1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause) 2 /* Copyright (C) 2015-2018 Netronome Systems, Inc. */ 3 4 /* 5 * nfp_net_common.c 6 * Netronome network device driver: Common functions between PF and VF 7 * Authors: Jakub Kicinski <jakub.kicinski@netronome.com> 8 * Jason McMullan <jason.mcmullan@netronome.com> 9 * Rolf Neugebauer <rolf.neugebauer@netronome.com> 10 * Brad Petrus <brad.petrus@netronome.com> 11 * Chris Telfer <chris.telfer@netronome.com> 12 */ 13 14 #include <linux/bitfield.h> 15 #include <linux/bpf.h> 16 #include <linux/bpf_trace.h> 17 #include <linux/module.h> 18 #include <linux/kernel.h> 19 #include <linux/init.h> 20 #include <linux/fs.h> 21 #include <linux/netdevice.h> 22 #include <linux/etherdevice.h> 23 #include <linux/interrupt.h> 24 #include <linux/ip.h> 25 #include <linux/ipv6.h> 26 #include <linux/mm.h> 27 #include <linux/overflow.h> 28 #include <linux/page_ref.h> 29 #include <linux/pci.h> 30 #include <linux/pci_regs.h> 31 #include <linux/msi.h> 32 #include <linux/ethtool.h> 33 #include <linux/log2.h> 34 #include <linux/if_vlan.h> 35 #include <linux/random.h> 36 #include <linux/vmalloc.h> 37 #include <linux/ktime.h> 38 39 #include <net/switchdev.h> 40 #include <net/vxlan.h> 41 42 #include "nfpcore/nfp_nsp.h" 43 #include "nfp_app.h" 44 #include "nfp_net_ctrl.h" 45 #include "nfp_net.h" 46 #include "nfp_net_sriov.h" 47 #include "nfp_port.h" 48 49 /** 50 * nfp_net_get_fw_version() - Read and parse the FW version 51 * @fw_ver: Output fw_version structure to read to 52 * @ctrl_bar: Mapped address of the control BAR 53 */ 54 void nfp_net_get_fw_version(struct nfp_net_fw_version *fw_ver, 55 void __iomem *ctrl_bar) 56 { 57 u32 reg; 58 59 reg = readl(ctrl_bar + NFP_NET_CFG_VERSION); 60 put_unaligned_le32(reg, fw_ver); 61 } 62 63 static dma_addr_t nfp_net_dma_map_rx(struct nfp_net_dp *dp, void *frag) 64 { 65 return dma_map_single_attrs(dp->dev, frag + NFP_NET_RX_BUF_HEADROOM, 66 dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA, 67 dp->rx_dma_dir, DMA_ATTR_SKIP_CPU_SYNC); 68 } 69 70 static void 71 nfp_net_dma_sync_dev_rx(const struct nfp_net_dp *dp, dma_addr_t dma_addr) 72 { 73 dma_sync_single_for_device(dp->dev, dma_addr, 74 dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA, 75 dp->rx_dma_dir); 76 } 77 78 static void nfp_net_dma_unmap_rx(struct nfp_net_dp *dp, dma_addr_t dma_addr) 79 { 80 dma_unmap_single_attrs(dp->dev, dma_addr, 81 dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA, 82 dp->rx_dma_dir, DMA_ATTR_SKIP_CPU_SYNC); 83 } 84 85 static void nfp_net_dma_sync_cpu_rx(struct nfp_net_dp *dp, dma_addr_t dma_addr, 86 unsigned int len) 87 { 88 dma_sync_single_for_cpu(dp->dev, dma_addr - NFP_NET_RX_BUF_HEADROOM, 89 len, dp->rx_dma_dir); 90 } 91 92 /* Firmware reconfig 93 * 94 * Firmware reconfig may take a while so we have two versions of it - 95 * synchronous and asynchronous (posted). All synchronous callers are holding 96 * RTNL so we don't have to worry about serializing them. 97 */ 98 static void nfp_net_reconfig_start(struct nfp_net *nn, u32 update) 99 { 100 nn_writel(nn, NFP_NET_CFG_UPDATE, update); 101 /* ensure update is written before pinging HW */ 102 nn_pci_flush(nn); 103 nfp_qcp_wr_ptr_add(nn->qcp_cfg, 1); 104 } 105 106 /* Pass 0 as update to run posted reconfigs. */ 107 static void nfp_net_reconfig_start_async(struct nfp_net *nn, u32 update) 108 { 109 update |= nn->reconfig_posted; 110 nn->reconfig_posted = 0; 111 112 nfp_net_reconfig_start(nn, update); 113 114 nn->reconfig_timer_active = true; 115 mod_timer(&nn->reconfig_timer, jiffies + NFP_NET_POLL_TIMEOUT * HZ); 116 } 117 118 static bool nfp_net_reconfig_check_done(struct nfp_net *nn, bool last_check) 119 { 120 u32 reg; 121 122 reg = nn_readl(nn, NFP_NET_CFG_UPDATE); 123 if (reg == 0) 124 return true; 125 if (reg & NFP_NET_CFG_UPDATE_ERR) { 126 nn_err(nn, "Reconfig error: 0x%08x\n", reg); 127 return true; 128 } else if (last_check) { 129 nn_err(nn, "Reconfig timeout: 0x%08x\n", reg); 130 return true; 131 } 132 133 return false; 134 } 135 136 static int nfp_net_reconfig_wait(struct nfp_net *nn, unsigned long deadline) 137 { 138 bool timed_out = false; 139 140 /* Poll update field, waiting for NFP to ack the config */ 141 while (!nfp_net_reconfig_check_done(nn, timed_out)) { 142 msleep(1); 143 timed_out = time_is_before_eq_jiffies(deadline); 144 } 145 146 if (nn_readl(nn, NFP_NET_CFG_UPDATE) & NFP_NET_CFG_UPDATE_ERR) 147 return -EIO; 148 149 return timed_out ? -EIO : 0; 150 } 151 152 static void nfp_net_reconfig_timer(struct timer_list *t) 153 { 154 struct nfp_net *nn = from_timer(nn, t, reconfig_timer); 155 156 spin_lock_bh(&nn->reconfig_lock); 157 158 nn->reconfig_timer_active = false; 159 160 /* If sync caller is present it will take over from us */ 161 if (nn->reconfig_sync_present) 162 goto done; 163 164 /* Read reconfig status and report errors */ 165 nfp_net_reconfig_check_done(nn, true); 166 167 if (nn->reconfig_posted) 168 nfp_net_reconfig_start_async(nn, 0); 169 done: 170 spin_unlock_bh(&nn->reconfig_lock); 171 } 172 173 /** 174 * nfp_net_reconfig_post() - Post async reconfig request 175 * @nn: NFP Net device to reconfigure 176 * @update: The value for the update field in the BAR config 177 * 178 * Record FW reconfiguration request. Reconfiguration will be kicked off 179 * whenever reconfiguration machinery is idle. Multiple requests can be 180 * merged together! 181 */ 182 static void nfp_net_reconfig_post(struct nfp_net *nn, u32 update) 183 { 184 spin_lock_bh(&nn->reconfig_lock); 185 186 /* Sync caller will kick off async reconf when it's done, just post */ 187 if (nn->reconfig_sync_present) { 188 nn->reconfig_posted |= update; 189 goto done; 190 } 191 192 /* Opportunistically check if the previous command is done */ 193 if (!nn->reconfig_timer_active || 194 nfp_net_reconfig_check_done(nn, false)) 195 nfp_net_reconfig_start_async(nn, update); 196 else 197 nn->reconfig_posted |= update; 198 done: 199 spin_unlock_bh(&nn->reconfig_lock); 200 } 201 202 static void nfp_net_reconfig_sync_enter(struct nfp_net *nn) 203 { 204 bool cancelled_timer = false; 205 u32 pre_posted_requests; 206 207 spin_lock_bh(&nn->reconfig_lock); 208 209 nn->reconfig_sync_present = true; 210 211 if (nn->reconfig_timer_active) { 212 nn->reconfig_timer_active = false; 213 cancelled_timer = true; 214 } 215 pre_posted_requests = nn->reconfig_posted; 216 nn->reconfig_posted = 0; 217 218 spin_unlock_bh(&nn->reconfig_lock); 219 220 if (cancelled_timer) { 221 del_timer_sync(&nn->reconfig_timer); 222 nfp_net_reconfig_wait(nn, nn->reconfig_timer.expires); 223 } 224 225 /* Run the posted reconfigs which were issued before we started */ 226 if (pre_posted_requests) { 227 nfp_net_reconfig_start(nn, pre_posted_requests); 228 nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT); 229 } 230 } 231 232 static void nfp_net_reconfig_wait_posted(struct nfp_net *nn) 233 { 234 nfp_net_reconfig_sync_enter(nn); 235 236 spin_lock_bh(&nn->reconfig_lock); 237 nn->reconfig_sync_present = false; 238 spin_unlock_bh(&nn->reconfig_lock); 239 } 240 241 /** 242 * nfp_net_reconfig() - Reconfigure the firmware 243 * @nn: NFP Net device to reconfigure 244 * @update: The value for the update field in the BAR config 245 * 246 * Write the update word to the BAR and ping the reconfig queue. The 247 * poll until the firmware has acknowledged the update by zeroing the 248 * update word. 249 * 250 * Return: Negative errno on error, 0 on success 251 */ 252 int nfp_net_reconfig(struct nfp_net *nn, u32 update) 253 { 254 int ret; 255 256 nfp_net_reconfig_sync_enter(nn); 257 258 nfp_net_reconfig_start(nn, update); 259 ret = nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT); 260 261 spin_lock_bh(&nn->reconfig_lock); 262 263 if (nn->reconfig_posted) 264 nfp_net_reconfig_start_async(nn, 0); 265 266 nn->reconfig_sync_present = false; 267 268 spin_unlock_bh(&nn->reconfig_lock); 269 270 return ret; 271 } 272 273 /** 274 * nfp_net_reconfig_mbox() - Reconfigure the firmware via the mailbox 275 * @nn: NFP Net device to reconfigure 276 * @mbox_cmd: The value for the mailbox command 277 * 278 * Helper function for mailbox updates 279 * 280 * Return: Negative errno on error, 0 on success 281 */ 282 static int nfp_net_reconfig_mbox(struct nfp_net *nn, u32 mbox_cmd) 283 { 284 u32 mbox = nn->tlv_caps.mbox_off; 285 int ret; 286 287 if (!nfp_net_has_mbox(&nn->tlv_caps)) { 288 nn_err(nn, "no mailbox present, command: %u\n", mbox_cmd); 289 return -EIO; 290 } 291 292 nn_writeq(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_CMD, mbox_cmd); 293 294 ret = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_MBOX); 295 if (ret) { 296 nn_err(nn, "Mailbox update error\n"); 297 return ret; 298 } 299 300 return -nn_readl(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_RET); 301 } 302 303 /* Interrupt configuration and handling 304 */ 305 306 /** 307 * nfp_net_irq_unmask() - Unmask automasked interrupt 308 * @nn: NFP Network structure 309 * @entry_nr: MSI-X table entry 310 * 311 * Clear the ICR for the IRQ entry. 312 */ 313 static void nfp_net_irq_unmask(struct nfp_net *nn, unsigned int entry_nr) 314 { 315 nn_writeb(nn, NFP_NET_CFG_ICR(entry_nr), NFP_NET_CFG_ICR_UNMASKED); 316 nn_pci_flush(nn); 317 } 318 319 /** 320 * nfp_net_irqs_alloc() - allocates MSI-X irqs 321 * @pdev: PCI device structure 322 * @irq_entries: Array to be initialized and used to hold the irq entries 323 * @min_irqs: Minimal acceptable number of interrupts 324 * @wanted_irqs: Target number of interrupts to allocate 325 * 326 * Return: Number of irqs obtained or 0 on error. 327 */ 328 unsigned int 329 nfp_net_irqs_alloc(struct pci_dev *pdev, struct msix_entry *irq_entries, 330 unsigned int min_irqs, unsigned int wanted_irqs) 331 { 332 unsigned int i; 333 int got_irqs; 334 335 for (i = 0; i < wanted_irqs; i++) 336 irq_entries[i].entry = i; 337 338 got_irqs = pci_enable_msix_range(pdev, irq_entries, 339 min_irqs, wanted_irqs); 340 if (got_irqs < 0) { 341 dev_err(&pdev->dev, "Failed to enable %d-%d MSI-X (err=%d)\n", 342 min_irqs, wanted_irqs, got_irqs); 343 return 0; 344 } 345 346 if (got_irqs < wanted_irqs) 347 dev_warn(&pdev->dev, "Unable to allocate %d IRQs got only %d\n", 348 wanted_irqs, got_irqs); 349 350 return got_irqs; 351 } 352 353 /** 354 * nfp_net_irqs_assign() - Assign interrupts allocated externally to netdev 355 * @nn: NFP Network structure 356 * @irq_entries: Table of allocated interrupts 357 * @n: Size of @irq_entries (number of entries to grab) 358 * 359 * After interrupts are allocated with nfp_net_irqs_alloc() this function 360 * should be called to assign them to a specific netdev (port). 361 */ 362 void 363 nfp_net_irqs_assign(struct nfp_net *nn, struct msix_entry *irq_entries, 364 unsigned int n) 365 { 366 struct nfp_net_dp *dp = &nn->dp; 367 368 nn->max_r_vecs = n - NFP_NET_NON_Q_VECTORS; 369 dp->num_r_vecs = nn->max_r_vecs; 370 371 memcpy(nn->irq_entries, irq_entries, sizeof(*irq_entries) * n); 372 373 if (dp->num_rx_rings > dp->num_r_vecs || 374 dp->num_tx_rings > dp->num_r_vecs) 375 dev_warn(nn->dp.dev, "More rings (%d,%d) than vectors (%d).\n", 376 dp->num_rx_rings, dp->num_tx_rings, 377 dp->num_r_vecs); 378 379 dp->num_rx_rings = min(dp->num_r_vecs, dp->num_rx_rings); 380 dp->num_tx_rings = min(dp->num_r_vecs, dp->num_tx_rings); 381 dp->num_stack_tx_rings = dp->num_tx_rings; 382 } 383 384 /** 385 * nfp_net_irqs_disable() - Disable interrupts 386 * @pdev: PCI device structure 387 * 388 * Undoes what @nfp_net_irqs_alloc() does. 389 */ 390 void nfp_net_irqs_disable(struct pci_dev *pdev) 391 { 392 pci_disable_msix(pdev); 393 } 394 395 /** 396 * nfp_net_irq_rxtx() - Interrupt service routine for RX/TX rings. 397 * @irq: Interrupt 398 * @data: Opaque data structure 399 * 400 * Return: Indicate if the interrupt has been handled. 401 */ 402 static irqreturn_t nfp_net_irq_rxtx(int irq, void *data) 403 { 404 struct nfp_net_r_vector *r_vec = data; 405 406 napi_schedule_irqoff(&r_vec->napi); 407 408 /* The FW auto-masks any interrupt, either via the MASK bit in 409 * the MSI-X table or via the per entry ICR field. So there 410 * is no need to disable interrupts here. 411 */ 412 return IRQ_HANDLED; 413 } 414 415 static irqreturn_t nfp_ctrl_irq_rxtx(int irq, void *data) 416 { 417 struct nfp_net_r_vector *r_vec = data; 418 419 tasklet_schedule(&r_vec->tasklet); 420 421 return IRQ_HANDLED; 422 } 423 424 /** 425 * nfp_net_read_link_status() - Reread link status from control BAR 426 * @nn: NFP Network structure 427 */ 428 static void nfp_net_read_link_status(struct nfp_net *nn) 429 { 430 unsigned long flags; 431 bool link_up; 432 u32 sts; 433 434 spin_lock_irqsave(&nn->link_status_lock, flags); 435 436 sts = nn_readl(nn, NFP_NET_CFG_STS); 437 link_up = !!(sts & NFP_NET_CFG_STS_LINK); 438 439 if (nn->link_up == link_up) 440 goto out; 441 442 nn->link_up = link_up; 443 if (nn->port) 444 set_bit(NFP_PORT_CHANGED, &nn->port->flags); 445 446 if (nn->link_up) { 447 netif_carrier_on(nn->dp.netdev); 448 netdev_info(nn->dp.netdev, "NIC Link is Up\n"); 449 } else { 450 netif_carrier_off(nn->dp.netdev); 451 netdev_info(nn->dp.netdev, "NIC Link is Down\n"); 452 } 453 out: 454 spin_unlock_irqrestore(&nn->link_status_lock, flags); 455 } 456 457 /** 458 * nfp_net_irq_lsc() - Interrupt service routine for link state changes 459 * @irq: Interrupt 460 * @data: Opaque data structure 461 * 462 * Return: Indicate if the interrupt has been handled. 463 */ 464 static irqreturn_t nfp_net_irq_lsc(int irq, void *data) 465 { 466 struct nfp_net *nn = data; 467 struct msix_entry *entry; 468 469 entry = &nn->irq_entries[NFP_NET_IRQ_LSC_IDX]; 470 471 nfp_net_read_link_status(nn); 472 473 nfp_net_irq_unmask(nn, entry->entry); 474 475 return IRQ_HANDLED; 476 } 477 478 /** 479 * nfp_net_irq_exn() - Interrupt service routine for exceptions 480 * @irq: Interrupt 481 * @data: Opaque data structure 482 * 483 * Return: Indicate if the interrupt has been handled. 484 */ 485 static irqreturn_t nfp_net_irq_exn(int irq, void *data) 486 { 487 struct nfp_net *nn = data; 488 489 nn_err(nn, "%s: UNIMPLEMENTED.