1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause) 2 /* Copyright (C) 2015-2018 Netronome Systems, Inc. */ 3 4 /* 5 * nfp_net_common.c 6 * Netronome network device driver: Common functions between PF and VF 7 * Authors: Jakub Kicinski <jakub.kicinski@netronome.com> 8 * Jason McMullan <jason.mcmullan@netronome.com> 9 * Rolf Neugebauer <rolf.neugebauer@netronome.com> 10 * Brad Petrus <brad.petrus@netronome.com> 11 * Chris Telfer <chris.telfer@netronome.com> 12 */ 13 14 #include <linux/bitfield.h> 15 #include <linux/bpf.h> 16 #include <linux/bpf_trace.h> 17 #include <linux/module.h> 18 #include <linux/kernel.h> 19 #include <linux/init.h> 20 #include <linux/fs.h> 21 #include <linux/netdevice.h> 22 #include <linux/etherdevice.h> 23 #include <linux/interrupt.h> 24 #include <linux/ip.h> 25 #include <linux/ipv6.h> 26 #include <linux/mm.h> 27 #include <linux/overflow.h> 28 #include <linux/page_ref.h> 29 #include <linux/pci.h> 30 #include <linux/pci_regs.h> 31 #include <linux/msi.h> 32 #include <linux/ethtool.h> 33 #include <linux/log2.h> 34 #include <linux/if_vlan.h> 35 #include <linux/random.h> 36 #include <linux/vmalloc.h> 37 #include <linux/ktime.h> 38 39 #include <net/tls.h> 40 #include <net/vxlan.h> 41 42 #include "nfpcore/nfp_nsp.h" 43 #include "ccm.h" 44 #include "nfp_app.h" 45 #include "nfp_net_ctrl.h" 46 #include "nfp_net.h" 47 #include "nfp_net_sriov.h" 48 #include "nfp_port.h" 49 #include "crypto/crypto.h" 50 51 /** 52 * nfp_net_get_fw_version() - Read and parse the FW version 53 * @fw_ver: Output fw_version structure to read to 54 * @ctrl_bar: Mapped address of the control BAR 55 */ 56 void nfp_net_get_fw_version(struct nfp_net_fw_version *fw_ver, 57 void __iomem *ctrl_bar) 58 { 59 u32 reg; 60 61 reg = readl(ctrl_bar + NFP_NET_CFG_VERSION); 62 put_unaligned_le32(reg, fw_ver); 63 } 64 65 static dma_addr_t nfp_net_dma_map_rx(struct nfp_net_dp *dp, void *frag) 66 { 67 return dma_map_single_attrs(dp->dev, frag + NFP_NET_RX_BUF_HEADROOM, 68 dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA, 69 dp->rx_dma_dir, DMA_ATTR_SKIP_CPU_SYNC); 70 } 71 72 static void 73 nfp_net_dma_sync_dev_rx(const struct nfp_net_dp *dp, dma_addr_t dma_addr) 74 { 75 dma_sync_single_for_device(dp->dev, dma_addr, 76 dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA, 77 dp->rx_dma_dir); 78 } 79 80 static void nfp_net_dma_unmap_rx(struct nfp_net_dp *dp, dma_addr_t dma_addr) 81 { 82 dma_unmap_single_attrs(dp->dev, dma_addr, 83 dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA, 84 dp->rx_dma_dir, DMA_ATTR_SKIP_CPU_SYNC); 85 } 86 87 static void nfp_net_dma_sync_cpu_rx(struct nfp_net_dp *dp, dma_addr_t dma_addr, 88 unsigned int len) 89 { 90 dma_sync_single_for_cpu(dp->dev, dma_addr - NFP_NET_RX_BUF_HEADROOM, 91 len, dp->rx_dma_dir); 92 } 93 94 /* Firmware reconfig 95 * 96 * Firmware reconfig may take a while so we have two versions of it - 97 * synchronous and asynchronous (posted). All synchronous callers are holding 98 * RTNL so we don't have to worry about serializing them. 99 */ 100 static void nfp_net_reconfig_start(struct nfp_net *nn, u32 update) 101 { 102 nn_writel(nn, NFP_NET_CFG_UPDATE, update); 103 /* ensure update is written before pinging HW */ 104 nn_pci_flush(nn); 105 nfp_qcp_wr_ptr_add(nn->qcp_cfg, 1); 106 nn->reconfig_in_progress_update = update; 107 } 108 109 /* Pass 0 as update to run posted reconfigs. */ 110 static void nfp_net_reconfig_start_async(struct nfp_net *nn, u32 update) 111 { 112 update |= nn->reconfig_posted; 113 nn->reconfig_posted = 0; 114 115 nfp_net_reconfig_start(nn, update); 116 117 nn->reconfig_timer_active = true; 118 mod_timer(&nn->reconfig_timer, jiffies + NFP_NET_POLL_TIMEOUT * HZ); 119 } 120 121 static bool nfp_net_reconfig_check_done(struct nfp_net *nn, bool last_check) 122 { 123 u32 reg; 124 125 reg = nn_readl(nn, NFP_NET_CFG_UPDATE); 126 if (reg == 0) 127 return true; 128 if (reg & NFP_NET_CFG_UPDATE_ERR) { 129 nn_err(nn, "Reconfig error (status: 0x%08x update: 0x%08x ctrl: 0x%08x)\n", 130 reg, nn->reconfig_in_progress_update, 131 nn_readl(nn, NFP_NET_CFG_CTRL)); 132 return true; 133 } else if (last_check) { 134 nn_err(nn, "Reconfig timeout (status: 0x%08x update: 0x%08x ctrl: 0x%08x)\n", 135 reg, nn->reconfig_in_progress_update, 136 nn_readl(nn, NFP_NET_CFG_CTRL)); 137 return true; 138 } 139 140 return false; 141 } 142 143 static bool __nfp_net_reconfig_wait(struct nfp_net *nn, unsigned long deadline) 144 { 145 bool timed_out = false; 146 int i; 147 148 /* Poll update field, waiting for NFP to ack the config. 149 * Do an opportunistic wait-busy loop, afterward sleep. 150 */ 151 for (i = 0; i < 50; i++) { 152 if (nfp_net_reconfig_check_done(nn, false)) 153 return false; 154 udelay(4); 155 } 156 157 while (!nfp_net_reconfig_check_done(nn, timed_out)) { 158 usleep_range(250, 500); 159 timed_out = time_is_before_eq_jiffies(deadline); 160 } 161 162 return timed_out; 163 } 164 165 static int nfp_net_reconfig_wait(struct nfp_net *nn, unsigned long deadline) 166 { 167 if (__nfp_net_reconfig_wait(nn, deadline)) 168 return -EIO; 169 170 if (nn_readl(nn, NFP_NET_CFG_UPDATE) & NFP_NET_CFG_UPDATE_ERR) 171 return -EIO; 172 173 return 0; 174 } 175 176 static void nfp_net_reconfig_timer(struct timer_list *t) 177 { 178 struct nfp_net *nn = from_timer(nn, t, reconfig_timer); 179 180 spin_lock_bh(&nn->reconfig_lock); 181 182 nn->reconfig_timer_active = false; 183 184 /* If sync caller is present it will take over from us */ 185 if (nn->reconfig_sync_present) 186 goto done; 187 188 /* Read reconfig status and report errors */ 189 nfp_net_reconfig_check_done(nn, true); 190 191 if (nn->reconfig_posted) 192 nfp_net_reconfig_start_async(nn, 0); 193 done: 194 spin_unlock_bh(&nn->reconfig_lock); 195 } 196 197 /** 198 * nfp_net_reconfig_post() - Post async reconfig request 199 * @nn: NFP Net device to reconfigure 200 * @update: The value for the update field in the BAR config 201 * 202 * Record FW reconfiguration request. Reconfiguration will be kicked off 203 * whenever reconfiguration machinery is idle. Multiple requests can be 204 * merged together! 205 */ 206 static void nfp_net_reconfig_post(struct nfp_net *nn, u32 update) 207 { 208 spin_lock_bh(&nn->reconfig_lock); 209 210 /* Sync caller will kick off async reconf when it's done, just post */ 211 if (nn->reconfig_sync_present) { 212 nn->reconfig_posted |= update; 213 goto done; 214 } 215 216 /* Opportunistically check if the previous command is done */ 217 if (!nn->reconfig_timer_active || 218 nfp_net_reconfig_check_done(nn, false)) 219 nfp_net_reconfig_start_async(nn, update); 220 else 221 nn->reconfig_posted |= update; 222 done: 223 spin_unlock_bh(&nn->reconfig_lock); 224 } 225 226 static void nfp_net_reconfig_sync_enter(struct nfp_net *nn) 227 { 228 bool cancelled_timer = false; 229 u32 pre_posted_requests; 230 231 spin_lock_bh(&nn->reconfig_lock); 232 233 WARN_ON(nn->reconfig_sync_present); 234 nn->reconfig_sync_present = true; 235 236 if (nn->reconfig_timer_active) { 237 nn->reconfig_timer_active = false; 238 cancelled_timer = true; 239 } 240 pre_posted_requests = nn->reconfig_posted; 241 nn->reconfig_posted = 0; 242 243 spin_unlock_bh(&nn->reconfig_lock); 244 245 if (cancelled_timer) { 246 del_timer_sync(&nn->reconfig_timer); 247 nfp_net_reconfig_wait(nn, nn->reconfig_timer.expires); 248 } 249 250 /* Run the posted reconfigs which were issued before we started */ 251 if (pre_posted_requests) { 252 nfp_net_reconfig_start(nn, pre_posted_requests); 253 nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT); 254 } 255 } 256 257 static void nfp_net_reconfig_wait_posted(struct nfp_net *nn) 258 { 259 nfp_net_reconfig_sync_enter(nn); 260 261 spin_lock_bh(&nn->reconfig_lock); 262 nn->reconfig_sync_present = false; 263 spin_unlock_bh(&nn->reconfig_lock); 264 } 265 266 /** 267 * __nfp_net_reconfig() - Reconfigure the firmware 268 * @nn: NFP Net device to reconfigure 269 * @update: The value for the update field in the BAR config 270 * 271 * Write the update word to the BAR and ping the reconfig queue. The 272 * poll until the firmware has acknowledged the update by zeroing the 273 * update word. 274 * 275 * Return: Negative errno on error, 0 on success 276 */ 277 int __nfp_net_reconfig(struct nfp_net *nn, u32 update) 278 { 279 int ret; 280 281 nfp_net_reconfig_sync_enter(nn); 282 283 nfp_net_reconfig_start(nn, update); 284 ret = nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT); 285 286 spin_lock_bh(&nn->reconfig_lock); 287 288 if (nn->reconfig_posted) 289 nfp_net_reconfig_start_async(nn, 0); 290 291 nn->reconfig_sync_present = false; 292 293 spin_unlock_bh(&nn->reconfig_lock); 294 295 return ret; 296 } 297 298 int nfp_net_reconfig(struct nfp_net *nn, u32 update) 299 { 300 int ret; 301 302 nn_ctrl_bar_lock(nn); 303 ret = __nfp_net_reconfig(nn, update); 304 nn_ctrl_bar_unlock(nn); 305 306 return ret; 307 } 308 309 int nfp_net_mbox_lock(struct nfp_net *nn, unsigned int data_size) 310 { 311 if (nn->tlv_caps.mbox_len < NFP_NET_CFG_MBOX_SIMPLE_VAL + data_size) { 312 nn_err(nn, "mailbox too small for %u of data (%u)\n", 313 data_size, nn->tlv_caps.mbox_len); 314 return -EIO; 315 } 316 317 nn_ctrl_bar_lock(nn); 318 return 0; 319 } 320 321 /** 322 * nfp_net_mbox_reconfig() - Reconfigure the firmware via the mailbox 323 * @nn: NFP Net device to reconfigure 324 * @mbox_cmd: The value for the mailbox command 325 * 326 * Helper function for mailbox updates 327 * 328 * Return: Negative errno on error, 0 on success 329 */ 330 int nfp_net_mbox_reconfig(struct nfp_net *nn, u32 mbox_cmd) 331 { 332 u32 mbox = nn->tlv_caps.mbox_off; 333 int ret; 334 335 nn_writeq(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_CMD, mbox_cmd); 336 337 ret = __nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_MBOX); 338 if (ret) { 339 nn_err(nn, "Mailbox update error\n"); 340 return ret; 341 } 342 343 return -nn_readl(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_RET); 344 } 345 346 void nfp_net_mbox_reconfig_post(struct nfp_net *nn, u32 mbox_cmd) 347 { 348 u32 mbox = nn->tlv_caps.mbox_off; 349 350 nn_writeq(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_CMD, mbox_cmd); 351 352 nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_MBOX); 353 } 354 355 int nfp_net_mbox_reconfig_wait_posted(struct nfp_net *nn) 356 { 357 u32 mbox = nn->tlv_caps.mbox_off; 358 359 nfp_net_reconfig_wait_posted(nn); 360 361 return -nn_readl(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_RET); 362 } 363 364 int nfp_net_mbox_reconfig_and_unlock(struct nfp_net *nn, u32 mbox_cmd) 365 { 366 int ret; 367 368 ret = nfp_net_mbox_reconfig(nn, mbox_cmd); 369 nn_ctrl_bar_unlock(nn); 370 return ret; 371 } 372 373 /* Interrupt configuration and handling 374 */ 375 376 /** 377 * nfp_net_irq_unmask() - Unmask automasked interrupt 378 * @nn: NFP Network structure 379 * @entry_nr: MSI-X table entry 380 * 381 * Clear the ICR for the IRQ entry. 382 */ 383 static void nfp_net_irq_unmask(struct nfp_net *nn, unsigned int entry_nr) 384 { 385 nn_writeb(nn, NFP_NET_CFG_ICR(entry_nr), NFP_NET_CFG_ICR_UNMASKED); 386 nn_pci_flush(nn); 387 } 388 389 /** 390 * nfp_net_irqs_alloc() - allocates MSI-X irqs 391 * @pdev: PCI device structure 392 * @irq_entries: Array to be initialized and used to hold the irq entries 393 * @min_irqs: Minimal acceptable number of interrupts 394 * @wanted_irqs: Target number of interrupts to allocate 395 * 396 * Return: Number of irqs obtained or 0 on error. 397 */ 398 unsigned int 399 nfp_net_irqs_alloc(struct pci_dev *pdev, struct msix_entry *irq_entries, 400 unsigned int min_irqs, unsigned int wanted_irqs) 401 { 402 unsigned int i; 403 int got_irqs; 404 405 for (i = 0; i < wanted_irqs; i++) 406 irq_entries[i].entry = i; 407 408 got_irqs = pci_enable_msix_range(pdev, irq_entries, 409 min_irqs, wanted_irqs); 410 if (got_irqs < 0) { 411 dev_err(&pdev->dev, "Failed to enable %d-%d MSI-X (err=%d)\n", 412 min_irqs, wanted_irqs, got_irqs); 413 return 0; 414 } 415 416 if (got_irqs < wanted_irqs) 417 dev_warn(&pdev->dev, "Unable to allocate %d IRQs got only %d\n", 418 wanted_irqs, got_irqs); 419 420 return got_irqs; 421 } 422 423 /** 424 * nfp_net_irqs_assign() - Assign interrupts allocated externally to netdev 425 * @nn: NFP Network structure 426 * @irq_entries: Table of allocated interrupts 427 * @n: Size of @irq_entries (number of entries to grab) 428 * 429 * After interrupts are allocated with nfp_net_irqs_alloc() this function 430 * should be called to assign them to a specific netdev (port). 431 */ 432 void 433 nfp_net_irqs_assign(struct nfp_net *nn, struct msix_entry *irq_entries, 434 unsigned int n) 435 { 436 struct nfp_net_dp *dp = &nn->dp; 437 438 nn->max_r_vecs = n - NFP_NET_NON_Q_VECTORS; 439 dp->num_r_vecs = nn->max_r_vecs; 440 441 memcpy(nn->irq_entries, irq_entries, sizeof(*irq_entries) * n); 442 443 if (dp->num_rx_rings > dp->num_r_vecs || 444 dp->num_tx_rings > dp->num_r_vecs) 445 dev_warn(nn->dp.dev, "More rings (%d,%d) than vectors (%d).\n", 446 dp->num_rx_rings, dp->num_tx_rings, 447 dp->num_r_vecs); 448 449 dp->num_rx_rings = min(dp->num_r_vecs, dp->num_rx_rings); 450 dp->num_tx_rings = min(dp->num_r_vecs, dp->num_tx_rings); 451 dp->num_stack_tx_rings = dp->num_tx_rings; 452 } 453 454 /** 455 * nfp_net_irqs_disable() - Disable interrupts 456 * @pdev: PCI device structure 457 * 458 * Undoes what @nfp_net_irqs_alloc() does. 459 */ 460 void nfp_net_irqs_disable(struct pci_dev *pdev) 461 { 462 pci_disable_msix(pdev); 463 } 464 465 /** 466 * nfp_net_irq_rxtx() - Interrupt service routine for RX/TX rings. 467 * @irq: Interrupt 468 * @data: Opaque data structure 469 * 470 * Return: Indicate if the interrupt has been handled. 471 */ 472 static irqreturn_t nfp_net_irq_rxtx(int irq, void *data) 473 { 474 struct nfp_net_r_vector *r_vec = data; 475 476 napi_schedule_irqoff(&r_vec->napi); 477 478 /* The FW auto-masks any interrupt, either via the MASK bit in 479 * the MSI-X table or via the per entry ICR field. So there 480 * is no need to disable interrupts here. 481 */ 482 return IRQ_HANDLED; 483 } 484 485 static irqreturn_t nfp_ctrl_irq_rxtx(int irq, void *data) 486 { 487 struct nfp_net_r_vector *r_vec = data; 488 489 tasklet_schedule(&r_vec->tasklet); 490 491 return IRQ_HANDLED; 492 } 493 494 /** 495 * nfp_net_read_link_status() - Reread link status from control BAR 496 * @nn: NFP Network structure 497 */ 498 static void nfp_net_read_link_status(struct nfp_net *nn) 499 { 500 unsigned long flags; 501 bool link_up; 502 u32 sts; 503 504 spin_lock_irqsave(&nn->link_status_lock, flags); 505 506 sts = nn_readl(nn, NFP_NET_CFG_STS); 507 link_up = !!(sts & NFP_NET_CFG_STS_LINK); 508 509 if (nn->link_up == link_up) 510 goto out; 511 512 nn->link_up = link_up; 513 if (nn->port) 514 set_bit(NFP_PORT_CHANGED, &nn->port->flags); 515 516 if (nn->link_up) { 517 netif_carrier_on(nn->dp.netdev); 518 netdev_info(nn->dp.netdev, "NIC Link is Up\n"); 519 } else { 520 netif_carrier_off(nn->dp.netdev); 521 netdev_info(nn->dp.netdev, "NIC Link is Down\n"); 522 } 523 out: 524 spin_unlock_irqrestore(&nn->link_status_lock, flags); 525 } 526 527 /** 528 * nfp_net_irq_lsc() - Interrupt service routine for link state changes 529 * @irq: Interrupt 530 * @data: Opaque data structure 531 * 532 * Return: Indicate if the interrupt has been handled. 