xref: /linux/drivers/net/ethernet/netronome/nfp/nfp_net_common.c (revision 13091aa30535b719e269f20a7bc34002bf5afae5)
1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
2 /* Copyright (C) 2015-2018 Netronome Systems, Inc. */
3 
4 /*
5  * nfp_net_common.c
6  * Netronome network device driver: Common functions between PF and VF
7  * Authors: Jakub Kicinski <jakub.kicinski@netronome.com>
8  *          Jason McMullan <jason.mcmullan@netronome.com>
9  *          Rolf Neugebauer <rolf.neugebauer@netronome.com>
10  *          Brad Petrus <brad.petrus@netronome.com>
11  *          Chris Telfer <chris.telfer@netronome.com>
12  */
13 
14 #include <linux/bitfield.h>
15 #include <linux/bpf.h>
16 #include <linux/bpf_trace.h>
17 #include <linux/module.h>
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/fs.h>
21 #include <linux/netdevice.h>
22 #include <linux/etherdevice.h>
23 #include <linux/interrupt.h>
24 #include <linux/ip.h>
25 #include <linux/ipv6.h>
26 #include <linux/mm.h>
27 #include <linux/overflow.h>
28 #include <linux/page_ref.h>
29 #include <linux/pci.h>
30 #include <linux/pci_regs.h>
31 #include <linux/msi.h>
32 #include <linux/ethtool.h>
33 #include <linux/log2.h>
34 #include <linux/if_vlan.h>
35 #include <linux/random.h>
36 #include <linux/vmalloc.h>
37 #include <linux/ktime.h>
38 
39 #include <net/tls.h>
40 #include <net/vxlan.h>
41 
42 #include "nfpcore/nfp_nsp.h"
43 #include "ccm.h"
44 #include "nfp_app.h"
45 #include "nfp_net_ctrl.h"
46 #include "nfp_net.h"
47 #include "nfp_net_sriov.h"
48 #include "nfp_port.h"
49 #include "crypto/crypto.h"
50 
51 /**
52  * nfp_net_get_fw_version() - Read and parse the FW version
53  * @fw_ver:	Output fw_version structure to read to
54  * @ctrl_bar:	Mapped address of the control BAR
55  */
56 void nfp_net_get_fw_version(struct nfp_net_fw_version *fw_ver,
57 			    void __iomem *ctrl_bar)
58 {
59 	u32 reg;
60 
61 	reg = readl(ctrl_bar + NFP_NET_CFG_VERSION);
62 	put_unaligned_le32(reg, fw_ver);
63 }
64 
65 static dma_addr_t nfp_net_dma_map_rx(struct nfp_net_dp *dp, void *frag)
66 {
67 	return dma_map_single_attrs(dp->dev, frag + NFP_NET_RX_BUF_HEADROOM,
68 				    dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA,
69 				    dp->rx_dma_dir, DMA_ATTR_SKIP_CPU_SYNC);
70 }
71 
72 static void
73 nfp_net_dma_sync_dev_rx(const struct nfp_net_dp *dp, dma_addr_t dma_addr)
74 {
75 	dma_sync_single_for_device(dp->dev, dma_addr,
76 				   dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA,
77 				   dp->rx_dma_dir);
78 }
79 
80 static void nfp_net_dma_unmap_rx(struct nfp_net_dp *dp, dma_addr_t dma_addr)
81 {
82 	dma_unmap_single_attrs(dp->dev, dma_addr,
83 			       dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA,
84 			       dp->rx_dma_dir, DMA_ATTR_SKIP_CPU_SYNC);
85 }
86 
87 static void nfp_net_dma_sync_cpu_rx(struct nfp_net_dp *dp, dma_addr_t dma_addr,
88 				    unsigned int len)
89 {
90 	dma_sync_single_for_cpu(dp->dev, dma_addr - NFP_NET_RX_BUF_HEADROOM,
91 				len, dp->rx_dma_dir);
92 }
93 
94 /* Firmware reconfig
95  *
96  * Firmware reconfig may take a while so we have two versions of it -
97  * synchronous and asynchronous (posted).  All synchronous callers are holding
98  * RTNL so we don't have to worry about serializing them.
99  */
100 static void nfp_net_reconfig_start(struct nfp_net *nn, u32 update)
101 {
102 	nn_writel(nn, NFP_NET_CFG_UPDATE, update);
103 	/* ensure update is written before pinging HW */
104 	nn_pci_flush(nn);
105 	nfp_qcp_wr_ptr_add(nn->qcp_cfg, 1);
106 	nn->reconfig_in_progress_update = update;
107 }
108 
109 /* Pass 0 as update to run posted reconfigs. */
110 static void nfp_net_reconfig_start_async(struct nfp_net *nn, u32 update)
111 {
112 	update |= nn->reconfig_posted;
113 	nn->reconfig_posted = 0;
114 
115 	nfp_net_reconfig_start(nn, update);
116 
117 	nn->reconfig_timer_active = true;
118 	mod_timer(&nn->reconfig_timer, jiffies + NFP_NET_POLL_TIMEOUT * HZ);
119 }
120 
121 static bool nfp_net_reconfig_check_done(struct nfp_net *nn, bool last_check)
122 {
123 	u32 reg;
124 
125 	reg = nn_readl(nn, NFP_NET_CFG_UPDATE);
126 	if (reg == 0)
127 		return true;
128 	if (reg & NFP_NET_CFG_UPDATE_ERR) {
129 		nn_err(nn, "Reconfig error (status: 0x%08x update: 0x%08x ctrl: 0x%08x)\n",
130 		       reg, nn->reconfig_in_progress_update,
131 		       nn_readl(nn, NFP_NET_CFG_CTRL));
132 		return true;
133 	} else if (last_check) {
134 		nn_err(nn, "Reconfig timeout (status: 0x%08x update: 0x%08x ctrl: 0x%08x)\n",
135 		       reg, nn->reconfig_in_progress_update,
136 		       nn_readl(nn, NFP_NET_CFG_CTRL));
137 		return true;
138 	}
139 
140 	return false;
141 }
142 
143 static bool __nfp_net_reconfig_wait(struct nfp_net *nn, unsigned long deadline)
144 {
145 	bool timed_out = false;
146 	int i;
147 
148 	/* Poll update field, waiting for NFP to ack the config.
149 	 * Do an opportunistic wait-busy loop, afterward sleep.
150 	 */
151 	for (i = 0; i < 50; i++) {
152 		if (nfp_net_reconfig_check_done(nn, false))
153 			return false;
154 		udelay(4);
155 	}
156 
157 	while (!nfp_net_reconfig_check_done(nn, timed_out)) {
158 		usleep_range(250, 500);
159 		timed_out = time_is_before_eq_jiffies(deadline);
160 	}
161 
162 	return timed_out;
163 }
164 
165 static int nfp_net_reconfig_wait(struct nfp_net *nn, unsigned long deadline)
166 {
167 	if (__nfp_net_reconfig_wait(nn, deadline))
168 		return -EIO;
169 
170 	if (nn_readl(nn, NFP_NET_CFG_UPDATE) & NFP_NET_CFG_UPDATE_ERR)
171 		return -EIO;
172 
173 	return 0;
174 }
175 
176 static void nfp_net_reconfig_timer(struct timer_list *t)
177 {
178 	struct nfp_net *nn = from_timer(nn, t, reconfig_timer);
179 
180 	spin_lock_bh(&nn->reconfig_lock);
181 
182 	nn->reconfig_timer_active = false;
183 
184 	/* If sync caller is present it will take over from us */
185 	if (nn->reconfig_sync_present)
186 		goto done;
187 
188 	/* Read reconfig status and report errors */
189 	nfp_net_reconfig_check_done(nn, true);
190 
191 	if (nn->reconfig_posted)
192 		nfp_net_reconfig_start_async(nn, 0);
193 done:
194 	spin_unlock_bh(&nn->reconfig_lock);
195 }
196 
197 /**
198  * nfp_net_reconfig_post() - Post async reconfig request
199  * @nn:      NFP Net device to reconfigure
200  * @update:  The value for the update field in the BAR config
201  *
202  * Record FW reconfiguration request.  Reconfiguration will be kicked off
203  * whenever reconfiguration machinery is idle.  Multiple requests can be
204  * merged together!
205  */
206 static void nfp_net_reconfig_post(struct nfp_net *nn, u32 update)
207 {
208 	spin_lock_bh(&nn->reconfig_lock);
209 
210 	/* Sync caller will kick off async reconf when it's done, just post */
211 	if (nn->reconfig_sync_present) {
212 		nn->reconfig_posted |= update;
213 		goto done;
214 	}
215 
216 	/* Opportunistically check if the previous command is done */
217 	if (!nn->reconfig_timer_active ||
218 	    nfp_net_reconfig_check_done(nn, false))
219 		nfp_net_reconfig_start_async(nn, update);
220 	else
221 		nn->reconfig_posted |= update;
222 done:
223 	spin_unlock_bh(&nn->reconfig_lock);
224 }
225 
226 static void nfp_net_reconfig_sync_enter(struct nfp_net *nn)
227 {
228 	bool cancelled_timer = false;
229 	u32 pre_posted_requests;
230 
231 	spin_lock_bh(&nn->reconfig_lock);
232 
233 	WARN_ON(nn->reconfig_sync_present);
234 	nn->reconfig_sync_present = true;
235 
236 	if (nn->reconfig_timer_active) {
237 		nn->reconfig_timer_active = false;
238 		cancelled_timer = true;
239 	}
240 	pre_posted_requests = nn->reconfig_posted;
241 	nn->reconfig_posted = 0;
242 
243 	spin_unlock_bh(&nn->reconfig_lock);
244 
245 	if (cancelled_timer) {
246 		del_timer_sync(&nn->reconfig_timer);
247 		nfp_net_reconfig_wait(nn, nn->reconfig_timer.expires);
248 	}
249 
250 	/* Run the posted reconfigs which were issued before we started */
251 	if (pre_posted_requests) {
252 		nfp_net_reconfig_start(nn, pre_posted_requests);
253 		nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT);
254 	}
255 }
256 
257 static void nfp_net_reconfig_wait_posted(struct nfp_net *nn)
258 {
259 	nfp_net_reconfig_sync_enter(nn);
260 
261 	spin_lock_bh(&nn->reconfig_lock);
262 	nn->reconfig_sync_present = false;
263 	spin_unlock_bh(&nn->reconfig_lock);
264 }
265 
266 /**
267  * __nfp_net_reconfig() - Reconfigure the firmware
268  * @nn:      NFP Net device to reconfigure
269  * @update:  The value for the update field in the BAR config
270  *
271  * Write the update word to the BAR and ping the reconfig queue.  The
272  * poll until the firmware has acknowledged the update by zeroing the
273  * update word.
274  *
275  * Return: Negative errno on error, 0 on success
276  */
277 int __nfp_net_reconfig(struct nfp_net *nn, u32 update)
278 {
279 	int ret;
280 
281 	nfp_net_reconfig_sync_enter(nn);
282 
283 	nfp_net_reconfig_start(nn, update);
284 	ret = nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT);
285 
286 	spin_lock_bh(&nn->reconfig_lock);
287 
288 	if (nn->reconfig_posted)
289 		nfp_net_reconfig_start_async(nn, 0);
290 
291 	nn->reconfig_sync_present = false;
292 
293 	spin_unlock_bh(&nn->reconfig_lock);
294 
295 	return ret;
296 }
297 
298 int nfp_net_reconfig(struct nfp_net *nn, u32 update)
299 {
300 	int ret;
301 
302 	nn_ctrl_bar_lock(nn);
303 	ret = __nfp_net_reconfig(nn, update);
304 	nn_ctrl_bar_unlock(nn);
305 
306 	return ret;
307 }
308 
309 int nfp_net_mbox_lock(struct nfp_net *nn, unsigned int data_size)
310 {
311 	if (nn->tlv_caps.mbox_len < NFP_NET_CFG_MBOX_SIMPLE_VAL + data_size) {
312 		nn_err(nn, "mailbox too small for %u of data (%u)\n",
313 		       data_size, nn->tlv_caps.mbox_len);
314 		return -EIO;
315 	}
316 
317 	nn_ctrl_bar_lock(nn);
318 	return 0;
319 }
320 
321 /**
322  * nfp_net_mbox_reconfig() - Reconfigure the firmware via the mailbox
323  * @nn:        NFP Net device to reconfigure
324  * @mbox_cmd:  The value for the mailbox command
325  *
326  * Helper function for mailbox updates
327  *
328  * Return: Negative errno on error, 0 on success
329  */
330 int nfp_net_mbox_reconfig(struct nfp_net *nn, u32 mbox_cmd)
331 {
332 	u32 mbox = nn->tlv_caps.mbox_off;
333 	int ret;
334 
335 	nn_writeq(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_CMD, mbox_cmd);
336 
337 	ret = __nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_MBOX);
338 	if (ret) {
339 		nn_err(nn, "Mailbox update error\n");
340 		return ret;
341 	}
342 
343 	return -nn_readl(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_RET);
344 }
345 
346 void nfp_net_mbox_reconfig_post(struct nfp_net *nn, u32 mbox_cmd)
347 {
348 	u32 mbox = nn->tlv_caps.mbox_off;
349 
350 	nn_writeq(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_CMD, mbox_cmd);
351 
352 	nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_MBOX);
353 }
354 
355 int nfp_net_mbox_reconfig_wait_posted(struct nfp_net *nn)
356 {
357 	u32 mbox = nn->tlv_caps.mbox_off;
358 
359 	nfp_net_reconfig_wait_posted(nn);
360 
361 	return -nn_readl(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_RET);
362 }
363 
364 int nfp_net_mbox_reconfig_and_unlock(struct nfp_net *nn, u32 mbox_cmd)
365 {
366 	int ret;
367 
368 	ret = nfp_net_mbox_reconfig(nn, mbox_cmd);
369 	nn_ctrl_bar_unlock(nn);
370 	return ret;
371 }
372 
373 /* Interrupt configuration and handling
374  */
375 
376 /**
377  * nfp_net_irq_unmask() - Unmask automasked interrupt
378  * @nn:       NFP Network structure
379  * @entry_nr: MSI-X table entry
380  *
381  * Clear the ICR for the IRQ entry.
382  */
383 static void nfp_net_irq_unmask(struct nfp_net *nn, unsigned int entry_nr)
384 {
385 	nn_writeb(nn, NFP_NET_CFG_ICR(entry_nr), NFP_NET_CFG_ICR_UNMASKED);
386 	nn_pci_flush(nn);
387 }
388 
389 /**
390  * nfp_net_irqs_alloc() - allocates MSI-X irqs
391  * @pdev:        PCI device structure
392  * @irq_entries: Array to be initialized and used to hold the irq entries
393  * @min_irqs:    Minimal acceptable number of interrupts
394  * @wanted_irqs: Target number of interrupts to allocate
395  *
396  * Return: Number of irqs obtained or 0 on error.
397  */
398 unsigned int
399 nfp_net_irqs_alloc(struct pci_dev *pdev, struct msix_entry *irq_entries,
400 		   unsigned int min_irqs, unsigned int wanted_irqs)
401 {
402 	unsigned int i;
403 	int got_irqs;
404 
405 	for (i = 0; i < wanted_irqs; i++)
406 		irq_entries[i].entry = i;
407 
408 	got_irqs = pci_enable_msix_range(pdev, irq_entries,
409 					 min_irqs, wanted_irqs);
410 	if (got_irqs < 0) {
411 		dev_err(&pdev->dev, "Failed to enable %d-%d MSI-X (err=%d)\n",
412 			min_irqs, wanted_irqs, got_irqs);
413 		return 0;
414 	}
415 
416 	if (got_irqs < wanted_irqs)
417 		dev_warn(&pdev->dev, "Unable to allocate %d IRQs got only %d\n",
418 			 wanted_irqs, got_irqs);
419 
420 	return got_irqs;
421 }
422 
423 /**
424  * nfp_net_irqs_assign() - Assign interrupts allocated externally to netdev
425  * @nn:		 NFP Network structure
426  * @irq_entries: Table of allocated interrupts
427  * @n:		 Size of @irq_entries (number of entries to grab)
428  *
429  * After interrupts are allocated with nfp_net_irqs_alloc() this function
430  * should be called to assign them to a specific netdev (port).
431  */
432 void
433 nfp_net_irqs_assign(struct nfp_net *nn, struct msix_entry *irq_entries,
434 		    unsigned int n)
435 {
436 	struct nfp_net_dp *dp = &nn->dp;
437 
438 	nn->max_r_vecs = n - NFP_NET_NON_Q_VECTORS;
439 	dp->num_r_vecs = nn->max_r_vecs;
440 
441 	memcpy(nn->irq_entries, irq_entries, sizeof(*irq_entries) * n);
442 
443 	if (dp->num_rx_rings > dp->num_r_vecs ||
444 	    dp->num_tx_rings > dp->num_r_vecs)
445 		dev_warn(nn->dp.dev, "More rings (%d,%d) than vectors (%d).\n",
446 			 dp->num_rx_rings, dp->num_tx_rings,
447 			 dp->num_r_vecs);
448 
449 	dp->num_rx_rings = min(dp->num_r_vecs, dp->num_rx_rings);
450 	dp->num_tx_rings = min(dp->num_r_vecs, dp->num_tx_rings);
451 	dp->num_stack_tx_rings = dp->num_tx_rings;
452 }
453 
454 /**
455  * nfp_net_irqs_disable() - Disable interrupts
456  * @pdev:        PCI device structure
457  *
458  * Undoes what @nfp_net_irqs_alloc() does.
459  */
460 void nfp_net_irqs_disable(struct pci_dev *pdev)
461 {
462 	pci_disable_msix(pdev);
463 }
464 
465 /**
466  * nfp_net_irq_rxtx() - Interrupt service routine for RX/TX rings.
467  * @irq:      Interrupt
468  * @data:     Opaque data structure
469  *
470  * Return: Indicate if the interrupt has been handled.
471  */
472 static irqreturn_t nfp_net_irq_rxtx(int irq, void *data)
473 {
474 	struct nfp_net_r_vector *r_vec = data;
475 
476 	napi_schedule_irqoff(&r_vec->napi);
477 
478 	/* The FW auto-masks any interrupt, either via the MASK bit in
479 	 * the MSI-X table or via the per entry ICR field.  So there
480 	 * is no need to disable interrupts here.
481 	 */
482 	return IRQ_HANDLED;
483 }
484 
485 static irqreturn_t nfp_ctrl_irq_rxtx(int irq, void *data)
486 {
487 	struct nfp_net_r_vector *r_vec = data;
488 
489 	tasklet_schedule(&r_vec->tasklet);
490 
491 	return IRQ_HANDLED;
492 }
493 
494 /**
495  * nfp_net_read_link_status() - Reread link status from control BAR
496  * @nn:       NFP Network structure
497  */
498 static void nfp_net_read_link_status(struct nfp_net *nn)
499 {
500 	unsigned long flags;
501 	bool link_up;
502 	u32 sts;
503 
504 	spin_lock_irqsave(&nn->link_status_lock, flags);
505 
506 	sts = nn_readl(nn, NFP_NET_CFG_STS);
507 	link_up = !!(sts & NFP_NET_CFG_STS_LINK);
508 
509 	if (nn->link_up == link_up)
510 		goto out;
511 
512 	nn->link_up = link_up;
513 	if (nn->port)
514 		set_bit(NFP_PORT_CHANGED, &nn->port->flags);
515 
516 	if (nn->link_up) {
517 		netif_carrier_on(nn->dp.netdev);
518 		netdev_info(nn->dp.netdev, "NIC Link is Up\n");
519 	} else {
520 		netif_carrier_off(nn->dp.netdev);
521 		netdev_info(nn->dp.netdev, "NIC Link is Down\n");
522 	}
523 out:
524 	spin_unlock_irqrestore(&nn->link_status_lock, flags);
525 }
526 
527 /**
528  * nfp_net_irq_lsc() - Interrupt service routine for link state changes
529  * @irq:      Interrupt
530  * @data:     Opaque data structure
531  *
532  * Return: Indicate if the interrupt has been handled.
533  */
534 static irqreturn_t nfp_net_irq_lsc(int irq, void *data)
535 {
536 	struct nfp_net *nn = data;
537 	struct msix_entry *entry;
538 
539 	entry = &nn->irq_entries[NFP_NET_IRQ_LSC_IDX];
540 
541 	nfp_net_read_link_status(nn);
542 
543 	nfp_net_irq_unmask(nn, entry->entry);
544 
545 	return IRQ_HANDLED;
546 }
547 
548 /**
549  * nfp_net_irq_exn() - Interrupt service routine for exceptions
550  * @irq:      Interrupt
551  * @data:     Opaque data structure
552  *
553  * Return: Indicate if the interrupt has been handled.
554  */
555 static irqreturn_t nfp_net_irq_exn(int irq, void *data)
556 {
557 	struct nfp_net *nn = data;
558 
559 	nn_err(nn, "%s: UNIMPLEMENTED.\n", __func__);
560 	/* XXX TO BE IMPLEMENTED */
561 	return IRQ_HANDLED;
562 }
563 
564 /**
565  * nfp_net_tx_ring_init() - Fill in the boilerplate for a TX ring
566  * @tx_ring:  TX ring structure
567  * @r_vec:    IRQ vector servicing this ring
568  * @idx:      Ring index
569  * @is_xdp:   Is this an XDP TX ring?