\n", __func__); 490 /* XXX TO BE IMPLEMENTED */ 491 return IRQ_HANDLED; 492 } 493 494 /** 495 * nfp_net_tx_ring_init() - Fill in the boilerplate for a TX ring 496 * @tx_ring: TX ring structure 497 * @r_vec: IRQ vector servicing this ring 498 * @idx: Ring index 499 * @is_xdp: Is this an XDP TX ring? 500 */ 501 static void 502 nfp_net_tx_ring_init(struct nfp_net_tx_ring *tx_ring, 503 struct nfp_net_r_vector *r_vec, unsigned int idx, 504 bool is_xdp) 505 { 506 struct nfp_net *nn = r_vec->nfp_net; 507 508 tx_ring->idx = idx; 509 tx_ring->r_vec = r_vec; 510 tx_ring->is_xdp = is_xdp; 511 u64_stats_init(&tx_ring->r_vec->tx_sync); 512 513 tx_ring->qcidx = tx_ring->idx * nn->stride_tx; 514 tx_ring->qcp_q = nn->tx_bar + NFP_QCP_QUEUE_OFF(tx_ring->qcidx); 515 } 516 517 /** 518 * nfp_net_rx_ring_init() - Fill in the boilerplate for a RX ring 519 * @rx_ring: RX ring structure 520 * @r_vec: IRQ vector servicing this ring 521 * @idx: Ring index 522 */ 523 static void 524 nfp_net_rx_ring_init(struct nfp_net_rx_ring *rx_ring, 525 struct nfp_net_r_vector *r_vec, unsigned int idx) 526 { 527 struct nfp_net *nn = r_vec->nfp_net; 528 529 rx_ring->idx = idx; 530 rx_ring->r_vec = r_vec; 531 u64_stats_init(&rx_ring->r_vec->rx_sync); 532 533 rx_ring->fl_qcidx = rx_ring->idx * nn->stride_rx; 534 rx_ring->qcp_fl = nn->rx_bar + NFP_QCP_QUEUE_OFF(rx_ring->fl_qcidx); 535 } 536 537 /** 538 * nfp_net_aux_irq_request() - Request an auxiliary interrupt (LSC or EXN) 539 * @nn: NFP Network structure 540 * @ctrl_offset: Control BAR offset where IRQ configuration should be written 541 * @format: printf-style format to construct the interrupt name 542 * @name: Pointer to allocated space for interrupt name 543 * @name_sz: Size of space for interrupt name 544 * @vector_idx: Index of MSI-X vector used for this interrupt 545 * @handler: IRQ handler to register for this interrupt 546 */ 547 static int 548 nfp_net_aux_irq_request(struct nfp_net *nn, u32 ctrl_offset, 549 const char *format, char *name, size_t name_sz, 550 unsigned int vector_idx, irq_handler_t handler) 551 { 552 struct msix_entry *entry; 553 int err; 554 555 entry = &nn->irq_entries[vector_idx]; 556 557 snprintf(name, name_sz, format, nfp_net_name(nn)); 558 err = request_irq(entry->vector, handler, 0, name, nn); 559 if (err) { 560 nn_err(nn, "Failed to request IRQ %d (err=%d).\n", 561 entry->vector, err); 562 return err; 563 } 564 nn_writeb(nn, ctrl_offset, entry->entry); 565 nfp_net_irq_unmask(nn, entry->entry); 566 567 return 0; 568 } 569 570 /** 571 * nfp_net_aux_irq_free() - Free an auxiliary interrupt (LSC or EXN) 572 * @nn: NFP Network structure 573 * @ctrl_offset: Control BAR offset where IRQ configuration should be written 574 * @vector_idx: Index of MSI-X vector used for this interrupt 575 */ 576 static void nfp_net_aux_irq_free(struct nfp_net *nn, u32 ctrl_offset, 577 unsigned int vector_idx) 578 { 579 nn_writeb(nn, ctrl_offset, 0xff); 580 nn_pci_flush(nn); 581 free_irq(nn->irq_entries[vector_idx].vector, nn); 582 } 583 584 /* Transmit 585 * 586 * One queue controller peripheral queue is used for transmit. The 587 * driver en-queues packets for transmit by advancing the write 588 * pointer. The device indicates that packets have transmitted by 589 * advancing the read pointer. The driver maintains a local copy of 590 * the read and write pointer in @struct nfp_net_tx_ring. The driver 591 * keeps @wr_p in sync with the queue controller write pointer and can 592 * determine how many packets have been transmitted by comparing its 593 * copy of the read pointer @rd_p with the read pointer maintained by 594 * the queue controller peripheral. 595 */ 596 597 /** 598 * nfp_net_tx_full() - Check if the TX ring is full 599 * @tx_ring: TX ring to check 600 * @dcnt: Number of descriptors that need to be enqueued (must be >= 1) 601 * 602 * This function checks, based on the *host copy* of read/write 603 * pointer if a given TX ring is full. The real TX queue may have 604 * some newly made available slots. 605 * 606 * Return: True if the ring is full. 607 */ 608 static int nfp_net_tx_full(struct nfp_net_tx_ring *tx_ring, int dcnt) 609 { 610 return (tx_ring->wr_p - tx_ring->rd_p) >= (tx_ring->cnt - dcnt); 611 } 612 613 /* Wrappers for deciding when to stop and restart TX queues */ 614 static int nfp_net_tx_ring_should_wake(struct nfp_net_tx_ring *tx_ring) 615 { 616 return !nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS * 4); 617 } 618 619 static int nfp_net_tx_ring_should_stop(struct nfp_net_tx_ring *tx_ring) 620 { 621 return nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS + 1); 622 } 623 624 /** 625 * nfp_net_tx_ring_stop() - stop tx ring 626 * @nd_q: netdev queue 627 * @tx_ring: driver tx queue structure 628 * 629 * Safely stop TX ring. Remember that while we are running .start_xmit() 630 * someone else may be cleaning the TX ring completions so we need to be 631 * extra careful here. 632 */ 633 static void nfp_net_tx_ring_stop(struct netdev_queue *nd_q, 634 struct nfp_net_tx_ring *tx_ring) 635 { 636 netif_tx_stop_queue(nd_q); 637 638 /* We can race with the TX completion out of NAPI so recheck */ 639 smp_mb(); 640 if (unlikely(nfp_net_tx_ring_should_wake(tx_ring))) 641 netif_tx_start_queue(nd_q); 642 } 643 644 /** 645 * nfp_net_tx_tso() - Set up Tx descriptor for LSO 646 * @r_vec: per-ring structure 647 * @txbuf: Pointer to driver soft TX descriptor 648 * @txd: Pointer to HW TX descriptor 649 * @skb: Pointer to SKB 650 * 651 * Set up Tx descriptor for LSO, do nothing for non-LSO skbs. 652 * Return error on packet header greater than maximum supported LSO header size. 653 */ 654 static void nfp_net_tx_tso(struct nfp_net_r_vector *r_vec, 655 struct nfp_net_tx_buf *txbuf, 656 struct nfp_net_tx_desc *txd, struct sk_buff *skb) 657 { 658 u32 hdrlen; 659 u16 mss; 660 661 if (!skb_is_gso(skb)) 662 return; 663 664 if (!skb->encapsulation) { 665 txd->l3_offset = skb_network_offset(skb); 666 txd->l4_offset = skb_transport_offset(skb); 667 hdrlen = skb_transport_offset(skb) + tcp_hdrlen(skb); 668 } else { 669 txd->l3_offset = skb_inner_network_offset(skb); 670 txd->l4_offset = skb_inner_transport_offset(skb); 671 hdrlen = skb_inner_transport_header(skb) - skb->data + 672 inner_tcp_hdrlen(skb); 673 } 674 675 txbuf->pkt_cnt = skb_shinfo(skb)->gso_segs; 676 txbuf->real_len += hdrlen * (txbuf->pkt_cnt - 1); 677 678 mss = skb_shinfo(skb)->gso_size & PCIE_DESC_TX_MSS_MASK; 679 txd->lso_hdrlen = hdrlen; 680 txd->mss = cpu_to_le16(mss); 681 txd->flags |= PCIE_DESC_TX_LSO; 682 683 u64_stats_update_begin(&r_vec->tx_sync); 684 r_vec->tx_lso++; 685 u64_stats_update_end(&r_vec->tx_sync); 686 } 687 688 /** 689 * nfp_net_tx_csum() - Set TX CSUM offload flags in TX descriptor 690 * @dp: NFP Net data path struct 691 * @r_vec: per-ring structure 692 * @txbuf: Pointer to driver soft TX descriptor 693 * @txd: Pointer to TX descriptor 694 * @skb: Pointer to SKB 695 * 696 * This function sets the TX checksum flags in the TX descriptor based 697 * on the configuration and the protocol of the packet to be transmitted. 698 */ 699 static void nfp_net_tx_csum(struct nfp_net_dp *dp, 700 struct nfp_net_r_vector *r_vec, 701 struct nfp_net_tx_buf *txbuf, 702 struct nfp_net_tx_desc *txd, struct sk_buff *skb) 703 { 704 struct ipv6hdr *ipv6h; 705 struct iphdr *iph; 706 u8 l4_hdr; 707 708 if (!(dp->ctrl & NFP_NET_CFG_CTRL_TXCSUM)) 709 return; 710 711 if (skb->ip_summed != CHECKSUM_PARTIAL) 712 return; 713 714 txd->flags |= PCIE_DESC_TX_CSUM; 715 if (skb->encapsulation) 716 txd->flags |= PCIE_DESC_TX_ENCAP; 717 718 iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb); 719 ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb); 720 721 if (iph->version == 4) { 722 txd->flags |= PCIE_DESC_TX_IP4_CSUM; 723 l4_hdr = iph->protocol; 724 } else if (ipv6h->version == 6) { 725 l4_hdr = ipv6h->nexthdr; 726 } else { 727 nn_dp_warn(dp, "partial checksum but ipv=%x!\n", iph->version); 728 return; 729 } 730 731 switch (l4_hdr) { 732 case IPPROTO_TCP: 733 txd->flags |= PCIE_DESC_TX_TCP_CSUM; 734 break; 735 case IPPROTO_UDP: 736 txd->flags |= PCIE_DESC_TX_UDP_CSUM; 737 break; 738 default: 739 nn_dp_warn(dp, "partial checksum but l4 proto=%x!\n", l4_hdr); 740 return; 741 } 742 743 u64_stats_update_begin(&r_vec->tx_sync); 744 if (skb->encapsulation) 745 r_vec->hw_csum_tx_inner += txbuf->pkt_cnt; 746 else 747 r_vec->hw_csum_tx += txbuf->pkt_cnt; 748 u64_stats_update_end(&r_vec->tx_sync); 749 } 750 751 static void nfp_net_tx_xmit_more_flush(struct nfp_net_tx_ring *tx_ring) 752 { 753 wmb(); 754 nfp_qcp_wr_ptr_add(tx_ring->qcp_q, tx_ring->wr_ptr_add); 755 tx_ring->wr_ptr_add = 0; 756 } 757 758 static int nfp_net_prep_port_id(struct sk_buff *skb) 759 { 760 struct metadata_dst *md_dst = skb_metadata_dst(skb); 761 unsigned char *data; 762 763 if (likely(!md_dst)) 764 return 0; 765 if (unlikely(md_dst->type != METADATA_HW_PORT_MUX)) 766 return 0; 767 768 if (unlikely(skb_cow_head(skb, 8))) 769 return -ENOMEM; 770 771 data = skb_push(skb, 8); 772 put_unaligned_be32(NFP_NET_META_PORTID, data); 773 put_unaligned_be32(md_dst->u.port_info.port_id, data + 4); 774 775 return 8; 776 } 777 778 /** 779 * nfp_net_tx() - Main transmit entry point 780 * @skb: SKB to transmit 781 * @netdev: netdev structure 782 * 783 * Return: NETDEV_TX_OK on success. 784 */ 785 static int nfp_net_tx(struct sk_buff *skb, struct net_device *netdev) 786 { 787 struct nfp_net *nn = netdev_priv(netdev); 788 const struct skb_frag_struct *frag; 789 struct nfp_net_tx_desc *txd, txdg; 790 int f, nr_frags, wr_idx, md_bytes; 791 struct nfp_net_tx_ring *tx_ring; 792 struct nfp_net_r_vector *r_vec; 793 struct nfp_net_tx_buf *txbuf; 794 struct netdev_queue *nd_q; 795 struct nfp_net_dp *dp; 796 dma_addr_t dma_addr; 797 unsigned int fsize; 798 u16 qidx; 799 800 dp = &nn->dp; 801 qidx = skb_get_queue_mapping(skb); 802 tx_ring = &dp->tx_rings[qidx]; 803 r_vec = tx_ring->r_vec; 804 nd_q = netdev_get_tx_queue(dp->netdev, qidx); 805 806 nr_frags = skb_shinfo(skb)->nr_frags; 807 808 if (unlikely(nfp_net_tx_full(tx_ring, nr_frags + 1))) { 809 nn_dp_warn(dp, "TX ring %d busy. wrp=%u rdp=%u\n", 810 qidx, tx_ring->wr_p, tx_ring->rd_p); 811 netif_tx_stop_queue(nd_q); 812 nfp_net_tx_xmit_more_flush(tx_ring); 813 u64_stats_update_begin(&r_vec->tx_sync); 814 r_vec->tx_busy++; 815 u64_stats_update_end(&r_vec->tx_sync); 816 return NETDEV_TX_BUSY; 817 } 818 819 md_bytes = nfp_net_prep_port_id(skb); 820 if (unlikely(md_bytes < 0)) { 821 nfp_net_tx_xmit_more_flush(tx_ring); 822 dev_kfree_skb_any(skb); 823 return NETDEV_TX_OK; 824 } 825 826 /* Start with the head skbuf */ 827 dma_addr = dma_map_single(dp->dev, skb->data, skb_headlen(skb), 828 DMA_TO_DEVICE); 829 if (dma_mapping_error(dp->dev, dma_addr)) 830 goto err_free; 831 832 wr_idx = D_IDX(tx_ring, tx_ring->wr_p); 833 834 /* Stash the soft descriptor of the head then initialize it */ 835 txbuf = &tx_ring->txbufs[wr_idx]; 836 txbuf->skb = skb; 837 txbuf->dma_addr = dma_addr; 838 txbuf->fidx = -1; 839 txbuf->pkt_cnt = 1; 840 txbuf->real_len = skb->len; 841 842 /* Build TX descriptor */ 843 txd = &tx_ring->txds[wr_idx]; 844 txd->offset_eop = (nr_frags ? 0 : PCIE_DESC_TX_EOP) | md_bytes; 845 txd->dma_len = cpu_to_le16(skb_headlen(skb)); 846 nfp_desc_set_dma_addr(txd, dma_addr); 847 txd->data_len = cpu_to_le16(skb->len); 848 849 txd->flags = 0; 850 txd->mss = 0; 851 txd->lso_hdrlen = 0; 852 853 /* Do not reorder - tso may adjust pkt cnt, vlan may override fields */ 854 nfp_net_tx_tso(r_vec, txbuf, txd, skb); 855 nfp_net_tx_csum(dp, r_vec, txbuf, txd, skb); 856 if (skb_vlan_tag_present(skb) && dp->ctrl & NFP_NET_CFG_CTRL_TXVLAN) { 857 txd->flags |= PCIE_DESC_TX_VLAN; 858 txd->vlan = cpu_to_le16(skb_vlan_tag_get(skb)); 859 } 860 861 /* Gather DMA */ 862 if (nr_frags > 0) { 863 /* all descs must match except for in addr, length and eop */ 864 txdg = *txd; 865 866 for (f = 0; f < nr_frags; f++) { 867 frag = &skb_shinfo(skb)->frags[f]; 868 fsize = skb_frag_size(frag); 869 870 dma_addr = skb_frag_dma_map(dp->dev, frag, 0, 871 fsize, DMA_TO_DEVICE); 872 if (dma_mapping_error(dp->dev, dma_addr)) 873 goto err_unmap; 874 875 wr_idx = D_IDX(tx_ring, wr_idx + 1); 876 tx_ring->txbufs[wr_idx].skb = skb; 877 tx_ring->txbufs[wr_idx].dma_addr = dma_addr; 878 tx_ring->txbufs[wr_idx].fidx = f; 879 880 txd = &tx_ring->txds[wr_idx]; 881 *txd = txdg; 882 txd->dma_len = cpu_to_le16(fsize); 883 nfp_desc_set_dma_addr(txd, dma_addr); 884 txd->offset_eop |= 885 (f == nr_frags - 1) ? PCIE_DESC_TX_EOP : 0; 886 } 887 888 u64_stats_update_begin(&r_vec->tx_sync); 889 r_vec->tx_gather++; 890 u64_stats_update_end(&r_vec->tx_sync); 891 } 892 893 netdev_tx_sent_queue(nd_q, txbuf->real_len); 894 895 skb_tx_timestamp(skb); 896 897 tx_ring->wr_p += nr_frags + 1; 898 if (nfp_net_tx_ring_should_stop(tx_ring)) 899 nfp_net_tx_ring_stop(nd_q, tx_ring); 900 901 tx_ring->wr_ptr_add += nr_frags + 1; 902 if (!skb->xmit_more || netif_xmit_stopped(nd_q)) 903 nfp_net_tx_xmit_more_flush(tx_ring); 904 905 return NETDEV_TX_OK; 906 907 err_unmap: 908 while (--f >= 0) { 909 frag = &skb_shinfo(skb)->frags[f]; 910 dma_unmap_page(dp->dev, tx_ring->txbufs[wr_idx].dma_addr, 911 skb_frag_size(frag), DMA_TO_DEVICE); 912 tx_ring->txbufs[wr_idx].skb = NULL; 913 tx_ring->txbufs[wr_idx].dma_addr = 0; 914 tx_ring->txbufs[wr_idx].fidx = -2; 915 wr_idx = wr_idx - 1; 916 if (wr_idx < 0) 917 wr_idx += tx_ring->cnt; 918 } 919 dma_unmap_single(dp->dev, tx_ring->txbufs[wr_idx].dma_addr, 920 skb_headlen(skb), DMA_TO_DEVICE); 921 tx_ring->txbufs[wr_idx].skb = NULL; 922 tx_ring->txbufs[wr_idx].dma_addr = 0; 923 tx_ring->txbufs[wr_idx].fidx = -2; 924 err_free: 925 nn_dp_warn(dp, "Failed to map DMA TX buffer\n"); 926 nfp_net_tx_xmit_more_flush(tx_ring); 927 u64_stats_update_begin(&r_vec->tx_sync); 928 r_vec->tx_errors++; 929 u64_stats_update_end(&r_vec->tx_sync); 930 dev_kfree_skb_any(skb); 931 return NETDEV_TX_OK; 932 } 933 934 /** 935 * nfp_net_tx_complete() - Handled completed TX packets 936 * @tx_ring: TX ring structure 937 * @budget: NAPI budget (only used as bool to determine if in NAPI context) 938 */ 939 static void nfp_net_tx_complete(struct nfp_net_tx_ring *tx_ring, int budget) 940 { 941 struct nfp_net_r_vector *r_vec = tx_ring->r_vec; 942 struct nfp_net_dp *dp = &r_vec->nfp_net->dp; 943 const struct skb_frag_struct *frag; 944 struct netdev_queue *nd_q; 945 u32 done_pkts = 0, done_bytes = 0; 946 struct sk_buff *skb; 947 int todo, nr_frags; 948 u32 qcp_rd_p; 949 int fidx; 950 int idx; 951 952 if (tx_ring->wr_p == tx_ring->rd_p) 953 return; 954 955 /* Work out how many descriptors have been transmitted */ 956 qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q); 957 958 if (qcp_rd_p == tx_ring->qcp_rd_p) 959 return; 960 961 todo = D_IDX(tx_ring, qcp_rd_p - tx_ring->qcp_rd_p); 962 963 while (todo--) { 964 idx = D_IDX(tx_ring, tx_ring->rd_p++); 965 966 skb = tx_ring->txbufs[idx].skb; 967 if (!skb) 968 continue; 969 970 nr_frags = skb_shinfo(skb)->nr_frags; 971 fidx = tx_ring->txbufs[idx].fidx; 972 973 if (fidx == -1) { 974 /* unmap head */ 975 dma_unmap_single(dp->dev, tx_ring->txbufs[idx].dma_addr, 976 