533 */ 534 static irqreturn_t nfp_net_irq_lsc(int irq, void *data) 535 { 536 struct nfp_net *nn = data; 537 struct msix_entry *entry; 538 539 entry = &nn->irq_entries[NFP_NET_IRQ_LSC_IDX]; 540 541 nfp_net_read_link_status(nn); 542 543 nfp_net_irq_unmask(nn, entry->entry); 544 545 return IRQ_HANDLED; 546 } 547 548 /** 549 * nfp_net_irq_exn() - Interrupt service routine for exceptions 550 * @irq: Interrupt 551 * @data: Opaque data structure 552 * 553 * Return: Indicate if the interrupt has been handled. 554 */ 555 static irqreturn_t nfp_net_irq_exn(int irq, void *data) 556 { 557 struct nfp_net *nn = data; 558 559 nn_err(nn, "%s: UNIMPLEMENTED.\n", __func__); 560 /* XXX TO BE IMPLEMENTED */ 561 return IRQ_HANDLED; 562 } 563 564 /** 565 * nfp_net_tx_ring_init() - Fill in the boilerplate for a TX ring 566 * @tx_ring: TX ring structure 567 * @r_vec: IRQ vector servicing this ring 568 * @idx: Ring index 569 * @is_xdp: Is this an XDP TX ring? 570 */ 571 static void 572 nfp_net_tx_ring_init(struct nfp_net_tx_ring *tx_ring, 573 struct nfp_net_r_vector *r_vec, unsigned int idx, 574 bool is_xdp) 575 { 576 struct nfp_net *nn = r_vec->nfp_net; 577 578 tx_ring->idx = idx; 579 tx_ring->r_vec = r_vec; 580 tx_ring->is_xdp = is_xdp; 581 u64_stats_init(&tx_ring->r_vec->tx_sync); 582 583 tx_ring->qcidx = tx_ring->idx * nn->stride_tx; 584 tx_ring->qcp_q = nn->tx_bar + NFP_QCP_QUEUE_OFF(tx_ring->qcidx); 585 } 586 587 /** 588 * nfp_net_rx_ring_init() - Fill in the boilerplate for a RX ring 589 * @rx_ring: RX ring structure 590 * @r_vec: IRQ vector servicing this ring 591 * @idx: Ring index 592 */ 593 static void 594 nfp_net_rx_ring_init(struct nfp_net_rx_ring *rx_ring, 595 struct nfp_net_r_vector *r_vec, unsigned int idx) 596 { 597 struct nfp_net *nn = r_vec->nfp_net; 598 599 rx_ring->idx = idx; 600 rx_ring->r_vec = r_vec; 601 u64_stats_init(&rx_ring->r_vec->rx_sync); 602 603 rx_ring->fl_qcidx = rx_ring->idx * nn->stride_rx; 604 rx_ring->qcp_fl = nn->rx_bar + NFP_QCP_QUEUE_OFF(rx_ring->fl_qcidx); 605 } 606 607 /** 608 * nfp_net_aux_irq_request() - Request an auxiliary interrupt (LSC or EXN) 609 * @nn: NFP Network structure 610 * @ctrl_offset: Control BAR offset where IRQ configuration should be written 611 * @format: printf-style format to construct the interrupt name 612 * @name: Pointer to allocated space for interrupt name 613 * @name_sz: Size of space for interrupt name 614 * @vector_idx: Index of MSI-X vector used for this interrupt 615 * @handler: IRQ handler to register for this interrupt 616 */ 617 static int 618 nfp_net_aux_irq_request(struct nfp_net *nn, u32 ctrl_offset, 619 const char *format, char *name, size_t name_sz, 620 unsigned int vector_idx, irq_handler_t handler) 621 { 622 struct msix_entry *entry; 623 int err; 624 625 entry = &nn->irq_entries[vector_idx]; 626 627 snprintf(name, name_sz, format, nfp_net_name(nn)); 628 err = request_irq(entry->vector, handler, 0, name, nn); 629 if (err) { 630 nn_err(nn, "Failed to request IRQ %d (err=%d).\n", 631 entry->vector, err); 632 return err; 633 } 634 nn_writeb(nn, ctrl_offset, entry->entry); 635 nfp_net_irq_unmask(nn, entry->entry); 636 637 return 0; 638 } 639 640 /** 641 * nfp_net_aux_irq_free() - Free an auxiliary interrupt (LSC or EXN) 642 * @nn: NFP Network structure 643 * @ctrl_offset: Control BAR offset where IRQ configuration should be written 644 * @vector_idx: Index of MSI-X vector used for this interrupt 645 */ 646 static void nfp_net_aux_irq_free(struct nfp_net *nn, u32 ctrl_offset, 647 unsigned int vector_idx) 648 { 649 nn_writeb(nn, ctrl_offset, 0xff); 650 nn_pci_flush(nn); 651 free_irq(nn->irq_entries[vector_idx].vector, nn); 652 } 653 654 /* Transmit 655 * 656 * One queue controller peripheral queue is used for transmit. The 657 * driver en-queues packets for transmit by advancing the write 658 * pointer. The device indicates that packets have transmitted by 659 * advancing the read pointer. The driver maintains a local copy of 660 * the read and write pointer in @struct nfp_net_tx_ring. The driver 661 * keeps @wr_p in sync with the queue controller write pointer and can 662 * determine how many packets have been transmitted by comparing its 663 * copy of the read pointer @rd_p with the read pointer maintained by 664 * the queue controller peripheral. 665 */ 666 667 /** 668 * nfp_net_tx_full() - Check if the TX ring is full 669 * @tx_ring: TX ring to check 670 * @dcnt: Number of descriptors that need to be enqueued (must be >= 1) 671 * 672 * This function checks, based on the *host copy* of read/write 673 * pointer if a given TX ring is full. The real TX queue may have 674 * some newly made available slots. 675 * 676 * Return: True if the ring is full. 677 */ 678 static int nfp_net_tx_full(struct nfp_net_tx_ring *tx_ring, int dcnt) 679 { 680 return (tx_ring->wr_p - tx_ring->rd_p) >= (tx_ring->cnt - dcnt); 681 } 682 683 /* Wrappers for deciding when to stop and restart TX queues */ 684 static int nfp_net_tx_ring_should_wake(struct nfp_net_tx_ring *tx_ring) 685 { 686 return !nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS * 4); 687 } 688 689 static int nfp_net_tx_ring_should_stop(struct nfp_net_tx_ring *tx_ring) 690 { 691 return nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS + 1); 692 } 693 694 /** 695 * nfp_net_tx_ring_stop() - stop tx ring 696 * @nd_q: netdev queue 697 * @tx_ring: driver tx queue structure 698 * 699 * Safely stop TX ring. Remember that while we are running .start_xmit() 700 * someone else may be cleaning the TX ring completions so we need to be 701 * extra careful here. 702 */ 703 static void nfp_net_tx_ring_stop(struct netdev_queue *nd_q, 704 struct nfp_net_tx_ring *tx_ring) 705 { 706 netif_tx_stop_queue(nd_q); 707 708 /* We can race with the TX completion out of NAPI so recheck */ 709 smp_mb(); 710 if (unlikely(nfp_net_tx_ring_should_wake(tx_ring))) 711 netif_tx_start_queue(nd_q); 712 } 713 714 /** 715 * nfp_net_tx_tso() - Set up Tx descriptor for LSO 716 * @r_vec: per-ring structure 717 * @txbuf: Pointer to driver soft TX descriptor 718 * @txd: Pointer to HW TX descriptor 719 * @skb: Pointer to SKB 720 * @md_bytes: Prepend length 721 * 722 * Set up Tx descriptor for LSO, do nothing for non-LSO skbs. 723 * Return error on packet header greater than maximum supported LSO header size. 724 */ 725 static void nfp_net_tx_tso(struct nfp_net_r_vector *r_vec, 726 struct nfp_net_tx_buf *txbuf, 727 struct nfp_net_tx_desc *txd, struct sk_buff *skb, 728 u32 md_bytes) 729 { 730 u32 l3_offset, l4_offset, hdrlen; 731 u16 mss; 732 733 if (!skb_is_gso(skb)) 734 return; 735 736 if (!skb->encapsulation) { 737 l3_offset = skb_network_offset(skb); 738 l4_offset = skb_transport_offset(skb); 739 hdrlen = skb_transport_offset(skb) + tcp_hdrlen(skb); 740 } else { 741 l3_offset = skb_inner_network_offset(skb); 742 l4_offset = skb_inner_transport_offset(skb); 743 hdrlen = skb_inner_transport_header(skb) - skb->data + 744 inner_tcp_hdrlen(skb); 745 } 746 747 txbuf->pkt_cnt = skb_shinfo(skb)->gso_segs; 748 txbuf->real_len += hdrlen * (txbuf->pkt_cnt - 1); 749 750 mss = skb_shinfo(skb)->gso_size & PCIE_DESC_TX_MSS_MASK; 751 txd->l3_offset = l3_offset - md_bytes; 752 txd->l4_offset = l4_offset - md_bytes; 753 txd->lso_hdrlen = hdrlen - md_bytes; 754 txd->mss = cpu_to_le16(mss); 755 txd->flags |= PCIE_DESC_TX_LSO; 756 757 u64_stats_update_begin(&r_vec->tx_sync); 758 r_vec->tx_lso++; 759 u64_stats_update_end(&r_vec->tx_sync); 760 } 761 762 /** 763 * nfp_net_tx_csum() - Set TX CSUM offload flags in TX descriptor 764 * @dp: NFP Net data path struct 765 * @r_vec: per-ring structure 766 * @txbuf: Pointer to driver soft TX descriptor 767 * @txd: Pointer to TX descriptor 768 * @skb: Pointer to SKB 769 * 770 * This function sets the TX checksum flags in the TX descriptor based 771 * on the configuration and the protocol of the packet to be transmitted. 772 */ 773 static void nfp_net_tx_csum(struct nfp_net_dp *dp, 774 struct nfp_net_r_vector *r_vec, 775 struct nfp_net_tx_buf *txbuf, 776 struct nfp_net_tx_desc *txd, struct sk_buff *skb) 777 { 778 struct ipv6hdr *ipv6h; 779 struct iphdr *iph; 780 u8 l4_hdr; 781 782 if (!(dp->ctrl & NFP_NET_CFG_CTRL_TXCSUM)) 783 return; 784 785 if (skb->ip_summed != CHECKSUM_PARTIAL) 786 return; 787 788 txd->flags |= PCIE_DESC_TX_CSUM; 789 if (skb->encapsulation) 790 txd->flags |= PCIE_DESC_TX_ENCAP; 791 792 iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb); 793 ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb); 794 795 if (iph->version == 4) { 796 txd->flags |= PCIE_DESC_TX_IP4_CSUM; 797 l4_hdr = iph->protocol; 798 } else if (ipv6h->version == 6) { 799 l4_hdr = ipv6h->nexthdr; 800 } else { 801 nn_dp_warn(dp, "partial checksum but ipv=%x!\n", iph->version); 802 return; 803 } 804 805 switch (l4_hdr) { 806 case IPPROTO_TCP: 807 txd->flags |= PCIE_DESC_TX_TCP_CSUM; 808 break; 809 case IPPROTO_UDP: 810 txd->flags |= PCIE_DESC_TX_UDP_CSUM; 811 break; 812 default: 813 nn_dp_warn(dp, "partial checksum but l4 proto=%x!\n", l4_hdr); 814 return; 815 } 816 817 u64_stats_update_begin(&r_vec->tx_sync); 818 if (skb->encapsulation) 819 r_vec->hw_csum_tx_inner += txbuf->pkt_cnt; 820 else 821 r_vec->hw_csum_tx += txbuf->pkt_cnt; 822 u64_stats_update_end(&r_vec->tx_sync); 823 } 824 825 #ifdef CONFIG_TLS_DEVICE 826 static struct sk_buff * 827 nfp_net_tls_tx(struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec, 828 struct sk_buff *skb, u64 *tls_handle, int *nr_frags) 829 { 830 struct nfp_net_tls_offload_ctx *ntls; 831 struct sk_buff *nskb; 832 bool resync_pending; 833 u32 datalen, seq; 834 835 if (likely(!dp->ktls_tx)) 836 return skb; 837 if (!skb->sk || !tls_is_sk_tx_device_offloaded(skb->sk)) 838 return skb; 839 840 datalen = skb->len - (skb_transport_offset(skb) + tcp_hdrlen(skb)); 841 seq = ntohl(tcp_hdr(skb)->seq); 842 ntls = tls_driver_ctx(skb->sk, TLS_OFFLOAD_CTX_DIR_TX); 843 resync_pending = tls_offload_tx_resync_pending(skb->sk); 844 if (unlikely(resync_pending || ntls->next_seq != seq)) { 845 /* Pure ACK out of order already */ 846 if (!datalen) 847 return skb; 848 849 u64_stats_update_begin(&r_vec->tx_sync); 850 r_vec->tls_tx_fallback++; 851 u64_stats_update_end(&r_vec->tx_sync); 852 853 nskb = tls_encrypt_skb(skb); 854 if (!nskb) { 855 u64_stats_update_begin(&r_vec->tx_sync); 856 r_vec->tls_tx_no_fallback++; 857 u64_stats_update_end(&r_vec->tx_sync); 858 return NULL; 859 } 860 /* encryption wasn't necessary */ 861 if (nskb == skb) 862 return skb; 863 /* we don't re-check ring space */ 864 if (unlikely(skb_is_nonlinear(nskb))) { 865 nn_dp_warn(dp, "tls_encrypt_skb() produced fragmented frame\n"); 866 u64_stats_update_begin(&r_vec->tx_sync); 867 r_vec->tx_errors++; 868 u64_stats_update_end(&r_vec->tx_sync); 869 dev_kfree_skb_any(nskb); 870 return NULL; 871 } 872 873 /* jump forward, a TX may have gotten lost, need to sync TX */ 874 if (!resync_pending && seq - ntls->next_seq < U32_MAX / 4) 875 tls_offload_tx_resync_request(nskb->sk); 876 877 *nr_frags = 0; 878 return nskb; 879 } 880 881 if (datalen) { 882 u64_stats_update_begin(&r_vec->tx_sync); 883 r_vec->hw_tls_tx++; 884 u64_stats_update_end(&r_vec->tx_sync); 885 } 886 887 memcpy(tls_handle, ntls->fw_handle, sizeof(ntls->fw_handle)); 888 ntls->next_seq += datalen; 889 return skb; 890 } 891 #endif 892 893 static void nfp_net_tx_xmit_more_flush(struct nfp_net_tx_ring *tx_ring) 894 { 895 wmb(); 896 nfp_qcp_wr_ptr_add(tx_ring->qcp_q, tx_ring->wr_ptr_add); 897 tx_ring->wr_ptr_add = 0; 898 } 899 900 static int nfp_net_prep_tx_meta(struct sk_buff *skb, u64 tls_handle) 901 { 902 struct metadata_dst *md_dst = skb_metadata_dst(skb); 903 unsigned char *data; 904 u32 meta_id = 0; 905 int md_bytes; 906 907 if (likely(!md_dst && !tls_handle)) 908 return 0; 909 if (unlikely(md_dst && md_dst->type != METADATA_HW_PORT_MUX)) { 910 if (!tls_handle) 911 return 0; 912 md_dst = NULL; 913 } 914 915 md_bytes = 4 + !!md_dst * 4 + !!tls_handle * 8; 916 917 if (unlikely(skb_cow_head(skb, md_bytes))) 918 return -ENOMEM; 919 920 meta_id = 0; 921 data = skb_push(skb, md_bytes) + md_bytes; 922 if (md_dst) { 923 data -= 4; 924 put_unaligned_be32(md_dst->u.port_info.port_id, data); 925 meta_id = NFP_NET_META_PORTID; 926 } 927 if (tls_handle) { 928 /* conn handle is opaque, we just use u64 to be able to quickly 929 * compare it to zero 930 */ 931 data -= 8; 932 memcpy(data, &tls_handle, sizeof(tls_handle)); 933 meta_id <<= NFP_NET_META_FIELD_SIZE; 934 meta_id |= NFP_NET_META_CONN_HANDLE; 935 } 936 937 data -= 4; 938 put_unaligned_be32(meta_id, data); 939 940 return md_bytes; 941 } 942 943 /** 944 * nfp_net_tx() - Main transmit entry point 945 * @skb: SKB to transmit 946 * @netdev: netdev structure 947 * 948 * Return: NETDEV_TX_OK on success. 949 */ 950 static int nfp_net_tx(struct sk_buff *skb, struct net_device *netdev) 951 { 952 struct nfp_net *nn = netdev_priv(netdev); 953 const struct skb_frag_struct *frag; 954 int f, nr_frags, wr_idx, md_bytes; 955 struct nfp_net_tx_ring *tx_ring; 956 struct nfp_net_r_vector *r_vec; 957 struct nfp_net_tx_buf *txbuf; 958 struct nfp_net_tx_desc *txd; 959 struct netdev_queue *nd_q; 960 struct nfp_net_dp *dp; 961 dma_addr_t dma_addr; 962 unsigned int fsize; 963 u64 tls_handle = 0; 964 u16 qidx; 965 966 dp = &nn->dp; 967 qidx = skb_get_queue_mapping(skb); 968 tx_ring = &dp->tx_rings[qidx]; 969 r_vec = tx_ring->r_vec; 970 971 nr_frags = skb_shinfo(skb)->nr_frags; 972 973 if (unlikely(nfp_net_tx_full(tx_ring, nr_frags + 1))) { 974 nn_dp_warn(dp, "TX ring %d busy. wrp=%u rdp=%u\n", 975 qidx, tx_ring->wr_p, tx_ring->rd_p); 976 nd_q = netdev_get_tx_queue(dp->netdev, qidx); 977 netif_tx_stop_queue(nd_q); 978 nfp_net_tx_xmit_more_flush(tx_ring); 979 u64_stats_update_begin(&r_vec->tx_sync); 980 r_vec->tx_busy++; 981 u64_stats_update_end(&r_vec->tx_sync); 982 return NETDEV_TX_BUSY; 983 } 984 985 #ifdef CONFIG_TLS_DEVICE 986 skb = nfp_net_tls_tx(dp, r_vec, skb, &tls_handle, &nr_frags); 987 if (unlikely(!skb)) { 988 nfp_net_tx_xmit_more_flush(tx_ring); 989 return NETDEV_TX_OK; 990 } 991 #endif 992 993 md_bytes = nfp_net_prep_tx_meta(skb, tls_handle); 994 if (unlikely(md_bytes < 0)) 995 goto err_flush; 996 997 /* Start with the head skbuf */ 998 dma_addr = dma_map_single(dp->dev, skb->data, skb_headlen(skb), 999 DMA_TO_DEVICE); 1000 if (dma_mapping_error(dp->dev, dma_addr)) 1001 goto err_dma_err; 1002 1003 wr_idx = D_IDX(tx_ring, tx_ring->wr_p); 1004 1005 /* Stash the soft descriptor of the head then initialize it */ 1006 txbuf = &tx_ring->txbufs[wr_idx]; 1007 txbuf->skb = skb; 1008 txbuf->dma_addr = dma_addr; 1009 txbuf->fidx = -1; 1010 txbuf->pkt_cnt = 1; 1011 txbuf->real_len = skb->len; 1012 1013 /* Build TX descriptor */ 1014 txd = &tx_ring->txds[wr_idx]; 1015 txd->offset_eop = (nr_frags ? 