1 /* 2 * Copyright (C) 2015 Netronome Systems, Inc. 3 * 4 * This software is dual licensed under the GNU General License Version 2, 5 * June 1991 as shown in the file COPYING in the top-level directory of this 6 * source tree or the BSD 2-Clause License provided below. You have the 7 * option to license this software under the complete terms of either license. 8 * 9 * The BSD 2-Clause License: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * 1. Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * 2. Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 */ 33 34 /* 35 * nfp_net_common.c 36 * Netronome network device driver: Common functions between PF and VF 37 * Authors: Jakub Kicinski <jakub.kicinski@netronome.com> 38 * Jason McMullan <jason.mcmullan@netronome.com> 39 * Rolf Neugebauer <rolf.neugebauer@netronome.com> 40 * Brad Petrus <brad.petrus@netronome.com> 41 * Chris Telfer <chris.telfer@netronome.com> 42 */ 43 44 #include <linux/version.h> 45 #include <linux/module.h> 46 #include <linux/kernel.h> 47 #include <linux/init.h> 48 #include <linux/fs.h> 49 #include <linux/netdevice.h> 50 #include <linux/etherdevice.h> 51 #include <linux/interrupt.h> 52 #include <linux/ip.h> 53 #include <linux/ipv6.h> 54 #include <linux/pci.h> 55 #include <linux/pci_regs.h> 56 #include <linux/msi.h> 57 #include <linux/ethtool.h> 58 #include <linux/log2.h> 59 #include <linux/if_vlan.h> 60 #include <linux/random.h> 61 62 #include <linux/ktime.h> 63 64 #include <net/vxlan.h> 65 66 #include "nfp_net_ctrl.h" 67 #include "nfp_net.h" 68 69 /** 70 * nfp_net_get_fw_version() - Read and parse the FW version 71 * @fw_ver: Output fw_version structure to read to 72 * @ctrl_bar: Mapped address of the control BAR 73 */ 74 void nfp_net_get_fw_version(struct nfp_net_fw_version *fw_ver, 75 void __iomem *ctrl_bar) 76 { 77 u32 reg; 78 79 reg = readl(ctrl_bar + NFP_NET_CFG_VERSION); 80 put_unaligned_le32(reg, fw_ver); 81 } 82 83 /* Firmware reconfig 84 * 85 * Firmware reconfig may take a while so we have two versions of it - 86 * synchronous and asynchronous (posted). All synchronous callers are holding 87 * RTNL so we don't have to worry about serializing them. 88 */ 89 static void nfp_net_reconfig_start(struct nfp_net *nn, u32 update) 90 { 91 nn_writel(nn, NFP_NET_CFG_UPDATE, update); 92 /* ensure update is written before pinging HW */ 93 nn_pci_flush(nn); 94 nfp_qcp_wr_ptr_add(nn->qcp_cfg, 1); 95 } 96 97 /* Pass 0 as update to run posted reconfigs. */ 98 static void nfp_net_reconfig_start_async(struct nfp_net *nn, u32 update) 99 { 100 update |= nn->reconfig_posted; 101 nn->reconfig_posted = 0; 102 103 nfp_net_reconfig_start(nn, update); 104 105 nn->reconfig_timer_active = true; 106 mod_timer(&nn->reconfig_timer, jiffies + NFP_NET_POLL_TIMEOUT * HZ); 107 } 108 109 static bool nfp_net_reconfig_check_done(struct nfp_net *nn, bool last_check) 110 { 111 u32 reg; 112 113 reg = nn_readl(nn, NFP_NET_CFG_UPDATE); 114 if (reg == 0) 115 return true; 116 if (reg & NFP_NET_CFG_UPDATE_ERR) { 117 nn_err(nn, "Reconfig error: 0x%08x\n", reg); 118 return true; 119 } else if (last_check) { 120 nn_err(nn, "Reconfig timeout: 0x%08x\n", reg); 121 return true; 122 } 123 124 return false; 125 } 126 127 static int nfp_net_reconfig_wait(struct nfp_net *nn, unsigned long deadline) 128 { 129 bool timed_out = false; 130 131 /* Poll update field, waiting for NFP to ack the config */ 132 while (!nfp_net_reconfig_check_done(nn, timed_out)) { 133 msleep(1); 134 timed_out = time_is_before_eq_jiffies(deadline); 135 } 136 137 if (nn_readl(nn, NFP_NET_CFG_UPDATE) & NFP_NET_CFG_UPDATE_ERR) 138 return -EIO; 139 140 return timed_out ? -EIO : 0; 141 } 142 143 static void nfp_net_reconfig_timer(unsigned long data) 144 { 145 struct nfp_net *nn = (void *)data; 146 147 spin_lock_bh(&nn->reconfig_lock); 148 149 nn->reconfig_timer_active = false; 150 151 /* If sync caller is present it will take over from us */ 152 if (nn->reconfig_sync_present) 153 goto done; 154 155 /* Read reconfig status and report errors */ 156 nfp_net_reconfig_check_done(nn, true); 157 158 if (nn->reconfig_posted) 159 nfp_net_reconfig_start_async(nn, 0); 160 done: 161 spin_unlock_bh(&nn->reconfig_lock); 162 } 163 164 /** 165 * nfp_net_reconfig_post() - Post async reconfig request 166 * @nn: NFP Net device to reconfigure 167 * @update: The value for the update field in the BAR config 168 * 169 * Record FW reconfiguration request. Reconfiguration will be kicked off 170 * whenever reconfiguration machinery is idle. Multiple requests can be 171 * merged together! 172 */ 173 static void nfp_net_reconfig_post(struct nfp_net *nn, u32 update) 174 { 175 spin_lock_bh(&nn->reconfig_lock); 176 177 /* Sync caller will kick off async reconf when it's done, just post */ 178 if (nn->reconfig_sync_present) { 179 nn->reconfig_posted |= update; 180 goto done; 181 } 182 183 /* Opportunistically check if the previous command is done */ 184 if (!nn->reconfig_timer_active || 185 nfp_net_reconfig_check_done(nn, false)) 186 nfp_net_reconfig_start_async(nn, update); 187 else 188 nn->reconfig_posted |= update; 189 done: 190 spin_unlock_bh(&nn->reconfig_lock); 191 } 192 193 /** 194 * nfp_net_reconfig() - Reconfigure the firmware 195 * @nn: NFP Net device to reconfigure 196 * @update: The value for the update field in the BAR config 197 * 198 * Write the update word to the BAR and ping the reconfig queue. The 199 * poll until the firmware has acknowledged the update by zeroing the 200 * update word. 201 * 202 * Return: Negative errno on error, 0 on success 203 */ 204 int nfp_net_reconfig(struct nfp_net *nn, u32 update) 205 { 206 bool cancelled_timer = false; 207 u32 pre_posted_requests; 208 int ret; 209 210 spin_lock_bh(&nn->reconfig_lock); 211 212 nn->reconfig_sync_present = true; 213 214 if (nn->reconfig_timer_active) { 215 del_timer(&nn->reconfig_timer); 216 nn->reconfig_timer_active = false; 217 cancelled_timer = true; 218 } 219 pre_posted_requests = nn->reconfig_posted; 220 nn->reconfig_posted = 0; 221 222 spin_unlock_bh(&nn->reconfig_lock); 223 224 if (cancelled_timer) 225 nfp_net_reconfig_wait(nn, nn->reconfig_timer.expires); 226 227 /* Run the posted reconfigs which were issued before we started */ 228 if (pre_posted_requests) { 229 nfp_net_reconfig_start(nn, pre_posted_requests); 230 nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT); 231 } 232 233 nfp_net_reconfig_start(nn, update); 234 ret = nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT); 235 236 spin_lock_bh(&nn->reconfig_lock); 237 238 if (nn->reconfig_posted) 239 nfp_net_reconfig_start_async(nn, 0); 240 241 nn->reconfig_sync_present = false; 242 243 spin_unlock_bh(&nn->reconfig_lock); 244 245 return ret; 246 } 247 248 /* Interrupt configuration and handling 249 */ 250 251 /** 252 * nfp_net_irq_unmask_msix() - Unmask MSI-X after automasking 253 * @nn: NFP Network structure 254 * @entry_nr: MSI-X table entry 255 * 256 * Clear the MSI-X table mask bit for the given entry bypassing Linux irq 257 * handling subsystem. Use *only* to reenable automasked vectors. 258 */ 259 static void nfp_net_irq_unmask_msix(struct nfp_net *nn, unsigned int entry_nr) 260 { 261 struct list_head *msi_head = &nn->pdev->dev.msi_list; 262 struct msi_desc *entry; 263 u32 off; 264 265 /* All MSI-Xs have the same mask_base */ 266 entry = list_first_entry(msi_head, struct msi_desc, list); 267 268 off = (PCI_MSIX_ENTRY_SIZE * entry_nr) + 269 PCI_MSIX_ENTRY_VECTOR_CTRL; 270 writel(0, entry->mask_base + off); 271 readl(entry->mask_base); 272 } 273 274 /** 275 * nfp_net_irq_unmask() - Unmask automasked interrupt 276 * @nn: NFP Network structure 277 * @entry_nr: MSI-X table entry 278 * 279 * If MSI-X auto-masking is enabled clear the mask bit, otherwise 280 * clear the ICR for the entry. 281 */ 282 static void nfp_net_irq_unmask(struct nfp_net *nn, unsigned int entry_nr) 283 { 284 if (nn->ctrl & NFP_NET_CFG_CTRL_MSIXAUTO) { 285 nfp_net_irq_unmask_msix(nn, entry_nr); 286 return; 287 } 288 289 nn_writeb(nn, NFP_NET_CFG_ICR(entry_nr), NFP_NET_CFG_ICR_UNMASKED); 290 nn_pci_flush(nn); 291 } 292 293 /** 294 * nfp_net_msix_alloc() - Try to allocate MSI-X irqs 295 * @nn: NFP Network structure 296 * @nr_vecs: Number of MSI-X vectors to allocate 297 * 298 * For MSI-X we want at least NFP_NET_NON_Q_VECTORS + 1 vectors. 299 * 300 * Return: Number of MSI-X vectors obtained or 0 on error. 301 */ 302 static int nfp_net_msix_alloc(struct nfp_net *nn, int nr_vecs) 303 { 304 struct pci_dev *pdev = nn->pdev; 305 int nvecs; 306 int i; 307 308 for (i = 0; i < nr_vecs; i++) 309 nn->irq_entries[i].entry = i; 310 311 nvecs = pci_enable_msix_range(pdev, nn->irq_entries, 312 NFP_NET_NON_Q_VECTORS + 1, nr_vecs); 313 if (nvecs < 0) { 314 nn_warn(nn, "Failed to enable MSI-X. Wanted %d-%d (err=%d)\n", 315 NFP_NET_NON_Q_VECTORS + 1, nr_vecs, nvecs); 316 return 0; 317 } 318 319 return nvecs; 320 } 321 322 /** 323 * nfp_net_irqs_wanted() - Work out how many interrupt vectors we want 324 * @nn: NFP Network structure 325 * 326 * We want a vector per CPU (or ring), whatever is smaller plus 327 * NFP_NET_NON_Q_VECTORS for LSC etc. 328 * 329 * Return: Number of interrupts wanted 330 */ 331 static int nfp_net_irqs_wanted(struct nfp_net *nn) 332 { 333 int ncpus; 334 int vecs; 335 336 ncpus = num_online_cpus(); 337 338 vecs = max_t(int, nn->num_tx_rings, nn->num_rx_rings); 339 vecs = min_t(int, vecs, ncpus); 340 341 return vecs + NFP_NET_NON_Q_VECTORS; 342 } 343 344 /** 345 * nfp_net_irqs_alloc() - allocates MSI-X irqs 346 * @nn: NFP Network structure 347 * 348 * Return: Number of irqs obtained or 0 on error. 349 */ 350 int nfp_net_irqs_alloc(struct nfp_net *nn) 351 { 352 int wanted_irqs; 353 354 wanted_irqs = nfp_net_irqs_wanted(nn); 355 356 nn->num_irqs = nfp_net_msix_alloc(nn, wanted_irqs); 357 if (nn->num_irqs == 0) { 358 nn_err(nn, "Failed to allocate MSI-X IRQs\n"); 359 return 0; 360 } 361 362 nn->num_r_vecs = nn->num_irqs - NFP_NET_NON_Q_VECTORS; 363 364 if (nn->num_irqs < wanted_irqs) 365 nn_warn(nn, "Unable to allocate %d vectors. Got %d instead\n", 366 wanted_irqs, nn->num_irqs); 367 368 return nn->num_irqs; 369 } 370 371 /** 372 * nfp_net_irqs_disable() - Disable interrupts 373 * @nn: NFP Network structure 374 * 375 * Undoes what @nfp_net_irqs_alloc() does. 376 */ 377 void nfp_net_irqs_disable(struct nfp_net *nn) 378 { 379 pci_disable_msix(nn->pdev); 380 } 381 382 /** 383 * nfp_net_irq_rxtx() - Interrupt service routine for RX/TX rings. 