skb_headlen(skb), DMA_TO_DEVICE); 977 978 done_pkts += tx_ring->txbufs[idx].pkt_cnt; 979 done_bytes += tx_ring->txbufs[idx].real_len; 980 } else { 981 /* unmap fragment */ 982 frag = &skb_shinfo(skb)->frags[fidx]; 983 dma_unmap_page(dp->dev, tx_ring->txbufs[idx].dma_addr, 984 skb_frag_size(frag), DMA_TO_DEVICE); 985 } 986 987 /* check for last gather fragment */ 988 if (fidx == nr_frags - 1) 989 napi_consume_skb(skb, budget); 990 991 tx_ring->txbufs[idx].dma_addr = 0; 992 tx_ring->txbufs[idx].skb = NULL; 993 tx_ring->txbufs[idx].fidx = -2; 994 } 995 996 tx_ring->qcp_rd_p = qcp_rd_p; 997 998 u64_stats_update_begin(&r_vec->tx_sync); 999 r_vec->tx_bytes += done_bytes; 1000 r_vec->tx_pkts += done_pkts; 1001 u64_stats_update_end(&r_vec->tx_sync); 1002 1003 if (!dp->netdev) 1004 return; 1005 1006 nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx); 1007 netdev_tx_completed_queue(nd_q, done_pkts, done_bytes); 1008 if (nfp_net_tx_ring_should_wake(tx_ring)) { 1009 /* Make sure TX thread will see updated tx_ring->rd_p */ 1010 smp_mb(); 1011 1012 if (unlikely(netif_tx_queue_stopped(nd_q))) 1013 netif_tx_wake_queue(nd_q); 1014 } 1015 1016 WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt, 1017 "TX ring corruption rd_p=%u wr_p=%u cnt=%u\n", 1018 tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt); 1019 } 1020 1021 static bool nfp_net_xdp_complete(struct nfp_net_tx_ring *tx_ring) 1022 { 1023 struct nfp_net_r_vector *r_vec = tx_ring->r_vec; 1024 u32 done_pkts = 0, done_bytes = 0; 1025 bool done_all; 1026 int idx, todo; 1027 u32 qcp_rd_p; 1028 1029 /* Work out how many descriptors have been transmitted */ 1030 qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q); 1031 1032 if (qcp_rd_p == tx_ring->qcp_rd_p) 1033 return true; 1034 1035 todo = D_IDX(tx_ring, qcp_rd_p - tx_ring->qcp_rd_p); 1036 1037 done_all = todo <= NFP_NET_XDP_MAX_COMPLETE; 1038 todo = min(todo, NFP_NET_XDP_MAX_COMPLETE); 1039 1040 tx_ring->qcp_rd_p = D_IDX(tx_ring, tx_ring->qcp_rd_p + todo); 1041 1042 done_pkts = todo; 1043 while (todo--) { 1044 idx = D_IDX(tx_ring, tx_ring->rd_p); 1045 tx_ring->rd_p++; 1046 1047 done_bytes += tx_ring->txbufs[idx].real_len; 1048 } 1049 1050 u64_stats_update_begin(&r_vec->tx_sync); 1051 r_vec->tx_bytes += done_bytes; 1052 r_vec->tx_pkts += done_pkts; 1053 u64_stats_update_end(&r_vec->tx_sync); 1054 1055 WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt, 1056 "XDP TX ring corruption rd_p=%u wr_p=%u cnt=%u\n", 1057 tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt); 1058 1059 return done_all; 1060 } 1061 1062 /** 1063 * nfp_net_tx_ring_reset() - Free any untransmitted buffers and reset pointers 1064 * @dp: NFP Net data path struct 1065 * @tx_ring: TX ring structure 1066 * 1067 * Assumes that the device is stopped, must be idempotent. 1068 */ 1069 static void 1070 nfp_net_tx_ring_reset(struct nfp_net_dp *dp, struct nfp_net_tx_ring *tx_ring) 1071 { 1072 const struct skb_frag_struct *frag; 1073 struct netdev_queue *nd_q; 1074 1075 while (!tx_ring->is_xdp && tx_ring->rd_p != tx_ring->wr_p) { 1076 struct nfp_net_tx_buf *tx_buf; 1077 struct sk_buff *skb; 1078 int idx, nr_frags; 1079 1080 idx = D_IDX(tx_ring, tx_ring->rd_p); 1081 tx_buf = &tx_ring->txbufs[idx]; 1082 1083 skb = tx_ring->txbufs[idx].skb; 1084 nr_frags = skb_shinfo(skb)->nr_frags; 1085 1086 if (tx_buf->fidx == -1) { 1087 /* unmap head */ 1088 dma_unmap_single(dp->dev, tx_buf->dma_addr, 1089 skb_headlen(skb), DMA_TO_DEVICE); 1090 } else { 1091 /* unmap fragment */ 1092 frag = &skb_shinfo(skb)->frags[tx_buf->fidx]; 1093 dma_unmap_page(dp->dev, tx_buf->dma_addr, 1094 skb_frag_size(frag), DMA_TO_DEVICE); 1095 } 1096 1097 /* check for last gather fragment */ 1098 if (tx_buf->fidx == nr_frags - 1) 1099 dev_kfree_skb_any(skb); 1100 1101 tx_buf->dma_addr = 0; 1102 tx_buf->skb = NULL; 1103 tx_buf->fidx = -2; 1104 1105 tx_ring->qcp_rd_p++; 1106 tx_ring->rd_p++; 1107 } 1108 1109 memset(tx_ring->txds, 0, tx_ring->size); 1110 tx_ring->wr_p = 0; 1111 tx_ring->rd_p = 0; 1112 tx_ring->qcp_rd_p = 0; 1113 tx_ring->wr_ptr_add = 0; 1114 1115 if (tx_ring->is_xdp || !dp->netdev) 1116 return; 1117 1118 nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx); 1119 netdev_tx_reset_queue(nd_q); 1120 } 1121 1122 static void nfp_net_tx_timeout(struct net_device *netdev) 1123 { 1124 struct nfp_net *nn = netdev_priv(netdev); 1125 int i; 1126 1127 for (i = 0; i < nn->dp.netdev->real_num_tx_queues; i++) { 1128 if (!netif_tx_queue_stopped(netdev_get_tx_queue(netdev, i))) 1129 continue; 1130 nn_warn(nn, "TX timeout on ring: %d\n", i); 1131 } 1132 nn_warn(nn, "TX watchdog timeout\n"); 1133 } 1134 1135 /* Receive processing 1136 */ 1137 static unsigned int 1138 nfp_net_calc_fl_bufsz(struct nfp_net_dp *dp) 1139 { 1140 unsigned int fl_bufsz; 1141 1142 fl_bufsz = NFP_NET_RX_BUF_HEADROOM; 1143 fl_bufsz += dp->rx_dma_off; 1144 if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC) 1145 fl_bufsz += NFP_NET_MAX_PREPEND; 1146 else 1147 fl_bufsz += dp->rx_offset; 1148 fl_bufsz += ETH_HLEN + VLAN_HLEN * 2 + dp->mtu; 1149 1150 fl_bufsz = SKB_DATA_ALIGN(fl_bufsz); 1151 fl_bufsz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 1152 1153 return fl_bufsz; 1154 } 1155 1156 static void 1157 nfp_net_free_frag(void *frag, bool xdp) 1158 { 1159 if (!xdp) 1160 skb_free_frag(frag); 1161 else 1162 __free_page(virt_to_page(frag)); 1163 } 1164 1165 /** 1166 * nfp_net_rx_alloc_one() - Allocate and map page frag for RX 1167 * @dp: NFP Net data path struct 1168 * @dma_addr: Pointer to storage for DMA address (output param) 1169 * 1170 * This function will allcate a new page frag, map it for DMA. 1171 * 1172 * Return: allocated page frag or NULL on failure. 1173 */ 1174 static void *nfp_net_rx_alloc_one(struct nfp_net_dp *dp, dma_addr_t *dma_addr) 1175 { 1176 void *frag; 1177 1178 if (!dp->xdp_prog) { 1179 frag = netdev_alloc_frag(dp->fl_bufsz); 1180 } else { 1181 struct page *page; 1182 1183 page = alloc_page(GFP_KERNEL); 1184 frag = page ? page_address(page) : NULL; 1185 } 1186 if (!frag) { 1187 nn_dp_warn(dp, "Failed to alloc receive page frag\n"); 1188 return NULL; 1189 } 1190 1191 *dma_addr = nfp_net_dma_map_rx(dp, frag); 1192 if (dma_mapping_error(dp->dev, *dma_addr)) { 1193 nfp_net_free_frag(frag, dp->xdp_prog); 1194 nn_dp_warn(dp, "Failed to map DMA RX buffer\n"); 1195 return NULL; 1196 } 1197 1198 return frag; 1199 } 1200 1201 static void *nfp_net_napi_alloc_one(struct nfp_net_dp *dp, dma_addr_t *dma_addr) 1202 { 1203 void *frag; 1204 1205 if (!dp->xdp_prog) { 1206 frag = napi_alloc_frag(dp->fl_bufsz); 1207 if (unlikely(!frag)) 1208 return NULL; 1209 } else { 1210 struct page *page; 1211 1212 page = dev_alloc_page(); 1213 if (unlikely(!page)) 1214 return NULL; 1215 frag = page_address(page); 1216 } 1217 1218 *dma_addr = nfp_net_dma_map_rx(dp, frag); 1219 if (dma_mapping_error(dp->dev, *dma_addr)) { 1220 nfp_net_free_frag(frag, dp->xdp_prog); 1221 nn_dp_warn(dp, "Failed to map DMA RX buffer\n"); 1222 return NULL; 1223 } 1224 1225 return frag; 1226 } 1227 1228 /** 1229 * nfp_net_rx_give_one() - Put mapped skb on the software and hardware rings 1230 * @dp: NFP Net data path struct 1231 * @rx_ring: RX ring structure 1232 * @frag: page fragment buffer 1233 * @dma_addr: DMA address of skb mapping 1234 */ 1235 static void nfp_net_rx_give_one(const struct nfp_net_dp *dp, 1236 struct nfp_net_rx_ring *rx_ring, 1237 void *frag, dma_addr_t dma_addr) 1238 { 1239 unsigned int wr_idx; 1240 1241 wr_idx = D_IDX(rx_ring, rx_ring->wr_p); 1242 1243 nfp_net_dma_sync_dev_rx(dp, dma_addr); 1244 1245 /* Stash SKB and DMA address away */ 1246 rx_ring->rxbufs[wr_idx].frag = frag; 1247 rx_ring->rxbufs[wr_idx].dma_addr = dma_addr; 1248 1249 /* Fill freelist descriptor */ 1250 rx_ring->rxds[wr_idx].fld.reserved = 0; 1251 rx_ring->rxds[wr_idx].fld.meta_len_dd = 0; 1252 nfp_desc_set_dma_addr(&rx_ring->rxds[wr_idx].fld, 1253 dma_addr + dp->rx_dma_off); 1254 1255 rx_ring->wr_p++; 1256 if (!(rx_ring->wr_p % NFP_NET_FL_BATCH)) { 1257 /* Update write pointer of the freelist queue. Make 1258 * sure all writes are flushed before telling the hardware. 1259 */ 1260 wmb(); 1261 nfp_qcp_wr_ptr_add(rx_ring->qcp_fl, NFP_NET_FL_BATCH); 1262 } 1263 } 1264 1265 /** 1266 * nfp_net_rx_ring_reset() - Reflect in SW state of freelist after disable 1267 * @rx_ring: RX ring structure 1268 * 1269 * Assumes that the device is stopped, must be idempotent. 1270 */ 1271 static void nfp_net_rx_ring_reset(struct nfp_net_rx_ring *rx_ring) 1272 { 1273 unsigned int wr_idx, last_idx; 1274 1275 /* wr_p == rd_p means ring was never fed FL bufs. RX rings are always 1276 * kept at cnt - 1 FL bufs. 1277 */ 1278 if (rx_ring->wr_p == 0 && rx_ring->rd_p == 0) 1279 return; 1280 1281 /* Move the empty entry to the end of the list */ 1282 wr_idx = D_IDX(rx_ring, rx_ring->wr_p); 1283 last_idx = rx_ring->cnt - 1; 1284 rx_ring->rxbufs[wr_idx].dma_addr = rx_ring->rxbufs[last_idx].dma_addr; 1285 rx_ring->rxbufs[wr_idx].frag = rx_ring->rxbufs[last_idx].frag; 1286 rx_ring->rxbufs[last_idx].dma_addr = 0; 1287 rx_ring->rxbufs[last_idx].frag = NULL; 1288 1289 memset(rx_ring->rxds, 0, rx_ring->size); 1290 rx_ring->wr_p = 0; 1291 rx_ring->rd_p = 0; 1292 } 1293 1294 /** 1295 * nfp_net_rx_ring_bufs_free() - Free any buffers currently on the RX ring 1296 * @dp: NFP Net data path struct 1297 * @rx_ring: RX ring to remove buffers from 1298 * 1299 * Assumes that the device is stopped and buffers are in [0, ring->cnt - 1) 1300 * entries. After device is disabled nfp_net_rx_ring_reset() must be called 1301 * to restore required ring geometry. 1302 */ 1303 static void 1304 nfp_net_rx_ring_bufs_free(struct nfp_net_dp *dp, 1305 struct nfp_net_rx_ring *rx_ring) 1306 { 1307 unsigned int i; 1308 1309 for (i = 0; i < rx_ring->cnt - 1; i++) { 1310 /* NULL skb can only happen when initial filling of the ring 1311 * fails to allocate enough buffers and calls here to free 1312 * already allocated ones. 1313 */ 1314 if (!rx_ring->rxbufs[i].frag) 1315 continue; 1316 1317 nfp_net_dma_unmap_rx(dp, rx_ring->rxbufs[i].dma_addr); 1318 nfp_net_free_frag(rx_ring->rxbufs[i].frag, dp->xdp_prog); 1319 rx_ring->rxbufs[i].dma_addr = 0; 1320 rx_ring->rxbufs[i].frag = NULL; 1321 } 1322 } 1323 1324 /** 1325 * nfp_net_rx_ring_bufs_alloc() - Fill RX ring with buffers (don't give to FW) 1326 * @dp: NFP Net data path struct 1327 * @rx_ring: RX ring to remove buffers from 1328 */ 1329 static int 1330 nfp_net_rx_ring_bufs_alloc(struct nfp_net_dp *dp, 1331 struct nfp_net_rx_ring *rx_ring) 1332 { 1333 struct nfp_net_rx_buf *rxbufs; 1334 unsigned int i; 1335 1336 rxbufs = rx_ring->rxbufs; 1337 1338 for (i = 0; i < rx_ring->cnt - 1; i++) { 1339 rxbufs[i].frag = nfp_net_rx_alloc_one(dp, &rxbufs[i].dma_addr); 1340 if (!rxbufs[i].frag) { 1341 nfp_net_rx_ring_bufs_free(dp, rx_ring); 1342 return -ENOMEM; 1343 } 1344 } 1345 1346 return 0; 1347 } 1348 1349 /** 1350 * nfp_net_rx_ring_fill_freelist() - Give buffers from the ring to FW 1351 * @dp: NFP Net data path struct 1352 * @rx_ring: RX ring to fill 1353 */ 1354 static void 1355 nfp_net_rx_ring_fill_freelist(struct nfp_net_dp *dp, 1356 struct nfp_net_rx_ring *rx_ring) 1357 { 1358 unsigned int i; 1359 1360 for (i = 0; i < rx_ring->cnt - 1; i++) 1361 nfp_net_rx_give_one(dp, rx_ring, rx_ring->rxbufs[i].frag, 1362 rx_ring->rxbufs[i].dma_addr); 1363 } 1364 1365 /** 1366 * nfp_net_rx_csum_has_errors() - group check if rxd has any csum errors 1367 * @flags: RX descriptor flags field in CPU byte order 1368 */ 1369 static int nfp_net_rx_csum_has_errors(u16 flags) 1370 { 1371 u16 csum_all_checked, csum_all_ok; 1372 1373 csum_all_checked = flags & __PCIE_DESC_RX_CSUM_ALL; 1374 csum_all_ok = flags & __PCIE_DESC_RX_CSUM_ALL_OK; 1375 1376 return csum_all_checked != (csum_all_ok << PCIE_DESC_RX_CSUM_OK_SHIFT); 1377 } 1378 1379 /** 1380 * nfp_net_rx_csum() - set SKB checksum field based on RX descriptor flags 1381 * @dp: NFP Net data path struct 1382 * @r_vec: per-ring structure 1383 * @rxd: Pointer to RX descriptor 1384 * @meta: Parsed metadata prepend 1385 * @skb: Pointer to SKB 1386 */ 1387 static void nfp_net_rx_csum(struct nfp_net_dp *dp, 1388 struct nfp_net_r_vector *r_vec, 1389 struct nfp_net_rx_desc *rxd, 1390 struct nfp_meta_parsed *meta, struct sk_buff *skb) 1391 { 1392 skb_checksum_none_assert(skb); 1393 1394 if (!(dp->netdev->features & NETIF_F_RXCSUM)) 1395 return; 1396 1397 if (meta->csum_type) { 1398 skb->ip_summed = meta->csum_type; 1399 skb->csum = meta->csum; 1400 u64_stats_update_begin(&r_vec->rx_sync); 1401 r_vec->hw_csum_rx_complete++; 1402 u64_stats_update_end(&r_vec->rx_sync); 1403 return; 1404 } 1405 1406 if (nfp_net_rx_csum_has_errors(le16_to_cpu(rxd->rxd.flags))) { 1407 u64_stats_update_begin(&r_vec->rx_sync); 1408 r_vec->hw_csum_rx_error++; 1409 u64_stats_update_end(&r_vec->rx_sync); 1410 return; 1411 } 1412 1413 /* Assume that the firmware will never report inner CSUM_OK unless outer 1414 * L4 headers were successfully parsed. FW will always report zero UDP 1415 * checksum as CSUM_OK. 1416 */ 1417 if (rxd->rxd.flags & PCIE_DESC_RX_TCP_CSUM_OK || 1418 rxd->rxd.flags & PCIE_DESC_RX_UDP_CSUM_OK) { 1419 __skb_incr_checksum_unnecessary(skb); 1420 u64_stats_update_begin(&r_vec->rx_sync); 1421 r_vec->hw_csum_rx_ok++; 1422 u64_stats_update_end(&r_vec->rx_sync); 1423 } 1424 1425 if (rxd->rxd.flags & PCIE_DESC_RX_I_TCP_CSUM_OK || 1426 rxd->rxd.flags & PCIE_DESC_RX_I_UDP_CSUM_OK) { 1427 __skb_incr_checksum_unnecessary(skb); 1428 u64_stats_update_begin(&r_vec->rx_sync); 1429 r_vec->hw_csum_rx_inner_ok++; 1430 u64_stats_update_end(&r_vec->rx_sync); 1431 } 1432 } 1433 1434 static void 1435 nfp_net_set_hash(struct net_device *netdev, struct nfp_meta_parsed *meta, 1436 unsigned int type, __be32 *hash) 1437 { 1438 if (!(netdev->features & NETIF_F_RXHASH)) 1439 return; 1440 1441 switch (type) { 1442 case NFP_NET_RSS_IPV4: 1443 case NFP_NET_RSS_IPV6: 1444 case NFP_NET_RSS_IPV6_EX: 1445 meta->hash_type = PKT_HASH_TYPE_L3; 1446 break; 1447 default: 1448 meta->hash_type = PKT_HASH_TYPE_L4; 1449 break; 1450 } 1451 1452 meta->hash = get_unaligned_be32(hash); 1453 } 1454 1455 static void 1456 nfp_net_set_hash_desc(struct net_device *netdev, struct nfp_meta_parsed *meta, 1457 void *data, struct nfp_net_rx_desc *rxd) 1458 { 1459 struct nfp_net_rx_hash *rx_hash = data; 1460 1461 if (!