570  */
571 static void
572 nfp_net_tx_ring_init(struct nfp_net_tx_ring *tx_ring,
573 		     struct nfp_net_r_vector *r_vec, unsigned int idx,
574 		     bool is_xdp)
575 {
576 	struct nfp_net *nn = r_vec->nfp_net;
577 
578 	tx_ring->idx = idx;
579 	tx_ring->r_vec = r_vec;
580 	tx_ring->is_xdp = is_xdp;
581 	u64_stats_init(&tx_ring->r_vec->tx_sync);
582 
583 	tx_ring->qcidx = tx_ring->idx * nn->stride_tx;
584 	tx_ring->qcp_q = nn->tx_bar + NFP_QCP_QUEUE_OFF(tx_ring->qcidx);
585 }
586 
587 /**
588  * nfp_net_rx_ring_init() - Fill in the boilerplate for a RX ring
589  * @rx_ring:  RX ring structure
590  * @r_vec:    IRQ vector servicing this ring
591  * @idx:      Ring index
592  */
593 static void
594 nfp_net_rx_ring_init(struct nfp_net_rx_ring *rx_ring,
595 		     struct nfp_net_r_vector *r_vec, unsigned int idx)
596 {
597 	struct nfp_net *nn = r_vec->nfp_net;
598 
599 	rx_ring->idx = idx;
600 	rx_ring->r_vec = r_vec;
601 	u64_stats_init(&rx_ring->r_vec->rx_sync);
602 
603 	rx_ring->fl_qcidx = rx_ring->idx * nn->stride_rx;
604 	rx_ring->qcp_fl = nn->rx_bar + NFP_QCP_QUEUE_OFF(rx_ring->fl_qcidx);
605 }
606 
607 /**
608  * nfp_net_aux_irq_request() - Request an auxiliary interrupt (LSC or EXN)
609  * @nn:		NFP Network structure
610  * @ctrl_offset: Control BAR offset where IRQ configuration should be written
611  * @format:	printf-style format to construct the interrupt name
612  * @name:	Pointer to allocated space for interrupt name
613  * @name_sz:	Size of space for interrupt name
614  * @vector_idx:	Index of MSI-X vector used for this interrupt
615  * @handler:	IRQ handler to register for this interrupt
616  */
617 static int
618 nfp_net_aux_irq_request(struct nfp_net *nn, u32 ctrl_offset,
619 			const char *format, char *name, size_t name_sz,
620 			unsigned int vector_idx, irq_handler_t handler)
621 {
622 	struct msix_entry *entry;
623 	int err;
624 
625 	entry = &nn->irq_entries[vector_idx];
626 
627 	snprintf(name, name_sz, format, nfp_net_name(nn));
628 	err = request_irq(entry->vector, handler, 0, name, nn);
629 	if (err) {
630 		nn_err(nn, "Failed to request IRQ %d (err=%d).\n",
631 		       entry->vector, err);
632 		return err;
633 	}
634 	nn_writeb(nn, ctrl_offset, entry->entry);
635 	nfp_net_irq_unmask(nn, entry->entry);
636 
637 	return 0;
638 }
639 
640 /**
641  * nfp_net_aux_irq_free() - Free an auxiliary interrupt (LSC or EXN)
642  * @nn:		NFP Network structure
643  * @ctrl_offset: Control BAR offset where IRQ configuration should be written
644  * @vector_idx:	Index of MSI-X vector used for this interrupt
645  */
646 static void nfp_net_aux_irq_free(struct nfp_net *nn, u32 ctrl_offset,
647 				 unsigned int vector_idx)
648 {
649 	nn_writeb(nn, ctrl_offset, 0xff);
650 	nn_pci_flush(nn);
651 	free_irq(nn->irq_entries[vector_idx].vector, nn);
652 }
653 
654 /* Transmit
655  *
656  * One queue controller peripheral queue is used for transmit.  The
657  * driver en-queues packets for transmit by advancing the write
658  * pointer.  The device indicates that packets have transmitted by
659  * advancing the read pointer.  The driver maintains a local copy of
660  * the read and write pointer in @struct nfp_net_tx_ring.  The driver
661  * keeps @wr_p in sync with the queue controller write pointer and can
662  * determine how many packets have been transmitted by comparing its
663  * copy of the read pointer @rd_p with the read pointer maintained by
664  * the queue controller peripheral.
665  */
666 
667 /**
668  * nfp_net_tx_full() - Check if the TX ring is full
669  * @tx_ring: TX ring to check
670  * @dcnt:    Number of descriptors that need to be enqueued (must be >= 1)
671  *
672  * This function checks, based on the *host copy* of read/write
673  * pointer if a given TX ring is full.  The real TX queue may have
674  * some newly made available slots.
675  *
676  * Return: True if the ring is full.
677  */
678 static int nfp_net_tx_full(struct nfp_net_tx_ring *tx_ring, int dcnt)
679 {
680 	return (tx_ring->wr_p - tx_ring->rd_p) >= (tx_ring->cnt - dcnt);
681 }
682 
683 /* Wrappers for deciding when to stop and restart TX queues */
684 static int nfp_net_tx_ring_should_wake(struct nfp_net_tx_ring *tx_ring)
685 {
686 	return !nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS * 4);
687 }
688 
689 static int nfp_net_tx_ring_should_stop(struct nfp_net_tx_ring *tx_ring)
690 {
691 	return nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS + 1);
692 }
693 
694 /**
695  * nfp_net_tx_ring_stop() - stop tx ring
696  * @nd_q:    netdev queue
697  * @tx_ring: driver tx queue structure
698  *
699  * Safely stop TX ring.  Remember that while we are running .start_xmit()
700  * someone else may be cleaning the TX ring completions so we need to be
701  * extra careful here.
702  */
703 static void nfp_net_tx_ring_stop(struct netdev_queue *nd_q,
704 				 struct nfp_net_tx_ring *tx_ring)
705 {
706 	netif_tx_stop_queue(nd_q);
707 
708 	/* We can race with the TX completion out of NAPI so recheck */
709 	smp_mb();
710 	if (unlikely(nfp_net_tx_ring_should_wake(tx_ring)))
711 		netif_tx_start_queue(nd_q);
712 }
713 
714 /**
715  * nfp_net_tx_tso() - Set up Tx descriptor for LSO
716  * @r_vec: per-ring structure
717  * @txbuf: Pointer to driver soft TX descriptor
718  * @txd: Pointer to HW TX descriptor
719  * @skb: Pointer to SKB
720  * @md_bytes: Prepend length
721  *
722  * Set up Tx descriptor for LSO, do nothing for non-LSO skbs.
723  * Return error on packet header greater than maximum supported LSO header size.
724  */
725 static void nfp_net_tx_tso(struct nfp_net_r_vector *r_vec,
726 			   struct nfp_net_tx_buf *txbuf,
727 			   struct nfp_net_tx_desc *txd, struct sk_buff *skb,
728 			   u32 md_bytes)
729 {
730 	u32 l3_offset, l4_offset, hdrlen;
731 	u16 mss;
732 
733 	if (!skb_is_gso(skb))
734 		return;
735 
736 	if (!skb->encapsulation) {
737 		l3_offset = skb_network_offset(skb);
738 		l4_offset = skb_transport_offset(skb);
739 		hdrlen = skb_transport_offset(skb) + tcp_hdrlen(skb);
740 	} else {
741 		l3_offset = skb_inner_network_offset(skb);
742 		l4_offset = skb_inner_transport_offset(skb);
743 		hdrlen = skb_inner_transport_header(skb) - skb->data +
744 			inner_tcp_hdrlen(skb);
745 	}
746 
747 	txbuf->pkt_cnt = skb_shinfo(skb)->gso_segs;
748 	txbuf->real_len += hdrlen * (txbuf->pkt_cnt - 1);
749 
750 	mss = skb_shinfo(skb)->gso_size & PCIE_DESC_TX_MSS_MASK;
751 	txd->l3_offset = l3_offset - md_bytes;
752 	txd->l4_offset = l4_offset - md_bytes;
753 	txd->lso_hdrlen = hdrlen - md_bytes;
754 	txd->mss = cpu_to_le16(mss);
755 	txd->flags |= PCIE_DESC_TX_LSO;
756 
757 	u64_stats_update_begin(&r_vec->tx_sync);
758 	r_vec->tx_lso++;
759 	u64_stats_update_end(&r_vec->tx_sync);
760 }
761 
762 /**
763  * nfp_net_tx_csum() - Set TX CSUM offload flags in TX descriptor
764  * @dp:  NFP Net data path struct
765  * @r_vec: per-ring structure
766  * @txbuf: Pointer to driver soft TX descriptor
767  * @txd: Pointer to TX descriptor
768  * @skb: Pointer to SKB
769  *
770  * This function sets the TX checksum flags in the TX descriptor based
771  * on the configuration and the protocol of the packet to be transmitted.
772  */
773 static void nfp_net_tx_csum(struct nfp_net_dp *dp,
774 			    struct nfp_net_r_vector *r_vec,
775 			    struct nfp_net_tx_buf *txbuf,
776 			    struct nfp_net_tx_desc *txd, struct sk_buff *skb)
777 {
778 	struct ipv6hdr *ipv6h;
779 	struct iphdr *iph;
780 	u8 l4_hdr;
781 
782 	if (!(dp->ctrl & NFP_NET_CFG_CTRL_TXCSUM))
783 		return;
784 
785 	if (skb->ip_summed != CHECKSUM_PARTIAL)
786 		return;
787 
788 	txd->flags |= PCIE_DESC_TX_CSUM;
789 	if (skb->encapsulation)
790 		txd->flags |= PCIE_DESC_TX_ENCAP;
791 
792 	iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
793 	ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);
794 
795 	if (iph->version == 4) {
796 		txd->flags |= PCIE_DESC_TX_IP4_CSUM;
797 		l4_hdr = iph->protocol;
798 	} else if (ipv6h->version == 6) {
799 		l4_hdr = ipv6h->nexthdr;
800 	} else {
801 		nn_dp_warn(dp, "partial checksum but ipv=%x!\n", iph->version);
802 		return;
803 	}
804 
805 	switch (l4_hdr) {
806 	case IPPROTO_TCP:
807 		txd->flags |= PCIE_DESC_TX_TCP_CSUM;
808 		break;
809 	case IPPROTO_UDP:
810 		txd->flags |= PCIE_DESC_TX_UDP_CSUM;
811 		break;
812 	default:
813 		nn_dp_warn(dp, "partial checksum but l4 proto=%x!\n", l4_hdr);
814 		return;
815 	}
816 
817 	u64_stats_update_begin(&r_vec->tx_sync);
818 	if (skb->encapsulation)
819 		r_vec->hw_csum_tx_inner += txbuf->pkt_cnt;
820 	else
821 		r_vec->hw_csum_tx += txbuf->pkt_cnt;
822 	u64_stats_update_end(&r_vec->tx_sync);
823 }
824 
825 #ifdef CONFIG_TLS_DEVICE
826 static struct sk_buff *
827 nfp_net_tls_tx(struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec,
828 	       struct sk_buff *skb, u64 *tls_handle, int *nr_frags)
829 {
830 	struct nfp_net_tls_offload_ctx *ntls;
831 	struct sk_buff *nskb;
832 	bool resync_pending;
833 	u32 datalen, seq;
834 
835 	if (likely(!dp->ktls_tx))
836 		return skb;
837 	if (!skb->sk || !tls_is_sk_tx_device_offloaded(skb->sk))
838 		return skb;
839 
840 	datalen = skb->len - (skb_transport_offset(skb) + tcp_hdrlen(skb));
841 	seq = ntohl(tcp_hdr(skb)->seq);
842 	ntls = tls_driver_ctx(skb->sk, TLS_OFFLOAD_CTX_DIR_TX);
843 	resync_pending = tls_offload_tx_resync_pending(skb->sk);
844 	if (unlikely(resync_pending || ntls->next_seq != seq)) {
845 		/* Pure ACK out of order already */
846 		if (!datalen)
847 			return skb;
848 
849 		u64_stats_update_begin(&r_vec->tx_sync);
850 		r_vec->tls_tx_fallback++;
851 		u64_stats_update_end(&r_vec->tx_sync);
852 
853 		nskb = tls_encrypt_skb(skb);
854 		if (!nskb) {
855 			u64_stats_update_begin(&r_vec->tx_sync);
856 			r_vec->tls_tx_no_fallback++;
857 			u64_stats_update_end(&r_vec->tx_sync);
858 			return NULL;
859 		}
860 		/* encryption wasn't necessary */
861 		if (nskb == skb)
862 			return skb;
863 		/* we don't re-check ring space */
864 		if (unlikely(skb_is_nonlinear(nskb))) {
865 			nn_dp_warn(dp, "tls_encrypt_skb() produced fragmented frame\n");
866 			u64_stats_update_begin(&r_vec->tx_sync);
867 			r_vec->tx_errors++;
868 			u64_stats_update_end(&r_vec->tx_sync);
869 			dev_kfree_skb_any(nskb);
870 			return NULL;
871 		}
872 
873 		/* jump forward, a TX may have gotten lost, need to sync TX */
874 		if (!resync_pending && seq - ntls->next_seq < U32_MAX / 4)
875 			tls_offload_tx_resync_request(nskb->sk);
876 
877 		*nr_frags = 0;
878 		return nskb;
879 	}
880 
881 	if (datalen) {
882 		u64_stats_update_begin(&r_vec->tx_sync);
883 		r_vec->hw_tls_tx++;
884 		u64_stats_update_end(&r_vec->tx_sync);
885 	}
886 
887 	memcpy(tls_handle, ntls->fw_handle, sizeof(ntls->fw_handle));
888 	ntls->next_seq += datalen;
889 	return skb;
890 }
891 #endif
892 
893 static void nfp_net_tx_xmit_more_flush(struct nfp_net_tx_ring *tx_ring)
894 {
895 	wmb();
896 	nfp_qcp_wr_ptr_add(tx_ring->qcp_q, tx_ring->wr_ptr_add);
897 	tx_ring->wr_ptr_add = 0;
898 }
899 
900 static int nfp_net_prep_tx_meta(struct sk_buff *skb, u64 tls_handle)
901 {
902 	struct metadata_dst *md_dst = skb_metadata_dst(skb);
903 	unsigned char *data;
904 	u32 meta_id = 0;
905 	int md_bytes;
906 
907 	if (likely(!md_dst && !tls_handle))
908 		return 0;
909 	if (unlikely(md_dst && md_dst->type != METADATA_HW_PORT_MUX)) {
910 		if (!tls_handle)
911 			return 0;
912 		md_dst = NULL;
913 	}
914 
915 	md_bytes = 4 + !!md_dst * 4 + !!tls_handle * 8;
916 
917 	if (unlikely(skb_cow_head(skb, md_bytes)))
918 		return -ENOMEM;
919 
920 	meta_id = 0;
921 	data = skb_push(skb, md_bytes) + md_bytes;
922 	if (md_dst) {
923 		data -= 4;
924 		put_unaligned_be32(md_dst->u.port_info.port_id, data);
925 		meta_id = NFP_NET_META_PORTID;
926 	}
927 	if (tls_handle) {
928 		/* conn handle is opaque, we just use u64 to be able to quickly
929 		 * compare it to zero
930 		 */
931 		data -= 8;
932 		memcpy(data, &tls_handle, sizeof(tls_handle));
933 		meta_id <<= NFP_NET_META_FIELD_SIZE;
934 		meta_id |= NFP_NET_META_CONN_HANDLE;
935 	}
936 
937 	data -= 4;
938 	put_unaligned_be32(meta_id, data);
939 
940 	return md_bytes;
941 }
942 
943 /**
944  * nfp_net_tx() - Main transmit entry point
945  * @skb:    SKB to transmit
946  * @netdev: netdev structure
947  *
948  * Return: NETDEV_TX_OK on success.