384 * @irq: Interrupt 385 * @data: Opaque data structure 386 * 387 * Return: Indicate if the interrupt has been handled. 388 */ 389 static irqreturn_t nfp_net_irq_rxtx(int irq, void *data) 390 { 391 struct nfp_net_r_vector *r_vec = data; 392 393 napi_schedule_irqoff(&r_vec->napi); 394 395 /* The FW auto-masks any interrupt, either via the MASK bit in 396 * the MSI-X table or via the per entry ICR field. So there 397 * is no need to disable interrupts here. 398 */ 399 return IRQ_HANDLED; 400 } 401 402 /** 403 * nfp_net_read_link_status() - Reread link status from control BAR 404 * @nn: NFP Network structure 405 */ 406 static void nfp_net_read_link_status(struct nfp_net *nn) 407 { 408 unsigned long flags; 409 bool link_up; 410 u32 sts; 411 412 spin_lock_irqsave(&nn->link_status_lock, flags); 413 414 sts = nn_readl(nn, NFP_NET_CFG_STS); 415 link_up = !!(sts & NFP_NET_CFG_STS_LINK); 416 417 if (nn->link_up == link_up) 418 goto out; 419 420 nn->link_up = link_up; 421 422 if (nn->link_up) { 423 netif_carrier_on(nn->netdev); 424 netdev_info(nn->netdev, "NIC Link is Up\n"); 425 } else { 426 netif_carrier_off(nn->netdev); 427 netdev_info(nn->netdev, "NIC Link is Down\n"); 428 } 429 out: 430 spin_unlock_irqrestore(&nn->link_status_lock, flags); 431 } 432 433 /** 434 * nfp_net_irq_lsc() - Interrupt service routine for link state changes 435 * @irq: Interrupt 436 * @data: Opaque data structure 437 * 438 * Return: Indicate if the interrupt has been handled. 439 */ 440 static irqreturn_t nfp_net_irq_lsc(int irq, void *data) 441 { 442 struct nfp_net *nn = data; 443 444 nfp_net_read_link_status(nn); 445 446 nfp_net_irq_unmask(nn, NFP_NET_IRQ_LSC_IDX); 447 448 return IRQ_HANDLED; 449 } 450 451 /** 452 * nfp_net_irq_exn() - Interrupt service routine for exceptions 453 * @irq: Interrupt 454 * @data: Opaque data structure 455 * 456 * Return: Indicate if the interrupt has been handled. 457 */ 458 static irqreturn_t nfp_net_irq_exn(int irq, void *data) 459 { 460 struct nfp_net *nn = data; 461 462 nn_err(nn, "%s: UNIMPLEMENTED.\n", __func__); 463 /* XXX TO BE IMPLEMENTED */ 464 return IRQ_HANDLED; 465 } 466 467 /** 468 * nfp_net_tx_ring_init() - Fill in the boilerplate for a TX ring 469 * @tx_ring: TX ring structure 470 * @r_vec: IRQ vector servicing this ring 471 * @idx: Ring index 472 */ 473 static void 474 nfp_net_tx_ring_init(struct nfp_net_tx_ring *tx_ring, 475 struct nfp_net_r_vector *r_vec, unsigned int idx) 476 { 477 struct nfp_net *nn = r_vec->nfp_net; 478 479 tx_ring->idx = idx; 480 tx_ring->r_vec = r_vec; 481 482 tx_ring->qcidx = tx_ring->idx * nn->stride_tx; 483 tx_ring->qcp_q = nn->tx_bar + NFP_QCP_QUEUE_OFF(tx_ring->qcidx); 484 } 485 486 /** 487 * nfp_net_rx_ring_init() - Fill in the boilerplate for a RX ring 488 * @rx_ring: RX ring structure 489 * @r_vec: IRQ vector servicing this ring 490 * @idx: Ring index 491 */ 492 static void 493 nfp_net_rx_ring_init(struct nfp_net_rx_ring *rx_ring, 494 struct nfp_net_r_vector *r_vec, unsigned int idx) 495 { 496 struct nfp_net *nn = r_vec->nfp_net; 497 498 rx_ring->idx = idx; 499 rx_ring->r_vec = r_vec; 500 501 rx_ring->fl_qcidx = rx_ring->idx * nn->stride_rx; 502 rx_ring->rx_qcidx = rx_ring->fl_qcidx + (nn->stride_rx - 1); 503 504 rx_ring->qcp_fl = nn->rx_bar + NFP_QCP_QUEUE_OFF(rx_ring->fl_qcidx); 505 rx_ring->qcp_rx = nn->rx_bar + NFP_QCP_QUEUE_OFF(rx_ring->rx_qcidx); 506 } 507 508 /** 509 * nfp_net_irqs_assign() - Assign IRQs and setup rvecs. 510 * @netdev: netdev structure 511 */ 512 static void nfp_net_irqs_assign(struct net_device *netdev) 513 { 514 struct nfp_net *nn = netdev_priv(netdev); 515 struct nfp_net_r_vector *r_vec; 516 int r; 517 518 /* Assumes nn->num_tx_rings == nn->num_rx_rings */ 519 if (nn->num_tx_rings > nn->num_r_vecs) { 520 nn_warn(nn, "More rings (%d) than vectors (%d).\n", 521 nn->num_tx_rings, nn->num_r_vecs); 522 nn->num_tx_rings = nn->num_r_vecs; 523 nn->num_rx_rings = nn->num_r_vecs; 524 } 525 526 nn->lsc_handler = nfp_net_irq_lsc; 527 nn->exn_handler = nfp_net_irq_exn; 528 529 for (r = 0; r < nn->num_r_vecs; r++) { 530 r_vec = &nn->r_vecs[r]; 531 r_vec->nfp_net = nn; 532 r_vec->handler = nfp_net_irq_rxtx; 533 r_vec->irq_idx = NFP_NET_NON_Q_VECTORS + r; 534 535 cpumask_set_cpu(r, &r_vec->affinity_mask); 536 } 537 } 538 539 /** 540 * nfp_net_aux_irq_request() - Request an auxiliary interrupt (LSC or EXN) 541 * @nn: NFP Network structure 542 * @ctrl_offset: Control BAR offset where IRQ configuration should be written 543 * @format: printf-style format to construct the interrupt name 544 * @name: Pointer to allocated space for interrupt name 545 * @name_sz: Size of space for interrupt name 546 * @vector_idx: Index of MSI-X vector used for this interrupt 547 * @handler: IRQ handler to register for this interrupt 548 */ 549 static int 550 nfp_net_aux_irq_request(struct nfp_net *nn, u32 ctrl_offset, 551 const char *format, char *name, size_t name_sz, 552 unsigned int vector_idx, irq_handler_t handler) 553 { 554 struct msix_entry *entry; 555 int err; 556 557 entry = &nn->irq_entries[vector_idx]; 558 559 snprintf(name, name_sz, format, netdev_name(nn->netdev)); 560 err = request_irq(entry->vector, handler, 0, name, nn); 561 if (err) { 562 nn_err(nn, "Failed to request IRQ %d (err=%d).\n", 563 entry->vector, err); 564 return err; 565 } 566 nn_writeb(nn, ctrl_offset, vector_idx); 567 568 return 0; 569 } 570 571 /** 572 * nfp_net_aux_irq_free() - Free an auxiliary interrupt (LSC or EXN) 573 * @nn: NFP Network structure 574 * @ctrl_offset: Control BAR offset where IRQ configuration should be written 575 * @vector_idx: Index of MSI-X vector used for this interrupt 576 */ 577 static void nfp_net_aux_irq_free(struct nfp_net *nn, u32 ctrl_offset, 578 unsigned int vector_idx) 579 { 580 nn_writeb(nn, ctrl_offset, 0xff); 581 free_irq(nn->irq_entries[vector_idx].vector, nn); 582 } 583 584 /* Transmit 585 * 586 * One queue controller peripheral queue is used for transmit. The 587 * driver en-queues packets for transmit by advancing the write 588 * pointer. The device indicates that packets have transmitted by 589 * advancing the read pointer. The driver maintains a local copy of 590 * the read and write pointer in @struct nfp_net_tx_ring. The driver 591 * keeps @wr_p in sync with the queue controller write pointer and can 592 * determine how many packets have been transmitted by comparing its 593 * copy of the read pointer @rd_p with the read pointer maintained by 594 * the queue controller peripheral. 595 */ 596 597 /** 598 * nfp_net_tx_full() - Check if the TX ring is full 599 * @tx_ring: TX ring to check 600 * @dcnt: Number of descriptors that need to be enqueued (must be >= 1) 601 * 602 * This function checks, based on the *host copy* of read/write 603 * pointer if a given TX ring is full. The real TX queue may have 604 * some newly made available slots. 605 * 606 * Return: True if the ring is full. 607 */ 608 static inline int nfp_net_tx_full(struct nfp_net_tx_ring *tx_ring, int dcnt) 609 { 610 return (tx_ring->wr_p - tx_ring->rd_p) >= (tx_ring->cnt - dcnt); 611 } 612 613 /* Wrappers for deciding when to stop and restart TX queues */ 614 static int nfp_net_tx_ring_should_wake(struct nfp_net_tx_ring *tx_ring) 615 { 616 return !nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS * 4); 617 } 618 619 static int nfp_net_tx_ring_should_stop(struct nfp_net_tx_ring *tx_ring) 620 { 621 return nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS + 1); 622 } 623 624 /** 625 * nfp_net_tx_ring_stop() - stop tx ring 626 * @nd_q: netdev queue 627 * @tx_ring: driver tx queue structure 628 * 629 * Safely stop TX ring. Remember that while we are running .start_xmit() 630 * someone else may be cleaning the TX ring completions so we need to be 631 * extra careful here. 632 */ 633 static void nfp_net_tx_ring_stop(struct netdev_queue *nd_q, 634 struct nfp_net_tx_ring *tx_ring) 635 { 636 netif_tx_stop_queue(nd_q); 637 638 /* We can race with the TX completion out of NAPI so recheck */ 639 smp_mb(); 640 if (unlikely(nfp_net_tx_ring_should_wake(tx_ring))) 641 netif_tx_start_queue(nd_q); 642 } 643 644 /** 645 * nfp_net_tx_tso() - Set up Tx descriptor for LSO 646 * @nn: NFP Net device 647 * @r_vec: per-ring structure 648 * @txbuf: Pointer to driver soft TX descriptor 649 * @txd: Pointer to HW TX descriptor 650 * @skb: Pointer to SKB 651 * 652 * Set up Tx descriptor for LSO, do nothing for non-LSO skbs. 653 * Return error on packet header greater than maximum supported LSO header size. 654 */ 655 static void nfp_net_tx_tso(struct nfp_net *nn, struct nfp_net_r_vector *r_vec, 656 struct nfp_net_tx_buf *txbuf, 657 struct nfp_net_tx_desc *txd, struct sk_buff *skb) 658 { 659 u32 hdrlen; 660 u16 mss; 661 662 if (!skb_is_gso(skb)) 663 return; 664 665 if (!skb->encapsulation) 666 hdrlen = skb_transport_offset(skb) + tcp_hdrlen(skb); 667 else 668 hdrlen = skb_inner_transport_header(skb) - skb->data + 669 inner_tcp_hdrlen(skb); 670 671 txbuf->pkt_cnt = skb_shinfo(skb)->gso_segs; 672 txbuf->real_len += hdrlen * (txbuf->pkt_cnt - 1); 673 674 mss = skb_shinfo(skb)->gso_size & PCIE_DESC_TX_MSS_MASK; 675 txd->l4_offset = hdrlen; 676 txd->mss = cpu_to_le16(mss); 677 txd->flags |= PCIE_DESC_TX_LSO; 678 679 u64_stats_update_begin(&r_vec->tx_sync); 680 r_vec->tx_lso++; 681 u64_stats_update_end(&r_vec->tx_sync); 682 } 683 684 /** 685 * nfp_net_tx_csum() - Set TX CSUM offload flags in TX descriptor 686 * @nn: NFP Net device 687 * @r_vec: per-ring structure 688 * @txbuf: Pointer to driver soft TX descriptor 689 * @txd: Pointer to TX descriptor 690 * @skb: Pointer to SKB 691 * 692 * This function sets the TX checksum flags in the TX descriptor based 693 * on the configuration and the protocol of the packet to be transmitted. 694 */ 695 static void nfp_net_tx_csum(struct nfp_net *nn, struct nfp_net_r_vector *r_vec, 696 struct nfp_net_tx_buf *txbuf, 697 struct nfp_net_tx_desc *txd, struct sk_buff *skb) 698 { 699 struct ipv6hdr *ipv6h; 700 struct iphdr *iph; 701 u8 l4_hdr; 702 703 if (!