(rxd->rxd.flags & PCIE_DESC_RX_RSS)) 1462 return; 1463 1464 nfp_net_set_hash(netdev, meta, get_unaligned_be32(&rx_hash->hash_type), 1465 &rx_hash->hash); 1466 } 1467 1468 static void * 1469 nfp_net_parse_meta(struct net_device *netdev, struct nfp_meta_parsed *meta, 1470 void *data, int meta_len) 1471 { 1472 u32 meta_info; 1473 1474 meta_info = get_unaligned_be32(data); 1475 data += 4; 1476 1477 while (meta_info) { 1478 switch (meta_info & NFP_NET_META_FIELD_MASK) { 1479 case NFP_NET_META_HASH: 1480 meta_info >>= NFP_NET_META_FIELD_SIZE; 1481 nfp_net_set_hash(netdev, meta, 1482 meta_info & NFP_NET_META_FIELD_MASK, 1483 (__be32 *)data); 1484 data += 4; 1485 break; 1486 case NFP_NET_META_MARK: 1487 meta->mark = get_unaligned_be32(data); 1488 data += 4; 1489 break; 1490 case NFP_NET_META_PORTID: 1491 meta->portid = get_unaligned_be32(data); 1492 data += 4; 1493 break; 1494 case NFP_NET_META_CSUM: 1495 meta->csum_type = CHECKSUM_COMPLETE; 1496 meta->csum = 1497 (__force __wsum)__get_unaligned_cpu32(data); 1498 data += 4; 1499 break; 1500 default: 1501 return NULL; 1502 } 1503 1504 meta_info >>= NFP_NET_META_FIELD_SIZE; 1505 } 1506 1507 return data; 1508 } 1509 1510 static void 1511 nfp_net_rx_drop(const struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec, 1512 struct nfp_net_rx_ring *rx_ring, struct nfp_net_rx_buf *rxbuf, 1513 struct sk_buff *skb) 1514 { 1515 u64_stats_update_begin(&r_vec->rx_sync); 1516 r_vec->rx_drops++; 1517 /* If we have both skb and rxbuf the replacement buffer allocation 1518 * must have failed, count this as an alloc failure. 1519 */ 1520 if (skb && rxbuf) 1521 r_vec->rx_replace_buf_alloc_fail++; 1522 u64_stats_update_end(&r_vec->rx_sync); 1523 1524 /* skb is build based on the frag, free_skb() would free the frag 1525 * so to be able to reuse it we need an extra ref. 1526 */ 1527 if (skb && rxbuf && skb->head == rxbuf->frag) 1528 page_ref_inc(virt_to_head_page(rxbuf->frag)); 1529 if (rxbuf) 1530 nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag, rxbuf->dma_addr); 1531 if (skb) 1532 dev_kfree_skb_any(skb); 1533 } 1534 1535 static bool 1536 nfp_net_tx_xdp_buf(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring, 1537 struct nfp_net_tx_ring *tx_ring, 1538 struct nfp_net_rx_buf *rxbuf, unsigned int dma_off, 1539 unsigned int pkt_len, bool *completed) 1540 { 1541 struct nfp_net_tx_buf *txbuf; 1542 struct nfp_net_tx_desc *txd; 1543 int wr_idx; 1544 1545 if (unlikely(nfp_net_tx_full(tx_ring, 1))) { 1546 if (!*completed) { 1547 nfp_net_xdp_complete(tx_ring); 1548 *completed = true; 1549 } 1550 1551 if (unlikely(nfp_net_tx_full(tx_ring, 1))) { 1552 nfp_net_rx_drop(dp, rx_ring->r_vec, rx_ring, rxbuf, 1553 NULL); 1554 return false; 1555 } 1556 } 1557 1558 wr_idx = D_IDX(tx_ring, tx_ring->wr_p); 1559 1560 /* Stash the soft descriptor of the head then initialize it */ 1561 txbuf = &tx_ring->txbufs[wr_idx]; 1562 1563 nfp_net_rx_give_one(dp, rx_ring, txbuf->frag, txbuf->dma_addr); 1564 1565 txbuf->frag = rxbuf->frag; 1566 txbuf->dma_addr = rxbuf->dma_addr; 1567 txbuf->fidx = -1; 1568 txbuf->pkt_cnt = 1; 1569 txbuf->real_len = pkt_len; 1570 1571 dma_sync_single_for_device(dp->dev, rxbuf->dma_addr + dma_off, 1572 pkt_len, DMA_BIDIRECTIONAL); 1573 1574 /* Build TX descriptor */ 1575 txd = &tx_ring->txds[wr_idx]; 1576 txd->offset_eop = PCIE_DESC_TX_EOP; 1577 txd->dma_len = cpu_to_le16(pkt_len); 1578 nfp_desc_set_dma_addr(txd, rxbuf->dma_addr + dma_off); 1579 txd->data_len = cpu_to_le16(pkt_len); 1580 1581 txd->flags = 0; 1582 txd->mss = 0; 1583 txd->lso_hdrlen = 0; 1584 1585 tx_ring->wr_p++; 1586 tx_ring->wr_ptr_add++; 1587 return true; 1588 } 1589 1590 /** 1591 * nfp_net_rx() - receive up to @budget packets on @rx_ring 1592 * @rx_ring: RX ring to receive from 1593 * @budget: NAPI budget 1594 * 1595 * Note, this function is separated out from the napi poll function to 1596 * more cleanly separate packet receive code from other bookkeeping 1597 * functions performed in the napi poll function. 1598 * 1599 * Return: Number of packets received. 1600 */ 1601 static int nfp_net_rx(struct nfp_net_rx_ring *rx_ring, int budget) 1602 { 1603 struct nfp_net_r_vector *r_vec = rx_ring->r_vec; 1604 struct nfp_net_dp *dp = &r_vec->nfp_net->dp; 1605 struct nfp_net_tx_ring *tx_ring; 1606 struct bpf_prog *xdp_prog; 1607 bool xdp_tx_cmpl = false; 1608 unsigned int true_bufsz; 1609 struct sk_buff *skb; 1610 int pkts_polled = 0; 1611 struct xdp_buff xdp; 1612 int idx; 1613 1614 rcu_read_lock(); 1615 xdp_prog = READ_ONCE(dp->xdp_prog); 1616 true_bufsz = xdp_prog ? PAGE_SIZE : dp->fl_bufsz; 1617 xdp.rxq = &rx_ring->xdp_rxq; 1618 tx_ring = r_vec->xdp_ring; 1619 1620 while (pkts_polled < budget) { 1621 unsigned int meta_len, data_len, meta_off, pkt_len, pkt_off; 1622 struct nfp_net_rx_buf *rxbuf; 1623 struct nfp_net_rx_desc *rxd; 1624 struct nfp_meta_parsed meta; 1625 struct net_device *netdev; 1626 dma_addr_t new_dma_addr; 1627 u32 meta_len_xdp = 0; 1628 void *new_frag; 1629 1630 idx = D_IDX(rx_ring, rx_ring->rd_p); 1631 1632 rxd = &rx_ring->rxds[idx]; 1633 if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD)) 1634 break; 1635 1636 /* Memory barrier to ensure that we won't do other reads 1637 * before the DD bit. 1638 */ 1639 dma_rmb(); 1640 1641 memset(&meta, 0, sizeof(meta)); 1642 1643 rx_ring->rd_p++; 1644 pkts_polled++; 1645 1646 rxbuf = &rx_ring->rxbufs[idx]; 1647 /* < meta_len > 1648 * <-- [rx_offset] --> 1649 * --------------------------------------------------------- 1650 * | [XX] | metadata | packet | XXXX | 1651 * --------------------------------------------------------- 1652 * <---------------- data_len ---------------> 1653 * 1654 * The rx_offset is fixed for all packets, the meta_len can vary 1655 * on a packet by packet basis. If rx_offset is set to zero 1656 * (_RX_OFFSET_DYNAMIC) metadata starts at the beginning of the 1657 * buffer and is immediately followed by the packet (no [XX]). 1658 */ 1659 meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK; 1660 data_len = le16_to_cpu(rxd->rxd.data_len); 1661 pkt_len = data_len - meta_len; 1662 1663 pkt_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_dma_off; 1664 if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC) 1665 pkt_off += meta_len; 1666 else 1667 pkt_off += dp->rx_offset; 1668 meta_off = pkt_off - meta_len; 1669 1670 /* Stats update */ 1671 u64_stats_update_begin(&r_vec->rx_sync); 1672 r_vec->rx_pkts++; 1673 r_vec->rx_bytes += pkt_len; 1674 u64_stats_update_end(&r_vec->rx_sync); 1675 1676 if (unlikely(meta_len > NFP_NET_MAX_PREPEND || 1677 (dp->rx_offset && meta_len > dp->rx_offset))) { 1678 nn_dp_warn(dp, "oversized RX packet metadata %u\n", 1679 meta_len); 1680 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL); 1681 continue; 1682 } 1683 1684 nfp_net_dma_sync_cpu_rx(dp, rxbuf->dma_addr + meta_off, 1685 data_len); 1686 1687 if (!dp->chained_metadata_format) { 1688 nfp_net_set_hash_desc(dp->netdev, &meta, 1689 rxbuf->frag + meta_off, rxd); 1690 } else if (meta_len) { 1691 void *end; 1692 1693 end = nfp_net_parse_meta(dp->netdev, &meta, 1694 rxbuf->frag + meta_off, 1695 meta_len); 1696 if (unlikely(end != rxbuf->frag + pkt_off)) { 1697 nn_dp_warn(dp, "invalid RX packet metadata\n"); 1698 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, 1699 NULL); 1700 continue; 1701 } 1702 } 1703 1704 if (xdp_prog && !meta.portid) { 1705 void *orig_data = rxbuf->frag + pkt_off; 1706 unsigned int dma_off; 1707 int act; 1708 1709 xdp.data_hard_start = rxbuf->frag + NFP_NET_RX_BUF_HEADROOM; 1710 xdp.data = orig_data; 1711 xdp.data_meta = orig_data; 1712 xdp.data_end = orig_data + pkt_len; 1713 1714 act = bpf_prog_run_xdp(xdp_prog, &xdp); 1715 1716 pkt_len = xdp.data_end - xdp.data; 1717 pkt_off += xdp.data - orig_data; 1718 1719 switch (act) { 1720 case XDP_PASS: 1721 meta_len_xdp = xdp.data - xdp.data_meta; 1722 break; 1723 case XDP_TX: 1724 dma_off = pkt_off - NFP_NET_RX_BUF_HEADROOM; 1725 if (unlikely(!nfp_net_tx_xdp_buf(dp, rx_ring, 1726 tx_ring, rxbuf, 1727 dma_off, 1728 pkt_len, 1729 &xdp_tx_cmpl))) 1730 trace_xdp_exception(dp->netdev, 1731 xdp_prog, act); 1732 continue; 1733 default: 1734 bpf_warn_invalid_xdp_action(act); 1735 /* fall through */ 1736 case XDP_ABORTED: 1737 trace_xdp_exception(dp->netdev, xdp_prog, act); 1738 /* fall through */ 1739 case XDP_DROP: 1740 nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag, 1741 rxbuf->dma_addr); 1742 continue; 1743 } 1744 } 1745 1746 if (likely(!meta.portid)) { 1747 netdev = dp->netdev; 1748 } else if (meta.portid == NFP_META_PORT_ID_CTRL) { 1749 struct nfp_net *nn = netdev_priv(dp->netdev); 1750 1751 nfp_app_ctrl_rx_raw(nn->app, rxbuf->frag + pkt_off, 1752 pkt_len); 1753 nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag, 1754 rxbuf->dma_addr); 1755 continue; 1756 } else { 1757 struct nfp_net *nn; 1758 1759 nn = netdev_priv(dp->netdev); 1760 netdev = nfp_app_repr_get(nn->app, meta.portid); 1761 if (unlikely(!netdev)) { 1762 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, 1763 NULL); 1764 continue; 1765 } 1766 nfp_repr_inc_rx_stats(netdev, pkt_len); 1767 } 1768 1769 skb = build_skb(rxbuf->frag, true_bufsz); 1770 if (unlikely(!skb)) { 1771 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL); 1772 continue; 1773 } 1774 new_frag = nfp_net_napi_alloc_one(dp, &new_dma_addr); 1775 if (unlikely(!new_frag)) { 1776 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, skb); 1777 continue; 1778 } 1779 1780 nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr); 1781 1782 nfp_net_rx_give_one(dp, rx_ring, new_frag, new_dma_addr); 1783 1784 skb_reserve(skb, pkt_off); 1785 skb_put(skb, pkt_len); 1786 1787 skb->mark = meta.mark; 1788 skb_set_hash(skb, meta.hash, meta.hash_type); 1789 1790 skb_record_rx_queue(skb, rx_ring->idx); 1791 skb->protocol = eth_type_trans(skb, netdev); 1792 1793 nfp_net_rx_csum(dp, r_vec, rxd, &meta, skb); 1794 1795 if (rxd->rxd.flags & PCIE_DESC_RX_VLAN) 1796 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 1797 le16_to_cpu(rxd->rxd.vlan)); 1798 if (meta_len_xdp) 1799 skb_metadata_set(skb, meta_len_xdp); 1800 1801 napi_gro_receive(&rx_ring->r_vec->napi, skb); 1802 } 1803 1804 if (xdp_prog) { 1805 if (tx_ring->wr_ptr_add) 1806 nfp_net_tx_xmit_more_flush(tx_ring); 1807 else if (unlikely(tx_ring->wr_p != tx_ring->rd_p) && 1808 !xdp_tx_cmpl) 1809 if (!nfp_net_xdp_complete(tx_ring)) 1810 pkts_polled = budget; 1811 } 1812 rcu_read_unlock(); 1813 1814 return pkts_polled; 1815 } 1816 1817 /** 1818 * nfp_net_poll() - napi poll function 1819 * @napi: NAPI structure 1820 * @budget: NAPI budget 1821 * 1822 * Return: number of packets polled. 1823 */ 1824 static int nfp_net_poll(struct napi_struct *napi, int budget) 1825 { 1826 struct nfp_net_r_vector *r_vec = 1827 container_of(napi, struct nfp_net_r_vector, napi); 1828 unsigned int pkts_polled = 0; 1829 1830 if (r_vec->tx_ring) 1831 nfp_net_tx_complete(r_vec->tx_ring, budget); 1832 if (r_vec->rx_ring) 1833 pkts_polled = nfp_net_rx(r_vec->rx_ring, budget); 1834 1835 if (pkts_polled < budget) 1836 if (napi_complete_done(napi, pkts_polled)) 1837 nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry); 1838 1839 return pkts_polled; 1840 } 1841 1842 /* Control device data path 1843 */ 1844 1845 static bool 1846 nfp_ctrl_tx_one(struct nfp_net *nn, struct nfp_net_r_vector *r_vec, 1847 struct sk_buff *skb, bool old) 1848 { 1849 unsigned int real_len = skb->len, meta_len = 0; 1850 struct nfp_net_tx_ring *tx_ring; 1851 struct nfp_net_tx_buf *txbuf; 1852 struct nfp_net_tx_desc *txd; 1853 struct nfp_net_dp *dp; 1854 dma_addr_t dma_addr; 1855 int wr_idx; 1856 1857 dp = &r_vec->nfp_net->dp; 1858 tx_ring = r_vec->tx_ring; 1859 1860 if (WARN_ON_ONCE(skb_shinfo(skb)->nr_frags)) { 1861 nn_dp_warn(dp, "Driver's CTRL TX does not implement gather\n"); 1862 goto err_free; 1863 } 1864 1865 if (unlikely(nfp_net_tx_full(tx_ring, 1))) { 1866 u64_stats_update_begin(&r_vec->tx_sync); 1867 r_vec->tx_busy++; 1868 u64_stats_update_end(&r_vec->tx_sync); 1869 if (!old) 1870 __skb_queue_tail(&r_vec->queue, skb); 1871 else 1872 __skb_queue_head(&r_vec->queue, skb); 1873 return true; 1874 } 1875 1876 if (nfp_app_ctrl_has_meta(nn->app)) { 1877 if (unlikely(skb_headroom(skb) < 8)) { 1878 nn_dp_warn(dp, "CTRL TX on skb without headroom\n"); 1879 goto err_free; 1880 } 1881 meta_len = 8; 1882 put_unaligned_be32(NFP_META_PORT_ID_CTRL, skb_push(skb, 4)); 1883 put_unaligned_be32(NFP_NET_META_PORTID, skb_push(skb, 4)); 1884 } 1885 1886 /* Start with the head skbuf */ 1887 dma_addr = dma_map_single(dp->dev, skb->data, skb_headlen(skb), 1888 DMA_TO_DEVICE); 1889 if (dma_mapping_error(dp->dev, dma_addr)) 1890 goto err_dma_warn; 1891 1892 wr_idx = D_IDX(tx_ring, tx_ring->wr_p); 1893 1894 /* Stash the soft descriptor of the head then initialize it */ 1895 txbuf = &tx_ring->txbufs[wr_idx]; 1896 txbuf->skb = skb; 1897 txbuf->dma_addr = dma_addr; 1898 txbuf->fidx = -1; 1899 txbuf->pkt_cnt = 1; 1900 txbuf->real_len = real_len; 1901 1902 /* Build TX descriptor */ 1903 txd = &tx_ring->txds[wr_idx]; 1904 txd->offset_eop = meta_len | PCIE_DESC_TX_EOP; 1905 txd->dma_len = cpu_to_le16(skb_headlen(skb)); 1906 nfp_desc_set_dma_addr(txd, dma_addr); 1907 txd->data_len = cpu_to_le16(skb->len); 1908 1909 txd->flags = 0; 1910 txd->mss = 0; 1911 txd->lso_hdrlen = 0; 1912 1913 tx_ring->wr_p++; 1914 tx_ring->wr_ptr_add++; 1915 nfp_net_tx_xmit_more_flush(tx_ring); 1916 1917 return false; 1918 1919 err_dma_warn: 1920 nn_dp_warn(dp, "Failed to DMA map TX CTRL buffer\n"); 1921 err_free: 1922 u64_stats_update_begin(&r_vec->tx_sync); 1923 r_vec->tx_errors++; 1924 u64_stats_update_end(&r_vec->tx_sync); 1925 dev_kfree_skb_any(skb); 1926 return false; 1927 } 1928 1929 bool __nfp_ctrl_tx(struct nfp_net *nn, struct sk_buff *skb) 1930 { 1931 struct nfp_net_r_vector *r_vec = &nn->r_vecs[0]; 1932 1933 return nfp_ctrl_tx_one(nn, r_vec, skb, false); 1934 } 1935 1936 bool nfp_ctrl_tx(struct nfp_net *nn, struct sk_buff *skb) 1937 { 1938 struct nfp_net_r_vector *r_vec = &nn->r_vecs[0]; 1939 bool ret; 1940 1941 spin_lock_bh(&r_vec->lock); 1942 ret = nfp_ctrl_tx_one(nn, r_vec, skb, false); 1943 spin_unlock_bh(&r_vec->lock); 1944 1945 return ret; 1946 } 1947 1948 static void __nfp_ctrl_tx_queued(struct nfp_net_r_vector *r_vec) 1949 { 1950 struct sk_buff *skb; 1951 1952 while ((skb = __skb_dequeue(&r_vec->queue))) 1953 if (nfp_ctrl_tx_one(r_vec->nfp_net, r_vec, skb, true)) 1954 return; 1955 } 1956 1957 static bool 1958 nfp_ctrl_meta_ok(struct nfp_net *nn, void *data, unsigned int meta_len) 1959 { 1960 u32 meta_type, meta_tag; 1961 1962 if (!nfp_app_ctrl_has_meta(nn->app)) 1963 return !meta_len; 1964 1965 if (meta_len != 8) 1966 return false; 1967 1968 meta_type = get_unaligned_be32(data); 1969 meta_tag = get_unaligned_be32(data + 4); 1970 1971 return (meta_type == NFP_NET_META_PORTID && 1972 meta_tag == NFP_META_PORT_ID_CTRL); 1973 } 1974 1975 static bool 