949  */
950 static int nfp_net_tx(struct sk_buff *skb, struct net_device *netdev)
951 {
952 	struct nfp_net *nn = netdev_priv(netdev);
953 	const struct skb_frag_struct *frag;
954 	int f, nr_frags, wr_idx, md_bytes;
955 	struct nfp_net_tx_ring *tx_ring;
956 	struct nfp_net_r_vector *r_vec;
957 	struct nfp_net_tx_buf *txbuf;
958 	struct nfp_net_tx_desc *txd;
959 	struct netdev_queue *nd_q;
960 	struct nfp_net_dp *dp;
961 	dma_addr_t dma_addr;
962 	unsigned int fsize;
963 	u64 tls_handle = 0;
964 	u16 qidx;
965 
966 	dp = &nn->dp;
967 	qidx = skb_get_queue_mapping(skb);
968 	tx_ring = &dp->tx_rings[qidx];
969 	r_vec = tx_ring->r_vec;
970 
971 	nr_frags = skb_shinfo(skb)->nr_frags;
972 
973 	if (unlikely(nfp_net_tx_full(tx_ring, nr_frags + 1))) {
974 		nn_dp_warn(dp, "TX ring %d busy. wrp=%u rdp=%u\n",
975 			   qidx, tx_ring->wr_p, tx_ring->rd_p);
976 		nd_q = netdev_get_tx_queue(dp->netdev, qidx);
977 		netif_tx_stop_queue(nd_q);
978 		nfp_net_tx_xmit_more_flush(tx_ring);
979 		u64_stats_update_begin(&r_vec->tx_sync);
980 		r_vec->tx_busy++;
981 		u64_stats_update_end(&r_vec->tx_sync);
982 		return NETDEV_TX_BUSY;
983 	}
984 
985 #ifdef CONFIG_TLS_DEVICE
986 	skb = nfp_net_tls_tx(dp, r_vec, skb, &tls_handle, &nr_frags);
987 	if (unlikely(!skb)) {
988 		nfp_net_tx_xmit_more_flush(tx_ring);
989 		return NETDEV_TX_OK;
990 	}
991 #endif
992 
993 	md_bytes = nfp_net_prep_tx_meta(skb, tls_handle);
994 	if (unlikely(md_bytes < 0))
995 		goto err_flush;
996 
997 	/* Start with the head skbuf */
998 	dma_addr = dma_map_single(dp->dev, skb->data, skb_headlen(skb),
999 				  DMA_TO_DEVICE);
1000 	if (dma_mapping_error(dp->dev, dma_addr))
1001 		goto err_dma_err;
1002 
1003 	wr_idx = D_IDX(tx_ring, tx_ring->wr_p);
1004 
1005 	/* Stash the soft descriptor of the head then initialize it */
1006 	txbuf = &tx_ring->txbufs[wr_idx];
1007 	txbuf->skb = skb;
1008 	txbuf->dma_addr = dma_addr;
1009 	txbuf->fidx = -1;
1010 	txbuf->pkt_cnt = 1;
1011 	txbuf->real_len = skb->len;
1012 
1013 	/* Build TX descriptor */
1014 	txd = &tx_ring->txds[wr_idx];
1015 	txd->offset_eop = (nr_frags ? 0 : PCIE_DESC_TX_EOP) | md_bytes;
1016 	txd->dma_len = cpu_to_le16(skb_headlen(skb));
1017 	nfp_desc_set_dma_addr(txd, dma_addr);
1018 	txd->data_len = cpu_to_le16(skb->len);
1019 
1020 	txd->flags = 0;
1021 	txd->mss = 0;
1022 	txd->lso_hdrlen = 0;
1023 
1024 	/* Do not reorder - tso may adjust pkt cnt, vlan may override fields */
1025 	nfp_net_tx_tso(r_vec, txbuf, txd, skb, md_bytes);
1026 	nfp_net_tx_csum(dp, r_vec, txbuf, txd, skb);
1027 	if (skb_vlan_tag_present(skb) && dp->ctrl & NFP_NET_CFG_CTRL_TXVLAN) {
1028 		txd->flags |= PCIE_DESC_TX_VLAN;
1029 		txd->vlan = cpu_to_le16(skb_vlan_tag_get(skb));
1030 	}
1031 
1032 	/* Gather DMA */
1033 	if (nr_frags > 0) {
1034 		__le64 second_half;
1035 
1036 		/* all descs must match except for in addr, length and eop */
1037 		second_half = txd->vals8[1];
1038 
1039 		for (f = 0; f < nr_frags; f++) {
1040 			frag = &skb_shinfo(skb)->frags[f];
1041 			fsize = skb_frag_size(frag);
1042 
1043 			dma_addr = skb_frag_dma_map(dp->dev, frag, 0,
1044 						    fsize, DMA_TO_DEVICE);
1045 			if (dma_mapping_error(dp->dev, dma_addr))
1046 				goto err_unmap;
1047 
1048 			wr_idx = D_IDX(tx_ring, wr_idx + 1);
1049 			tx_ring->txbufs[wr_idx].skb = skb;
1050 			tx_ring->txbufs[wr_idx].dma_addr = dma_addr;
1051 			tx_ring->txbufs[wr_idx].fidx = f;
1052 
1053 			txd = &tx_ring->txds[wr_idx];
1054 			txd->dma_len = cpu_to_le16(fsize);
1055 			nfp_desc_set_dma_addr(txd, dma_addr);
1056 			txd->offset_eop = md_bytes |
1057 				((f == nr_frags - 1) ? PCIE_DESC_TX_EOP : 0);
1058 			txd->vals8[1] = second_half;
1059 		}
1060 
1061 		u64_stats_update_begin(&r_vec->tx_sync);
1062 		r_vec->tx_gather++;
1063 		u64_stats_update_end(&r_vec->tx_sync);
1064 	}
1065 
1066 	skb_tx_timestamp(skb);
1067 
1068 	nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx);
1069 
1070 	tx_ring->wr_p += nr_frags + 1;
1071 	if (nfp_net_tx_ring_should_stop(tx_ring))
1072 		nfp_net_tx_ring_stop(nd_q, tx_ring);
1073 
1074 	tx_ring->wr_ptr_add += nr_frags + 1;
1075 	if (__netdev_tx_sent_queue(nd_q, txbuf->real_len, netdev_xmit_more()))
1076 		nfp_net_tx_xmit_more_flush(tx_ring);
1077 
1078 	return NETDEV_TX_OK;
1079 
1080 err_unmap:
1081 	while (--f >= 0) {
1082 		frag = &skb_shinfo(skb)->frags[f];
1083 		dma_unmap_page(dp->dev, tx_ring->txbufs[wr_idx].dma_addr,
1084 			       skb_frag_size(frag), DMA_TO_DEVICE);
1085 		tx_ring->txbufs[wr_idx].skb = NULL;
1086 		tx_ring->txbufs[wr_idx].dma_addr = 0;
1087 		tx_ring->txbufs[wr_idx].fidx = -2;
1088 		wr_idx = wr_idx - 1;
1089 		if (wr_idx < 0)
1090 			wr_idx += tx_ring->cnt;
1091 	}
1092 	dma_unmap_single(dp->dev, tx_ring->txbufs[wr_idx].dma_addr,
1093 			 skb_headlen(skb), DMA_TO_DEVICE);
1094 	tx_ring->txbufs[wr_idx].skb = NULL;
1095 	tx_ring->txbufs[wr_idx].dma_addr = 0;
1096 	tx_ring->txbufs[wr_idx].fidx = -2;
1097 err_dma_err:
1098 	nn_dp_warn(dp, "Failed to map DMA TX buffer\n");
1099 err_flush:
1100 	nfp_net_tx_xmit_more_flush(tx_ring);
1101 	u64_stats_update_begin(&r_vec->tx_sync);
1102 	r_vec->tx_errors++;
1103 	u64_stats_update_end(&r_vec->tx_sync);
1104 	dev_kfree_skb_any(skb);
1105 	return NETDEV_TX_OK;
1106 }
1107 
1108 /**
1109  * nfp_net_tx_complete() - Handled completed TX packets
1110  * @tx_ring:	TX ring structure
1111  * @budget:	NAPI budget (only used as bool to determine if in NAPI context)
1112  */
1113 static void nfp_net_tx_complete(struct nfp_net_tx_ring *tx_ring, int budget)
1114 {
1115 	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
1116 	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
1117 	struct netdev_queue *nd_q;
1118 	u32 done_pkts = 0, done_bytes = 0;
1119 	u32 qcp_rd_p;
1120 	int todo;
1121 
1122 	if (tx_ring->wr_p == tx_ring->rd_p)
1123 		return;
1124 
1125 	/* Work out how many descriptors have been transmitted */
1126 	qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q);
1127 
1128 	if (qcp_rd_p == tx_ring->qcp_rd_p)
1129 		return;
1130 
1131 	todo = D_IDX(tx_ring, qcp_rd_p - tx_ring->qcp_rd_p);
1132 
1133 	while (todo--) {
1134 		const struct skb_frag_struct *frag;
1135 		struct nfp_net_tx_buf *tx_buf;
1136 		struct sk_buff *skb;
1137 		int fidx, nr_frags;
1138 		int idx;
1139 
1140 		idx = D_IDX(tx_ring, tx_ring->rd_p++);
1141 		tx_buf = &tx_ring->txbufs[idx];
1142 
1143 		skb = tx_buf->skb;
1144 		if (!skb)
1145 			continue;
1146 
1147 		nr_frags = skb_shinfo(skb)->nr_frags;
1148 		fidx = tx_buf->fidx;
1149 
1150 		if (fidx == -1) {
1151 			/* unmap head */
1152 			dma_unmap_single(dp->dev, tx_buf->dma_addr,
1153 					 skb_headlen(skb), DMA_TO_DEVICE);
1154 
1155 			done_pkts += tx_buf->pkt_cnt;
1156 			done_bytes += tx_buf->real_len;
1157 		} else {
1158 			/* unmap fragment */
1159 			frag = &skb_shinfo(skb)->frags[fidx];
1160 			dma_unmap_page(dp->dev, tx_buf->dma_addr,
1161 				       skb_frag_size(frag), DMA_TO_DEVICE);
1162 		}
1163 
1164 		/* check for last gather fragment */
1165 		if (fidx == nr_frags - 1)
1166 			napi_consume_skb(skb, budget);
1167 
1168 		tx_buf->dma_addr = 0;
1169 		tx_buf->skb = NULL;
1170 		tx_buf->fidx = -2;
1171 	}
1172 
1173 	tx_ring->qcp_rd_p = qcp_rd_p;
1174 
1175 	u64_stats_update_begin(&r_vec->tx_sync);
1176 	r_vec->tx_bytes += done_bytes;
1177 	r_vec->tx_pkts += done_pkts;
1178 	u64_stats_update_end(&r_vec->tx_sync);
1179 
1180 	if (!dp->netdev)
1181 		return;
1182 
1183 	nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx);
1184 	netdev_tx_completed_queue(nd_q, done_pkts, done_bytes);
1185 	if (nfp_net_tx_ring_should_wake(tx_ring)) {
1186 		/* Make sure TX thread will see updated tx_ring->rd_p */
1187 		smp_mb();
1188 
1189 		if (unlikely(netif_tx_queue_stopped(nd_q)))
1190 			netif_tx_wake_queue(nd_q);
1191 	}
1192 
1193 	WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt,
1194 		  "TX ring corruption rd_p=%u wr_p=%u cnt=%u\n",
1195 		  tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt);
1196 }
1197 
1198 static bool nfp_net_xdp_complete(struct nfp_net_tx_ring *tx_ring)
1199 {
1200 	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
1201 	u32 done_pkts = 0, done_bytes = 0;
1202 	bool done_all;
1203 	int idx, todo;
1204 	u32 qcp_rd_p;
1205 
1206 	/* Work out how many descriptors have been transmitted */
1207 	qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q);
1208 
1209 	if (qcp_rd_p == tx_ring->qcp_rd_p)
1210 		return true;
1211 
1212 	todo = D_IDX(tx_ring, qcp_rd_p - tx_ring->qcp_rd_p);
1213 
1214 	done_all = todo <= NFP_NET_XDP_MAX_COMPLETE;
1215 	todo = min(todo, NFP_NET_XDP_MAX_COMPLETE);
1216 
1217 	tx_ring->qcp_rd_p = D_IDX(tx_ring, tx_ring->qcp_rd_p + todo);
1218 
1219 	done_pkts = todo;
1220 	while (todo--) {
1221 		idx = D_IDX(tx_ring, tx_ring->rd_p);
1222 		tx_ring->rd_p++;
1223 
1224 		done_bytes += tx_ring->txbufs[idx].real_len;
1225 	}
1226 
1227 	u64_stats_update_begin(&r_vec->tx_sync);
1228 	r_vec->tx_bytes += done_bytes;
1229 	r_vec->tx_pkts += done_pkts;
1230 	u64_stats_update_end(&r_vec->tx_sync);
1231 
1232 	WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt,
1233 		  "XDP TX ring corruption rd_p=%u wr_p=%u cnt=%u\n",
1234 		  tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt);
1235 
1236 	return done_all;
1237 }
1238 
1239 /**
1240  * nfp_net_tx_ring_reset() - Free any untransmitted buffers and reset pointers
1241  * @dp:		NFP Net data path struct
1242  * @tx_ring:	TX ring structure
1243  *
1244  * Assumes that the device is stopped, must be idempotent.
1245  */
1246 static void
1247 nfp_net_tx_ring_reset(struct nfp_net_dp *dp, struct nfp_net_tx_ring *tx_ring)
1248 {
1249 	const struct skb_frag_struct *frag;
1250 	struct netdev_queue *nd_q;
1251 
1252 	while (!tx_ring->is_xdp && tx_ring->rd_p != tx_ring->wr_p) {
1253 		struct nfp_net_tx_buf *tx_buf;
1254 		struct sk_buff *skb;
1255 		int idx, nr_frags;
1256 
1257 		idx = D_IDX(tx_ring, tx_ring->rd_p);
1258 		tx_buf = &tx_ring->txbufs[idx];
1259 
1260 		skb = tx_ring->txbufs[idx].skb;
1261 		nr_frags = skb_shinfo(skb)->nr_frags;
1262 
1263 		if (tx_buf->fidx == -1) {
1264 			/* unmap head */
1265 			dma_unmap_single(dp->dev, tx_buf->dma_addr,
1266 					 skb_headlen(skb), DMA_TO_DEVICE);
1267 		} else {
1268 			/* unmap fragment */
1269 			frag = &skb_shinfo(skb)->frags[tx_buf->fidx];
1270 			dma_unmap_page(dp->dev, tx_buf->dma_addr,
1271 				       skb_frag_size(frag), DMA_TO_DEVICE);
1272 		}
1273 
1274 		/* check for last gather fragment */
1275 		if (tx_buf->fidx == nr_frags - 1)
1276 			dev_kfree_skb_any(skb);
1277 
1278 		tx_buf->dma_addr = 0;
1279 		tx_buf->skb = NULL;
1280 		tx_buf->fidx = -2;
1281 
1282 		tx_ring->qcp_rd_p++;
1283 		tx_ring->rd_p++;
1284 	}
1285 
1286 	memset(tx_ring->txds, 0, tx_ring->size);
1287 	tx_ring->wr_p = 0;
1288 	tx_ring->rd_p = 0;
1289 	tx_ring->qcp_rd_p = 0;
1290 	tx_ring->wr_ptr_add = 0;
1291 
1292 	if (tx_ring->is_xdp || !dp->netdev)
1293 		return;
1294 
1295 	nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx);
1296 	netdev_tx_reset_queue(nd_q);
1297 }
1298 
1299 static void nfp_net_tx_timeout(struct net_device *netdev)
1300 {
1301 	struct nfp_net *nn = netdev_priv(netdev);
1302 	int i;
1303 
1304 	for (i = 0; i < nn->dp.netdev->real_num_tx_queues; i++) {
1305 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(netdev, i)))
1306 			continue;
1307 		nn_warn(nn, "TX timeout on ring: %d\n", i);
1308 	}
1309 	nn_warn(nn, "TX watchdog timeout\n");
1310 }
1311 
1312 /* Receive processing
1313  */
1314 static unsigned int
1315 nfp_net_calc_fl_bufsz(struct nfp_net_dp *dp)
1316 {
1317 	unsigned int fl_bufsz;
1318 
1319 	fl_bufsz = NFP_NET_RX_BUF_HEADROOM;
1320 	fl_bufsz += dp->rx_dma_off;
1321 	if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
1322 		fl_bufsz += NFP_NET_MAX_PREPEND;
1323 	else
1324 		fl_bufsz += dp->rx_offset;
1325 	fl_bufsz += ETH_HLEN + VLAN_HLEN * 2 + dp->mtu;
1326 
1327 	fl_bufsz = SKB_DATA_ALIGN(fl_bufsz);
1328 	fl_bufsz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1329 
1330 	return fl_bufsz;
1331 }
1332 
1333 static void
1334 nfp_net_free_frag(void *frag, bool xdp)
1335 {
1336 	if (!xdp)
1337 		skb_free_frag(frag);
1338 	else
1339 		__free_page(virt_to_page(frag));
1340 }
1341 
1342 /**
1343  * nfp_net_rx_alloc_one() - Allocate and map page frag for RX
1344  * @dp:		NFP Net data path struct
1345  * @dma_addr:	Pointer to storage for DMA address (output param)
1346  *
1347  * This function will allcate a new page frag, map it for DMA.
1348  *
1349  * Return: allocated page frag or NULL on failure.
1350  */
1351 static void *nfp_net_rx_alloc_one(struct nfp_net_dp *dp, dma_addr_t *dma_addr)
1352 {
1353 	void *frag;
1354 
1355 	if (!dp->xdp_prog) {
1356 		frag = netdev_alloc_frag(dp->fl_bufsz);
1357 	} else {
1358 		struct page *page;
1359 
1360 		page = alloc_page(GFP_KERNEL);
1361 		frag = page ? page_address(page) : NULL;
1362 	}
1363 	if (!frag) {
1364 		nn_dp_warn(dp, "Failed to alloc receive page frag\n");
1365 		return NULL;
1366 	}
1367 
1368 	*dma_addr = nfp_net_dma_map_rx(dp, frag);
1369 	if (dma_mapping_error(dp->dev, *dma_addr)) {
1370 		nfp_net_free_frag(frag, dp->xdp_prog);
1371 		nn_dp_warn(dp, "Failed to map DMA RX buffer\n");
1372 		return NULL;
1373 	}
1374 
1375 	return frag;
1376 }
1377 
1378 static void *nfp_net_napi_alloc_one(struct nfp_net_dp *dp, dma_addr_t *dma_addr)
1379 {
1380 	void *frag;
1381 
1382 	if (!dp->xdp_prog) {
1383 		frag = napi_alloc_frag(dp->fl_bufsz);
1384 		if (unlikely(!frag))
1385 			return NULL;
1386 	} else {
1387 		struct page *page;
1388 
1389 		page = dev_alloc_page();
1390 		if (unlikely(!page))
1391 			return NULL;
1392 		frag = page_address(page);
1393 	}
1394 
1395 	*dma_addr = nfp_net_dma_map_rx(dp, frag);
1396 	if (dma_mapping_error(dp->dev, *dma_addr)) {
1397 		nfp_net_free_frag(frag, dp->xdp_prog);
1398 		nn_dp_warn(dp, "Failed to map DMA RX buffer\n");
1399 		return NULL;
1400 	}
1401 
1402 	return frag;
1403 }
1404 
1405 /**
1406  * nfp_net_rx_give_one() - Put mapped skb on the software and hardware rings
1407  * @dp:		NFP Net data path struct
1408  * @rx_ring:	RX ring structure
1409  * @frag:	page fragment buffer
1410  * @dma_addr:	DMA address of skb mapping
1411  */
1412 static void nfp_net_rx_give_one(const struct nfp_net_dp *dp,
1413 				struct nfp_net_rx_ring *rx_ring,
1414 				void *frag, dma_addr_t dma_addr)
1415 {
1416 	unsigned int wr_idx;
1417 
1418 	wr_idx = D_IDX(rx_ring, rx_ring->wr_p);
1419 
1420 	nfp_net_dma_sync_dev_rx(dp, dma_addr);
1421 
1422 	/* Stash SKB and DMA address away */
1423 	rx_ring->rxbufs[wr_idx].frag = frag;
1424 	rx_ring->rxbufs[wr_idx].dma_addr = dma_addr;
1425 
1426 	/* Fill freelist descriptor */
1427 	rx_ring->rxds[wr_idx].fld.reserved = 0;
1428 	rx_ring->rxds[wr_idx].fld.meta_len_dd = 0;
1429 	nfp_desc_set_dma_addr(&rx_ring->rxds[wr_idx].fld,
1430 			      dma_addr + dp->rx_dma_off);
1431 
1432 	rx_ring->wr_p++;
1433 	if (!(rx_ring->wr_p % NFP_NET_FL_BATCH)) {
1434 		/* Update write pointer of the freelist queue. Make
1435 		 * sure all writes are flushed before telling the hardware.
1436 		 */
1437 		wmb();
1438 		nfp_qcp_wr_ptr_add(rx_ring->qcp_fl, NFP_NET_FL_BATCH);
1439 	}
1440 }
1441 
1442 /**
1443  * nfp_net_rx_ring_reset() - Reflect in SW state of freelist after disable
1444  * @rx_ring:	RX ring structure
1445  *
1446  * Assumes that the device is stopped, must be idempotent.
1447  */
1448 static void nfp_net_rx_ring_reset(struct nfp_net_rx_ring *rx_ring)
1449 {
1450 	unsigned int wr_idx, last_idx;
1451 
1452 	/* wr_p == rd_p means ring was never fed FL bufs.  RX rings are always
1453 	 * kept at cnt - 1 FL bufs.
1454 	 */
1455 	if (rx_ring->wr_p == 0 && rx_ring->rd_p == 0)
1456 		return;
1457 
1458 	/* Move the empty entry to the end of the list */
1459 	wr_idx = D_IDX(rx_ring, rx_ring->wr_p);
1460 	last_idx = rx_ring->cnt - 1;
1461 	rx_ring->rxbufs[wr_idx].dma_addr = rx_ring->rxbufs[last_idx].dma_addr;
1462 	rx_ring->rxbufs[wr_idx].frag = rx_ring->rxbufs[last_idx].frag;
1463 	rx_ring->rxbufs[last_idx].dma_addr = 0;
1464 	rx_ring->rxbufs[last_idx].frag = NULL;
1465 
1466 	memset(rx_ring->rxds, 0, rx_ring->size);
1467 	rx_ring->wr_p = 0;
1468 	rx_ring->rd_p = 0;
1469 }
1470 
1471 /**
1472  * nfp_net_rx_ring_bufs_free() - Free any buffers currently on the RX ring
1473  * @dp:		NFP Net data path struct
1474  * @rx_ring:	RX ring to remove buffers from
1475  *
1476  * Assumes that the device is stopped and buffers are in [0, ring->cnt - 1)
1477  * entries.  After device is disabled nfp_net_rx_ring_reset() must be called
1478  * to restore required ring geometry.
1479  */
1480 static void
1481 nfp_net_rx_ring_bufs_free(struct nfp_net_dp *dp,
1482 			  struct nfp_net_rx_ring *rx_ring)
1483 {
1484 	unsigned int i;
1485 
1486 	for (i = 0; i < rx_ring->cnt - 1; i++) {
1487 		/* NULL skb can only happen when initial filling of the ring
1488 		 * fails to allocate enough buffers and calls here to free
1489 		 * already allocated ones.
1490 		 */
1491 		if (!rx_ring->rxbufs[i].frag)
1492 			continue;
1493 
1494 		nfp_net_dma_unmap_rx(dp, rx_ring->rxbufs[i].dma_addr);
1495 		nfp_net_free_frag(rx_ring->rxbufs[i].frag, dp->xdp_prog);
1496 		rx_ring->rxbufs[i].dma_addr = 0;
1497 		rx_ring->rxbufs[i].frag = NULL;
1498 	}
1499 }
1500 
1501 /**
1502  * nfp_net_rx_ring_bufs_alloc() - Fill RX ring with buffers (don't give to FW)
1503  * @dp:		NFP Net data path struct
1504  * @rx_ring:	RX ring to remove buffers from
1505  */
1506 static int
1507 nfp_net_rx_ring_bufs_alloc(struct nfp_net_dp *dp,
1508 			   struct nfp_net_rx_ring *rx_ring)
1509 {
1510 	struct nfp_net_rx_buf *rxbufs;
1511 	unsigned int i;
1512 
1513 	rxbufs = rx_ring->rxbufs;
1514 
1515 	for (i = 0; i < rx_ring->cnt - 1; i++) {
1516 		rxbufs[i].frag = nfp_net_rx_alloc_one(dp, &rxbufs[i].dma_addr);
1517 		if (!rxbufs[i].frag) {
1518 			nfp_net_rx_ring_bufs_free(dp, rx_ring);
1519 			return -ENOMEM;
1520 		}
1521 	}
1522 
1523 	return 0;
1524 }
1525 
1526 /**
1527  * nfp_net_rx_ring_fill_freelist() - Give buffers from the ring to FW
1528  * @dp:	     NFP Net data path struct
1529  * @rx_ring: RX ring to fill
1530  */
1531 static void
1532 nfp_net_rx_ring_fill_freelist(struct nfp_net_dp *dp,
1533 			      struct nfp_net_rx_ring *rx_ring)
1534 {
1535 	unsigned int i;
1536 
1537 	for (i = 0; i < rx_ring->cnt - 1; i++)
1538 		nfp_net_rx_give_one(dp, rx_ring, rx_ring->rxbufs[i].frag,
1539 				    rx_ring->rxbufs[i].dma_addr);
1540 }
1541 
1542 /**
1543  * nfp_net_rx_csum_has_errors() - group check if rxd has any csum errors
1544  * @flags: RX descriptor flags field in CPU byte order
1545  */
1546 static int nfp_net_rx_csum_has_errors(u16 flags)
1547 {
1548 	u16 csum_all_checked, csum_all_ok;
1549 
1550 	csum_all_checked = flags & __PCIE_DESC_RX_CSUM_ALL;
1551 	csum_all_ok = flags & __PCIE_DESC_RX_CSUM_ALL_OK;
1552 
1553 	return csum_all_checked != (csum_all_ok << PCIE_DESC_RX_CSUM_OK_SHIFT);
1554 }
1555 
1556 /**
1557  * nfp_net_rx_csum() - set SKB checksum field based on RX descriptor flags
1558  * @dp:  NFP Net data path struct
1559  * @r_vec: per-ring structure
1560  * @rxd: Pointer to RX descriptor
1561  * @meta: Parsed metadata prepend
1562  * @skb: Pointer to SKB
1563  */
1564 static void nfp_net_rx_csum(struct nfp_net_dp *dp,
1565 			    struct nfp_net_r_vector *r_vec,
1566 			    struct nfp_net_rx_desc *rxd,
1567 			    struct nfp_meta_parsed *meta, struct sk_buff *skb)
1568 {
1569 	skb_checksum_none_assert(skb);
1570 
1571 	if (!(dp->netdev->features & NETIF_F_RXCSUM))
1572 		return;
1573 
1574 	if (meta->csum_type) {
1575 		skb->ip_summed = meta->csum_type;
1576 		skb->csum = meta->csum;
1577 		u64_stats_update_begin(&r_vec->rx_sync);
1578 		r_vec->hw_csum_rx_complete++;
1579 		u64_stats_update_end(&r_vec->rx_sync);
1580 		return;
1581 	}
1582 
1583 	if (nfp_net_rx_csum_has_errors(le16_to_cpu(rxd->rxd.flags))) {
1584 		u64_stats_update_begin(&r_vec->rx_sync);
1585 		r_vec->hw_csum_rx_error++;
1586 		u64_stats_update_end(&r_vec->rx_sync);
1587 		return;
1588 	}
1589 
1590 	/* Assume that the firmware will never report inner CSUM_OK unless outer
1591 	 * L4 headers were successfully parsed. FW will always report zero UDP
1592 	 * checksum as CSUM_OK.