(nn->ctrl & NFP_NET_CFG_CTRL_TXCSUM)) 704 return; 705 706 if (skb->ip_summed != CHECKSUM_PARTIAL) 707 return; 708 709 txd->flags |= PCIE_DESC_TX_CSUM; 710 if (skb->encapsulation) 711 txd->flags |= PCIE_DESC_TX_ENCAP; 712 713 iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb); 714 ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb); 715 716 if (iph->version == 4) { 717 txd->flags |= PCIE_DESC_TX_IP4_CSUM; 718 l4_hdr = iph->protocol; 719 } else if (ipv6h->version == 6) { 720 l4_hdr = ipv6h->nexthdr; 721 } else { 722 nn_warn_ratelimit(nn, "partial checksum but ipv=%x!\n", 723 iph->version); 724 return; 725 } 726 727 switch (l4_hdr) { 728 case IPPROTO_TCP: 729 txd->flags |= PCIE_DESC_TX_TCP_CSUM; 730 break; 731 case IPPROTO_UDP: 732 txd->flags |= PCIE_DESC_TX_UDP_CSUM; 733 break; 734 default: 735 nn_warn_ratelimit(nn, "partial checksum but l4 proto=%x!\n", 736 l4_hdr); 737 return; 738 } 739 740 u64_stats_update_begin(&r_vec->tx_sync); 741 if (skb->encapsulation) 742 r_vec->hw_csum_tx_inner += txbuf->pkt_cnt; 743 else 744 r_vec->hw_csum_tx += txbuf->pkt_cnt; 745 u64_stats_update_end(&r_vec->tx_sync); 746 } 747 748 /** 749 * nfp_net_tx() - Main transmit entry point 750 * @skb: SKB to transmit 751 * @netdev: netdev structure 752 * 753 * Return: NETDEV_TX_OK on success. 754 */ 755 static int nfp_net_tx(struct sk_buff *skb, struct net_device *netdev) 756 { 757 struct nfp_net *nn = netdev_priv(netdev); 758 const struct skb_frag_struct *frag; 759 struct nfp_net_r_vector *r_vec; 760 struct nfp_net_tx_desc *txd, txdg; 761 struct nfp_net_tx_buf *txbuf; 762 struct nfp_net_tx_ring *tx_ring; 763 struct netdev_queue *nd_q; 764 dma_addr_t dma_addr; 765 unsigned int fsize; 766 int f, nr_frags; 767 int wr_idx; 768 u16 qidx; 769 770 qidx = skb_get_queue_mapping(skb); 771 tx_ring = &nn->tx_rings[qidx]; 772 r_vec = tx_ring->r_vec; 773 nd_q = netdev_get_tx_queue(nn->netdev, qidx); 774 775 nr_frags = skb_shinfo(skb)->nr_frags; 776 777 if (unlikely(nfp_net_tx_full(tx_ring, nr_frags + 1))) { 778 nn_warn_ratelimit(nn, "TX ring %d busy. wrp=%u rdp=%u\n", 779 qidx, tx_ring->wr_p, tx_ring->rd_p); 780 netif_tx_stop_queue(nd_q); 781 u64_stats_update_begin(&r_vec->tx_sync); 782 r_vec->tx_busy++; 783 u64_stats_update_end(&r_vec->tx_sync); 784 return NETDEV_TX_BUSY; 785 } 786 787 /* Start with the head skbuf */ 788 dma_addr = dma_map_single(&nn->pdev->dev, skb->data, skb_headlen(skb), 789 DMA_TO_DEVICE); 790 if (dma_mapping_error(&nn->pdev->dev, dma_addr)) 791 goto err_free; 792 793 wr_idx = tx_ring->wr_p % tx_ring->cnt; 794 795 /* Stash the soft descriptor of the head then initialize it */ 796 txbuf = &tx_ring->txbufs[wr_idx]; 797 txbuf->skb = skb; 798 txbuf->dma_addr = dma_addr; 799 txbuf->fidx = -1; 800 txbuf->pkt_cnt = 1; 801 txbuf->real_len = skb->len; 802 803 /* Build TX descriptor */ 804 txd = &tx_ring->txds[wr_idx]; 805 txd->offset_eop = (nr_frags == 0) ? PCIE_DESC_TX_EOP : 0; 806 txd->dma_len = cpu_to_le16(skb_headlen(skb)); 807 nfp_desc_set_dma_addr(txd, dma_addr); 808 txd->data_len = cpu_to_le16(skb->len); 809 810 txd->flags = 0; 811 txd->mss = 0; 812 txd->l4_offset = 0; 813 814 nfp_net_tx_tso(nn, r_vec, txbuf, txd, skb); 815 816 nfp_net_tx_csum(nn, r_vec, txbuf, txd, skb); 817 818 if (skb_vlan_tag_present(skb) && nn->ctrl & NFP_NET_CFG_CTRL_TXVLAN) { 819 txd->flags |= PCIE_DESC_TX_VLAN; 820 txd->vlan = cpu_to_le16(skb_vlan_tag_get(skb)); 821 } 822 823 /* Gather DMA */ 824 if (nr_frags > 0) { 825 /* all descs must match except for in addr, length and eop */ 826 txdg = *txd; 827 828 for (f = 0; f < nr_frags; f++) { 829 frag = &skb_shinfo(skb)->frags[f]; 830 fsize = skb_frag_size(frag); 831 832 dma_addr = skb_frag_dma_map(&nn->pdev->dev, frag, 0, 833 fsize, DMA_TO_DEVICE); 834 if (dma_mapping_error(&nn->pdev->dev, dma_addr)) 835 goto err_unmap; 836 837 wr_idx = (wr_idx + 1) % tx_ring->cnt; 838 tx_ring->txbufs[wr_idx].skb = skb; 839 tx_ring->txbufs[wr_idx].dma_addr = dma_addr; 840 tx_ring->txbufs[wr_idx].fidx = f; 841 842 txd = &tx_ring->txds[wr_idx]; 843 *txd = txdg; 844 txd->dma_len = cpu_to_le16(fsize); 845 nfp_desc_set_dma_addr(txd, dma_addr); 846 txd->offset_eop = 847 (f == nr_frags - 1) ? PCIE_DESC_TX_EOP : 0; 848 } 849 850 u64_stats_update_begin(&r_vec->tx_sync); 851 r_vec->tx_gather++; 852 u64_stats_update_end(&r_vec->tx_sync); 853 } 854 855 netdev_tx_sent_queue(nd_q, txbuf->real_len); 856 857 tx_ring->wr_p += nr_frags + 1; 858 if (nfp_net_tx_ring_should_stop(tx_ring)) 859 nfp_net_tx_ring_stop(nd_q, tx_ring); 860 861 tx_ring->wr_ptr_add += nr_frags + 1; 862 if (!skb->xmit_more || netif_xmit_stopped(nd_q)) { 863 /* force memory write before we let HW know */ 864 wmb(); 865 nfp_qcp_wr_ptr_add(tx_ring->qcp_q, tx_ring->wr_ptr_add); 866 tx_ring->wr_ptr_add = 0; 867 } 868 869 skb_tx_timestamp(skb); 870 871 return NETDEV_TX_OK; 872 873 err_unmap: 874 --f; 875 while (f >= 0) { 876 frag = &skb_shinfo(skb)->frags[f]; 877 dma_unmap_page(&nn->pdev->dev, 878 tx_ring->txbufs[wr_idx].dma_addr, 879 skb_frag_size(frag), DMA_TO_DEVICE); 880 tx_ring->txbufs[wr_idx].skb = NULL; 881 tx_ring->txbufs[wr_idx].dma_addr = 0; 882 tx_ring->txbufs[wr_idx].fidx = -2; 883 wr_idx = wr_idx - 1; 884 if (wr_idx < 0) 885 wr_idx += tx_ring->cnt; 886 } 887 dma_unmap_single(&nn->pdev->dev, tx_ring->txbufs[wr_idx].dma_addr, 888 skb_headlen(skb), DMA_TO_DEVICE); 889 tx_ring->txbufs[wr_idx].skb = NULL; 890 tx_ring->txbufs[wr_idx].dma_addr = 0; 891 tx_ring->txbufs[wr_idx].fidx = -2; 892 err_free: 893 nn_warn_ratelimit(nn, "Failed to map DMA TX buffer\n"); 894 u64_stats_update_begin(&r_vec->tx_sync); 895 r_vec->tx_errors++; 896 u64_stats_update_end(&r_vec->tx_sync); 897 dev_kfree_skb_any(skb); 898 return NETDEV_TX_OK; 899 } 900 901 /** 902 * nfp_net_tx_complete() - Handled completed TX packets 903 * @tx_ring: TX ring structure 904 * 905 * Return: Number of completed TX descriptors 906 */ 907 static void nfp_net_tx_complete(struct nfp_net_tx_ring *tx_ring) 908 { 909 struct nfp_net_r_vector *r_vec = tx_ring->r_vec; 910 struct nfp_net *nn = r_vec->nfp_net; 911 const struct skb_frag_struct *frag; 912 struct netdev_queue *nd_q; 913 u32 done_pkts = 0, done_bytes = 0; 914 struct sk_buff *skb; 915 int todo, nr_frags; 916 u32 qcp_rd_p; 917 int fidx; 918 int idx; 919 920 /* Work out how many descriptors have been transmitted */ 921 qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q); 922 923 if (qcp_rd_p == tx_ring->qcp_rd_p) 924 return; 925 926 if (qcp_rd_p > tx_ring->qcp_rd_p) 927 todo = qcp_rd_p - tx_ring->qcp_rd_p; 928 else 929 todo = qcp_rd_p + tx_ring->cnt - tx_ring->qcp_rd_p; 930 931 while (todo--) { 932 idx = tx_ring->rd_p % tx_ring->cnt; 933 tx_ring->rd_p++; 934 935 skb = tx_ring->txbufs[idx].skb; 936 if (!skb) 937 continue; 938 939 nr_frags = skb_shinfo(skb)->nr_frags; 940 fidx = tx_ring->txbufs[idx].fidx; 941 942 if (fidx == -1) { 943 /* unmap head */ 944 dma_unmap_single(&nn->pdev->dev, 945 tx_ring->txbufs[idx].dma_addr, 946 skb_headlen(skb), DMA_TO_DEVICE); 947 948 done_pkts += tx_ring->txbufs[idx].pkt_cnt; 949 done_bytes += tx_ring->txbufs[idx].real_len; 950 } else { 951 /* unmap fragment */ 952 frag = &skb_shinfo(skb)->frags[fidx]; 953 dma_unmap_page(&nn->pdev->dev, 954 tx_ring->txbufs[idx].dma_addr, 955 skb_frag_size(frag), DMA_TO_DEVICE); 956 } 957 958 /* check for last gather fragment */ 959 if (fidx == nr_frags - 1) 960 dev_kfree_skb_any(skb); 961 962 tx_ring->txbufs[idx].dma_addr = 0; 963 tx_ring->txbufs[idx].skb = NULL; 964 tx_ring->txbufs[idx].fidx = -2; 965 } 966 967 tx_ring->qcp_rd_p = qcp_rd_p; 968 969 u64_stats_update_begin(&r_vec->tx_sync); 970 r_vec->tx_bytes += done_bytes; 971 r_vec->tx_pkts += done_pkts; 972 u64_stats_update_end(&r_vec->tx_sync); 973 974 nd_q = netdev_get_tx_queue(nn->netdev, tx_ring->idx); 975 netdev_tx_completed_queue(nd_q, done_pkts, done_bytes); 976 if (nfp_net_tx_ring_should_wake(tx_ring)) { 977 /* Make sure TX thread will see updated tx_ring->rd_p */ 978 smp_mb(); 979 980 if (unlikely(netif_tx_queue_stopped(nd_q))) 981 netif_tx_wake_queue(nd_q); 982 } 983 984 WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt, 985 "TX ring corruption rd_p=%u wr_p=%u cnt=%u\n", 986 tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt); 987 } 988 989 /** 990 * nfp_net_tx_ring_reset() - Free any untransmitted buffers and reset pointers 991 * @nn: NFP Net device 992 * @tx_ring: TX ring structure 993 * 994 * Assumes that the device is stopped 995 */ 996 static void 997 nfp_net_tx_ring_reset(struct nfp_net *nn, struct nfp_net_tx_ring *tx_ring) 998 { 999 const struct skb_frag_struct *frag; 1000 struct netdev_queue *nd_q; 1001 struct pci_dev *pdev = nn->pdev; 1002 1003 while (tx_ring->rd_p != tx_ring->wr_p) { 1004 int nr_frags, fidx, idx; 1005 struct sk_buff *skb; 1006 1007 idx = tx_ring->rd_p % tx_ring->cnt; 1008 skb = tx_ring->txbufs[idx].skb; 1009 nr_frags = skb_shinfo(skb)->nr_frags; 1010 fidx = tx_ring->txbufs[idx].fidx; 1011 1012 if (fidx == -1) { 1013 /* unmap head */ 1014 dma_unmap_single(&pdev->dev, 1015 tx_ring->txbufs[idx].dma_addr, 1016 skb_headlen(skb), DMA_TO_DEVICE); 1017 } else { 1018 /* unmap fragment */ 1019 frag = &skb_shinfo(skb)->frags[fidx]; 1020 dma_unmap_page(&pdev->dev, 1021 tx_ring->txbufs[idx].dma_addr, 1022 skb_frag_size(frag), DMA_TO_DEVICE); 1023 } 1024 1025 /* check for last gather fragment */ 1026 if (fidx == nr_frags - 1) 1027 dev_kfree_skb_any(skb); 1028 1029 tx_ring->txbufs[idx].dma_addr = 0; 1030 tx_ring->txbufs[idx].skb = NULL; 1031 tx_ring->txbufs[idx].fidx = -2; 1032 1033 tx_ring->qcp_rd_p++; 1034 tx_ring->rd_p++; 1035 } 1036 1037 memset(tx_ring->txds, 0, sizeof(*tx_ring->txds) * tx_ring->cnt); 1038 tx_ring->wr_p = 0; 1039 tx_ring->rd_p = 0; 1040 tx_ring->qcp_rd_p = 0; 1041 tx_ring->wr_ptr_add = 0; 1042 1043 nd_q = netdev_get_tx_queue(nn->netdev, tx_ring->idx); 1044 netdev_tx_reset_queue(nd_q); 1045 } 1046 1047 static void nfp_net_tx_timeout(struct net_device *netdev) 1048 { 1049 struct nfp_net *nn = netdev_priv(netdev); 1050 int i; 1051 1052 for (i = 0; i < nn->num_tx_rings; i++) { 1053 if (!netif_tx_queue_stopped(netdev_get_tx_queue(netdev, i))) 1054 continue; 1055 nn_warn(nn, "TX timeout on ring: %d\n", i); 1056 } 1057 nn_warn(nn, "TX watchdog timeout\n"); 1058 } 1059 1060 /* Receive processing 1061 */ 1062 1063 /** 1064 * nfp_net_rx_space() - return the number of free slots on the RX ring 1065 * @rx_ring: RX ring structure 1066 * 1067 * Make sure we leave at least one slot free. 1068 * 1069 * Return: True if there is space on the RX ring 1070 */ 1071 static inline int nfp_net_rx_space(struct nfp_net_rx_ring *rx_ring) 1072 { 1073 return (rx_ring->cnt - 1) - (rx_ring->wr_p - rx_ring->rd_p); 1074 } 1075 1076 /** 1077 * nfp_net_rx_alloc_one() - Allocate and map skb for RX 1078 * @rx_ring: RX ring structure of the skb 1079 * @dma_addr: Pointer to storage for DMA address (output param) 1080 * @fl_bufsz: size of freelist buffers 1081 * 1082 * This function will allcate a new skb, map it for DMA. 1083 * 1084 * Return: allocated skb or NULL on failure. 