf->pkt_cnt; 754 u64_stats_update_end(&r_vec->tx_sync); 755 } 756 757 static void nfp_net_tx_xmit_more_flush(struct nfp_net_tx_ring *tx_ring) 758 { 759 wmb(); 760 nfp_qcp_wr_ptr_add(tx_ring->qcp_q, tx_ring->wr_ptr_add); 761 tx_ring->wr_ptr_add = 0; 762 } 763 764 static int nfp_net_prep_port_id(struct sk_buff *skb) 765 { 766 struct metadata_dst *md_dst = skb_metadata_dst(skb); 767 unsigned char *data; 768 769 if (likely(!md_dst)) 770 return 0; 771 if (unlikely(md_dst->type != METADATA_HW_PORT_MUX)) 772 return 0; 773 774 if (unlikely(skb_cow_head(skb, 8))) 775 return -ENOMEM; 776 777 data = skb_push(skb, 8); 778 put_unaligned_be32(NFP_NET_META_PORTID, data); 779 put_unaligned_be32(md_dst->u.port_info.port_id, data + 4); 780 781 return 8; 782 } 783 784 /** 785 * nfp_net_tx() - Main transmit entry point 786 * @skb: SKB to transmit 787 * @netdev: netdev structure 788 * 789 * Return: NETDEV_TX_OK on success. 790 */ 791 static int nfp_net_tx(struct sk_buff *skb, struct net_device *netdev) 792 { 793 struct nfp_net *nn = netdev_priv(netdev); 794 const struct skb_frag_struct *frag; 795 struct nfp_net_tx_desc *txd, txdg; 796 int f, nr_frags, wr_idx, md_bytes; 797 struct nfp_net_tx_ring *tx_ring; 798 struct nfp_net_r_vector *r_vec; 799 struct nfp_net_tx_buf *txbuf; 800 struct netdev_queue *nd_q; 801 struct nfp_net_dp *dp; 802 dma_addr_t dma_addr; 803 unsigned int fsize; 804 u16 qidx; 805 806 dp = &nn->dp; 807 qidx = skb_get_queue_mapping(skb); 808 tx_ring = &dp->tx_rings[qidx]; 809 r_vec = tx_ring->r_vec; 810 nd_q = netdev_get_tx_queue(dp->netdev, qidx); 811 812 nr_frags = skb_shinfo(skb)->nr_frags; 813 814 if (unlikely(nfp_net_tx_full(tx_ring, nr_frags + 1))) { 815 nn_dp_warn(dp, "TX ring %d busy. wrp=%u rdp=%u\n", 816 qidx, tx_ring->wr_p, tx_ring->rd_p); 817 netif_tx_stop_queue(nd_q); 818 nfp_net_tx_xmit_more_flush(tx_ring); 819 u64_stats_update_begin(&r_vec->tx_sync); 820 r_vec->tx_busy++; 821 u64_stats_update_end(&r_vec->tx_sync); 822 return NETDEV_TX_BUSY; 823 } 824 825 md_bytes = nfp_net_prep_port_id(skb); 826 if (unlikely(md_bytes < 0)) { 827 nfp_net_tx_xmit_more_flush(tx_ring); 828 dev_kfree_skb_any(skb); 829 return NETDEV_TX_OK; 830 } 831 832 /* Start with the head skbuf */ 833 dma_addr = dma_map_single(dp->dev, skb->data, skb_headlen(skb), 834 DMA_TO_DEVICE); 835 if (dma_mapping_error(dp->dev, dma_addr)) 836 goto err_free; 837 838 wr_idx = D_IDX(tx_ring, tx_ring->wr_p); 839 840 /* Stash the soft descriptor of the head then initialize it */ 841 txbuf = &tx_ring->txbufs[wr_idx]; 842 txbuf->skb = skb; 843 txbuf->dma_addr = dma_addr; 844 txbuf->fidx = -1; 845 txbuf->pkt_cnt = 1; 846 txbuf->real_len = skb->len; 847 848 /* Build TX descriptor */ 849 txd = &tx_ring->txds[wr_idx]; 850 txd->offset_eop = (nr_frags ? 0 : PCIE_DESC_TX_EOP) | md_bytes; 851 txd->dma_len = cpu_to_le16(skb_headlen(skb)); 852 nfp_desc_set_dma_addr(txd, dma_addr); 853 txd->data_len = cpu_to_le16(skb->len); 854 855 txd->flags = 0; 856 txd->mss = 0; 857 txd->lso_hdrlen = 0; 858 859 /* Do not reorder - tso may adjust pkt cnt, vlan may override fields */ 860 nfp_net_tx_tso(r_vec, txbuf, txd, skb); 861 nfp_net_tx_csum(dp, r_vec, txbuf, txd, skb); 862 if (skb_vlan_tag_present(skb) && dp->ctrl & NFP_NET_CFG_CTRL_TXVLAN) { 863 txd->flags |= PCIE_DESC_TX_VLAN; 864 txd->vlan = cpu_to_le16(skb_vlan_tag_get(skb)); 865 } 866 867 /* Gather DMA */ 868 if (nr_frags > 0) { 869 /* all descs must match except for in addr, length and eop */ 870 txdg = *txd; 871 872 for (f = 0; f < nr_frags; f++) { 873 frag = &skb_shinfo(skb)->frags[f]; 874 fsize = skb_frag_size(frag); 875 876 dma_addr = skb_frag_dma_map(dp->dev, frag, 0, 877 fsize, DMA_TO_DEVICE); 878 if (dma_mapping_error(dp->dev, dma_addr)) 879 goto err_unmap; 880 881 wr_idx = D_IDX(tx_ring, wr_idx + 1); 882 tx_ring->txbufs[wr_idx].skb = skb; 883 tx_ring->txbufs[wr_idx].dma_addr = dma_addr; 884 tx_ring->txbufs[wr_idx].fidx = f; 885 886 txd = &tx_ring->txds[wr_idx]; 887 *txd = txdg; 888 txd->dma_len = cpu_to_le16(fsize); 889 nfp_desc_set_dma_addr(txd, dma_addr); 890 txd->offset_eop |= 891 (f == nr_frags - 1) ? PCIE_DESC_TX_EOP : 0; 892 } 893 894 u64_stats_update_begin(&r_vec->tx_sync); 895 r_vec->tx_gather++; 896 u64_stats_update_end(&r_vec->tx_sync); 897 } 898 899 netdev_tx_sent_queue(nd_q, txbuf->real_len); 900 901 skb_tx_timestamp(skb); 902 903 tx_ring->wr_p += nr_frags + 1; 904 if (nfp_net_tx_ring_should_stop(tx_ring)) 905 nfp_net_tx_ring_stop(nd_q, tx_ring); 906 907 tx_ring->wr_ptr_add += nr_frags + 1; 908 if (!skb->xmit_more || netif_xmit_stopped(nd_q)) 909 nfp_net_tx_xmit_more_flush(tx_ring); 910 911 return NETDEV_TX_OK; 912 913 err_unmap: 914 while (--f >= 0) { 915 frag = &skb_shinfo(skb)->frags[f]; 916 dma_unmap_page(dp->dev, tx_ring->txbufs[wr_idx].dma_addr, 917 skb_frag_size(frag), DMA_TO_DEVICE); 918 tx_ring->txbufs[wr_idx].skb = NULL; 919 tx_ring->txbufs[wr_idx].dma_addr = 0; 920 tx_ring->txbufs[wr_idx].fidx = -2; 921 wr_idx = wr_idx - 1; 922 if (wr_idx < 0) 923 wr_idx += tx_ring->cnt; 924 } 925 dma_unmap_single(dp->dev, tx_ring->txbufs[wr_idx].dma_addr, 926 skb_headlen(skb), DMA_TO_DEVICE); 927 tx_ring->txbufs[wr_idx].skb = NULL; 928 tx_ring->txbufs[wr_idx].dma_addr = 0; 929 tx_ring->txbufs[wr_idx].fidx = -2; 930 err_free: 931 nn_dp_warn(dp, "Failed to map DMA TX buffer\n"); 932 nfp_net_tx_xmit_more_flush(tx_ring); 933 u64_stats_update_begin(&r_vec->tx_sync); 934 r_vec->tx_errors++; 935 u64_stats_update_end(&r_vec->tx_sync); 936 dev_kfree_skb_any(skb); 937 return NETDEV_TX_OK; 938 } 939 940 /** 941 * nfp_net_tx_complete() - Handled completed TX packets 942 * @tx_ring: TX ring structure 943 * 944 * Return: Number of completed TX descriptors 945 */ 946 static void nfp_net_tx_complete(struct nfp_net_tx_ring *tx_ring) 947 { 948 struct nfp_net_r_vector *r_vec = tx_ring->r_vec; 949 struct nfp_net_dp *dp = &r_vec->nfp_net->dp; 950 const struct skb_frag_struct *frag; 951 struct netdev_queue *nd_q; 952 u32 done_pkts = 0, done_bytes = 0; 953 struct sk_buff *skb; 954 int todo, nr_frags; 955 u32 qcp_rd_p; 956 int fidx; 957 int idx; 958 959 if (tx_ring->wr_p == tx_ring->rd_p) 960 return; 961 962 /* Work out how many descriptors have been transmitted */ 963 qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q); 964 965 if (qcp_rd_p == tx_ring->qcp_rd_p) 966 return; 967 968 todo = D_IDX(tx_ring, qcp_rd_p - tx_ring->qcp_rd_p); 969 970 while (todo--) { 971 idx = D_IDX(tx_ring, tx_ring->rd_p++); 972 973 skb = tx_ring->txbufs[idx].skb; 974 if (!skb) 975 continue; 976 977 nr_frags = skb_shinfo(skb)->nr_frags; 978 fidx = tx_ring->txbufs[idx].fidx; 979 980 if (fidx == -1) { 981 /* unmap head */ 982 dma_unmap_single(dp->dev, tx_ring->txbufs[idx].dma_addr, 983 skb_headlen(skb), DMA_TO_DEVICE); 984 985 done_pkts += tx_ring->txbufs[idx].pkt_cnt; 986 done_bytes += tx_ring->txbufs[idx].real_len; 987 } else { 988 /* unmap fragment */ 989 frag = &skb_shinfo(skb)->frags[fidx]; 990 dma_unmap_page(dp->dev, tx_ring->txbufs[idx].dma_addr, 991 skb_frag_size(frag), DMA_TO_DEVICE); 992 } 993 994 /* check for last gather fragment */ 995 if (fidx == nr_frags - 1) 996 dev_consume_skb_any(skb); 997 998 tx_ring->txbufs[idx].dma_addr = 0; 999 tx_ring->txbufs[idx].skb = NULL; 1000 tx_ring->txbufs[idx].fidx = -2; 1001 } 1002 1003 tx_ring->qcp_rd_p = qcp_rd_p; 1004 1005 u64_stats_update_begin(&r_vec->tx_sync); 1006 r_vec->tx_bytes += done_bytes; 1007 r_vec->tx_pkts += done_pkts; 1008 u64_stats_update_end(&r_vec->tx_sync); 1009 1010 if (!dp->netdev) 1011 return; 1012 1013 nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx); 1014 netdev_tx_completed_queue(nd_q, done_pkts, done_bytes); 1015 if (nfp_net_tx_ring_should_wake(tx_ring)) { 1016 /* Make sure TX thread will see updated tx_ring->rd_p */ 1017 smp_mb(); 1018 1019 if (unlikely(netif_tx_queue_stopped(nd_q))) 1020 netif_tx_wake_queue(nd_q); 1021 } 1022 1023 WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt, 1024 "TX ring corruption rd_p=%u wr_p=%u cnt=%u\n", 1025 tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt); 1026 } 1027 1028 static bool nfp_net_xdp_complete(struct nfp_net_tx_ring *tx_ring) 1029 { 1030 struct nfp_net_r_vector *r_vec = tx_ring->r_vec; 1031 u32 done_pkts = 0, done_bytes = 0; 1032 bool done_all; 1033 int idx, todo; 1034 u32 qcp_rd_p; 1035 1036 /* Work out how many descriptors have been transmitted */ 1037 qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q); 1038 1039 if (qcp_rd_p == tx_ring->qcp_rd_p) 1040 return true; 1041 1042 todo = D_IDX(tx_ring, qcp_rd_p - tx_ring->qcp_rd_p); 1043 1044 done_all = todo <= NFP_NET_XDP_MAX_COMPLETE; 1045 todo = min(todo, NFP_NET_XDP_MAX_COMPLETE); 1046 1047 tx_ring->qcp_rd_p = D_IDX(tx_ring, tx_ring->qcp_rd_p + todo); 1048 1049 done_pkts = todo; 1050 while (todo--) { 1051 idx = D_IDX(tx_ring, tx_ring->rd_p); 1052 tx_ring->rd_p++; 1053 1054 done_bytes += tx_ring->txbufs[idx].real_len; 1055 } 1056 1057 u64_stats_update_begin(&r_vec->tx_sync); 1058 r_vec->tx_bytes += done_bytes; 1059 r_vec->tx_pkts += done_pkts; 1060 u64_stats_update_end(&r_vec->tx_sync); 1061 1062 WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt, 1063 "XDP TX ring corruption rd_p=%u wr_p=%u cnt=%u\n", 1064 tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt); 1065 1066 return done_all; 1067 } 1068 1069 /** 1070 * nfp_net_tx_ring_reset() - Free any untransmitted buffers and reset pointers 1071 * @dp: NFP Net data path struct 1072 * @tx_ring: TX ring structure 1073 * 1074 * Assumes that the device is stopped 1075 */ 1076 static void 1077 nfp_net_tx_ring_reset(struct nfp_net_dp *dp, struct nfp_net_tx_ring *tx_ring) 1078 { 1079 const struct skb_frag_struct *frag; 1080 struct netdev_queue *nd_q; 1081 1082 while (!tx_ring->is_xdp && tx_ring->rd_p != tx_ring->wr_p) { 1083 struct nfp_net_tx_buf *tx_buf; 1084 struct sk_buff *skb; 1085 int idx, nr_frags; 1086 1087 idx = D_IDX(tx_ring, tx_ring->rd_p); 1088 tx_buf = &tx_ring->txbufs[idx]; 1089 1090 skb = tx_ring->txbufs[idx].skb; 1091 nr_frags = skb_shinfo(skb)->nr_frags; 1092 1093 if (tx_buf->fidx == -1) { 1094 /* unmap head */ 1095 dma_unmap_single(dp->dev, tx_buf->dma_addr, 1096 skb_headlen(skb), DMA_TO_DEVICE); 1097 } else { 1098 /* unmap fragment */ 1099 frag = &skb_shinfo(skb)->frags[tx_buf->fidx]; 1100 dma_unmap_page(dp->dev, tx_buf->dma_addr, 1101 skb_frag_size(frag), DMA_TO_DEVICE); 1102 } 1103 1104 /* check for last gather fragment */ 1105 if (tx_buf->fidx == nr_frags - 1) 1106 dev_kfree_skb_any(skb); 1107 1108 tx_buf->dma_addr = 0; 1109 tx_buf->skb = NULL; 1110 tx_buf->fidx = -2; 1111 1112 tx_ring->qcp_rd_p++; 1113 tx_ring->rd_p++; 1114 } 1115 1116 memset(tx_ring->txds, 0, sizeof(*tx_ring->txds) * tx_ring->cnt); 1117 tx_ring->wr_p = 0; 1118 tx_ring->rd_p = 0; 1119 tx_ring->qcp_rd_p = 0; 1120 tx_ring->wr_ptr_add = 0; 1121 1122 if (tx_ring->is_xdp || !dp->netdev) 1123 return; 1124 1125 nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx); 1126 netdev_tx_reset_queue(nd_q); 1127 } 1128 1129 static void nfp_net_tx_timeout(struct net_device *netdev) 1130 { 1131 struct nfp_net *nn = netdev_priv(netdev); 1132 int i; 1133 1134 for (i = 0; i < nn->dp.netdev->real_num_tx_queues; i++) { 1135 if (!netif_tx_queue_stopped(netdev_get_tx_queue(netdev, i))) 1136 continue; 1137 nn_warn(nn, "TX timeout on ring: %d\n", i); 1138 } 1139 nn_warn(nn, "TX watchdog timeout\n"); 1140 } 1141 1142 /* Receive processing 1143 */ 1144 static unsigned int 1145 nfp_net_calc_fl_bufsz(struct nfp_net_dp *dp) 1146 { 1147 unsigned int fl_bufsz; 1148 1149 fl_bufsz = NFP_NET_RX_BUF_HEADROOM; 1150 fl_bufsz += dp->rx_dma_off; 1151 if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC) 1152 fl_bufsz += NFP_NET_MAX_PREPEND; 1153 else 1154 fl_bufsz += dp->rx_offset; 1155 fl_bufsz += ETH_HLEN + VLAN_HLEN * 2 + dp->mtu; 1156 1157 fl_bufsz = SKB_DATA_ALIGN(fl_bufsz); 1158 fl_bufsz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 1159 1160 return fl_bufsz; 1161 } 1162 1163 static void 1164 nfp_net_free_frag(void *frag, bool xdp) 1165 { 1166 if (!xdp) 1167 skb_free_frag(frag); 1168 else 1169 __free_page(virt_to_page(frag)); 1170 } 1171 1172 /** 1173 * nfp_net_rx_alloc_one() - Allocate and map page frag for RX 1174 * @dp: NFP Net data path struct 1175 * @dma_addr: Pointer to storage for DMA address (output param) 1176 * 1177 * This function will allcate a new page frag, map it for DMA. 1178 * 1179 * Return: allocated page frag or NULL on failure. 