0 : PCIE_DESC_TX_EOP) | md_bytes; 1016 txd->dma_len = cpu_to_le16(skb_headlen(skb)); 1017 nfp_desc_set_dma_addr(txd, dma_addr); 1018 txd->data_len = cpu_to_le16(skb->len); 1019 1020 txd->flags = 0; 1021 txd->mss = 0; 1022 txd->lso_hdrlen = 0; 1023 1024 /* Do not reorder - tso may adjust pkt cnt, vlan may override fields */ 1025 nfp_net_tx_tso(r_vec, txbuf, txd, skb, md_bytes); 1026 nfp_net_tx_csum(dp, r_vec, txbuf, txd, skb); 1027 if (skb_vlan_tag_present(skb) && dp->ctrl & NFP_NET_CFG_CTRL_TXVLAN) { 1028 txd->flags |= PCIE_DESC_TX_VLAN; 1029 txd->vlan = cpu_to_le16(skb_vlan_tag_get(skb)); 1030 } 1031 1032 /* Gather DMA */ 1033 if (nr_frags > 0) { 1034 __le64 second_half; 1035 1036 /* all descs must match except for in addr, length and eop */ 1037 second_half = txd->vals8[1]; 1038 1039 for (f = 0; f < nr_frags; f++) { 1040 frag = &skb_shinfo(skb)->frags[f]; 1041 fsize = skb_frag_size(frag); 1042 1043 dma_addr = skb_frag_dma_map(dp->dev, frag, 0, 1044 fsize, DMA_TO_DEVICE); 1045 if (dma_mapping_error(dp->dev, dma_addr)) 1046 goto err_unmap; 1047 1048 wr_idx = D_IDX(tx_ring, wr_idx + 1); 1049 tx_ring->txbufs[wr_idx].skb = skb; 1050 tx_ring->txbufs[wr_idx].dma_addr = dma_addr; 1051 tx_ring->txbufs[wr_idx].fidx = f; 1052 1053 txd = &tx_ring->txds[wr_idx]; 1054 txd->dma_len = cpu_to_le16(fsize); 1055 nfp_desc_set_dma_addr(txd, dma_addr); 1056 txd->offset_eop = md_bytes | 1057 ((f == nr_frags - 1) ? PCIE_DESC_TX_EOP : 0); 1058 txd->vals8[1] = second_half; 1059 } 1060 1061 u64_stats_update_begin(&r_vec->tx_sync); 1062 r_vec->tx_gather++; 1063 u64_stats_update_end(&r_vec->tx_sync); 1064 } 1065 1066 skb_tx_timestamp(skb); 1067 1068 nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx); 1069 1070 tx_ring->wr_p += nr_frags + 1; 1071 if (nfp_net_tx_ring_should_stop(tx_ring)) 1072 nfp_net_tx_ring_stop(nd_q, tx_ring); 1073 1074 tx_ring->wr_ptr_add += nr_frags + 1; 1075 if (__netdev_tx_sent_queue(nd_q, txbuf->real_len, netdev_xmit_more())) 1076 nfp_net_tx_xmit_more_flush(tx_ring); 1077 1078 return NETDEV_TX_OK; 1079 1080 err_unmap: 1081 while (--f >= 0) { 1082 frag = &skb_shinfo(skb)->frags[f]; 1083 dma_unmap_page(dp->dev, tx_ring->txbufs[wr_idx].dma_addr, 1084 skb_frag_size(frag), DMA_TO_DEVICE); 1085 tx_ring->txbufs[wr_idx].skb = NULL; 1086 tx_ring->txbufs[wr_idx].dma_addr = 0; 1087 tx_ring->txbufs[wr_idx].fidx = -2; 1088 wr_idx = wr_idx - 1; 1089 if (wr_idx < 0) 1090 wr_idx += tx_ring->cnt; 1091 } 1092 dma_unmap_single(dp->dev, tx_ring->txbufs[wr_idx].dma_addr, 1093 skb_headlen(skb), DMA_TO_DEVICE); 1094 tx_ring->txbufs[wr_idx].skb = NULL; 1095 tx_ring->txbufs[wr_idx].dma_addr = 0; 1096 tx_ring->txbufs[wr_idx].fidx = -2; 1097 err_dma_err: 1098 nn_dp_warn(dp, "Failed to map DMA TX buffer\n"); 1099 err_flush: 1100 nfp_net_tx_xmit_more_flush(tx_ring); 1101 u64_stats_update_begin(&r_vec->tx_sync); 1102 r_vec->tx_errors++; 1103 u64_stats_update_end(&r_vec->tx_sync); 1104 dev_kfree_skb_any(skb); 1105 return NETDEV_TX_OK; 1106 } 1107 1108 /** 1109 * nfp_net_tx_complete() - Handled completed TX packets 1110 * @tx_ring: TX ring structure 1111 * @budget: NAPI budget (only used as bool to determine if in NAPI context) 1112 */ 1113 static void nfp_net_tx_complete(struct nfp_net_tx_ring *tx_ring, int budget) 1114 { 1115 struct nfp_net_r_vector *r_vec = tx_ring->r_vec; 1116 struct nfp_net_dp *dp = &r_vec->nfp_net->dp; 1117 struct netdev_queue *nd_q; 1118 u32 done_pkts = 0, done_bytes = 0; 1119 u32 qcp_rd_p; 1120 int todo; 1121 1122 if (tx_ring->wr_p == tx_ring->rd_p) 1123 return; 1124 1125 /* Work out how many descriptors have been transmitted */ 1126 qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q); 1127 1128 if (qcp_rd_p == tx_ring->qcp_rd_p) 1129 return; 1130 1131 todo = D_IDX(tx_ring, qcp_rd_p - tx_ring->qcp_rd_p); 1132 1133 while (todo--) { 1134 const struct skb_frag_struct *frag; 1135 struct nfp_net_tx_buf *tx_buf; 1136 struct sk_buff *skb; 1137 int fidx, nr_frags; 1138 int idx; 1139 1140 idx = D_IDX(tx_ring, tx_ring->rd_p++); 1141 tx_buf = &tx_ring->txbufs[idx]; 1142 1143 skb = tx_buf->skb; 1144 if (!skb) 1145 continue; 1146 1147 nr_frags = skb_shinfo(skb)->nr_frags; 1148 fidx = tx_buf->fidx; 1149 1150 if (fidx == -1) { 1151 /* unmap head */ 1152 dma_unmap_single(dp->dev, tx_buf->dma_addr, 1153 skb_headlen(skb), DMA_TO_DEVICE); 1154 1155 done_pkts += tx_buf->pkt_cnt; 1156 done_bytes += tx_buf->real_len; 1157 } else { 1158 /* unmap fragment */ 1159 frag = &skb_shinfo(skb)->frags[fidx]; 1160 dma_unmap_page(dp->dev, tx_buf->dma_addr, 1161 skb_frag_size(frag), DMA_TO_DEVICE); 1162 } 1163 1164 /* check for last gather fragment */ 1165 if (fidx == nr_frags - 1) 1166 napi_consume_skb(skb, budget); 1167 1168 tx_buf->dma_addr = 0; 1169 tx_buf->skb = NULL; 1170 tx_buf->fidx = -2; 1171 } 1172 1173 tx_ring->qcp_rd_p = qcp_rd_p; 1174 1175 u64_stats_update_begin(&r_vec->tx_sync); 1176 r_vec->tx_bytes += done_bytes; 1177 r_vec->tx_pkts += done_pkts; 1178 u64_stats_update_end(&r_vec->tx_sync); 1179 1180 if (!dp->netdev) 1181 return; 1182 1183 nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx); 1184 netdev_tx_completed_queue(nd_q, done_pkts, done_bytes); 1185 if (nfp_net_tx_ring_should_wake(tx_ring)) { 1186 /* Make sure TX thread will see updated tx_ring->rd_p */ 1187 smp_mb(); 1188 1189 if (unlikely(netif_tx_queue_stopped(nd_q))) 1190 netif_tx_wake_queue(nd_q); 1191 } 1192 1193 WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt, 1194 "TX ring corruption rd_p=%u wr_p=%u cnt=%u\n", 1195 tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt); 1196 } 1197 1198 static bool nfp_net_xdp_complete(struct nfp_net_tx_ring *tx_ring) 1199 { 1200 struct nfp_net_r_vector *r_vec = tx_ring->r_vec; 1201 u32 done_pkts = 0, done_bytes = 0; 1202 bool done_all; 1203 int idx, todo; 1204 u32 qcp_rd_p; 1205 1206 /* Work out how many descriptors have been transmitted */ 1207 qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q); 1208 1209 if (qcp_rd_p == tx_ring->qcp_rd_p) 1210 return true; 1211 1212 todo = D_IDX(tx_ring, qcp_rd_p - tx_ring->qcp_rd_p); 1213 1214 done_all = todo <= NFP_NET_XDP_MAX_COMPLETE; 1215 todo = min(todo, NFP_NET_XDP_MAX_COMPLETE); 1216 1217 tx_ring->qcp_rd_p = D_IDX(tx_ring, tx_ring->qcp_rd_p + todo); 1218 1219 done_pkts = todo; 1220 while (todo--) { 1221 idx = D_IDX(tx_ring, tx_ring->rd_p); 1222 tx_ring->rd_p++; 1223 1224 done_bytes += tx_ring->txbufs[idx].real_len; 1225 } 1226 1227 u64_stats_update_begin(&r_vec->tx_sync); 1228 r_vec->tx_bytes += done_bytes; 1229 r_vec->tx_pkts += done_pkts; 1230 u64_stats_update_end(&r_vec->tx_sync); 1231 1232 WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt, 1233 "XDP TX ring corruption rd_p=%u wr_p=%u cnt=%u\n", 1234 tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt); 1235 1236 return done_all; 1237 } 1238 1239 /** 1240 * nfp_net_tx_ring_reset() - Free any untransmitted buffers and reset pointers 1241 * @dp: NFP Net data path struct 1242 * @tx_ring: TX ring structure 1243 * 1244 * Assumes that the device is stopped, must be idempotent. 1245 */ 1246 static void 1247 nfp_net_tx_ring_reset(struct nfp_net_dp *dp, struct nfp_net_tx_ring *tx_ring) 1248 { 1249 const struct skb_frag_struct *frag; 1250 struct netdev_queue *nd_q; 1251 1252 while (!tx_ring->is_xdp && tx_ring->rd_p != tx_ring->wr_p) { 1253 struct nfp_net_tx_buf *tx_buf; 1254 struct sk_buff *skb; 1255 int idx, nr_frags; 1256 1257 idx = D_IDX(tx_ring, tx_ring->rd_p); 1258 tx_buf = &tx_ring->txbufs[idx]; 1259 1260 skb = tx_ring->txbufs[idx].skb; 1261 nr_frags = skb_shinfo(skb)->nr_frags; 1262 1263 if (tx_buf->fidx == -1) { 1264 /* unmap head */ 1265 dma_unmap_single(dp->dev, tx_buf->dma_addr, 1266 skb_headlen(skb), DMA_TO_DEVICE); 1267 } else { 1268 /* unmap fragment */ 1269 frag = &skb_shinfo(skb)->frags[tx_buf->fidx]; 1270 dma_unmap_page(dp->dev, tx_buf->dma_addr, 1271 skb_frag_size(frag), DMA_TO_DEVICE); 1272 } 1273 1274 /* check for last gather fragment */ 1275 if (tx_buf->fidx == nr_frags - 1) 1276 dev_kfree_skb_any(skb); 1277 1278 tx_buf->dma_addr = 0; 1279 tx_buf->skb = NULL; 1280 tx_buf->fidx = -2; 1281 1282 tx_ring->qcp_rd_p++; 1283 tx_ring->rd_p++; 1284 } 1285 1286 memset(tx_ring->txds, 0, tx_ring->size); 1287 tx_ring->wr_p = 0; 1288 tx_ring->rd_p = 0; 1289 tx_ring->qcp_rd_p = 0; 1290 tx_ring->wr_ptr_add = 0; 1291 1292 if (tx_ring->is_xdp || !dp->netdev) 1293 return; 1294 1295 nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx); 1296 netdev_tx_reset_queue(nd_q); 1297 } 1298 1299 static void nfp_net_tx_timeout(struct net_device *netdev) 1300 { 1301 struct nfp_net *nn = netdev_priv(netdev); 1302 int i; 1303 1304 for (i = 0; i < nn->dp.netdev->real_num_tx_queues; i++) { 1305 if (!netif_tx_queue_stopped(netdev_get_tx_queue(netdev, i))) 1306 continue; 1307 nn_warn(nn, "TX timeout on ring: %d\n", i); 1308 } 1309 nn_warn(nn, "TX watchdog timeout\n"); 1310 } 1311 1312 /* Receive processing 1313 */ 1314 static unsigned int 1315 nfp_net_calc_fl_bufsz(struct nfp_net_dp *dp) 1316 { 1317 unsigned int fl_bufsz; 1318 1319 fl_bufsz = NFP_NET_RX_BUF_HEADROOM; 1320 fl_bufsz += dp->rx_dma_off; 1321 if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC) 1322 fl_bufsz += NFP_NET_MAX_PREPEND; 1323 else 1324 fl_bufsz += dp->rx_offset; 1325 fl_bufsz += ETH_HLEN + VLAN_HLEN * 2 + dp->mtu; 1326 1327 fl_bufsz = SKB_DATA_ALIGN(fl_bufsz); 1328 fl_bufsz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 1329 1330 return fl_bufsz; 1331 } 1332 1333 static void 1334 nfp_net_free_frag(void *frag, bool xdp) 1335 { 1336 if (!xdp) 1337 skb_free_frag(frag); 1338 else 1339 __free_page(virt_to_page(frag)); 1340 } 1341 1342 /** 1343 * nfp_net_rx_alloc_one() - Allocate and map page frag for RX 1344 * @dp: NFP Net data path struct 1345 * @dma_addr: Pointer to storage for DMA address (output param) 1346 * 1347 * This function will allcate a new page frag, map it for DMA. 1348 * 1349 * Return: allocated page frag or NULL on failure. 1350 */ 1351 static void *nfp_net_rx_alloc_one(struct nfp_net_dp *dp, dma_addr_t *dma_addr) 1352 { 1353 void *frag; 1354 1355 if (!dp->xdp_prog) { 1356 frag = netdev_alloc_frag(dp->fl_bufsz); 1357 } else { 1358 struct page *page; 1359 1360 page = alloc_page(GFP_KERNEL); 1361 frag = page ? page_address(page) : NULL; 1362 } 1363 if (!frag) { 1364 nn_dp_warn(dp, "Failed to alloc receive page frag\n"); 1365 return NULL; 1366 } 1367 1368 *dma_addr = nfp_net_dma_map_rx(dp, frag); 1369 if (dma_mapping_error(dp->dev, *dma_addr)) { 1370 nfp_net_free_frag(frag, dp->xdp_prog); 1371 nn_dp_warn(dp, "Failed to map DMA RX buffer\n"); 1372 return NULL; 1373 } 1374 1375 return frag; 1376 } 1377 1378 static void *nfp_net_napi_alloc_one(struct nfp_net_dp *dp, dma_addr_t *dma_addr) 1379 { 1380 void *frag; 1381 1382 if (!dp->xdp_prog) { 1383 frag = napi_alloc_frag(dp->fl_bufsz); 1384 if (unlikely(!frag)) 1385 return NULL; 1386 } else { 1387 struct page *page; 1388 1389 page = dev_alloc_page(); 1390 if (unlikely(!page)) 1391 return NULL; 1392 frag = page_address(page); 1393 } 1394 1395 *dma_addr = nfp_net_dma_map_rx(dp, frag); 1396 if (dma_mapping_error(dp->dev, *dma_addr)) { 1397 nfp_net_free_frag(frag, dp->xdp_prog); 1398 nn_dp_warn(dp, "Failed to map DMA RX buffer\n"); 1399 return NULL; 1400 } 1401 1402 return frag; 1403 } 1404 1405 /** 1406 * nfp_net_rx_give_one() - Put mapped skb on the software and hardware rings 1407 * @dp: NFP Net data path struct 1408 * @rx_ring: RX ring structure 1409 * @frag: page fragment buffer 1410 * @dma_addr: DMA address of skb mapping 1411 */ 1412 static void nfp_net_rx_give_one(const struct nfp_net_dp *dp, 1413 struct nfp_net_rx_ring *rx_ring, 1414 void *frag, dma_addr_t dma_addr) 1415 { 1416 unsigned int wr_idx; 1417 1418 wr_idx = D_IDX(rx_ring, rx_ring->wr_p); 1419 1420 nfp_net_dma_sync_dev_rx(dp, dma_addr); 1421 1422 /* Stash SKB and DMA address away */ 1423 rx_ring->rxbufs[wr_idx].frag = frag; 1424 rx_ring->rxbufs[wr_idx].dma_addr = dma_addr; 1425 1426 /* Fill freelist descriptor */ 1427 rx_ring->rxds[wr_idx].fld.reserved = 0; 1428 rx_ring->rxds[wr_idx].fld.meta_len_dd = 0; 1429 nfp_desc_set_dma_addr(&rx_ring->rxds[wr_idx].fld, 1430 dma_addr + dp->rx_dma_off); 1431 1432 rx_ring->wr_p++; 1433 if (!(rx_ring->wr_p % NFP_NET_FL_BATCH)) { 1434 /* Update write pointer of the freelist queue. Make 1435 * sure all writes are flushed before telling the hardware. 1436 */ 1437 wmb(); 1438 nfp_qcp_wr_ptr_add(rx_ring->qcp_fl, NFP_NET_FL_BATCH); 1439 } 1440 } 1441 1442 /** 1443 * nfp_net_rx_ring_reset() - Reflect in SW state of freelist after disable 1444 * @rx_ring: RX ring structure 1445 * 1446 * Assumes that the device is stopped, must be idempotent. 1447 */ 1448 static void nfp_net_rx_ring_reset(struct nfp_net_rx_ring *rx_ring) 1449 { 1450 unsigned int wr_idx, last_idx; 1451 1452 /* wr_p == rd_p means ring was never fed FL bufs. RX rings are always 1453 * kept at cnt - 1 FL bufs. 1454 */ 1455 if (rx_ring->wr_p == 0 && rx_ring->rd_p == 0) 1456 return; 1457 1458 /* Move the empty entry to the end of the list */ 1459 wr_idx = D_IDX(rx_ring, rx_ring->wr_p); 1460 last_idx = rx_ring->cnt - 1; 1461 rx_ring->rxbufs[wr_idx].dma_addr = rx_ring->rxbufs[last_idx].dma_addr; 1462 rx_ring->rxbufs[wr_idx].frag = rx_ring->rxbufs[last_idx].frag; 1463 rx_ring->rxbufs[last_idx].dma_addr = 0; 1464 rx_ring->rxbufs[last_idx].frag = NULL; 1465 1466 memset(rx_ring->rxds, 0, rx_ring->size); 1467 rx_ring->wr_p = 0; 1468 rx_ring->rd_p = 0; 1469 } 1470 1471 /** 1472 * nfp_net_rx_ring_bufs_free() - Free any buffers currently on the RX ring 1473 * @dp: NFP Net data path struct 1474 * @rx_ring: RX ring to remove buffers from 1475 * 1476 * Assumes that the device is stopped and buffers are in [0, ring->cnt - 1) 1477 * entries. After device is disabled nfp_net_rx_ring_reset() must be called 1478 * to restore required ring geometry. 1479 */ 1480 static void 1481 nfp_net_rx_ring_bufs_free(struct nfp_net_dp *dp, 1482 struct nfp_net_rx_ring *rx_ring) 1483 { 1484 unsigned int i; 1485 1486 for (i = 0; i < rx_ring->cnt - 1; i++) { 1487 /* NULL skb can only happen when initial filling of the ring 1488 * fails to allocate enough buffers and calls here to free 1489 * already allocated ones. 1490 */ 1491 if (!rx_ring->rxbufs[i].frag) 1492 continue; 1493 1494 nfp_net_dma_unmap_rx(dp, rx_ring->rxbufs[i].dma_addr); 1495 nfp_net_free_frag(rx_ring->rxbufs[i].frag, dp->xdp_prog); 1496 rx_ring->rxbufs[i].dma_addr = 0; 1497 rx_ring->rxbufs[i].frag = NULL; 1498 } 1499 } 1500 1501 /** 1502 * nfp_net_rx_ring_bufs_alloc() - Fill RX ring with buffers (don't give to FW) 1503 * @dp: NFP Net data path struct 1504 * @rx_ring: RX ring to remove buffers from 1505 */ 1506 static int 1507 nfp_net_rx_ring_bufs_alloc(struct nfp_net_dp *dp, 1508 struct nfp_net_rx_ring *rx_ring) 1509 { 1510 struct nfp_net_rx_buf *rxbufs; 1511 unsigned int i; 1512 1513 rxbufs = rx_ring->rxbufs; 1514 1515 for (i = 0; i < rx_ring->cnt - 1; i++) { 1516 rxbufs[i].frag = nfp_net_rx_alloc_one(dp, &rxbufs[i].dma_addr); 1517 if (!rxbufs[i].frag) { 1518 nfp_net_rx_ring_bufs_free(dp, rx_ring); 1519 return -ENOMEM; 1520 } 1521 } 1522 1523 return 0; 1524 } 1525 1526 /** 1527 * nfp_net_rx_ring_fill_freelist() - Give buffers from the ring to FW 1528 * @dp: NFP Net data path struct 1529 * @rx_ring: RX ring to fill 1530 */ 1531 static void 1532 nfp_net_rx_ring_fill_freelist(struct nfp_net_dp *dp, 1533 struct nfp_net_rx_ring *rx_ring) 1534 { 1535 unsigned int i; 1536 1537 for (i = 0; i < rx_ring->cnt - 1; i++) 1538 nfp_net_rx_give_one(dp, rx_ring, rx_ring->rxbufs[i].frag, 1539 rx_ring->rxbufs[i].dma_addr); 1540 } 1541 1542 /** 1543 * nfp_net_rx_csum_has_errors() - group check if rxd has any csum errors 1544 * @flags: RX descriptor flags field in CPU byte order 1545 */ 1546 static int nfp_net_rx_csum_has_errors(u16 flags) 1547 { 1548 u16 csum_all_checked, csum_all_ok; 1549 1550 csum_all_checked = flags & __PCIE_DESC_RX_CSUM_ALL; 1551 csum_all_ok = flags & __PCIE_DESC_RX_CSUM_ALL_OK; 1552 1553 return csum_all_checked != (csum_all_ok << PCIE_DESC_RX_CSUM_OK_SHIFT); 1554 } 1555 1556 /** 1557 * nfp_net_rx_csum() - set SKB checksum field based on RX descriptor flags 1558 * @dp: NFP Net data path struct 1559 * @r_vec: per-ring structure 1560 * @rxd: Pointer to RX descriptor 1561 * @meta: Parsed metadata prepend 1562 * @skb: Pointer to SKB 1563 */ 1564 static void nfp_net_rx_csum(struct nfp_net_dp *dp, 1565 struct nfp_net_r_vector *r_vec, 1566 struct nfp_net_rx_desc *rxd, 1567 struct nfp_meta_parsed *meta, struct sk_buff *skb) 1568 { 1569 skb_checksum_none_assert(skb); 1570 1571 if (!