1593 	 */
1594 	if (rxd->rxd.flags & PCIE_DESC_RX_TCP_CSUM_OK ||
1595 	    rxd->rxd.flags & PCIE_DESC_RX_UDP_CSUM_OK) {
1596 		__skb_incr_checksum_unnecessary(skb);
1597 		u64_stats_update_begin(&r_vec->rx_sync);
1598 		r_vec->hw_csum_rx_ok++;
1599 		u64_stats_update_end(&r_vec->rx_sync);
1600 	}
1601 
1602 	if (rxd->rxd.flags & PCIE_DESC_RX_I_TCP_CSUM_OK ||
1603 	    rxd->rxd.flags & PCIE_DESC_RX_I_UDP_CSUM_OK) {
1604 		__skb_incr_checksum_unnecessary(skb);
1605 		u64_stats_update_begin(&r_vec->rx_sync);
1606 		r_vec->hw_csum_rx_inner_ok++;
1607 		u64_stats_update_end(&r_vec->rx_sync);
1608 	}
1609 }
1610 
1611 static void
1612 nfp_net_set_hash(struct net_device *netdev, struct nfp_meta_parsed *meta,
1613 		 unsigned int type, __be32 *hash)
1614 {
1615 	if (!(netdev->features & NETIF_F_RXHASH))
1616 		return;
1617 
1618 	switch (type) {
1619 	case NFP_NET_RSS_IPV4:
1620 	case NFP_NET_RSS_IPV6:
1621 	case NFP_NET_RSS_IPV6_EX:
1622 		meta->hash_type = PKT_HASH_TYPE_L3;
1623 		break;
1624 	default:
1625 		meta->hash_type = PKT_HASH_TYPE_L4;
1626 		break;
1627 	}
1628 
1629 	meta->hash = get_unaligned_be32(hash);
1630 }
1631 
1632 static void
1633 nfp_net_set_hash_desc(struct net_device *netdev, struct nfp_meta_parsed *meta,
1634 		      void *data, struct nfp_net_rx_desc *rxd)
1635 {
1636 	struct nfp_net_rx_hash *rx_hash = data;
1637 
1638 	if (!(rxd->rxd.flags & PCIE_DESC_RX_RSS))
1639 		return;
1640 
1641 	nfp_net_set_hash(netdev, meta, get_unaligned_be32(&rx_hash->hash_type),
1642 			 &rx_hash->hash);
1643 }
1644 
1645 static void *
1646 nfp_net_parse_meta(struct net_device *netdev, struct nfp_meta_parsed *meta,
1647 		   void *data, int meta_len)
1648 {
1649 	u32 meta_info;
1650 
1651 	meta_info = get_unaligned_be32(data);
1652 	data += 4;
1653 
1654 	while (meta_info) {
1655 		switch (meta_info & NFP_NET_META_FIELD_MASK) {
1656 		case NFP_NET_META_HASH:
1657 			meta_info >>= NFP_NET_META_FIELD_SIZE;
1658 			nfp_net_set_hash(netdev, meta,
1659 					 meta_info & NFP_NET_META_FIELD_MASK,
1660 					 (__be32 *)data);
1661 			data += 4;
1662 			break;
1663 		case NFP_NET_META_MARK:
1664 			meta->mark = get_unaligned_be32(data);
1665 			data += 4;
1666 			break;
1667 		case NFP_NET_META_PORTID:
1668 			meta->portid = get_unaligned_be32(data);
1669 			data += 4;
1670 			break;
1671 		case NFP_NET_META_CSUM:
1672 			meta->csum_type = CHECKSUM_COMPLETE;
1673 			meta->csum =
1674 				(__force __wsum)__get_unaligned_cpu32(data);
1675 			data += 4;
1676 			break;
1677 		default:
1678 			return NULL;
1679 		}
1680 
1681 		meta_info >>= NFP_NET_META_FIELD_SIZE;
1682 	}
1683 
1684 	return data;
1685 }
1686 
1687 static void
1688 nfp_net_rx_drop(const struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec,
1689 		struct nfp_net_rx_ring *rx_ring, struct nfp_net_rx_buf *rxbuf,
1690 		struct sk_buff *skb)
1691 {
1692 	u64_stats_update_begin(&r_vec->rx_sync);
1693 	r_vec->rx_drops++;
1694 	/* If we have both skb and rxbuf the replacement buffer allocation
1695 	 * must have failed, count this as an alloc failure.
1696 	 */
1697 	if (skb && rxbuf)
1698 		r_vec->rx_replace_buf_alloc_fail++;
1699 	u64_stats_update_end(&r_vec->rx_sync);
1700 
1701 	/* skb is build based on the frag, free_skb() would free the frag
1702 	 * so to be able to reuse it we need an extra ref.
1703 	 */
1704 	if (skb && rxbuf && skb->head == rxbuf->frag)
1705 		page_ref_inc(virt_to_head_page(rxbuf->frag));
1706 	if (rxbuf)
1707 		nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag, rxbuf->dma_addr);
1708 	if (skb)
1709 		dev_kfree_skb_any(skb);
1710 }
1711 
1712 static bool
1713 nfp_net_tx_xdp_buf(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring,
1714 		   struct nfp_net_tx_ring *tx_ring,
1715 		   struct nfp_net_rx_buf *rxbuf, unsigned int dma_off,
1716 		   unsigned int pkt_len, bool *completed)
1717 {
1718 	struct nfp_net_tx_buf *txbuf;
1719 	struct nfp_net_tx_desc *txd;
1720 	int wr_idx;
1721 
1722 	if (unlikely(nfp_net_tx_full(tx_ring, 1))) {
1723 		if (!*completed) {
1724 			nfp_net_xdp_complete(tx_ring);
1725 			*completed = true;
1726 		}
1727 
1728 		if (unlikely(nfp_net_tx_full(tx_ring, 1))) {
1729 			nfp_net_rx_drop(dp, rx_ring->r_vec, rx_ring, rxbuf,
1730 					NULL);
1731 			return false;
1732 		}
1733 	}
1734 
1735 	wr_idx = D_IDX(tx_ring, tx_ring->wr_p);
1736 
1737 	/* Stash the soft descriptor of the head then initialize it */
1738 	txbuf = &tx_ring->txbufs[wr_idx];
1739 
1740 	nfp_net_rx_give_one(dp, rx_ring, txbuf->frag, txbuf->dma_addr);
1741 
1742 	txbuf->frag = rxbuf->frag;
1743 	txbuf->dma_addr = rxbuf->dma_addr;
1744 	txbuf->fidx = -1;
1745 	txbuf->pkt_cnt = 1;
1746 	txbuf->real_len = pkt_len;
1747 
1748 	dma_sync_single_for_device(dp->dev, rxbuf->dma_addr + dma_off,
1749 				   pkt_len, DMA_BIDIRECTIONAL);
1750 
1751 	/* Build TX descriptor */
1752 	txd = &tx_ring->txds[wr_idx];
1753 	txd->offset_eop = PCIE_DESC_TX_EOP;
1754 	txd->dma_len = cpu_to_le16(pkt_len);
1755 	nfp_desc_set_dma_addr(txd, rxbuf->dma_addr + dma_off);
1756 	txd->data_len = cpu_to_le16(pkt_len);
1757 
1758 	txd->flags = 0;
1759 	txd->mss = 0;
1760 	txd->lso_hdrlen = 0;
1761 
1762 	tx_ring->wr_p++;
1763 	tx_ring->wr_ptr_add++;
1764 	return true;
1765 }
1766 
1767 /**
1768  * nfp_net_rx() - receive up to @budget packets on @rx_ring
1769  * @rx_ring:   RX ring to receive from
1770  * @budget:    NAPI budget
1771  *
1772  * Note, this function is separated out from the napi poll function to
1773  * more cleanly separate packet receive code from other bookkeeping
1774  * functions performed in the napi poll function.
1775  *
1776  * Return: Number of packets received.
1777  */
1778 static int nfp_net_rx(struct nfp_net_rx_ring *rx_ring, int budget)
1779 {
1780 	struct nfp_net_r_vector *r_vec = rx_ring->r_vec;
1781 	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
1782 	struct nfp_net_tx_ring *tx_ring;
1783 	struct bpf_prog *xdp_prog;
1784 	bool xdp_tx_cmpl = false;
1785 	unsigned int true_bufsz;
1786 	struct sk_buff *skb;
1787 	int pkts_polled = 0;
1788 	struct xdp_buff xdp;
1789 	int idx;
1790 
1791 	rcu_read_lock();
1792 	xdp_prog = READ_ONCE(dp->xdp_prog);
1793 	true_bufsz = xdp_prog ? PAGE_SIZE : dp->fl_bufsz;
1794 	xdp.rxq = &rx_ring->xdp_rxq;
1795 	tx_ring = r_vec->xdp_ring;
1796 
1797 	while (pkts_polled < budget) {
1798 		unsigned int meta_len, data_len, meta_off, pkt_len, pkt_off;
1799 		struct nfp_net_rx_buf *rxbuf;
1800 		struct nfp_net_rx_desc *rxd;
1801 		struct nfp_meta_parsed meta;
1802 		bool redir_egress = false;
1803 		struct net_device *netdev;
1804 		dma_addr_t new_dma_addr;
1805 		u32 meta_len_xdp = 0;
1806 		void *new_frag;
1807 
1808 		idx = D_IDX(rx_ring, rx_ring->rd_p);
1809 
1810 		rxd = &rx_ring->rxds[idx];
1811 		if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD))
1812 			break;
1813 
1814 		/* Memory barrier to ensure that we won't do other reads
1815 		 * before the DD bit.
1816 		 */
1817 		dma_rmb();
1818 
1819 		memset(&meta, 0, sizeof(meta));
1820 
1821 		rx_ring->rd_p++;
1822 		pkts_polled++;
1823 
1824 		rxbuf =	&rx_ring->rxbufs[idx];
1825 		/*         < meta_len >
1826 		 *  <-- [rx_offset] -->
1827 		 *  ---------------------------------------------------------
1828 		 * | [XX] |  metadata  |             packet           | XXXX |
1829 		 *  ---------------------------------------------------------
1830 		 *         <---------------- data_len --------------->
1831 		 *
1832 		 * The rx_offset is fixed for all packets, the meta_len can vary
1833 		 * on a packet by packet basis. If rx_offset is set to zero
1834 		 * (_RX_OFFSET_DYNAMIC) metadata starts at the beginning of the
1835 		 * buffer and is immediately followed by the packet (no [XX]).
1836 		 */
1837 		meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK;
1838 		data_len = le16_to_cpu(rxd->rxd.data_len);
1839 		pkt_len = data_len - meta_len;
1840 
1841 		pkt_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_dma_off;
1842 		if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
1843 			pkt_off += meta_len;
1844 		else
1845 			pkt_off += dp->rx_offset;
1846 		meta_off = pkt_off - meta_len;
1847 
1848 		/* Stats update */
1849 		u64_stats_update_begin(&r_vec->rx_sync);
1850 		r_vec->rx_pkts++;
1851 		r_vec->rx_bytes += pkt_len;
1852 		u64_stats_update_end(&r_vec->rx_sync);
1853 
1854 		if (unlikely(meta_len > NFP_NET_MAX_PREPEND ||
1855 			     (dp->rx_offset && meta_len > dp->rx_offset))) {
1856 			nn_dp_warn(dp, "oversized RX packet metadata %u\n",
1857 				   meta_len);
1858 			nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
1859 			continue;
1860 		}
1861 
1862 		nfp_net_dma_sync_cpu_rx(dp, rxbuf->dma_addr + meta_off,
1863 					data_len);
1864 
1865 		if (!dp->chained_metadata_format) {
1866 			nfp_net_set_hash_desc(dp->netdev, &meta,
1867 					      rxbuf->frag + meta_off, rxd);
1868 		} else if (meta_len) {
1869 			void *end;
1870 
1871 			end = nfp_net_parse_meta(dp->netdev, &meta,
1872 						 rxbuf->frag + meta_off,
1873 						 meta_len);
1874 			if (unlikely(end != rxbuf->frag + pkt_off)) {
1875 				nn_dp_warn(dp, "invalid RX packet metadata\n");
1876 				nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf,
1877 						NULL);
1878 				continue;
1879 			}
1880 		}
1881 
1882 		if (xdp_prog && !meta.portid) {
1883 			void *orig_data = rxbuf->frag + pkt_off;
1884 			unsigned int dma_off;
1885 			int act;
1886 
1887 			xdp.data_hard_start = rxbuf->frag + NFP_NET_RX_BUF_HEADROOM;
1888 			xdp.data = orig_data;
1889 			xdp.data_meta = orig_data;
1890 			xdp.data_end = orig_data + pkt_len;
1891 
1892 			act = bpf_prog_run_xdp(xdp_prog, &xdp);
1893 
1894 			pkt_len = xdp.data_end - xdp.data;
1895 			pkt_off += xdp.data - orig_data;
1896 
1897 			switch (act) {
1898 			case XDP_PASS:
1899 				meta_len_xdp = xdp.data - xdp.data_meta;
1900 				break;
1901 			case XDP_TX:
1902 				dma_off = pkt_off - NFP_NET_RX_BUF_HEADROOM;
1903 				if (unlikely(!nfp_net_tx_xdp_buf(dp, rx_ring,
1904 								 tx_ring, rxbuf,
1905 								 dma_off,
1906 								 pkt_len,
1907 								 &xdp_tx_cmpl)))
1908 					trace_xdp_exception(dp->netdev,
1909 							    xdp_prog, act);
1910 				continue;
1911 			default:
1912 				bpf_warn_invalid_xdp_action(act);
1913 				/* fall through */
1914 			case XDP_ABORTED:
1915 				trace_xdp_exception(dp->netdev, xdp_prog, act);
1916 				/* fall through */
1917 			case XDP_DROP:
1918 				nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag,
1919 						    rxbuf->dma_addr);
1920 				continue;
1921 			}
1922 		}
1923 
1924 		if (likely(!meta.portid)) {
1925 			netdev = dp->netdev;
1926 		} else if (meta.portid == NFP_META_PORT_ID_CTRL) {
1927 			struct nfp_net *nn = netdev_priv(dp->netdev);
1928 
1929 			nfp_app_ctrl_rx_raw(nn->app, rxbuf->frag + pkt_off,
1930 					    pkt_len);
1931 			nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag,
1932 					    rxbuf->dma_addr);
1933 			continue;
1934 		} else {
1935 			struct nfp_net *nn;
1936 
1937 			nn = netdev_priv(dp->netdev);
1938 			netdev = nfp_app_dev_get(nn->app, meta.portid,
1939 						 &redir_egress);
1940 			if (unlikely(!netdev)) {
1941 				nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf,
1942 						NULL);
1943 				continue;
1944 			}
1945 
1946 			if (nfp_netdev_is_nfp_repr(netdev))
1947 				nfp_repr_inc_rx_stats(netdev, pkt_len);
1948 		}
1949 
1950 		skb = build_skb(rxbuf->frag, true_bufsz);
1951 		if (unlikely(!skb)) {
1952 			nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
1953 			continue;
1954 		}
1955 		new_frag = nfp_net_napi_alloc_one(dp, &new_dma_addr);
1956 		if (unlikely(!new_frag)) {
1957 			nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, skb);
1958 			continue;
1959 		}
1960 
1961 		nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr);
1962 
1963 		nfp_net_rx_give_one(dp, rx_ring, new_frag, new_dma_addr);
1964 
1965 		skb_reserve(skb, pkt_off);
1966 		skb_put(skb, pkt_len);
1967 
1968 		skb->mark = meta.mark;
1969 		skb_set_hash(skb, meta.hash, meta.hash_type);
1970 
1971 		skb_record_rx_queue(skb, rx_ring->idx);
1972 		skb->protocol = eth_type_trans(skb, netdev);
1973 
1974 		nfp_net_rx_csum(dp, r_vec, rxd, &meta, skb);
1975 
1976 #ifdef CONFIG_TLS_DEVICE
1977 		if (rxd->rxd.flags & PCIE_DESC_RX_DECRYPTED) {
1978 			skb->decrypted = true;
1979 			u64_stats_update_begin(&r_vec->rx_sync);
1980 			r_vec->hw_tls_rx++;
1981 			u64_stats_update_end(&r_vec->rx_sync);
1982 		}
1983 #endif
1984 
1985 		if (rxd->rxd.flags & PCIE_DESC_RX_VLAN)
1986 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1987 					       le16_to_cpu(rxd->rxd.vlan));
1988 		if (meta_len_xdp)
1989 			skb_metadata_set(skb, meta_len_xdp);
1990 
1991 		if (likely(!redir_egress)) {
1992 			napi_gro_receive(&rx_ring->r_vec->napi, skb);
1993 		} else {
1994 			skb->dev = netdev;
1995 			skb_reset_network_header(skb);
1996 			__skb_push(skb, ETH_HLEN);
1997 			dev_queue_xmit(skb);
1998 		}
1999 	}
2000 
2001 	if (xdp_prog) {
2002 		if (tx_ring->wr_ptr_add)
2003 			nfp_net_tx_xmit_more_flush(tx_ring);
2004 		else if (unlikely(tx_ring->wr_p != tx_ring->rd_p) &&
2005 			 !xdp_tx_cmpl)
2006 			if (!nfp_net_xdp_complete(tx_ring))
2007 				pkts_polled = budget;
2008 	}
2009 	rcu_read_unlock();
2010 
2011 	return pkts_polled;
2012 }
2013 
2014 /**
2015  * nfp_net_poll() - napi poll function
2016  * @napi:    NAPI structure
2017  * @budget:  NAPI budget
2018  *
2019  * Return: number of packets polled.
2020  */
2021 static int nfp_net_poll(struct napi_struct *napi, int budget)
2022 {
2023 	struct nfp_net_r_vector *r_vec =
2024 		container_of(napi, struct nfp_net_r_vector, napi);
2025 	unsigned int pkts_polled = 0;
2026 
2027 	if (r_vec->tx_ring)
2028 		nfp_net_tx_complete(r_vec->tx_ring, budget);
2029 	if (r_vec->rx_ring)
2030 		pkts_polled = nfp_net_rx(r_vec->rx_ring, budget);
2031 
2032 	if (pkts_polled < budget)
2033 		if (napi_complete_done(napi, pkts_polled))
2034 			nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry);
2035 
2036 	return pkts_polled;
2037 }
2038 
2039 /* Control device data path
2040  */
2041 
2042 static bool
2043 nfp_ctrl_tx_one(struct nfp_net *nn, struct nfp_net_r_vector *r_vec,
2044 		struct sk_buff *skb, bool old)
2045 {
2046 	unsigned int real_len = skb->len, meta_len = 0;
2047 	struct nfp_net_tx_ring *tx_ring;
2048 	struct nfp_net_tx_buf *txbuf;
2049 	struct nfp_net_tx_desc *txd;
2050 	struct nfp_net_dp *dp;
2051 	dma_addr_t dma_addr;
2052 	int wr_idx;
2053 
2054 	dp = &r_vec->nfp_net->dp;
2055 	tx_ring = r_vec->tx_ring;
2056 
2057 	if (WARN_ON_ONCE(skb_shinfo(skb)->nr_frags)) {
2058 		nn_dp_warn(dp, "Driver's CTRL TX does not implement gather\n");
2059 		goto err_free;
2060 	}
2061 
2062 	if (unlikely(nfp_net_tx_full(tx_ring, 1))) {
2063 		u64_stats_update_begin(&r_vec->tx_sync);
2064 		r_vec->tx_busy++;
2065 		u64_stats_update_end(&r_vec->tx_sync);
2066 		if (!old)
2067 			__skb_queue_tail(&r_vec->queue, skb);
2068 		else
2069 			__skb_queue_head(&r_vec->queue, skb);
2070 		return true;
2071 	}
2072 
2073 	if (nfp_app_ctrl_has_meta(nn->app)) {
2074 		if (unlikely(skb_headroom(skb) < 8)) {
2075 			nn_dp_warn(dp, "CTRL TX on skb without headroom\n");
2076 			goto err_free;
2077 		}
2078 		meta_len = 8;
2079 		put_unaligned_be32(NFP_META_PORT_ID_CTRL, skb_push(skb, 4));
2080 		put_unaligned_be32(NFP_NET_META_PORTID, skb_push(skb, 4));
2081 	}
2082 
2083 	/* Start with the head skbuf */
2084 	dma_addr = dma_map_single(dp->dev, skb->data, skb_headlen(skb),
2085 				  DMA_TO_DEVICE);
2086 	if (dma_mapping_error(dp->dev, dma_addr))
2087 		goto err_dma_warn;
2088 
2089 	wr_idx = D_IDX(tx_ring, tx_ring->wr_p);
2090 
2091 	/* Stash the soft descriptor of the head then initialize it */
2092 	txbuf = &tx_ring->txbufs[wr_idx];
2093 	txbuf->skb = skb;
2094 	txbuf->dma_addr = dma_addr;
2095 	txbuf->fidx = -1;
2096 	txbuf->pkt_cnt = 1;
2097 	txbuf->real_len = real_len;
2098 
2099 	/* Build TX descriptor */
2100 	txd = &tx_ring->txds[wr_idx];
2101 	txd->offset_eop = meta_len | PCIE_DESC_TX_EOP;
2102 	txd->dma_len = cpu_to_le16(skb_headlen(skb));
2103 	nfp_desc_set_dma_addr(txd, dma_addr);
2104 	txd->data_len = cpu_to_le16(skb->len);
2105 
2106 	txd->flags = 0;
2107 	txd->mss = 0;
2108 	txd->lso_hdrlen = 0;
2109 
2110 	tx_ring->wr_p++;
2111 	tx_ring->wr_ptr_add++;
2112 	nfp_net_tx_xmit_more_flush(tx_ring);
2113 
2114 	return false;
2115 
2116 err_dma_warn:
2117 	nn_dp_warn(dp, "Failed to DMA map TX CTRL buffer\n");
2118 err_free:
2119 	u64_stats_update_begin(&r_vec->tx_sync);
2120 	r_vec->tx_errors++;
2121 	u64_stats_update_end(&r_vec->tx_sync);
2122 	dev_kfree_skb_any(skb);
2123 	return false;
2124 }
2125 
2126 bool __nfp_ctrl_tx(struct nfp_net *nn, struct sk_buff *skb)
2127 {
2128 	struct nfp_net_r_vector *r_vec = &nn->r_vecs[0];
2129 
2130 	return nfp_ctrl_tx_one(nn, r_vec, skb, false);
2131 }
2132 
2133 bool nfp_ctrl_tx(struct nfp_net *nn, struct sk_buff *skb)
2134 {
2135 	struct nfp_net_r_vector *r_vec = &nn->r_vecs[0];
2136 	bool ret;
2137 
2138 	spin_lock_bh(&r_vec->lock);
2139 	ret = nfp_ctrl_tx_one(nn, r_vec, skb, false);
2140 	spin_unlock_bh(&r_vec->lock);
2141 
2142 	return ret;
2143 }
2144 
2145 static void __nfp_ctrl_tx_queued(struct nfp_net_r_vector *r_vec)
2146 {
2147 	struct sk_buff *skb;
2148 
2149 	while ((skb = __skb_dequeue(&r_vec->queue)))
2150 		if (nfp_ctrl_tx_one(r_vec->nfp_net, r_vec, skb, true))
2151 			return;
2152 }
2153 
2154 static bool
2155 nfp_ctrl_meta_ok(struct nfp_net *nn, void *data, unsigned int meta_len)
2156 {
2157 	u32 meta_type, meta_tag;
2158 
2159 	if (!nfp_app_ctrl_has_meta(nn->app))
2160 		return !meta_len;
2161 
2162 	if (meta_len != 8)
2163 		return false;
2164 
2165 	meta_type = get_unaligned_be32(data);
2166 	meta_tag = get_unaligned_be32(data + 4);
2167 
2168 	return (meta_type == NFP_NET_META_PORTID &&
2169 		meta_tag == NFP_META_PORT_ID_CTRL);
2170 }
2171 
2172 static bool
2173 nfp_ctrl_rx_one(struct nfp_net *nn, struct nfp_net_dp *dp,
2174 		struct nfp_net_r_vector *r_vec, struct nfp_net_rx_ring *rx_ring)
2175 {
2176 	unsigned int meta_len, data_len, meta_off, pkt_len, pkt_off;
2177 	struct nfp_net_rx_buf *rxbuf;
2178 	struct nfp_net_rx_desc *rxd;
2179 	dma_addr_t new_dma_addr;
2180 	struct sk_buff *skb;
2181 	void *new_frag;
2182 	int idx;
2183 
2184 	idx = D_IDX(rx_ring, rx_ring->rd_p);
2185 
2186 	rxd = &rx_ring->rxds[idx];
2187 	if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD))
2188 		return false;
2189 
2190 	/* Memory barrier to ensure that we won't do other reads
2191 	 * before the DD bit.