1180 */ 1181 static void *nfp_net_rx_alloc_one(struct nfp_net_dp *dp, dma_addr_t *dma_addr) 1182 { 1183 void *frag; 1184 1185 if (!dp->xdp_prog) { 1186 frag = netdev_alloc_frag(dp->fl_bufsz); 1187 } else { 1188 struct page *page; 1189 1190 page = alloc_page(GFP_KERNEL); 1191 frag = page ? page_address(page) : NULL; 1192 } 1193 if (!frag) { 1194 nn_dp_warn(dp, "Failed to alloc receive page frag\n"); 1195 return NULL; 1196 } 1197 1198 *dma_addr = nfp_net_dma_map_rx(dp, frag); 1199 if (dma_mapping_error(dp->dev, *dma_addr)) { 1200 nfp_net_free_frag(frag, dp->xdp_prog); 1201 nn_dp_warn(dp, "Failed to map DMA RX buffer\n"); 1202 return NULL; 1203 } 1204 1205 return frag; 1206 } 1207 1208 static void *nfp_net_napi_alloc_one(struct nfp_net_dp *dp, dma_addr_t *dma_addr) 1209 { 1210 void *frag; 1211 1212 if (!dp->xdp_prog) { 1213 frag = napi_alloc_frag(dp->fl_bufsz); 1214 if (unlikely(!frag)) 1215 return NULL; 1216 } else { 1217 struct page *page; 1218 1219 page = dev_alloc_page(); 1220 if (unlikely(!page)) 1221 return NULL; 1222 frag = page_address(page); 1223 } 1224 1225 *dma_addr = nfp_net_dma_map_rx(dp, frag); 1226 if (dma_mapping_error(dp->dev, *dma_addr)) { 1227 nfp_net_free_frag(frag, dp->xdp_prog); 1228 nn_dp_warn(dp, "Failed to map DMA RX buffer\n"); 1229 return NULL; 1230 } 1231 1232 return frag; 1233 } 1234 1235 /** 1236 * nfp_net_rx_give_one() - Put mapped skb on the software and hardware rings 1237 * @dp: NFP Net data path struct 1238 * @rx_ring: RX ring structure 1239 * @frag: page fragment buffer 1240 * @dma_addr: DMA address of skb mapping 1241 */ 1242 static void nfp_net_rx_give_one(const struct nfp_net_dp *dp, 1243 struct nfp_net_rx_ring *rx_ring, 1244 void *frag, dma_addr_t dma_addr) 1245 { 1246 unsigned int wr_idx; 1247 1248 wr_idx = D_IDX(rx_ring, rx_ring->wr_p); 1249 1250 nfp_net_dma_sync_dev_rx(dp, dma_addr); 1251 1252 /* Stash SKB and DMA address away */ 1253 rx_ring->rxbufs[wr_idx].frag = frag; 1254 rx_ring->rxbufs[wr_idx].dma_addr = dma_addr; 1255 1256 /* Fill freelist descriptor */ 1257 rx_ring->rxds[wr_idx].fld.reserved = 0; 1258 rx_ring->rxds[wr_idx].fld.meta_len_dd = 0; 1259 nfp_desc_set_dma_addr(&rx_ring->rxds[wr_idx].fld, 1260 dma_addr + dp->rx_dma_off); 1261 1262 rx_ring->wr_p++; 1263 if (!(rx_ring->wr_p % NFP_NET_FL_BATCH)) { 1264 /* Update write pointer of the freelist queue. Make 1265 * sure all writes are flushed before telling the hardware. 1266 */ 1267 wmb(); 1268 nfp_qcp_wr_ptr_add(rx_ring->qcp_fl, NFP_NET_FL_BATCH); 1269 } 1270 } 1271 1272 /** 1273 * nfp_net_rx_ring_reset() - Reflect in SW state of freelist after disable 1274 * @rx_ring: RX ring structure 1275 * 1276 * Warning: Do *not* call if ring buffers were never put on the FW freelist 1277 * (i.e. device was not enabled)! 1278 */ 1279 static void nfp_net_rx_ring_reset(struct nfp_net_rx_ring *rx_ring) 1280 { 1281 unsigned int wr_idx, last_idx; 1282 1283 /* Move the empty entry to the end of the list */ 1284 wr_idx = D_IDX(rx_ring, rx_ring->wr_p); 1285 last_idx = rx_ring->cnt - 1; 1286 rx_ring->rxbufs[wr_idx].dma_addr = rx_ring->rxbufs[last_idx].dma_addr; 1287 rx_ring->rxbufs[wr_idx].frag = rx_ring->rxbufs[last_idx].frag; 1288 rx_ring->rxbufs[last_idx].dma_addr = 0; 1289 rx_ring->rxbufs[last_idx].frag = NULL; 1290 1291 memset(rx_ring->rxds, 0, sizeof(*rx_ring->rxds) * rx_ring->cnt); 1292 rx_ring->wr_p = 0; 1293 rx_ring->rd_p = 0; 1294 } 1295 1296 /** 1297 * nfp_net_rx_ring_bufs_free() - Free any buffers currently on the RX ring 1298 * @dp: NFP Net data path struct 1299 * @rx_ring: RX ring to remove buffers from 1300 * 1301 * Assumes that the device is stopped and buffers are in [0, ring->cnt - 1) 1302 * entries. After device is disabled nfp_net_rx_ring_reset() must be called 1303 * to restore required ring geometry. 1304 */ 1305 static void 1306 nfp_net_rx_ring_bufs_free(struct nfp_net_dp *dp, 1307 struct nfp_net_rx_ring *rx_ring) 1308 { 1309 unsigned int i; 1310 1311 for (i = 0; i < rx_ring->cnt - 1; i++) { 1312 /* NULL skb can only happen when initial filling of the ring 1313 * fails to allocate enough buffers and calls here to free 1314 * already allocated ones. 1315 */ 1316 if (!rx_ring->rxbufs[i].frag) 1317 continue; 1318 1319 nfp_net_dma_unmap_rx(dp, rx_ring->rxbufs[i].dma_addr); 1320 nfp_net_free_frag(rx_ring->rxbufs[i].frag, dp->xdp_prog); 1321 rx_ring->rxbufs[i].dma_addr = 0; 1322 rx_ring->rxbufs[i].frag = NULL; 1323 } 1324 } 1325 1326 /** 1327 * nfp_net_rx_ring_bufs_alloc() - Fill RX ring with buffers (don't give to FW) 1328 * @dp: NFP Net data path struct 1329 * @rx_ring: RX ring to remove buffers from 1330 */ 1331 static int 1332 nfp_net_rx_ring_bufs_alloc(struct nfp_net_dp *dp, 1333 struct nfp_net_rx_ring *rx_ring) 1334 { 1335 struct nfp_net_rx_buf *rxbufs; 1336 unsigned int i; 1337 1338 rxbufs = rx_ring->rxbufs; 1339 1340 for (i = 0; i < rx_ring->cnt - 1; i++) { 1341 rxbufs[i].frag = nfp_net_rx_alloc_one(dp, &rxbufs[i].dma_addr); 1342 if (!rxbufs[i].frag) { 1343 nfp_net_rx_ring_bufs_free(dp, rx_ring); 1344 return -ENOMEM; 1345 } 1346 } 1347 1348 return 0; 1349 } 1350 1351 /** 1352 * nfp_net_rx_ring_fill_freelist() - Give buffers from the ring to FW 1353 * @dp: NFP Net data path struct 1354 * @rx_ring: RX ring to fill 1355 */ 1356 static void 1357 nfp_net_rx_ring_fill_freelist(struct nfp_net_dp *dp, 1358 struct nfp_net_rx_ring *rx_ring) 1359 { 1360 unsigned int i; 1361 1362 for (i = 0; i < rx_ring->cnt - 1; i++) 1363 nfp_net_rx_give_one(dp, rx_ring, rx_ring->rxbufs[i].frag, 1364 rx_ring->rxbufs[i].dma_addr); 1365 } 1366 1367 /** 1368 * nfp_net_rx_csum_has_errors() - group check if rxd has any csum errors 1369 * @flags: RX descriptor flags field in CPU byte order 1370 */ 1371 static int nfp_net_rx_csum_has_errors(u16 flags) 1372 { 1373 u16 csum_all_checked, csum_all_ok; 1374 1375 csum_all_checked = flags & __PCIE_DESC_RX_CSUM_ALL; 1376 csum_all_ok = flags & __PCIE_DESC_RX_CSUM_ALL_OK; 1377 1378 return csum_all_checked != (csum_all_ok << PCIE_DESC_RX_CSUM_OK_SHIFT); 1379 } 1380 1381 /** 1382 * nfp_net_rx_csum() - set SKB checksum field based on RX descriptor flags 1383 * @dp: NFP Net data path struct 1384 * @r_vec: per-ring structure 1385 * @rxd: Pointer to RX descriptor 1386 * @meta: Parsed metadata prepend 1387 * @skb: Pointer to SKB 1388 */ 1389 static void nfp_net_rx_csum(struct nfp_net_dp *dp, 1390 struct nfp_net_r_vector *r_vec, 1391 struct nfp_net_rx_desc *rxd, 1392 struct nfp_meta_parsed *meta, struct sk_buff *skb) 1393 { 1394 skb_checksum_none_assert(skb); 1395 1396 if (!(dp->netdev->features & NETIF_F_RXCSUM)) 1397 return; 1398 1399 if (meta->csum_type) { 1400 skb->ip_summed = meta->csum_type; 1401 skb->csum = meta->csum; 1402 u64_stats_update_begin(&r_vec->rx_sync); 1403 r_vec->hw_csum_rx_ok++; 1404 u64_stats_update_end(&r_vec->rx_sync); 1405 return; 1406 } 1407 1408 if (nfp_net_rx_csum_has_errors(le16_to_cpu(rxd->rxd.flags))) { 1409 u64_stats_update_begin(&r_vec->rx_sync); 1410 r_vec->hw_csum_rx_error++; 1411 u64_stats_update_end(&r_vec->rx_sync); 1412 return; 1413 } 1414 1415 /* Assume that the firmware will never report inner CSUM_OK unless outer 1416 * L4 headers were successfully parsed. FW will always report zero UDP 1417 * checksum as CSUM_OK. 1418 */ 1419 if (rxd->rxd.flags & PCIE_DESC_RX_TCP_CSUM_OK || 1420 rxd->rxd.flags & PCIE_DESC_RX_UDP_CSUM_OK) { 1421 __skb_incr_checksum_unnecessary(skb); 1422 u64_stats_update_begin(&r_vec->rx_sync); 1423 r_vec->hw_csum_rx_ok++; 1424 u64_stats_update_end(&r_vec->rx_sync); 1425 } 1426 1427 if (rxd->rxd.flags & PCIE_DESC_RX_I_TCP_CSUM_OK || 1428 rxd->rxd.flags & PCIE_DESC_RX_I_UDP_CSUM_OK) { 1429 __skb_incr_checksum_unnecessary(skb); 1430 u64_stats_update_begin(&r_vec->rx_sync); 1431 r_vec->hw_csum_rx_inner_ok++; 1432 u64_stats_update_end(&r_vec->rx_sync); 1433 } 1434 } 1435 1436 static void 1437 nfp_net_set_hash(struct net_device *netdev, struct nfp_meta_parsed *meta, 1438 unsigned int type, __be32 *hash) 1439 { 1440 if (!(netdev->features & NETIF_F_RXHASH)) 1441 return; 1442 1443 switch (type) { 1444 case NFP_NET_RSS_IPV4: 1445 case NFP_NET_RSS_IPV6: 1446 case NFP_NET_RSS_IPV6_EX: 1447 meta->hash_type = PKT_HASH_TYPE_L3; 1448 break; 1449 default: 1450 meta->hash_type = PKT_HASH_TYPE_L4; 1451 break; 1452 } 1453 1454 meta->hash = get_unaligned_be32(hash); 1455 } 1456 1457 static void 1458 nfp_net_set_hash_desc(struct net_device *netdev, struct nfp_meta_parsed *meta, 1459 void *data, struct nfp_net_rx_desc *rxd) 1460 { 1461 struct nfp_net_rx_hash *rx_hash = data; 1462 1463 if (!(rxd->rxd.flags & PCIE_DESC_RX_RSS)) 1464 return; 1465 1466 nfp_net_set_hash(netdev, meta, get_unaligned_be32(&rx_hash->hash_type), 1467 &rx_hash->hash); 1468 } 1469 1470 static void * 1471 nfp_net_parse_meta(struct net_device *netdev, struct nfp_meta_parsed *meta, 1472 void *data, int meta_len) 1473 { 1474 u32 meta_info; 1475 1476 meta_info = get_unaligned_be32(data); 1477 data += 4; 1478 1479 while (meta_info) { 1480 switch (meta_info & NFP_NET_META_FIELD_MASK) { 1481 case NFP_NET_META_HASH: 1482 meta_info >>= NFP_NET_META_FIELD_SIZE; 1483 nfp_net_set_hash(netdev, meta, 1484 meta_info & NFP_NET_META_FIELD_MASK, 1485 (__be32 *)data); 1486 data += 4; 1487 break; 1488 case NFP_NET_META_MARK: 1489 meta->mark = get_unaligned_be32(data); 1490 data += 4; 1491 break; 1492 case NFP_NET_META_PORTID: 1493 meta->portid = get_unaligned_be32(data); 1494 data += 4; 1495 break; 1496 case NFP_NET_META_CSUM: 1497 meta->csum_type = CHECKSUM_COMPLETE; 1498 meta->csum = 1499 (__force __wsum)__get_unaligned_cpu32(data); 1500 data += 4; 1501 break; 1502 default: 1503 return NULL; 1504 } 1505 1506 meta_info >>= NFP_NET_META_FIELD_SIZE; 1507 } 1508 1509 return data; 1510 } 1511 1512 static void 1513 nfp_net_rx_drop(const struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec, 1514 struct nfp_net_rx_ring *rx_ring, struct nfp_net_rx_buf *rxbuf, 1515 struct sk_buff *skb) 1516 { 1517 u64_stats_update_begin(&r_vec->rx_sync); 1518 r_vec->rx_drops++; 1519 /* If we have both skb and rxbuf the replacement buffer allocation 1520 * must have failed, count this as an alloc failure. 