1085 */ 1086 static struct sk_buff * 1087 nfp_net_rx_alloc_one(struct nfp_net_rx_ring *rx_ring, dma_addr_t *dma_addr, 1088 unsigned int fl_bufsz) 1089 { 1090 struct nfp_net *nn = rx_ring->r_vec->nfp_net; 1091 struct sk_buff *skb; 1092 1093 skb = netdev_alloc_skb(nn->netdev, fl_bufsz); 1094 if (!skb) { 1095 nn_warn_ratelimit(nn, "Failed to alloc receive SKB\n"); 1096 return NULL; 1097 } 1098 1099 *dma_addr = dma_map_single(&nn->pdev->dev, skb->data, 1100 fl_bufsz, DMA_FROM_DEVICE); 1101 if (dma_mapping_error(&nn->pdev->dev, *dma_addr)) { 1102 dev_kfree_skb_any(skb); 1103 nn_warn_ratelimit(nn, "Failed to map DMA RX buffer\n"); 1104 return NULL; 1105 } 1106 1107 return skb; 1108 } 1109 1110 /** 1111 * nfp_net_rx_give_one() - Put mapped skb on the software and hardware rings 1112 * @rx_ring: RX ring structure 1113 * @skb: Skb to put on rings 1114 * @dma_addr: DMA address of skb mapping 1115 */ 1116 static void nfp_net_rx_give_one(struct nfp_net_rx_ring *rx_ring, 1117 struct sk_buff *skb, dma_addr_t dma_addr) 1118 { 1119 unsigned int wr_idx; 1120 1121 wr_idx = rx_ring->wr_p % rx_ring->cnt; 1122 1123 /* Stash SKB and DMA address away */ 1124 rx_ring->rxbufs[wr_idx].skb = skb; 1125 rx_ring->rxbufs[wr_idx].dma_addr = dma_addr; 1126 1127 /* Fill freelist descriptor */ 1128 rx_ring->rxds[wr_idx].fld.reserved = 0; 1129 rx_ring->rxds[wr_idx].fld.meta_len_dd = 0; 1130 nfp_desc_set_dma_addr(&rx_ring->rxds[wr_idx].fld, dma_addr); 1131 1132 rx_ring->wr_p++; 1133 rx_ring->wr_ptr_add++; 1134 if (rx_ring->wr_ptr_add >= NFP_NET_FL_BATCH) { 1135 /* Update write pointer of the freelist queue. Make 1136 * sure all writes are flushed before telling the hardware. 1137 */ 1138 wmb(); 1139 nfp_qcp_wr_ptr_add(rx_ring->qcp_fl, rx_ring->wr_ptr_add); 1140 rx_ring->wr_ptr_add = 0; 1141 } 1142 } 1143 1144 /** 1145 * nfp_net_rx_ring_reset() - Reflect in SW state of freelist after disable 1146 * @rx_ring: RX ring structure 1147 * 1148 * Warning: Do *not* call if ring buffers were never put on the FW freelist 1149 * (i.e. device was not enabled)! 1150 */ 1151 static void nfp_net_rx_ring_reset(struct nfp_net_rx_ring *rx_ring) 1152 { 1153 unsigned int wr_idx, last_idx; 1154 1155 /* Move the empty entry to the end of the list */ 1156 wr_idx = rx_ring->wr_p % rx_ring->cnt; 1157 last_idx = rx_ring->cnt - 1; 1158 rx_ring->rxbufs[wr_idx].dma_addr = rx_ring->rxbufs[last_idx].dma_addr; 1159 rx_ring->rxbufs[wr_idx].skb = rx_ring->rxbufs[last_idx].skb; 1160 rx_ring->rxbufs[last_idx].dma_addr = 0; 1161 rx_ring->rxbufs[last_idx].skb = NULL; 1162 1163 memset(rx_ring->rxds, 0, sizeof(*rx_ring->rxds) * rx_ring->cnt); 1164 rx_ring->wr_p = 0; 1165 rx_ring->rd_p = 0; 1166 rx_ring->wr_ptr_add = 0; 1167 } 1168 1169 /** 1170 * nfp_net_rx_ring_bufs_free() - Free any buffers currently on the RX ring 1171 * @nn: NFP Net device 1172 * @rx_ring: RX ring to remove buffers from 1173 * 1174 * Assumes that the device is stopped and buffers are in [0, ring->cnt - 1) 1175 * entries. After device is disabled nfp_net_rx_ring_reset() must be called 1176 * to restore required ring geometry. 1177 */ 1178 static void 1179 nfp_net_rx_ring_bufs_free(struct nfp_net *nn, struct nfp_net_rx_ring *rx_ring) 1180 { 1181 struct pci_dev *pdev = nn->pdev; 1182 unsigned int i; 1183 1184 for (i = 0; i < rx_ring->cnt - 1; i++) { 1185 /* NULL skb can only happen when initial filling of the ring 1186 * fails to allocate enough buffers and calls here to free 1187 * already allocated ones. 1188 */ 1189 if (!rx_ring->rxbufs[i].skb) 1190 continue; 1191 1192 dma_unmap_single(&pdev->dev, rx_ring->rxbufs[i].dma_addr, 1193 rx_ring->bufsz, DMA_FROM_DEVICE); 1194 dev_kfree_skb_any(rx_ring->rxbufs[i].skb); 1195 rx_ring->rxbufs[i].dma_addr = 0; 1196 rx_ring->rxbufs[i].skb = NULL; 1197 } 1198 } 1199 1200 /** 1201 * nfp_net_rx_ring_bufs_alloc() - Fill RX ring with buffers (don't give to FW) 1202 * @nn: NFP Net device 1203 * @rx_ring: RX ring to remove buffers from 1204 */ 1205 static int 1206 nfp_net_rx_ring_bufs_alloc(struct nfp_net *nn, struct nfp_net_rx_ring *rx_ring) 1207 { 1208 struct nfp_net_rx_buf *rxbufs; 1209 unsigned int i; 1210 1211 rxbufs = rx_ring->rxbufs; 1212 1213 for (i = 0; i < rx_ring->cnt - 1; i++) { 1214 rxbufs[i].skb = 1215 nfp_net_rx_alloc_one(rx_ring, &rxbufs[i].dma_addr, 1216 rx_ring->bufsz); 1217 if (!rxbufs[i].skb) { 1218 nfp_net_rx_ring_bufs_free(nn, rx_ring); 1219 return -ENOMEM; 1220 } 1221 } 1222 1223 return 0; 1224 } 1225 1226 /** 1227 * nfp_net_rx_ring_fill_freelist() - Give buffers from the ring to FW 1228 * @rx_ring: RX ring to fill 1229 */ 1230 static void nfp_net_rx_ring_fill_freelist(struct nfp_net_rx_ring *rx_ring) 1231 { 1232 unsigned int i; 1233 1234 for (i = 0; i < rx_ring->cnt - 1; i++) 1235 nfp_net_rx_give_one(rx_ring, rx_ring->rxbufs[i].skb, 1236 rx_ring->rxbufs[i].dma_addr); 1237 } 1238 1239 /** 1240 * nfp_net_rx_csum_has_errors() - group check if rxd has any csum errors 1241 * @flags: RX descriptor flags field in CPU byte order 1242 */ 1243 static int nfp_net_rx_csum_has_errors(u16 flags) 1244 { 1245 u16 csum_all_checked, csum_all_ok; 1246 1247 csum_all_checked = flags & __PCIE_DESC_RX_CSUM_ALL; 1248 csum_all_ok = flags & __PCIE_DESC_RX_CSUM_ALL_OK; 1249 1250 return csum_all_checked != (csum_all_ok << PCIE_DESC_RX_CSUM_OK_SHIFT); 1251 } 1252 1253 /** 1254 * nfp_net_rx_csum() - set SKB checksum field based on RX descriptor flags 1255 * @nn: NFP Net device 1256 * @r_vec: per-ring structure 1257 * @rxd: Pointer to RX descriptor 1258 * @skb: Pointer to SKB 1259 */ 1260 static void nfp_net_rx_csum(struct nfp_net *nn, struct nfp_net_r_vector *r_vec, 1261 struct nfp_net_rx_desc *rxd, struct sk_buff *skb) 1262 { 1263 skb_checksum_none_assert(skb); 1264 1265 if (!(nn->netdev->features & NETIF_F_RXCSUM)) 1266 return; 1267 1268 if (nfp_net_rx_csum_has_errors(le16_to_cpu(rxd->rxd.flags))) { 1269 u64_stats_update_begin(&r_vec->rx_sync); 1270 r_vec->hw_csum_rx_error++; 1271 u64_stats_update_end(&r_vec->rx_sync); 1272 return; 1273 } 1274 1275 /* Assume that the firmware will never report inner CSUM_OK unless outer 1276 * L4 headers were successfully parsed. FW will always report zero UDP 1277 * checksum as CSUM_OK. 1278 */ 1279 if (rxd->rxd.flags & PCIE_DESC_RX_TCP_CSUM_OK || 1280 rxd->rxd.flags & PCIE_DESC_RX_UDP_CSUM_OK) { 1281 __skb_incr_checksum_unnecessary(skb); 1282 u64_stats_update_begin(&r_vec->rx_sync); 1283 r_vec->hw_csum_rx_ok++; 1284 u64_stats_update_end(&r_vec->rx_sync); 1285 } 1286 1287 if (rxd->rxd.flags & PCIE_DESC_RX_I_TCP_CSUM_OK || 1288 rxd->rxd.flags & PCIE_DESC_RX_I_UDP_CSUM_OK) { 1289 __skb_incr_checksum_unnecessary(skb); 1290 u64_stats_update_begin(&r_vec->rx_sync); 1291 r_vec->hw_csum_rx_inner_ok++; 1292 u64_stats_update_end(&r_vec->rx_sync); 1293 } 1294 } 1295 1296 /** 1297 * nfp_net_set_hash() - Set SKB hash data 1298 * @netdev: adapter's net_device structure 1299 * @skb: SKB to set the hash data on 1300 * @rxd: RX descriptor 1301 * 1302 * The RSS hash and hash-type are pre-pended to the packet data. 1303 * Extract and decode it and set the skb fields. 1304 */ 1305 static void nfp_net_set_hash(struct net_device *netdev, struct sk_buff *skb, 1306 struct nfp_net_rx_desc *rxd) 1307 { 1308 struct nfp_net_rx_hash *rx_hash; 1309 1310 if (!(rxd->rxd.flags & PCIE_DESC_RX_RSS) || 1311 !(netdev->features & NETIF_F_RXHASH)) 1312 return; 1313 1314 rx_hash = (struct nfp_net_rx_hash *)(skb->data - sizeof(*rx_hash)); 1315 1316 switch (be32_to_cpu(rx_hash->hash_type)) { 1317 case NFP_NET_RSS_IPV4: 1318 case NFP_NET_RSS_IPV6: 1319 case NFP_NET_RSS_IPV6_EX: 1320 skb_set_hash(skb, be32_to_cpu(rx_hash->hash), PKT_HASH_TYPE_L3); 1321 break; 1322 default: 1323 skb_set_hash(skb, be32_to_cpu(rx_hash->hash), PKT_HASH_TYPE_L4); 1324 break; 1325 } 1326 } 1327 1328 /** 1329 * nfp_net_rx() - receive up to @budget packets on @rx_ring 1330 * @rx_ring: RX ring to receive from 1331 * @budget: NAPI budget 1332 * 1333 * Note, this function is separated out from the napi poll function to 1334 * more cleanly separate packet receive code from other bookkeeping 1335 * functions performed in the napi poll function. 1336 * 1337 * There are differences between the NFP-3200 firmware and the 1338 * NFP-6000 firmware. The NFP-3200 firmware uses a dedicated RX queue 1339 * to indicate that new packets have arrived. The NFP-6000 does not 1340 * have this queue and uses the DD bit in the RX descriptor. This 1341 * method cannot be used on the NFP-3200 as it causes a race 1342 * condition: The RX ring write pointer on the NFP-3200 is updated 1343 * after packets (and descriptors) have been DMAed. If the DD bit is 1344 * used and subsequently the read pointer is updated this may lead to 1345 * the RX queue to underflow (if the firmware has not yet update the 1346 * write pointer). Therefore we use slightly ugly conditional code 1347 * below to handle the differences. We may, in the future update the 1348 * NFP-3200 firmware to behave the same as the firmware on the 1349 * NFP-6000. 1350 * 1351 * Return: Number of packets received. 