2192 	 */
2193 	dma_rmb();
2194 
2195 	rx_ring->rd_p++;
2196 
2197 	rxbuf =	&rx_ring->rxbufs[idx];
2198 	meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK;
2199 	data_len = le16_to_cpu(rxd->rxd.data_len);
2200 	pkt_len = data_len - meta_len;
2201 
2202 	pkt_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_dma_off;
2203 	if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
2204 		pkt_off += meta_len;
2205 	else
2206 		pkt_off += dp->rx_offset;
2207 	meta_off = pkt_off - meta_len;
2208 
2209 	/* Stats update */
2210 	u64_stats_update_begin(&r_vec->rx_sync);
2211 	r_vec->rx_pkts++;
2212 	r_vec->rx_bytes += pkt_len;
2213 	u64_stats_update_end(&r_vec->rx_sync);
2214 
2215 	nfp_net_dma_sync_cpu_rx(dp, rxbuf->dma_addr + meta_off,	data_len);
2216 
2217 	if (unlikely(!nfp_ctrl_meta_ok(nn, rxbuf->frag + meta_off, meta_len))) {
2218 		nn_dp_warn(dp, "incorrect metadata for ctrl packet (%d)\n",
2219 			   meta_len);
2220 		nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
2221 		return true;
2222 	}
2223 
2224 	skb = build_skb(rxbuf->frag, dp->fl_bufsz);
2225 	if (unlikely(!skb)) {
2226 		nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
2227 		return true;
2228 	}
2229 	new_frag = nfp_net_napi_alloc_one(dp, &new_dma_addr);
2230 	if (unlikely(!new_frag)) {
2231 		nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, skb);
2232 		return true;
2233 	}
2234 
2235 	nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr);
2236 
2237 	nfp_net_rx_give_one(dp, rx_ring, new_frag, new_dma_addr);
2238 
2239 	skb_reserve(skb, pkt_off);
2240 	skb_put(skb, pkt_len);
2241 
2242 	nfp_app_ctrl_rx(nn->app, skb);
2243 
2244 	return true;
2245 }
2246 
2247 static bool nfp_ctrl_rx(struct nfp_net_r_vector *r_vec)
2248 {
2249 	struct nfp_net_rx_ring *rx_ring = r_vec->rx_ring;
2250 	struct nfp_net *nn = r_vec->nfp_net;
2251 	struct nfp_net_dp *dp = &nn->dp;
2252 	unsigned int budget = 512;
2253 
2254 	while (nfp_ctrl_rx_one(nn, dp, r_vec, rx_ring) && budget--)
2255 		continue;
2256 
2257 	return budget;
2258 }
2259 
2260 static void nfp_ctrl_poll(unsigned long arg)
2261 {
2262 	struct nfp_net_r_vector *r_vec = (void *)arg;
2263 
2264 	spin_lock(&r_vec->lock);
2265 	nfp_net_tx_complete(r_vec->tx_ring, 0);
2266 	__nfp_ctrl_tx_queued(r_vec);
2267 	spin_unlock(&r_vec->lock);
2268 
2269 	if (nfp_ctrl_rx(r_vec)) {
2270 		nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry);
2271 	} else {
2272 		tasklet_schedule(&r_vec->tasklet);
2273 		nn_dp_warn(&r_vec->nfp_net->dp,
2274 			   "control message budget exceeded!\n");
2275 	}
2276 }
2277 
2278 /* Setup and Configuration
2279  */
2280 
2281 /**
2282  * nfp_net_vecs_init() - Assign IRQs and setup rvecs.
2283  * @nn:		NFP Network structure
2284  */
2285 static void nfp_net_vecs_init(struct nfp_net *nn)
2286 {
2287 	struct nfp_net_r_vector *r_vec;
2288 	int r;
2289 
2290 	nn->lsc_handler = nfp_net_irq_lsc;
2291 	nn->exn_handler = nfp_net_irq_exn;
2292 
2293 	for (r = 0; r < nn->max_r_vecs; r++) {
2294 		struct msix_entry *entry;
2295 
2296 		entry = &nn->irq_entries[NFP_NET_NON_Q_VECTORS + r];
2297 
2298 		r_vec = &nn->r_vecs[r];
2299 		r_vec->nfp_net = nn;
2300 		r_vec->irq_entry = entry->entry;
2301 		r_vec->irq_vector = entry->vector;
2302 
2303 		if (nn->dp.netdev) {
2304 			r_vec->handler = nfp_net_irq_rxtx;
2305 		} else {
2306 			r_vec->handler = nfp_ctrl_irq_rxtx;
2307 
2308 			__skb_queue_head_init(&r_vec->queue);
2309 			spin_lock_init(&r_vec->lock);
2310 			tasklet_init(&r_vec->tasklet, nfp_ctrl_poll,
2311 				     (unsigned long)r_vec);
2312 			tasklet_disable(&r_vec->tasklet);
2313 		}
2314 
2315 		cpumask_set_cpu(r, &r_vec->affinity_mask);
2316 	}
2317 }
2318 
2319 /**
2320  * nfp_net_tx_ring_free() - Free resources allocated to a TX ring
2321  * @tx_ring:   TX ring to free
2322  */
2323 static void nfp_net_tx_ring_free(struct nfp_net_tx_ring *tx_ring)
2324 {
2325 	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
2326 	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
2327 
2328 	kvfree(tx_ring->txbufs);
2329 
2330 	if (tx_ring->txds)
2331 		dma_free_coherent(dp->dev, tx_ring->size,
2332 				  tx_ring->txds, tx_ring->dma);
2333 
2334 	tx_ring->cnt = 0;
2335 	tx_ring->txbufs = NULL;
2336 	tx_ring->txds = NULL;
2337 	tx_ring->dma = 0;
2338 	tx_ring->size = 0;
2339 }
2340 
2341 /**
2342  * nfp_net_tx_ring_alloc() - Allocate resource for a TX ring
2343  * @dp:        NFP Net data path struct
2344  * @tx_ring:   TX Ring structure to allocate
2345  *
2346  * Return: 0 on success, negative errno otherwise.
2347  */
2348 static int
2349 nfp_net_tx_ring_alloc(struct nfp_net_dp *dp, struct nfp_net_tx_ring *tx_ring)
2350 {
2351 	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
2352 
2353 	tx_ring->cnt = dp->txd_cnt;
2354 
2355 	tx_ring->size = array_size(tx_ring->cnt, sizeof(*tx_ring->txds));
2356 	tx_ring->txds = dma_alloc_coherent(dp->dev, tx_ring->size,
2357 					   &tx_ring->dma,
2358 					   GFP_KERNEL | __GFP_NOWARN);
2359 	if (!tx_ring->txds) {
2360 		netdev_warn(dp->netdev, "failed to allocate TX descriptor ring memory, requested descriptor count: %d, consider lowering descriptor count\n",
2361 			    tx_ring->cnt);
2362 		goto err_alloc;
2363 	}
2364 
2365 	tx_ring->txbufs = kvcalloc(tx_ring->cnt, sizeof(*tx_ring->txbufs),
2366 				   GFP_KERNEL);
2367 	if (!tx_ring->txbufs)
2368 		goto err_alloc;
2369 
2370 	if (!tx_ring->is_xdp && dp->netdev)
2371 		netif_set_xps_queue(dp->netdev, &r_vec->affinity_mask,
2372 				    tx_ring->idx);
2373 
2374 	return 0;
2375 
2376 err_alloc:
2377 	nfp_net_tx_ring_free(tx_ring);
2378 	return -ENOMEM;
2379 }
2380 
2381 static void
2382 nfp_net_tx_ring_bufs_free(struct nfp_net_dp *dp,
2383 			  struct nfp_net_tx_ring *tx_ring)
2384 {
2385 	unsigned int i;
2386 
2387 	if (!tx_ring->is_xdp)
2388 		return;
2389 
2390 	for (i = 0; i < tx_ring->cnt; i++) {
2391 		if (!tx_ring->txbufs[i].frag)
2392 			return;
2393 
2394 		nfp_net_dma_unmap_rx(dp, tx_ring->txbufs[i].dma_addr);
2395 		__free_page(virt_to_page(tx_ring->txbufs[i].frag));
2396 	}
2397 }
2398 
2399 static int
2400 nfp_net_tx_ring_bufs_alloc(struct nfp_net_dp *dp,
2401 			   struct nfp_net_tx_ring *tx_ring)
2402 {
2403 	struct nfp_net_tx_buf *txbufs = tx_ring->txbufs;
2404 	unsigned int i;
2405 
2406 	if (!tx_ring->is_xdp)
2407 		return 0;
2408 
2409 	for (i = 0; i < tx_ring->cnt; i++) {
2410 		txbufs[i].frag = nfp_net_rx_alloc_one(dp, &txbufs[i].dma_addr);
2411 		if (!txbufs[i].frag) {
2412 			nfp_net_tx_ring_bufs_free(dp, tx_ring);
2413 			return -ENOMEM;
2414 		}
2415 	}
2416 
2417 	return 0;
2418 }
2419 
2420 static int nfp_net_tx_rings_prepare(struct nfp_net *nn, struct nfp_net_dp *dp)
2421 {
2422 	unsigned int r;
2423 
2424 	dp->tx_rings = kcalloc(dp->num_tx_rings, sizeof(*dp->tx_rings),
2425 			       GFP_KERNEL);
2426 	if (!dp->tx_rings)
2427 		return -ENOMEM;
2428 
2429 	for (r = 0; r < dp->num_tx_rings; r++) {
2430 		int bias = 0;
2431 
2432 		if (r >= dp->num_stack_tx_rings)
2433 			bias = dp->num_stack_tx_rings;
2434 
2435 		nfp_net_tx_ring_init(&dp->tx_rings[r], &nn->r_vecs[r - bias],
2436 				     r, bias);
2437 
2438 		if (nfp_net_tx_ring_alloc(dp, &dp->tx_rings[r]))
2439 			goto err_free_prev;
2440 
2441 		if (nfp_net_tx_ring_bufs_alloc(dp, &dp->tx_rings[r]))
2442 			goto err_free_ring;
2443 	}
2444 
2445 	return 0;
2446 
2447 err_free_prev:
2448 	while (r--) {
2449 		nfp_net_tx_ring_bufs_free(dp, &dp->tx_rings[r]);
2450 err_free_ring:
2451 		nfp_net_tx_ring_free(&dp->tx_rings[r]);
2452 	}
2453 	kfree(dp->tx_rings);
2454 	return -ENOMEM;
2455 }
2456 
2457 static void nfp_net_tx_rings_free(struct nfp_net_dp *dp)
2458 {
2459 	unsigned int r;
2460 
2461 	for (r = 0; r < dp->num_tx_rings; r++) {
2462 		nfp_net_tx_ring_bufs_free(dp, &dp->tx_rings[r]);
2463 		nfp_net_tx_ring_free(&dp->tx_rings[r]);
2464 	}
2465 
2466 	kfree(dp->tx_rings);
2467 }
2468 
2469 /**
2470  * nfp_net_rx_ring_free() - Free resources allocated to a RX ring
2471  * @rx_ring:  RX ring to free
2472  */
2473 static void nfp_net_rx_ring_free(struct nfp_net_rx_ring *rx_ring)
2474 {
2475 	struct nfp_net_r_vector *r_vec = rx_ring->r_vec;
2476 	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
2477 
2478 	if (dp->netdev)
2479 		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
2480 	kvfree(rx_ring->rxbufs);
2481 
2482 	if (rx_ring->rxds)
2483 		dma_free_coherent(dp->dev, rx_ring->size,
2484 				  rx_ring->rxds, rx_ring->dma);
2485 
2486 	rx_ring->cnt = 0;
2487 	rx_ring->rxbufs = NULL;
2488 	rx_ring->rxds = NULL;
2489 	rx_ring->dma = 0;
2490 	rx_ring->size = 0;
2491 }
2492 
2493 /**
2494  * nfp_net_rx_ring_alloc() - Allocate resource for a RX ring
2495  * @dp:	      NFP Net data path struct
2496  * @rx_ring:  RX ring to allocate
2497  *
2498  * Return: 0 on success, negative errno otherwise.
2499  */
2500 static int
2501 nfp_net_rx_ring_alloc(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring)
2502 {
2503 	int err;
2504 
2505 	if (dp->netdev) {
2506 		err = xdp_rxq_info_reg(&rx_ring->xdp_rxq, dp->netdev,
2507 				       rx_ring->idx);
2508 		if (err < 0)
2509 			return err;
2510 	}
2511 
2512 	rx_ring->cnt = dp->rxd_cnt;
2513 	rx_ring->size = array_size(rx_ring->cnt, sizeof(*rx_ring->rxds));
2514 	rx_ring->rxds = dma_alloc_coherent(dp->dev, rx_ring->size,
2515 					   &rx_ring->dma,
2516 					   GFP_KERNEL | __GFP_NOWARN);
2517 	if (!rx_ring->rxds) {
2518 		netdev_warn(dp->netdev, "failed to allocate RX descriptor ring memory, requested descriptor count: %d, consider lowering descriptor count\n",
2519 			    rx_ring->cnt);
2520 		goto err_alloc;
2521 	}
2522 
2523 	rx_ring->rxbufs = kvcalloc(rx_ring->cnt, sizeof(*rx_ring->rxbufs),
2524 				   GFP_KERNEL);
2525 	if (!rx_ring->rxbufs)
2526 		goto err_alloc;
2527 
2528 	return 0;
2529 
2530 err_alloc:
2531 	nfp_net_rx_ring_free(rx_ring);
2532 	return -ENOMEM;
2533 }
2534 
2535 static int nfp_net_rx_rings_prepare(struct nfp_net *nn, struct nfp_net_dp *dp)
2536 {
2537 	unsigned int r;
2538 
2539 	dp->rx_rings = kcalloc(dp->num_rx_rings, sizeof(*dp->rx_rings),
2540 			       GFP_KERNEL);
2541 	if (!dp->rx_rings)
2542 		return -ENOMEM;
2543 
2544 	for (r = 0; r < dp->num_rx_rings; r++) {
2545 		nfp_net_rx_ring_init(&dp->rx_rings[r], &nn->r_vecs[r], r);
2546 
2547 		if (nfp_net_rx_ring_alloc(dp, &dp->rx_rings[r]))
2548 			goto err_free_prev;
2549 
2550 		if (nfp_net_rx_ring_bufs_alloc(dp, &dp->rx_rings[r]))
2551 			goto err_free_ring;
2552 	}
2553 
2554 	return 0;
2555 
2556 err_free_prev:
2557 	while (r--) {
2558 		nfp_net_rx_ring_bufs_free(dp, &dp->rx_rings[r]);
2559 err_free_ring:
2560 		nfp_net_rx_ring_free(&dp->rx_rings[r]);
2561 	}
2562 	kfree(dp->rx_rings);
2563 	return -ENOMEM;
2564 }
2565 
2566 static void nfp_net_rx_rings_free(struct nfp_net_dp *dp)
2567 {
2568 	unsigned int r;
2569 
2570 	for (r = 0; r < dp->num_rx_rings; r++) {
2571 		nfp_net_rx_ring_bufs_free(dp, &dp->rx_rings[r]);
2572 		nfp_net_rx_ring_free(&dp->rx_rings[r]);
2573 	}
2574 
2575 	kfree(dp->rx_rings);
2576 }
2577 
2578 static void
2579 nfp_net_vector_assign_rings(struct nfp_net_dp *dp,
2580 			    struct nfp_net_r_vector *r_vec, int idx)
2581 {
2582 	r_vec->rx_ring = idx < dp->num_rx_rings ? &dp->rx_rings[idx] : NULL;
2583 	r_vec->tx_ring =
2584 		idx < dp->num_stack_tx_rings ? &dp->tx_rings[idx] : NULL;
2585 
2586 	r_vec->xdp_ring = idx < dp->num_tx_rings - dp->num_stack_tx_rings ?
2587 		&dp->tx_rings[dp->num_stack_tx_rings + idx] : NULL;
2588 }
2589 
2590 static int
2591 nfp_net_prepare_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec,
2592 		       int idx)
2593 {
2594 	int err;
2595 
2596 	/* Setup NAPI */
2597 	if (nn->dp.netdev)
2598 		netif_napi_add(nn->dp.netdev, &r_vec->napi,
2599 			       nfp_net_poll, NAPI_POLL_WEIGHT);
2600 	else
2601 		tasklet_enable(&r_vec->tasklet);
2602 
2603 	snprintf(r_vec->name, sizeof(r_vec->name),
2604 		 "%s-rxtx-%d", nfp_net_name(nn), idx);
2605 	err = request_irq(r_vec->irq_vector, r_vec->handler, 0, r_vec->name,
2606 			  r_vec);
2607 	if (err) {
2608 		if (nn->dp.netdev)
2609 			netif_napi_del(&r_vec->napi);
2610 		else
2611 			tasklet_disable(&r_vec->tasklet);
2612 
2613 		nn_err(nn, "Error requesting IRQ %d\n", r_vec->irq_vector);
2614 		return err;
2615 	}
2616 	disable_irq(r_vec->irq_vector);
2617 
2618 	irq_set_affinity_hint(r_vec->irq_vector, &r_vec->affinity_mask);
2619 
2620 	nn_dbg(nn, "RV%02d: irq=%03d/%03d\n", idx, r_vec->irq_vector,
2621 	       r_vec->irq_entry);
2622 
2623 	return 0;
2624 }
2625 
2626 static void
2627 nfp_net_cleanup_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec)
2628 {
2629 	irq_set_affinity_hint(r_vec->irq_vector, NULL);
2630 	if (nn->dp.netdev)
2631 		netif_napi_del(&r_vec->napi);
2632 	else
2633 		tasklet_disable(&r_vec->tasklet);
2634 
2635 	free_irq(r_vec->irq_vector, r_vec);
2636 }
2637 
2638 /**
2639  * nfp_net_rss_write_itbl() - Write RSS indirection table to device
2640  * @nn:      NFP Net device to reconfigure
2641  */
2642 void nfp_net_rss_write_itbl(struct nfp_net *nn)
2643 {
2644 	int i;
2645 
2646 	for (i = 0; i < NFP_NET_CFG_RSS_ITBL_SZ; i += 4)
2647 		nn_writel(nn, NFP_NET_CFG_RSS_ITBL + i,
2648 			  get_unaligned_le32(nn->rss_itbl + i));
2649 }
2650 
2651 /**
2652  * nfp_net_rss_write_key() - Write RSS hash key to device
2653  * @nn:      NFP Net device to reconfigure
2654  */
2655 void nfp_net_rss_write_key(struct nfp_net *nn)
2656 {
2657 	int i;
2658 
2659 	for (i = 0; i < nfp_net_rss_key_sz(nn); i += 4)
2660 		nn_writel(nn, NFP_NET_CFG_RSS_KEY + i,
2661 			  get_unaligned_le32(nn->rss_key + i));
2662 }
2663 
2664 /**
2665  * nfp_net_coalesce_write_cfg() - Write irq coalescence configuration to HW
2666  * @nn:      NFP Net device to reconfigure
2667  */
2668 void nfp_net_coalesce_write_cfg(struct nfp_net *nn)
2669 {
2670 	u8 i;
2671 	u32 factor;
2672 	u32 value;
2673 
2674 	/* Compute factor used to convert coalesce '_usecs' parameters to
2675 	 * ME timestamp ticks.  There are 16 ME clock cycles for each timestamp
2676 	 * count.