1521 */ 1522 if (skb && rxbuf) 1523 r_vec->rx_replace_buf_alloc_fail++; 1524 u64_stats_update_end(&r_vec->rx_sync); 1525 1526 /* skb is build based on the frag, free_skb() would free the frag 1527 * so to be able to reuse it we need an extra ref. 1528 */ 1529 if (skb && rxbuf && skb->head == rxbuf->frag) 1530 page_ref_inc(virt_to_head_page(rxbuf->frag)); 1531 if (rxbuf) 1532 nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag, rxbuf->dma_addr); 1533 if (skb) 1534 dev_kfree_skb_any(skb); 1535 } 1536 1537 static bool 1538 nfp_net_tx_xdp_buf(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring, 1539 struct nfp_net_tx_ring *tx_ring, 1540 struct nfp_net_rx_buf *rxbuf, unsigned int dma_off, 1541 unsigned int pkt_len, bool *completed) 1542 { 1543 struct nfp_net_tx_buf *txbuf; 1544 struct nfp_net_tx_desc *txd; 1545 int wr_idx; 1546 1547 if (unlikely(nfp_net_tx_full(tx_ring, 1))) { 1548 if (!*completed) { 1549 nfp_net_xdp_complete(tx_ring); 1550 *completed = true; 1551 } 1552 1553 if (unlikely(nfp_net_tx_full(tx_ring, 1))) { 1554 nfp_net_rx_drop(dp, rx_ring->r_vec, rx_ring, rxbuf, 1555 NULL); 1556 return false; 1557 } 1558 } 1559 1560 wr_idx = D_IDX(tx_ring, tx_ring->wr_p); 1561 1562 /* Stash the soft descriptor of the head then initialize it */ 1563 txbuf = &tx_ring->txbufs[wr_idx]; 1564 1565 nfp_net_rx_give_one(dp, rx_ring, txbuf->frag, txbuf->dma_addr); 1566 1567 txbuf->frag = rxbuf->frag; 1568 txbuf->dma_addr = rxbuf->dma_addr; 1569 txbuf->fidx = -1; 1570 txbuf->pkt_cnt = 1; 1571 txbuf->real_len = pkt_len; 1572 1573 dma_sync_single_for_device(dp->dev, rxbuf->dma_addr + dma_off, 1574 pkt_len, DMA_BIDIRECTIONAL); 1575 1576 /* Build TX descriptor */ 1577 txd = &tx_ring->txds[wr_idx]; 1578 txd->offset_eop = PCIE_DESC_TX_EOP; 1579 txd->dma_len = cpu_to_le16(pkt_len); 1580 nfp_desc_set_dma_addr(txd, rxbuf->dma_addr + dma_off); 1581 txd->data_len = cpu_to_le16(pkt_len); 1582 1583 txd->flags = 0; 1584 txd->mss = 0; 1585 txd->lso_hdrlen = 0; 1586 1587 tx_ring->wr_p++; 1588 tx_ring->wr_ptr_add++; 1589 return true; 1590 } 1591 1592 /** 1593 * nfp_net_rx() - receive up to @budget packets on @rx_ring 1594 * @rx_ring: RX ring to receive from 1595 * @budget: NAPI budget 1596 * 1597 * Note, this function is separated out from the napi poll function to 1598 * more cleanly separate packet receive code from other bookkeeping 1599 * functions performed in the napi poll function. 1600 * 1601 * Return: Number of packets received. 1602 */ 1603 static int nfp_net_rx(struct nfp_net_rx_ring *rx_ring, int budget) 1604 { 1605 struct nfp_net_r_vector *r_vec = rx_ring->r_vec; 1606 struct nfp_net_dp *dp = &r_vec->nfp_net->dp; 1607 struct nfp_net_tx_ring *tx_ring; 1608 struct bpf_prog *xdp_prog; 1609 bool xdp_tx_cmpl = false; 1610 unsigned int true_bufsz; 1611 struct sk_buff *skb; 1612 int pkts_polled = 0; 1613 int idx; 1614 1615 rcu_read_lock(); 1616 xdp_prog = READ_ONCE(dp->xdp_prog); 1617 true_bufsz = xdp_prog ? PAGE_SIZE : dp->fl_bufsz; 1618 tx_ring = r_vec->xdp_ring; 1619 1620 while (pkts_polled < budget) { 1621 unsigned int meta_len, data_len, meta_off, pkt_len, pkt_off; 1622 struct nfp_net_rx_buf *rxbuf; 1623 struct nfp_net_rx_desc *rxd; 1624 struct nfp_meta_parsed meta; 1625 struct net_device *netdev; 1626 dma_addr_t new_dma_addr; 1627 u32 meta_len_xdp = 0; 1628 void *new_frag; 1629 1630 idx = D_IDX(rx_ring, rx_ring->rd_p); 1631 1632 rxd = &rx_ring->rxds[idx]; 1633 if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD)) 1634 break; 1635 1636 /* Memory barrier to ensure that we won't do other reads 1637 * before the DD bit. 1638 */ 1639 dma_rmb(); 1640 1641 memset(&meta, 0, sizeof(meta)); 1642 1643 rx_ring->rd_p++; 1644 pkts_polled++; 1645 1646 rxbuf = &rx_ring->rxbufs[idx]; 1647 /* < meta_len > 1648 * <-- [rx_offset] --> 1649 * --------------------------------------------------------- 1650 * | [XX] | metadata | packet | XXXX | 1651 * --------------------------------------------------------- 1652 * <---------------- data_len ---------------> 1653 * 1654 * The rx_offset is fixed for all packets, the meta_len can vary 1655 * on a packet by packet basis. If rx_offset is set to zero 1656 * (_RX_OFFSET_DYNAMIC) metadata starts at the beginning of the 1657 * buffer and is immediately followed by the packet (no [XX]). 1658 */ 1659 meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK; 1660 data_len = le16_to_cpu(rxd->rxd.data_len); 1661 pkt_len = data_len - meta_len; 1662 1663 pkt_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_dma_off; 1664 if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC) 1665 pkt_off += meta_len; 1666 else 1667 pkt_off += dp->rx_offset; 1668 meta_off = pkt_off - meta_len; 1669 1670 /* Stats update */ 1671 u64_stats_update_begin(&r_vec->rx_sync); 1672 r_vec->rx_pkts++; 1673 r_vec->rx_bytes += pkt_len; 1674 u64_stats_update_end(&r_vec->rx_sync); 1675 1676 if (unlikely(meta_len > NFP_NET_MAX_PREPEND || 1677 (dp->rx_offset && meta_len > dp->rx_offset))) { 1678 nn_dp_warn(dp, "oversized RX packet metadata %u\n", 1679 meta_len); 1680 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL); 1681 continue; 1682 } 1683 1684 nfp_net_dma_sync_cpu_rx(dp, rxbuf->dma_addr + meta_off, 1685 data_len); 1686 1687 if (!dp->chained_metadata_format) { 1688 nfp_net_set_hash_desc(dp->netdev, &meta, 1689 rxbuf->frag + meta_off, rxd); 1690 } else if (meta_len) { 1691 void *end; 1692 1693 end = nfp_net_parse_meta(dp->netdev, &meta, 1694 rxbuf->frag + meta_off, 1695 meta_len); 1696 if (unlikely(end != rxbuf->frag + pkt_off)) { 1697 nn_dp_warn(dp, "invalid RX packet metadata\n"); 1698 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, 1699 NULL); 1700 continue; 1701 } 1702 } 1703 1704 if (xdp_prog && !(rxd->rxd.flags & PCIE_DESC_RX_BPF && 1705 dp->bpf_offload_xdp) && !meta.portid) { 1706 void *orig_data = rxbuf->frag + pkt_off; 1707 unsigned int dma_off; 1708 struct xdp_buff xdp; 1709 int act; 1710 1711 xdp.data_hard_start = rxbuf->frag + NFP_NET_RX_BUF_HEADROOM; 1712 xdp.data = orig_data; 1713 xdp.data_meta = orig_data; 1714 xdp.data_end = orig_data + pkt_len; 1715 1716 act = bpf_prog_run_xdp(xdp_prog, &xdp); 1717 1718 pkt_len -= xdp.data - orig_data; 1719 pkt_off += xdp.data - orig_data; 1720 1721 switch (act) { 1722 case XDP_PASS: 1723 meta_len_xdp = xdp.data - xdp.data_meta; 1724 break; 1725 case XDP_TX: 1726 dma_off = pkt_off - NFP_NET_RX_BUF_HEADROOM; 1727 if (unlikely(!nfp_net_tx_xdp_buf(dp, rx_ring, 1728 tx_ring, rxbuf, 1729 dma_off, 1730 pkt_len, 1731 &xdp_tx_cmpl))) 1732 trace_xdp_exception(dp->netdev, 1733 xdp_prog, act); 1734 continue; 1735 default: 1736 bpf_warn_invalid_xdp_action(act); 1737 /* fall through */ 1738 case XDP_ABORTED: 1739 trace_xdp_exception(dp->netdev, xdp_prog, act); 1740 /* fall through */ 1741 case XDP_DROP: 1742 nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag, 1743 rxbuf->dma_addr); 1744 continue; 1745 } 1746 } 1747 1748 skb = build_skb(rxbuf->frag, true_bufsz); 1749 if (unlikely(!skb)) { 1750 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL); 1751 continue; 1752 } 1753 new_frag = nfp_net_napi_alloc_one(dp, &new_dma_addr); 1754 if (unlikely(!new_frag)) { 1755 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, skb); 1756 continue; 1757 } 1758 1759 nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr); 1760 1761 nfp_net_rx_give_one(dp, rx_ring, new_frag, new_dma_addr); 1762 1763 if (likely(!meta.portid)) { 1764 netdev = dp->netdev; 1765 } else { 1766 struct nfp_net *nn; 1767 1768 nn = netdev_priv(dp->netdev); 1769 netdev = nfp_app_repr_get(nn->app, meta.portid); 1770 if (unlikely(!netdev)) { 1771 nfp_net_rx_drop(dp, r_vec, rx_ring, NULL, skb); 1772 continue; 1773 } 1774 nfp_repr_inc_rx_stats(netdev, pkt_len); 1775 } 1776 1777 skb_reserve(skb, pkt_off); 1778 skb_put(skb, pkt_len); 1779 1780 skb->mark = meta.mark; 1781 skb_set_hash(skb, meta.hash, meta.hash_type); 1782 1783 skb_record_rx_queue(skb, rx_ring->idx); 1784 skb->protocol = eth_type_trans(skb, netdev); 1785 1786 nfp_net_rx_csum(dp, r_vec, rxd, &meta, skb); 1787 1788 if (rxd->rxd.flags & PCIE_DESC_RX_VLAN) 1789 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 1790 le16_to_cpu(rxd->rxd.vlan)); 1791 if (meta_len_xdp) 1792 skb_metadata_set(skb, meta_len_xdp); 1793 1794 napi_gro_receive(&rx_ring->r_vec->napi, skb); 1795 } 1796 1797 if (xdp_prog) { 1798 if (tx_ring->wr_ptr_add) 1799 nfp_net_tx_xmit_more_flush(tx_ring); 1800 else if (unlikely(tx_ring->wr_p != tx_ring->rd_p) && 1801 !xdp_tx_cmpl) 1802 if (!nfp_net_xdp_complete(tx_ring)) 1803 pkts_polled = budget; 1804 } 1805 rcu_read_unlock(); 1806 1807 return pkts_polled; 1808 } 1809 1810 /** 1811 * nfp_net_poll() - napi poll function 1812 * @napi: NAPI structure 1813 * @budget: NAPI budget 1814 * 1815 * Return: number of packets polled. 1816 */ 1817 static int nfp_net_poll(struct napi_struct *napi, int budget) 1818 { 1819 struct nfp_net_r_vector *r_vec = 1820 container_of(napi, struct nfp_net_r_vector, napi); 1821 unsigned int pkts_polled = 0; 1822 1823 if (r_vec->tx_ring) 1824 nfp_net_tx_complete(r_vec->tx_ring); 1825 if (r_vec->rx_ring) 1826 pkts_polled = nfp_net_rx(r_vec->rx_ring, budget); 1827 1828 if (pkts_polled < budget) 1829 if (napi_complete_done(napi, pkts_polled)) 1830 nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry); 1831 1832 return pkts_polled; 1833 } 1834 1835 /* Control device data path 1836 */ 1837 1838 static bool 1839 nfp_ctrl_tx_one(struct nfp_net *nn, struct nfp_net_r_vector *r_vec, 1840 struct sk_buff *skb, bool old) 1841 { 1842 unsigned int real_len = skb->len, meta_len = 0; 1843 struct nfp_net_tx_ring *tx_ring; 1844 struct nfp_net_tx_buf *txbuf; 1845 struct nfp_net_tx_desc *txd; 1846 struct nfp_net_dp *dp; 1847 dma_addr_t dma_addr; 1848 int wr_idx; 1849 1850 dp = &r_vec->nfp_net->dp; 1851 tx_ring = r_vec->tx_ring; 1852 1853 if (WARN_ON_ONCE(skb_shinfo(skb)->nr_frags)) { 1854 nn_dp_warn(dp, "Driver's CTRL TX does not implement gather\n"); 1855 goto err_free; 1856 } 1857 1858 if (unlikely(nfp_net_tx_full(tx_ring, 1))) { 1859 u64_stats_update_begin(&r_vec->tx_sync); 1860 r_vec->tx_busy++; 1861 u64_stats_update_end(&r_vec->tx_sync); 1862 if (!old) 1863 __skb_queue_tail(&r_vec->queue, skb); 1864 else 1865 __skb_queue_head(&r_vec->queue, skb); 1866 return true; 1867 } 1868 1869 if (nfp_app_ctrl_has_meta(nn->app)) { 1870 if (unlikely(skb_headroom(skb) < 8)) { 1871 nn_dp_warn(dp, "CTRL TX on skb without headroom\n"); 1872 goto err_free; 1873 } 1874 meta_len = 8; 1875 put_unaligned_be32(NFP_META_PORT_ID_CTRL, skb_push(skb, 4)); 1876 put_unaligned_be32(NFP_NET_META_PORTID, skb_push(skb, 4)); 1877 } 1878 1879 /* Start with the head skbuf */ 1880 dma_addr = dma_map_single(dp->dev, skb->data, skb_headlen(skb), 1881 DMA_TO_DEVICE); 1882 if (dma_mapping_error(dp->dev, dma_addr)) 1883 goto err_dma_warn; 1884 1885 wr_idx = D_IDX(tx_ring, tx_ring->wr_p); 1886 1887 /* Stash the soft descriptor of the head then initialize it */ 1888 txbuf = &tx_ring->txbufs[wr_idx]; 1889 txbuf->skb = skb; 1890 txbuf->dma_addr = dma_addr; 1891 txbuf->fidx = -1; 1892 txbuf->pkt_cnt = 1; 1893 txbuf->real_len = real_len; 1894 1895 /* Build TX descriptor */ 1896 txd = &tx_ring->txds[wr_idx]; 1897 txd->offset_eop = meta_len | PCIE_DESC_TX_EOP; 1898 txd->dma_len = cpu_to_le16(skb_headlen(skb)); 1899 nfp_desc_set_dma_addr(txd, dma_addr); 1900 txd->data_len = cpu_to_le16(skb->len); 1901 1902 txd->flags = 0; 1903 txd->mss = 0; 1904 txd->lso_hdrlen = 0; 1905 1906 tx_ring->wr_p++; 1907 tx_ring->wr_ptr_add++; 1908 nfp_net_tx_xmit_more_flush(tx_ring); 1909 1910 return false; 1911 1912 err_dma_warn: 1913 nn_dp_warn(dp, "Failed to DMA map TX CTRL buffer\n"); 1914 err_free: 1915 u64_stats_update_begin(&r_vec->tx_sync); 