(dp->netdev->features & NETIF_F_RXCSUM)) 1572 return; 1573 1574 if (meta->csum_type) { 1575 skb->ip_summed = meta->csum_type; 1576 skb->csum = meta->csum; 1577 u64_stats_update_begin(&r_vec->rx_sync); 1578 r_vec->hw_csum_rx_complete++; 1579 u64_stats_update_end(&r_vec->rx_sync); 1580 return; 1581 } 1582 1583 if (nfp_net_rx_csum_has_errors(le16_to_cpu(rxd->rxd.flags))) { 1584 u64_stats_update_begin(&r_vec->rx_sync); 1585 r_vec->hw_csum_rx_error++; 1586 u64_stats_update_end(&r_vec->rx_sync); 1587 return; 1588 } 1589 1590 /* Assume that the firmware will never report inner CSUM_OK unless outer 1591 * L4 headers were successfully parsed. FW will always report zero UDP 1592 * checksum as CSUM_OK. 1593 */ 1594 if (rxd->rxd.flags & PCIE_DESC_RX_TCP_CSUM_OK || 1595 rxd->rxd.flags & PCIE_DESC_RX_UDP_CSUM_OK) { 1596 __skb_incr_checksum_unnecessary(skb); 1597 u64_stats_update_begin(&r_vec->rx_sync); 1598 r_vec->hw_csum_rx_ok++; 1599 u64_stats_update_end(&r_vec->rx_sync); 1600 } 1601 1602 if (rxd->rxd.flags & PCIE_DESC_RX_I_TCP_CSUM_OK || 1603 rxd->rxd.flags & PCIE_DESC_RX_I_UDP_CSUM_OK) { 1604 __skb_incr_checksum_unnecessary(skb); 1605 u64_stats_update_begin(&r_vec->rx_sync); 1606 r_vec->hw_csum_rx_inner_ok++; 1607 u64_stats_update_end(&r_vec->rx_sync); 1608 } 1609 } 1610 1611 static void 1612 nfp_net_set_hash(struct net_device *netdev, struct nfp_meta_parsed *meta, 1613 unsigned int type, __be32 *hash) 1614 { 1615 if (!(netdev->features & NETIF_F_RXHASH)) 1616 return; 1617 1618 switch (type) { 1619 case NFP_NET_RSS_IPV4: 1620 case NFP_NET_RSS_IPV6: 1621 case NFP_NET_RSS_IPV6_EX: 1622 meta->hash_type = PKT_HASH_TYPE_L3; 1623 break; 1624 default: 1625 meta->hash_type = PKT_HASH_TYPE_L4; 1626 break; 1627 } 1628 1629 meta->hash = get_unaligned_be32(hash); 1630 } 1631 1632 static void 1633 nfp_net_set_hash_desc(struct net_device *netdev, struct nfp_meta_parsed *meta, 1634 void *data, struct nfp_net_rx_desc *rxd) 1635 { 1636 struct nfp_net_rx_hash *rx_hash = data; 1637 1638 if (!(rxd->rxd.flags & PCIE_DESC_RX_RSS)) 1639 return; 1640 1641 nfp_net_set_hash(netdev, meta, get_unaligned_be32(&rx_hash->hash_type), 1642 &rx_hash->hash); 1643 } 1644 1645 static void * 1646 nfp_net_parse_meta(struct net_device *netdev, struct nfp_meta_parsed *meta, 1647 void *data, int meta_len) 1648 { 1649 u32 meta_info; 1650 1651 meta_info = get_unaligned_be32(data); 1652 data += 4; 1653 1654 while (meta_info) { 1655 switch (meta_info & NFP_NET_META_FIELD_MASK) { 1656 case NFP_NET_META_HASH: 1657 meta_info >>= NFP_NET_META_FIELD_SIZE; 1658 nfp_net_set_hash(netdev, meta, 1659 meta_info & NFP_NET_META_FIELD_MASK, 1660 (__be32 *)data); 1661 data += 4; 1662 break; 1663 case NFP_NET_META_MARK: 1664 meta->mark = get_unaligned_be32(data); 1665 data += 4; 1666 break; 1667 case NFP_NET_META_PORTID: 1668 meta->portid = get_unaligned_be32(data); 1669 data += 4; 1670 break; 1671 case NFP_NET_META_CSUM: 1672 meta->csum_type = CHECKSUM_COMPLETE; 1673 meta->csum = 1674 (__force __wsum)__get_unaligned_cpu32(data); 1675 data += 4; 1676 break; 1677 default: 1678 return NULL; 1679 } 1680 1681 meta_info >>= NFP_NET_META_FIELD_SIZE; 1682 } 1683 1684 return data; 1685 } 1686 1687 static void 1688 nfp_net_rx_drop(const struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec, 1689 struct nfp_net_rx_ring *rx_ring, struct nfp_net_rx_buf *rxbuf, 1690 struct sk_buff *skb) 1691 { 1692 u64_stats_update_begin(&r_vec->rx_sync); 1693 r_vec->rx_drops++; 1694 /* If we have both skb and rxbuf the replacement buffer allocation 1695 * must have failed, count this as an alloc failure. 1696 */ 1697 if (skb && rxbuf) 1698 r_vec->rx_replace_buf_alloc_fail++; 1699 u64_stats_update_end(&r_vec->rx_sync); 1700 1701 /* skb is build based on the frag, free_skb() would free the frag 1702 * so to be able to reuse it we need an extra ref. 1703 */ 1704 if (skb && rxbuf && skb->head == rxbuf->frag) 1705 page_ref_inc(virt_to_head_page(rxbuf->frag)); 1706 if (rxbuf) 1707 nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag, rxbuf->dma_addr); 1708 if (skb) 1709 dev_kfree_skb_any(skb); 1710 } 1711 1712 static bool 1713 nfp_net_tx_xdp_buf(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring, 1714 struct nfp_net_tx_ring *tx_ring, 1715 struct nfp_net_rx_buf *rxbuf, unsigned int dma_off, 1716 unsigned int pkt_len, bool *completed) 1717 { 1718 struct nfp_net_tx_buf *txbuf; 1719 struct nfp_net_tx_desc *txd; 1720 int wr_idx; 1721 1722 if (unlikely(nfp_net_tx_full(tx_ring, 1))) { 1723 if (!*completed) { 1724 nfp_net_xdp_complete(tx_ring); 1725 *completed = true; 1726 } 1727 1728 if (unlikely(nfp_net_tx_full(tx_ring, 1))) { 1729 nfp_net_rx_drop(dp, rx_ring->r_vec, rx_ring, rxbuf, 1730 NULL); 1731 return false; 1732 } 1733 } 1734 1735 wr_idx = D_IDX(tx_ring, tx_ring->wr_p); 1736 1737 /* Stash the soft descriptor of the head then initialize it */ 1738 txbuf = &tx_ring->txbufs[wr_idx]; 1739 1740 nfp_net_rx_give_one(dp, rx_ring, txbuf->frag, txbuf->dma_addr); 1741 1742 txbuf->frag = rxbuf->frag; 1743 txbuf->dma_addr = rxbuf->dma_addr; 1744 txbuf->fidx = -1; 1745 txbuf->pkt_cnt = 1; 1746 txbuf->real_len = pkt_len; 1747 1748 dma_sync_single_for_device(dp->dev, rxbuf->dma_addr + dma_off, 1749 pkt_len, DMA_BIDIRECTIONAL); 1750 1751 /* Build TX descriptor */ 1752 txd = &tx_ring->txds[wr_idx]; 1753 txd->offset_eop = PCIE_DESC_TX_EOP; 1754 txd->dma_len = cpu_to_le16(pkt_len); 1755 nfp_desc_set_dma_addr(txd, rxbuf->dma_addr + dma_off); 1756 txd->data_len = cpu_to_le16(pkt_len); 1757 1758 txd->flags = 0; 1759 txd->mss = 0; 1760 txd->lso_hdrlen = 0; 1761 1762 tx_ring->wr_p++; 1763 tx_ring->wr_ptr_add++; 1764 return true; 1765 } 1766 1767 /** 1768 * nfp_net_rx() - receive up to @budget packets on @rx_ring 1769 * @rx_ring: RX ring to receive from 1770 * @budget: NAPI budget 1771 * 1772 * Note, this function is separated out from the napi poll function to 1773 * more cleanly separate packet receive code from other bookkeeping 1774 * functions performed in the napi poll function. 1775 * 1776 * Return: Number of packets received. 1777 */ 1778 static int nfp_net_rx(struct nfp_net_rx_ring *rx_ring, int budget) 1779 { 1780 struct nfp_net_r_vector *r_vec = rx_ring->r_vec; 1781 struct nfp_net_dp *dp = &r_vec->nfp_net->dp; 1782 struct nfp_net_tx_ring *tx_ring; 1783 struct bpf_prog *xdp_prog; 1784 bool xdp_tx_cmpl = false; 1785 unsigned int true_bufsz; 1786 struct sk_buff *skb; 1787 int pkts_polled = 0; 1788 struct xdp_buff xdp; 1789 int idx; 1790 1791 rcu_read_lock(); 1792 xdp_prog = READ_ONCE(dp->xdp_prog); 1793 true_bufsz = xdp_prog ? PAGE_SIZE : dp->fl_bufsz; 1794 xdp.rxq = &rx_ring->xdp_rxq; 1795 tx_ring = r_vec->xdp_ring; 1796 1797 while (pkts_polled < budget) { 1798 unsigned int meta_len, data_len, meta_off, pkt_len, pkt_off; 1799 struct nfp_net_rx_buf *rxbuf; 1800 struct nfp_net_rx_desc *rxd; 1801 struct nfp_meta_parsed meta; 1802 bool redir_egress = false; 1803 struct net_device *netdev; 1804 dma_addr_t new_dma_addr; 1805 u32 meta_len_xdp = 0; 1806 void *new_frag; 1807 1808 idx = D_IDX(rx_ring, rx_ring->rd_p); 1809 1810 rxd = &rx_ring->rxds[idx]; 1811 if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD)) 1812 break; 1813 1814 /* Memory barrier to ensure that we won't do other reads 1815 * before the DD bit. 1816 */ 1817 dma_rmb(); 1818 1819 memset(&meta, 0, sizeof(meta)); 1820 1821 rx_ring->rd_p++; 1822 pkts_polled++; 1823 1824 rxbuf = &rx_ring->rxbufs[idx]; 1825 /* < meta_len > 1826 * <-- [rx_offset] --> 1827 * --------------------------------------------------------- 1828 * | [XX] | metadata | packet | XXXX | 1829 * --------------------------------------------------------- 1830 * <---------------- data_len ---------------> 1831 * 1832 * The rx_offset is fixed for all packets, the meta_len can vary 1833 * on a packet by packet basis. If rx_offset is set to zero 1834 * (_RX_OFFSET_DYNAMIC) metadata starts at the beginning of the 1835 * buffer and is immediately followed by the packet (no [XX]). 1836 */ 1837 meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK; 1838 data_len = le16_to_cpu(rxd->rxd.data_len); 1839 pkt_len = data_len - meta_len; 1840 1841 pkt_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_dma_off; 1842 if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC) 1843 pkt_off += meta_len; 1844 else 1845 pkt_off += dp->rx_offset; 1846 meta_off = pkt_off - meta_len; 1847 1848 /* Stats update */ 1849 u64_stats_update_begin(&r_vec->rx_sync); 1850 r_vec->rx_pkts++; 1851 r_vec->rx_bytes += pkt_len; 1852 u64_stats_update_end(&r_vec->rx_sync); 1853 1854 if (unlikely(meta_len > NFP_NET_MAX_PREPEND || 1855 (dp->rx_offset && meta_len > dp->rx_offset))) { 1856 nn_dp_warn(dp, "oversized RX packet metadata %u\n", 1857 meta_len); 1858 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL); 1859 continue; 1860 } 1861 1862 nfp_net_dma_sync_cpu_rx(dp, rxbuf->dma_addr + meta_off, 1863 data_len); 1864 1865 if (!dp->chained_metadata_format) { 1866 nfp_net_set_hash_desc(dp->netdev, &meta, 1867 rxbuf->frag + meta_off, rxd); 1868 } else if (meta_len) { 1869 void *end; 1870 1871 end = nfp_net_parse_meta(dp->netdev, &meta, 1872 rxbuf->frag + meta_off, 1873 meta_len); 1874 if (unlikely(end != rxbuf->frag + pkt_off)) { 1875 nn_dp_warn(dp, "invalid RX packet metadata\n"); 1876 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, 1877 NULL); 1878 continue; 1879 } 1880 } 1881 1882 if (xdp_prog && !meta.portid) { 1883 void *orig_data = rxbuf->frag + pkt_off; 1884 unsigned int dma_off; 1885 int act; 1886 1887 xdp.data_hard_start = rxbuf->frag + NFP_NET_RX_BUF_HEADROOM; 1888 xdp.data = orig_data; 1889 xdp.data_meta = orig_data; 1890 xdp.data_end = orig_data + pkt_len; 1891 1892 act = bpf_prog_run_xdp(xdp_prog, &xdp); 1893 1894 pkt_len = xdp.data_end - xdp.data; 1895 pkt_off += xdp.data - orig_data; 1896 1897 switch (act) { 1898 case XDP_PASS: 1899 meta_len_xdp = xdp.data - xdp.data_meta; 1900 break; 1901 case XDP_TX: 1902 dma_off = pkt_off - NFP_NET_RX_BUF_HEADROOM; 1903 if (unlikely(!nfp_net_tx_xdp_buf(dp, rx_ring, 1904 tx_ring, rxbuf, 1905 dma_off, 1906 pkt_len, 1907 &xdp_tx_cmpl))) 1908 trace_xdp_exception(dp->netdev, 1909 xdp_prog, act); 1910 continue; 1911 default: 1912 bpf_warn_invalid_xdp_action(act); 1913 /* fall through */ 1914 case XDP_ABORTED: 1915 trace_xdp_exception(dp->netdev, xdp_prog, act); 1916 /* fall through */ 1917 case XDP_DROP: 1918 nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag, 1919 rxbuf->dma_addr); 1920 continue; 1921 } 1922 } 1923 1924 if (likely(!meta.portid)) { 1925 netdev = dp->netdev; 1926 } else if (meta.portid == NFP_META_PORT_ID_CTRL) { 1927 struct nfp_net *nn = netdev_priv(dp->netdev); 1928 1929 nfp_app_ctrl_rx_raw(nn->app, rxbuf->frag + pkt_off, 1930 pkt_len); 1931 nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag, 1932 rxbuf->dma_addr); 1933 continue; 1934 } else { 1935 struct nfp_net *nn; 1936 1937 nn = netdev_priv(dp->netdev); 1938 netdev = nfp_app_dev_get(nn->app, meta.portid, 1939 &redir_egress); 1940 if (unlikely(!netdev)) { 1941 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, 1942 NULL); 1943 continue; 1944 } 1945 1946 if (nfp_netdev_is_nfp_repr(netdev)) 1947 nfp_repr_inc_rx_stats(netdev, pkt_len); 1948 } 1949 1950 skb = build_skb(rxbuf->frag, true_bufsz); 1951 if (unlikely(!skb)) { 1952 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL); 1953 continue; 1954 } 1955 new_frag = nfp_net_napi_alloc_one(dp, &new_dma_addr); 1956 if (unlikely(!new_frag)) { 1957 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, skb); 1958 continue; 1959 } 1960 1961 nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr); 1962 1963 nfp_net_rx_give_one(dp, rx_ring, new_frag, new_dma_addr); 1964 1965 skb_reserve(skb, pkt_off); 1966 skb_put(skb, pkt_len); 1967 1968 skb->mark = meta.mark; 1969 skb_set_hash(skb, meta.hash, meta.hash_type); 1970 1971 skb_record_rx_queue(skb, rx_ring->idx); 1972 skb->protocol = eth_type_trans(skb, netdev); 1973 1974 nfp_net_rx_csum(dp, r_vec, rxd, &meta, skb); 1975 1976 #ifdef CONFIG_TLS_DEVICE 1977 if (rxd->rxd.flags & PCIE_DESC_RX_DECRYPTED) { 1978 skb->decrypted = true; 1979 u64_stats_update_begin(&r_vec->rx_sync); 1980 r_vec->hw_tls_rx++; 1981 u64_stats_update_end(&r_vec->rx_sync); 1982 } 1983 #endif 1984 1985 if (rxd->rxd.flags & PCIE_DESC_RX_VLAN) 1986 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 1987 le16_to_cpu(rxd->rxd.vlan)); 1988 if (meta_len_xdp) 1989 skb_metadata_set(skb, meta_len_xdp); 1990 1991 if (likely(!redir_egress)) { 1992 napi_gro_receive(&rx_ring->r_vec->napi, skb); 1993 } else { 1994 skb->dev = netdev; 1995 skb_reset_network_header(skb); 1996 __skb_push(skb, ETH_HLEN); 1997 dev_queue_xmit(skb); 1998 } 1999 } 2000 2001 if (xdp_prog) { 2002 if (tx_ring->wr_ptr_add) 2003 nfp_net_tx_xmit_more_flush(tx_ring); 2004 else if (unlikely(tx_ring->wr_p != tx_ring->rd_p) && 2005 !xdp_tx_cmpl) 2006 if (!nfp_net_xdp_complete(tx_ring)) 2007 pkts_polled = budget; 2008 } 2009 rcu_read_unlock(); 2010 2011 return pkts_polled; 2012 } 2013 2014 /** 2015 * nfp_net_poll() - napi poll function 2016 * @napi: NAPI structure 2017 * @budget: NAPI budget 2018 * 2019 * Return: number of packets polled. 