1976 nfp_ctrl_rx_one(struct nfp_net *nn, struct nfp_net_dp *dp, 1977 struct nfp_net_r_vector *r_vec, struct nfp_net_rx_ring *rx_ring) 1978 { 1979 unsigned int meta_len, data_len, meta_off, pkt_len, pkt_off; 1980 struct nfp_net_rx_buf *rxbuf; 1981 struct nfp_net_rx_desc *rxd; 1982 dma_addr_t new_dma_addr; 1983 struct sk_buff *skb; 1984 void *new_frag; 1985 int idx; 1986 1987 idx = D_IDX(rx_ring, rx_ring->rd_p); 1988 1989 rxd = &rx_ring->rxds[idx]; 1990 if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD)) 1991 return false; 1992 1993 /* Memory barrier to ensure that we won't do other reads 1994 * before the DD bit. 1995 */ 1996 dma_rmb(); 1997 1998 rx_ring->rd_p++; 1999 2000 rxbuf = &rx_ring->rxbufs[idx]; 2001 meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK; 2002 data_len = le16_to_cpu(rxd->rxd.data_len); 2003 pkt_len = data_len - meta_len; 2004 2005 pkt_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_dma_off; 2006 if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC) 2007 pkt_off += meta_len; 2008 else 2009 pkt_off += dp->rx_offset; 2010 meta_off = pkt_off - meta_len; 2011 2012 /* Stats update */ 2013 u64_stats_update_begin(&r_vec->rx_sync); 2014 r_vec->rx_pkts++; 2015 r_vec->rx_bytes += pkt_len; 2016 u64_stats_update_end(&r_vec->rx_sync); 2017 2018 nfp_net_dma_sync_cpu_rx(dp, rxbuf->dma_addr + meta_off, data_len); 2019 2020 if (unlikely(!nfp_ctrl_meta_ok(nn, rxbuf->frag + meta_off, meta_len))) { 2021 nn_dp_warn(dp, "incorrect metadata for ctrl packet (%d)\n", 2022 meta_len); 2023 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL); 2024 return true; 2025 } 2026 2027 skb = build_skb(rxbuf->frag, dp->fl_bufsz); 2028 if (unlikely(!skb)) { 2029 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL); 2030 return true; 2031 } 2032 new_frag = nfp_net_napi_alloc_one(dp, &new_dma_addr); 2033 if (unlikely(!new_frag)) { 2034 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, skb); 2035 return true; 2036 } 2037 2038 nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr); 2039 2040 nfp_net_rx_give_one(dp, rx_ring, new_frag, new_dma_addr); 2041 2042 skb_reserve(skb, pkt_off); 2043 skb_put(skb, pkt_len); 2044 2045 nfp_app_ctrl_rx(nn->app, skb); 2046 2047 return true; 2048 } 2049 2050 static bool nfp_ctrl_rx(struct nfp_net_r_vector *r_vec) 2051 { 2052 struct nfp_net_rx_ring *rx_ring = r_vec->rx_ring; 2053 struct nfp_net *nn = r_vec->nfp_net; 2054 struct nfp_net_dp *dp = &nn->dp; 2055 unsigned int budget = 512; 2056 2057 while (nfp_ctrl_rx_one(nn, dp, r_vec, rx_ring) && budget--) 2058 continue; 2059 2060 return budget; 2061 } 2062 2063 static void nfp_ctrl_poll(unsigned long arg) 2064 { 2065 struct nfp_net_r_vector *r_vec = (void *)arg; 2066 2067 spin_lock(&r_vec->lock); 2068 nfp_net_tx_complete(r_vec->tx_ring, 0); 2069 __nfp_ctrl_tx_queued(r_vec); 2070 spin_unlock(&r_vec->lock); 2071 2072 if (nfp_ctrl_rx(r_vec)) { 2073 nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry); 2074 } else { 2075 tasklet_schedule(&r_vec->tasklet); 2076 nn_dp_warn(&r_vec->nfp_net->dp, 2077 "control message budget exceeded!\n"); 2078 } 2079 } 2080 2081 /* Setup and Configuration 2082 */ 2083 2084 /** 2085 * nfp_net_vecs_init() - Assign IRQs and setup rvecs. 2086 * @nn: NFP Network structure 2087 */ 2088 static void nfp_net_vecs_init(struct nfp_net *nn) 2089 { 2090 struct nfp_net_r_vector *r_vec; 2091 int r; 2092 2093 nn->lsc_handler = nfp_net_irq_lsc; 2094 nn->exn_handler = nfp_net_irq_exn; 2095 2096 for (r = 0; r < nn->max_r_vecs; r++) { 2097 struct msix_entry *entry; 2098 2099 entry = &nn->irq_entries[NFP_NET_NON_Q_VECTORS + r]; 2100 2101 r_vec = &nn->r_vecs[r]; 2102 r_vec->nfp_net = nn; 2103 r_vec->irq_entry = entry->entry; 2104 r_vec->irq_vector = entry->vector; 2105 2106 if (nn->dp.netdev) { 2107 r_vec->handler = nfp_net_irq_rxtx; 2108 } else { 2109 r_vec->handler = nfp_ctrl_irq_rxtx; 2110 2111 __skb_queue_head_init(&r_vec->queue); 2112 spin_lock_init(&r_vec->lock); 2113 tasklet_init(&r_vec->tasklet, nfp_ctrl_poll, 2114 (unsigned long)r_vec); 2115 tasklet_disable(&r_vec->tasklet); 2116 } 2117 2118 cpumask_set_cpu(r, &r_vec->affinity_mask); 2119 } 2120 } 2121 2122 /** 2123 * nfp_net_tx_ring_free() - Free resources allocated to a TX ring 2124 * @tx_ring: TX ring to free 2125 */ 2126 static void nfp_net_tx_ring_free(struct nfp_net_tx_ring *tx_ring) 2127 { 2128 struct nfp_net_r_vector *r_vec = tx_ring->r_vec; 2129 struct nfp_net_dp *dp = &r_vec->nfp_net->dp; 2130 2131 kvfree(tx_ring->txbufs); 2132 2133 if (tx_ring->txds) 2134 dma_free_coherent(dp->dev, tx_ring->size, 2135 tx_ring->txds, tx_ring->dma); 2136 2137 tx_ring->cnt = 0; 2138 tx_ring->txbufs = NULL; 2139 tx_ring->txds = NULL; 2140 tx_ring->dma = 0; 2141 tx_ring->size = 0; 2142 } 2143 2144 /** 2145 * nfp_net_tx_ring_alloc() - Allocate resource for a TX ring 2146 * @dp: NFP Net data path struct 2147 * @tx_ring: TX Ring structure to allocate 2148 * 2149 * Return: 0 on success, negative errno otherwise. 2150 */ 2151 static int 2152 nfp_net_tx_ring_alloc(struct nfp_net_dp *dp, struct nfp_net_tx_ring *tx_ring) 2153 { 2154 struct nfp_net_r_vector *r_vec = tx_ring->r_vec; 2155 2156 tx_ring->cnt = dp->txd_cnt; 2157 2158 tx_ring->size = array_size(tx_ring->cnt, sizeof(*tx_ring->txds)); 2159 tx_ring->txds = dma_zalloc_coherent(dp->dev, tx_ring->size, 2160 &tx_ring->dma, 2161 GFP_KERNEL | __GFP_NOWARN); 2162 if (!tx_ring->txds) { 2163 netdev_warn(dp->netdev, "failed to allocate TX descriptor ring memory, requested descriptor count: %d, consider lowering descriptor count\n", 2164 tx_ring->cnt); 2165 goto err_alloc; 2166 } 2167 2168 tx_ring->txbufs = kvcalloc(tx_ring->cnt, sizeof(*tx_ring->txbufs), 2169 GFP_KERNEL); 2170 if (!tx_ring->txbufs) 2171 goto err_alloc; 2172 2173 if (!tx_ring->is_xdp && dp->netdev) 2174 netif_set_xps_queue(dp->netdev, &r_vec->affinity_mask, 2175 tx_ring->idx); 2176 2177 return 0; 2178 2179 err_alloc: 2180 nfp_net_tx_ring_free(tx_ring); 2181 return -ENOMEM; 2182 } 2183 2184 static void 2185 nfp_net_tx_ring_bufs_free(struct nfp_net_dp *dp, 2186 struct nfp_net_tx_ring *tx_ring) 2187 { 2188 unsigned int i; 2189 2190 if (!tx_ring->is_xdp) 2191 return; 2192 2193 for (i = 0; i < tx_ring->cnt; i++) { 2194 if (!tx_ring->txbufs[i].frag) 2195 return; 2196 2197 nfp_net_dma_unmap_rx(dp, tx_ring->txbufs[i].dma_addr); 2198 __free_page(virt_to_page(tx_ring->txbufs[i].frag)); 2199 } 2200 } 2201 2202 static int 2203 nfp_net_tx_ring_bufs_alloc(struct nfp_net_dp *dp, 2204 struct nfp_net_tx_ring *tx_ring) 2205 { 2206 struct nfp_net_tx_buf *txbufs = tx_ring->txbufs; 2207 unsigned int i; 2208 2209 if (!tx_ring->is_xdp) 2210 return 0; 2211 2212 for (i = 0; i < tx_ring->cnt; i++) { 2213 txbufs[i].frag = nfp_net_rx_alloc_one(dp, &txbufs[i].dma_addr); 2214 if (!txbufs[i].frag) { 2215 nfp_net_tx_ring_bufs_free(dp, tx_ring); 2216 return -ENOMEM; 2217 } 2218 } 2219 2220 return 0; 2221 } 2222 2223 static int nfp_net_tx_rings_prepare(struct nfp_net *nn, struct nfp_net_dp *dp) 2224 { 2225 unsigned int r; 2226 2227 dp->tx_rings = kcalloc(dp->num_tx_rings, sizeof(*dp->tx_rings), 2228 GFP_KERNEL); 2229 if (!dp->tx_rings) 2230 return -ENOMEM; 2231 2232 for (r = 0; r < dp->num_tx_rings; r++) { 2233 int bias = 0; 2234 2235 if (r >= dp->num_stack_tx_rings) 2236 bias = dp->num_stack_tx_rings; 2237 2238 nfp_net_tx_ring_init(&dp->tx_rings[r], &nn->r_vecs[r - bias], 2239 r, bias); 2240 2241 if (nfp_net_tx_ring_alloc(dp, &dp->tx_rings[r])) 2242 goto err_free_prev; 2243 2244 if (nfp_net_tx_ring_bufs_alloc(dp, &dp->tx_rings[r])) 2245 goto err_free_ring; 2246 } 2247 2248 return 0; 2249 2250 err_free_prev: 2251 while (r--) { 2252 nfp_net_tx_ring_bufs_free(dp, &dp->tx_rings[r]); 2253 err_free_ring: 2254 nfp_net_tx_ring_free(&dp->tx_rings[r]); 2255 } 2256 kfree(dp->tx_rings); 2257 return -ENOMEM; 2258 } 2259 2260 static void nfp_net_tx_rings_free(struct nfp_net_dp *dp) 2261 { 2262 unsigned int r; 2263 2264 for (r = 0; r < dp->num_tx_rings; r++) { 2265 nfp_net_tx_ring_bufs_free(dp, &dp->tx_rings[r]); 2266 nfp_net_tx_ring_free(&dp->tx_rings[r]); 2267 } 2268 2269 kfree(dp->tx_rings); 2270 } 2271 2272 /** 2273 * nfp_net_rx_ring_free() - Free resources allocated to a RX ring 2274 * @rx_ring: RX ring to free 2275 */ 2276 static void nfp_net_rx_ring_free(struct nfp_net_rx_ring *rx_ring) 2277 { 2278 struct nfp_net_r_vector *r_vec = rx_ring->r_vec; 2279 struct nfp_net_dp *dp = &r_vec->nfp_net->dp; 2280 2281 if (dp->netdev) 2282 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 2283 kvfree(rx_ring->rxbufs); 2284 2285 if (rx_ring->rxds) 2286 dma_free_coherent(dp->dev, rx_ring->size, 2287 rx_ring->rxds, rx_ring->dma); 2288 2289 rx_ring->cnt = 0; 2290 rx_ring->rxbufs = NULL; 2291 rx_ring->rxds = NULL; 2292 rx_ring->dma = 0; 2293 rx_ring->size = 0; 2294 } 2295 2296 /** 2297 * nfp_net_rx_ring_alloc() - Allocate resource for a RX ring 2298 * @dp: NFP Net data path struct 2299 * @rx_ring: RX ring to allocate 2300 * 2301 * Return: 0 on success, negative errno otherwise. 2302 */ 2303 static int 2304 nfp_net_rx_ring_alloc(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring) 2305 { 2306 int err; 2307 2308 if (dp->netdev) { 2309 err = xdp_rxq_info_reg(&rx_ring->xdp_rxq, dp->netdev, 2310 rx_ring->idx); 2311 if (err < 0) 2312 return err; 2313 } 2314 2315 rx_ring->cnt = dp->rxd_cnt; 2316 rx_ring->size = array_size(rx_ring->cnt, sizeof(*rx_ring->rxds)); 2317 rx_ring->rxds = dma_zalloc_coherent(dp->dev, rx_ring->size, 2318 &rx_ring->dma, 2319 GFP_KERNEL | __GFP_NOWARN); 2320 if (!rx_ring->rxds) { 2321 netdev_warn(dp->netdev, "failed to allocate RX descriptor ring memory, requested descriptor count: %d, consider lowering descriptor count\n", 2322 rx_ring->cnt); 2323 goto err_alloc; 2324 } 2325 2326 rx_ring->rxbufs = kvcalloc(rx_ring->cnt, sizeof(*rx_ring->rxbufs), 2327 GFP_KERNEL); 2328 if (!rx_ring->rxbufs) 2329 goto err_alloc; 2330 2331 return 0; 2332 2333 err_alloc: 2334 nfp_net_rx_ring_free(rx_ring); 2335 return -ENOMEM; 2336 } 2337 2338 static int nfp_net_rx_rings_prepare(struct nfp_net *nn, struct nfp_net_dp *dp) 2339 { 2340 unsigned int r; 2341 2342 dp->rx_rings = kcalloc(dp->num_rx_rings, sizeof(*dp->rx_rings), 2343 GFP_KERNEL); 2344 if (!dp->rx_rings) 2345 return -ENOMEM; 2346 2347 for (r = 0; r < dp->num_rx_rings; r++) { 2348 nfp_net_rx_ring_init(&dp->rx_rings[r], &nn->r_vecs[r], r); 2349 2350 if (nfp_net_rx_ring_alloc(dp, &dp->rx_rings[r])) 2351 goto err_free_prev; 2352 2353 if (nfp_net_rx_ring_bufs_alloc(dp, &dp->rx_rings[r])) 2354 goto err_free_ring; 2355 } 2356 2357 return 0; 2358 2359 err_free_prev: 2360 while (r--) { 2361 nfp_net_rx_ring_bufs_free(dp, &dp->rx_rings[r]); 2362 err_free_ring: 2363 nfp_net_rx_ring_free(&dp->rx_rings[r]); 2364 } 2365 kfree(dp->rx_rings); 2366 return -ENOMEM; 2367 } 2368 2369 static void nfp_net_rx_rings_free(struct nfp_net_dp *dp) 2370 { 2371 unsigned int r; 2372 2373 for (r = 0; r < dp->num_rx_rings; r++) { 2374 nfp_net_rx_ring_bufs_free(dp, &dp->rx_rings[r]); 2375 nfp_net_rx_ring_free(&dp->rx_rings[r]); 2376 } 2377 2378 kfree(dp->rx_rings); 2379 } 2380 2381 static void 2382 nfp_net_vector_assign_rings(struct nfp_net_dp *dp, 2383 struct nfp_net_r_vector *r_vec, int idx) 2384 { 2385 r_vec->rx_ring = idx < dp->num_rx_rings ? &dp->rx_rings[idx] : NULL; 2386 r_vec->tx_ring = 2387 idx < dp->num_stack_tx_rings ? &dp->tx_rings[idx] : NULL; 2388 2389 r_vec->xdp_ring = idx < dp->num_tx_rings - dp->num_stack_tx_rings ? 2390 &dp->tx_rings[dp->num_stack_tx_rings + idx] : NULL; 2391 } 2392 2393 static int 2394 nfp_net_prepare_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec, 2395 int idx) 2396 { 2397 int err; 2398 2399 /* Setup NAPI */ 2400 if (nn->dp.netdev) 2401 netif_napi_add(nn->dp.netdev, &r_vec->napi, 2402 nfp_net_poll, NAPI_POLL_WEIGHT); 2403 else 2404 tasklet_enable(&r_vec->tasklet); 2405 2406 snprintf(r_vec->name, sizeof(r_vec->name), 2407 "%s-rxtx-%d", nfp_net_name(nn), idx); 2408 err = request_irq(r_vec->irq_vector, r_vec->handler, 0, r_vec->name, 2409 r_vec); 2410 if (err) { 2411 if (nn->dp.netdev) 2412 netif_napi_del(&r_vec->napi); 2413 else 2414 tasklet_disable(&r_vec->tasklet); 2415 2416 nn_err(nn, "Error requesting IRQ %d\n", r_vec->irq_vector); 2417 return err; 2418 } 2419 disable_irq(r_vec->irq_vector); 2420 2421 irq_set_affinity_hint(r_vec->irq_vector, &r_vec->affinity_mask); 2422 2423 nn_dbg(nn, "RV%02d: irq=%03d/%03d\n", idx, r_vec->irq_vector, 2424 r_vec->irq_entry); 2425 2426 return 0; 2427 } 2428 2429 static void 2430 nfp_net_cleanup_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec) 2431 { 2432 irq_set_affinity_hint(r_vec->irq_vector, NULL); 2433 if (nn->dp.netdev) 2434 netif_napi_del(&r_vec->napi); 2435 else 2436 tasklet_disable(&r_vec->tasklet); 2437 2438 free_irq(r_vec->irq_vector, r_vec); 2439 } 2440 2441 /** 2442 * nfp_net_rss_write_itbl() - Write RSS indirection table to device 2443 * @nn: NFP Net device to reconfigure 2444 */ 2445 void nfp_net_rss_write_itbl(struct nfp_net *nn) 2446 { 2447 int i; 2448 2449 for (i = 0; i < NFP_NET_CFG_RSS_ITBL_SZ; i += 4) 2450 nn_writel(nn, NFP_NET_CFG_RSS_ITBL + i, 2451 get_unaligned_le32(nn->rss_itbl + i)); 2452 } 2453 2454 /** 2455 * nfp_net_rss_write_key() - Write RSS hash key to device 2456 * @nn: NFP Net device to reconfigure 2457 */ 2458 void nfp_net_rss_write_key(struct nfp_net *nn) 2459 { 2460 int i; 2461 2462 for (i = 0; i < nfp_net_rss_key_sz(nn); i += 4) 2463 nn_writel(nn, NFP_NET_CFG_RSS_KEY + i, 2464 get_unaligned_le32(nn->rss_key + i)); 2465 } 2466 2467 /** 2468 * nfp_net_coalesce_write_cfg() - Write irq coalescence configuration to HW 2469 * @nn: NFP Net device to reconfigure 2470 */ 2471 void nfp_net_coalesce_write_cfg(struct nfp_net *nn) 2472 { 2473 u8 i; 2474 u32 factor; 2475 u32 value; 2476 2477 /* Compute factor used to convert coalesce '_usecs' parameters to 2478 * ME timestamp ticks. There are 16 ME clock cycles for each timestamp 2479 * count. 