1916 r_vec->tx_errors++; 1917 u64_stats_update_end(&r_vec->tx_sync); 1918 dev_kfree_skb_any(skb); 1919 return false; 1920 } 1921 1922 bool nfp_ctrl_tx(struct nfp_net *nn, struct sk_buff *skb) 1923 { 1924 struct nfp_net_r_vector *r_vec = &nn->r_vecs[0]; 1925 bool ret; 1926 1927 spin_lock_bh(&r_vec->lock); 1928 ret = nfp_ctrl_tx_one(nn, r_vec, skb, false); 1929 spin_unlock_bh(&r_vec->lock); 1930 1931 return ret; 1932 } 1933 1934 static void __nfp_ctrl_tx_queued(struct nfp_net_r_vector *r_vec) 1935 { 1936 struct sk_buff *skb; 1937 1938 while ((skb = __skb_dequeue(&r_vec->queue))) 1939 if (nfp_ctrl_tx_one(r_vec->nfp_net, r_vec, skb, true)) 1940 return; 1941 } 1942 1943 static bool 1944 nfp_ctrl_meta_ok(struct nfp_net *nn, void *data, unsigned int meta_len) 1945 { 1946 u32 meta_type, meta_tag; 1947 1948 if (!nfp_app_ctrl_has_meta(nn->app)) 1949 return !meta_len; 1950 1951 if (meta_len != 8) 1952 return false; 1953 1954 meta_type = get_unaligned_be32(data); 1955 meta_tag = get_unaligned_be32(data + 4); 1956 1957 return (meta_type == NFP_NET_META_PORTID && 1958 meta_tag == NFP_META_PORT_ID_CTRL); 1959 } 1960 1961 static bool 1962 nfp_ctrl_rx_one(struct nfp_net *nn, struct nfp_net_dp *dp, 1963 struct nfp_net_r_vector *r_vec, struct nfp_net_rx_ring *rx_ring) 1964 { 1965 unsigned int meta_len, data_len, meta_off, pkt_len, pkt_off; 1966 struct nfp_net_rx_buf *rxbuf; 1967 struct nfp_net_rx_desc *rxd; 1968 dma_addr_t new_dma_addr; 1969 struct sk_buff *skb; 1970 void *new_frag; 1971 int idx; 1972 1973 idx = D_IDX(rx_ring, rx_ring->rd_p); 1974 1975 rxd = &rx_ring->rxds[idx]; 1976 if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD)) 1977 return false; 1978 1979 /* Memory barrier to ensure that we won't do other reads 1980 * before the DD bit. 1981 */ 1982 dma_rmb(); 1983 1984 rx_ring->rd_p++; 1985 1986 rxbuf = &rx_ring->rxbufs[idx]; 1987 meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK; 1988 data_len = le16_to_cpu(rxd->rxd.data_len); 1989 pkt_len = data_len - meta_len; 1990 1991 pkt_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_dma_off; 1992 if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC) 1993 pkt_off += meta_len; 1994 else 1995 pkt_off += dp->rx_offset; 1996 meta_off = pkt_off - meta_len; 1997 1998 /* Stats update */ 1999 u64_stats_update_begin(&r_vec->rx_sync); 2000 r_vec->rx_pkts++; 2001 r_vec->rx_bytes += pkt_len; 2002 u64_stats_update_end(&r_vec->rx_sync); 2003 2004 nfp_net_dma_sync_cpu_rx(dp, rxbuf->dma_addr + meta_off, data_len); 2005 2006 if (unlikely(!nfp_ctrl_meta_ok(nn, rxbuf->frag + meta_off, meta_len))) { 2007 nn_dp_warn(dp, "incorrect metadata for ctrl packet (%d)\n", 2008 meta_len); 2009 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL); 2010 return true; 2011 } 2012 2013 skb = build_skb(rxbuf->frag, dp->fl_bufsz); 2014 if (unlikely(!skb)) { 2015 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL); 2016 return true; 2017 } 2018 new_frag = nfp_net_napi_alloc_one(dp, &new_dma_addr); 2019 if (unlikely(!new_frag)) { 2020 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, skb); 2021 return true; 2022 } 2023 2024 nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr); 2025 2026 nfp_net_rx_give_one(dp, rx_ring, new_frag, new_dma_addr); 2027 2028 skb_reserve(skb, pkt_off); 2029 skb_put(skb, pkt_len); 2030 2031 nfp_app_ctrl_rx(nn->app, skb); 2032 2033 return true; 2034 } 2035 2036 static void nfp_ctrl_rx(struct nfp_net_r_vector *r_vec) 2037 { 2038 struct nfp_net_rx_ring *rx_ring = r_vec->rx_ring; 2039 struct nfp_net *nn = r_vec->nfp_net; 2040 struct nfp_net_dp *dp = &nn->dp; 2041 2042 while (nfp_ctrl_rx_one(nn, dp, r_vec, rx_ring)) 2043 continue; 2044 } 2045 2046 static void nfp_ctrl_poll(unsigned long arg) 2047 { 2048 struct nfp_net_r_vector *r_vec = (void *)arg; 2049 2050 spin_lock_bh(&r_vec->lock); 2051 nfp_net_tx_complete(r_vec->tx_ring); 2052 __nfp_ctrl_tx_queued(r_vec); 2053 spin_unlock_bh(&r_vec->lock); 2054 2055 nfp_ctrl_rx(r_vec); 2056 2057 nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry); 2058 } 2059 2060 /* Setup and Configuration 2061 */ 2062 2063 /** 2064 * nfp_net_vecs_init() - Assign IRQs and setup rvecs. 2065 * @nn: NFP Network structure 2066 */ 2067 static void nfp_net_vecs_init(struct nfp_net *nn) 2068 { 2069 struct nfp_net_r_vector *r_vec; 2070 int r; 2071 2072 nn->lsc_handler = nfp_net_irq_lsc; 2073 nn->exn_handler = nfp_net_irq_exn; 2074 2075 for (r = 0; r < nn->max_r_vecs; r++) { 2076 struct msix_entry *entry; 2077 2078 entry = &nn->irq_entries[NFP_NET_NON_Q_VECTORS + r]; 2079 2080 r_vec = &nn->r_vecs[r]; 2081 r_vec->nfp_net = nn; 2082 r_vec->irq_entry = entry->entry; 2083 r_vec->irq_vector = entry->vector; 2084 2085 if (nn->dp.netdev) { 2086 r_vec->handler = nfp_net_irq_rxtx; 2087 } else { 2088 r_vec->handler = nfp_ctrl_irq_rxtx; 2089 2090 __skb_queue_head_init(&r_vec->queue); 2091 spin_lock_init(&r_vec->lock); 2092 tasklet_init(&r_vec->tasklet, nfp_ctrl_poll, 2093 (unsigned long)r_vec); 2094 tasklet_disable(&r_vec->tasklet); 2095 } 2096 2097 cpumask_set_cpu(r, &r_vec->affinity_mask); 2098 } 2099 } 2100 2101 /** 2102 * nfp_net_tx_ring_free() - Free resources allocated to a TX ring 2103 * @tx_ring: TX ring to free 2104 */ 2105 static void nfp_net_tx_ring_free(struct nfp_net_tx_ring *tx_ring) 2106 { 2107 struct nfp_net_r_vector *r_vec = tx_ring->r_vec; 2108 struct nfp_net_dp *dp = &r_vec->nfp_net->dp; 2109 2110 kfree(tx_ring->txbufs); 2111 2112 if (tx_ring->txds) 2113 dma_free_coherent(dp->dev, tx_ring->size, 2114 tx_ring->txds, tx_ring->dma); 2115 2116 tx_ring->cnt = 0; 2117 tx_ring->txbufs = NULL; 2118 tx_ring->txds = NULL; 2119 tx_ring->dma = 0; 2120 tx_ring->size = 0; 2121 } 2122 2123 /** 2124 * nfp_net_tx_ring_alloc() - Allocate resource for a TX ring 2125 * @dp: NFP Net data path struct 2126 * @tx_ring: TX Ring structure to allocate 2127 * 2128 * Return: 0 on success, negative errno otherwise. 2129 */ 2130 static int 2131 nfp_net_tx_ring_alloc(struct nfp_net_dp *dp, struct nfp_net_tx_ring *tx_ring) 2132 { 2133 struct nfp_net_r_vector *r_vec = tx_ring->r_vec; 2134 int sz; 2135 2136 tx_ring->cnt = dp->txd_cnt; 2137 2138 tx_ring->size = sizeof(*tx_ring->txds) * tx_ring->cnt; 2139 tx_ring->txds = dma_zalloc_coherent(dp->dev, tx_ring->size, 2140 &tx_ring->dma, GFP_KERNEL); 2141 if (!tx_ring->txds) 2142 goto err_alloc; 2143 2144 sz = sizeof(*tx_ring->txbufs) * tx_ring->cnt; 2145 tx_ring->txbufs = kzalloc(sz, GFP_KERNEL); 2146 if (!tx_ring->txbufs) 2147 goto err_alloc; 2148 2149 if (!tx_ring->is_xdp && dp->netdev) 2150 netif_set_xps_queue(dp->netdev, &r_vec->affinity_mask, 2151 tx_ring->idx); 2152 2153 return 0; 2154 2155 err_alloc: 2156 nfp_net_tx_ring_free(tx_ring); 2157 return -ENOMEM; 2158 } 2159 2160 static void 2161 nfp_net_tx_ring_bufs_free(struct nfp_net_dp *dp, 2162 struct nfp_net_tx_ring *tx_ring) 2163 { 2164 unsigned int i; 2165 2166 if (!tx_ring->is_xdp) 2167 return; 2168 2169 for (i = 0; i < tx_ring->cnt; i++) { 2170 if (!tx_ring->txbufs[i].frag) 2171 return; 2172 2173 nfp_net_dma_unmap_rx(dp, tx_ring->txbufs[i].dma_addr); 2174 __free_page(virt_to_page(tx_ring->txbufs[i].frag)); 2175 } 2176 } 2177 2178 static int 2179 nfp_net_tx_ring_bufs_alloc(struct nfp_net_dp *dp, 2180 struct nfp_net_tx_ring *tx_ring) 2181 { 2182 struct nfp_net_tx_buf *txbufs = tx_ring->txbufs; 2183 unsigned int i; 2184 2185 if (!tx_ring->is_xdp) 2186 return 0; 2187 2188 for (i = 0; i < tx_ring->cnt; i++) { 2189 txbufs[i].frag = nfp_net_rx_alloc_one(dp, &txbufs[i].dma_addr); 2190 if (!txbufs[i].frag) { 2191 nfp_net_tx_ring_bufs_free(dp, tx_ring); 2192 return -ENOMEM; 2193 } 2194 } 2195 2196 return 0; 2197 } 2198 2199 static int nfp_net_tx_rings_prepare(struct nfp_net *nn, struct nfp_net_dp *dp) 2200 { 2201 unsigned int r; 2202 2203 dp->tx_rings = kcalloc(dp->num_tx_rings, sizeof(*dp->tx_rings), 2204 GFP_KERNEL); 2205 if (!dp->tx_rings) 2206 return -ENOMEM; 2207 2208 for (r = 0; r < dp->num_tx_rings; r++) { 2209 int bias = 0; 2210 2211 if (r >= dp->num_stack_tx_rings) 2212 bias = dp->num_stack_tx_rings; 2213 2214 nfp_net_tx_ring_init(&dp->tx_rings[r], &nn->r_vecs[r - bias], 2215 r, bias); 2216 2217 if (nfp_net_tx_ring_alloc(dp, &dp->tx_rings[r])) 2218 goto err_free_prev; 2219 2220 if (nfp_net_tx_ring_bufs_alloc(dp, &dp->tx_rings[r])) 2221 goto err_free_ring; 2222 } 2223 2224 return 0; 2225 2226 err_free_prev: 2227 while (r--) { 2228 nfp_net_tx_ring_bufs_free(dp, &dp->tx_rings[r]); 2229 err_free_ring: 2230 nfp_net_tx_ring_free(&dp->tx_rings[r]); 2231 } 2232 kfree(dp->tx_rings); 2233 return -ENOMEM; 2234 } 2235 2236 static void nfp_net_tx_rings_free(struct nfp_net_dp *dp) 2237 { 2238 unsigned int r; 2239 2240 for (r = 0; r < dp->num_tx_rings; r++) { 2241 nfp_net_tx_ring_bufs_free(dp, &dp->tx_rings[r]); 2242 nfp_net_tx_ring_free(&dp->tx_rings[r]); 2243 } 2244 2245 kfree(dp->tx_rings); 2246 } 2247 2248 /** 2249 * nfp_net_rx_ring_free() - Free resources allocated to a RX ring 2250 * @rx_ring: RX ring to free 2251 */ 2252 static void nfp_net_rx_ring_free(struct nfp_net_rx_ring *rx_ring) 2253 { 2254 struct nfp_net_r_vector *r_vec = rx_ring->r_vec; 2255 struct nfp_net_dp *dp = &r_vec->nfp_net->dp; 2256 2257 kfree(rx_ring->rxbufs); 2258 2259 if (rx_ring->rxds) 2260 dma_free_coherent(dp->dev, rx_ring->size, 2261 rx_ring->rxds, rx_ring->dma); 2262 2263 rx_ring->cnt = 0; 2264 rx_ring->rxbufs = NULL; 2265 rx_ring->rxds = NULL; 2266 rx_ring->dma = 0; 2267 rx_ring->size = 0; 2268 } 2269 2270 /** 2271 * nfp_net_rx_ring_alloc() - Allocate resource for a RX ring 2272 * @dp: NFP Net data path struct 2273 * @rx_ring: RX ring to allocate 2274 * 2275 * Return: 0 on success, negative errno otherwise. 2276 */ 2277 static int 2278 nfp_net_rx_ring_alloc(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring) 2279 { 2280 int sz; 2281 2282 rx_ring->cnt = dp->rxd_cnt; 2283 rx_ring->size = sizeof(*rx_ring->rxds) * rx_ring->cnt; 2284 rx_ring->rxds = dma_zalloc_coherent(dp->dev, rx_ring->size, 2285 &rx_ring->dma, GFP_KERNEL); 2286 if (!rx_ring->rxds) 2287 goto err_alloc; 2288 2289 sz = sizeof(*rx_ring->rxbufs) * rx_ring->cnt; 2290 rx_ring->rxbufs = kzalloc(sz, GFP_KERNEL); 2291 if (!rx_ring->rxbufs) 2292 goto err_alloc; 2293 2294 return 0; 2295 2296 err_alloc: 2297 nfp_net_rx_ring_free(rx_ring); 2298 return -ENOMEM; 2299 } 2300 2301 static int nfp_net_rx_rings_prepare(struct nfp_net *nn, struct nfp_net_dp *dp) 2302 { 2303 unsigned int r; 2304 2305 dp->rx_rings = kcalloc(dp->num_rx_rings, sizeof(*dp->rx_rings), 2306 GFP_KERNEL); 2307 if (!dp->rx_rings) 2308 return -ENOMEM; 2309 2310 for (r = 0; r < dp->num_rx_rings; r++) { 2311 nfp_net_rx_ring_init(&dp->rx_rings[r], &nn->r_vecs[r], r); 2312 2313 if (nfp_net_rx_ring_alloc(dp, &dp->rx_rings[r])) 2314 goto err_free_prev; 2315 2316 if (nfp_net_rx_ring_bufs_alloc(dp, &dp->rx_rings[r])) 2317 goto err_free_ring; 2318 } 2319 2320 return 0; 2321 2322 err_free_prev: 2323 while (r--) { 2324 nfp_net_rx_ring_bufs_free(dp, &dp->rx_rings[r]); 2325 err_free_ring: 2326 nfp_net_rx_ring_free(&dp->rx_rings[r]); 2327 } 2328 kfree(dp->rx_rings); 2329 return -ENOMEM; 2330 } 2331 2332 static void nfp_net_rx_rings_free(struct nfp_net_dp *dp) 2333 { 2334 unsigned int r; 2335 2336 for (r = 0; r < dp->num_rx_rings; r++) { 2337 nfp_net_rx_ring_bufs_free(dp, &dp->rx_rings[r]); 2338 nfp_net_rx_ring_free(&dp->rx_rings[r]); 2339 } 2340 2341 kfree(dp->rx_rings); 2342 } 2343 2344 static void 2345 nfp_net_vector_assign_rings(struct nfp_net_dp *dp, 2346 struct nfp_net_r_vector *r_vec, int idx) 2347 { 2348 r_vec->rx_ring = idx < dp->num_rx_rings ? &dp->rx_rings[idx] : NULL; 2349 r_vec->tx_ring = 2350 idx < dp->num_stack_tx_rings ? &dp->tx_rings[idx] : NULL; 2351 2352 r_vec->xdp_ring = idx < dp->num_tx_rings - dp->num_stack_tx_rings ? 