2020 */ 2021 static int nfp_net_poll(struct napi_struct *napi, int budget) 2022 { 2023 struct nfp_net_r_vector *r_vec = 2024 container_of(napi, struct nfp_net_r_vector, napi); 2025 unsigned int pkts_polled = 0; 2026 2027 if (r_vec->tx_ring) 2028 nfp_net_tx_complete(r_vec->tx_ring, budget); 2029 if (r_vec->rx_ring) 2030 pkts_polled = nfp_net_rx(r_vec->rx_ring, budget); 2031 2032 if (pkts_polled < budget) 2033 if (napi_complete_done(napi, pkts_polled)) 2034 nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry); 2035 2036 return pkts_polled; 2037 } 2038 2039 /* Control device data path 2040 */ 2041 2042 static bool 2043 nfp_ctrl_tx_one(struct nfp_net *nn, struct nfp_net_r_vector *r_vec, 2044 struct sk_buff *skb, bool old) 2045 { 2046 unsigned int real_len = skb->len, meta_len = 0; 2047 struct nfp_net_tx_ring *tx_ring; 2048 struct nfp_net_tx_buf *txbuf; 2049 struct nfp_net_tx_desc *txd; 2050 struct nfp_net_dp *dp; 2051 dma_addr_t dma_addr; 2052 int wr_idx; 2053 2054 dp = &r_vec->nfp_net->dp; 2055 tx_ring = r_vec->tx_ring; 2056 2057 if (WARN_ON_ONCE(skb_shinfo(skb)->nr_frags)) { 2058 nn_dp_warn(dp, "Driver's CTRL TX does not implement gather\n"); 2059 goto err_free; 2060 } 2061 2062 if (unlikely(nfp_net_tx_full(tx_ring, 1))) { 2063 u64_stats_update_begin(&r_vec->tx_sync); 2064 r_vec->tx_busy++; 2065 u64_stats_update_end(&r_vec->tx_sync); 2066 if (!old) 2067 __skb_queue_tail(&r_vec->queue, skb); 2068 else 2069 __skb_queue_head(&r_vec->queue, skb); 2070 return true; 2071 } 2072 2073 if (nfp_app_ctrl_has_meta(nn->app)) { 2074 if (unlikely(skb_headroom(skb) < 8)) { 2075 nn_dp_warn(dp, "CTRL TX on skb without headroom\n"); 2076 goto err_free; 2077 } 2078 meta_len = 8; 2079 put_unaligned_be32(NFP_META_PORT_ID_CTRL, skb_push(skb, 4)); 2080 put_unaligned_be32(NFP_NET_META_PORTID, skb_push(skb, 4)); 2081 } 2082 2083 /* Start with the head skbuf */ 2084 dma_addr = dma_map_single(dp->dev, skb->data, skb_headlen(skb), 2085 DMA_TO_DEVICE); 2086 if (dma_mapping_error(dp->dev, dma_addr)) 2087 goto err_dma_warn; 2088 2089 wr_idx = D_IDX(tx_ring, tx_ring->wr_p); 2090 2091 /* Stash the soft descriptor of the head then initialize it */ 2092 txbuf = &tx_ring->txbufs[wr_idx]; 2093 txbuf->skb = skb; 2094 txbuf->dma_addr = dma_addr; 2095 txbuf->fidx = -1; 2096 txbuf->pkt_cnt = 1; 2097 txbuf->real_len = real_len; 2098 2099 /* Build TX descriptor */ 2100 txd = &tx_ring->txds[wr_idx]; 2101 txd->offset_eop = meta_len | PCIE_DESC_TX_EOP; 2102 txd->dma_len = cpu_to_le16(skb_headlen(skb)); 2103 nfp_desc_set_dma_addr(txd, dma_addr); 2104 txd->data_len = cpu_to_le16(skb->len); 2105 2106 txd->flags = 0; 2107 txd->mss = 0; 2108 txd->lso_hdrlen = 0; 2109 2110 tx_ring->wr_p++; 2111 tx_ring->wr_ptr_add++; 2112 nfp_net_tx_xmit_more_flush(tx_ring); 2113 2114 return false; 2115 2116 err_dma_warn: 2117 nn_dp_warn(dp, "Failed to DMA map TX CTRL buffer\n"); 2118 err_free: 2119 u64_stats_update_begin(&r_vec->tx_sync); 2120 r_vec->tx_errors++; 2121 u64_stats_update_end(&r_vec->tx_sync); 2122 dev_kfree_skb_any(skb); 2123 return false; 2124 } 2125 2126 bool __nfp_ctrl_tx(struct nfp_net *nn, struct sk_buff *skb) 2127 { 2128 struct nfp_net_r_vector *r_vec = &nn->r_vecs[0]; 2129 2130 return nfp_ctrl_tx_one(nn, r_vec, skb, false); 2131 } 2132 2133 bool nfp_ctrl_tx(struct nfp_net *nn, struct sk_buff *skb) 2134 { 2135 struct nfp_net_r_vector *r_vec = &nn->r_vecs[0]; 2136 bool ret; 2137 2138 spin_lock_bh(&r_vec->lock); 2139 ret = nfp_ctrl_tx_one(nn, r_vec, skb, false); 2140 spin_unlock_bh(&r_vec->lock); 2141 2142 return ret; 2143 } 2144 2145 static void __nfp_ctrl_tx_queued(struct nfp_net_r_vector *r_vec) 2146 { 2147 struct sk_buff *skb; 2148 2149 while ((skb = __skb_dequeue(&r_vec->queue))) 2150 if (nfp_ctrl_tx_one(r_vec->nfp_net, r_vec, skb, true)) 2151 return; 2152 } 2153 2154 static bool 2155 nfp_ctrl_meta_ok(struct nfp_net *nn, void *data, unsigned int meta_len) 2156 { 2157 u32 meta_type, meta_tag; 2158 2159 if (!nfp_app_ctrl_has_meta(nn->app)) 2160 return !meta_len; 2161 2162 if (meta_len != 8) 2163 return false; 2164 2165 meta_type = get_unaligned_be32(data); 2166 meta_tag = get_unaligned_be32(data + 4); 2167 2168 return (meta_type == NFP_NET_META_PORTID && 2169 meta_tag == NFP_META_PORT_ID_CTRL); 2170 } 2171 2172 static bool 2173 nfp_ctrl_rx_one(struct nfp_net *nn, struct nfp_net_dp *dp, 2174 struct nfp_net_r_vector *r_vec, struct nfp_net_rx_ring *rx_ring) 2175 { 2176 unsigned int meta_len, data_len, meta_off, pkt_len, pkt_off; 2177 struct nfp_net_rx_buf *rxbuf; 2178 struct nfp_net_rx_desc *rxd; 2179 dma_addr_t new_dma_addr; 2180 struct sk_buff *skb; 2181 void *new_frag; 2182 int idx; 2183 2184 idx = D_IDX(rx_ring, rx_ring->rd_p); 2185 2186 rxd = &rx_ring->rxds[idx]; 2187 if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD)) 2188 return false; 2189 2190 /* Memory barrier to ensure that we won't do other reads 2191 * before the DD bit. 2192 */ 2193 dma_rmb(); 2194 2195 rx_ring->rd_p++; 2196 2197 rxbuf = &rx_ring->rxbufs[idx]; 2198 meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK; 2199 data_len = le16_to_cpu(rxd->rxd.data_len); 2200 pkt_len = data_len - meta_len; 2201 2202 pkt_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_dma_off; 2203 if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC) 2204 pkt_off += meta_len; 2205 else 2206 pkt_off += dp->rx_offset; 2207 meta_off = pkt_off - meta_len; 2208 2209 /* Stats update */ 2210 u64_stats_update_begin(&r_vec->rx_sync); 2211 r_vec->rx_pkts++; 2212 r_vec->rx_bytes += pkt_len; 2213 u64_stats_update_end(&r_vec->rx_sync); 2214 2215 nfp_net_dma_sync_cpu_rx(dp, rxbuf->dma_addr + meta_off, data_len); 2216 2217 if (unlikely(!nfp_ctrl_meta_ok(nn, rxbuf->frag + meta_off, meta_len))) { 2218 nn_dp_warn(dp, "incorrect metadata for ctrl packet (%d)\n", 2219 meta_len); 2220 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL); 2221 return true; 2222 } 2223 2224 skb = build_skb(rxbuf->frag, dp->fl_bufsz); 2225 if (unlikely(!skb)) { 2226 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL); 2227 return true; 2228 } 2229 new_frag = nfp_net_napi_alloc_one(dp, &new_dma_addr); 2230 if (unlikely(!new_frag)) { 2231 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, skb); 2232 return true; 2233 } 2234 2235 nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr); 2236 2237 nfp_net_rx_give_one(dp, rx_ring, new_frag, new_dma_addr); 2238 2239 skb_reserve(skb, pkt_off); 2240 skb_put(skb, pkt_len); 2241 2242 nfp_app_ctrl_rx(nn->app, skb); 2243 2244 return true; 2245 } 2246 2247 static bool nfp_ctrl_rx(struct nfp_net_r_vector *r_vec) 2248 { 2249 struct nfp_net_rx_ring *rx_ring = r_vec->rx_ring; 2250 struct nfp_net *nn = r_vec->nfp_net; 2251 struct nfp_net_dp *dp = &nn->dp; 2252 unsigned int budget = 512; 2253 2254 while (nfp_ctrl_rx_one(nn, dp, r_vec, rx_ring) && budget--) 2255 continue; 2256 2257 return budget; 2258 } 2259 2260 static void nfp_ctrl_poll(unsigned long arg) 2261 { 2262 struct nfp_net_r_vector *r_vec = (void *)arg; 2263 2264 spin_lock(&r_vec->lock); 2265 nfp_net_tx_complete(r_vec->tx_ring, 0); 2266 __nfp_ctrl_tx_queued(r_vec); 2267 spin_unlock(&r_vec->lock); 2268 2269 if (nfp_ctrl_rx(r_vec)) { 2270 nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry); 2271 } else { 2272 tasklet_schedule(&r_vec->tasklet); 2273 nn_dp_warn(&r_vec->nfp_net->dp, 2274 "control message budget exceeded!\n"); 2275 } 2276 } 2277 2278 /* Setup and Configuration 2279 */ 2280 2281 /** 2282 * nfp_net_vecs_init() - Assign IRQs and setup rvecs. 2283 * @nn: NFP Network structure 2284 */ 2285 static void nfp_net_vecs_init(struct nfp_net *nn) 2286 { 2287 struct nfp_net_r_vector *r_vec; 2288 int r; 2289 2290 nn->lsc_handler = nfp_net_irq_lsc; 2291 nn->exn_handler = nfp_net_irq_exn; 2292 2293 for (r = 0; r < nn->max_r_vecs; r++) { 2294 struct msix_entry *entry; 2295 2296 entry = &nn->irq_entries[NFP_NET_NON_Q_VECTORS + r]; 2297 2298 r_vec = &nn->r_vecs[r]; 2299 r_vec->nfp_net = nn; 2300 r_vec->irq_entry = entry->entry; 2301 r_vec->irq_vector = entry->vector; 2302 2303 if (nn->dp.netdev) { 2304 r_vec->handler = nfp_net_irq_rxtx; 2305 } else { 2306 r_vec->handler = nfp_ctrl_irq_rxtx; 2307 2308 __skb_queue_head_init(&r_vec->queue); 2309 spin_lock_init(&r_vec->lock); 2310 tasklet_init(&r_vec->tasklet, nfp_ctrl_poll, 2311 (unsigned long)r_vec); 2312 tasklet_disable(&r_vec->tasklet); 2313 } 2314 2315 cpumask_set_cpu(r, &r_vec->affinity_mask); 2316 } 2317 } 2318 2319 /** 2320 * nfp_net_tx_ring_free() - Free resources allocated to a TX ring 2321 * @tx_ring: TX ring to free 2322 */ 2323 static void nfp_net_tx_ring_free(struct nfp_net_tx_ring *tx_ring) 2324 { 2325 struct nfp_net_r_vector *r_vec = tx_ring->r_vec; 2326 struct nfp_net_dp *dp = &r_vec->nfp_net->dp; 2327 2328 kvfree(tx_ring->txbufs); 2329 2330 if (tx_ring->txds) 2331 dma_free_coherent(dp->dev, tx_ring->size, 2332 tx_ring->txds, tx_ring->dma); 2333 2334 tx_ring->cnt = 0; 2335 tx_ring->txbufs = NULL; 2336 tx_ring->txds = NULL; 2337 tx_ring->dma = 0; 2338 tx_ring->size = 0; 2339 } 2340 2341 /** 2342 * nfp_net_tx_ring_alloc() - Allocate resource for a TX ring 2343 * @dp: NFP Net data path struct 2344 * @tx_ring: TX Ring structure to allocate 2345 * 2346 * Return: 0 on success, negative errno otherwise. 2347 */ 2348 static int 2349 nfp_net_tx_ring_alloc(struct nfp_net_dp *dp, struct nfp_net_tx_ring *tx_ring) 2350 { 2351 struct nfp_net_r_vector *r_vec = tx_ring->r_vec; 2352 2353 tx_ring->cnt = dp->txd_cnt; 2354 2355 tx_ring->size = array_size(tx_ring->cnt, sizeof(*tx_ring->txds)); 2356 tx_ring->txds = dma_alloc_coherent(dp->dev, tx_ring->size, 2357 &tx_ring->dma, 2358 GFP_KERNEL | __GFP_NOWARN); 2359 if (!tx_ring->txds) { 2360 netdev_warn(dp->netdev, "failed to allocate TX descriptor ring memory, requested descriptor count: %d, consider lowering descriptor count\n", 2361 tx_ring->cnt); 2362 goto err_alloc; 2363 } 2364 2365 tx_ring->txbufs = kvcalloc(tx_ring->cnt, sizeof(*tx_ring->txbufs), 2366 GFP_KERNEL); 2367 if (!tx_ring->txbufs) 2368 goto err_alloc; 2369 2370 if (!tx_ring->is_xdp && dp->netdev) 2371 netif_set_xps_queue(dp->netdev, &r_vec->affinity_mask, 2372 tx_ring->idx); 2373 2374 return 0; 2375 2376 err_alloc: 2377 nfp_net_tx_ring_free(tx_ring); 2378 return -ENOMEM; 2379 } 2380 2381 static void 2382 nfp_net_tx_ring_bufs_free(struct nfp_net_dp *dp, 2383 struct nfp_net_tx_ring *tx_ring) 2384 { 2385 unsigned int i; 2386 2387 if (!tx_ring->is_xdp) 2388 return; 2389 2390 for (i = 0; i < tx_ring->cnt; i++) { 2391 if (!tx_ring->txbufs[i].frag) 2392 return; 2393 2394 nfp_net_dma_unmap_rx(dp, tx_ring->txbufs[i].dma_addr); 2395 __free_page(virt_to_page(tx_ring->txbufs[i].frag)); 2396 } 2397 } 2398 2399 static int 2400 nfp_net_tx_ring_bufs_alloc(struct nfp_net_dp *dp, 2401 struct nfp_net_tx_ring *tx_ring) 2402 { 2403 struct nfp_net_tx_buf *txbufs = tx_ring->txbufs; 2404 unsigned int i; 2405 2406 if (!tx_ring->is_xdp) 2407 return 0; 2408 2409 for (i = 0; i < tx_ring->cnt; i++) { 2410 txbufs[i].frag = nfp_net_rx_alloc_one(dp, &txbufs[i].dma_addr); 2411 if (!txbufs[i].frag) { 2412 nfp_net_tx_ring_bufs_free(dp, tx_ring); 2413 return -ENOMEM; 2414 } 2415 } 2416 2417 return 0; 2418 } 2419 2420 static int nfp_net_tx_rings_prepare(struct nfp_net *nn, struct nfp_net_dp *dp) 2421 { 2422 unsigned int r; 2423 2424 dp->tx_rings = kcalloc(dp->num_tx_rings, sizeof(*dp->tx_rings), 2425 GFP_KERNEL); 2426 if (!dp->tx_rings) 2427 return -ENOMEM; 2428 2429 for (r = 0; r < dp->num_tx_rings; r++) { 2430 int bias = 0; 2431 2432 if (r >= dp->num_stack_tx_rings) 2433 bias = dp->num_stack_tx_rings; 2434 2435 nfp_net_tx_ring_init(&dp->tx_rings[r], &nn->r_vecs[r - bias], 2436 r, bias); 2437 2438 if (nfp_net_tx_ring_alloc(dp, &dp->tx_rings[r])) 2439 goto err_free_prev; 2440 2441 if (nfp_net_tx_ring_bufs_alloc(dp, &dp->tx_rings[r])) 2442 goto err_free_ring; 2443 } 2444 2445 return 0; 2446 2447 err_free_prev: 2448 while (r--) { 2449 nfp_net_tx_ring_bufs_free(dp, &dp->tx_rings[r]); 2450 err_free_ring: 2451 nfp_net_tx_ring_free(&dp->tx_rings[r]); 2452 } 2453 kfree(dp->tx_rings); 2454 return -ENOMEM; 2455 } 2456 2457 static void nfp_net_tx_rings_free(struct nfp_net_dp *dp) 2458 { 2459 unsigned int r; 2460 2461 for (r = 0; r < dp->num_tx_rings; r++) { 2462 nfp_net_tx_ring_bufs_free(dp, &dp->tx_rings[r]); 2463 nfp_net_tx_ring_free(&dp->tx_rings[r]); 2464 } 2465 2466 kfree(dp->tx_rings); 2467 } 2468 2469 /** 2470 * nfp_net_rx_ring_free() - Free resources allocated to a RX ring 2471 * @rx_ring: RX ring to free 2472 */ 2473 static void nfp_net_rx_ring_free(struct nfp_net_rx_ring *rx_ring) 2474 { 2475 struct nfp_net_r_vector *r_vec = rx_ring->r_vec; 2476 struct nfp_net_dp *dp = &r_vec->nfp_net->dp; 2477 2478 if (dp->netdev) 2479 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 2480 kvfree(rx_ring->rxbufs); 2481 2482 if (rx_ring->rxds) 2483 dma_free_coherent(dp->dev, rx_ring->size, 2484 rx_ring->rxds, rx_ring->dma); 2485 2486 rx_ring->cnt = 0; 2487 rx_ring->rxbufs = NULL; 2488 rx_ring->rxds = NULL; 2489 rx_ring->dma = 0; 2490 rx_ring->size = 0; 2491 } 2492 2493 /** 2494 * nfp_net_rx_ring_alloc() - Allocate resource for a RX ring 2495 * @dp: NFP Net data path struct 2496 * @rx_ring: RX ring to allocate 2497 * 2498 * Return: 0 on success, negative errno otherwise. 2499 */ 2500 static int 2501 nfp_net_rx_ring_alloc(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring) 2502 { 2503 int err; 2504 2505 if (dp->netdev) { 2506 err = xdp_rxq_info_reg(&rx_ring->xdp_rxq, dp->netdev, 2507 rx_ring->idx); 2508 if (err < 0) 2509 return err; 2510 } 2511 2512 rx_ring->cnt = dp->rxd_cnt; 2513 rx_ring->size = array_size(rx_ring->cnt, sizeof(*rx_ring->rxds)); 2514 rx_ring->rxds = dma_alloc_coherent(dp->dev, rx_ring->size, 2515 &rx_ring->dma, 2516 GFP_KERNEL | __GFP_NOWARN); 2517 if (!rx_ring->rxds) { 2518 netdev_warn(dp->netdev, "failed to allocate RX descriptor ring memory, requested descriptor count: %d, consider lowering descriptor count\n", 2519 rx_ring->cnt); 2520 goto err_alloc; 2521 } 2522 2523 rx_ring->rxbufs = kvcalloc(rx_ring->cnt, sizeof(*rx_ring->rxbufs), 2524 GFP_KERNEL); 2525 if (!rx_ring->rxbufs) 2526 goto err_alloc; 2527 2528 return 0; 2529 2530 err_alloc: 2531 nfp_net_rx_ring_free(rx_ring); 2532 return -ENOMEM; 2533 } 2534 2535 static int nfp_net_rx_rings_prepare(struct nfp_net *nn, struct nfp_net_dp *dp) 2536 { 2537 unsigned int r; 2538 2539 dp->rx_rings = kcalloc(dp->num_rx_rings, sizeof(*dp->rx_rings), 2540 GFP_KERNEL); 2541 if (!dp->rx_rings) 2542 return -ENOMEM; 2543 2544 for (r = 0; r < dp->num_rx_rings; r++) { 2545 nfp_net_rx_ring_init(&dp->rx_rings[r], &nn->r_vecs[r], r); 2546 2547 if (nfp_net_rx_ring_alloc(dp, &dp->rx_rings[r])) 2548 goto err_free_prev; 2549 2550 if (nfp_net_rx_ring_bufs_alloc(dp, &dp->rx_rings[r])) 2551 goto err_free_ring; 2552 } 2553 2554 return 0; 2555 2556 err_free_prev: 2557 while (r--) { 2558 nfp_net_rx_ring_bufs_free(dp, &dp->rx_rings[r]); 2559 err_free_ring: 2560 nfp_net_rx_ring_free(&dp->rx_rings[r]); 2561 } 2562 kfree(dp->rx_rings); 2563 return -ENOMEM; 2564 } 2565 2566 static void nfp_net_rx_rings_free(struct nfp_net_dp *dp) 2567 { 2568 unsigned int r; 2569 2570 for (r = 0; r < dp->num_rx_rings; r++) { 2571 nfp_net_rx_ring_bufs_free(dp, &dp->rx_rings[r]); 2572 nfp_net_rx_ring_free(&dp->rx_rings[r]); 2573 } 2574 2575 kfree(dp->rx_rings); 2576 } 2577 2578 static void 2579 nfp_net_vector_assign_rings(struct nfp_net_dp *dp, 2580 struct nfp_net_r_vector *r_vec, int idx) 2581 { 2582 r_vec->rx_ring = idx < dp->num_rx_rings ? &dp->rx_rings[idx] : NULL; 2583 r_vec->tx_ring = 2584 idx < dp->num_stack_tx_rings ? &dp->tx_rings[idx] : NULL; 2585 2586 r_vec->xdp_ring = idx < dp->num_tx_rings - dp->num_stack_tx_rings ? 2587 &dp->tx_rings[dp->num_stack_tx_rings + idx] : NULL; 2588 } 2589 2590 static int 2591 nfp_net_prepare_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec, 2592 int idx) 2593 { 2594 int err; 2595 2596 /* Setup NAPI */ 2597 if (nn->dp.netdev) 2598 netif_napi_add(nn->dp.netdev, &r_vec->napi, 2599 nfp_net_poll, NAPI_POLL_WEIGHT); 2600 else 2601 tasklet_enable(&r_vec->tasklet); 2602 2603 snprintf(r_vec->name, sizeof(r_vec->name), 2604 "%s-rxtx-%d", nfp_net_name(nn), idx); 2605 err = request_irq(r_vec->irq_vector, r_vec->handler, 0, r_vec->name, 2606 r_vec); 2607 if (err) { 2608 if (nn->dp.netdev) 2609 netif_napi_del(&r_vec->napi); 2610 else 2611 tasklet_disable(&r_vec->tasklet); 2612 2613 nn_err(nn, "Error requesting IRQ %d\n", r_vec->irq_vector); 2614 return err; 2615 } 2616 disable_irq(r_vec->irq_vector); 2617 2618 irq_set_affinity_hint(r_vec->irq_vector, &r_vec->affinity_mask); 2619 2620 nn_dbg(nn, "RV%02d: irq=%03d/%03d\n", idx, r_vec->irq_vector, 2621 r_vec->irq_entry); 2622 2623 return 0; 2624 } 2625 2626 static void 2627 nfp_net_cleanup_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec) 2628 { 2629 irq_set_affinity_hint(r_vec->irq_vector, NULL); 2630 if (nn->dp.netdev) 2631 netif_napi_del(&r_vec->napi); 2632 else 2633 tasklet_disable(&r_vec->tasklet); 2634 2635 free_irq(r_vec->irq_vector, r_vec); 2636 } 2637 2638 /** 2639 * nfp_net_rss_write_itbl() - Write RSS indirection table to device 2640 * @nn: NFP Net device to reconfigure 2641 */ 2642 void nfp_net_rss_write_itbl(struct nfp_net *nn) 2643 { 2644 int i; 2645 2646 for (i = 0; i < NFP_NET_CFG_RSS_ITBL_SZ; i += 4) 2647 nn_writel(nn, NFP_NET_CFG_RSS_ITBL + i, 2648 get_unaligned_le32(nn->rss_itbl + i)); 2649 } 2650 2651 /** 2652 * nfp_net_rss_write_key() - Write RSS hash key to device 2653 * @nn: NFP Net device to reconfigure 2654 */ 2655 void nfp_net_rss_write_key(struct nfp_net *nn) 2656 { 2657 int i; 2658 2659 for (i = 0; i < nfp_net_rss_key_sz(nn); i += 4) 2660 nn_writel(nn, NFP_NET_CFG_RSS_KEY + i, 2661 get_unaligned_le32(nn->rss_key + i)); 2662 } 2663 2664 /** 2665 * nfp_net_coalesce_write_cfg() - Write irq coalescence configuration to HW 2666 * @nn: NFP Net device to reconfigure 2667 */ 2668 void nfp_net_coalesce_write_cfg(struct nfp_net *nn) 2669 { 2670 u8 i; 2671 u32 factor; 2672 u32 value; 2673 2674 /* Compute factor used to convert coalesce '_usecs' parameters to 2675 * ME timestamp ticks. There are 16 ME clock cycles for each timestamp 2676 * count. 