2480 */ 2481 factor = nn->tlv_caps.me_freq_mhz / 16; 2482 2483 /* copy RX interrupt coalesce parameters */ 2484 value = (nn->rx_coalesce_max_frames << 16) | 2485 (factor * nn->rx_coalesce_usecs); 2486 for (i = 0; i < nn->dp.num_rx_rings; i++) 2487 nn_writel(nn, NFP_NET_CFG_RXR_IRQ_MOD(i), value); 2488 2489 /* copy TX interrupt coalesce parameters */ 2490 value = (nn->tx_coalesce_max_frames << 16) | 2491 (factor * nn->tx_coalesce_usecs); 2492 for (i = 0; i < nn->dp.num_tx_rings; i++) 2493 nn_writel(nn, NFP_NET_CFG_TXR_IRQ_MOD(i), value); 2494 } 2495 2496 /** 2497 * nfp_net_write_mac_addr() - Write mac address to the device control BAR 2498 * @nn: NFP Net device to reconfigure 2499 * @addr: MAC address to write 2500 * 2501 * Writes the MAC address from the netdev to the device control BAR. Does not 2502 * perform the required reconfig. We do a bit of byte swapping dance because 2503 * firmware is LE. 2504 */ 2505 static void nfp_net_write_mac_addr(struct nfp_net *nn, const u8 *addr) 2506 { 2507 nn_writel(nn, NFP_NET_CFG_MACADDR + 0, get_unaligned_be32(addr)); 2508 nn_writew(nn, NFP_NET_CFG_MACADDR + 6, get_unaligned_be16(addr + 4)); 2509 } 2510 2511 static void nfp_net_vec_clear_ring_data(struct nfp_net *nn, unsigned int idx) 2512 { 2513 nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), 0); 2514 nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), 0); 2515 nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), 0); 2516 2517 nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), 0); 2518 nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), 0); 2519 nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), 0); 2520 } 2521 2522 /** 2523 * nfp_net_clear_config_and_disable() - Clear control BAR and disable NFP 2524 * @nn: NFP Net device to reconfigure 2525 * 2526 * Warning: must be fully idempotent. 2527 */ 2528 static void nfp_net_clear_config_and_disable(struct nfp_net *nn) 2529 { 2530 u32 new_ctrl, update; 2531 unsigned int r; 2532 int err; 2533 2534 new_ctrl = nn->dp.ctrl; 2535 new_ctrl &= ~NFP_NET_CFG_CTRL_ENABLE; 2536 update = NFP_NET_CFG_UPDATE_GEN; 2537 update |= NFP_NET_CFG_UPDATE_MSIX; 2538 update |= NFP_NET_CFG_UPDATE_RING; 2539 2540 if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG) 2541 new_ctrl &= ~NFP_NET_CFG_CTRL_RINGCFG; 2542 2543 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0); 2544 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0); 2545 2546 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 2547 err = nfp_net_reconfig(nn, update); 2548 if (err) 2549 nn_err(nn, "Could not disable device: %d\n", err); 2550 2551 for (r = 0; r < nn->dp.num_rx_rings; r++) 2552 nfp_net_rx_ring_reset(&nn->dp.rx_rings[r]); 2553 for (r = 0; r < nn->dp.num_tx_rings; r++) 2554 nfp_net_tx_ring_reset(&nn->dp, &nn->dp.tx_rings[r]); 2555 for (r = 0; r < nn->dp.num_r_vecs; r++) 2556 nfp_net_vec_clear_ring_data(nn, r); 2557 2558 nn->dp.ctrl = new_ctrl; 2559 } 2560 2561 static void 2562 nfp_net_rx_ring_hw_cfg_write(struct nfp_net *nn, 2563 struct nfp_net_rx_ring *rx_ring, unsigned int idx) 2564 { 2565 /* Write the DMA address, size and MSI-X info to the device */ 2566 nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), rx_ring->dma); 2567 nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), ilog2(rx_ring->cnt)); 2568 nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), rx_ring->r_vec->irq_entry); 2569 } 2570 2571 static void 2572 nfp_net_tx_ring_hw_cfg_write(struct nfp_net *nn, 2573 struct nfp_net_tx_ring *tx_ring, unsigned int idx) 2574 { 2575 nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), tx_ring->dma); 2576 nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), ilog2(tx_ring->cnt)); 2577 nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), tx_ring->r_vec->irq_entry); 2578 } 2579 2580 /** 2581 * nfp_net_set_config_and_enable() - Write control BAR and enable NFP 2582 * @nn: NFP Net device to reconfigure 2583 */ 2584 static int nfp_net_set_config_and_enable(struct nfp_net *nn) 2585 { 2586 u32 bufsz, new_ctrl, update = 0; 2587 unsigned int r; 2588 int err; 2589 2590 new_ctrl = nn->dp.ctrl; 2591 2592 if (nn->dp.ctrl & NFP_NET_CFG_CTRL_RSS_ANY) { 2593 nfp_net_rss_write_key(nn); 2594 nfp_net_rss_write_itbl(nn); 2595 nn_writel(nn, NFP_NET_CFG_RSS_CTRL, nn->rss_cfg); 2596 update |= NFP_NET_CFG_UPDATE_RSS; 2597 } 2598 2599 if (nn->dp.ctrl & NFP_NET_CFG_CTRL_IRQMOD) { 2600 nfp_net_coalesce_write_cfg(nn); 2601 update |= NFP_NET_CFG_UPDATE_IRQMOD; 2602 } 2603 2604 for (r = 0; r < nn->dp.num_tx_rings; r++) 2605 nfp_net_tx_ring_hw_cfg_write(nn, &nn->dp.tx_rings[r], r); 2606 for (r = 0; r < nn->dp.num_rx_rings; r++) 2607 nfp_net_rx_ring_hw_cfg_write(nn, &nn->dp.rx_rings[r], r); 2608 2609 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, nn->dp.num_tx_rings == 64 ? 2610 0xffffffffffffffffULL : ((u64)1 << nn->dp.num_tx_rings) - 1); 2611 2612 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, nn->dp.num_rx_rings == 64 ? 2613 0xffffffffffffffffULL : ((u64)1 << nn->dp.num_rx_rings) - 1); 2614 2615 if (nn->dp.netdev) 2616 nfp_net_write_mac_addr(nn, nn->dp.netdev->dev_addr); 2617 2618 nn_writel(nn, NFP_NET_CFG_MTU, nn->dp.mtu); 2619 2620 bufsz = nn->dp.fl_bufsz - nn->dp.rx_dma_off - NFP_NET_RX_BUF_NON_DATA; 2621 nn_writel(nn, NFP_NET_CFG_FLBUFSZ, bufsz); 2622 2623 /* Enable device */ 2624 new_ctrl |= NFP_NET_CFG_CTRL_ENABLE; 2625 update |= NFP_NET_CFG_UPDATE_GEN; 2626 update |= NFP_NET_CFG_UPDATE_MSIX; 2627 update |= NFP_NET_CFG_UPDATE_RING; 2628 if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG) 2629 new_ctrl |= NFP_NET_CFG_CTRL_RINGCFG; 2630 2631 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 2632 err = nfp_net_reconfig(nn, update); 2633 if (err) { 2634 nfp_net_clear_config_and_disable(nn); 2635 return err; 2636 } 2637 2638 nn->dp.ctrl = new_ctrl; 2639 2640 for (r = 0; r < nn->dp.num_rx_rings; r++) 2641 nfp_net_rx_ring_fill_freelist(&nn->dp, &nn->dp.rx_rings[r]); 2642 2643 /* Since reconfiguration requests while NFP is down are ignored we 2644 * have to wipe the entire VXLAN configuration and reinitialize it. 2645 */ 2646 if (nn->dp.ctrl & NFP_NET_CFG_CTRL_VXLAN) { 2647 memset(&nn->vxlan_ports, 0, sizeof(nn->vxlan_ports)); 2648 memset(&nn->vxlan_usecnt, 0, sizeof(nn->vxlan_usecnt)); 2649 udp_tunnel_get_rx_info(nn->dp.netdev); 2650 } 2651 2652 return 0; 2653 } 2654 2655 /** 2656 * nfp_net_close_stack() - Quiesce the stack (part of close) 2657 * @nn: NFP Net device to reconfigure 2658 */ 2659 static void nfp_net_close_stack(struct nfp_net *nn) 2660 { 2661 unsigned int r; 2662 2663 disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector); 2664 netif_carrier_off(nn->dp.netdev); 2665 nn->link_up = false; 2666 2667 for (r = 0; r < nn->dp.num_r_vecs; r++) { 2668 disable_irq(nn->r_vecs[r].irq_vector); 2669 napi_disable(&nn->r_vecs[r].napi); 2670 } 2671 2672 netif_tx_disable(nn->dp.netdev); 2673 } 2674 2675 /** 2676 * nfp_net_close_free_all() - Free all runtime resources 2677 * @nn: NFP Net device to reconfigure 2678 */ 2679 static void nfp_net_close_free_all(struct nfp_net *nn) 2680 { 2681 unsigned int r; 2682 2683 nfp_net_tx_rings_free(&nn->dp); 2684 nfp_net_rx_rings_free(&nn->dp); 2685 2686 for (r = 0; r < nn->dp.num_r_vecs; r++) 2687 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); 2688 2689 nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX); 2690 nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX); 2691 } 2692 2693 /** 2694 * nfp_net_netdev_close() - Called when the device is downed 2695 * @netdev: netdev structure 2696 */ 2697 static int nfp_net_netdev_close(struct net_device *netdev) 2698 { 2699 struct nfp_net *nn = netdev_priv(netdev); 2700 2701 /* Step 1: Disable RX and TX rings from the Linux kernel perspective 2702 */ 2703 nfp_net_close_stack(nn); 2704 2705 /* Step 2: Tell NFP 2706 */ 2707 nfp_net_clear_config_and_disable(nn); 2708 nfp_port_configure(netdev, false); 2709 2710 /* Step 3: Free resources 2711 */ 2712 nfp_net_close_free_all(nn); 2713 2714 nn_dbg(nn, "%s down", netdev->name); 2715 return 0; 2716 } 2717 2718 void nfp_ctrl_close(struct nfp_net *nn) 2719 { 2720 int r; 2721 2722 rtnl_lock(); 2723 2724 for (r = 0; r < nn->dp.num_r_vecs; r++) { 2725 disable_irq(nn->r_vecs[r].irq_vector); 2726 tasklet_disable(&nn->r_vecs[r].tasklet); 2727 } 2728 2729 nfp_net_clear_config_and_disable(nn); 2730 2731 nfp_net_close_free_all(nn); 2732 2733 rtnl_unlock(); 2734 } 2735 2736 /** 2737 * nfp_net_open_stack() - Start the device from stack's perspective 2738 * @nn: NFP Net device to reconfigure 2739 */ 2740 static void nfp_net_open_stack(struct nfp_net *nn) 2741 { 2742 unsigned int r; 2743 2744 for (r = 0; r < nn->dp.num_r_vecs; r++) { 2745 napi_enable(&nn->r_vecs[r].napi); 2746 enable_irq(nn->r_vecs[r].irq_vector); 2747 } 2748 2749 netif_tx_wake_all_queues(nn->dp.netdev); 2750 2751 enable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector); 2752 nfp_net_read_link_status(nn); 2753 } 2754 2755 static int nfp_net_open_alloc_all(struct nfp_net *nn) 2756 { 2757 int err, r; 2758 2759 err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_EXN, "%s-exn", 2760 nn->exn_name, sizeof(nn->exn_name), 2761 NFP_NET_IRQ_EXN_IDX, nn->exn_handler); 2762 if (err) 2763 return err; 2764 err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_LSC, "%s-lsc", 2765 nn->lsc_name, sizeof(nn->lsc_name), 2766 NFP_NET_IRQ_LSC_IDX, nn->lsc_handler); 2767 if (err) 2768 goto err_free_exn; 2769 disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector); 2770 2771 for (r = 0; r < nn->dp.num_r_vecs; r++) { 2772 err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r); 2773 if (err) 2774 goto err_cleanup_vec_p; 2775 } 2776 2777 err = nfp_net_rx_rings_prepare(nn, &nn->dp); 2778 if (err) 2779 goto err_cleanup_vec; 2780 2781 err = nfp_net_tx_rings_prepare(nn, &nn->dp); 2782 if (err) 2783 goto err_free_rx_rings; 2784 2785 for (r = 0; r < nn->max_r_vecs; r++) 2786 nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r); 2787 2788 return 0; 2789 2790 err_free_rx_rings: 2791 nfp_net_rx_rings_free(&nn->dp); 2792 err_cleanup_vec: 2793 r = nn->dp.num_r_vecs; 2794 err_cleanup_vec_p: 2795 while (r--) 2796 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); 2797 nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX); 2798 err_free_exn: 2799 nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX); 2800 return err; 2801 } 2802 2803 static int nfp_net_netdev_open(struct net_device *netdev) 2804 { 2805 struct nfp_net *nn = netdev_priv(netdev); 2806 int err; 2807 2808 /* Step 1: Allocate resources for rings and the like 2809 * - Request interrupts 2810 * - Allocate RX and TX ring resources 2811 * - Setup initial RSS table 2812 */ 2813 err = nfp_net_open_alloc_all(nn); 2814 if (err) 2815 return err; 2816 2817 err = netif_set_real_num_tx_queues(netdev, nn->dp.num_stack_tx_rings); 2818 if (err) 2819 goto err_free_all; 2820 2821 err = netif_set_real_num_rx_queues(netdev, nn->dp.num_rx_rings); 2822 if (err) 2823 goto err_free_all; 2824 2825 /* Step 2: Configure the NFP 2826 * - Ifup the physical interface if it exists 2827 * - Enable rings from 0 to tx_rings/rx_rings - 1. 2828 * - Write MAC address (in case it changed) 2829 * - Set the MTU 2830 * - Set the Freelist buffer size 2831 * - Enable the FW 2832 */ 2833 err = nfp_port_configure(netdev, true); 2834 if (err) 2835 goto err_free_all; 2836 2837 err = nfp_net_set_config_and_enable(nn); 2838 if (err) 2839 goto err_port_disable; 2840 2841 /* Step 3: Enable for kernel 2842 * - put some freelist descriptors on each RX ring 2843 * - enable NAPI on each ring 2844 * - enable all TX queues 2845 * - set link state 2846 */ 2847 nfp_net_open_stack(nn); 2848 2849 return 0; 2850 2851 err_port_disable: 2852 nfp_port_configure(netdev, false); 2853 err_free_all: 2854 nfp_net_close_free_all(nn); 2855 return err; 2856 } 2857 2858 int nfp_ctrl_open(struct nfp_net *nn) 2859 { 2860 int err, r; 2861 2862 /* ring dumping depends on vNICs being opened/closed under rtnl */ 2863 rtnl_lock(); 2864 2865 err = nfp_net_open_alloc_all(nn); 2866 if (err) 2867 goto err_unlock; 2868 2869 err = nfp_net_set_config_and_enable(nn); 2870 if (err) 2871 goto err_free_all; 2872 2873 for (r = 0; r < nn->dp.num_r_vecs; r++) 2874 enable_irq(nn->r_vecs[r].irq_vector); 2875 2876 rtnl_unlock(); 2877 2878 return 0; 2879 2880 err_free_all: 2881 nfp_net_close_free_all(nn); 2882 err_unlock: 2883 rtnl_unlock(); 2884 return err; 2885 } 2886 2887 static void nfp_net_set_rx_mode(struct net_device *netdev) 2888 { 2889 struct nfp_net *nn = netdev_priv(netdev); 2890 u32 new_ctrl; 2891 2892 new_ctrl = nn->dp.ctrl; 2893 2894 if (!netdev_mc_empty(netdev) || netdev->flags & IFF_ALLMULTI) 2895 new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_L2MC; 2896 else 2897 new_ctrl &= ~NFP_NET_CFG_CTRL_L2MC; 2898 2899 if (netdev->flags & IFF_PROMISC) { 2900 if (nn->cap & NFP_NET_CFG_CTRL_PROMISC) 2901 new_ctrl |= NFP_NET_CFG_CTRL_PROMISC; 2902 else 2903 nn_warn(nn, "FW does not support promiscuous mode\n"); 2904 } else { 2905 new_ctrl &= ~NFP_NET_CFG_CTRL_PROMISC; 2906 } 2907 2908 if (new_ctrl == nn->dp.ctrl) 2909 return; 2910 2911 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 2912 nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_GEN); 2913 2914 nn->dp.ctrl = new_ctrl; 2915 } 2916 2917 static void nfp_net_rss_init_itbl(struct nfp_net *nn) 2918 { 2919 int i; 2920 2921 for (i = 0; i < sizeof(nn->rss_itbl); i++) 2922 nn->rss_itbl[i] = 2923 ethtool_rxfh_indir_default(i, nn->dp.num_rx_rings); 2924 } 2925 2926 static void nfp_net_dp_swap(struct nfp_net *nn, struct nfp_net_dp *dp) 2927 { 2928 struct nfp_net_dp new_dp = *dp; 2929 2930 *dp = nn->dp; 2931 nn->dp = new_dp; 2932 2933 nn->dp.netdev->mtu = new_dp.mtu; 2934 2935 if (!netif_is_rxfh_configured(nn->dp.netdev)) 2936 nfp_net_rss_init_itbl(nn); 2937 } 2938 2939 static int nfp_net_dp_swap_enable(struct nfp_net *nn, struct nfp_net_dp *dp) 2940 { 2941 unsigned int r; 2942 int err; 2943 2944 nfp_net_dp_swap(nn, dp); 2945 2946 for (r = 0; r < nn->max_r_vecs; r++) 2947 nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r); 2948 2949 err = netif_set_real_num_rx_queues(nn->dp.netdev, nn->dp.num_rx_rings); 2950 if (err) 2951 return err; 2952 2953 if (nn->dp.netdev->real_num_tx_queues != nn->dp.num_stack_tx_rings) { 2954 err = netif_set_real_num_tx_queues(nn->dp.netdev, 2955 nn->dp.num_stack_tx_rings); 2956 if (err) 2957 return err; 2958 } 2959 2960 return nfp_net_set_config_and_enable(nn); 2961 } 2962 2963 struct nfp_net_dp *nfp_net_clone_dp(struct nfp_net *nn) 2964 { 2965 struct nfp_net_dp *new; 2966 2967 new = kmalloc(sizeof(*new), GFP_KERNEL); 2968 if (!new) 2969 return NULL; 2970 2971 *new = nn->dp; 2972 2973 /* Clear things which need to be recomputed */ 2974 new->fl_bufsz = 0; 2975 new->tx_rings = NULL; 2976 new->rx_rings = NULL; 2977 new->num_r_vecs = 0; 2978 new->num_stack_tx_rings = 0; 2979 2980 return new; 2981 } 2982 2983 static int 2984 nfp_net_check_config(struct nfp_net *nn, struct nfp_net_dp *dp, 2985 struct netlink_ext_ack *extack) 2986 { 2987 /* XDP-enabled tests */ 2988 if (!dp->xdp_prog) 2989 return 0; 2990 if (dp->fl_bufsz > PAGE_SIZE) { 2991 NL_SET_ERR_MSG_MOD(extack, "MTU too large w/ XDP enabled"); 2992 return -EINVAL; 2993 } 2994 if (dp->num_tx_rings > nn->max_tx_rings) { 2995 