2353 &dp->tx_rings[dp->num_stack_tx_rings + idx] : NULL; 2354 } 2355 2356 static int 2357 nfp_net_prepare_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec, 2358 int idx) 2359 { 2360 int err; 2361 2362 /* Setup NAPI */ 2363 if (nn->dp.netdev) 2364 netif_napi_add(nn->dp.netdev, &r_vec->napi, 2365 nfp_net_poll, NAPI_POLL_WEIGHT); 2366 else 2367 tasklet_enable(&r_vec->tasklet); 2368 2369 snprintf(r_vec->name, sizeof(r_vec->name), 2370 "%s-rxtx-%d", nfp_net_name(nn), idx); 2371 err = request_irq(r_vec->irq_vector, r_vec->handler, 0, r_vec->name, 2372 r_vec); 2373 if (err) { 2374 if (nn->dp.netdev) 2375 netif_napi_del(&r_vec->napi); 2376 else 2377 tasklet_disable(&r_vec->tasklet); 2378 2379 nn_err(nn, "Error requesting IRQ %d\n", r_vec->irq_vector); 2380 return err; 2381 } 2382 disable_irq(r_vec->irq_vector); 2383 2384 irq_set_affinity_hint(r_vec->irq_vector, &r_vec->affinity_mask); 2385 2386 nn_dbg(nn, "RV%02d: irq=%03d/%03d\n", idx, r_vec->irq_vector, 2387 r_vec->irq_entry); 2388 2389 return 0; 2390 } 2391 2392 static void 2393 nfp_net_cleanup_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec) 2394 { 2395 irq_set_affinity_hint(r_vec->irq_vector, NULL); 2396 if (nn->dp.netdev) 2397 netif_napi_del(&r_vec->napi); 2398 else 2399 tasklet_disable(&r_vec->tasklet); 2400 2401 free_irq(r_vec->irq_vector, r_vec); 2402 } 2403 2404 /** 2405 * nfp_net_rss_write_itbl() - Write RSS indirection table to device 2406 * @nn: NFP Net device to reconfigure 2407 */ 2408 void nfp_net_rss_write_itbl(struct nfp_net *nn) 2409 { 2410 int i; 2411 2412 for (i = 0; i < NFP_NET_CFG_RSS_ITBL_SZ; i += 4) 2413 nn_writel(nn, NFP_NET_CFG_RSS_ITBL + i, 2414 get_unaligned_le32(nn->rss_itbl + i)); 2415 } 2416 2417 /** 2418 * nfp_net_rss_write_key() - Write RSS hash key to device 2419 * @nn: NFP Net device to reconfigure 2420 */ 2421 void nfp_net_rss_write_key(struct nfp_net *nn) 2422 { 2423 int i; 2424 2425 for (i = 0; i < nfp_net_rss_key_sz(nn); i += 4) 2426 nn_writel(nn, NFP_NET_CFG_RSS_KEY + i, 2427 get_unaligned_le32(nn->rss_key + i)); 2428 } 2429 2430 /** 2431 * nfp_net_coalesce_write_cfg() - Write irq coalescence configuration to HW 2432 * @nn: NFP Net device to reconfigure 2433 */ 2434 void nfp_net_coalesce_write_cfg(struct nfp_net *nn) 2435 { 2436 u8 i; 2437 u32 factor; 2438 u32 value; 2439 2440 /* Compute factor used to convert coalesce '_usecs' parameters to 2441 * ME timestamp ticks. There are 16 ME clock cycles for each timestamp 2442 * count. 2443 */ 2444 factor = nn->me_freq_mhz / 16; 2445 2446 /* copy RX interrupt coalesce parameters */ 2447 value = (nn->rx_coalesce_max_frames << 16) | 2448 (factor * nn->rx_coalesce_usecs); 2449 for (i = 0; i < nn->dp.num_rx_rings; i++) 2450 nn_writel(nn, NFP_NET_CFG_RXR_IRQ_MOD(i), value); 2451 2452 /* copy TX interrupt coalesce parameters */ 2453 value = (nn->tx_coalesce_max_frames << 16) | 2454 (factor * nn->tx_coalesce_usecs); 2455 for (i = 0; i < nn->dp.num_tx_rings; i++) 2456 nn_writel(nn, NFP_NET_CFG_TXR_IRQ_MOD(i), value); 2457 } 2458 2459 /** 2460 * nfp_net_write_mac_addr() - Write mac address to the device control BAR 2461 * @nn: NFP Net device to reconfigure 2462 * @addr: MAC address to write 2463 * 2464 * Writes the MAC address from the netdev to the device control BAR. Does not 2465 * perform the required reconfig. We do a bit of byte swapping dance because 2466 * firmware is LE. 2467 */ 2468 static void nfp_net_write_mac_addr(struct nfp_net *nn, const u8 *addr) 2469 { 2470 nn_writel(nn, NFP_NET_CFG_MACADDR + 0, get_unaligned_be32(addr)); 2471 nn_writew(nn, NFP_NET_CFG_MACADDR + 6, get_unaligned_be16(addr + 4)); 2472 } 2473 2474 static void nfp_net_vec_clear_ring_data(struct nfp_net *nn, unsigned int idx) 2475 { 2476 nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), 0); 2477 nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), 0); 2478 nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), 0); 2479 2480 nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), 0); 2481 nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), 0); 2482 nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), 0); 2483 } 2484 2485 /** 2486 * nfp_net_clear_config_and_disable() - Clear control BAR and disable NFP 2487 * @nn: NFP Net device to reconfigure 2488 */ 2489 static void nfp_net_clear_config_and_disable(struct nfp_net *nn) 2490 { 2491 u32 new_ctrl, update; 2492 unsigned int r; 2493 int err; 2494 2495 new_ctrl = nn->dp.ctrl; 2496 new_ctrl &= ~NFP_NET_CFG_CTRL_ENABLE; 2497 update = NFP_NET_CFG_UPDATE_GEN; 2498 update |= NFP_NET_CFG_UPDATE_MSIX; 2499 update |= NFP_NET_CFG_UPDATE_RING; 2500 2501 if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG) 2502 new_ctrl &= ~NFP_NET_CFG_CTRL_RINGCFG; 2503 2504 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0); 2505 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0); 2506 2507 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 2508 err = nfp_net_reconfig(nn, update); 2509 if (err) 2510 nn_err(nn, "Could not disable device: %d\n", err); 2511 2512 for (r = 0; r < nn->dp.num_rx_rings; r++) 2513 nfp_net_rx_ring_reset(&nn->dp.rx_rings[r]); 2514 for (r = 0; r < nn->dp.num_tx_rings; r++) 2515 nfp_net_tx_ring_reset(&nn->dp, &nn->dp.tx_rings[r]); 2516 for (r = 0; r < nn->dp.num_r_vecs; r++) 2517 nfp_net_vec_clear_ring_data(nn, r); 2518 2519 nn->dp.ctrl = new_ctrl; 2520 } 2521 2522 static void 2523 nfp_net_rx_ring_hw_cfg_write(struct nfp_net *nn, 2524 struct nfp_net_rx_ring *rx_ring, unsigned int idx) 2525 { 2526 /* Write the DMA address, size and MSI-X info to the device */ 2527 nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), rx_ring->dma); 2528 nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), ilog2(rx_ring->cnt)); 2529 nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), rx_ring->r_vec->irq_entry); 2530 } 2531 2532 static void 2533 nfp_net_tx_ring_hw_cfg_write(struct nfp_net *nn, 2534 struct nfp_net_tx_ring *tx_ring, unsigned int idx) 2535 { 2536 nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), tx_ring->dma); 2537 nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), ilog2(tx_ring->cnt)); 2538 nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), tx_ring->r_vec->irq_entry); 2539 } 2540 2541 /** 2542 * nfp_net_set_config_and_enable() - Write control BAR and enable NFP 2543 * @nn: NFP Net device to reconfigure 2544 */ 2545 static int nfp_net_set_config_and_enable(struct nfp_net *nn) 2546 { 2547 u32 bufsz, new_ctrl, update = 0; 2548 unsigned int r; 2549 int err; 2550 2551 new_ctrl = nn->dp.ctrl; 2552 2553 if (nn->dp.ctrl & NFP_NET_CFG_CTRL_RSS_ANY) { 2554 nfp_net_rss_write_key(nn); 2555 nfp_net_rss_write_itbl(nn); 2556 nn_writel(nn, NFP_NET_CFG_RSS_CTRL, nn->rss_cfg); 2557 update |= NFP_NET_CFG_UPDATE_RSS; 2558 } 2559 2560 if (nn->dp.ctrl & NFP_NET_CFG_CTRL_IRQMOD) { 2561 nfp_net_coalesce_write_cfg(nn); 2562 update |= NFP_NET_CFG_UPDATE_IRQMOD; 2563 } 2564 2565 for (r = 0; r < nn->dp.num_tx_rings; r++) 2566 nfp_net_tx_ring_hw_cfg_write(nn, &nn->dp.tx_rings[r], r); 2567 for (r = 0; r < nn->dp.num_rx_rings; r++) 2568 nfp_net_rx_ring_hw_cfg_write(nn, &nn->dp.rx_rings[r], r); 2569 2570 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, nn->dp.num_tx_rings == 64 ? 2571 0xffffffffffffffffULL : ((u64)1 << nn->dp.num_tx_rings) - 1); 2572 2573 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, nn->dp.num_rx_rings == 64 ? 2574 0xffffffffffffffffULL : ((u64)1 << nn->dp.num_rx_rings) - 1); 2575 2576 if (nn->dp.netdev) 2577 nfp_net_write_mac_addr(nn, nn->dp.netdev->dev_addr); 2578 2579 nn_writel(nn, NFP_NET_CFG_MTU, nn->dp.mtu); 2580 2581 bufsz = nn->dp.fl_bufsz - nn->dp.rx_dma_off - NFP_NET_RX_BUF_NON_DATA; 2582 nn_writel(nn, NFP_NET_CFG_FLBUFSZ, bufsz); 2583 2584 /* Enable device */ 2585 new_ctrl |= NFP_NET_CFG_CTRL_ENABLE; 2586 update |= NFP_NET_CFG_UPDATE_GEN; 2587 update |= NFP_NET_CFG_UPDATE_MSIX; 2588 update |= NFP_NET_CFG_UPDATE_RING; 2589 if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG) 2590 new_ctrl |= NFP_NET_CFG_CTRL_RINGCFG; 2591 2592 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 2593 err = nfp_net_reconfig(nn, update); 2594 if (err) { 2595 nfp_net_clear_config_and_disable(nn); 2596 return err; 2597 } 2598 2599 nn->dp.ctrl = new_ctrl; 2600 2601 for (r = 0; r < nn->dp.num_rx_rings; r++) 2602 nfp_net_rx_ring_fill_freelist(&nn->dp, &nn->dp.rx_rings[r]); 2603 2604 /* Since reconfiguration requests while NFP is down are ignored we 2605 * have to wipe the entire VXLAN configuration and reinitialize it. 2606 */ 2607 if (nn->dp.ctrl & NFP_NET_CFG_CTRL_VXLAN) { 2608 memset(&nn->vxlan_ports, 0, sizeof(nn->vxlan_ports)); 2609 memset(&nn->vxlan_usecnt, 0, sizeof(nn->vxlan_usecnt)); 2610 udp_tunnel_get_rx_info(nn->dp.netdev); 2611 } 2612 2613 return 0; 2614 } 2615 2616 /** 2617 * nfp_net_close_stack() - Quiesce the stack (part of close) 2618 * @nn: NFP Net device to reconfigure 2619 */ 2620 static void nfp_net_close_stack(struct nfp_net *nn) 2621 { 2622 unsigned int r; 2623 2624 disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector); 2625 netif_carrier_off(nn->dp.netdev); 2626 nn->link_up = false; 2627 2628 for (r = 0; r < nn->dp.num_r_vecs; r++) { 2629 disable_irq(nn->r_vecs[r].irq_vector); 2630 napi_disable(&nn->r_vecs[r].napi); 2631 } 2632 2633 netif_tx_disable(nn->dp.netdev); 2634 } 2635 2636 /** 2637 * nfp_net_close_free_all() - Free all runtime resources 2638 * @nn: NFP Net device to reconfigure 2639 */ 2640 static void nfp_net_close_free_all(struct nfp_net *nn) 2641 { 2642 unsigned int r; 2643 2644 nfp_net_tx_rings_free(&nn->dp); 2645 nfp_net_rx_rings_free(&nn->dp); 2646 2647 for (r = 0; r < nn->dp.num_r_vecs; r++) 2648 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); 2649 2650 nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX); 2651 nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX); 2652 } 2653 2654 /** 2655 * nfp_net_netdev_close() - Called when the device is downed 2656 * @netdev: netdev structure 2657 */ 2658 static int nfp_net_netdev_close(struct net_device *netdev) 2659 { 2660 struct nfp_net *nn = netdev_priv(netdev); 2661 2662 /* Step 1: Disable RX and TX rings from the Linux kernel perspective 2663 */ 2664 nfp_net_close_stack(nn); 2665 2666 /* Step 2: Tell NFP 2667 */ 2668 nfp_net_clear_config_and_disable(nn); 2669 nfp_port_configure(netdev, false); 2670 2671 /* Step 3: Free resources 2672 */ 2673 nfp_net_close_free_all(nn); 2674 2675 nn_dbg(nn, "%s down", netdev->name); 2676 return 0; 2677 } 2678 2679 void nfp_ctrl_close(struct nfp_net *nn) 2680 { 2681 int r; 2682 2683 rtnl_lock(); 2684 2685 for (r = 0; r < nn->dp.num_r_vecs; r++) { 2686 disable_irq(nn->r_vecs[r].irq_vector); 2687 tasklet_disable(&nn->r_vecs[r].tasklet); 2688 } 2689 2690 nfp_net_clear_config_and_disable(nn); 2691 2692 nfp_net_close_free_all(nn); 2693 2694 rtnl_unlock(); 2695 } 2696 2697 /** 2698 * nfp_net_open_stack() - Start the device from stack's perspective 2699 * @nn: NFP Net device to reconfigure 2700 */ 2701 static void nfp_net_open_stack(struct nfp_net *nn) 2702 { 2703 unsigned int r; 2704 