2677 	 */
2678 	factor = nn->tlv_caps.me_freq_mhz / 16;
2679 
2680 	/* copy RX interrupt coalesce parameters */
2681 	value = (nn->rx_coalesce_max_frames << 16) |
2682 		(factor * nn->rx_coalesce_usecs);
2683 	for (i = 0; i < nn->dp.num_rx_rings; i++)
2684 		nn_writel(nn, NFP_NET_CFG_RXR_IRQ_MOD(i), value);
2685 
2686 	/* copy TX interrupt coalesce parameters */
2687 	value = (nn->tx_coalesce_max_frames << 16) |
2688 		(factor * nn->tx_coalesce_usecs);
2689 	for (i = 0; i < nn->dp.num_tx_rings; i++)
2690 		nn_writel(nn, NFP_NET_CFG_TXR_IRQ_MOD(i), value);
2691 }
2692 
2693 /**
2694  * nfp_net_write_mac_addr() - Write mac address to the device control BAR
2695  * @nn:      NFP Net device to reconfigure
2696  * @addr:    MAC address to write
2697  *
2698  * Writes the MAC address from the netdev to the device control BAR.  Does not
2699  * perform the required reconfig.  We do a bit of byte swapping dance because
2700  * firmware is LE.
2701  */
2702 static void nfp_net_write_mac_addr(struct nfp_net *nn, const u8 *addr)
2703 {
2704 	nn_writel(nn, NFP_NET_CFG_MACADDR + 0, get_unaligned_be32(addr));
2705 	nn_writew(nn, NFP_NET_CFG_MACADDR + 6, get_unaligned_be16(addr + 4));
2706 }
2707 
2708 static void nfp_net_vec_clear_ring_data(struct nfp_net *nn, unsigned int idx)
2709 {
2710 	nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), 0);
2711 	nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), 0);
2712 	nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), 0);
2713 
2714 	nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), 0);
2715 	nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), 0);
2716 	nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), 0);
2717 }
2718 
2719 /**
2720  * nfp_net_clear_config_and_disable() - Clear control BAR and disable NFP
2721  * @nn:      NFP Net device to reconfigure
2722  *
2723  * Warning: must be fully idempotent.
2724  */
2725 static void nfp_net_clear_config_and_disable(struct nfp_net *nn)
2726 {
2727 	u32 new_ctrl, update;
2728 	unsigned int r;
2729 	int err;
2730 
2731 	new_ctrl = nn->dp.ctrl;
2732 	new_ctrl &= ~NFP_NET_CFG_CTRL_ENABLE;
2733 	update = NFP_NET_CFG_UPDATE_GEN;
2734 	update |= NFP_NET_CFG_UPDATE_MSIX;
2735 	update |= NFP_NET_CFG_UPDATE_RING;
2736 
2737 	if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG)
2738 		new_ctrl &= ~NFP_NET_CFG_CTRL_RINGCFG;
2739 
2740 	nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0);
2741 	nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0);
2742 
2743 	nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
2744 	err = nfp_net_reconfig(nn, update);
2745 	if (err)
2746 		nn_err(nn, "Could not disable device: %d\n", err);
2747 
2748 	for (r = 0; r < nn->dp.num_rx_rings; r++)
2749 		nfp_net_rx_ring_reset(&nn->dp.rx_rings[r]);
2750 	for (r = 0; r < nn->dp.num_tx_rings; r++)
2751 		nfp_net_tx_ring_reset(&nn->dp, &nn->dp.tx_rings[r]);
2752 	for (r = 0; r < nn->dp.num_r_vecs; r++)
2753 		nfp_net_vec_clear_ring_data(nn, r);
2754 
2755 	nn->dp.ctrl = new_ctrl;
2756 }
2757 
2758 static void
2759 nfp_net_rx_ring_hw_cfg_write(struct nfp_net *nn,
2760 			     struct nfp_net_rx_ring *rx_ring, unsigned int idx)
2761 {
2762 	/* Write the DMA address, size and MSI-X info to the device */
2763 	nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), rx_ring->dma);
2764 	nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), ilog2(rx_ring->cnt));
2765 	nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), rx_ring->r_vec->irq_entry);
2766 }
2767 
2768 static void
2769 nfp_net_tx_ring_hw_cfg_write(struct nfp_net *nn,
2770 			     struct nfp_net_tx_ring *tx_ring, unsigned int idx)
2771 {
2772 	nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), tx_ring->dma);
2773 	nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), ilog2(tx_ring->cnt));
2774 	nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), tx_ring->r_vec->irq_entry);
2775 }
2776 
2777 /**
2778  * nfp_net_set_config_and_enable() - Write control BAR and enable NFP
2779  * @nn:      NFP Net device to reconfigure
2780  */
2781 static int nfp_net_set_config_and_enable(struct nfp_net *nn)
2782 {
2783 	u32 bufsz, new_ctrl, update = 0;
2784 	unsigned int r;
2785 	int err;
2786 
2787 	new_ctrl = nn->dp.ctrl;
2788 
2789 	if (nn->dp.ctrl & NFP_NET_CFG_CTRL_RSS_ANY) {
2790 		nfp_net_rss_write_key(nn);
2791 		nfp_net_rss_write_itbl(nn);
2792 		nn_writel(nn, NFP_NET_CFG_RSS_CTRL, nn->rss_cfg);
2793 		update |= NFP_NET_CFG_UPDATE_RSS;
2794 	}
2795 
2796 	if (nn->dp.ctrl & NFP_NET_CFG_CTRL_IRQMOD) {
2797 		nfp_net_coalesce_write_cfg(nn);
2798 		update |= NFP_NET_CFG_UPDATE_IRQMOD;
2799 	}
2800 
2801 	for (r = 0; r < nn->dp.num_tx_rings; r++)
2802 		nfp_net_tx_ring_hw_cfg_write(nn, &nn->dp.tx_rings[r], r);
2803 	for (r = 0; r < nn->dp.num_rx_rings; r++)
2804 		nfp_net_rx_ring_hw_cfg_write(nn, &nn->dp.rx_rings[r], r);
2805 
2806 	nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, nn->dp.num_tx_rings == 64 ?
2807 		  0xffffffffffffffffULL : ((u64)1 << nn->dp.num_tx_rings) - 1);
2808 
2809 	nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, nn->dp.num_rx_rings == 64 ?
2810 		  0xffffffffffffffffULL : ((u64)1 << nn->dp.num_rx_rings) - 1);
2811 
2812 	if (nn->dp.netdev)
2813 		nfp_net_write_mac_addr(nn, nn->dp.netdev->dev_addr);
2814 
2815 	nn_writel(nn, NFP_NET_CFG_MTU, nn->dp.mtu);
2816 
2817 	bufsz = nn->dp.fl_bufsz - nn->dp.rx_dma_off - NFP_NET_RX_BUF_NON_DATA;
2818 	nn_writel(nn, NFP_NET_CFG_FLBUFSZ, bufsz);
2819 
2820 	/* Enable device */
2821 	new_ctrl |= NFP_NET_CFG_CTRL_ENABLE;
2822 	update |= NFP_NET_CFG_UPDATE_GEN;
2823 	update |= NFP_NET_CFG_UPDATE_MSIX;
2824 	update |= NFP_NET_CFG_UPDATE_RING;
2825 	if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG)
2826 		new_ctrl |= NFP_NET_CFG_CTRL_RINGCFG;
2827 
2828 	nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
2829 	err = nfp_net_reconfig(nn, update);
2830 	if (err) {
2831 		nfp_net_clear_config_and_disable(nn);
2832 		return err;
2833 	}
2834 
2835 	nn->dp.ctrl = new_ctrl;
2836 
2837 	for (r = 0; r < nn->dp.num_rx_rings; r++)
2838 		nfp_net_rx_ring_fill_freelist(&nn->dp, &nn->dp.rx_rings[r]);
2839 
2840 	/* Since reconfiguration requests while NFP is down are ignored we
2841 	 * have to wipe the entire VXLAN configuration and reinitialize it.
2842 	 */
2843 	if (nn->dp.ctrl & NFP_NET_CFG_CTRL_VXLAN) {
2844 		memset(&nn->vxlan_ports, 0, sizeof(nn->vxlan_ports));
2845 		memset(&nn->vxlan_usecnt, 0, sizeof(nn->vxlan_usecnt));
2846 		udp_tunnel_get_rx_info(nn->dp.netdev);
2847 	}
2848 
2849 	return 0;
2850 }
2851 
2852 /**
2853  * nfp_net_close_stack() - Quiesce the stack (part of close)
2854  * @nn:	     NFP Net device to reconfigure
2855  */
2856 static void nfp_net_close_stack(struct nfp_net *nn)
2857 {
2858 	unsigned int r;
2859 
2860 	disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2861 	netif_carrier_off(nn->dp.netdev);
2862 	nn->link_up = false;
2863 
2864 	for (r = 0; r < nn->dp.num_r_vecs; r++) {
2865 		disable_irq(nn->r_vecs[r].irq_vector);
2866 		napi_disable(&nn->r_vecs[r].napi);
2867 	}
2868 
2869 	netif_tx_disable(nn->dp.netdev);
2870 }
2871 
2872 /**
2873  * nfp_net_close_free_all() - Free all runtime resources
2874  * @nn:      NFP Net device to reconfigure
2875  */
2876 static void nfp_net_close_free_all(struct nfp_net *nn)
2877 {
2878 	unsigned int r;
2879 
2880 	nfp_net_tx_rings_free(&nn->dp);
2881 	nfp_net_rx_rings_free(&nn->dp);
2882 
2883 	for (r = 0; r < nn->dp.num_r_vecs; r++)
2884 		nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
2885 
2886 	nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX);
2887 	nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX);
2888 }
2889 
2890 /**
2891  * nfp_net_netdev_close() - Called when the device is downed
2892  * @netdev:      netdev structure
2893  */
2894 static int nfp_net_netdev_close(struct net_device *netdev)
2895 {
2896 	struct nfp_net *nn = netdev_priv(netdev);
2897 
2898 	/* Step 1: Disable RX and TX rings from the Linux kernel perspective
2899 	 */
2900 	nfp_net_close_stack(nn);
2901 
2902 	/* Step 2: Tell NFP
2903 	 */
2904 	nfp_net_clear_config_and_disable(nn);
2905 	nfp_port_configure(netdev, false);
2906 
2907 	/* Step 3: Free resources
2908 	 */
2909 	nfp_net_close_free_all(nn);
2910 
2911 	nn_dbg(nn, "%s down", netdev->name);
2912 	return 0;
2913 }
2914 
2915 void nfp_ctrl_close(struct nfp_net *nn)
2916 {
2917 	int r;
2918 
2919 	rtnl_lock();
2920 
2921 	for (r = 0; r < nn->dp.num_r_vecs; r++) {
2922 		disable_irq(nn->r_vecs[r].irq_vector);
2923 		tasklet_disable(&nn->r_vecs[r].tasklet);
2924 	}
2925 
2926 	nfp_net_clear_config_and_disable(nn);
2927 
2928 	nfp_net_close_free_all(nn);
2929 
2930 	rtnl_unlock();
2931 }
2932 
2933 /**
2934  * nfp_net_open_stack() - Start the device from stack's perspective
2935  * @nn:      NFP Net device to reconfigure
2936  */
2937 static void nfp_net_open_stack(struct nfp_net *nn)
2938 {
2939 	unsigned int r;
2940 
2941 	for (r = 0; r < nn->dp.num_r_vecs; r++) {
2942 		napi_enable(&nn->r_vecs[r].napi);
2943 		enable_irq(nn->r_vecs[r].irq_vector);
2944 	}
2945 
2946 	netif_tx_wake_all_queues(nn->dp.netdev);
2947 
2948 	enable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2949 	nfp_net_read_link_status(nn);
2950 }
2951 
2952 static int nfp_net_open_alloc_all(struct nfp_net *nn)
2953 {
2954 	int err, r;
2955 
2956 	err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_EXN, "%s-exn",
2957 				      nn->exn_name, sizeof(nn->exn_name),
2958 				      NFP_NET_IRQ_EXN_IDX, nn->exn_handler);
2959 	if (err)
2960 		return err;
2961 	err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_LSC, "%s-lsc",
2962 				      nn->lsc_name, sizeof(nn->lsc_name),
2963 				      NFP_NET_IRQ_LSC_IDX, nn->lsc_handler);
2964 	if (err)
2965 		goto err_free_exn;
2966 	disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2967 
2968 	for (r = 0; r < nn->dp.num_r_vecs; r++) {
2969 		err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r);
2970 		if (err)
2971 			goto err_cleanup_vec_p;
2972 	}
2973 
2974 	err = nfp_net_rx_rings_prepare(nn, &nn->dp);
2975 	if (err)
2976 		goto err_cleanup_vec;
2977 
2978 	err = nfp_net_tx_rings_prepare(nn, &nn->dp);
2979 	if (err)
2980 		goto err_free_rx_rings;
2981 
2982 	for (r = 0; r < nn->max_r_vecs; r++)
2983 		nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r);
2984 
2985 	return 0;
2986 
2987 err_free_rx_rings:
2988 	nfp_net_rx_rings_free(&nn->dp);
2989 err_cleanup_vec:
2990 	r = nn->dp.num_r_vecs;
2991 err_cleanup_vec_p:
2992 	while (r--)
2993 		nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
2994 	nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX);
2995 err_free_exn:
2996 	nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX);
2997 	return err;
2998 }
2999 
3000 static int nfp_net_netdev_open(struct net_device *netdev)
3001 {
3002 	struct nfp_net *nn = netdev_priv(netdev);
3003 	int err;
3004 
3005 	/* Step 1: Allocate resources for rings and the like
3006 	 * - Request interrupts
3007 	 * - Allocate RX and TX ring resources
3008 	 * - Setup initial RSS table
3009 	 */
3010 	err = nfp_net_open_alloc_all(nn);
3011 	if (err)
3012 		return err;
3013 
3014 	err = netif_set_real_num_tx_queues(netdev, nn->dp.num_stack_tx_rings);
3015 	if (err)
3016 		goto err_free_all;
3017 
3018 	err = netif_set_real_num_rx_queues(netdev, nn->dp.num_rx_rings);
3019 	if (err)
3020 		goto err_free_all;
3021 
3022 	/* Step 2: Configure the NFP
3023 	 * - Ifup the physical interface if it exists
3024 	 * - Enable rings from 0 to tx_rings/rx_rings - 1.