2677 */ 2678 factor = nn->tlv_caps.me_freq_mhz / 16; 2679 2680 /* copy RX interrupt coalesce parameters */ 2681 value = (nn->rx_coalesce_max_frames << 16) | 2682 (factor * nn->rx_coalesce_usecs); 2683 for (i = 0; i < nn->dp.num_rx_rings; i++) 2684 nn_writel(nn, NFP_NET_CFG_RXR_IRQ_MOD(i), value); 2685 2686 /* copy TX interrupt coalesce parameters */ 2687 value = (nn->tx_coalesce_max_frames << 16) | 2688 (factor * nn->tx_coalesce_usecs); 2689 for (i = 0; i < nn->dp.num_tx_rings; i++) 2690 nn_writel(nn, NFP_NET_CFG_TXR_IRQ_MOD(i), value); 2691 } 2692 2693 /** 2694 * nfp_net_write_mac_addr() - Write mac address to the device control BAR 2695 * @nn: NFP Net device to reconfigure 2696 * @addr: MAC address to write 2697 * 2698 * Writes the MAC address from the netdev to the device control BAR. Does not 2699 * perform the required reconfig. We do a bit of byte swapping dance because 2700 * firmware is LE. 2701 */ 2702 static void nfp_net_write_mac_addr(struct nfp_net *nn, const u8 *addr) 2703 { 2704 nn_writel(nn, NFP_NET_CFG_MACADDR + 0, get_unaligned_be32(addr)); 2705 nn_writew(nn, NFP_NET_CFG_MACADDR + 6, get_unaligned_be16(addr + 4)); 2706 } 2707 2708 static void nfp_net_vec_clear_ring_data(struct nfp_net *nn, unsigned int idx) 2709 { 2710 nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), 0); 2711 nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), 0); 2712 nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), 0); 2713 2714 nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), 0); 2715 nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), 0); 2716 nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), 0); 2717 } 2718 2719 /** 2720 * nfp_net_clear_config_and_disable() - Clear control BAR and disable NFP 2721 * @nn: NFP Net device to reconfigure 2722 * 2723 * Warning: must be fully idempotent. 2724 */ 2725 static void nfp_net_clear_config_and_disable(struct nfp_net *nn) 2726 { 2727 u32 new_ctrl, update; 2728 unsigned int r; 2729 int err; 2730 2731 new_ctrl = nn->dp.ctrl; 2732 new_ctrl &= ~NFP_NET_CFG_CTRL_ENABLE; 2733 update = NFP_NET_CFG_UPDATE_GEN; 2734 update |= NFP_NET_CFG_UPDATE_MSIX; 2735 update |= NFP_NET_CFG_UPDATE_RING; 2736 2737 if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG) 2738 new_ctrl &= ~NFP_NET_CFG_CTRL_RINGCFG; 2739 2740 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0); 2741 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0); 2742 2743 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 2744 err = nfp_net_reconfig(nn, update); 2745 if (err) 2746 nn_err(nn, "Could not disable device: %d\n", err); 2747 2748 for (r = 0; r < nn->dp.num_rx_rings; r++) 2749 nfp_net_rx_ring_reset(&nn->dp.rx_rings[r]); 2750 for (r = 0; r < nn->dp.num_tx_rings; r++) 2751 nfp_net_tx_ring_reset(&nn->dp, &nn->dp.tx_rings[r]); 2752 for (r = 0; r < nn->dp.num_r_vecs; r++) 2753 nfp_net_vec_clear_ring_data(nn, r); 2754 2755 nn->dp.ctrl = new_ctrl; 2756 } 2757 2758 static void 2759 nfp_net_rx_ring_hw_cfg_write(struct nfp_net *nn, 2760 struct nfp_net_rx_ring *rx_ring, unsigned int idx) 2761 { 2762 /* Write the DMA address, size and MSI-X info to the device */ 2763 nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), rx_ring->dma); 2764 nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), ilog2(rx_ring->cnt)); 2765 nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), rx_ring->r_vec->irq_entry); 2766 } 2767 2768 static void 2769 nfp_net_tx_ring_hw_cfg_write(struct nfp_net *nn, 2770 struct nfp_net_tx_ring *tx_ring, unsigned int idx) 2771 { 2772 nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), tx_ring->dma); 2773 nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), ilog2(tx_ring->cnt)); 2774 nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), tx_ring->r_vec->irq_entry); 2775 } 2776 2777 /** 2778 * nfp_net_set_config_and_enable() - Write control BAR and enable NFP 2779 * @nn: NFP Net device to reconfigure 2780 */ 2781 static int nfp_net_set_config_and_enable(struct nfp_net *nn) 2782 { 2783 u32 bufsz, new_ctrl, update = 0; 2784 unsigned int r; 2785 int err; 2786 2787 new_ctrl = nn->dp.ctrl; 2788 2789 if (nn->dp.ctrl & NFP_NET_CFG_CTRL_RSS_ANY) { 2790 nfp_net_rss_write_key(nn); 2791 nfp_net_rss_write_itbl(nn); 2792 nn_writel(nn, NFP_NET_CFG_RSS_CTRL, nn->rss_cfg); 2793 update |= NFP_NET_CFG_UPDATE_RSS; 2794 } 2795 2796 if (nn->dp.ctrl & NFP_NET_CFG_CTRL_IRQMOD) { 2797 nfp_net_coalesce_write_cfg(nn); 2798 update |= NFP_NET_CFG_UPDATE_IRQMOD; 2799 } 2800 2801 for (r = 0; r < nn->dp.num_tx_rings; r++) 2802 nfp_net_tx_ring_hw_cfg_write(nn, &nn->dp.tx_rings[r], r); 2803 for (r = 0; r < nn->dp.num_rx_rings; r++) 2804 nfp_net_rx_ring_hw_cfg_write(nn, &nn->dp.rx_rings[r], r); 2805 2806 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, nn->dp.num_tx_rings == 64 ? 2807 0xffffffffffffffffULL : ((u64)1 << nn->dp.num_tx_rings) - 1); 2808 2809 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, nn->dp.num_rx_rings == 64 ? 2810 0xffffffffffffffffULL : ((u64)1 << nn->dp.num_rx_rings) - 1); 2811 2812 if (nn->dp.netdev) 2813 nfp_net_write_mac_addr(nn, nn->dp.netdev->dev_addr); 2814 2815 nn_writel(nn, NFP_NET_CFG_MTU, nn->dp.mtu); 2816 2817 bufsz = nn->dp.fl_bufsz - nn->dp.rx_dma_off - NFP_NET_RX_BUF_NON_DATA; 2818 nn_writel(nn, NFP_NET_CFG_FLBUFSZ, bufsz); 2819 2820 /* Enable device */ 2821 new_ctrl |= NFP_NET_CFG_CTRL_ENABLE; 2822 update |= NFP_NET_CFG_UPDATE_GEN; 2823 update |= NFP_NET_CFG_UPDATE_MSIX; 2824 update |= NFP_NET_CFG_UPDATE_RING; 2825 if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG) 2826 new_ctrl |= NFP_NET_CFG_CTRL_RINGCFG; 2827 2828 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 2829 err = nfp_net_reconfig(nn, update); 2830 if (err) { 2831 nfp_net_clear_config_and_disable(nn); 2832 return err; 2833 } 2834 2835 nn->dp.ctrl = new_ctrl; 2836 2837 for (r = 0; r < nn->dp.num_rx_rings; r++) 2838 nfp_net_rx_ring_fill_freelist(&nn->dp, &nn->dp.rx_rings[r]); 2839 2840 /* Since reconfiguration requests while NFP is down are ignored we 2841 * have to wipe the entire VXLAN configuration and reinitialize it. 2842 */ 2843 if (nn->dp.ctrl & NFP_NET_CFG_CTRL_VXLAN) { 2844 memset(&nn->vxlan_ports, 0, sizeof(nn->vxlan_ports)); 2845 memset(&nn->vxlan_usecnt, 0, sizeof(nn->vxlan_usecnt)); 2846 udp_tunnel_get_rx_info(nn->dp.netdev); 2847 } 2848 2849 return 0; 2850 } 2851 2852 /** 2853 * nfp_net_close_stack() - Quiesce the stack (part of close) 2854 * @nn: NFP Net device to reconfigure 2855 */ 2856 static void nfp_net_close_stack(struct nfp_net *nn) 2857 { 2858 unsigned int r; 2859 2860 disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector); 2861 netif_carrier_off(nn->dp.netdev); 2862 nn->link_up = false; 2863 2864 for (r = 0; r < nn->dp.num_r_vecs; r++) { 2865 disable_irq(nn->r_vecs[r].irq_vector); 2866 napi_disable(&nn->r_vecs[r].napi); 2867 } 2868 2869 netif_tx_disable(nn->dp.netdev); 2870 } 2871 2872 /** 2873 * nfp_net_close_free_all() - Free all runtime resources 2874 * @nn: NFP Net device to reconfigure 2875 */ 2876 static void nfp_net_close_free_all(struct nfp_net *nn) 2877 { 2878 unsigned int r; 2879 2880 nfp_net_tx_rings_free(&nn->dp); 2881 nfp_net_rx_rings_free(&nn->dp); 2882 2883 for (r = 0; r < nn->dp.num_r_vecs; r++) 2884 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); 2885 2886 nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX); 2887 nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX); 2888 } 2889 2890 /** 2891 * nfp_net_netdev_close() - Called when the device is downed 2892 * @netdev: netdev structure 2893 */ 2894 static int nfp_net_netdev_close(struct net_device *netdev) 2895 { 2896 struct nfp_net *nn = netdev_priv(netdev); 2897 2898 /* Step 1: Disable RX and TX rings from the Linux kernel perspective 2899 */ 2900 nfp_net_close_stack(nn); 2901 2902 /* Step 2: Tell NFP 2903 */ 2904 nfp_net_clear_config_and_disable(nn); 2905 nfp_port_configure(netdev, false); 2906 2907 /* Step 3: Free resources 2908 */ 2909 nfp_net_close_free_all(nn); 2910 2911 nn_dbg(nn, "%s down", netdev->name); 2912 return 0; 2913 } 2914 2915 void nfp_ctrl_close(struct nfp_net *nn) 2916 { 2917 int r; 2918 2919 rtnl_lock(); 2920 2921 for (r = 0; r < nn->dp.num_r_vecs; r++) { 2922 disable_irq(nn->r_vecs[r].irq_vector); 2923 tasklet_disable(&nn->r_vecs[r].tasklet); 2924 } 2925 2926 nfp_net_clear_config_and_disable(nn); 2927 2928 nfp_net_close_free_all(nn); 2929 2930 rtnl_unlock(); 2931 } 2932 2933 /** 2934 * nfp_net_open_stack() - Start the device from stack's perspective 2935 * @nn: NFP Net device to reconfigure 2936 */ 2937 static void nfp_net_open_stack(struct nfp_net *nn) 2938 { 2939 unsigned int r; 2940 2941 for (r = 0; r < nn->dp.num_r_vecs; r++) { 2942 napi_enable(&nn->r_vecs[r].napi); 2943 enable_irq(nn->r_vecs[r].irq_vector); 2944 } 2945 2946 netif_tx_wake_all_queues(nn->dp.netdev); 2947 2948 enable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector); 2949 nfp_net_read_link_status(nn); 2950 } 2951 2952 static int nfp_net_open_alloc_all(struct nfp_net *nn) 2953 { 2954 int err, r; 2955 2956 err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_EXN, "%s-exn", 2957 nn->exn_name, sizeof(nn->exn_name), 2958 NFP_NET_IRQ_EXN_IDX, nn->exn_handler); 2959 if (err) 2960 return err; 2961 err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_LSC, "%s-lsc", 2962 nn->lsc_name, sizeof(nn->lsc_name), 2963 NFP_NET_IRQ_LSC_IDX, nn->lsc_handler); 2964 if (err) 2965 goto err_free_exn; 2966 disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector); 2967 2968 for (r = 0; r < nn->dp.num_r_vecs; r++) { 2969 err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r); 2970 if (err) 2971 goto err_cleanup_vec_p; 2972 } 2973 2974 err = nfp_net_rx_rings_prepare(nn, &nn->dp); 2975 if (err) 2976 goto err_cleanup_vec; 2977 2978 err = nfp_net_tx_rings_prepare(nn, &nn->dp); 2979 if (err) 2980 goto err_free_rx_rings; 2981 2982 for (r = 0; r < nn->max_r_vecs; r++) 2983 nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r); 2984 2985 return 0; 2986 2987 err_free_rx_rings: 2988 nfp_net_rx_rings_free(&nn->dp); 2989 err_cleanup_vec: 2990 r = nn->dp.num_r_vecs; 2991 err_cleanup_vec_p: 2992 while (r--) 2993 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); 2994 nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX); 2995 err_free_exn: 2996 nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX); 2997 return err; 2998 } 2999 3000 static int nfp_net_netdev_open(struct net_device *netdev) 3001 { 3002 struct nfp_net *nn = netdev_priv(netdev); 3003 int err; 3004 3005 /* Step 1: Allocate resources for rings and the like 3006 * - Request interrupts 3007 * - Allocate RX and TX ring resources 3008 * - Setup initial RSS table 3009 */ 3010 err = nfp_net_open_alloc_all(nn); 3011 if (err) 3012 return err; 3013 3014 err = netif_set_real_num_tx_queues(netdev, nn->dp.num_stack_tx_rings); 3015 if (err) 3016 goto err_free_all; 3017 3018 err = netif_set_real_num_rx_queues(netdev, nn->dp.num_rx_rings); 3019 if (err) 3020 goto err_free_all; 3021 3022 /* Step 2: Configure the NFP 3023 * - Ifup the physical interface if it exists 3024 * - Enable rings from 0 to tx_rings/rx_rings - 1. 3025 * - Write MAC address (in case it changed) 3026 * - Set the MTU 3027 * - Set the Freelist buffer size 3028 * - Enable the FW 3029 */ 3030 err = nfp_port_configure(netdev, true); 3031 if (err) 3032 goto err_free_all; 3033 3034 err = nfp_net_set_config_and_enable(nn); 3035 if (err) 3036 goto err_port_disable; 3037 3038 /* Step 3: Enable for kernel 3039 * - put some freelist descriptors on each RX ring 3040 * - enable NAPI on each ring 3041 * - enable all TX queues 3042 * - set link state 3043 */ 3044 nfp_net_open_stack(nn); 3045 3046 return 0; 3047 3048 err_port_disable: 3049 nfp_port_configure(netdev, false); 3050 err_free_all: 3051 nfp_net_close_free_all(nn); 3052 return err; 3053 } 3054 3055 int nfp_ctrl_open(struct nfp_net *nn) 3056 { 3057 int err, r; 3058 3059 /* ring dumping depends on vNICs being opened/closed under rtnl */ 3060 rtnl_lock(); 3061 3062 err = nfp_net_open_alloc_all(nn); 3063 if (err) 3064 goto err_unlock; 3065 3066 err = nfp_net_set_config_and_enable(nn); 3067 if (err) 3068 goto err_free_all; 3069 3070 for (r = 0; r < nn->dp.num_r_vecs; r++) 3071 enable_irq(nn->r_vecs[r].irq_vector); 3072 3073 rtnl_unlock(); 3074 3075 return 0; 3076 3077 err_free_all: 3078 nfp_net_close_free_all(nn); 3079 err_unlock: 3080 rtnl_unlock(); 3081 return err; 3082 } 3083 3084 static void nfp_net_set_rx_mode(struct net_device *netdev) 3085 { 3086 struct nfp_net *nn = netdev_priv(netdev); 3087 u32 new_ctrl; 3088 3089 new_ctrl = nn->dp.ctrl; 3090 3091 if (!netdev_mc_empty(netdev) || netdev->flags & IFF_ALLMULTI) 3092 new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_L2MC; 3093 else 3094 new_ctrl &= ~NFP_NET_CFG_CTRL_L2MC; 3095 3096 if (netdev->flags & IFF_PROMISC) { 3097 if (nn->cap & NFP_NET_CFG_CTRL_PROMISC) 3098 new_ctrl |= NFP_NET_CFG_CTRL_PROMISC; 3099 else 3100 nn_warn(nn, "FW does not support promiscuous mode\n"); 3101 } else { 3102 new_ctrl &= ~NFP_NET_CFG_CTRL_PROMISC; 3103 } 3104 3105 if (new_ctrl == nn->dp.ctrl) 3106 return; 3107 3108 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 3109 nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_GEN); 3110 3111 nn->dp.ctrl = new_ctrl; 3112 } 3113 3114 static void nfp_net_rss_init_itbl(struct nfp_net *nn) 3115 { 3116 int i; 3117 3118 for (i = 0; i < sizeof(nn->rss_itbl); i++) 3119 nn->rss_itbl[i] = 3120 ethtool_rxfh_indir_default(i, nn->dp.num_rx_rings); 3121 } 3122 3123 static void nfp_net_dp_swap(struct nfp_net *nn, struct nfp_net_dp *dp) 3124 { 3125 struct nfp_net_dp new_dp = *dp; 3126 3127 *dp = nn->dp; 3128 nn->dp = new_dp; 3129 3130 nn->dp.netdev->mtu = new_dp.mtu; 3131 3132 if (!netif_is_rxfh_configured(nn->dp.netdev)) 3133 nfp_net_rss_init_itbl(nn); 3134 } 3135 3136 static int nfp_net_dp_swap_enable(struct nfp_net *nn, struct nfp_net_dp *dp) 3137 { 3138 unsigned int r; 3139 int err; 3140 3141 nfp_net_dp_swap(nn, dp); 3142 3143 for (r = 0; r < nn->max_r_vecs; r++) 3144 nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r); 3145 3146 err = netif_set_real_num_rx_queues(nn->dp.netdev, nn->dp.num_rx_rings); 3147 if (err) 3148 return err; 3149 3150 if (nn->dp.netdev->real_num_tx_queues != nn->dp.num_stack_tx_rings) { 3151 err = netif_set_real_num_tx_queues(nn->dp.netdev, 3152 nn->dp.num_stack_tx_rings); 3153 if (err) 3154 return err; 3155 } 3156 3157 return nfp_net_set_config_and_enable(nn); 3158 } 3159 3160 struct nfp_net_dp *nfp_net_clone_dp(struct nfp_net *nn) 3161 { 3162 struct nfp_net_dp *new; 3163 3164 new = kmalloc(sizeof(*new), GFP_KERNEL); 3165 if (!new) 3166 return NULL; 3167 3168 *new = nn->dp; 3169 3170 /* Clear things which need to be recomputed */ 3171 new->fl_bufsz = 0; 3172 