2705 for (r = 0; r < nn->dp.num_r_vecs; r++) { 2706 napi_enable(&nn->r_vecs[r].napi); 2707 enable_irq(nn->r_vecs[r].irq_vector); 2708 } 2709 2710 netif_tx_wake_all_queues(nn->dp.netdev); 2711 2712 enable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector); 2713 nfp_net_read_link_status(nn); 2714 } 2715 2716 static int nfp_net_open_alloc_all(struct nfp_net *nn) 2717 { 2718 int err, r; 2719 2720 err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_EXN, "%s-exn", 2721 nn->exn_name, sizeof(nn->exn_name), 2722 NFP_NET_IRQ_EXN_IDX, nn->exn_handler); 2723 if (err) 2724 return err; 2725 err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_LSC, "%s-lsc", 2726 nn->lsc_name, sizeof(nn->lsc_name), 2727 NFP_NET_IRQ_LSC_IDX, nn->lsc_handler); 2728 if (err) 2729 goto err_free_exn; 2730 disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector); 2731 2732 for (r = 0; r < nn->dp.num_r_vecs; r++) { 2733 err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r); 2734 if (err) 2735 goto err_cleanup_vec_p; 2736 } 2737 2738 err = nfp_net_rx_rings_prepare(nn, &nn->dp); 2739 if (err) 2740 goto err_cleanup_vec; 2741 2742 err = nfp_net_tx_rings_prepare(nn, &nn->dp); 2743 if (err) 2744 goto err_free_rx_rings; 2745 2746 for (r = 0; r < nn->max_r_vecs; r++) 2747 nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r); 2748 2749 return 0; 2750 2751 err_free_rx_rings: 2752 nfp_net_rx_rings_free(&nn->dp); 2753 err_cleanup_vec: 2754 r = nn->dp.num_r_vecs; 2755 err_cleanup_vec_p: 2756 while (r--) 2757 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); 2758 nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX); 2759 err_free_exn: 2760 nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX); 2761 return err; 2762 } 2763 2764 static int nfp_net_netdev_open(struct net_device *netdev) 2765 { 2766 struct nfp_net *nn = netdev_priv(netdev); 2767 int err; 2768 2769 /* Step 1: Allocate resources for rings and the like 2770 * - Request interrupts 2771 * - Allocate RX and TX ring resources 2772 * - Setup initial RSS table 2773 */ 2774 err = nfp_net_open_alloc_all(nn); 2775 if (err) 2776 return err; 2777 2778 err = netif_set_real_num_tx_queues(netdev, nn->dp.num_stack_tx_rings); 2779 if (err) 2780 goto err_free_all; 2781 2782 err = netif_set_real_num_rx_queues(netdev, nn->dp.num_rx_rings); 2783 if (err) 2784 goto err_free_all; 2785 2786 /* Step 2: Configure the NFP 2787 * - Ifup the physical interface if it exists 2788 * - Enable rings from 0 to tx_rings/rx_rings - 1. 2789 * - Write MAC address (in case it changed) 2790 * - Set the MTU 2791 * - Set the Freelist buffer size 2792 * - Enable the FW 2793 */ 2794 err = nfp_port_configure(netdev, true); 2795 if (err) 2796 goto err_free_all; 2797 2798 err = nfp_net_set_config_and_enable(nn); 2799 if (err) 2800 goto err_port_disable; 2801 2802 /* Step 3: Enable for kernel 2803 * - put some freelist descriptors on each RX ring 2804 * - enable NAPI on each ring 2805 * - enable all TX queues 2806 * - set link state 2807 */ 2808 nfp_net_open_stack(nn); 2809 2810 return 0; 2811 2812 err_port_disable: 2813 nfp_port_configure(netdev, false); 2814 err_free_all: 2815 nfp_net_close_free_all(nn); 2816 return err; 2817 } 2818 2819 int nfp_ctrl_open(struct nfp_net *nn) 2820 { 2821 int err, r; 2822 2823 /* ring dumping depends on vNICs being opened/closed under rtnl */ 2824 rtnl_lock(); 2825 2826 err = nfp_net_open_alloc_all(nn); 2827 if (err) 2828 goto err_unlock; 2829 2830 err = nfp_net_set_config_and_enable(nn); 2831 if (err) 2832 goto err_free_all; 2833 2834 for (r = 0; r < nn->dp.num_r_vecs; r++) 2835 enable_irq(nn->r_vecs[r].irq_vector); 2836 2837 rtnl_unlock(); 2838 2839 return 0; 2840 2841 err_free_all: 2842 nfp_net_close_free_all(nn); 2843 err_unlock: 2844 rtnl_unlock(); 2845 return err; 2846 } 2847 2848 static void nfp_net_set_rx_mode(struct net_device *netdev) 2849 { 2850 struct nfp_net *nn = netdev_priv(netdev); 2851 u32 new_ctrl; 2852 2853 new_ctrl = nn->dp.ctrl; 2854 2855 if (netdev->flags & IFF_PROMISC) { 2856 if (nn->cap & NFP_NET_CFG_CTRL_PROMISC) 2857 new_ctrl |= NFP_NET_CFG_CTRL_PROMISC; 2858 else 2859 nn_warn(nn, "FW does not support promiscuous mode\n"); 2860 } else { 2861 new_ctrl &= ~NFP_NET_CFG_CTRL_PROMISC; 2862 } 2863 2864 if (new_ctrl == nn->dp.ctrl) 2865 return; 2866 2867 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 2868 nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_GEN); 2869 2870 nn->dp.ctrl = new_ctrl; 2871 } 2872 2873 static void nfp_net_rss_init_itbl(struct nfp_net *nn) 2874 { 2875 int i; 2876 2877 for (i = 0; i < sizeof(nn->rss_itbl); i++) 2878 nn->rss_itbl[i] = 2879 ethtool_rxfh_indir_default(i, nn->dp.num_rx_rings); 2880 } 2881 2882 static void nfp_net_dp_swap(struct nfp_net *nn, struct nfp_net_dp *dp) 2883 { 2884 struct nfp_net_dp new_dp = *dp; 2885 2886 *dp = nn->dp; 2887 nn->dp = new_dp; 2888 2889 nn->dp.netdev->mtu = new_dp.mtu; 2890 2891 if (!netif_is_rxfh_configured(nn->dp.netdev)) 2892 nfp_net_rss_init_itbl(nn); 2893 } 2894 2895 static int nfp_net_dp_swap_enable(struct nfp_net *nn, struct nfp_net_dp *dp) 2896 { 2897 unsigned int r; 2898 int err; 2899 2900 nfp_net_dp_swap(nn, dp); 2901 2902 for (r = 0; r < nn->max_r_vecs; r++) 2903 nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r); 2904 2905 err = netif_set_real_num_rx_queues(nn->dp.netdev, nn->dp.num_rx_rings); 2906 if (err) 2907 return err; 2908 2909 if (nn->dp.netdev->real_num_tx_queues != nn->dp.num_stack_tx_rings) { 2910 err = netif_set_real_num_tx_queues(nn->dp.netdev, 2911 nn->dp.num_stack_tx_rings); 2912 if (err) 2913 return err; 2914 } 2915 2916 return nfp_net_set_config_and_enable(nn); 2917 } 2918 2919 struct nfp_net_dp *nfp_net_clone_dp(struct nfp_net *nn) 2920 { 2921 struct nfp_net_dp *new; 2922 2923 new = kmalloc(sizeof(*new), GFP_KERNEL); 2924 if (!new) 2925 return NULL; 2926 2927 *new = nn->dp; 2928 2929 /* Clear things which need to be recomputed */ 2930 new->fl_bufsz = 0; 2931 new->tx_rings = NULL; 2932 new->rx_rings = NULL; 2933 new->num_r_vecs = 0; 2934 new->num_stack_tx_rings = 0; 2935 2936 return new; 2937 } 2938 2939 static int 2940 nfp_net_check_config(struct nfp_net *nn, struct nfp_net_dp *dp, 2941 struct netlink_ext_ack *extack) 2942 { 2943 /* XDP-enabled tests */ 2944 if (!dp->xdp_prog) 2945 return 0; 2946 if (dp->fl_bufsz > PAGE_SIZE) { 2947 NL_SET_ERR_MSG_MOD(extack, "MTU too large w/ XDP enabled"); 2948 return -EINVAL; 2949 } 2950 if (dp->num_tx_rings > nn->max_tx_rings) { 2951 NL_SET_ERR_MSG_MOD(extack, "Insufficient number of TX rings w/ XDP enabled"); 2952 return -EINVAL; 2953 } 2954 2955 return 0; 2956 } 2957 2958 int nfp_net_ring_reconfig(struct nfp_net *nn, struct nfp_net_dp *dp, 2959 struct netlink_ext_ack *extack) 2960 { 2961 int r, err; 2962 2963 dp->fl_bufsz = nfp_net_calc_fl_bufsz(dp); 2964 2965 dp->num_stack_tx_rings = dp->num_tx_rings; 2966 if (dp->xdp_prog) 2967 dp->num_stack_tx_rings -= dp->num_rx_rings; 2968 2969 dp->num_r_vecs = max(dp->num_rx_rings, dp->num_stack_tx_rings); 2970 2971 err = nfp_net_check_config(nn, dp, extack); 2972 if (err) 2973 goto exit_free_dp; 2974 2975 if (!netif_running(dp->netdev)) { 2976 nfp_net_dp_swap(nn, dp); 2977 err = 0; 2978 goto exit_free_dp; 2979 } 2980 2981 /* Prepare new rings */ 2982 for (r = nn->dp.num_r_vecs; r < dp->num_r_vecs; r++) { 2983 err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r); 2984 if (err) { 2985 dp->num_r_vecs = r; 2986 goto err_cleanup_vecs; 2987 } 2988 } 2989 2990 err = nfp_net_rx_rings_prepare(nn, dp); 2991 if (err) 2992 goto err_cleanup_vecs; 2993 2994 err = nfp_net_tx_rings_prepare(nn, dp); 2995 if (err) 2996 goto err_free_rx; 2997 2998 /* Stop device, swap in new rings, try to start the firmware */ 2999 nfp_net_close_stack(nn); 3000 nfp_net_clear_config_and_disable(nn); 3001 3002 err = nfp_net_dp_swap_enable(nn, dp); 3003 if (err) { 3004 int err2; 3005 3006 nfp_net_clear_config_and_disable(nn); 3007 3008 /* Try with old configuration and old rings */ 3009 err2 = nfp_net_dp_swap_enable(nn, dp); 3010 if (err2) 3011 nn_err(nn, "Can't restore ring config - FW communication failed (%d,%d)\n", 3012 err, err2); 3013 } 3014 for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--) 3015 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); 3016 3017 nfp_net_rx_rings_free(dp); 3018 nfp_net_tx_rings_free(dp); 3019 3020 nfp_net_open_stack(nn); 3021 exit_free_dp: 3022 kfree(dp); 3023 3024 return err; 3025 3026 err_free_rx: 3027 nfp_net_rx_rings_free(dp); 3028 err_cleanup_vecs: 3029 for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--) 3030 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); 3031 kfree(dp); 3032 return err; 3033 } 3034 3035 static int nfp_net_change_mtu(struct net_device *netdev, int new_mtu) 3036 { 3037 struct nfp_net *nn = netdev_priv(netdev); 3038 struct nfp_net_dp *dp; 3039 3040 dp = nfp_net_clone_dp(nn); 3041 if (!dp) 3042 return -ENOMEM; 3043 3044 dp->mtu = new_mtu; 3045 3046 return nfp_net_ring_reconfig(nn, dp, NULL); 3047 } 3048 3049 static int 3050 nfp_net_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) 3051 { 3052 struct nfp_net *nn = netdev_priv(netdev); 3053 3054 /* Priority tagged packets with vlan id 0 are processed by the 3055 * NFP as untagged packets 3056 */ 3057 if (!vid) 3058 return 0; 3059 3060 nn_writew(nn, NFP_NET_CFG_VLAN_FILTER_VID, vid); 3061 nn_writew(nn, NFP_NET_CFG_VLAN_FILTER_PROTO, ETH_P_8021Q); 3062 3063 return nfp_net_reconfig_mbox(nn, NFP_NET_CFG_MBOX_CMD_CTAG_FILTER_ADD); 3064 } 3065 3066 static int 3067 nfp_net_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) 3068 { 3069 struct nfp_net *nn = netdev_priv(netdev); 3070 3071 /* Priority tagged packets with vlan id 0 are processed by the 3072 * NFP as untagged packets 3073 */ 3074 if (!vid) 3075 return 0; 3076 3077 nn_writew(nn, NFP_NET_CFG_VLAN_FILTER_VID, vid); 3078 nn_writew(nn, NFP_NET_CFG_VLAN_FILTER_PROTO, ETH_P_8021Q); 3079 3080 return nfp_net_reconfig_mbox(nn, NFP_NET_CFG_MBOX_CMD_CTAG_FILTER_KILL); 3081 } 3082 3083 static void nfp_net_stat64(struct net_device *netdev, 3084 struct rtnl_link_stats64 *stats) 3085 { 3086 struct nfp_net *nn = netdev_priv(netdev); 3087 int r; 3088 3089 for (r = 0; r < nn->dp.num_r_vecs; r++) { 3090 struct nfp_net_r_vector *r_vec = &nn->r_vecs[r]; 3091 u64 data[3]; 3092 unsigned int start; 3093 3094 do { 3095 start = u64_stats_fetch_begin(&r_vec->rx_sync); 3096 data[0] = r_vec->rx_pkts; 3097 data[1] = r_vec->rx_bytes; 3098 data[2] = r_vec->rx_drops; 3099 } while (u64_stats_fetch_retry(&r_vec->rx_sync, start)); 3100 stats->rx_packets += data[0]; 3101 stats->rx_bytes += data[1]; 3102 stats->rx_dropped += data[2]; 3103 3104 do { 3105 start = u64_stats_fetch_begin(&r_vec->tx_sync); 3106 data[0] = r_vec->tx_pkts; 3107 data[1] = r_vec->tx_bytes; 3108 data[2] = r_vec->tx_errors; 3109 } while (u64_stats_fetch_retry(&r_vec->tx_sync, start)); 3110 stats->tx_packets += data[0]; 3111 stats->tx_bytes += data[1]; 3112 stats->tx_errors += data[2]; 3113 } 3114 } 3115 3116 static int nfp_net_set_features(struct net_device *netdev, 3117 netdev_features_t features) 3118 { 3119 netdev_features_t changed = netdev->features ^ features; 3120 struct nfp_net *nn = netdev_priv(netdev); 3121 u32 new_ctrl; 3122 int err; 3123 3124 /* Assume this is not called with features we have not advertised */ 3125 3126 new_ctrl = nn->dp.ctrl; 3127 3128 if (changed & NETIF_F_RXCSUM) { 3129 if (features & NETIF_F_RXCSUM) 3130 new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY; 3131 else 3132 new_ctrl &= ~NFP_NET_CFG_CTRL_RXCSUM_ANY; 3133 } 3134 3135 if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) { 3136 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) 3137 new_ctrl |= NFP_NET_CFG_CTRL_TXCSUM; 3138 else 3139 new_ctrl &= ~NFP_NET_CFG_CTRL_TXCSUM; 3140 } 3141 3142 if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) { 3143 if (features & (NETIF_F_TSO | NETIF_F_TSO6)) 3144 new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_LSO2 ?: 3145 NFP_NET_CFG_CTRL_LSO; 3146 else 3147 new_ctrl &= ~NFP_NET_CFG_CTRL_LSO_ANY; 3148 } 3149 3150 if (changed & NETIF_F_HW_VLAN_CTAG_RX) { 3151 if (features & NETIF_F_HW_VLAN_CTAG_RX) 3152 new_ctrl |= NFP_NET_CFG_CTRL_RXVLAN; 3153 else 3154 new_ctrl &= ~NFP_NET_CFG_CTRL_RXVLAN; 3155 } 3156 3157 if (changed & NETIF_F_HW_VLAN_CTAG_TX) { 3158 if (features & NETIF_F_HW_VLAN_CTAG_TX) 3159 new_ctrl |= NFP_NET_CFG_CTRL_TXVLAN; 3160 else 3161 new_ctrl &= ~NFP_NET_CFG_CTRL_TXVLAN; 3162 } 3163 3164 if (changed & NETIF_F_HW_VLAN_CTAG_FILTER) { 3165 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) 3166 new_ctrl |= NFP_NET_CFG_CTRL_CTAG_FILTER; 3167 else 3168 new_ctrl &= ~NFP_NET_CFG_CTRL_CTAG_FILTER; 3169 } 3170 3171 if (changed & NETIF_F_SG) { 3172 if (features & NETIF_F_SG) 3173 new_ctrl |= NFP_NET_CFG_CTRL_GATHER; 3174 else 3175 new_ctrl &= ~NFP_NET_CFG_CTRL_GATHER; 3176 } 3177 3178 if (changed & NETIF_F_HW_TC && nfp_app_tc_busy(nn->app, nn)) { 3179 nn_err(nn, "Cannot disable HW TC offload while in use\n"); 3180 return -EBUSY; 3181 } 3182 3183 nn_dbg(nn, "Feature change 0x%llx -> 0x%llx (changed=0x%llx)\n", 3184 netdev->features, features, changed); 3185 3186 if (new_ctrl == nn->dp.ctrl) 3187 return 0; 3188 3189 nn_dbg(nn, "NIC ctrl: 0x%x -> 0x%x\n", nn->dp.ctrl, new_ctrl); 3190 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 3191 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_GEN); 3192 if (err) 3193 return err; 3194 3195 nn->dp.ctrl = new_ctrl; 3196 3197 return 0; 3198 } 3199 3200 static netdev_features_t 3201 nfp_net_features_check(struct sk_buff *skb, struct net_device *dev, 3202 netdev_features_t features) 3203 { 3204 u8 l4_hdr; 3205 3206 /* We can't do TSO over double tagged packets (802.1AD) */ 3207 features &= vlan_features_check(skb, features); 3208 3209 if (!skb->encapsulation) 3210 return features; 3211 3212 /* Ensure that inner L4 header offset fits into TX descriptor field */ 3213 if (skb_is_gso(skb)) { 3214 u32 hdrlen; 3215 3216 hdrlen = skb_inner_transport_header(skb) - skb->data + 3217 inner_tcp_hdrlen(skb); 3218 3219 if (unlikely(hdrlen > NFP_NET_LSO_MAX_HDR_SZ)) 3220 features &= ~NETIF_F_GSO_MASK; 3221 } 3222 3223 /* VXLAN/GRE check */ 3224 switch (vlan_get_protocol(skb)) { 3225 case htons(ETH_P_IP): 3226 l4_hdr = ip_hdr(skb)->protocol; 3227 break; 3228 case htons(ETH_P_IPV6): 3229 l4_hdr = ipv6_hdr(skb)->nexthdr; 3230 break; 3231 default: 3232 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3233 } 3234 3235 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER || 3236 skb->inner_protocol != htons(ETH_P_TEB) || 3237 (l4_hdr != IPPROTO_UDP && l4_hdr != IPPROTO_GRE) || 3238 (l4_hdr == IPPROTO_UDP && 3239 (skb_inner_mac_header(skb) - skb_transport_header(skb) != 3240 sizeof(struct udphdr) + sizeof(struct vxlanhdr)))) 3241 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3242 3243 return features; 3244 } 3245 3246 /** 3247 * nfp_net_set_vxlan_port() - set vxlan port in SW and reconfigure HW 3248 * @nn: NFP Net device to reconfigure 3249 * @idx: Index into the port table where new port should be written 3250 * @port: UDP port to configure (pass zero to remove VXLAN port) 3251 */ 3252 static void nfp_net_set_vxlan_port(struct nfp_net *nn, int idx, __be16 port) 3253 { 3254 int i; 3255 3256 nn->vxlan_ports[idx] = port; 3257 3258 if (!(nn->dp.ctrl & NFP_NET_CFG_CTRL_VXLAN)) 3259 return; 3260 3261 BUILD_BUG_ON(NFP_NET_N_VXLAN_PORTS & 1); 3262 for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i += 2) 3263 nn_writel(nn, NFP_NET_CFG_VXLAN_PORT + i * sizeof(port), 3264 be16_to_cpu(nn->vxlan_ports[i + 1]) << 16 | 3265 be16_to_cpu(nn->vxlan_ports[i])); 3266 3267 nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_VXLAN); 3268 } 3269 3270 /** 3271 * nfp_net_find_vxlan_idx() - find table entry of the port or a free one 3272 * @nn: NFP Network structure 3273 * @port: UDP port to look for 3274 * 3275 * Return: if the port is already in the table -- it's position; 3276 * if the port is not in the table -- free position to use; 3277 * if the table is full -- -ENOSPC. 3278 */ 3279 static int nfp_net_find_vxlan_idx(struct nfp_net *nn, __be16 port) 3280 { 3281 int i, free_idx = -ENOSPC; 3282 3283 for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i++) { 3284 if (nn->vxlan_ports[i] == port) 3285 return i; 3286 if (!nn->vxlan_usecnt[i]) 3287 free_idx = i; 3288 } 3289 3290 return free_idx; 3291 } 3292 3293 static void nfp_net_add_vxlan_port(struct net_device *netdev, 3294 struct udp_tunnel_info *ti) 3295 { 3296 struct nfp_net *nn = netdev_priv(netdev); 3297 int idx; 3298 3299 if (ti->type != UDP_TUNNEL_TYPE_VXLAN) 3300 return; 3301 3302 idx = nfp_net_find_vxlan_idx(nn, ti->port); 3303 if (idx == -ENOSPC) 3304 return; 3305 3306 if (!nn->vxlan_usecnt[idx]++) 3307 nfp_net_set_vxlan_port(nn, idx, ti->port); 3308 } 3309 3310 static void nfp_net_del_vxlan_port(struct net_device *netdev, 3311 struct udp_tunnel_info *ti) 3312 { 3313 struct nfp_net *nn = netdev_priv(netdev); 3314 int idx; 3315 3316 if (ti->type != UDP_TUNNEL_TYPE_VXLAN) 3317 return; 3318 3319 idx = nfp_net_find_vxlan_idx(nn, ti->port); 3320 if (idx == -ENOSPC || !nn->vxlan_usecnt[idx]) 3321 return; 3322 3323 if (!--nn->vxlan_usecnt[idx]) 3324 nfp_net_set_vxlan_port(nn, idx, 0); 3325 } 3326 3327 static int 3328 nfp_net_xdp_setup_drv(struct nfp_net *nn, struct bpf_prog *prog, 3329 struct netlink_ext_ack *extack) 3330 { 3331 struct nfp_net_dp *dp; 3332 3333 if (!prog == !nn->dp.xdp_prog) { 3334 WRITE_ONCE(nn->dp.xdp_prog, prog); 3335 return 0; 3336 } 3337 3338 dp = nfp_net_clone_dp(nn); 3339 if (!dp) 3340 return -ENOMEM; 3341 3342 dp->xdp_prog = prog; 3343 dp->num_tx_rings += prog ? nn->dp.num_rx_rings : -nn->dp.num_rx_rings; 3344 dp->rx_dma_dir = prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE; 3345 dp->rx_dma_off = prog ? XDP_PACKET_HEADROOM - nn->dp.rx_offset : 0; 3346 3347 /* We need RX reconfig to remap the buffers (BIDIR vs FROM_DEV) */ 3348 return nfp_net_ring_reconfig(nn, dp, extack); 3349 } 3350 3351 static int 3352 nfp_net_xdp_setup(struct nfp_net *nn, struct bpf_prog *prog, u32 flags, 3353 struct netlink_ext_ack *extack) 3354 { 3355 struct bpf_prog *drv_prog, *offload_prog; 3356 int err; 3357 3358 if (nn->xdp_prog && (flags ^ nn->xdp_flags) & XDP_FLAGS_MODES) 3359 return -EBUSY; 3360 3361 /* Load both when no flags set to allow easy activation of driver path 3362 * when program is replaced by one which can't be offloaded. 3363 */ 3364 drv_prog = flags & XDP_FLAGS_HW_MODE ? NULL : prog; 3365 offload_prog = flags & XDP_FLAGS_DRV_MODE ? NULL : prog; 3366 3367 err = nfp_net_xdp_setup_drv(nn, drv_prog, extack); 3368 if (err) 3369 return err; 3370 3371 err = nfp_app_xdp_offload(nn->app, nn, offload_prog); 3372 if (err && flags & XDP_FLAGS_HW_MODE) 3373 return err; 3374 3375 if (nn->xdp_prog) 3376 bpf_prog_put(nn->xdp_prog); 3377 nn->xdp_prog = prog; 3378 nn->xdp_flags = flags; 3379 3380 return 0; 3381 } 3382 3383 static int nfp_net_xdp(struct net_device *netdev, struct netdev_bpf *xdp) 3384 { 3385 struct nfp_net *nn = netdev_priv(netdev); 3386 3387 switch (xdp->command) { 3388 case XDP_SETUP_PROG: 3389 case XDP_SETUP_PROG_HW: 3390 return nfp_net_xdp_setup(nn, xdp->prog, xdp->flags, 3391 xdp->extack); 3392 case XDP_QUERY_PROG: 3393 xdp->prog_attached = !!nn->xdp_prog; 3394 if (nn->dp.bpf_offload_xdp) 3395 xdp->prog_attached = XDP_ATTACHED_HW; 3396 xdp->prog_id = nn->xdp_prog ? nn->xdp_prog->aux->id : 0; 3397 return 0; 3398 case BPF_OFFLOAD_VERIFIER_PREP: 3399 return nfp_app_bpf_verifier_prep(nn->app, nn, xdp); 3400 case BPF_OFFLOAD_TRANSLATE: 3401 return nfp_app_bpf_translate(nn->app, nn, 3402 xdp->offload.prog); 3403 case BPF_OFFLOAD_DESTROY: 3404 return nfp_app_bpf_destroy(nn->app, nn, 3405 xdp->offload.prog); 3406 default: 3407 return -EINVAL; 3408 } 3409 } 3410 3411 static int nfp_net_set_mac_address(struct net_device *netdev, void *addr) 3412 { 3413 struct nfp_net *nn = netdev_priv(netdev); 3414 struct sockaddr *saddr = addr; 3415 int err; 3416 3417 err = eth_prepare_mac_addr_change(netdev, addr); 3418 if (err) 3419 return err; 3420 3421 nfp_net_write_mac_addr(nn, saddr->sa_data); 3422 3423 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_MACADDR); 3424 if (err) 3425 return err; 3426 3427 eth_commit_mac_addr_change(netdev, addr); 3428 3429 return 0; 3430 } 3431 3432 const struct net_device_ops nfp_net_netdev_ops = { 3433 .ndo_open = nfp_net_netdev_open, 3434 .ndo_stop = nfp_net_netdev_close, 3435 .ndo_start_xmit = nfp_net_tx, 3436 .ndo_get_stats64 = nfp_net_stat64, 3437 .ndo_vlan_rx_add_vid = nfp_net_vlan_rx_add_vid, 3438 .ndo_vlan_rx_kill_vid = nfp_net_vlan_rx_kill_vid, 3439 .ndo_set_vf_mac = nfp_app_set_vf_mac, 3440 .ndo_set_vf_vlan = nfp_app_set_vf_vlan, 3441 .ndo_set_vf_spoofchk = nfp_app_set_vf_spoofchk, 3442 .ndo_get_vf_config = nfp_app_get_vf_config, 3443 .ndo_set_vf_link_state = nfp_app_set_vf_link_state, 3444 .ndo_setup_tc = nfp_port_setup_tc, 3445 .ndo_tx_timeout = nfp_net_tx_timeout, 3446 .ndo_set_rx_mode = nfp_net_set_rx_mode, 3447 .ndo_change_mtu = nfp_net_change_mtu, 3448 .ndo_set_mac_address = nfp_net_set_mac_address, 3449 .ndo_set_features = nfp_net_set_features, 3450 .ndo_features_check = nfp_net_features_check, 3451 .ndo_get_phys_port_name = nfp_port_get_phys_port_name, 3452 .ndo_udp_tunnel_add = nfp_net_add_vxlan_port, 3453 .ndo_udp_tunnel_del = nfp_net_del_vxlan_port, 3454 .ndo_bpf = nfp_net_xdp, 3455 }; 3456 3457 /** 3458 * nfp_net_info() - Print general info about the NIC 3459 * @nn: NFP Net device to reconfigure 3460 */ 3461 void nfp_net_info(struct nfp_net *nn) 3462 { 3463 nn_info(nn, "Netronome NFP-6xxx %sNetdev: TxQs=%d/%d RxQs=%d/%d\n", 3464 nn->dp.is_vf ? "VF " : "", 3465 nn->dp.num_tx_rings, nn->max_tx_rings, 3466 nn->dp.num_rx_rings, nn->max_rx_rings); 3467 nn_info(nn, "VER: %d.%d.%d.%d, Maximum supported MTU: %d\n", 3468 nn->fw_ver.resv, nn->fw_ver.class, 3469 nn->fw_ver.major, nn->fw_ver.minor, 3470 nn->max_mtu); 3471 nn_info(nn, "CAP: %#x %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", 3472 nn->cap, 3473 nn->cap & NFP_NET_CFG_CTRL_PROMISC ? "PROMISC " : "", 3474 nn->cap & NFP_NET_CFG_CTRL_L2BC ? "L2BCFILT " : "", 3475 nn->cap & NFP_NET_CFG_CTRL_L2MC ? "L2MCFILT " : "", 3476 nn->cap & NFP_NET_CFG_CTRL_RXCSUM ? "RXCSUM " : "", 3477 nn->cap & NFP_NET_CFG_CTRL_TXCSUM ? "TXCSUM " : "", 3478 nn->cap & NFP_NET_CFG_CTRL_RXVLAN ? "RXVLAN " : "", 3479 nn->cap & NFP_NET_CFG_CTRL_TXVLAN ? "TXVLAN " : "", 3480 nn->cap & NFP_NET_CFG_CTRL_SCATTER ? "SCATTER " : "", 3481 nn->cap & NFP_NET_CFG_CTRL_GATHER ? "GATHER " : "", 3482 nn->cap & NFP_NET_CFG_CTRL_LSO ? "TSO1 " : "", 3483 nn->cap & NFP_NET_CFG_CTRL_LSO2 ? "TSO2 " : "", 3484 nn->cap & NFP_NET_CFG_CTRL_RSS ? "RSS1 " : "", 3485 nn->cap & NFP_NET_CFG_CTRL_RSS2 ? "RSS2 " : "", 3486 nn->cap & NFP_NET_CFG_CTRL_CTAG_FILTER ? "CTAG_FILTER " : "", 3487 nn->cap & NFP_NET_CFG_CTRL_L2SWITCH ? "L2SWITCH " : "", 3488 nn->cap & NFP_NET_CFG_CTRL_MSIXAUTO ? "AUTOMASK " : "", 3489 nn->cap & NFP_NET_CFG_CTRL_IRQMOD ? "IRQMOD " : "", 3490 nn->cap & NFP_NET_CFG_CTRL_VXLAN ? "VXLAN " : "", 3491 nn->cap & NFP_NET_CFG_CTRL_NVGRE ? "NVGRE " : "", 3492 nn->cap & NFP_NET_CFG_CTRL_CSUM_COMPLETE ? 