3025 	 * - Write MAC address (in case it changed)
3026 	 * - Set the MTU
3027 	 * - Set the Freelist buffer size
3028 	 * - Enable the FW
3029 	 */
3030 	err = nfp_port_configure(netdev, true);
3031 	if (err)
3032 		goto err_free_all;
3033 
3034 	err = nfp_net_set_config_and_enable(nn);
3035 	if (err)
3036 		goto err_port_disable;
3037 
3038 	/* Step 3: Enable for kernel
3039 	 * - put some freelist descriptors on each RX ring
3040 	 * - enable NAPI on each ring
3041 	 * - enable all TX queues
3042 	 * - set link state
3043 	 */
3044 	nfp_net_open_stack(nn);
3045 
3046 	return 0;
3047 
3048 err_port_disable:
3049 	nfp_port_configure(netdev, false);
3050 err_free_all:
3051 	nfp_net_close_free_all(nn);
3052 	return err;
3053 }
3054 
3055 int nfp_ctrl_open(struct nfp_net *nn)
3056 {
3057 	int err, r;
3058 
3059 	/* ring dumping depends on vNICs being opened/closed under rtnl */
3060 	rtnl_lock();
3061 
3062 	err = nfp_net_open_alloc_all(nn);
3063 	if (err)
3064 		goto err_unlock;
3065 
3066 	err = nfp_net_set_config_and_enable(nn);
3067 	if (err)
3068 		goto err_free_all;
3069 
3070 	for (r = 0; r < nn->dp.num_r_vecs; r++)
3071 		enable_irq(nn->r_vecs[r].irq_vector);
3072 
3073 	rtnl_unlock();
3074 
3075 	return 0;
3076 
3077 err_free_all:
3078 	nfp_net_close_free_all(nn);
3079 err_unlock:
3080 	rtnl_unlock();
3081 	return err;
3082 }
3083 
3084 static void nfp_net_set_rx_mode(struct net_device *netdev)
3085 {
3086 	struct nfp_net *nn = netdev_priv(netdev);
3087 	u32 new_ctrl;
3088 
3089 	new_ctrl = nn->dp.ctrl;
3090 
3091 	if (!netdev_mc_empty(netdev) || netdev->flags & IFF_ALLMULTI)
3092 		new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_L2MC;
3093 	else
3094 		new_ctrl &= ~NFP_NET_CFG_CTRL_L2MC;
3095 
3096 	if (netdev->flags & IFF_PROMISC) {
3097 		if (nn->cap & NFP_NET_CFG_CTRL_PROMISC)
3098 			new_ctrl |= NFP_NET_CFG_CTRL_PROMISC;
3099 		else
3100 			nn_warn(nn, "FW does not support promiscuous mode\n");
3101 	} else {
3102 		new_ctrl &= ~NFP_NET_CFG_CTRL_PROMISC;
3103 	}
3104 
3105 	if (new_ctrl == nn->dp.ctrl)
3106 		return;
3107 
3108 	nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
3109 	nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_GEN);
3110 
3111 	nn->dp.ctrl = new_ctrl;
3112 }
3113 
3114 static void nfp_net_rss_init_itbl(struct nfp_net *nn)
3115 {
3116 	int i;
3117 
3118 	for (i = 0; i < sizeof(nn->rss_itbl); i++)
3119 		nn->rss_itbl[i] =
3120 			ethtool_rxfh_indir_default(i, nn->dp.num_rx_rings);
3121 }
3122 
3123 static void nfp_net_dp_swap(struct nfp_net *nn, struct nfp_net_dp *dp)
3124 {
3125 	struct nfp_net_dp new_dp = *dp;
3126 
3127 	*dp = nn->dp;
3128 	nn->dp = new_dp;
3129 
3130 	nn->dp.netdev->mtu = new_dp.mtu;
3131 
3132 	if (!netif_is_rxfh_configured(nn->dp.netdev))
3133 		nfp_net_rss_init_itbl(nn);
3134 }
3135 
3136 static int nfp_net_dp_swap_enable(struct nfp_net *nn, struct nfp_net_dp *dp)
3137 {
3138 	unsigned int r;
3139 	int err;
3140 
3141 	nfp_net_dp_swap(nn, dp);
3142 
3143 	for (r = 0; r <	nn->max_r_vecs; r++)
3144 		nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r);
3145 
3146 	err = netif_set_real_num_rx_queues(nn->dp.netdev, nn->dp.num_rx_rings);
3147 	if (err)
3148 		return err;
3149 
3150 	if (nn->dp.netdev->real_num_tx_queues != nn->dp.num_stack_tx_rings) {
3151 		err = netif_set_real_num_tx_queues(nn->dp.netdev,
3152 						   nn->dp.num_stack_tx_rings);
3153 		if (err)
3154 			return err;
3155 	}
3156 
3157 	return nfp_net_set_config_and_enable(nn);
3158 }
3159 
3160 struct nfp_net_dp *nfp_net_clone_dp(struct nfp_net *nn)
3161 {
3162 	struct nfp_net_dp *new;
3163 
3164 	new = kmalloc(sizeof(*new), GFP_KERNEL);
3165 	if (!new)
3166 		return NULL;
3167 
3168 	*new = nn->dp;
3169 
3170 	/* Clear things which need to be recomputed */
3171 	new->fl_bufsz = 0;
3172 	new->tx_rings = NULL;
3173 	new->rx_rings = NULL;
3174 	new->num_r_vecs = 0;
3175 	new->num_stack_tx_rings = 0;
3176 
3177 	return new;
3178 }
3179 
3180 static int
3181 nfp_net_check_config(struct nfp_net *nn, struct nfp_net_dp *dp,
3182 		     struct netlink_ext_ack *extack)
3183 {
3184 	/* XDP-enabled tests */
3185 	if (!dp->xdp_prog)
3186 		return 0;
3187 	if (dp->fl_bufsz > PAGE_SIZE) {
3188 		NL_SET_ERR_MSG_MOD(extack, "MTU too large w/ XDP enabled");
3189 		return -EINVAL;
3190 	}
3191 	if (dp->num_tx_rings > nn->max_tx_rings) {
3192 		NL_SET_ERR_MSG_MOD(extack, "Insufficient number of TX rings w/ XDP enabled");
3193 		return -EINVAL;
3194 	}
3195 
3196 	return 0;
3197 }
3198 
3199 int nfp_net_ring_reconfig(struct nfp_net *nn, struct nfp_net_dp *dp,
3200 			  struct netlink_ext_ack *extack)
3201 {
3202 	int r, err;
3203 
3204 	dp->fl_bufsz = nfp_net_calc_fl_bufsz(dp);
3205 
3206 	dp->num_stack_tx_rings = dp->num_tx_rings;
3207 	if (dp->xdp_prog)
3208 		dp->num_stack_tx_rings -= dp->num_rx_rings;
3209 
3210 	dp->num_r_vecs = max(dp->num_rx_rings, dp->num_stack_tx_rings);
3211 
3212 	err = nfp_net_check_config(nn, dp, extack);
3213 	if (err)
3214 		goto exit_free_dp;
3215 
3216 	if (!netif_running(dp->netdev)) {
3217 		nfp_net_dp_swap(nn, dp);
3218 		err = 0;
3219 		goto exit_free_dp;
3220 	}
3221 
3222 	/* Prepare new rings */
3223 	for (r = nn->dp.num_r_vecs; r < dp->num_r_vecs; r++) {
3224 		err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r);
3225 		if (err) {
3226 			dp->num_r_vecs = r;
3227 			goto err_cleanup_vecs;
3228 		}
3229 	}
3230 
3231 	err = nfp_net_rx_rings_prepare(nn, dp);
3232 	if (err)
3233 		goto err_cleanup_vecs;
3234 
3235 	err = nfp_net_tx_rings_prepare(nn, dp);
3236 	if (err)
3237 		goto err_free_rx;
3238 
3239 	/* Stop device, swap in new rings, try to start the firmware */
3240 	nfp_net_close_stack(nn);
3241 	nfp_net_clear_config_and_disable(nn);
3242 
3243 	err = nfp_net_dp_swap_enable(nn, dp);
3244 	if (err) {
3245 		int err2;
3246 
3247 		nfp_net_clear_config_and_disable(nn);
3248 
3249 		/* Try with old configuration and old rings */
3250 		err2 = nfp_net_dp_swap_enable(nn, dp);
3251 		if (err2)
3252 			nn_err(nn, "Can't restore ring config - FW communication failed (%d,%d)\n",
3253 			       err, err2);
3254 	}
3255 	for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--)
3256 		nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
3257 
3258 	nfp_net_rx_rings_free(dp);
3259 	nfp_net_tx_rings_free(dp);
3260 
3261 	nfp_net_open_stack(nn);
3262 exit_free_dp:
3263 	kfree(dp);
3264 
3265 	return err;
3266 
3267 err_free_rx:
3268 	nfp_net_rx_rings_free(dp);
3269 err_cleanup_vecs:
3270 	for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--)
3271 		nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
3272 	kfree(dp);
3273 	return err;
3274 }
3275 
3276 static int nfp_net_change_mtu(struct net_device *netdev, int new_mtu)
3277 {
3278 	struct nfp_net *nn = netdev_priv(netdev);
3279 	struct nfp_net_dp *dp;
3280 	int err;
3281 
3282 	err = nfp_app_check_mtu(nn->app, netdev, new_mtu);
3283 	if (err)
3284 		return err;
3285 
3286 	dp = nfp_net_clone_dp(nn);
3287 	if (!dp)
3288 		return -ENOMEM;
3289 
3290 	dp->mtu = new_mtu;
3291 
3292 	return nfp_net_ring_reconfig(nn, dp, NULL);
3293 }
3294 
3295 static int
3296 nfp_net_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid)
3297 {
3298 	const u32 cmd = NFP_NET_CFG_MBOX_CMD_CTAG_FILTER_ADD;
3299 	struct nfp_net *nn = netdev_priv(netdev);
3300 	int err;
3301 
3302 	/* Priority tagged packets with vlan id 0 are processed by the
3303 	 * NFP as untagged packets
3304 	 */
3305 	if (!vid)
3306 		return 0;
3307 
3308 	err = nfp_net_mbox_lock(nn, NFP_NET_CFG_VLAN_FILTER_SZ);
3309 	if (err)
3310 		return err;
3311 
3312 	nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_VID, vid);
3313 	nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_PROTO,
3314 		  ETH_P_8021Q);
3315 
3316 	return nfp_net_mbox_reconfig_and_unlock(nn, cmd);
3317 }
3318 
3319 static int
3320 nfp_net_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
3321 {
3322 	const u32 cmd = NFP_NET_CFG_MBOX_CMD_CTAG_FILTER_KILL;
3323 	struct nfp_net *nn = netdev_priv(netdev);
3324 	int err;
3325 
3326 	/* Priority tagged packets with vlan id 0 are processed by the
3327 	 * NFP as untagged packets
3328 	 */
3329 	if (!vid)
3330 		return 0;
3331 
3332 	err = nfp_net_mbox_lock(nn, NFP_NET_CFG_VLAN_FILTER_SZ);
3333 	if (err)
3334 		return err;
3335 
3336 	nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_VID, vid);
3337 	nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_PROTO,
3338 		  ETH_P_8021Q);
3339 
3340 	return nfp_net_mbox_reconfig_and_unlock(nn, cmd);
3341 }
3342 
3343 static void nfp_net_stat64(struct net_device *netdev,
3344 			   struct rtnl_link_stats64 *stats)
3345 {
3346 	struct nfp_net *nn = netdev_priv(netdev);
3347 	int r;
3348 
3349 	/* Collect software stats */
3350 	for (r = 0; r < nn->max_r_vecs; r++) {
3351 		struct nfp_net_r_vector *r_vec = &nn->r_vecs[r];
3352 		u64 data[3];
3353 		unsigned int start;
3354 
3355 		do {
3356 			start = u64_stats_fetch_begin(&r_vec->rx_sync);
3357 			data[0] = r_vec->rx_pkts;
3358 			data[1] = r_vec->rx_bytes;
3359 			data[2] = r_vec->rx_drops;
3360 		} while (u64_stats_fetch_retry(&r_vec->rx_sync, start));
3361 		stats->rx_packets += data[0];
3362 		stats->rx_bytes += data[1];
3363 		stats->rx_dropped += data[2];
3364 
3365 		do {
3366 			start = u64_stats_fetch_begin(&r_vec->tx_sync);
3367 			data[0] = r_vec->tx_pkts;
3368 			data[1] = r_vec->tx_bytes;
3369 			data[2] = r_vec->tx_errors;
3370 		} while (u64_stats_fetch_retry(&r_vec->tx_sync, start));
3371 		stats->tx_packets += data[0];
3372 		stats->tx_bytes += data[1];
3373 		stats->tx_errors += data[2];
3374 	}
3375 
3376 	/* Add in device stats */
3377 	stats->multicast += nn_readq(nn, NFP_NET_CFG_STATS_RX_MC_FRAMES);
3378 	stats->rx_dropped += nn_readq(nn, NFP_NET_CFG_STATS_RX_DISCARDS);
3379 	stats->rx_errors += nn_readq(nn, NFP_NET_CFG_STATS_RX_ERRORS);
3380 
3381 	stats->tx_dropped += nn_readq(nn, NFP_NET_CFG_STATS_TX_DISCARDS);
3382 	stats->tx_errors += nn_readq(nn, NFP_NET_CFG_STATS_TX_ERRORS);
3383 }
3384 
3385 static int nfp_net_set_features(struct net_device *netdev,
3386 				netdev_features_t features)
3387 {
3388 	netdev_features_t changed = netdev->features ^ features;
3389 	struct nfp_net *nn = netdev_priv(netdev);
3390 	u32 new_ctrl;
3391 	int err;
3392 
3393 	/* Assume this is not called with features we have not advertised */
3394 
3395 	new_ctrl = nn->dp.ctrl;
3396 
3397 	if (changed & NETIF_F_RXCSUM) {
3398 		if (features & NETIF_F_RXCSUM)
3399 			new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY;
3400 		else
3401 			new_ctrl &= ~NFP_NET_CFG_CTRL_RXCSUM_ANY;
3402 	}
3403 
3404 	if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3405 		if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
3406 			new_ctrl |= NFP_NET_CFG_CTRL_TXCSUM;
3407 		else
3408 			new_ctrl &= ~NFP_NET_CFG_CTRL_TXCSUM;
3409 	}
3410 
3411 	if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) {
3412 		if (features & (NETIF_F_TSO | NETIF_F_TSO6))
3413 			new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_LSO2 ?:
3414 					      NFP_NET_CFG_CTRL_LSO;
3415 		else
3416 			new_ctrl &= ~NFP_NET_CFG_CTRL_LSO_ANY;
3417 	}
3418 
3419 	if (changed & NETIF_F_HW_VLAN_CTAG_RX) {
3420 		if (features & NETIF_F_HW_VLAN_CTAG_RX)
3421 			new_ctrl |= NFP_NET_CFG_CTRL_RXVLAN;
3422 		else
3423 			new_ctrl &= ~NFP_NET_CFG_CTRL_RXVLAN;
3424 	}
3425 
3426 	if (changed & NETIF_F_HW_VLAN_CTAG_TX) {
3427 		if (features & NETIF_F_HW_VLAN_CTAG_TX)
3428 			new_ctrl |= NFP_NET_CFG_CTRL_TXVLAN;
3429 		else
3430 			new_ctrl &= ~NFP_NET_CFG_CTRL_TXVLAN;
3431 	}
3432 
3433 	if (changed & NETIF_F_HW_VLAN_CTAG_FILTER) {
3434 		if (features & NETIF_F_HW_VLAN_CTAG_FILTER)
3435 			new_ctrl |= NFP_NET_CFG_CTRL_CTAG_FILTER;
3436 		else
3437 			new_ctrl &= ~NFP_NET_CFG_CTRL_CTAG_FILTER;
3438 	}
3439 
3440 	if (changed & NETIF_F_SG) {
3441 		if (features & NETIF_F_SG)
3442 			new_ctrl |= NFP_NET_CFG_CTRL_GATHER;
3443 		else
3444 			new_ctrl &= ~NFP_NET_CFG_CTRL_GATHER;
3445 	}
3446 
3447 	err = nfp_port_set_features(netdev, features);
3448 	if (err)
3449 		return err;
3450 
3451 	nn_dbg(nn, "Feature change 0x%llx -> 0x%llx (changed=0x%llx)\n",
3452 	       netdev->features, features, changed);
3453 
3454 	if (new_ctrl == nn->dp.ctrl)
3455 		return 0;
3456 
3457 	nn_dbg(nn, "NIC ctrl: 0x%x -> 0x%x\n", nn->dp.ctrl, new_ctrl);
3458 	nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
3459 	err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_GEN);
3460 	if (err)
3461 		return err;
3462 
3463 	nn->dp.ctrl = new_ctrl;
3464 
3465 	return 0;
3466 }
3467 
3468 static netdev_features_t
3469 nfp_net_features_check(struct sk_buff *skb, struct net_device *dev,
3470 		       netdev_features_t features)
3471 {
3472 	u8 l4_hdr;
3473 
3474 	/* We can't do TSO over double tagged packets (802.1AD) */
3475 	features &= vlan_features_check(skb, features);
3476 
3477 	if (!skb->encapsulation)
3478 		return features;
3479 
3480 	/* Ensure that inner L4 header offset fits into TX descriptor field */
3481 	if (skb_is_gso(skb)) {
3482 		u32 hdrlen;
3483 
3484 		hdrlen = skb_inner_transport_header(skb) - skb->data +
3485 			inner_tcp_hdrlen(skb);
3486 
3487 		/* Assume worst case scenario of having longest possible
3488 		 * metadata prepend - 8B
3489 		 */
3490 		if (unlikely(hdrlen > NFP_NET_LSO_MAX_HDR_SZ - 8))
3491 			features &= ~NETIF_F_GSO_MASK;
3492 	}
3493 
3494 	/* VXLAN/GRE check */
3495 	switch (vlan_get_protocol(skb)) {
3496 	case htons(ETH_P_IP):
3497 		l4_hdr = ip_hdr(skb)->protocol;
3498 		break;
3499 	case htons(ETH_P_IPV6):
3500 		l4_hdr = ipv6_hdr(skb)->nexthdr;
3501 		break;
3502 	default:
3503 		return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3504 	}
3505 
3506 	if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
3507 	    skb->inner_protocol != htons(ETH_P_TEB) ||
3508 	    (l4_hdr != IPPROTO_UDP && l4_hdr != IPPROTO_GRE) ||
3509 	    (l4_hdr == IPPROTO_UDP &&
3510 	     (skb_inner_mac_header(skb) - skb_transport_header(skb) !=
3511 	      sizeof(struct udphdr) + sizeof(struct vxlanhdr))))
3512 		return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3513 
3514 	return features;
3515 }
3516 
3517 static int
3518 nfp_net_get_phys_port_name(struct net_device *netdev, char *name, size_t len)
3519 {
3520 	struct nfp_net *nn = netdev_priv(netdev);
3521 	int n;
3522 
3523 	/* If port is defined, devlink_port is registered and devlink core
3524 	 * is taking care of name formatting.
3525 	 */
3526 	if (nn->port)
3527 		return -EOPNOTSUPP;
3528 
3529 	if (nn->dp.is_vf || nn->vnic_no_name)
3530 		return -EOPNOTSUPP;
3531 
3532 	n = snprintf(name, len, "n%d", nn->id);
3533 	if (n >= len)
3534 		return -EINVAL;
3535 
3536 	return 0;
3537 }
3538 
3539 /**
3540  * nfp_net_set_vxlan_port() - set vxlan port in SW and reconfigure HW
3541  * @nn:   NFP Net device to reconfigure
3542  * @idx:  Index into the port table where new port should be written
3543  * @port: UDP port to configure (pass zero to remove VXLAN port)
3544  */
3545 static void nfp_net_set_vxlan_port(struct nfp_net *nn, int idx, __be16 port)
3546 {
3547 	int i;
3548 
3549 	nn->vxlan_ports[idx] = port;
3550 
3551 	if (!(nn->dp.ctrl & NFP_NET_CFG_CTRL_VXLAN))
3552 		return;
3553 
3554 	BUILD_BUG_ON(NFP_NET_N_VXLAN_PORTS & 1);
3555 	for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i += 2)
3556 		nn_writel(nn, NFP_NET_CFG_VXLAN_PORT + i * sizeof(port),
3557 			  be16_to_cpu(nn->vxlan_ports[i + 1]) << 16 |
3558 			  be16_to_cpu(nn->vxlan_ports[i]));
3559 
3560 	nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_VXLAN);
3561 }
3562 
3563 /**
3564  * nfp_net_find_vxlan_idx() - find table entry of the port or a free one
3565  * @nn:   NFP Network structure
3566  * @port: UDP port to look for
3567  *
3568  * Return: if the port is already in the table -- it's position;
3569  *	   if the port is not in the table -- free position to use;
3570  *	   if the table is full -- -ENOSPC.
3571  */
3572 static int nfp_net_find_vxlan_idx(struct nfp_net *nn, __be16 port)
3573 {
3574 	int i, free_idx = -ENOSPC;
3575 
3576 	for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i++) {
3577 		if (nn->vxlan_ports[i] == port)
3578 			return i;
3579 		if (!nn->vxlan_usecnt[i])
3580 			free_idx = i;
3581 	}
3582 
3583 	return free_idx;
3584 }
3585 
3586 static void nfp_net_add_vxlan_port(struct net_device *netdev,
3587 				   struct udp_tunnel_info *ti)
3588 {
3589 	struct nfp_net *nn = netdev_priv(netdev);
3590 	int idx;
3591 
3592 	if (ti->type != UDP_TUNNEL_TYPE_VXLAN)
3593 		return;
3594 
3595 	idx = nfp_net_find_vxlan_idx(nn, ti->port);
3596 	if (idx == -ENOSPC)
3597 		return;
3598 
3599 	if (!nn->vxlan_usecnt[idx]++)
3600 		nfp_net_set_vxlan_port(nn, idx, ti->port);
3601 }
3602 
3603 static void nfp_net_del_vxlan_port(struct net_device *netdev,
3604 				   struct udp_tunnel_info *ti)
3605 {
3606 	struct nfp_net *nn = netdev_priv(netdev);
3607 	int idx;
3608 
3609 	if (ti->type != UDP_TUNNEL_TYPE_VXLAN)
3610 		return;
3611 
3612 	idx = nfp_net_find_vxlan_idx(nn, ti->port);
3613 	if (idx == -ENOSPC || !nn->vxlan_usecnt[idx])
3614 		return;
3615 
3616 	if (!--nn->vxlan_usecnt[idx])
3617 		nfp_net_set_vxlan_port(nn, idx, 0);
3618 }
3619 
3620 static int nfp_net_xdp_setup_drv(struct nfp_net *nn, struct netdev_bpf *bpf)
3621 {
3622 	struct bpf_prog *prog = bpf->prog;
3623 	struct nfp_net_dp *dp;
3624 	int err;
3625 
3626 	if (!xdp_attachment_flags_ok(&nn->xdp, bpf))
3627 		return -EBUSY;
3628 
3629 	if (!prog == !nn->dp.xdp_prog) {
3630 		WRITE_ONCE(nn->dp.xdp_prog, prog);
3631 		xdp_attachment_setup(&nn->xdp, bpf);
3632 		return 0;
3633 	}
3634 
3635 	dp = nfp_net_clone_dp(nn);
3636 	if (!dp)
3637 		return -ENOMEM;
3638 
3639 	dp->xdp_prog = prog;
3640 	dp->num_tx_rings += prog ? nn->dp.num_rx_rings : -nn->dp.num_rx_rings;
3641 	dp->rx_dma_dir = prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;
3642 	dp->rx_dma_off = prog ? XDP_PACKET_HEADROOM - nn->dp.rx_offset : 0;
3643 
3644 	/* We need RX reconfig to remap the buffers (BIDIR vs FROM_DEV) */
3645 	err = nfp_net_ring_reconfig(nn, dp, bpf->extack);
3646 	if (err)
3647 		return err;
3648 
3649 	xdp_attachment_setup(&nn->xdp, bpf);
3650 	return 0;
3651 }
3652 
3653 static int nfp_net_xdp_setup_hw(struct nfp_net *nn, struct netdev_bpf *bpf)
3654 {
3655 	int err;
3656 
3657 	if (!xdp_attachment_flags_ok(&nn->xdp_hw, bpf))
3658 		return -EBUSY;
3659 
3660 	err = nfp_app_xdp_offload(nn->app, nn, bpf->prog, bpf->extack);
3661 	if (err)
3662 		return err;
3663 
3664 	xdp_attachment_setup(&nn->xdp_hw, bpf);
3665 	return 0;
3666 }
3667 
3668 static int nfp_net_xdp(struct net_device *netdev, struct netdev_bpf *xdp)
3669 {
3670 	struct nfp_net *nn = netdev_priv(netdev);
3671 
3672 	switch (xdp->command) {
3673 	case XDP_SETUP_PROG:
3674 		return nfp_net_xdp_setup_drv(nn, xdp);
3675 	case XDP_SETUP_PROG_HW:
3676 		return nfp_net_xdp_setup_hw(nn, xdp);
3677 	case XDP_QUERY_PROG:
3678 		return xdp_attachment_query(&nn->xdp, xdp);
3679 	case XDP_QUERY_PROG_HW:
3680 		return xdp_attachment_query(&nn->xdp_hw, xdp);
3681 	default:
3682 		return nfp_app_bpf(nn->app, nn, xdp);
3683 	}
3684 }
3685 
3686 static int nfp_net_set_mac_address(struct net_device *netdev, void *addr)
3687 {
3688 	struct nfp_net *nn = netdev_priv(netdev);
3689 	struct sockaddr *saddr = addr;
3690 	int err;
3691 
3692 	err = eth_prepare_mac_addr_change(netdev, addr);
3693 	if (err)
3694 		return err;
3695 
3696 	nfp_net_write_mac_addr(nn, saddr->sa_data);
3697 
3698 	err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_MACADDR);
3699 	if (err)
3700 		return err;
3701 
3702 	eth_commit_mac_addr_change(netdev, addr);
3703 
3704 	return 0;
3705 }
3706 
3707 const struct net_device_ops nfp_net_netdev_ops = {
3708 	.ndo_init		= nfp_app_ndo_init,
3709 	.ndo_uninit		= nfp_app_ndo_uninit,
3710 	.ndo_open		= nfp_net_netdev_open,
3711 	.ndo_stop		= nfp_net_netdev_close,
3712 	.ndo_start_xmit		= nfp_net_tx,
3713 	.ndo_get_stats64	= nfp_net_stat64,
3714 	.ndo_vlan_rx_add_vid	= nfp_net_vlan_rx_add_vid,
3715 	.ndo_vlan_rx_kill_vid	= nfp_net_vlan_rx_kill_vid,
3716 	.ndo_set_vf_mac         = nfp_app_set_vf_mac,
3717 	.ndo_set_vf_vlan        = nfp_app_set_vf_vlan,
3718 	.ndo_set_vf_spoofchk    = nfp_app_set_vf_spoofchk,
3719 	.ndo_set_vf_trust	= nfp_app_set_vf_trust,
3720 	.ndo_get_vf_config	= nfp_app_get_vf_config,
3721 	.ndo_set_vf_link_state  = nfp_app_set_vf_link_state,
3722 	.ndo_setup_tc		= nfp_port_setup_tc,
3723 	.ndo_tx_timeout		= nfp_net_tx_timeout,
3724 	.ndo_set_rx_mode	= nfp_net_set_rx_mode,
3725 	.ndo_change_mtu		= nfp_net_change_mtu,
3726 	.ndo_set_mac_address	= nfp_net_set_mac_address,
3727 	.ndo_set_features	= nfp_net_set_features,
3728 	.ndo_features_check	= nfp_net_features_check,
3729 	.ndo_get_phys_port_name	= nfp_net_get_phys_port_name,
3730 	.ndo_udp_tunnel_add	= nfp_net_add_vxlan_port,
3731 	.ndo_udp_tunnel_del	= nfp_net_del_vxlan_port,
3732 	.ndo_bpf		= nfp_net_xdp,
3733 	.ndo_get_devlink_port	= nfp_devlink_get_devlink_port,
3734 };
3735 
3736 /**
3737  * nfp_net_info() - Print general info about the NIC
3738  * @nn:      NFP Net device to reconfigure
3739  */
3740 void nfp_net_info(struct nfp_net *nn)
3741 {
3742 	nn_info(nn, "Netronome NFP-6xxx %sNetdev: TxQs=%d/%d RxQs=%d/%d\n",
3743 		nn->dp.is_vf ? "VF " : "",
3744 		nn->dp.num_tx_rings, nn->max_tx_rings,
3745 		nn->dp.num_rx_rings, nn->max_rx_rings);
3746 	nn_info(nn, "VER: %d.%d.%d.%d, Maximum supported MTU: %d\n",
3747 		nn->fw_ver.resv, nn->fw_ver.class,
3748 		nn->fw_ver.major, nn->fw_ver.minor,
3749 		nn->max_mtu);
3750 	nn_info(nn, "CAP: %#x %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
3751 		nn->cap,
3752 		nn->cap & NFP_NET_CFG_CTRL_PROMISC  ? "PROMISC "  : "",
3753 		nn->cap & NFP_NET_CFG_CTRL_L2BC     ? "L2BCFILT " : "",
3754 		nn->cap & NFP_NET_CFG_CTRL_L2MC     ? "L2MCFILT " : "",
3755 		nn->cap & NFP_NET_CFG_CTRL_RXCSUM   ? "RXCSUM "   : "",
3756 		nn->cap & NFP_NET_CFG_CTRL_TXCSUM   ? "TXCSUM "   : "",
3757 		nn->cap & NFP_NET_CFG_CTRL_RXVLAN   ? "RXVLAN "   : "",
3758 		nn->cap & NFP_NET_CFG_CTRL_TXVLAN   ? "TXVLAN "   : "",
3759 		nn->cap & NFP_NET_CFG_CTRL_SCATTER  ? "SCATTER "  : "",
3760 		nn->cap & NFP_NET_CFG_CTRL_GATHER   ? "GATHER "   : "",
3761 		nn->cap & NFP_NET_CFG_CTRL_LSO      ? "TSO1 "     : "",
3762 		nn->cap & NFP_NET_CFG_CTRL_LSO2     ? "TSO2 "     : "",
3763 		nn->cap & NFP_NET_CFG_CTRL_RSS      ? "RSS1 "     : "",
3764 		nn->cap & NFP_NET_CFG_CTRL_RSS2     ? "RSS2 "     : "",
3765 		nn->cap & NFP_NET_CFG_CTRL_CTAG_FILTER ? "CTAG_FILTER " : "",
3766 		nn->cap & NFP_NET_CFG_CTRL_MSIXAUTO ? "AUTOMASK " : "",
3767 		nn->cap & NFP_NET_CFG_CTRL_IRQMOD   ? "IRQMOD "   : "",
3768 		nn->cap & NFP_NET_CFG_CTRL_VXLAN    ? "VXLAN "    : "",
3769 		nn->cap & NFP_NET_CFG_CTRL_NVGRE    ? "NVGRE "	  : "",
3770 		nn->cap & NFP_NET_CFG_CTRL_CSUM_COMPLETE ?