new->tx_rings = NULL; 3173 new->rx_rings = NULL; 3174 new->num_r_vecs = 0; 3175 new->num_stack_tx_rings = 0; 3176 3177 return new; 3178 } 3179 3180 static int 3181 nfp_net_check_config(struct nfp_net *nn, struct nfp_net_dp *dp, 3182 struct netlink_ext_ack *extack) 3183 { 3184 /* XDP-enabled tests */ 3185 if (!dp->xdp_prog) 3186 return 0; 3187 if (dp->fl_bufsz > PAGE_SIZE) { 3188 NL_SET_ERR_MSG_MOD(extack, "MTU too large w/ XDP enabled"); 3189 return -EINVAL; 3190 } 3191 if (dp->num_tx_rings > nn->max_tx_rings) { 3192 NL_SET_ERR_MSG_MOD(extack, "Insufficient number of TX rings w/ XDP enabled"); 3193 return -EINVAL; 3194 } 3195 3196 return 0; 3197 } 3198 3199 int nfp_net_ring_reconfig(struct nfp_net *nn, struct nfp_net_dp *dp, 3200 struct netlink_ext_ack *extack) 3201 { 3202 int r, err; 3203 3204 dp->fl_bufsz = nfp_net_calc_fl_bufsz(dp); 3205 3206 dp->num_stack_tx_rings = dp->num_tx_rings; 3207 if (dp->xdp_prog) 3208 dp->num_stack_tx_rings -= dp->num_rx_rings; 3209 3210 dp->num_r_vecs = max(dp->num_rx_rings, dp->num_stack_tx_rings); 3211 3212 err = nfp_net_check_config(nn, dp, extack); 3213 if (err) 3214 goto exit_free_dp; 3215 3216 if (!netif_running(dp->netdev)) { 3217 nfp_net_dp_swap(nn, dp); 3218 err = 0; 3219 goto exit_free_dp; 3220 } 3221 3222 /* Prepare new rings */ 3223 for (r = nn->dp.num_r_vecs; r < dp->num_r_vecs; r++) { 3224 err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r); 3225 if (err) { 3226 dp->num_r_vecs = r; 3227 goto err_cleanup_vecs; 3228 } 3229 } 3230 3231 err = nfp_net_rx_rings_prepare(nn, dp); 3232 if (err) 3233 goto err_cleanup_vecs; 3234 3235 err = nfp_net_tx_rings_prepare(nn, dp); 3236 if (err) 3237 goto err_free_rx; 3238 3239 /* Stop device, swap in new rings, try to start the firmware */ 3240 nfp_net_close_stack(nn); 3241 nfp_net_clear_config_and_disable(nn); 3242 3243 err = nfp_net_dp_swap_enable(nn, dp); 3244 if (err) { 3245 int err2; 3246 3247 nfp_net_clear_config_and_disable(nn); 3248 3249 /* Try with old configuration and old rings */ 3250 err2 = nfp_net_dp_swap_enable(nn, dp); 3251 if (err2) 3252 nn_err(nn, "Can't restore ring config - FW communication failed (%d,%d)\n", 3253 err, err2); 3254 } 3255 for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--) 3256 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); 3257 3258 nfp_net_rx_rings_free(dp); 3259 nfp_net_tx_rings_free(dp); 3260 3261 nfp_net_open_stack(nn); 3262 exit_free_dp: 3263 kfree(dp); 3264 3265 return err; 3266 3267 err_free_rx: 3268 nfp_net_rx_rings_free(dp); 3269 err_cleanup_vecs: 3270 for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--) 3271 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); 3272 kfree(dp); 3273 return err; 3274 } 3275 3276 static int nfp_net_change_mtu(struct net_device *netdev, int new_mtu) 3277 { 3278 struct nfp_net *nn = netdev_priv(netdev); 3279 struct nfp_net_dp *dp; 3280 int err; 3281 3282 err = nfp_app_check_mtu(nn->app, netdev, new_mtu); 3283 if (err) 3284 return err; 3285 3286 dp = nfp_net_clone_dp(nn); 3287 if (!dp) 3288 return -ENOMEM; 3289 3290 dp->mtu = new_mtu; 3291 3292 return nfp_net_ring_reconfig(nn, dp, NULL); 3293 } 3294 3295 static int 3296 nfp_net_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) 3297 { 3298 const u32 cmd = NFP_NET_CFG_MBOX_CMD_CTAG_FILTER_ADD; 3299 struct nfp_net *nn = netdev_priv(netdev); 3300 int err; 3301 3302 /* Priority tagged packets with vlan id 0 are processed by the 3303 * NFP as untagged packets 3304 */ 3305 if (!vid) 3306 return 0; 3307 3308 err = nfp_net_mbox_lock(nn, NFP_NET_CFG_VLAN_FILTER_SZ); 3309 if (err) 3310 return err; 3311 3312 nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_VID, vid); 3313 nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_PROTO, 3314 ETH_P_8021Q); 3315 3316 return nfp_net_mbox_reconfig_and_unlock(nn, cmd); 3317 } 3318 3319 static int 3320 nfp_net_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) 3321 { 3322 const u32 cmd = NFP_NET_CFG_MBOX_CMD_CTAG_FILTER_KILL; 3323 struct nfp_net *nn = netdev_priv(netdev); 3324 int err; 3325 3326 /* Priority tagged packets with vlan id 0 are processed by the 3327 * NFP as untagged packets 3328 */ 3329 if (!vid) 3330 return 0; 3331 3332 err = nfp_net_mbox_lock(nn, NFP_NET_CFG_VLAN_FILTER_SZ); 3333 if (err) 3334 return err; 3335 3336 nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_VID, vid); 3337 nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_PROTO, 3338 ETH_P_8021Q); 3339 3340 return nfp_net_mbox_reconfig_and_unlock(nn, cmd); 3341 } 3342 3343 static void nfp_net_stat64(struct net_device *netdev, 3344 struct rtnl_link_stats64 *stats) 3345 { 3346 struct nfp_net *nn = netdev_priv(netdev); 3347 int r; 3348 3349 /* Collect software stats */ 3350 for (r = 0; r < nn->max_r_vecs; r++) { 3351 struct nfp_net_r_vector *r_vec = &nn->r_vecs[r]; 3352 u64 data[3]; 3353 unsigned int start; 3354 3355 do { 3356 start = u64_stats_fetch_begin(&r_vec->rx_sync); 3357 data[0] = r_vec->rx_pkts; 3358 data[1] = r_vec->rx_bytes; 3359 data[2] = r_vec->rx_drops; 3360 } while (u64_stats_fetch_retry(&r_vec->rx_sync, start)); 3361 stats->rx_packets += data[0]; 3362 stats->rx_bytes += data[1]; 3363 stats->rx_dropped += data[2]; 3364 3365 do { 3366 start = u64_stats_fetch_begin(&r_vec->tx_sync); 3367 data[0] = r_vec->tx_pkts; 3368 data[1] = r_vec->tx_bytes; 3369 data[2] = r_vec->tx_errors; 3370 } while (u64_stats_fetch_retry(&r_vec->tx_sync, start)); 3371 stats->tx_packets += data[0]; 3372 stats->tx_bytes += data[1]; 3373 stats->tx_errors += data[2]; 3374 } 3375 3376 /* Add in device stats */ 3377 stats->multicast += nn_readq(nn, NFP_NET_CFG_STATS_RX_MC_FRAMES); 3378 stats->rx_dropped += nn_readq(nn, NFP_NET_CFG_STATS_RX_DISCARDS); 3379 stats->rx_errors += nn_readq(nn, NFP_NET_CFG_STATS_RX_ERRORS); 3380 3381 stats->tx_dropped += nn_readq(nn, NFP_NET_CFG_STATS_TX_DISCARDS); 3382 stats->tx_errors += nn_readq(nn, NFP_NET_CFG_STATS_TX_ERRORS); 3383 } 3384 3385 static int nfp_net_set_features(struct net_device *netdev, 3386 netdev_features_t features) 3387 { 3388 netdev_features_t changed = netdev->features ^ features; 3389 struct nfp_net *nn = netdev_priv(netdev); 3390 u32 new_ctrl; 3391 int err; 3392 3393 /* Assume this is not called with features we have not advertised */ 3394 3395 new_ctrl = nn->dp.ctrl; 3396 3397 if (changed & NETIF_F_RXCSUM) { 3398 if (features & NETIF_F_RXCSUM) 3399 new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY; 3400 else 3401 new_ctrl &= ~NFP_NET_CFG_CTRL_RXCSUM_ANY; 3402 } 3403 3404 if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) { 3405 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) 3406 new_ctrl |= NFP_NET_CFG_CTRL_TXCSUM; 3407 else 3408 new_ctrl &= ~NFP_NET_CFG_CTRL_TXCSUM; 3409 } 3410 3411 if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) { 3412 if (features & (NETIF_F_TSO | NETIF_F_TSO6)) 3413 new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_LSO2 ?: 3414 NFP_NET_CFG_CTRL_LSO; 3415 else 3416 new_ctrl &= ~NFP_NET_CFG_CTRL_LSO_ANY; 3417 } 3418 3419 if (changed & NETIF_F_HW_VLAN_CTAG_RX) { 3420 if (features & NETIF_F_HW_VLAN_CTAG_RX) 3421 new_ctrl |= NFP_NET_CFG_CTRL_RXVLAN; 3422 else 3423 new_ctrl &= ~NFP_NET_CFG_CTRL_RXVLAN; 3424 } 3425 3426 if (changed & NETIF_F_HW_VLAN_CTAG_TX) { 3427 if (features & NETIF_F_HW_VLAN_CTAG_TX) 3428 new_ctrl |= NFP_NET_CFG_CTRL_TXVLAN; 3429 else 3430 new_ctrl &= ~NFP_NET_CFG_CTRL_TXVLAN; 3431 } 3432 3433 if (changed & NETIF_F_HW_VLAN_CTAG_FILTER) { 3434 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) 3435 new_ctrl |= NFP_NET_CFG_CTRL_CTAG_FILTER; 3436 else 3437 new_ctrl &= ~NFP_NET_CFG_CTRL_CTAG_FILTER; 3438 } 3439 3440 if (changed & NETIF_F_SG) { 3441 if (features & NETIF_F_SG) 3442 new_ctrl |= NFP_NET_CFG_CTRL_GATHER; 3443 else 3444 new_ctrl &= ~NFP_NET_CFG_CTRL_GATHER; 3445 } 3446 3447 err = nfp_port_set_features(netdev, features); 3448 if (err) 3449 return err; 3450 3451 nn_dbg(nn, "Feature change 0x%llx -> 0x%llx (changed=0x%llx)\n", 3452 netdev->features, features, changed); 3453 3454 if (new_ctrl == nn->dp.ctrl) 3455 return 0; 3456 3457 nn_dbg(nn, "NIC ctrl: 0x%x -> 0x%x\n", nn->dp.ctrl, new_ctrl); 3458 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 3459 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_GEN); 3460 if (err) 3461 return err; 3462 3463 nn->dp.ctrl = new_ctrl; 3464 3465 return 0; 3466 } 3467 3468 static netdev_features_t 3469 nfp_net_features_check(struct sk_buff *skb, struct net_device *dev, 3470 netdev_features_t features) 3471 { 3472 u8 l4_hdr; 3473 3474 /* We can't do TSO over double tagged packets (802.1AD) */ 3475 features &= vlan_features_check(skb, features); 3476 3477 if (!skb->encapsulation) 3478 return features; 3479 3480 /* Ensure that inner L4 header offset fits into TX descriptor field */ 3481 if (skb_is_gso(skb)) { 3482 u32 hdrlen; 3483 3484 hdrlen = skb_inner_transport_header(skb) - skb->data + 3485 inner_tcp_hdrlen(skb); 3486 3487 /* Assume worst case scenario of having longest possible 3488 * metadata prepend - 8B 3489 */ 3490 if (unlikely(hdrlen > NFP_NET_LSO_MAX_HDR_SZ - 8)) 3491 features &= ~NETIF_F_GSO_MASK; 3492 } 3493 3494 /* VXLAN/GRE check */ 3495 switch (vlan_get_protocol(skb)) { 3496 case htons(ETH_P_IP): 3497 l4_hdr = ip_hdr(skb)->protocol; 3498 break; 3499 case htons(ETH_P_IPV6): 3500 l4_hdr = ipv6_hdr(skb)->nexthdr; 3501 break; 3502 default: 3503 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3504 } 3505 3506 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER || 3507 skb->inner_protocol != htons(ETH_P_TEB) || 3508 (l4_hdr != IPPROTO_UDP && l4_hdr != IPPROTO_GRE) || 3509 (l4_hdr == IPPROTO_UDP && 3510 (skb_inner_mac_header(skb) - skb_transport_header(skb) != 3511 sizeof(struct udphdr) + sizeof(struct vxlanhdr)))) 3512 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3513 3514 return features; 3515 } 3516 3517 static int 3518 nfp_net_get_phys_port_name(struct net_device *netdev, char *name, size_t len) 3519 { 3520 struct nfp_net *nn = netdev_priv(netdev); 3521 int n; 3522 3523 /* If port is defined, devlink_port is registered and devlink core 3524 * is taking care of name formatting. 3525 */ 3526 if (nn->port) 3527 return -EOPNOTSUPP; 3528 3529 if (nn->dp.is_vf || nn->vnic_no_name) 3530 return -EOPNOTSUPP; 3531 3532 n = snprintf(name, len, "n%d", nn->id); 3533 if (n >= len) 3534 return -EINVAL; 3535 3536 return 0; 3537 } 3538 3539 /** 3540 * nfp_net_set_vxlan_port() - set vxlan port in SW and reconfigure HW 3541 * @nn: NFP Net device to reconfigure 3542 * @idx: Index into the port table where new port should be written 3543 * @port: UDP port to configure (pass zero to remove VXLAN port) 3544 */ 3545 static void nfp_net_set_vxlan_port(struct nfp_net *nn, int idx, __be16 port) 3546 { 3547 int i; 3548 3549 nn->vxlan_ports[idx] = port; 3550 3551 if (!(nn->dp.ctrl & NFP_NET_CFG_CTRL_VXLAN)) 3552 return; 3553 3554 BUILD_BUG_ON(NFP_NET_N_VXLAN_PORTS & 1); 3555 for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i += 2) 3556 nn_writel(nn, NFP_NET_CFG_VXLAN_PORT + i * sizeof(port), 3557 be16_to_cpu(nn->vxlan_ports[i + 1]) << 16 | 3558 be16_to_cpu(nn->vxlan_ports[i])); 3559 3560 nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_VXLAN); 3561 } 3562 3563 /** 3564 * nfp_net_find_vxlan_idx() - find table entry of the port or a free one 3565 * @nn: NFP Network structure 3566 * @port: UDP port to look for 3567 * 3568 * Return: if the port is already in the table -- it's position; 3569 * if the port is not in the table -- free position to use; 3570 * if the table is full -- -ENOSPC. 3571 */ 3572 static int nfp_net_find_vxlan_idx(struct nfp_net *nn, __be16 port) 3573 { 3574 int i, free_idx = -ENOSPC; 3575 3576 for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i++) { 3577 if (nn->vxlan_ports[i] == port) 3578 return i; 3579 if (!nn->vxlan_usecnt[i]) 3580 free_idx = i; 3581 } 3582 3583 return free_idx; 3584 } 3585 3586 static void nfp_net_add_vxlan_port(struct net_device *netdev, 3587 struct udp_tunnel_info *ti) 3588 { 3589 struct nfp_net *nn = netdev_priv(netdev); 3590 int idx; 3591 3592 if (ti->type != UDP_TUNNEL_TYPE_VXLAN) 3593 return; 3594 3595 idx = nfp_net_find_vxlan_idx(nn, ti->port); 3596 if (idx == -ENOSPC) 3597 return; 3598 3599 if (!nn->vxlan_usecnt[idx]++) 3600 nfp_net_set_vxlan_port(nn, idx, ti->port); 3601 } 3602 3603 static void nfp_net_del_vxlan_port(struct net_device *netdev, 3604 struct udp_tunnel_info *ti) 3605 { 3606 struct nfp_net *nn = netdev_priv(netdev); 3607 int idx; 3608 3609 if (ti->type != UDP_TUNNEL_TYPE_VXLAN) 3610 return; 3611 3612 idx = nfp_net_find_vxlan_idx(nn, ti->port); 3613 if (idx == -ENOSPC || !nn->vxlan_usecnt[idx]) 3614 return; 3615 3616 if (!--nn->vxlan_usecnt[idx]) 3617 nfp_net_set_vxlan_port(nn, idx, 0); 3618 } 3619 3620 static int nfp_net_xdp_setup_drv(struct nfp_net *nn, struct netdev_bpf *bpf) 3621 { 3622 struct bpf_prog *prog = bpf->prog; 3623 struct nfp_net_dp *dp; 3624 int err; 3625 3626 if (!xdp_attachment_flags_ok(&nn->xdp, bpf)) 3627 return -EBUSY; 3628 3629 if (!prog == !nn->dp.xdp_prog) { 3630 WRITE_ONCE(nn->dp.xdp_prog, prog); 3631 xdp_attachment_setup(&nn->xdp, bpf); 3632 return 0; 3633 } 3634 3635 dp = nfp_net_clone_dp(nn); 3636 if (!dp) 3637 return -ENOMEM; 3638 3639 dp->xdp_prog = prog; 3640 dp->num_tx_rings += prog ? nn->dp.num_rx_rings : -nn->dp.num_rx_rings; 3641 dp->rx_dma_dir = prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE; 3642 dp->rx_dma_off = prog ? XDP_PACKET_HEADROOM - nn->dp.rx_offset : 0; 3643 3644 /* We need RX reconfig to remap the buffers (BIDIR vs FROM_DEV) */ 3645 err = nfp_net_ring_reconfig(nn, dp, bpf->extack); 3646 if (err) 3647 return err; 3648 3649 xdp_attachment_setup(&nn->xdp, bpf); 3650 return 0; 3651 } 3652 3653 static int nfp_net_xdp_setup_hw(struct nfp_net *nn, struct netdev_bpf *bpf) 3654 { 3655 int err; 3656 3657 if (!xdp_attachment_flags_ok(&nn->xdp_hw, bpf)) 3658 return -EBUSY; 3659 3660 err = nfp_app_xdp_offload(nn->app, nn, bpf->prog, bpf->extack); 3661 if (err) 3662 return err; 3663 3664 xdp_attachment_setup(&nn->xdp_hw, bpf); 3665 return 0; 3666 } 3667 3668 static int nfp_net_xdp(struct net_device *netdev, struct netdev_bpf *xdp) 3669 { 3670 struct nfp_net *nn = netdev_priv(netdev); 3671 3672 switch (xdp->command) { 3673 case XDP_SETUP_PROG: 3674 return nfp_net_xdp_setup_drv(nn, xdp); 3675 case XDP_SETUP_PROG_HW: 3676 return nfp_net_xdp_setup_hw(nn, xdp); 3677 case XDP_QUERY_PROG: 3678 return xdp_attachment_query(&nn->xdp, xdp); 3679 case XDP_QUERY_PROG_HW: 3680 return xdp_attachment_query(&nn->xdp_hw, xdp); 3681 default: 3682 return nfp_app_bpf(nn->app, nn, xdp); 3683 } 3684 } 3685 3686 static int nfp_net_set_mac_address(struct net_device *netdev, void *addr) 3687 { 3688 struct nfp_net *nn = netdev_priv(netdev); 3689 struct sockaddr *saddr = addr; 3690 int err; 3691 3692 err = eth_prepare_mac_addr_change(netdev, addr); 3693 if (err) 3694 return err; 3695 3696 nfp_net_write_mac_addr(nn, saddr->sa_data); 3697 3698 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_MACADDR); 3699 if (err) 3700 return err; 3701 3702 eth_commit_mac_addr_change(netdev, addr); 3703 3704 return 0; 3705 } 3706 3707 const struct net_device_ops nfp_net_netdev_ops = { 3708 .ndo_init = nfp_app_ndo_init, 3709 .ndo_uninit = nfp_app_ndo_uninit, 3710 .ndo_open = nfp_net_netdev_open, 3711 .ndo_stop = nfp_net_netdev_close, 3712 .ndo_start_xmit = nfp_net_tx, 3713 .ndo_get_stats64 = nfp_net_stat64, 3714 .ndo_vlan_rx_add_vid = nfp_net_vlan_rx_add_vid, 3715 .ndo_vlan_rx_kill_vid = nfp_net_vlan_rx_kill_vid, 3716 .ndo_set_vf_mac = nfp_app_set_vf_mac, 3717 .ndo_set_vf_vlan = nfp_app_set_vf_vlan, 3718 .ndo_set_vf_spoofchk = nfp_app_set_vf_spoofchk, 3719 .ndo_set_vf_trust = nfp_app_set_vf_trust, 3720 .ndo_get_vf_config = nfp_app_get_vf_config, 3721 .ndo_set_vf_link_state = nfp_app_set_vf_link_state, 3722 .ndo_setup_tc = nfp_port_setup_tc, 3723 .ndo_tx_timeout = nfp_net_tx_timeout, 3724 .ndo_set_rx_mode = nfp_net_set_rx_mode, 3725 .ndo_change_mtu = nfp_net_change_mtu, 3726 .ndo_set_mac_address = nfp_net_set_mac_address, 3727 .ndo_set_features = nfp_net_set_features, 3728 .ndo_features_check = nfp_net_features_check, 3729 .ndo_get_phys_port_name = nfp_net_get_phys_port_name, 3730 .ndo_udp_tunnel_add = nfp_net_add_vxlan_port, 3731 .ndo_udp_tunnel_del = nfp_net_del_vxlan_port, 3732 .ndo_bpf = nfp_net_xdp, 3733 .ndo_get_devlink_port = nfp_devlink_get_devlink_port, 3734 }; 3735 3736 /** 3737 * nfp_net_info() - Print general info about the NIC 3738 * @nn: NFP Net device to reconfigure 3739 */ 3740 void nfp_net_info(struct nfp_net *nn) 3741 { 3742 nn_info(nn, "Netronome NFP-6xxx %sNetdev: TxQs=%d/%d RxQs=%d/%d\n", 3743 nn->dp.is_vf ? "VF " : "", 3744 nn->dp.num_tx_rings, nn->max_tx_rings, 3745 nn->dp.num_rx_rings, nn->max_rx_rings); 3746 nn_info(nn, "VER: %d.