1352 */ 1353 static int nfp_net_rx(struct nfp_net_rx_ring *rx_ring, int budget) 1354 { 1355 struct nfp_net_r_vector *r_vec = rx_ring->r_vec; 1356 struct nfp_net *nn = r_vec->nfp_net; 1357 unsigned int data_len, meta_len; 1358 int avail = 0, pkts_polled = 0; 1359 struct sk_buff *skb, *new_skb; 1360 struct nfp_net_rx_desc *rxd; 1361 dma_addr_t new_dma_addr; 1362 u32 qcp_wr_p; 1363 int idx; 1364 1365 if (nn->is_nfp3200) { 1366 /* Work out how many packets arrived */ 1367 qcp_wr_p = nfp_qcp_wr_ptr_read(rx_ring->qcp_rx); 1368 idx = rx_ring->rd_p % rx_ring->cnt; 1369 1370 if (qcp_wr_p == idx) 1371 /* No new packets */ 1372 return 0; 1373 1374 if (qcp_wr_p > idx) 1375 avail = qcp_wr_p - idx; 1376 else 1377 avail = qcp_wr_p + rx_ring->cnt - idx; 1378 } else { 1379 avail = budget + 1; 1380 } 1381 1382 while (avail > 0 && pkts_polled < budget) { 1383 idx = rx_ring->rd_p % rx_ring->cnt; 1384 1385 rxd = &rx_ring->rxds[idx]; 1386 if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD)) { 1387 if (nn->is_nfp3200) 1388 nn_dbg(nn, "RX descriptor not valid (DD)%d:%u rxd[0]=%#x rxd[1]=%#x\n", 1389 rx_ring->idx, idx, 1390 rxd->vals[0], rxd->vals[1]); 1391 break; 1392 } 1393 /* Memory barrier to ensure that we won't do other reads 1394 * before the DD bit. 1395 */ 1396 dma_rmb(); 1397 1398 rx_ring->rd_p++; 1399 pkts_polled++; 1400 avail--; 1401 1402 skb = rx_ring->rxbufs[idx].skb; 1403 1404 new_skb = nfp_net_rx_alloc_one(rx_ring, &new_dma_addr, 1405 nn->fl_bufsz); 1406 if (!new_skb) { 1407 nfp_net_rx_give_one(rx_ring, rx_ring->rxbufs[idx].skb, 1408 rx_ring->rxbufs[idx].dma_addr); 1409 u64_stats_update_begin(&r_vec->rx_sync); 1410 r_vec->rx_drops++; 1411 u64_stats_update_end(&r_vec->rx_sync); 1412 continue; 1413 } 1414 1415 dma_unmap_single(&nn->pdev->dev, 1416 rx_ring->rxbufs[idx].dma_addr, 1417 nn->fl_bufsz, DMA_FROM_DEVICE); 1418 1419 nfp_net_rx_give_one(rx_ring, new_skb, new_dma_addr); 1420 1421 /* < meta_len > 1422 * <-- [rx_offset] --> 1423 * --------------------------------------------------------- 1424 * | [XX] | metadata | packet | XXXX | 1425 * --------------------------------------------------------- 1426 * <---------------- data_len ---------------> 1427 * 1428 * The rx_offset is fixed for all packets, the meta_len can vary 1429 * on a packet by packet basis. If rx_offset is set to zero 1430 * (_RX_OFFSET_DYNAMIC) metadata starts at the beginning of the 1431 * buffer and is immediately followed by the packet (no [XX]). 1432 */ 1433 meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK; 1434 data_len = le16_to_cpu(rxd->rxd.data_len); 1435 1436 if (nn->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC) 1437 skb_reserve(skb, meta_len); 1438 else 1439 skb_reserve(skb, nn->rx_offset); 1440 skb_put(skb, data_len - meta_len); 1441 1442 nfp_net_set_hash(nn->netdev, skb, rxd); 1443 1444 /* Pad small frames to minimum */ 1445 if (skb_put_padto(skb, 60)) 1446 break; 1447 1448 /* Stats update */ 1449 u64_stats_update_begin(&r_vec->rx_sync); 1450 r_vec->rx_pkts++; 1451 r_vec->rx_bytes += skb->len; 1452 u64_stats_update_end(&r_vec->rx_sync); 1453 1454 skb_record_rx_queue(skb, rx_ring->idx); 1455 skb->protocol = eth_type_trans(skb, nn->netdev); 1456 1457 nfp_net_rx_csum(nn, r_vec, rxd, skb); 1458 1459 if (rxd->rxd.flags & PCIE_DESC_RX_VLAN) 1460 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 1461 le16_to_cpu(rxd->rxd.vlan)); 1462 1463 napi_gro_receive(&rx_ring->r_vec->napi, skb); 1464 } 1465 1466 if (nn->is_nfp3200) 1467 nfp_qcp_rd_ptr_add(rx_ring->qcp_rx, pkts_polled); 1468 1469 return pkts_polled; 1470 } 1471 1472 /** 1473 * nfp_net_poll() - napi poll function 1474 * @napi: NAPI structure 1475 * @budget: NAPI budget 1476 * 1477 * Return: number of packets polled. 1478 */ 1479 static int nfp_net_poll(struct napi_struct *napi, int budget) 1480 { 1481 struct nfp_net_r_vector *r_vec = 1482 container_of(napi, struct nfp_net_r_vector, napi); 1483 struct nfp_net_rx_ring *rx_ring = r_vec->rx_ring; 1484 struct nfp_net_tx_ring *tx_ring = r_vec->tx_ring; 1485 struct nfp_net *nn = r_vec->nfp_net; 1486 struct netdev_queue *txq; 1487 unsigned int pkts_polled; 1488 1489 tx_ring = &nn->tx_rings[rx_ring->idx]; 1490 txq = netdev_get_tx_queue(nn->netdev, tx_ring->idx); 1491 nfp_net_tx_complete(tx_ring); 1492 1493 pkts_polled = nfp_net_rx(rx_ring, budget); 1494 1495 if (pkts_polled < budget) { 1496 napi_complete_done(napi, pkts_polled); 1497 nfp_net_irq_unmask(nn, r_vec->irq_idx); 1498 } 1499 1500 return pkts_polled; 1501 } 1502 1503 /* Setup and Configuration 1504 */ 1505 1506 /** 1507 * nfp_net_tx_ring_free() - Free resources allocated to a TX ring 1508 * @tx_ring: TX ring to free 1509 */ 1510 static void nfp_net_tx_ring_free(struct nfp_net_tx_ring *tx_ring) 1511 { 1512 struct nfp_net_r_vector *r_vec = tx_ring->r_vec; 1513 struct nfp_net *nn = r_vec->nfp_net; 1514 struct pci_dev *pdev = nn->pdev; 1515 1516 kfree(tx_ring->txbufs); 1517 1518 if (tx_ring->txds) 1519 dma_free_coherent(&pdev->dev, tx_ring->size, 1520 tx_ring->txds, tx_ring->dma); 1521 1522 tx_ring->cnt = 0; 1523 tx_ring->txbufs = NULL; 1524 tx_ring->txds = NULL; 1525 tx_ring->dma = 0; 1526 tx_ring->size = 0; 1527 } 1528 1529 /** 1530 * nfp_net_tx_ring_alloc() - Allocate resource for a TX ring 1531 * @tx_ring: TX Ring structure to allocate 1532 * @cnt: Ring buffer count 1533 * 1534 * Return: 0 on success, negative errno otherwise. 1535 */ 1536 static int nfp_net_tx_ring_alloc(struct nfp_net_tx_ring *tx_ring, u32 cnt) 1537 { 1538 struct nfp_net_r_vector *r_vec = tx_ring->r_vec; 1539 struct nfp_net *nn = r_vec->nfp_net; 1540 struct pci_dev *pdev = nn->pdev; 1541 int sz; 1542 1543 tx_ring->cnt = cnt; 1544 1545 tx_ring->size = sizeof(*tx_ring->txds) * tx_ring->cnt; 1546 tx_ring->txds = dma_zalloc_coherent(&pdev->dev, tx_ring->size, 1547 &tx_ring->dma, GFP_KERNEL); 1548 if (!tx_ring->txds) 1549 goto err_alloc; 1550 1551 sz = sizeof(*tx_ring->txbufs) * tx_ring->cnt; 1552 tx_ring->txbufs = kzalloc(sz, GFP_KERNEL); 1553 if (!tx_ring->txbufs) 1554 goto err_alloc; 1555 1556 netif_set_xps_queue(nn->netdev, &r_vec->affinity_mask, tx_ring->idx); 1557 1558 nn_dbg(nn, "TxQ%02d: QCidx=%02d cnt=%d dma=%#llx host=%p\n", 1559 tx_ring->idx, tx_ring->qcidx, 1560 tx_ring->cnt, (unsigned long long)tx_ring->dma, tx_ring->txds); 1561 1562 return 0; 1563 1564 err_alloc: 1565 nfp_net_tx_ring_free(tx_ring); 1566 return -ENOMEM; 1567 } 1568 1569 static struct nfp_net_tx_ring * 1570 nfp_net_shadow_tx_rings_prepare(struct nfp_net *nn, u32 buf_cnt) 1571 { 1572 struct nfp_net_tx_ring *rings; 1573 unsigned int r; 1574 1575 rings = kcalloc(nn->num_tx_rings, sizeof(*rings), GFP_KERNEL); 1576 if (!rings) 1577 return NULL; 1578 1579 for (r = 0; r < nn->num_tx_rings; r++) { 1580 nfp_net_tx_ring_init(&rings[r], nn->tx_rings[r].r_vec, r); 1581 1582 if (nfp_net_tx_ring_alloc(&rings[r], buf_cnt)) 1583 goto err_free_prev; 1584 } 1585 1586 return rings; 1587 1588 err_free_prev: 1589 while (r--) 1590 nfp_net_tx_ring_free(&rings[r]); 1591 kfree(rings); 1592 return NULL; 1593 } 1594 1595 static struct nfp_net_tx_ring * 1596 nfp_net_shadow_tx_rings_swap(struct nfp_net *nn, struct nfp_net_tx_ring *rings) 1597 { 1598 struct nfp_net_tx_ring *old = nn->tx_rings; 1599 unsigned int r; 1600 1601 for (r = 0; r < nn->num_tx_rings; r++) 1602 old[r].r_vec->tx_ring = &rings[r]; 1603 1604 nn->tx_rings = rings; 1605 return old; 1606 } 1607 1608 static void 1609 nfp_net_shadow_tx_rings_free(struct nfp_net *nn, struct nfp_net_tx_ring *rings) 1610 { 1611 unsigned int r; 1612 1613 if (!rings) 1614 return; 1615 1616 for (r = 0; r < nn->num_tx_rings; r++) 1617 nfp_net_tx_ring_free(&rings[r]); 1618 1619 kfree(rings); 1620 } 1621 1622 /** 1623 * nfp_net_rx_ring_free() - Free resources allocated to a RX ring 1624 * @rx_ring: RX ring to free 1625 */ 1626 static void nfp_net_rx_ring_free(struct nfp_net_rx_ring *rx_ring) 1627 { 1628 struct nfp_net_r_vector *r_vec = rx_ring->r_vec; 1629 struct nfp_net *nn = r_vec->nfp_net; 1630 struct pci_dev *pdev = nn->pdev; 1631 1632 kfree(rx_ring->rxbufs); 1633 1634 if (rx_ring->rxds) 1635 dma_free_coherent(&pdev->dev, rx_ring->size, 1636 rx_ring->rxds, rx_ring->dma); 1637 1638 rx_ring->cnt = 0; 1639 rx_ring->rxbufs = NULL; 1640 rx_ring->rxds = NULL; 1641 rx_ring->dma = 0; 1642 rx_ring->size = 0; 1643 } 1644 1645 /** 1646 * nfp_net_rx_ring_alloc() - Allocate resource for a RX ring 1647 * @rx_ring: RX ring to allocate 1648 * @fl_bufsz: Size of buffers to allocate 1649 * @cnt: Ring buffer count 1650 * 1651 * Return: 0 on success, negative errno otherwise. 1652 */ 1653 static int 1654 nfp_net_rx_ring_alloc(struct nfp_net_rx_ring *rx_ring, unsigned int fl_bufsz, 1655 u32 cnt) 1656 { 1657 struct nfp_net_r_vector *r_vec = rx_ring->r_vec; 1658 struct nfp_net *nn = r_vec->nfp_net; 1659 struct pci_dev *pdev = nn->pdev; 1660 int sz; 1661 1662 rx_ring->cnt = cnt; 1663 rx_ring->bufsz = fl_bufsz; 1664 1665 rx_ring->size = sizeof(*rx_ring->rxds) * rx_ring->cnt; 1666 rx_ring->rxds = dma_zalloc_coherent(&pdev->dev, rx_ring->size, 1667 &rx_ring->dma, GFP_KERNEL); 1668 if (!rx_ring->rxds) 1669 goto err_alloc; 1670 1671 sz = sizeof(*rx_ring->rxbufs) * rx_ring->cnt; 1672 rx_ring->rxbufs = kzalloc(sz, GFP_KERNEL); 1673 if (!rx_ring->rxbufs) 1674 goto err_alloc; 1675 1676 nn_dbg(nn, "RxQ%02d: FlQCidx=%02d RxQCidx=%02d cnt=%d dma=%#llx host=%p\n", 1677 rx_ring->idx, rx_ring->fl_qcidx, rx_ring->rx_qcidx, 1678 rx_ring->cnt, (unsigned long long)rx_ring->dma, rx_ring->rxds); 1679 1680 return 0; 1681 1682 err_alloc: 1683 nfp_net_rx_ring_free(rx_ring); 1684 return -ENOMEM; 1685 } 1686 1687 static struct nfp_net_rx_ring * 1688 nfp_net_shadow_rx_rings_prepare(struct nfp_net *nn, unsigned int fl_bufsz, 1689 u32 buf_cnt) 1690 { 1691 struct nfp_net_rx_ring *rings; 1692 unsigned int r; 1693 1694 rings = kcalloc(nn->num_rx_rings, sizeof(*rings), GFP_KERNEL); 1695 if (!rings) 1696 return NULL; 1697 1698 for (r = 0; r < nn->num_rx_rings; r++) { 1699 nfp_net_rx_ring_init(&rings[r], nn->rx_rings[r].r_vec, r); 1700 1701 if (nfp_net_rx_ring_alloc(&rings[r], fl_bufsz, buf_cnt)) 1702 goto err_free_prev; 1703 1704 if (nfp_net_rx_ring_bufs_alloc(nn, &rings[r])) 1705 goto err_free_ring; 1706 } 1707 1708 return rings; 1709 1710 err_free_prev: 1711 while (r--) { 1712 nfp_net_rx_ring_bufs_free(nn, &rings[r]); 1713 err_free_ring: 1714 nfp_net_rx_ring_free(&rings[r]); 1715 } 1716 kfree(rings); 1717 return NULL; 1718 } 1719 1720 static struct nfp_net_rx_ring * 1721 nfp_net_shadow_rx_rings_swap(struct nfp_net *nn, struct