3493 "RXCSUM_COMPLETE " : "", 3494 nn->cap & NFP_NET_CFG_CTRL_LIVE_ADDR ? "LIVE_ADDR " : "", 3495 nfp_app_extra_cap(nn->app, nn)); 3496 } 3497 3498 /** 3499 * nfp_net_alloc() - Allocate netdev and related structure 3500 * @pdev: PCI device 3501 * @needs_netdev: Whether to allocate a netdev for this vNIC 3502 * @max_tx_rings: Maximum number of TX rings supported by device 3503 * @max_rx_rings: Maximum number of RX rings supported by device 3504 * 3505 * This function allocates a netdev device and fills in the initial 3506 * part of the @struct nfp_net structure. In case of control device 3507 * nfp_net structure is allocated without the netdev. 3508 * 3509 * Return: NFP Net device structure, or ERR_PTR on error. 3510 */ 3511 struct nfp_net *nfp_net_alloc(struct pci_dev *pdev, bool needs_netdev, 3512 unsigned int max_tx_rings, 3513 unsigned int max_rx_rings) 3514 { 3515 struct nfp_net *nn; 3516 3517 if (needs_netdev) { 3518 struct net_device *netdev; 3519 3520 netdev = alloc_etherdev_mqs(sizeof(struct nfp_net), 3521 max_tx_rings, max_rx_rings); 3522 if (!netdev) 3523 return ERR_PTR(-ENOMEM); 3524 3525 SET_NETDEV_DEV(netdev, &pdev->dev); 3526 nn = netdev_priv(netdev); 3527 nn->dp.netdev = netdev; 3528 } else { 3529 nn = vzalloc(sizeof(*nn)); 3530 if (!nn) 3531 return ERR_PTR(-ENOMEM); 3532 } 3533 3534 nn->dp.dev = &pdev->dev; 3535 nn->pdev = pdev; 3536 3537 nn->max_tx_rings = max_tx_rings; 3538 nn->max_rx_rings = max_rx_rings; 3539 3540 nn->dp.num_tx_rings = min_t(unsigned int, 3541 max_tx_rings, num_online_cpus()); 3542 nn->dp.num_rx_rings = min_t(unsigned int, max_rx_rings, 3543 netif_get_num_default_rss_queues()); 3544 3545 nn->dp.num_r_vecs = max(nn->dp.num_tx_rings, nn->dp.num_rx_rings); 3546 nn->dp.num_r_vecs = min_t(unsigned int, 3547 nn->dp.num_r_vecs, num_online_cpus()); 3548 3549 nn->dp.txd_cnt = NFP_NET_TX_DESCS_DEFAULT; 3550 nn->dp.rxd_cnt = NFP_NET_RX_DESCS_DEFAULT; 3551 3552 spin_lock_init(&nn->reconfig_lock); 3553 spin_lock_init(&nn->link_status_lock); 3554 3555 timer_setup(&nn->reconfig_timer, nfp_net_reconfig_timer, 0); 3556 3557 return nn; 3558 } 3559 3560 /** 3561 * nfp_net_free() - Undo what @nfp_net_alloc() did 3562 * @nn: NFP Net device to reconfigure 3563 */ 3564 void nfp_net_free(struct nfp_net *nn) 3565 { 3566 if (nn->xdp_prog) 3567 bpf_prog_put(nn->xdp_prog); 3568 3569 if (nn->dp.netdev) 3570 free_netdev(nn->dp.netdev); 3571 else 3572 vfree(nn); 3573 } 3574 3575 /** 3576 * nfp_net_rss_key_sz() - Get current size of the RSS key 3577 * @nn: NFP Net device instance 3578 * 3579 * Return: size of the RSS key for currently selected hash function. 3580 */ 3581 unsigned int nfp_net_rss_key_sz(struct nfp_net *nn) 3582 { 3583 switch (nn->rss_hfunc) { 3584 case ETH_RSS_HASH_TOP: 3585 return NFP_NET_CFG_RSS_KEY_SZ; 3586 case ETH_RSS_HASH_XOR: 3587 return 0; 3588 case ETH_RSS_HASH_CRC32: 3589 return 4; 3590 } 3591 3592 nn_warn(nn, "Unknown hash function: %u\n", nn->rss_hfunc); 3593 return 0; 3594 } 3595 3596 /** 3597 * nfp_net_rss_init() - Set the initial RSS parameters 3598 * @nn: NFP Net device to reconfigure 3599 */ 3600 static void nfp_net_rss_init(struct nfp_net *nn) 3601 { 3602 unsigned long func_bit, rss_cap_hfunc; 3603 u32 reg; 3604 3605 /* Read the RSS function capability and select first supported func */ 3606 reg = nn_readl(nn, NFP_NET_CFG_RSS_CAP); 3607 rss_cap_hfunc = FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC, reg); 3608 if (!rss_cap_hfunc) 3609 rss_cap_hfunc = FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC, 3610 NFP_NET_CFG_RSS_TOEPLITZ); 3611 3612 func_bit = find_first_bit(&rss_cap_hfunc, NFP_NET_CFG_RSS_HFUNCS); 3613 if (func_bit == NFP_NET_CFG_RSS_HFUNCS) { 3614 dev_warn(nn->dp.dev, 3615 "Bad RSS config, defaulting to Toeplitz hash\n"); 3616 func_bit = ETH_RSS_HASH_TOP_BIT; 3617 } 3618 nn->rss_hfunc = 1 << func_bit; 3619 3620 netdev_rss_key_fill(nn->rss_key, nfp_net_rss_key_sz(nn)); 3621 3622 nfp_net_rss_init_itbl(nn); 3623 3624 /* Enable IPv4/IPv6 TCP by default */ 3625 nn->rss_cfg = NFP_NET_CFG_RSS_IPV4_TCP | 3626 NFP_NET_CFG_RSS_IPV6_TCP | 3627 FIELD_PREP(NFP_NET_CFG_RSS_HFUNC, nn->rss_hfunc) | 3628 NFP_NET_CFG_RSS_MASK; 3629 } 3630 3631 /** 3632 * nfp_net_irqmod_init() - Set the initial IRQ moderation parameters 3633 * @nn: NFP Net device to reconfigure 3634 */ 3635 static void nfp_net_irqmod_init(struct nfp_net *nn) 3636 { 3637 nn->rx_coalesce_usecs = 50; 3638 nn->rx_coalesce_max_frames = 64; 3639 nn->tx_coalesce_usecs = 50; 3640 nn->tx_coalesce_max_frames = 64; 3641 } 3642 3643 static void nfp_net_netdev_init(struct nfp_net *nn) 3644 { 3645 struct net_device *netdev = nn->dp.netdev; 3646 3647 nfp_net_write_mac_addr(nn, nn->dp.netdev->dev_addr); 3648 3649 netdev->mtu = nn->dp.mtu; 3650 3651 /* Advertise/enable offloads based on capabilities 3652 * 3653 * Note: netdev->features show the currently enabled features 3654 * and netdev->hw_features advertises which features are 3655 * supported. By default we enable most features. 3656 */ 3657 if (nn->cap & NFP_NET_CFG_CTRL_LIVE_ADDR) 3658 netdev->priv_flags |= IFF_LIVE_ADDR_CHANGE; 3659 3660 netdev->hw_features = NETIF_F_HIGHDMA; 3661 if (nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY) { 3662 netdev->hw_features |= NETIF_F_RXCSUM; 3663 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY; 3664 } 3665 if (nn->cap & NFP_NET_CFG_CTRL_TXCSUM) { 3666 netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM; 3667 nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXCSUM; 3668 } 3669 if (nn->cap & NFP_NET_CFG_CTRL_GATHER) { 3670 netdev->hw_features |= NETIF_F_SG; 3671 nn->dp.ctrl |= NFP_NET_CFG_CTRL_GATHER; 3672 } 3673 if ((nn->cap & NFP_NET_CFG_CTRL_LSO && nn->fw_ver.major > 2) || 3674 nn->cap & NFP_NET_CFG_CTRL_LSO2) { 3675 netdev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6; 3676 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_LSO2 ?: 3677 NFP_NET_CFG_CTRL_LSO; 3678 } 3679 if (nn->cap & NFP_NET_CFG_CTRL_RSS_ANY) 3680 netdev->hw_features |= NETIF_F_RXHASH; 3681 if (nn->cap & NFP_NET_CFG_CTRL_VXLAN && 3682 nn->cap & NFP_NET_CFG_CTRL_NVGRE) { 3683 if (nn->cap & NFP_NET_CFG_CTRL_LSO) 3684 netdev->hw_features |= NETIF_F_GSO_GRE | 3685 NETIF_F_GSO_UDP_TUNNEL; 3686 nn->dp.ctrl |= NFP_NET_CFG_CTRL_VXLAN | NFP_NET_CFG_CTRL_NVGRE; 3687 3688 netdev->hw_enc_features = netdev->hw_features; 3689 } 3690 3691 netdev->vlan_features = netdev->hw_features; 3692 3693 if (nn->cap & NFP_NET_CFG_CTRL_RXVLAN) { 3694 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 3695 nn->dp.ctrl |= NFP_NET_CFG_CTRL_RXVLAN; 3696 } 3697 if (nn->cap & NFP_NET_CFG_CTRL_TXVLAN) { 3698 if (nn->cap & NFP_NET_CFG_CTRL_LSO2) { 3699 nn_warn(nn, "Device advertises both TSO2 and TXVLAN. Refusing to enable TXVLAN.\n"); 3700 } else { 3701 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 3702 nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXVLAN; 3703 } 3704 } 3705 if (nn->cap & NFP_NET_CFG_CTRL_CTAG_FILTER) { 3706 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER; 3707 nn->dp.ctrl |= NFP_NET_CFG_CTRL_CTAG_FILTER; 3708 } 3709 3710 netdev->features = netdev->hw_features; 3711 3712 if (nfp_app_has_tc(nn->app)) 3713 netdev->hw_features |= NETIF_F_HW_TC; 3714 3715 /* Advertise but disable TSO by default. */ 3716 netdev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6); 3717 nn->dp.ctrl &= ~NFP_NET_CFG_CTRL_LSO_ANY; 3718 3719 /* Finalise the netdev setup */ 3720 netdev->netdev_ops = &nfp_net_netdev_ops; 3721 netdev->watchdog_timeo = msecs_to_jiffies(5 * 1000); 3722 3723 SWITCHDEV_SET_OPS(netdev, &nfp_port_switchdev_ops); 3724 3725 /* MTU range: 68 - hw-specific max */ 3726 netdev->min_mtu = ETH_MIN_MTU; 3727 netdev->max_mtu = nn->max_mtu; 3728 3729 netif_carrier_off(netdev); 3730 3731 nfp_net_set_ethtool_ops(netdev); 3732 } 3733 3734 /** 3735 * nfp_net_init() - Initialise/finalise the nfp_net structure 3736 * @nn: NFP Net device structure 3737 * 3738 * Return: 0 on success or negative errno on error. 3739 */ 3740 int nfp_net_init(struct nfp_net *nn) 3741 { 3742 int err; 3743 3744 nn->dp.rx_dma_dir = DMA_FROM_DEVICE; 3745 3746 /* Get some of the read-only fields from the BAR */ 3747 nn->cap = nn_readl(nn, NFP_NET_CFG_CAP); 3748 nn->max_mtu = nn_readl(nn, NFP_NET_CFG_MAX_MTU); 3749 3750 /* ABI 4.x and ctrl vNIC always use chained metadata, in other cases 3751 * we allow use of non-chained metadata if RSS(v1) is the only 3752 * advertised capability requiring metadata. 3753 */ 3754 nn->dp.chained_metadata_format = nn->fw_ver.major == 4 || 3755 !nn->dp.netdev || 3756 !(nn->cap & NFP_NET_CFG_CTRL_RSS) || 3757 nn->cap & NFP_NET_CFG_CTRL_CHAIN_META; 3758 /* RSS(v1) uses non-chained metadata format, except in ABI 4.x where 3759 * it has the same meaning as RSSv2. 3760 */ 3761 if (nn->dp.chained_metadata_format && nn->fw_ver.major != 4) 3762 nn->cap &= ~NFP_NET_CFG_CTRL_RSS; 3763 3764 /* Determine RX packet/metadata boundary offset */ 3765 if (nn->fw_ver.major >= 2) { 3766 u32 reg; 3767 3768 reg = nn_readl(nn, NFP_NET_CFG_RX_OFFSET); 3769 if (reg > NFP_NET_MAX_PREPEND) { 3770 nn_err(nn, "Invalid rx offset: %d\n", reg); 3771 return -EINVAL; 3772 } 3773 nn->dp.rx_offset = reg; 3774 } else { 3775 nn->dp.rx_offset = NFP_NET_RX_OFFSET; 3776 } 3777 3778 /* Set default MTU and Freelist buffer size */ 3779 if (nn->max_mtu < NFP_NET_DEFAULT_MTU) 3780 nn->dp.mtu = nn->max_mtu; 3781 else 3782 nn->dp.mtu = NFP_NET_DEFAULT_MTU; 3783 nn->dp.fl_bufsz = nfp_net_calc_fl_bufsz(&nn->dp); 3784 3785 if (nn->cap & NFP_NET_CFG_CTRL_RSS_ANY) { 3786 nfp_net_rss_init(nn); 3787 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RSS2 ?: 3788 NFP_NET_CFG_CTRL_RSS; 3789 } 3790 3791 /* Allow L2 Broadcast and Multicast through by default, if supported */ 3792 if (nn->cap & NFP_NET_CFG_CTRL_L2BC) 3793 nn->dp.ctrl |= NFP_NET_CFG_CTRL_L2BC; 3794 if (nn->cap & NFP_NET_CFG_CTRL_L2MC) 3795 nn->dp.ctrl |= NFP_NET_CFG_CTRL_L2MC; 3796 3797 /* Allow IRQ moderation, if supported */ 3798 if (nn->cap & NFP_NET_CFG_CTRL_IRQMOD) { 3799 nfp_net_irqmod_init(nn); 3800 nn->dp.ctrl |= NFP_NET_CFG_CTRL_IRQMOD; 3801 } 3802 3803 if (nn->dp.netdev) 3804 nfp_net_netdev_init(nn); 3805 3806 /* Stash the re-configuration queue away. First odd queue in TX Bar */ 3807 nn->qcp_cfg = nn->tx_bar + NFP_QCP_QUEUE_ADDR_SZ; 3808 3809 /* Make sure the FW knows the netdev is supposed to be disabled here */ 3810 nn_writel(nn, NFP_NET_CFG_CTRL, 0); 3811 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0); 3812 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0); 3813 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_RING | 3814 NFP_NET_CFG_UPDATE_GEN); 3815 if (err) 3816 return err; 3817 3818 nfp_net_vecs_init(nn); 3819 3820 if (!nn->dp.netdev) 3821 return 0; 3822 return register_netdev(nn->dp.netdev); 3823 } 3824 3825 /** 3826 * nfp_net_clean() - Undo what nfp_net_init() did. 3827 * @nn: NFP Net device structure 3828 */ 3829 void nfp_net_clean(struct nfp_net *nn) 3830 { 3831 if (!nn->dp.netdev) 3832 return; 3833 3834 unregister_netdev(nn->dp.netdev); 3835 } 3836