NL_SET_ERR_MSG_MOD(extack, "Insufficient number of TX rings w/ XDP enabled"); 2996 return -EINVAL; 2997 } 2998 2999 return 0; 3000 } 3001 3002 int nfp_net_ring_reconfig(struct nfp_net *nn, struct nfp_net_dp *dp, 3003 struct netlink_ext_ack *extack) 3004 { 3005 int r, err; 3006 3007 dp->fl_bufsz = nfp_net_calc_fl_bufsz(dp); 3008 3009 dp->num_stack_tx_rings = dp->num_tx_rings; 3010 if (dp->xdp_prog) 3011 dp->num_stack_tx_rings -= dp->num_rx_rings; 3012 3013 dp->num_r_vecs = max(dp->num_rx_rings, dp->num_stack_tx_rings); 3014 3015 err = nfp_net_check_config(nn, dp, extack); 3016 if (err) 3017 goto exit_free_dp; 3018 3019 if (!netif_running(dp->netdev)) { 3020 nfp_net_dp_swap(nn, dp); 3021 err = 0; 3022 goto exit_free_dp; 3023 } 3024 3025 /* Prepare new rings */ 3026 for (r = nn->dp.num_r_vecs; r < dp->num_r_vecs; r++) { 3027 err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r); 3028 if (err) { 3029 dp->num_r_vecs = r; 3030 goto err_cleanup_vecs; 3031 } 3032 } 3033 3034 err = nfp_net_rx_rings_prepare(nn, dp); 3035 if (err) 3036 goto err_cleanup_vecs; 3037 3038 err = nfp_net_tx_rings_prepare(nn, dp); 3039 if (err) 3040 goto err_free_rx; 3041 3042 /* Stop device, swap in new rings, try to start the firmware */ 3043 nfp_net_close_stack(nn); 3044 nfp_net_clear_config_and_disable(nn); 3045 3046 err = nfp_net_dp_swap_enable(nn, dp); 3047 if (err) { 3048 int err2; 3049 3050 nfp_net_clear_config_and_disable(nn); 3051 3052 /* Try with old configuration and old rings */ 3053 err2 = nfp_net_dp_swap_enable(nn, dp); 3054 if (err2) 3055 nn_err(nn, "Can't restore ring config - FW communication failed (%d,%d)\n", 3056 err, err2); 3057 } 3058 for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--) 3059 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); 3060 3061 nfp_net_rx_rings_free(dp); 3062 nfp_net_tx_rings_free(dp); 3063 3064 nfp_net_open_stack(nn); 3065 exit_free_dp: 3066 kfree(dp); 3067 3068 return err; 3069 3070 err_free_rx: 3071 nfp_net_rx_rings_free(dp); 3072 err_cleanup_vecs: 3073 for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--) 3074 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); 3075 kfree(dp); 3076 return err; 3077 } 3078 3079 static int nfp_net_change_mtu(struct net_device *netdev, int new_mtu) 3080 { 3081 struct nfp_net *nn = netdev_priv(netdev); 3082 struct nfp_net_dp *dp; 3083 int err; 3084 3085 err = nfp_app_check_mtu(nn->app, netdev, new_mtu); 3086 if (err) 3087 return err; 3088 3089 dp = nfp_net_clone_dp(nn); 3090 if (!dp) 3091 return -ENOMEM; 3092 3093 dp->mtu = new_mtu; 3094 3095 return nfp_net_ring_reconfig(nn, dp, NULL); 3096 } 3097 3098 static int 3099 nfp_net_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) 3100 { 3101 struct nfp_net *nn = netdev_priv(netdev); 3102 3103 /* Priority tagged packets with vlan id 0 are processed by the 3104 * NFP as untagged packets 3105 */ 3106 if (!vid) 3107 return 0; 3108 3109 nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_VID, vid); 3110 nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_PROTO, 3111 ETH_P_8021Q); 3112 3113 return nfp_net_reconfig_mbox(nn, NFP_NET_CFG_MBOX_CMD_CTAG_FILTER_ADD); 3114 } 3115 3116 static int 3117 nfp_net_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) 3118 { 3119 struct nfp_net *nn = netdev_priv(netdev); 3120 3121 /* Priority tagged packets with vlan id 0 are processed by the 3122 * NFP as untagged packets 3123 */ 3124 if (!vid) 3125 return 0; 3126 3127 nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_VID, vid); 3128 nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_PROTO, 3129 ETH_P_8021Q); 3130 3131 return nfp_net_reconfig_mbox(nn, NFP_NET_CFG_MBOX_CMD_CTAG_FILTER_KILL); 3132 } 3133 3134 static void nfp_net_stat64(struct net_device *netdev, 3135 struct rtnl_link_stats64 *stats) 3136 { 3137 struct nfp_net *nn = netdev_priv(netdev); 3138 int r; 3139 3140 /* Collect software stats */ 3141 for (r = 0; r < nn->max_r_vecs; r++) { 3142 struct nfp_net_r_vector *r_vec = &nn->r_vecs[r]; 3143 u64 data[3]; 3144 unsigned int start; 3145 3146 do { 3147 start = u64_stats_fetch_begin(&r_vec->rx_sync); 3148 data[0] = r_vec->rx_pkts; 3149 data[1] = r_vec->rx_bytes; 3150 data[2] = r_vec->rx_drops; 3151 } while (u64_stats_fetch_retry(&r_vec->rx_sync, start)); 3152 stats->rx_packets += data[0]; 3153 stats->rx_bytes += data[1]; 3154 stats->rx_dropped += data[2]; 3155 3156 do { 3157 start = u64_stats_fetch_begin(&r_vec->tx_sync); 3158 data[0] = r_vec->tx_pkts; 3159 data[1] = r_vec->tx_bytes; 3160 data[2] = r_vec->tx_errors; 3161 } while (u64_stats_fetch_retry(&r_vec->tx_sync, start)); 3162 stats->tx_packets += data[0]; 3163 stats->tx_bytes += data[1]; 3164 stats->tx_errors += data[2]; 3165 } 3166 3167 /* Add in device stats */ 3168 stats->multicast += nn_readq(nn, NFP_NET_CFG_STATS_RX_MC_FRAMES); 3169 stats->rx_dropped += nn_readq(nn, NFP_NET_CFG_STATS_RX_DISCARDS); 3170 stats->rx_errors += nn_readq(nn, NFP_NET_CFG_STATS_RX_ERRORS); 3171 3172 stats->tx_dropped += nn_readq(nn, NFP_NET_CFG_STATS_TX_DISCARDS); 3173 stats->tx_errors += nn_readq(nn, NFP_NET_CFG_STATS_TX_ERRORS); 3174 } 3175 3176 static int nfp_net_set_features(struct net_device *netdev, 3177 netdev_features_t features) 3178 { 3179 netdev_features_t changed = netdev->features ^ features; 3180 struct nfp_net *nn = netdev_priv(netdev); 3181 u32 new_ctrl; 3182 int err; 3183 3184 /* Assume this is not called with features we have not advertised */ 3185 3186 new_ctrl = nn->dp.ctrl; 3187 3188 if (changed & NETIF_F_RXCSUM) { 3189 if (features & NETIF_F_RXCSUM) 3190 new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY; 3191 else 3192 new_ctrl &= ~NFP_NET_CFG_CTRL_RXCSUM_ANY; 3193 } 3194 3195 if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) { 3196 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) 3197 new_ctrl |= NFP_NET_CFG_CTRL_TXCSUM; 3198 else 3199 new_ctrl &= ~NFP_NET_CFG_CTRL_TXCSUM; 3200 } 3201 3202 if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) { 3203 if (features & (NETIF_F_TSO | NETIF_F_TSO6)) 3204 new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_LSO2 ?: 3205 NFP_NET_CFG_CTRL_LSO; 3206 else 3207 new_ctrl &= ~NFP_NET_CFG_CTRL_LSO_ANY; 3208 } 3209 3210 if (changed & NETIF_F_HW_VLAN_CTAG_RX) { 3211 if (features & NETIF_F_HW_VLAN_CTAG_RX) 3212 new_ctrl |= NFP_NET_CFG_CTRL_RXVLAN; 3213 else 3214 new_ctrl &= ~NFP_NET_CFG_CTRL_RXVLAN; 3215 } 3216 3217 if (changed & NETIF_F_HW_VLAN_CTAG_TX) { 3218 if (features & NETIF_F_HW_VLAN_CTAG_TX) 3219 new_ctrl |= NFP_NET_CFG_CTRL_TXVLAN; 3220 else 3221 new_ctrl &= ~NFP_NET_CFG_CTRL_TXVLAN; 3222 } 3223 3224 if (changed & NETIF_F_HW_VLAN_CTAG_FILTER) { 3225 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) 3226 new_ctrl |= NFP_NET_CFG_CTRL_CTAG_FILTER; 3227 else 3228 new_ctrl &= ~NFP_NET_CFG_CTRL_CTAG_FILTER; 3229 } 3230 3231 if (changed & NETIF_F_SG) { 3232 if (features & NETIF_F_SG) 3233 new_ctrl |= NFP_NET_CFG_CTRL_GATHER; 3234 else 3235 new_ctrl &= ~NFP_NET_CFG_CTRL_GATHER; 3236 } 3237 3238 err = nfp_port_set_features(netdev, features); 3239 if (err) 3240 return err; 3241 3242 nn_dbg(nn, "Feature change 0x%llx -> 0x%llx (changed=0x%llx)\n", 3243 netdev->features, features, changed); 3244 3245 if (new_ctrl == nn->dp.ctrl) 3246 return 0; 3247 3248 nn_dbg(nn, "NIC ctrl: 0x%x -> 0x%x\n", nn->dp.ctrl, new_ctrl); 3249 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 3250 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_GEN); 3251 if (err) 3252 return err; 3253 3254 nn->dp.ctrl = new_ctrl; 3255 3256 return 0; 3257 } 3258 3259 static netdev_features_t 3260 nfp_net_features_check(struct sk_buff *skb, struct net_device *dev, 3261 netdev_features_t features) 3262 { 3263 u8 l4_hdr; 3264 3265 /* We can't do TSO over double tagged packets (802.1AD) */ 3266 features &= vlan_features_check(skb, features); 3267 3268 if (!skb->encapsulation) 3269 return features; 3270 3271 /* Ensure that inner L4 header offset fits into TX descriptor field */ 3272 if (skb_is_gso(skb)) { 3273 u32 hdrlen; 3274 3275 hdrlen = skb_inner_transport_header(skb) - skb->data + 3276 inner_tcp_hdrlen(skb); 3277 3278 if (unlikely(hdrlen > NFP_NET_LSO_MAX_HDR_SZ)) 3279 features &= ~NETIF_F_GSO_MASK; 3280 } 3281 3282 /* VXLAN/GRE check */ 3283 switch (vlan_get_protocol(skb)) { 3284 case htons(ETH_P_IP): 3285 l4_hdr = ip_hdr(skb)->protocol; 3286 break; 3287 case htons(ETH_P_IPV6): 3288 l4_hdr = ipv6_hdr(skb)->nexthdr; 3289 break; 3290 default: 3291 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3292 } 3293 3294 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER || 3295 skb->inner_protocol != htons(ETH_P_TEB) || 3296 (l4_hdr != IPPROTO_UDP && l4_hdr != IPPROTO_GRE) || 3297 (l4_hdr == IPPROTO_UDP && 3298 (skb_inner_mac_header(skb) - skb_transport_header(skb) != 3299 sizeof(struct udphdr) + sizeof(struct vxlanhdr)))) 3300 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3301 3302 return features; 3303 } 3304 3305 static int 3306 nfp_net_get_phys_port_name(struct net_device *netdev, char *name, size_t len) 3307 { 3308 struct nfp_net *nn = netdev_priv(netdev); 3309 int n; 3310 3311 if (nn->port) 3312 return nfp_port_get_phys_port_name(netdev, name, len); 3313 3314 if (nn->dp.is_vf || nn->vnic_no_name) 3315 return -EOPNOTSUPP; 3316 3317 n = snprintf(name, len, "n%d", nn->id); 3318 if (n >= len) 3319 return -EINVAL; 3320 3321 return 0; 3322 } 3323 3324 /** 3325 * nfp_net_set_vxlan_port() - set vxlan port in SW and reconfigure HW 3326 * @nn: NFP Net device to reconfigure 3327 * @idx: Index into the port table where new port should be written 3328 * @port: UDP port to configure (pass zero to remove VXLAN port) 3329 */ 3330 static void nfp_net_set_vxlan_port(struct nfp_net *nn, int idx, __be16 port) 3331 { 3332 int i; 3333 3334 nn->vxlan_ports[idx] = port; 3335 3336 if (!(nn->dp.ctrl & NFP_NET_CFG_CTRL_VXLAN)) 3337 return; 3338 3339 BUILD_BUG_ON(NFP_NET_N_VXLAN_PORTS & 1); 3340 for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i += 2) 3341 nn_writel(nn, NFP_NET_CFG_VXLAN_PORT + i * sizeof(port), 3342 be16_to_cpu(nn->vxlan_ports[i + 1]) << 16 | 3343 be16_to_cpu(nn->vxlan_ports[i])); 3344 3345 nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_VXLAN); 3346 } 3347 3348 /** 3349 * nfp_net_find_vxlan_idx() - find table entry of the port or a free one 3350 * @nn: NFP Network structure 3351 * @port: UDP port to look for 3352 * 3353 * Return: if the port is already in the table -- it's position; 3354 * if the port is not in the table -- free position to use; 3355 * if the table is full -- -ENOSPC. 3356 */ 3357 static int nfp_net_find_vxlan_idx(struct nfp_net *nn, __be16 port) 3358 { 3359 int i, free_idx = -ENOSPC; 3360 3361 for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i++) { 3362 if (nn->vxlan_ports[i] == port) 3363 return i; 3364 if (!nn->vxlan_usecnt[i]) 3365 free_idx = i; 3366 } 3367 3368 return free_idx; 3369 } 3370 3371 static void nfp_net_add_vxlan_port(struct net_device *netdev, 3372 struct udp_tunnel_info *ti) 3373 { 3374 struct nfp_net *nn = netdev_priv(netdev); 3375 int idx; 3376 3377 if (ti->type != UDP_TUNNEL_TYPE_VXLAN) 3378 return; 3379 3380 idx = nfp_net_find_vxlan_idx(nn, ti->port); 3381 if (idx == -ENOSPC) 3382 return; 3383 3384 if (!nn->vxlan_usecnt[idx]++) 3385 nfp_net_set_vxlan_port(nn, idx, ti->port); 3386 } 3387 3388 static void nfp_net_del_vxlan_port(struct net_device *netdev, 3389 struct udp_tunnel_info *ti) 3390 { 3391 struct nfp_net *nn = netdev_priv(netdev); 3392 int idx; 3393 3394 if (ti->type != UDP_TUNNEL_TYPE_VXLAN) 3395 return; 3396 3397 idx = nfp_net_find_vxlan_idx(nn, ti->port); 3398 if (idx == -ENOSPC || !nn->vxlan_usecnt[idx]) 3399 return; 3400 3401 if (!--nn->vxlan_usecnt[idx]) 3402 nfp_net_set_vxlan_port(nn, idx, 0); 3403 } 3404 3405 static int nfp_net_xdp_setup_drv(struct nfp_net *nn, struct netdev_bpf *bpf) 3406 { 3407 struct bpf_prog *prog = bpf->prog; 3408 struct nfp_net_dp *dp; 3409 int err; 3410 3411 if (!xdp_attachment_flags_ok(&nn->xdp, bpf)) 3412 return -EBUSY; 3413 3414 if (!prog == !nn->dp.xdp_prog) { 3415 WRITE_ONCE(nn->dp.xdp_prog, prog); 3416 xdp_attachment_setup(&nn->xdp, bpf); 3417 return 0; 3418 } 3419 3420 dp = nfp_net_clone_dp(nn); 3421 if (!dp) 3422 return -ENOMEM; 3423 3424 dp->xdp_prog = prog; 3425 dp->num_tx_rings += prog ? nn->dp.num_rx_rings : -nn->dp.num_rx_rings; 3426 dp->rx_dma_dir = prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE; 3427 dp->rx_dma_off = prog ? XDP_PACKET_HEADROOM - nn->dp.rx_offset : 0; 3428 3429 /* We need RX reconfig to remap the buffers (BIDIR vs FROM_DEV) */ 3430 err = nfp_net_ring_reconfig(nn, dp, bpf->extack); 3431 if (err) 3432 return err; 3433 3434 xdp_attachment_setup(&nn->xdp, bpf); 3435 return 0; 3436 } 3437 3438 static int nfp_net_xdp_setup_hw(struct nfp_net *nn, struct netdev_bpf *bpf) 3439 { 3440 int err; 3441 3442 if (!xdp_attachment_flags_ok(&nn->xdp_hw, bpf)) 3443 return -EBUSY; 3444 3445 err = nfp_app_xdp_offload(nn->app, nn, bpf->prog, bpf->extack); 3446 if (err) 3447 return err; 3448 3449 xdp_attachment_setup(&nn->xdp_hw, bpf); 3450 return 0; 3451 } 3452 3453 static int nfp_net_xdp(struct net_device *netdev, struct netdev_bpf *xdp) 3454 { 3455 struct nfp_net *nn = netdev_priv(netdev); 3456 3457 switch (xdp->command) { 3458 case XDP_SETUP_PROG: 3459 return nfp_net_xdp_setup_drv(nn, xdp); 3460 case XDP_SETUP_PROG_HW: 3461 return nfp_net_xdp_setup_hw(nn, xdp); 3462 case XDP_QUERY_PROG: 3463 return xdp_attachment_query(&nn->xdp, xdp); 3464 case XDP_QUERY_PROG_HW: 3465 return xdp_attachment_query(&nn->xdp_hw, xdp); 3466 default: 3467 return nfp_app_bpf(nn->app, nn, xdp); 3468 } 3469 } 3470 3471 static int nfp_net_set_mac_address(struct net_device *netdev, void *addr) 3472 { 3473 struct nfp_net *nn = netdev_priv(netdev); 3474 struct sockaddr *saddr = addr; 3475 int err; 3476 3477 err = eth_prepare_mac_addr_change(netdev, addr); 3478 if (err) 3479 return err; 3480 3481 nfp_net_write_mac_addr(nn, saddr->sa_data); 3482 3483 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_MACADDR); 3484 if (err) 3485 return err; 3486 3487 eth_commit_mac_addr_change(netdev, addr); 3488 3489 return 0; 3490 } 3491 3492 const struct net_device_ops nfp_net_netdev_ops = { 3493 .ndo_init = nfp_app_ndo_init, 3494 .ndo_uninit = nfp_app_ndo_uninit, 3495 .ndo_open = nfp_net_netdev_open, 3496 .ndo_stop = nfp_net_netdev_close, 3497 .ndo_start_xmit = nfp_net_tx, 3498 .ndo_get_stats64 = nfp_net_stat64, 3499 .ndo_vlan_rx_add_vid = nfp_net_vlan_rx_add_vid, 3500 .ndo_vlan_rx_kill_vid = nfp_net_vlan_rx_kill_vid, 3501 .ndo_set_vf_mac = nfp_app_set_vf_mac, 3502 .ndo_set_vf_vlan = nfp_app_set_vf_vlan, 3503 .ndo_set_vf_spoofchk = nfp_app_set_vf_spoofchk, 3504 .ndo_get_vf_config = nfp_app_get_vf_config, 3505 .ndo_set_vf_link_state = nfp_app_set_vf_link_state, 3506 .ndo_setup_tc = nfp_port_setup_tc, 3507 .ndo_tx_timeout = nfp_net_tx_timeout, 3508 .ndo_set_rx_mode = nfp_net_set_rx_mode, 3509 .ndo_change_mtu = nfp_net_change_mtu, 3510 .ndo_set_mac_address = nfp_net_set_mac_address, 3511 .ndo_set_features = nfp_net_set_features, 3512 .ndo_features_check = nfp_net_features_check, 3513 .ndo_get_phys_port_name = nfp_net_get_phys_port_name, 3514 .ndo_udp_tunnel_add = nfp_net_add_vxlan_port, 3515 .ndo_udp_tunnel_del = nfp_net_del_vxlan_port, 3516 .ndo_bpf = nfp_net_xdp, 3517 }; 3518 3519 /** 3520 * nfp_net_info() - Print general info about the NIC 3521 * @nn: NFP Net device to reconfigure 3522 */ 3523 void nfp_net_info(struct nfp_net *nn) 3524 { 3525 nn_info(nn, "Netronome NFP-6xxx %sNetdev: TxQs=%d/%d RxQs=%d/%d\n", 3526 nn->dp.is_vf ? "VF " : "", 3527 nn->dp.num_tx_rings, nn->max_tx_rings, 3528 nn->dp.num_rx_rings, nn->max_rx_rings); 3529 nn_info(nn, "VER: %d.