nfp_net_rx_ring *rings) 1722 { 1723 struct nfp_net_rx_ring *old = nn->rx_rings; 1724 unsigned int r; 1725 1726 for (r = 0; r < nn->num_rx_rings; r++) 1727 old[r].r_vec->rx_ring = &rings[r]; 1728 1729 nn->rx_rings = rings; 1730 return old; 1731 } 1732 1733 static void 1734 nfp_net_shadow_rx_rings_free(struct nfp_net *nn, struct nfp_net_rx_ring *rings) 1735 { 1736 unsigned int r; 1737 1738 if (!rings) 1739 return; 1740 1741 for (r = 0; r < nn->num_r_vecs; r++) { 1742 nfp_net_rx_ring_bufs_free(nn, &rings[r]); 1743 nfp_net_rx_ring_free(&rings[r]); 1744 } 1745 1746 kfree(rings); 1747 } 1748 1749 static int 1750 nfp_net_prepare_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec, 1751 int idx) 1752 { 1753 struct msix_entry *entry = &nn->irq_entries[r_vec->irq_idx]; 1754 int err; 1755 1756 r_vec->tx_ring = &nn->tx_rings[idx]; 1757 nfp_net_tx_ring_init(r_vec->tx_ring, r_vec, idx); 1758 1759 r_vec->rx_ring = &nn->rx_rings[idx]; 1760 nfp_net_rx_ring_init(r_vec->rx_ring, r_vec, idx); 1761 1762 snprintf(r_vec->name, sizeof(r_vec->name), 1763 "%s-rxtx-%d", nn->netdev->name, idx); 1764 err = request_irq(entry->vector, r_vec->handler, 0, r_vec->name, r_vec); 1765 if (err) { 1766 nn_err(nn, "Error requesting IRQ %d\n", entry->vector); 1767 return err; 1768 } 1769 disable_irq(entry->vector); 1770 1771 /* Setup NAPI */ 1772 netif_napi_add(nn->netdev, &r_vec->napi, 1773 nfp_net_poll, NAPI_POLL_WEIGHT); 1774 1775 irq_set_affinity_hint(entry->vector, &r_vec->affinity_mask); 1776 1777 nn_dbg(nn, "RV%02d: irq=%03d/%03d\n", idx, entry->vector, entry->entry); 1778 1779 return 0; 1780 } 1781 1782 static void 1783 nfp_net_cleanup_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec) 1784 { 1785 struct msix_entry *entry = &nn->irq_entries[r_vec->irq_idx]; 1786 1787 irq_set_affinity_hint(entry->vector, NULL); 1788 netif_napi_del(&r_vec->napi); 1789 free_irq(entry->vector, r_vec); 1790 } 1791 1792 /** 1793 * nfp_net_rss_write_itbl() - Write RSS indirection table to device 1794 * @nn: NFP Net device to reconfigure 1795 */ 1796 void nfp_net_rss_write_itbl(struct nfp_net *nn) 1797 { 1798 int i; 1799 1800 for (i = 0; i < NFP_NET_CFG_RSS_ITBL_SZ; i += 4) 1801 nn_writel(nn, NFP_NET_CFG_RSS_ITBL + i, 1802 get_unaligned_le32(nn->rss_itbl + i)); 1803 } 1804 1805 /** 1806 * nfp_net_rss_write_key() - Write RSS hash key to device 1807 * @nn: NFP Net device to reconfigure 1808 */ 1809 void nfp_net_rss_write_key(struct nfp_net *nn) 1810 { 1811 int i; 1812 1813 for (i = 0; i < NFP_NET_CFG_RSS_KEY_SZ; i += 4) 1814 nn_writel(nn, NFP_NET_CFG_RSS_KEY + i, 1815 get_unaligned_le32(nn->rss_key + i)); 1816 } 1817 1818 /** 1819 * nfp_net_coalesce_write_cfg() - Write irq coalescence configuration to HW 1820 * @nn: NFP Net device to reconfigure 1821 */ 1822 void nfp_net_coalesce_write_cfg(struct nfp_net *nn) 1823 { 1824 u8 i; 1825 u32 factor; 1826 u32 value; 1827 1828 /* Compute factor used to convert coalesce '_usecs' parameters to 1829 * ME timestamp ticks. There are 16 ME clock cycles for each timestamp 1830 * count. 1831 */ 1832 factor = nn->me_freq_mhz / 16; 1833 1834 /* copy RX interrupt coalesce parameters */ 1835 value = (nn->rx_coalesce_max_frames << 16) | 1836 (factor * nn->rx_coalesce_usecs); 1837 for (i = 0; i < nn->num_r_vecs; i++) 1838 nn_writel(nn, NFP_NET_CFG_RXR_IRQ_MOD(i), value); 1839 1840 /* copy TX interrupt coalesce parameters */ 1841 value = (nn->tx_coalesce_max_frames << 16) | 1842 (factor * nn->tx_coalesce_usecs); 1843 for (i = 0; i < nn->num_r_vecs; i++) 1844 nn_writel(nn, NFP_NET_CFG_TXR_IRQ_MOD(i), value); 1845 } 1846 1847 /** 1848 * nfp_net_write_mac_addr() - Write mac address to device registers 1849 * @nn: NFP Net device to reconfigure 1850 * @mac: Six-byte MAC address to be written 1851 * 1852 * We do a bit of byte swapping dance because firmware is LE. 1853 */ 1854 static void nfp_net_write_mac_addr(struct nfp_net *nn, const u8 *mac) 1855 { 1856 nn_writel(nn, NFP_NET_CFG_MACADDR + 0, 1857 get_unaligned_be32(nn->netdev->dev_addr)); 1858 /* We can't do writew for NFP-3200 compatibility */ 1859 nn_writel(nn, NFP_NET_CFG_MACADDR + 4, 1860 get_unaligned_be16(nn->netdev->dev_addr + 4) << 16); 1861 } 1862 1863 static void nfp_net_vec_clear_ring_data(struct nfp_net *nn, unsigned int idx) 1864 { 1865 nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), 0); 1866 nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), 0); 1867 nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), 0); 1868 1869 nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), 0); 1870 nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), 0); 1871 nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), 0); 1872 } 1873 1874 /** 1875 * nfp_net_clear_config_and_disable() - Clear control BAR and disable NFP 1876 * @nn: NFP Net device to reconfigure 1877 */ 1878 static void nfp_net_clear_config_and_disable(struct nfp_net *nn) 1879 { 1880 u32 new_ctrl, update; 1881 unsigned int r; 1882 int err; 1883 1884 new_ctrl = nn->ctrl; 1885 new_ctrl &= ~NFP_NET_CFG_CTRL_ENABLE; 1886 update = NFP_NET_CFG_UPDATE_GEN; 1887 update |= NFP_NET_CFG_UPDATE_MSIX; 1888 update |= NFP_NET_CFG_UPDATE_RING; 1889 1890 if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG) 1891 new_ctrl &= ~NFP_NET_CFG_CTRL_RINGCFG; 1892 1893 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0); 1894 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0); 1895 1896 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 1897 err = nfp_net_reconfig(nn, update); 1898 if (err) 1899 nn_err(nn, "Could not disable device: %d\n", err); 1900 1901 for (r = 0; r < nn->num_r_vecs; r++) { 1902 nfp_net_rx_ring_reset(nn->r_vecs[r].rx_ring); 1903 nfp_net_tx_ring_reset(nn, nn->r_vecs[r].tx_ring); 1904 nfp_net_vec_clear_ring_data(nn, r); 1905 } 1906 1907 nn->ctrl = new_ctrl; 1908 } 1909 1910 static void 1911 nfp_net_vec_write_ring_data(struct nfp_net *nn, struct nfp_net_r_vector *r_vec, 1912 unsigned int idx) 1913 { 1914 /* Write the DMA address, size and MSI-X info to the device */ 1915 nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), r_vec->rx_ring->dma); 1916 nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), ilog2(r_vec->rx_ring->cnt)); 1917 nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), r_vec->irq_idx); 1918 1919 nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), r_vec->tx_ring->dma); 1920 nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), ilog2(r_vec->tx_ring->cnt)); 1921 nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), r_vec->irq_idx); 1922 } 1923 1924 static int __nfp_net_set_config_and_enable(struct nfp_net *nn) 1925 { 1926 u32 new_ctrl, update = 0; 1927 unsigned int r; 1928 int err; 1929 1930 new_ctrl = nn->ctrl; 1931 1932 if (nn->cap & NFP_NET_CFG_CTRL_RSS) { 1933 nfp_net_rss_write_key(nn); 1934 nfp_net_rss_write_itbl(nn); 1935 nn_writel(nn, NFP_NET_CFG_RSS_CTRL, nn->rss_cfg); 1936 update |= NFP_NET_CFG_UPDATE_RSS; 1937 } 1938 1939 if (nn->cap & NFP_NET_CFG_CTRL_IRQMOD) { 1940 nfp_net_coalesce_write_cfg(nn); 1941 1942 new_ctrl |= NFP_NET_CFG_CTRL_IRQMOD; 1943 update |= NFP_NET_CFG_UPDATE_IRQMOD; 1944 } 1945 1946 for (r = 0; r < nn->num_r_vecs; r++) 1947 nfp_net_vec_write_ring_data(nn, &nn->r_vecs[r], r); 1948 1949 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, nn->num_tx_rings == 64 ? 1950 0xffffffffffffffffULL : ((u64)1 << nn->num_tx_rings) - 1); 1951 1952 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, nn->num_rx_rings == 64 ? 1953 0xffffffffffffffffULL : ((u64)1 << nn->num_rx_rings) - 1); 1954 1955 nfp_net_write_mac_addr(nn, nn->netdev->dev_addr); 1956 1957 nn_writel(nn, NFP_NET_CFG_MTU, nn->netdev->mtu); 1958 nn_writel(nn, NFP_NET_CFG_FLBUFSZ, nn->fl_bufsz); 1959 1960 /* Enable device */ 1961 new_ctrl |= NFP_NET_CFG_CTRL_ENABLE; 1962 update |= NFP_NET_CFG_UPDATE_GEN; 1963 update |= NFP_NET_CFG_UPDATE_MSIX; 1964 update |= NFP_NET_CFG_UPDATE_RING; 1965 if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG) 1966 new_ctrl |= NFP_NET_CFG_CTRL_RINGCFG; 1967 1968 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 1969 err = nfp_net_reconfig(nn, update); 1970 1971 nn->ctrl = new_ctrl; 1972 1973 for (r = 0; r < nn->num_r_vecs; r++) 1974 nfp_net_rx_ring_fill_freelist(nn->r_vecs[r].rx_ring); 1975 1976 /* Since reconfiguration requests while NFP is down are ignored we 1977 * have to wipe the entire VXLAN configuration and reinitialize it. 1978 */ 1979 if (nn->ctrl & NFP_NET_CFG_CTRL_VXLAN) { 1980 memset(&nn->vxlan_ports, 0, sizeof(nn->vxlan_ports)); 1981 memset(&nn->vxlan_usecnt, 0, sizeof(nn->vxlan_usecnt)); 1982 vxlan_get_rx_port(nn->netdev); 1983 } 1984 1985 return err; 1986 } 1987 1988 /** 1989 * nfp_net_set_config_and_enable() - Write control BAR and enable NFP 1990 * @nn: NFP Net device to reconfigure 1991 */ 1992 static int nfp_net_set_config_and_enable(struct nfp_net *nn) 1993 { 1994 int err; 1995 1996 err = __nfp_net_set_config_and_enable(nn); 1997 if (err) 1998 nfp_net_clear_config_and_disable(nn); 1999 2000 return err; 2001 } 2002 2003 /** 2004 * nfp_net_open_stack() - Start the device from stack's perspective 2005 * @nn: NFP Net device to reconfigure 2006 */ 2007 static void nfp_net_open_stack(struct nfp_net *nn) 2008 { 2009 unsigned int r; 2010 2011 for (r = 0; r < nn->num_r_vecs; r++) { 2012 napi_enable(&nn->r_vecs[r].napi); 2013 enable_irq(nn->irq_entries[nn->r_vecs[r].irq_idx].vector); 2014 } 2015 2016 netif_tx_wake_all_queues(nn->netdev); 2017 2018 enable_irq(nn->irq_entries[NFP_NET_CFG_LSC].vector); 2019 nfp_net_read_link_status(nn); 2020 } 2021 2022 static int nfp_net_netdev_open(struct net_device *netdev) 2023 { 2024 struct nfp_net *nn = netdev_priv(netdev); 2025 int err, r; 2026 2027 if (nn->ctrl & NFP_NET_CFG_CTRL_ENABLE) { 2028 nn_err(nn, "Dev is already enabled: 0x%08x\n", nn->ctrl); 2029 return -EBUSY; 2030 } 2031 2032 /* Step 1: Allocate resources for rings and the like 2033 * - Request interrupts 2034 * - Allocate RX and TX ring resources 2035 * - Setup initial RSS table 2036 */ 2037 err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_EXN, "%s-exn", 2038 nn->exn_name, sizeof(nn->exn_name), 2039 NFP_NET_IRQ_EXN_IDX, nn->exn_handler); 2040 if (err) 2041 return err; 2042 err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_LSC, "%s-lsc", 2043 nn->lsc_name, sizeof(nn->lsc_name), 2044 NFP_NET_IRQ_LSC_IDX, nn->lsc_handler); 2045 if (err) 2046 goto err_free_exn; 2047 disable_irq(nn->irq_entries[NFP_NET_CFG_LSC].vector); 2048 2049 nn->rx_rings = kcalloc(nn->num_rx_rings, sizeof(*nn->rx_rings), 2050 GFP_KERNEL); 2051 if (!nn->rx_rings) 2052 goto err_free_lsc; 2053 nn->tx_rings = kcalloc(nn->num_tx_rings, sizeof(*nn->tx_rings), 2054 GFP_KERNEL); 2055 if (!nn->tx_rings) 2056 goto err_free_rx_rings; 2057 2058 for (r = 0; r < nn->num_r_vecs; r++) { 2059 err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r); 2060 if (err) 2061 goto err_free_prev_vecs; 2062 2063 err = nfp_net_tx_ring_alloc(nn->r_vecs[r].tx_ring, nn->txd_cnt); 2064 if (err) 2065 goto err_cleanup_vec_p; 2066 2067 err = nfp_net_rx_ring_alloc(nn->r_vecs[r].rx_ring, 2068 nn->fl_bufsz, nn->rxd_cnt); 2069 if (err) 2070 goto err_free_tx_ring_p; 2071 2072 err = nfp_net_rx_ring_bufs_alloc(nn, nn->r_vecs[r].rx_ring); 2073 if (err) 2074 goto err_flush_rx_ring_p; 2075 } 2076 2077 err = netif_set_real_num_tx_queues(netdev, nn->num_tx_rings); 2078 if (err) 2079 goto err_free_rings; 2080 2081 err = netif_set_real_num_rx_queues(netdev, nn->num_rx_rings); 2082 if (err) 2083 goto err_free_rings; 2084 2085 /* Step 2: Configure the NFP 2086 * - Enable rings from 0 to tx_rings/rx_rings - 1. 