3771 						      "RXCSUM_COMPLETE " : "",
3772 		nn->cap & NFP_NET_CFG_CTRL_LIVE_ADDR ? "LIVE_ADDR " : "",
3773 		nfp_app_extra_cap(nn->app, nn));
3774 }
3775 
3776 /**
3777  * nfp_net_alloc() - Allocate netdev and related structure
3778  * @pdev:         PCI device
3779  * @ctrl_bar:     PCI IOMEM with vNIC config memory
3780  * @needs_netdev: Whether to allocate a netdev for this vNIC
3781  * @max_tx_rings: Maximum number of TX rings supported by device
3782  * @max_rx_rings: Maximum number of RX rings supported by device
3783  *
3784  * This function allocates a netdev device and fills in the initial
3785  * part of the @struct nfp_net structure.  In case of control device
3786  * nfp_net structure is allocated without the netdev.
3787  *
3788  * Return: NFP Net device structure, or ERR_PTR on error.
3789  */
3790 struct nfp_net *
3791 nfp_net_alloc(struct pci_dev *pdev, void __iomem *ctrl_bar, bool needs_netdev,
3792 	      unsigned int max_tx_rings, unsigned int max_rx_rings)
3793 {
3794 	struct nfp_net *nn;
3795 	int err;
3796 
3797 	if (needs_netdev) {
3798 		struct net_device *netdev;
3799 
3800 		netdev = alloc_etherdev_mqs(sizeof(struct nfp_net),
3801 					    max_tx_rings, max_rx_rings);
3802 		if (!netdev)
3803 			return ERR_PTR(-ENOMEM);
3804 
3805 		SET_NETDEV_DEV(netdev, &pdev->dev);
3806 		nn = netdev_priv(netdev);
3807 		nn->dp.netdev = netdev;
3808 	} else {
3809 		nn = vzalloc(sizeof(*nn));
3810 		if (!nn)
3811 			return ERR_PTR(-ENOMEM);
3812 	}
3813 
3814 	nn->dp.dev = &pdev->dev;
3815 	nn->dp.ctrl_bar = ctrl_bar;
3816 	nn->pdev = pdev;
3817 
3818 	nn->max_tx_rings = max_tx_rings;
3819 	nn->max_rx_rings = max_rx_rings;
3820 
3821 	nn->dp.num_tx_rings = min_t(unsigned int,
3822 				    max_tx_rings, num_online_cpus());
3823 	nn->dp.num_rx_rings = min_t(unsigned int, max_rx_rings,
3824 				 netif_get_num_default_rss_queues());
3825 
3826 	nn->dp.num_r_vecs = max(nn->dp.num_tx_rings, nn->dp.num_rx_rings);
3827 	nn->dp.num_r_vecs = min_t(unsigned int,
3828 				  nn->dp.num_r_vecs, num_online_cpus());
3829 
3830 	nn->dp.txd_cnt = NFP_NET_TX_DESCS_DEFAULT;
3831 	nn->dp.rxd_cnt = NFP_NET_RX_DESCS_DEFAULT;
3832 
3833 	sema_init(&nn->bar_lock, 1);
3834 
3835 	spin_lock_init(&nn->reconfig_lock);
3836 	spin_lock_init(&nn->link_status_lock);
3837 
3838 	timer_setup(&nn->reconfig_timer, nfp_net_reconfig_timer, 0);
3839 
3840 	err = nfp_net_tlv_caps_parse(&nn->pdev->dev, nn->dp.ctrl_bar,
3841 				     &nn->tlv_caps);
3842 	if (err)
3843 		goto err_free_nn;
3844 
3845 	err = nfp_ccm_mbox_alloc(nn);
3846 	if (err)
3847 		goto err_free_nn;
3848 
3849 	return nn;
3850 
3851 err_free_nn:
3852 	if (nn->dp.netdev)
3853 		free_netdev(nn->dp.netdev);
3854 	else
3855 		vfree(nn);
3856 	return ERR_PTR(err);
3857 }
3858 
3859 /**
3860  * nfp_net_free() - Undo what @nfp_net_alloc() did
3861  * @nn:      NFP Net device to reconfigure
3862  */
3863 void nfp_net_free(struct nfp_net *nn)
3864 {
3865 	WARN_ON(timer_pending(&nn->reconfig_timer) || nn->reconfig_posted);
3866 	nfp_ccm_mbox_free(nn);
3867 
3868 	if (nn->dp.netdev)
3869 		free_netdev(nn->dp.netdev);
3870 	else
3871 		vfree(nn);
3872 }
3873 
3874 /**
3875  * nfp_net_rss_key_sz() - Get current size of the RSS key
3876  * @nn:		NFP Net device instance
3877  *
3878  * Return: size of the RSS key for currently selected hash function.
3879  */
3880 unsigned int nfp_net_rss_key_sz(struct nfp_net *nn)
3881 {
3882 	switch (nn->rss_hfunc) {
3883 	case ETH_RSS_HASH_TOP:
3884 		return NFP_NET_CFG_RSS_KEY_SZ;
3885 	case ETH_RSS_HASH_XOR:
3886 		return 0;
3887 	case ETH_RSS_HASH_CRC32:
3888 		return 4;
3889 	}
3890 
3891 	nn_warn(nn, "Unknown hash function: %u\n", nn->rss_hfunc);
3892 	return 0;
3893 }
3894 
3895 /**
3896  * nfp_net_rss_init() - Set the initial RSS parameters
3897  * @nn:	     NFP Net device to reconfigure
3898  */
3899 static void nfp_net_rss_init(struct nfp_net *nn)
3900 {
3901 	unsigned long func_bit, rss_cap_hfunc;
3902 	u32 reg;
3903 
3904 	/* Read the RSS function capability and select first supported func */
3905 	reg = nn_readl(nn, NFP_NET_CFG_RSS_CAP);
3906 	rss_cap_hfunc =	FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC, reg);
3907 	if (!rss_cap_hfunc)
3908 		rss_cap_hfunc =	FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC,
3909 					  NFP_NET_CFG_RSS_TOEPLITZ);
3910 
3911 	func_bit = find_first_bit(&rss_cap_hfunc, NFP_NET_CFG_RSS_HFUNCS);
3912 	if (func_bit == NFP_NET_CFG_RSS_HFUNCS) {
3913 		dev_warn(nn->dp.dev,
3914 			 "Bad RSS config, defaulting to Toeplitz hash\n");
3915 		func_bit = ETH_RSS_HASH_TOP_BIT;
3916 	}
3917 	nn->rss_hfunc = 1 << func_bit;
3918 
3919 	netdev_rss_key_fill(nn->rss_key, nfp_net_rss_key_sz(nn));
3920 
3921 	nfp_net_rss_init_itbl(nn);
3922 
3923 	/* Enable IPv4/IPv6 TCP by default */
3924 	nn->rss_cfg = NFP_NET_CFG_RSS_IPV4_TCP |
3925 		      NFP_NET_CFG_RSS_IPV6_TCP |
3926 		      FIELD_PREP(NFP_NET_CFG_RSS_HFUNC, nn->rss_hfunc) |
3927 		      NFP_NET_CFG_RSS_MASK;
3928 }
3929 
3930 /**
3931  * nfp_net_irqmod_init() - Set the initial IRQ moderation parameters
3932  * @nn:	     NFP Net device to reconfigure
3933  */
3934 static void nfp_net_irqmod_init(struct nfp_net *nn)
3935 {
3936 	nn->rx_coalesce_usecs      = 50;
3937 	nn->rx_coalesce_max_frames = 64;
3938 	nn->tx_coalesce_usecs      = 50;
3939 	nn->tx_coalesce_max_frames = 64;
3940 }
3941 
3942 static void nfp_net_netdev_init(struct nfp_net *nn)
3943 {
3944 	struct net_device *netdev = nn->dp.netdev;
3945 
3946 	nfp_net_write_mac_addr(nn, nn->dp.netdev->dev_addr);
3947 
3948 	netdev->mtu = nn->dp.mtu;
3949 
3950 	/* Advertise/enable offloads based on capabilities
3951 	 *
3952 	 * Note: netdev->features show the currently enabled features
3953 	 * and netdev->hw_features advertises which features are
3954 	 * supported.  By default we enable most features.
3955 	 */
3956 	if (nn->cap & NFP_NET_CFG_CTRL_LIVE_ADDR)
3957 		netdev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
3958 
3959 	netdev->hw_features = NETIF_F_HIGHDMA;
3960 	if (nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY) {
3961 		netdev->hw_features |= NETIF_F_RXCSUM;
3962 		nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY;
3963 	}
3964 	if (nn->cap & NFP_NET_CFG_CTRL_TXCSUM) {
3965 		netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
3966 		nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXCSUM;
3967 	}
3968 	if (nn->cap & NFP_NET_CFG_CTRL_GATHER) {
3969 		netdev->hw_features |= NETIF_F_SG;
3970 		nn->dp.ctrl |= NFP_NET_CFG_CTRL_GATHER;
3971 	}
3972 	if ((nn->cap & NFP_NET_CFG_CTRL_LSO && nn->fw_ver.major > 2) ||
3973 	    nn->cap & NFP_NET_CFG_CTRL_LSO2) {
3974 		netdev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
3975 		nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_LSO2 ?:
3976 					 NFP_NET_CFG_CTRL_LSO;
3977 	}
3978 	if (nn->cap & NFP_NET_CFG_CTRL_RSS_ANY)
3979 		netdev->hw_features |= NETIF_F_RXHASH;
3980 	if (nn->cap & NFP_NET_CFG_CTRL_VXLAN) {
3981 		if (nn->cap & NFP_NET_CFG_CTRL_LSO)
3982 			netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL;
3983 		nn->dp.ctrl |= NFP_NET_CFG_CTRL_VXLAN;
3984 	}
3985 	if (nn->cap & NFP_NET_CFG_CTRL_NVGRE) {
3986 		if (nn->cap & NFP_NET_CFG_CTRL_LSO)
3987 			netdev->hw_features |= NETIF_F_GSO_GRE;
3988 		nn->dp.ctrl |= NFP_NET_CFG_CTRL_NVGRE;
3989 	}
3990 	if (nn->cap & (NFP_NET_CFG_CTRL_VXLAN | NFP_NET_CFG_CTRL_NVGRE))
3991 		netdev->hw_enc_features = netdev->hw_features;
3992 
3993 	netdev->vlan_features = netdev->hw_features;
3994 
3995 	if (nn->cap & NFP_NET_CFG_CTRL_RXVLAN) {
3996 		netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
3997 		nn->dp.ctrl |= NFP_NET_CFG_CTRL_RXVLAN;
3998 	}
3999 	if (nn->cap & NFP_NET_CFG_CTRL_TXVLAN) {
4000 		if (nn->cap & NFP_NET_CFG_CTRL_LSO2) {
4001 			nn_warn(nn, "Device advertises both TSO2 and TXVLAN. Refusing to enable TXVLAN.\n");
4002 		} else {
4003 			netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
4004 			nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXVLAN;
4005 		}
4006 	}
4007 	if (nn->cap & NFP_NET_CFG_CTRL_CTAG_FILTER) {
4008 		netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4009 		nn->dp.ctrl |= NFP_NET_CFG_CTRL_CTAG_FILTER;
4010 	}
4011 
4012 	netdev->features = netdev->hw_features;
4013 
4014 	if (nfp_app_has_tc(nn->app) && nn->port)
4015 		netdev->hw_features |= NETIF_F_HW_TC;
4016 
4017 	/* Advertise but disable TSO by default. */
4018 	netdev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
4019 	nn->dp.ctrl &= ~NFP_NET_CFG_CTRL_LSO_ANY;
4020 
4021 	/* Finalise the netdev setup */
4022 	netdev->netdev_ops = &nfp_net_netdev_ops;
4023 	netdev->watchdog_timeo = msecs_to_jiffies(5 * 1000);
4024 
4025 	/* MTU range: 68 - hw-specific max */
4026 	netdev->min_mtu = ETH_MIN_MTU;
4027 	netdev->max_mtu = nn->max_mtu;
4028 
4029 	netdev->gso_max_segs = NFP_NET_LSO_MAX_SEGS;
4030 
4031 	netif_carrier_off(netdev);
4032 
4033 	nfp_net_set_ethtool_ops(netdev);
4034 }
4035 
4036 static int nfp_net_read_caps(struct nfp_net *nn)
4037 {
4038 	/* Get some of the read-only fields from the BAR */
4039 	nn->cap = nn_readl(nn, NFP_NET_CFG_CAP);
4040 	nn->max_mtu = nn_readl(nn, NFP_NET_CFG_MAX_MTU);
4041 
4042 	/* ABI 4.x and ctrl vNIC always use chained metadata, in other cases
4043 	 * we allow use of non-chained metadata if RSS(v1) is the only
4044 	 * advertised capability requiring metadata.
4045 	 */
4046 	nn->dp.chained_metadata_format = nn->fw_ver.major == 4 ||
4047 					 !nn->dp.netdev ||
4048 					 !(nn->cap & NFP_NET_CFG_CTRL_RSS) ||
4049 					 nn->cap & NFP_NET_CFG_CTRL_CHAIN_META;
4050 	/* RSS(v1) uses non-chained metadata format, except in ABI 4.x where
4051 	 * it has the same meaning as RSSv2.
4052 	 */
4053 	if (nn->dp.chained_metadata_format && nn->fw_ver.major != 4)
4054 		nn->cap &= ~NFP_NET_CFG_CTRL_RSS;
4055 
4056 	/* Determine RX packet/metadata boundary offset */
4057 	if (nn->fw_ver.major >= 2) {
4058 		u32 reg;
4059 
4060 		reg = nn_readl(nn, NFP_NET_CFG_RX_OFFSET);
4061 		if (reg > NFP_NET_MAX_PREPEND) {
4062 			nn_err(nn, "Invalid rx offset: %d\n", reg);
4063 			return -EINVAL;
4064 		}
4065 		nn->dp.rx_offset = reg;
4066 	} else {
4067 		nn->dp.rx_offset = NFP_NET_RX_OFFSET;
4068 	}
4069 
4070 	/* For control vNICs mask out the capabilities app doesn't want. */
4071 	if (!nn->dp.netdev)
4072 		nn->cap &= nn->app->type->ctrl_cap_mask;
4073 
4074 	return 0;
4075 }
4076 
4077 /**
4078  * nfp_net_init() - Initialise/finalise the nfp_net structure
4079  * @nn:		NFP Net device structure
4080  *
4081  * Return: 0 on success or negative errno on error.
4082  */
4083 int nfp_net_init(struct nfp_net *nn)
4084 {
4085 	int err;
4086 
4087 	nn->dp.rx_dma_dir = DMA_FROM_DEVICE;
4088 
4089 	err = nfp_net_read_caps(nn);
4090 	if (err)
4091 		return err;
4092 
4093 	/* Set default MTU and Freelist buffer size */
4094 	if (!nfp_net_is_data_vnic(nn) && nn->app->ctrl_mtu) {
4095 		if (nn->app->ctrl_mtu <= nn->max_mtu) {
4096 			nn->dp.mtu = nn->app->ctrl_mtu;
4097 		} else {
4098 			if (nn->app->ctrl_mtu != NFP_APP_CTRL_MTU_MAX)
4099 				nn_warn(nn, "app requested MTU above max supported %u > %u\n",
4100 					nn->app->ctrl_mtu, nn->max_mtu);
4101 			nn->dp.mtu = nn->max_mtu;
4102 		}
4103 	} else if (nn->max_mtu < NFP_NET_DEFAULT_MTU) {
4104 		nn->dp.mtu = nn->max_mtu;
4105 	} else {
4106 		nn->dp.mtu = NFP_NET_DEFAULT_MTU;
4107 	}
4108 	nn->dp.fl_bufsz = nfp_net_calc_fl_bufsz(&nn->dp);
4109 
4110 	if (nfp_app_ctrl_uses_data_vnics(nn->app))
4111 		nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_CMSG_DATA;
4112 
4113 	if (nn->cap & NFP_NET_CFG_CTRL_RSS_ANY) {
4114 		nfp_net_rss_init(nn);
4115 		nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RSS2 ?:
4116 					 NFP_NET_CFG_CTRL_RSS;
4117 	}
4118 
4119 	/* Allow L2 Broadcast and Multicast through by default, if supported */
4120 	if (nn->cap & NFP_NET_CFG_CTRL_L2BC)
4121 		nn->dp.ctrl |= NFP_NET_CFG_CTRL_L2BC;
4122 
4123 	/* Allow IRQ moderation, if supported */
4124 	if (nn->cap & NFP_NET_CFG_CTRL_IRQMOD) {
4125 		nfp_net_irqmod_init(nn);
4126 		nn->dp.ctrl |= NFP_NET_CFG_CTRL_IRQMOD;
4127 	}
4128 
4129 	/* Stash the re-configuration queue away.  First odd queue in TX Bar */
4130 	nn->qcp_cfg = nn->tx_bar + NFP_QCP_QUEUE_ADDR_SZ;
4131 
4132 	/* Make sure the FW knows the netdev is supposed to be disabled here */
4133 	nn_writel(nn, NFP_NET_CFG_CTRL, 0);
4134 	nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0);
4135 	nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0);
4136 	err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_RING |
4137 				   NFP_NET_CFG_UPDATE_GEN);
4138 	if (err)
4139 		return err;
4140 
4141 	if (nn->dp.netdev) {
4142 		nfp_net_netdev_init(nn);
4143 
4144 		err = nfp_ccm_mbox_init(nn);
4145 		if (err)
4146 			return err;
4147 
4148 		err = nfp_net_tls_init(nn);
4149 		if (err)
4150 			goto err_clean_mbox;
4151 	}
4152 
4153 	nfp_net_vecs_init(nn);
4154 
4155 	if (!nn->dp.netdev)
4156 		return 0;
4157 	return register_netdev(nn->dp.netdev);
4158 
4159 err_clean_mbox:
4160 	nfp_ccm_mbox_clean(nn);
4161 	return err;
4162 }
4163 
4164 /**
4165  * nfp_net_clean() - Undo what nfp_net_init() did.
4166  * @nn:		NFP Net device structure
4167  */
4168 void nfp_net_clean(struct nfp_net *nn)
4169 {
4170 	if (!nn->dp.netdev)
4171 		return;
4172 
4173 	unregister_netdev(nn->dp.netdev);
4174 	nfp_ccm_mbox_clean(nn);
4175 	nfp_net_reconfig_wait_posted(nn);
4176 }
4177