%d.%d.%d, Maximum supported MTU: %d\n", 3747 nn->fw_ver.resv, nn->fw_ver.class, 3748 nn->fw_ver.major, nn->fw_ver.minor, 3749 nn->max_mtu); 3750 nn_info(nn, "CAP: %#x %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", 3751 nn->cap, 3752 nn->cap & NFP_NET_CFG_CTRL_PROMISC ? "PROMISC " : "", 3753 nn->cap & NFP_NET_CFG_CTRL_L2BC ? "L2BCFILT " : "", 3754 nn->cap & NFP_NET_CFG_CTRL_L2MC ? "L2MCFILT " : "", 3755 nn->cap & NFP_NET_CFG_CTRL_RXCSUM ? "RXCSUM " : "", 3756 nn->cap & NFP_NET_CFG_CTRL_TXCSUM ? "TXCSUM " : "", 3757 nn->cap & NFP_NET_CFG_CTRL_RXVLAN ? "RXVLAN " : "", 3758 nn->cap & NFP_NET_CFG_CTRL_TXVLAN ? "TXVLAN " : "", 3759 nn->cap & NFP_NET_CFG_CTRL_SCATTER ? "SCATTER " : "", 3760 nn->cap & NFP_NET_CFG_CTRL_GATHER ? "GATHER " : "", 3761 nn->cap & NFP_NET_CFG_CTRL_LSO ? "TSO1 " : "", 3762 nn->cap & NFP_NET_CFG_CTRL_LSO2 ? "TSO2 " : "", 3763 nn->cap & NFP_NET_CFG_CTRL_RSS ? "RSS1 " : "", 3764 nn->cap & NFP_NET_CFG_CTRL_RSS2 ? "RSS2 " : "", 3765 nn->cap & NFP_NET_CFG_CTRL_CTAG_FILTER ? "CTAG_FILTER " : "", 3766 nn->cap & NFP_NET_CFG_CTRL_MSIXAUTO ? "AUTOMASK " : "", 3767 nn->cap & NFP_NET_CFG_CTRL_IRQMOD ? "IRQMOD " : "", 3768 nn->cap & NFP_NET_CFG_CTRL_VXLAN ? "VXLAN " : "", 3769 nn->cap & NFP_NET_CFG_CTRL_NVGRE ? "NVGRE " : "", 3770 nn->cap & NFP_NET_CFG_CTRL_CSUM_COMPLETE ? 3771 "RXCSUM_COMPLETE " : "", 3772 nn->cap & NFP_NET_CFG_CTRL_LIVE_ADDR ? "LIVE_ADDR " : "", 3773 nfp_app_extra_cap(nn->app, nn)); 3774 } 3775 3776 /** 3777 * nfp_net_alloc() - Allocate netdev and related structure 3778 * @pdev: PCI device 3779 * @ctrl_bar: PCI IOMEM with vNIC config memory 3780 * @needs_netdev: Whether to allocate a netdev for this vNIC 3781 * @max_tx_rings: Maximum number of TX rings supported by device 3782 * @max_rx_rings: Maximum number of RX rings supported by device 3783 * 3784 * This function allocates a netdev device and fills in the initial 3785 * part of the @struct nfp_net structure. In case of control device 3786 * nfp_net structure is allocated without the netdev. 3787 * 3788 * Return: NFP Net device structure, or ERR_PTR on error. 3789 */ 3790 struct nfp_net * 3791 nfp_net_alloc(struct pci_dev *pdev, void __iomem *ctrl_bar, bool needs_netdev, 3792 unsigned int max_tx_rings, unsigned int max_rx_rings) 3793 { 3794 struct nfp_net *nn; 3795 int err; 3796 3797 if (needs_netdev) { 3798 struct net_device *netdev; 3799 3800 netdev = alloc_etherdev_mqs(sizeof(struct nfp_net), 3801 max_tx_rings, max_rx_rings); 3802 if (!netdev) 3803 return ERR_PTR(-ENOMEM); 3804 3805 SET_NETDEV_DEV(netdev, &pdev->dev); 3806 nn = netdev_priv(netdev); 3807 nn->dp.netdev = netdev; 3808 } else { 3809 nn = vzalloc(sizeof(*nn)); 3810 if (!nn) 3811 return ERR_PTR(-ENOMEM); 3812 } 3813 3814 nn->dp.dev = &pdev->dev; 3815 nn->dp.ctrl_bar = ctrl_bar; 3816 nn->pdev = pdev; 3817 3818 nn->max_tx_rings = max_tx_rings; 3819 nn->max_rx_rings = max_rx_rings; 3820 3821 nn->dp.num_tx_rings = min_t(unsigned int, 3822 max_tx_rings, num_online_cpus()); 3823 nn->dp.num_rx_rings = min_t(unsigned int, max_rx_rings, 3824 netif_get_num_default_rss_queues()); 3825 3826 nn->dp.num_r_vecs = max(nn->dp.num_tx_rings, nn->dp.num_rx_rings); 3827 nn->dp.num_r_vecs = min_t(unsigned int, 3828 nn->dp.num_r_vecs, num_online_cpus()); 3829 3830 nn->dp.txd_cnt = NFP_NET_TX_DESCS_DEFAULT; 3831 nn->dp.rxd_cnt = NFP_NET_RX_DESCS_DEFAULT; 3832 3833 sema_init(&nn->bar_lock, 1); 3834 3835 spin_lock_init(&nn->reconfig_lock); 3836 spin_lock_init(&nn->link_status_lock); 3837 3838 timer_setup(&nn->reconfig_timer, nfp_net_reconfig_timer, 0); 3839 3840 err = nfp_net_tlv_caps_parse(&nn->pdev->dev, nn->dp.ctrl_bar, 3841 &nn->tlv_caps); 3842 if (err) 3843 goto err_free_nn; 3844 3845 err = nfp_ccm_mbox_alloc(nn); 3846 if (err) 3847 goto err_free_nn; 3848 3849 return nn; 3850 3851 err_free_nn: 3852 if (nn->dp.netdev) 3853 free_netdev(nn->dp.netdev); 3854 else 3855 vfree(nn); 3856 return ERR_PTR(err); 3857 } 3858 3859 /** 3860 * nfp_net_free() - Undo what @nfp_net_alloc() did 3861 * @nn: NFP Net device to reconfigure 3862 */ 3863 void nfp_net_free(struct nfp_net *nn) 3864 { 3865 WARN_ON(timer_pending(&nn->reconfig_timer) || nn->reconfig_posted); 3866 nfp_ccm_mbox_free(nn); 3867 3868 if (nn->dp.netdev) 3869 free_netdev(nn->dp.netdev); 3870 else 3871 vfree(nn); 3872 } 3873 3874 /** 3875 * nfp_net_rss_key_sz() - Get current size of the RSS key 3876 * @nn: NFP Net device instance 3877 * 3878 * Return: size of the RSS key for currently selected hash function. 3879 */ 3880 unsigned int nfp_net_rss_key_sz(struct nfp_net *nn) 3881 { 3882 switch (nn->rss_hfunc) { 3883 case ETH_RSS_HASH_TOP: 3884 return NFP_NET_CFG_RSS_KEY_SZ; 3885 case ETH_RSS_HASH_XOR: 3886 return 0; 3887 case ETH_RSS_HASH_CRC32: 3888 return 4; 3889 } 3890 3891 nn_warn(nn, "Unknown hash function: %u\n", nn->rss_hfunc); 3892 return 0; 3893 } 3894 3895 /** 3896 * nfp_net_rss_init() - Set the initial RSS parameters 3897 * @nn: NFP Net device to reconfigure 3898 */ 3899 static void nfp_net_rss_init(struct nfp_net *nn) 3900 { 3901 unsigned long func_bit, rss_cap_hfunc; 3902 u32 reg; 3903 3904 /* Read the RSS function capability and select first supported func */ 3905 reg = nn_readl(nn, NFP_NET_CFG_RSS_CAP); 3906 rss_cap_hfunc = FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC, reg); 3907 if (!rss_cap_hfunc) 3908 rss_cap_hfunc = FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC, 3909 NFP_NET_CFG_RSS_TOEPLITZ); 3910 3911 func_bit = find_first_bit(&rss_cap_hfunc, NFP_NET_CFG_RSS_HFUNCS); 3912 if (func_bit == NFP_NET_CFG_RSS_HFUNCS) { 3913 dev_warn(nn->dp.dev, 3914 "Bad RSS config, defaulting to Toeplitz hash\n"); 3915 func_bit = ETH_RSS_HASH_TOP_BIT; 3916 } 3917 nn->rss_hfunc = 1 << func_bit; 3918 3919 netdev_rss_key_fill(nn->rss_key, nfp_net_rss_key_sz(nn)); 3920 3921 nfp_net_rss_init_itbl(nn); 3922 3923 /* Enable IPv4/IPv6 TCP by default */ 3924 nn->rss_cfg = NFP_NET_CFG_RSS_IPV4_TCP | 3925 NFP_NET_CFG_RSS_IPV6_TCP | 3926 FIELD_PREP(NFP_NET_CFG_RSS_HFUNC, nn->rss_hfunc) | 3927 NFP_NET_CFG_RSS_MASK; 3928 } 3929 3930 /** 3931 * nfp_net_irqmod_init() - Set the initial IRQ moderation parameters 3932 * @nn: NFP Net device to reconfigure 3933 */ 3934 static void nfp_net_irqmod_init(struct nfp_net *nn) 3935 { 3936 nn->rx_coalesce_usecs = 50; 3937 nn->rx_coalesce_max_frames = 64; 3938 nn->tx_coalesce_usecs = 50; 3939 nn->tx_coalesce_max_frames = 64; 3940 } 3941 3942 static void nfp_net_netdev_init(struct nfp_net *nn) 3943 { 3944 struct net_device *netdev = nn->dp.netdev; 3945 3946 nfp_net_write_mac_addr(nn, nn->dp.netdev->dev_addr); 3947 3948 netdev->mtu = nn->dp.mtu; 3949 3950 /* Advertise/enable offloads based on capabilities 3951 * 3952 * Note: netdev->features show the currently enabled features 3953 * and netdev->hw_features advertises which features are 3954 * supported. By default we enable most features. 3955 */ 3956 if (nn->cap & NFP_NET_CFG_CTRL_LIVE_ADDR) 3957 netdev->priv_flags |= IFF_LIVE_ADDR_CHANGE; 3958 3959 netdev->hw_features = NETIF_F_HIGHDMA; 3960 if (nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY) { 3961 netdev->hw_features |= NETIF_F_RXCSUM; 3962 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY; 3963 } 3964 if (nn->cap & NFP_NET_CFG_CTRL_TXCSUM) { 3965 netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM; 3966 nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXCSUM; 3967 } 3968 if (nn->cap & NFP_NET_CFG_CTRL_GATHER) { 3969 netdev->hw_features |= NETIF_F_SG; 3970 nn->dp.ctrl |= NFP_NET_CFG_CTRL_GATHER; 3971 } 3972 if ((nn->cap & NFP_NET_CFG_CTRL_LSO && nn->fw_ver.major > 2) || 3973 nn->cap & NFP_NET_CFG_CTRL_LSO2) { 3974 netdev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6; 3975 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_LSO2 ?: 3976 NFP_NET_CFG_CTRL_LSO; 3977 } 3978 if (nn->cap & NFP_NET_CFG_CTRL_RSS_ANY) 3979 netdev->hw_features |= NETIF_F_RXHASH; 3980 if (nn->cap & NFP_NET_CFG_CTRL_VXLAN) { 3981 if (nn->cap & NFP_NET_CFG_CTRL_LSO) 3982 netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL; 3983 nn->dp.ctrl |= NFP_NET_CFG_CTRL_VXLAN; 3984 } 3985 if (nn->cap & NFP_NET_CFG_CTRL_NVGRE) { 3986 if (nn->cap & NFP_NET_CFG_CTRL_LSO) 3987 netdev->hw_features |= NETIF_F_GSO_GRE; 3988 nn->dp.ctrl |= NFP_NET_CFG_CTRL_NVGRE; 3989 } 3990 if (nn->cap & (NFP_NET_CFG_CTRL_VXLAN | NFP_NET_CFG_CTRL_NVGRE)) 3991 netdev->hw_enc_features = netdev->hw_features; 3992 3993 netdev->vlan_features = netdev->hw_features; 3994 3995 if (nn->cap & NFP_NET_CFG_CTRL_RXVLAN) { 3996 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 3997 nn->dp.ctrl |= NFP_NET_CFG_CTRL_RXVLAN; 3998 } 3999 if (nn->cap & NFP_NET_CFG_CTRL_TXVLAN) { 4000 if (nn->cap & NFP_NET_CFG_CTRL_LSO2) { 4001 nn_warn(nn, "Device advertises both TSO2 and TXVLAN. Refusing to enable TXVLAN.\n"); 4002 } else { 4003 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 4004 nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXVLAN; 4005 } 4006 } 4007 if (nn->cap & NFP_NET_CFG_CTRL_CTAG_FILTER) { 4008 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER; 4009 nn->dp.ctrl |= NFP_NET_CFG_CTRL_CTAG_FILTER; 4010 } 4011 4012 netdev->features = netdev->hw_features; 4013 4014 if (nfp_app_has_tc(nn->app) && nn->port) 4015 netdev->hw_features |= NETIF_F_HW_TC; 4016 4017 /* Advertise but disable TSO by default. */ 4018 netdev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6); 4019 nn->dp.ctrl &= ~NFP_NET_CFG_CTRL_LSO_ANY; 4020 4021 /* Finalise the netdev setup */ 4022 netdev->netdev_ops = &nfp_net_netdev_ops; 4023 netdev->watchdog_timeo = msecs_to_jiffies(5 * 1000); 4024 4025 /* MTU range: 68 - hw-specific max */ 4026 netdev->min_mtu = ETH_MIN_MTU; 4027 netdev->max_mtu = nn->max_mtu; 4028 4029 netdev->gso_max_segs = NFP_NET_LSO_MAX_SEGS; 4030 4031 netif_carrier_off(netdev); 4032 4033 nfp_net_set_ethtool_ops(netdev); 4034 } 4035 4036 static int nfp_net_read_caps(struct nfp_net *nn) 4037 { 4038 /* Get some of the read-only fields from the BAR */ 4039 nn->cap = nn_readl(nn, NFP_NET_CFG_CAP); 4040 nn->max_mtu = nn_readl(nn, NFP_NET_CFG_MAX_MTU); 4041 4042 /* ABI 4.x and ctrl vNIC always use chained metadata, in other cases 4043 * we allow use of non-chained metadata if RSS(v1) is the only 4044 * advertised capability requiring metadata. 4045 */ 4046 nn->dp.chained_metadata_format = nn->fw_ver.major == 4 || 4047 !nn->dp.netdev || 4048 !(nn->cap & NFP_NET_CFG_CTRL_RSS) || 4049 nn->cap & NFP_NET_CFG_CTRL_CHAIN_META; 4050 /* RSS(v1) uses non-chained metadata format, except in ABI 4.x where 4051 * it has the same meaning as RSSv2. 4052 */ 4053 if (nn->dp.chained_metadata_format && nn->fw_ver.major != 4) 4054 nn->cap &= ~NFP_NET_CFG_CTRL_RSS; 4055 4056 /* Determine RX packet/metadata boundary offset */ 4057 if (nn->fw_ver.major >= 2) { 4058 u32 reg; 4059 4060 reg = nn_readl(nn, NFP_NET_CFG_RX_OFFSET); 4061 if (reg > NFP_NET_MAX_PREPEND) { 4062 nn_err(nn, "Invalid rx offset: %d\n", reg); 4063 return -EINVAL; 4064 } 4065 nn->dp.rx_offset = reg; 4066 } else { 4067 nn->dp.rx_offset = NFP_NET_RX_OFFSET; 4068 } 4069 4070 /* For control vNICs mask out the capabilities app doesn't want. */ 4071 if (!nn->dp.netdev) 4072 nn->cap &= nn->app->type->ctrl_cap_mask; 4073 4074 return 0; 4075 } 4076 4077 /** 4078 * nfp_net_init() - Initialise/finalise the nfp_net structure 4079 * @nn: NFP Net device structure 4080 * 4081 * Return: 0 on success or negative errno on error. 4082 */ 4083 int nfp_net_init(struct nfp_net *nn) 4084 { 4085 int err; 4086 4087 nn->dp.rx_dma_dir = DMA_FROM_DEVICE; 4088 4089 err = nfp_net_read_caps(nn); 4090 if (err) 4091 return err; 4092 4093 /* Set default MTU and Freelist buffer size */ 4094 if (!nfp_net_is_data_vnic(nn) && nn->app->ctrl_mtu) { 4095 if (nn->app->ctrl_mtu <= nn->max_mtu) { 4096 nn->dp.mtu = nn->app->ctrl_mtu; 4097 } else { 4098 if (nn->app->ctrl_mtu != NFP_APP_CTRL_MTU_MAX) 4099 nn_warn(nn, "app requested MTU above max supported %u > %u\n", 4100 nn->app->ctrl_mtu, nn->max_mtu); 4101 nn->dp.mtu = nn->max_mtu; 4102 } 4103 } else if (nn->max_mtu < NFP_NET_DEFAULT_MTU) { 4104 nn->dp.mtu = nn->max_mtu; 4105 } else { 4106 nn->dp.mtu = NFP_NET_DEFAULT_MTU; 4107 } 4108 nn->dp.fl_bufsz = nfp_net_calc_fl_bufsz(&nn->dp); 4109 4110 if (nfp_app_ctrl_uses_data_vnics(nn->app)) 4111 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_CMSG_DATA; 4112 4113 if (nn->cap & NFP_NET_CFG_CTRL_RSS_ANY) { 4114 nfp_net_rss_init(nn); 4115 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RSS2 ?: 4116 NFP_NET_CFG_CTRL_RSS; 4117 } 4118 4119 /* Allow L2 Broadcast and Multicast through by default, if supported */ 4120 if (nn->cap & NFP_NET_CFG_CTRL_L2BC) 4121 nn->dp.ctrl |= NFP_NET_CFG_CTRL_L2BC; 4122 4123 /* Allow IRQ moderation, if supported */ 4124 if (nn->cap & NFP_NET_CFG_CTRL_IRQMOD) { 4125 nfp_net_irqmod_init(nn); 4126 nn->dp.ctrl |= NFP_NET_CFG_CTRL_IRQMOD; 4127 } 4128 4129 /* Stash the re-configuration queue away. First odd queue in TX Bar */ 4130 nn->qcp_cfg = nn->tx_bar + NFP_QCP_QUEUE_ADDR_SZ; 4131 4132 /* Make sure the FW knows the netdev is supposed to be disabled here */ 4133 nn_writel(nn, NFP_NET_CFG_CTRL, 0); 4134 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0); 4135 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0); 4136 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_RING | 4137 NFP_NET_CFG_UPDATE_GEN); 4138 if (err) 4139 return err; 4140 4141 if (nn->dp.netdev) { 4142 nfp_net_netdev_init(nn); 4143 4144 err = nfp_ccm_mbox_init(nn); 4145 if (err) 4146 return err; 4147 4148 err = nfp_net_tls_init(nn); 4149 if (err) 4150 goto err_clean_mbox; 4151 } 4152 4153 nfp_net_vecs_init(nn); 4154 4155 if (!nn->dp.netdev) 4156 return 0; 4157 return register_netdev(nn->dp.netdev); 4158 4159 err_clean_mbox: 4160 nfp_ccm_mbox_clean(nn); 4161 return err; 4162 } 4163 4164 /** 4165 * nfp_net_clean() - Undo what nfp_net_init() did. 4166 * @nn: NFP Net device structure 4167 */ 4168 void nfp_net_clean(struct nfp_net *nn) 4169 { 4170 if (!nn->dp.netdev) 4171 return; 4172 4173 unregister_netdev(nn->dp.netdev); 4174 nfp_ccm_mbox_clean(nn); 4175 nfp_net_reconfig_wait_posted(nn); 4176 } 4177