%d.%d.%d, Maximum supported MTU: %d\n", 3530 nn->fw_ver.resv, nn->fw_ver.class, 3531 nn->fw_ver.major, nn->fw_ver.minor, 3532 nn->max_mtu); 3533 nn_info(nn, "CAP: %#x %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", 3534 nn->cap, 3535 nn->cap & NFP_NET_CFG_CTRL_PROMISC ? "PROMISC " : "", 3536 nn->cap & NFP_NET_CFG_CTRL_L2BC ? "L2BCFILT " : "", 3537 nn->cap & NFP_NET_CFG_CTRL_L2MC ? "L2MCFILT " : "", 3538 nn->cap & NFP_NET_CFG_CTRL_RXCSUM ? "RXCSUM " : "", 3539 nn->cap & NFP_NET_CFG_CTRL_TXCSUM ? "TXCSUM " : "", 3540 nn->cap & NFP_NET_CFG_CTRL_RXVLAN ? "RXVLAN " : "", 3541 nn->cap & NFP_NET_CFG_CTRL_TXVLAN ? "TXVLAN " : "", 3542 nn->cap & NFP_NET_CFG_CTRL_SCATTER ? "SCATTER " : "", 3543 nn->cap & NFP_NET_CFG_CTRL_GATHER ? "GATHER " : "", 3544 nn->cap & NFP_NET_CFG_CTRL_LSO ? "TSO1 " : "", 3545 nn->cap & NFP_NET_CFG_CTRL_LSO2 ? "TSO2 " : "", 3546 nn->cap & NFP_NET_CFG_CTRL_RSS ? "RSS1 " : "", 3547 nn->cap & NFP_NET_CFG_CTRL_RSS2 ? "RSS2 " : "", 3548 nn->cap & NFP_NET_CFG_CTRL_CTAG_FILTER ? "CTAG_FILTER " : "", 3549 nn->cap & NFP_NET_CFG_CTRL_L2SWITCH ? "L2SWITCH " : "", 3550 nn->cap & NFP_NET_CFG_CTRL_MSIXAUTO ? "AUTOMASK " : "", 3551 nn->cap & NFP_NET_CFG_CTRL_IRQMOD ? "IRQMOD " : "", 3552 nn->cap & NFP_NET_CFG_CTRL_VXLAN ? "VXLAN " : "", 3553 nn->cap & NFP_NET_CFG_CTRL_NVGRE ? "NVGRE " : "", 3554 nn->cap & NFP_NET_CFG_CTRL_CSUM_COMPLETE ? 3555 "RXCSUM_COMPLETE " : "", 3556 nn->cap & NFP_NET_CFG_CTRL_LIVE_ADDR ? "LIVE_ADDR " : "", 3557 nfp_app_extra_cap(nn->app, nn)); 3558 } 3559 3560 /** 3561 * nfp_net_alloc() - Allocate netdev and related structure 3562 * @pdev: PCI device 3563 * @needs_netdev: Whether to allocate a netdev for this vNIC 3564 * @max_tx_rings: Maximum number of TX rings supported by device 3565 * @max_rx_rings: Maximum number of RX rings supported by device 3566 * 3567 * This function allocates a netdev device and fills in the initial 3568 * part of the @struct nfp_net structure. In case of control device 3569 * nfp_net structure is allocated without the netdev. 3570 * 3571 * Return: NFP Net device structure, or ERR_PTR on error. 3572 */ 3573 struct nfp_net *nfp_net_alloc(struct pci_dev *pdev, bool needs_netdev, 3574 unsigned int max_tx_rings, 3575 unsigned int max_rx_rings) 3576 { 3577 struct nfp_net *nn; 3578 3579 if (needs_netdev) { 3580 struct net_device *netdev; 3581 3582 netdev = alloc_etherdev_mqs(sizeof(struct nfp_net), 3583 max_tx_rings, max_rx_rings); 3584 if (!netdev) 3585 return ERR_PTR(-ENOMEM); 3586 3587 SET_NETDEV_DEV(netdev, &pdev->dev); 3588 nn = netdev_priv(netdev); 3589 nn->dp.netdev = netdev; 3590 } else { 3591 nn = vzalloc(sizeof(*nn)); 3592 if (!nn) 3593 return ERR_PTR(-ENOMEM); 3594 } 3595 3596 nn->dp.dev = &pdev->dev; 3597 nn->pdev = pdev; 3598 3599 nn->max_tx_rings = max_tx_rings; 3600 nn->max_rx_rings = max_rx_rings; 3601 3602 nn->dp.num_tx_rings = min_t(unsigned int, 3603 max_tx_rings, num_online_cpus()); 3604 nn->dp.num_rx_rings = min_t(unsigned int, max_rx_rings, 3605 netif_get_num_default_rss_queues()); 3606 3607 nn->dp.num_r_vecs = max(nn->dp.num_tx_rings, nn->dp.num_rx_rings); 3608 nn->dp.num_r_vecs = min_t(unsigned int, 3609 nn->dp.num_r_vecs, num_online_cpus()); 3610 3611 nn->dp.txd_cnt = NFP_NET_TX_DESCS_DEFAULT; 3612 nn->dp.rxd_cnt = NFP_NET_RX_DESCS_DEFAULT; 3613 3614 spin_lock_init(&nn->reconfig_lock); 3615 spin_lock_init(&nn->link_status_lock); 3616 3617 timer_setup(&nn->reconfig_timer, nfp_net_reconfig_timer, 0); 3618 3619 return nn; 3620 } 3621 3622 /** 3623 * nfp_net_free() - Undo what @nfp_net_alloc() did 3624 * @nn: NFP Net device to reconfigure 3625 */ 3626 void nfp_net_free(struct nfp_net *nn) 3627 { 3628 WARN_ON(timer_pending(&nn->reconfig_timer) || nn->reconfig_posted); 3629 if (nn->dp.netdev) 3630 free_netdev(nn->dp.netdev); 3631 else 3632 vfree(nn); 3633 } 3634 3635 /** 3636 * nfp_net_rss_key_sz() - Get current size of the RSS key 3637 * @nn: NFP Net device instance 3638 * 3639 * Return: size of the RSS key for currently selected hash function. 3640 */ 3641 unsigned int nfp_net_rss_key_sz(struct nfp_net *nn) 3642 { 3643 switch (nn->rss_hfunc) { 3644 case ETH_RSS_HASH_TOP: 3645 return NFP_NET_CFG_RSS_KEY_SZ; 3646 case ETH_RSS_HASH_XOR: 3647 return 0; 3648 case ETH_RSS_HASH_CRC32: 3649 return 4; 3650 } 3651 3652 nn_warn(nn, "Unknown hash function: %u\n", nn->rss_hfunc); 3653 return 0; 3654 } 3655 3656 /** 3657 * nfp_net_rss_init() - Set the initial RSS parameters 3658 * @nn: NFP Net device to reconfigure 3659 */ 3660 static void nfp_net_rss_init(struct nfp_net *nn) 3661 { 3662 unsigned long func_bit, rss_cap_hfunc; 3663 u32 reg; 3664 3665 /* Read the RSS function capability and select first supported func */ 3666 reg = nn_readl(nn, NFP_NET_CFG_RSS_CAP); 3667 rss_cap_hfunc = FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC, reg); 3668 if (!rss_cap_hfunc) 3669 rss_cap_hfunc = FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC, 3670 NFP_NET_CFG_RSS_TOEPLITZ); 3671 3672 func_bit = find_first_bit(&rss_cap_hfunc, NFP_NET_CFG_RSS_HFUNCS); 3673 if (func_bit == NFP_NET_CFG_RSS_HFUNCS) { 3674 dev_warn(nn->dp.dev, 3675 "Bad RSS config, defaulting to Toeplitz hash\n"); 3676 func_bit = ETH_RSS_HASH_TOP_BIT; 3677 } 3678 nn->rss_hfunc = 1 << func_bit; 3679 3680 netdev_rss_key_fill(nn->rss_key, nfp_net_rss_key_sz(nn)); 3681 3682 nfp_net_rss_init_itbl(nn); 3683 3684 /* Enable IPv4/IPv6 TCP by default */ 3685 nn->rss_cfg = NFP_NET_CFG_RSS_IPV4_TCP | 3686 NFP_NET_CFG_RSS_IPV6_TCP | 3687 FIELD_PREP(NFP_NET_CFG_RSS_HFUNC, nn->rss_hfunc) | 3688 NFP_NET_CFG_RSS_MASK; 3689 } 3690 3691 /** 3692 * nfp_net_irqmod_init() - Set the initial IRQ moderation parameters 3693 * @nn: NFP Net device to reconfigure 3694 */ 3695 static void nfp_net_irqmod_init(struct nfp_net *nn) 3696 { 3697 nn->rx_coalesce_usecs = 50; 3698 nn->rx_coalesce_max_frames = 64; 3699 nn->tx_coalesce_usecs = 50; 3700 nn->tx_coalesce_max_frames = 64; 3701 } 3702 3703 static void nfp_net_netdev_init(struct nfp_net *nn) 3704 { 3705 struct net_device *netdev = nn->dp.netdev; 3706 3707 nfp_net_write_mac_addr(nn, nn->dp.netdev->dev_addr); 3708 3709 netdev->mtu = nn->dp.mtu; 3710 3711 /* Advertise/enable offloads based on capabilities 3712 * 3713 * Note: netdev->features show the currently enabled features 3714 * and netdev->hw_features advertises which features are 3715 * supported. By default we enable most features. 3716 */ 3717 if (nn->cap & NFP_NET_CFG_CTRL_LIVE_ADDR) 3718 netdev->priv_flags |= IFF_LIVE_ADDR_CHANGE; 3719 3720 netdev->hw_features = NETIF_F_HIGHDMA; 3721 if (nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY) { 3722 netdev->hw_features |= NETIF_F_RXCSUM; 3723 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY; 3724 } 3725 if (nn->cap & NFP_NET_CFG_CTRL_TXCSUM) { 3726 netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM; 3727 nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXCSUM; 3728 } 3729 if (nn->cap & NFP_NET_CFG_CTRL_GATHER) { 3730 netdev->hw_features |= NETIF_F_SG; 3731 nn->dp.ctrl |= NFP_NET_CFG_CTRL_GATHER; 3732 } 3733 if ((nn->cap & NFP_NET_CFG_CTRL_LSO && nn->fw_ver.major > 2) || 3734 nn->cap & NFP_NET_CFG_CTRL_LSO2) { 3735 netdev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6; 3736 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_LSO2 ?: 3737 NFP_NET_CFG_CTRL_LSO; 3738 } 3739 if (nn->cap & NFP_NET_CFG_CTRL_RSS_ANY) 3740 netdev->hw_features |= NETIF_F_RXHASH; 3741 if (nn->cap & NFP_NET_CFG_CTRL_VXLAN) { 3742 if (nn->cap & NFP_NET_CFG_CTRL_LSO) 3743 netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL; 3744 nn->dp.ctrl |= NFP_NET_CFG_CTRL_VXLAN; 3745 } 3746 if (nn->cap & NFP_NET_CFG_CTRL_NVGRE) { 3747 if (nn->cap & NFP_NET_CFG_CTRL_LSO) 3748 netdev->hw_features |= NETIF_F_GSO_GRE; 3749 nn->dp.ctrl |= NFP_NET_CFG_CTRL_NVGRE; 3750 } 3751 if (nn->cap & (NFP_NET_CFG_CTRL_VXLAN | NFP_NET_CFG_CTRL_NVGRE)) 3752 netdev->hw_enc_features = netdev->hw_features; 3753 3754 netdev->vlan_features = netdev->hw_features; 3755 3756 if (nn->cap & NFP_NET_CFG_CTRL_RXVLAN) { 3757 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 3758 nn->dp.ctrl |= NFP_NET_CFG_CTRL_RXVLAN; 3759 } 3760 if (nn->cap & NFP_NET_CFG_CTRL_TXVLAN) { 3761 if (nn->cap & NFP_NET_CFG_CTRL_LSO2) { 3762 nn_warn(nn, "Device advertises both TSO2 and TXVLAN. Refusing to enable TXVLAN.\n"); 3763 } else { 3764 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 3765 nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXVLAN; 3766 } 3767 } 3768 if (nn->cap & NFP_NET_CFG_CTRL_CTAG_FILTER) { 3769 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER; 3770 nn->dp.ctrl |= NFP_NET_CFG_CTRL_CTAG_FILTER; 3771 } 3772 3773 netdev->features = netdev->hw_features; 3774 3775 if (nfp_app_has_tc(nn->app) && nn->port) 3776 netdev->hw_features |= NETIF_F_HW_TC; 3777 3778 /* Advertise but disable TSO by default. */ 3779 netdev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6); 3780 nn->dp.ctrl &= ~NFP_NET_CFG_CTRL_LSO_ANY; 3781 3782 /* Finalise the netdev setup */ 3783 netdev->netdev_ops = &nfp_net_netdev_ops; 3784 netdev->watchdog_timeo = msecs_to_jiffies(5 * 1000); 3785 3786 SWITCHDEV_SET_OPS(netdev, &nfp_port_switchdev_ops); 3787 3788 /* MTU range: 68 - hw-specific max */ 3789 netdev->min_mtu = ETH_MIN_MTU; 3790 netdev->max_mtu = nn->max_mtu; 3791 3792 netdev->gso_max_segs = NFP_NET_LSO_MAX_SEGS; 3793 3794 netif_carrier_off(netdev); 3795 3796 nfp_net_set_ethtool_ops(netdev); 3797 } 3798 3799 static int nfp_net_read_caps(struct nfp_net *nn) 3800 { 3801 /* Get some of the read-only fields from the BAR */ 3802 nn->cap = nn_readl(nn, NFP_NET_CFG_CAP); 3803 nn->max_mtu = nn_readl(nn, NFP_NET_CFG_MAX_MTU); 3804 3805 /* ABI 4.x and ctrl vNIC always use chained metadata, in other cases 3806 * we allow use of non-chained metadata if RSS(v1) is the only 3807 * advertised capability requiring metadata. 3808 */ 3809 nn->dp.chained_metadata_format = nn->fw_ver.major == 4 || 3810 !nn->dp.netdev || 3811 !(nn->cap & NFP_NET_CFG_CTRL_RSS) || 3812 nn->cap & NFP_NET_CFG_CTRL_CHAIN_META; 3813 /* RSS(v1) uses non-chained metadata format, except in ABI 4.x where 3814 * it has the same meaning as RSSv2. 3815 */ 3816 if (nn->dp.chained_metadata_format && nn->fw_ver.major != 4) 3817 nn->cap &= ~NFP_NET_CFG_CTRL_RSS; 3818 3819 /* Determine RX packet/metadata boundary offset */ 3820 if (nn->fw_ver.major >= 2) { 3821 u32 reg; 3822 3823 reg = nn_readl(nn, NFP_NET_CFG_RX_OFFSET); 3824 if (reg > NFP_NET_MAX_PREPEND) { 3825 nn_err(nn, "Invalid rx offset: %d\n", reg); 3826 return -EINVAL; 3827 } 3828 nn->dp.rx_offset = reg; 3829 } else { 3830 nn->dp.rx_offset = NFP_NET_RX_OFFSET; 3831 } 3832 3833 /* For control vNICs mask out the capabilities app doesn't want. */ 3834 if (!nn->dp.netdev) 3835 nn->cap &= nn->app->type->ctrl_cap_mask; 3836 3837 return 0; 3838 } 3839 3840 /** 3841 * nfp_net_init() - Initialise/finalise the nfp_net structure 3842 * @nn: NFP Net device structure 3843 * 3844 * Return: 0 on success or negative errno on error. 3845 */ 3846 int nfp_net_init(struct nfp_net *nn) 3847 { 3848 int err; 3849 3850 nn->dp.rx_dma_dir = DMA_FROM_DEVICE; 3851 3852 err = nfp_net_read_caps(nn); 3853 if (err) 3854 return err; 3855 3856 /* Set default MTU and Freelist buffer size */ 3857 if (!nfp_net_is_data_vnic(nn) && nn->app->ctrl_mtu) { 3858 if (nn->app->ctrl_mtu <= nn->max_mtu) { 3859 nn->dp.mtu = nn->app->ctrl_mtu; 3860 } else { 3861 if (nn->app->ctrl_mtu != NFP_APP_CTRL_MTU_MAX) 3862 nn_warn(nn, "app requested MTU above max supported %u > %u\n", 3863 nn->app->ctrl_mtu, nn->max_mtu); 3864 nn->dp.mtu = nn->max_mtu; 3865 } 3866 } else if (nn->max_mtu < NFP_NET_DEFAULT_MTU) { 3867 nn->dp.mtu = nn->max_mtu; 3868 } else { 3869 nn->dp.mtu = NFP_NET_DEFAULT_MTU; 3870 } 3871 nn->dp.fl_bufsz = nfp_net_calc_fl_bufsz(&nn->dp); 3872 3873 if (nfp_app_ctrl_uses_data_vnics(nn->app)) 3874 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_CMSG_DATA; 3875 3876 if (nn->cap & NFP_NET_CFG_CTRL_RSS_ANY) { 3877 nfp_net_rss_init(nn); 3878 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RSS2 ?: 3879 NFP_NET_CFG_CTRL_RSS; 3880 } 3881 3882 /* Allow L2 Broadcast and Multicast through by default, if supported */ 3883 if (nn->cap & NFP_NET_CFG_CTRL_L2BC) 3884 nn->dp.ctrl |= NFP_NET_CFG_CTRL_L2BC; 3885 3886 /* Allow IRQ moderation, if supported */ 3887 if (nn->cap & NFP_NET_CFG_CTRL_IRQMOD) { 3888 nfp_net_irqmod_init(nn); 3889 nn->dp.ctrl |= NFP_NET_CFG_CTRL_IRQMOD; 3890 } 3891 3892 err = nfp_net_tlv_caps_parse(&nn->pdev->dev, nn->dp.ctrl_bar, 3893 &nn->tlv_caps); 3894 if (err) 3895 return err; 3896 3897 if (nn->dp.netdev) 3898 nfp_net_netdev_init(nn); 3899 3900 /* Stash the re-configuration queue away. First odd queue in TX Bar */ 3901 nn->qcp_cfg = nn->tx_bar + NFP_QCP_QUEUE_ADDR_SZ; 3902 3903 /* Make sure the FW knows the netdev is supposed to be disabled here */ 3904 nn_writel(nn, NFP_NET_CFG_CTRL, 0); 3905 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0); 3906 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0); 3907 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_RING | 3908 NFP_NET_CFG_UPDATE_GEN); 3909 if (err) 3910 return err; 3911 3912 nfp_net_vecs_init(nn); 3913 3914 if (!nn->dp.netdev) 3915 return 0; 3916 return register_netdev(nn->dp.netdev); 3917 } 3918 3919 /** 3920 * nfp_net_clean() - Undo what nfp_net_init() did. 3921 * @nn: NFP Net device structure 3922 */ 3923 void nfp_net_clean(struct nfp_net *nn) 3924 { 3925 if (!nn->dp.netdev) 3926 return; 3927 3928 unregister_netdev(nn->dp.netdev); 3929 nfp_net_reconfig_wait_posted(nn); 3930 } 3931