2087 * - Write MAC address (in case it changed) 2088 * - Set the MTU 2089 * - Set the Freelist buffer size 2090 * - Enable the FW 2091 */ 2092 err = nfp_net_set_config_and_enable(nn); 2093 if (err) 2094 goto err_free_rings; 2095 2096 /* Step 3: Enable for kernel 2097 * - put some freelist descriptors on each RX ring 2098 * - enable NAPI on each ring 2099 * - enable all TX queues 2100 * - set link state 2101 */ 2102 nfp_net_open_stack(nn); 2103 2104 return 0; 2105 2106 err_free_rings: 2107 r = nn->num_r_vecs; 2108 err_free_prev_vecs: 2109 while (r--) { 2110 nfp_net_rx_ring_bufs_free(nn, nn->r_vecs[r].rx_ring); 2111 err_flush_rx_ring_p: 2112 nfp_net_rx_ring_free(nn->r_vecs[r].rx_ring); 2113 err_free_tx_ring_p: 2114 nfp_net_tx_ring_free(nn->r_vecs[r].tx_ring); 2115 err_cleanup_vec_p: 2116 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); 2117 } 2118 kfree(nn->tx_rings); 2119 err_free_rx_rings: 2120 kfree(nn->rx_rings); 2121 err_free_lsc: 2122 nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX); 2123 err_free_exn: 2124 nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX); 2125 return err; 2126 } 2127 2128 /** 2129 * nfp_net_close_stack() - Quiescent the stack (part of close) 2130 * @nn: NFP Net device to reconfigure 2131 */ 2132 static void nfp_net_close_stack(struct nfp_net *nn) 2133 { 2134 unsigned int r; 2135 2136 disable_irq(nn->irq_entries[NFP_NET_CFG_LSC].vector); 2137 netif_carrier_off(nn->netdev); 2138 nn->link_up = false; 2139 2140 for (r = 0; r < nn->num_r_vecs; r++) { 2141 disable_irq(nn->irq_entries[nn->r_vecs[r].irq_idx].vector); 2142 napi_disable(&nn->r_vecs[r].napi); 2143 } 2144 2145 netif_tx_disable(nn->netdev); 2146 } 2147 2148 /** 2149 * nfp_net_close_free_all() - Free all runtime resources 2150 * @nn: NFP Net device to reconfigure 2151 */ 2152 static void nfp_net_close_free_all(struct nfp_net *nn) 2153 { 2154 unsigned int r; 2155 2156 for (r = 0; r < nn->num_r_vecs; r++) { 2157 nfp_net_rx_ring_bufs_free(nn, nn->r_vecs[r].rx_ring); 2158 nfp_net_rx_ring_free(nn->r_vecs[r].rx_ring); 2159 nfp_net_tx_ring_free(nn->r_vecs[r].tx_ring); 2160 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); 2161 } 2162 2163 kfree(nn->rx_rings); 2164 kfree(nn->tx_rings); 2165 2166 nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX); 2167 nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX); 2168 } 2169 2170 /** 2171 * nfp_net_netdev_close() - Called when the device is downed 2172 * @netdev: netdev structure 2173 */ 2174 static int nfp_net_netdev_close(struct net_device *netdev) 2175 { 2176 struct nfp_net *nn = netdev_priv(netdev); 2177 2178 if (!(nn->ctrl & NFP_NET_CFG_CTRL_ENABLE)) { 2179 nn_err(nn, "Dev is not up: 0x%08x\n", nn->ctrl); 2180 return 0; 2181 } 2182 2183 /* Step 1: Disable RX and TX rings from the Linux kernel perspective 2184 */ 2185 nfp_net_close_stack(nn); 2186 2187 /* Step 2: Tell NFP 2188 */ 2189 nfp_net_clear_config_and_disable(nn); 2190 2191 /* Step 3: Free resources 2192 */ 2193 nfp_net_close_free_all(nn); 2194 2195 nn_dbg(nn, "%s down", netdev->name); 2196 return 0; 2197 } 2198 2199 static void nfp_net_set_rx_mode(struct net_device *netdev) 2200 { 2201 struct nfp_net *nn = netdev_priv(netdev); 2202 u32 new_ctrl; 2203 2204 new_ctrl = nn->ctrl; 2205 2206 if (netdev->flags & IFF_PROMISC) { 2207 if (nn->cap & NFP_NET_CFG_CTRL_PROMISC) 2208 new_ctrl |= NFP_NET_CFG_CTRL_PROMISC; 2209 else 2210 nn_warn(nn, "FW does not support promiscuous mode\n"); 2211 } else { 2212 new_ctrl &= ~NFP_NET_CFG_CTRL_PROMISC; 2213 } 2214 2215 if (new_ctrl == nn->ctrl) 2216 return; 2217 2218 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 2219 nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_GEN); 2220 2221 nn->ctrl = new_ctrl; 2222 } 2223 2224 static int nfp_net_change_mtu(struct net_device *netdev, int new_mtu) 2225 { 2226 unsigned int old_mtu, old_fl_bufsz, new_fl_bufsz; 2227 struct nfp_net *nn = netdev_priv(netdev); 2228 struct nfp_net_rx_ring *tmp_rings; 2229 int err; 2230 2231 if (new_mtu < 68 || new_mtu > nn->max_mtu) { 2232 nn_err(nn, "New MTU (%d) is not valid\n", new_mtu); 2233 return -EINVAL; 2234 } 2235 2236 old_mtu = netdev->mtu; 2237 old_fl_bufsz = nn->fl_bufsz; 2238 new_fl_bufsz = NFP_NET_MAX_PREPEND + ETH_HLEN + VLAN_HLEN * 2 + new_mtu; 2239 2240 if (!netif_running(netdev)) { 2241 netdev->mtu = new_mtu; 2242 nn->fl_bufsz = new_fl_bufsz; 2243 return 0; 2244 } 2245 2246 /* Prepare new rings */ 2247 tmp_rings = nfp_net_shadow_rx_rings_prepare(nn, new_fl_bufsz, 2248 nn->rxd_cnt); 2249 if (!tmp_rings) 2250 return -ENOMEM; 2251 2252 /* Stop device, swap in new rings, try to start the firmware */ 2253 nfp_net_close_stack(nn); 2254 nfp_net_clear_config_and_disable(nn); 2255 2256 tmp_rings = nfp_net_shadow_rx_rings_swap(nn, tmp_rings); 2257 2258 netdev->mtu = new_mtu; 2259 nn->fl_bufsz = new_fl_bufsz; 2260 2261 err = nfp_net_set_config_and_enable(nn); 2262 if (err) { 2263 const int err_new = err; 2264 2265 /* Try with old configuration and old rings */ 2266 tmp_rings = nfp_net_shadow_rx_rings_swap(nn, tmp_rings); 2267 2268 netdev->mtu = old_mtu; 2269 nn->fl_bufsz = old_fl_bufsz; 2270 2271 err = __nfp_net_set_config_and_enable(nn); 2272 if (err) 2273 nn_err(nn, "Can't restore MTU - FW communication failed (%d,%d)\n", 2274 err_new, err); 2275 } 2276 2277 nfp_net_shadow_rx_rings_free(nn, tmp_rings); 2278 2279 nfp_net_open_stack(nn); 2280 2281 return err; 2282 } 2283 2284 int nfp_net_set_ring_size(struct nfp_net *nn, u32 rxd_cnt, u32 txd_cnt) 2285 { 2286 struct nfp_net_tx_ring *tx_rings = NULL; 2287 struct nfp_net_rx_ring *rx_rings = NULL; 2288 u32 old_rxd_cnt, old_txd_cnt; 2289 int err; 2290 2291 if (!netif_running(nn->netdev)) { 2292 nn->rxd_cnt = rxd_cnt; 2293 nn->txd_cnt = txd_cnt; 2294 return 0; 2295 } 2296 2297 old_rxd_cnt = nn->rxd_cnt; 2298 old_txd_cnt = nn->txd_cnt; 2299 2300 /* Prepare new rings */ 2301 if (nn->rxd_cnt != rxd_cnt) { 2302 rx_rings = nfp_net_shadow_rx_rings_prepare(nn, nn->fl_bufsz, 2303 rxd_cnt); 2304 if (!rx_rings) 2305 return -ENOMEM; 2306 } 2307 if (nn->txd_cnt != txd_cnt) { 2308 tx_rings = nfp_net_shadow_tx_rings_prepare(nn, txd_cnt); 2309 if (!tx_rings) { 2310 nfp_net_shadow_rx_rings_free(nn, rx_rings); 2311 return -ENOMEM; 2312 } 2313 } 2314 2315 /* Stop device, swap in new rings, try to start the firmware */ 2316 nfp_net_close_stack(nn); 2317 nfp_net_clear_config_and_disable(nn); 2318 2319 if (rx_rings) 2320 rx_rings = nfp_net_shadow_rx_rings_swap(nn, rx_rings); 2321 if (tx_rings) 2322 tx_rings = nfp_net_shadow_tx_rings_swap(nn, tx_rings); 2323 2324 nn->rxd_cnt = rxd_cnt; 2325 nn->txd_cnt = txd_cnt; 2326 2327 err = nfp_net_set_config_and_enable(nn); 2328 if (err) { 2329 const int err_new = err; 2330 2331 /* Try with old configuration and old rings */ 2332 if (rx_rings) 2333 rx_rings = nfp_net_shadow_rx_rings_swap(nn, rx_rings); 2334 if (tx_rings) 2335 tx_rings = nfp_net_shadow_tx_rings_swap(nn, tx_rings); 2336 2337 nn->rxd_cnt = old_rxd_cnt; 2338 nn->txd_cnt = old_txd_cnt; 2339 2340 err = __nfp_net_set_config_and_enable(nn); 2341 if (err) 2342 nn_err(nn, "Can't restore ring config - FW communication failed (%d,%d)\n", 2343 err_new, err); 2344 } 2345 2346 nfp_net_shadow_rx_rings_free(nn, rx_rings); 2347 nfp_net_shadow_tx_rings_free(nn, tx_rings); 2348 2349 nfp_net_open_stack(nn); 2350 2351 return err; 2352 } 2353 2354 static struct rtnl_link_stats64 *nfp_net_stat64(struct net_device *netdev, 2355 struct rtnl_link_stats64 *stats) 2356 { 2357 struct nfp_net *nn = netdev_priv(netdev); 2358 int r; 2359 2360 for (r = 0; r < nn->num_r_vecs; r++) { 2361 struct nfp_net_r_vector *r_vec = &nn->r_vecs[r]; 2362 u64 data[3]; 2363 unsigned int start; 2364 2365 do { 2366 start = u64_stats_fetch_begin(&r_vec->rx_sync); 2367 data[0] = r_vec->rx_pkts; 2368 data[1] = r_vec->rx_bytes; 2369 data[2] = r_vec->rx_drops; 2370 } while (u64_stats_fetch_retry(&r_vec->rx_sync, start)); 2371 stats->rx_packets += data[0]; 2372 stats->rx_bytes += data[1]; 2373 stats->rx_dropped += data[2]; 2374 2375 do { 2376 start = u64_stats_fetch_begin(&r_vec->tx_sync); 2377 data[0] = r_vec->tx_pkts; 2378 data[1] = r_vec->tx_bytes; 2379 data[2] = r_vec->tx_errors; 2380 } while (u64_stats_fetch_retry(&r_vec->tx_sync, start)); 2381 stats->tx_packets += data[0]; 2382 stats->tx_bytes += data[1]; 2383 stats->tx_errors += data[2]; 2384 } 2385 2386 return stats; 2387 } 2388 2389 static int nfp_net_set_features(struct net_device *netdev, 2390 netdev_features_t features) 2391 { 2392 netdev_features_t changed = netdev->features ^ features; 2393 struct nfp_net *nn = netdev_priv(netdev); 2394 u32 new_ctrl; 2395 int err; 2396 2397 /* Assume this is not called with features we have not advertised */ 2398 2399 new_ctrl = nn->ctrl; 2400 2401 if (changed & NETIF_F_RXCSUM) { 2402 if (features & NETIF_F_RXCSUM) 2403 new_ctrl |= NFP_NET_CFG_CTRL_RXCSUM; 2404 else 2405 new_ctrl &= ~NFP_NET_CFG_CTRL_RXCSUM; 2406 } 2407 2408 if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) { 2409 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) 2410 new_ctrl |= NFP_NET_CFG_CTRL_TXCSUM; 2411 else 2412 new_ctrl &= ~NFP_NET_CFG_CTRL_TXCSUM; 2413 } 2414 2415 if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) { 2416 if (features & (NETIF_F_TSO | NETIF_F_TSO6)) 2417 new_ctrl |= NFP_NET_CFG_CTRL_LSO; 2418 else 2419 new_ctrl &= ~NFP_NET_CFG_CTRL_LSO; 2420 } 2421 2422 if (changed & NETIF_F_HW_VLAN_CTAG_RX) { 2423 if (features & NETIF_F_HW_VLAN_CTAG_RX) 2424 new_ctrl |= NFP_NET_CFG_CTRL_RXVLAN; 2425 else 2426 new_ctrl &= ~NFP_NET_CFG_CTRL_RXVLAN; 2427 } 2428 2429 if (changed & NETIF_F_HW_VLAN_CTAG_TX) { 2430 if (features & NETIF_F_HW_VLAN_CTAG_TX) 2431 new_ctrl |= NFP_NET_CFG_CTRL_TXVLAN; 2432 else 2433 new_ctrl &= ~NFP_NET_CFG_CTRL_TXVLAN; 2434 } 2435 2436 if (changed & NETIF_F_SG) { 2437 if (features & NETIF_F_SG) 2438 new_ctrl |= NFP_NET_CFG_CTRL_GATHER; 2439 else 2440 new_ctrl &= ~NFP_NET_CFG_CTRL_GATHER; 2441 } 2442 2443 nn_dbg(nn, "Feature change 0x%llx -> 0x%llx (changed=0x%llx)\n", 2444 netdev->features, features, changed); 2445 2446 if (new_ctrl == nn->ctrl) 2447 return 0; 2448 2449 nn_dbg(nn, "NIC ctrl: 0x%x -> 0x%x\n", nn->ctrl, new_ctrl); 2450 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); 2451 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_GEN); 2452 if (err) 2453 return err; 2454 2455 nn->ctrl = new_ctrl; 2456 2457 return 0; 2458 } 2459 2460 static netdev_features_t 2461 nfp_net_features_check(struct sk_buff *skb, struct net_device *dev, 2462 netdev_features_t features) 2463 { 2464 u8 l4_hdr; 2465 2466 /* We can't do TSO over double tagged packets (802.1AD) */ 2467 features &= vlan_features_check(skb, features); 2468 2469 if (!skb->encapsulation) 2470 return features; 2471 2472 /* Ensure that inner L4 header offset fits into TX descriptor field */ 2473 if (skb_is_gso(skb)) { 2474 u32 hdrlen; 2475 2476 hdrlen = skb_inner_transport_header(skb) - skb->data + 2477 inner_tcp_hdrlen(skb); 2478 2479 if (unlikely(hdrlen > NFP_NET_LSO_MAX_HDR_SZ)) 2480 features &= ~NETIF_F_GSO_MASK; 2481 } 2482 2483 /* VXLAN/GRE check */ 2484 switch (vlan_get_protocol(skb)) { 2485 case htons(ETH_P_IP): 2486 l4_hdr = ip_hdr(skb)->protocol; 2487 break; 2488 case htons(ETH_P_IPV6): 2489 l4_hdr = ipv6_hdr(skb)->nexthdr; 2490 break; 2491 default: 2492 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 2493 } 2494 2495 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER || 2496 skb->inner_protocol != htons(ETH_P_TEB) || 2497 (l4_hdr != IPPROTO_UDP && l4_hdr != IPPROTO_GRE) || 2498 (l4_hdr == IPPROTO_UDP && 2499 (skb_inner_mac_header(skb) - skb_transport_header(skb) != 2500 sizeof(struct udphdr) + sizeof(struct vxlanhdr)))) 2501 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 2502 2503 return features; 2504 } 2505 2506 /** 2507 * nfp_net_set_vxlan_port() - set vxlan port in SW and reconfigure HW 2508 * @nn: NFP Net device to reconfigure 2509 * @idx: Index into the port table where new port should be written 2510 * @port: UDP port to configure (pass zero to remove VXLAN port) 2511 */ 2512 static void nfp_net_set_vxlan_port(struct nfp_net *nn, int idx, __be16 port) 2513 { 2514 int i; 2515 2516 nn->vxlan_ports[idx] = port; 2517 2518 if (!(nn->ctrl & NFP_NET_CFG_CTRL_VXLAN)) 2519 return; 2520 2521 BUILD_BUG_ON(NFP_NET_N_VXLAN_PORTS & 1); 2522 for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i += 2) 2523 nn_writel(nn, NFP_NET_CFG_VXLAN_PORT + i * sizeof(port), 2524 be16_to_cpu(nn->vxlan_ports[i + 1]) << 16 | 2525 be16_to_cpu(nn->vxlan_ports[i])); 2526 2527 nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_VXLAN); 2528 } 2529 2530 /** 2531 * nfp_net_find_vxlan_idx() - find table entry of the port or a free one 2532 * @nn: NFP Network structure 2533 * @port: UDP port to look for 2534 * 2535 * Return: if the port is already in the table -- it's position; 2536 * if the port is not in the table -- free position to use; 2537 * if the table is full -- -ENOSPC. 2538 */ 2539 static int nfp_net_find_vxlan_idx(struct nfp_net *nn, __be16 port) 2540 { 2541 int i, free_idx = -ENOSPC; 2542 2543 for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i++) { 2544 if (nn->vxlan_ports[i] == port) 2545 return i; 2546 if (!nn->vxlan_usecnt[i]) 2547 free_idx = i; 2548 } 2549 2550 return free_idx; 2551 } 2552 2553 static void nfp_net_add_vxlan_port(struct net_device *netdev, 2554 sa_family_t sa_family, __be16 port) 2555 { 2556 struct nfp_net *nn = netdev_priv(netdev); 2557 int idx; 2558 2559 idx = nfp_net_find_vxlan_idx(nn, port); 2560 if (idx == -ENOSPC) 2561 return; 2562 2563 if (!nn->vxlan_usecnt[idx]++) 2564 nfp_net_set_vxlan_port(nn, idx, port); 2565 } 2566 2567 static void nfp_net_del_vxlan_port(struct net_device *netdev, 2568 sa_family_t sa_family, __be16 port) 2569 { 2570 struct nfp_net *nn = netdev_priv(netdev); 2571 int idx; 2572 2573 idx = nfp_net_find_vxlan_idx(nn, port); 2574 if (!nn->vxlan_usecnt[idx] || idx == -ENOSPC) 2575 return; 2576 2577 if (!--nn->vxlan_usecnt[idx]) 2578 nfp_net_set_vxlan_port(nn, idx, 0); 2579 } 2580 2581 static const struct net_device_ops nfp_net_netdev_ops = { 2582 .ndo_open = nfp_net_netdev_open, 2583 .ndo_stop = nfp_net_netdev_close, 2584 .ndo_start_xmit = nfp_net_tx, 2585 .ndo_get_stats64 = nfp_net_stat64, 2586 .ndo_tx_timeout = nfp_net_tx_timeout, 2587 .ndo_set_rx_mode = nfp_net_set_rx_mode, 2588 .ndo_change_mtu = nfp_net_change_mtu, 2589 .ndo_set_mac_address = eth_mac_addr, 2590 .ndo_set_features = nfp_net_set_features, 2591 .ndo_features_check = nfp_net_features_check, 2592 .ndo_add_vxlan_port = nfp_net_add_vxlan_port, 2593 .ndo_del_vxlan_port = nfp_net_del_vxlan_port, 2594 }; 2595 2596 /** 2597 * nfp_net_info() - Print general info about the NIC 2598 * @nn: NFP Net device to reconfigure 2599 */ 2600 void nfp_net_info(struct nfp_net *nn) 2601 { 2602 nn_info(nn, "Netronome %s %sNetdev: TxQs=%d/%d RxQs=%d/%d\n", 2603 nn->is_nfp3200 ? "NFP-32xx" : "NFP-6xxx", 2604 nn->is_vf ? "VF " : "", 2605 nn->num_tx_rings, nn->max_tx_rings, 2606 nn->num_rx_rings, nn->max_rx_rings); 2607 nn_info(nn, "VER: %d.%d.%d.%d, Maximum supported MTU: %d\n", 2608 nn->fw_ver.resv, nn->fw_ver.class, 2609 nn->fw_ver.major, nn->fw_ver.minor, 2610 nn->max_mtu); 2611 nn_info(nn, "CAP: %#x %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", 2612 nn->cap, 2613 nn->cap & NFP_NET_CFG_CTRL_PROMISC ? "PROMISC " : "", 2614 nn->cap & NFP_NET_CFG_CTRL_L2BC ? "L2BCFILT " : "", 2615 nn->cap & NFP_NET_CFG_CTRL_L2MC ? "L2MCFILT " : "", 2616 nn->cap & NFP_NET_CFG_CTRL_RXCSUM ? "RXCSUM " : "", 2617 nn->cap & NFP_NET_CFG_CTRL_TXCSUM ? "TXCSUM " : "", 2618 nn->cap & NFP_NET_CFG_CTRL_RXVLAN ? "RXVLAN " : "", 2619 nn->cap & NFP_NET_CFG_CTRL_TXVLAN ? "TXVLAN " : "", 2620 nn->cap & NFP_NET_CFG_CTRL_SCATTER ? "SCATTER " : "", 2621 nn->cap & NFP_NET_CFG_CTRL_GATHER ? "GATHER " : "", 2622 nn->cap & NFP_NET_CFG_CTRL_LSO ? "TSO " : "", 2623 nn->cap & NFP_NET_CFG_CTRL_RSS ? "RSS " : "", 2624 nn->cap & NFP_NET_CFG_CTRL_L2SWITCH ? "L2SWITCH " : "", 2625 nn->cap & NFP_NET_CFG_CTRL_MSIXAUTO ? "AUTOMASK " : "", 2626 nn->cap & NFP_NET_CFG_CTRL_IRQMOD ? "IRQMOD " : "", 2627 nn->cap & NFP_NET_CFG_CTRL_VXLAN ? "VXLAN " : "", 2628 nn->cap & NFP_NET_CFG_CTRL_NVGRE ? "NVGRE " : ""); 2629 } 2630 2631 /** 2632 * nfp_net_netdev_alloc() - Allocate netdev and related structure 2633 * @pdev: PCI device 2634 * @max_tx_rings: Maximum number of TX rings supported by device 2635 * @max_rx_rings: Maximum number of RX rings supported by device 2636 * 2637 * This function allocates a netdev device and fills in the initial 2638 * part of the @struct nfp_net structure. 2639 * 2640 * Return: NFP Net device structure, or ERR_PTR on error. 2641 */ 2642 struct nfp_net *nfp_net_netdev_alloc(struct pci_dev *pdev, 2643 int max_tx_rings, int max_rx_rings) 2644 { 2645 struct net_device *netdev; 2646 struct nfp_net *nn; 2647 int nqs; 2648 2649 netdev = alloc_etherdev_mqs(sizeof(struct nfp_net), 2650 max_tx_rings, max_rx_rings); 2651 if (!netdev) 2652 return ERR_PTR(-ENOMEM); 2653 2654 SET_NETDEV_DEV(netdev, &pdev->dev); 2655 nn = netdev_priv(netdev); 2656 2657 nn->netdev = netdev; 2658 nn->pdev = pdev; 2659 2660 nn->max_tx_rings = max_tx_rings; 2661 nn->max_rx_rings = max_rx_rings; 2662 2663 nqs = netif_get_num_default_rss_queues(); 2664 nn->num_tx_rings = min_t(int, nqs, max_tx_rings); 2665 nn->num_rx_rings = min_t(int, nqs, max_rx_rings); 2666 2667 nn->txd_cnt = NFP_NET_TX_DESCS_DEFAULT; 2668 nn->rxd_cnt = NFP_NET_RX_DESCS_DEFAULT; 2669 2670 spin_lock_init(&nn->reconfig_lock); 2671 spin_lock_init(&nn->link_status_lock); 2672 2673 setup_timer(&nn->reconfig_timer, 2674 nfp_net_reconfig_timer, (unsigned long)nn); 2675 2676 return nn; 2677 } 2678 2679 /** 2680 * nfp_net_netdev_free() - Undo what @nfp_net_netdev_alloc() did 2681 * @nn: NFP Net device to reconfigure 2682 */ 2683 void nfp_net_netdev_free(struct nfp_net *nn) 2684 { 2685 free_netdev(nn->netdev); 2686 } 2687 2688 /** 2689 * nfp_net_rss_init() - Set the initial RSS parameters 2690 * @nn: NFP Net device to reconfigure 2691 */ 2692 static void nfp_net_rss_init(struct nfp_net *nn) 2693 { 2694 int i; 2695 2696 netdev_rss_key_fill(nn->rss_key, NFP_NET_CFG_RSS_KEY_SZ); 2697 2698 for (i = 0; i < sizeof(nn->rss_itbl); i++) 2699 nn->rss_itbl[i] = 2700 ethtool_rxfh_indir_default(i, nn->num_rx_rings); 2701 2702 /* Enable IPv4/IPv6 TCP by default */ 2703 nn->rss_cfg = NFP_NET_CFG_RSS_IPV4_TCP | 2704 NFP_NET_CFG_RSS_IPV6_TCP | 2705 NFP_NET_CFG_RSS_TOEPLITZ | 2706 NFP_NET_CFG_RSS_MASK; 2707 } 2708 2709 /** 2710 * nfp_net_irqmod_init() - Set the initial IRQ moderation parameters 2711 * @nn: NFP Net device to reconfigure 2712 */ 2713 static void nfp_net_irqmod_init(struct nfp_net *nn) 2714 { 2715 nn->rx_coalesce_usecs = 50; 2716 nn->rx_coalesce_max_frames = 64; 2717 nn->tx_coalesce_usecs = 50; 2718 nn->tx_coalesce_max_frames = 64; 2719 } 2720 2721 /** 2722 * nfp_net_netdev_init() - Initialise/finalise the netdev structure 2723 * @netdev: netdev structure 2724 * 2725 * Return: 0 on success or negative errno on error. 2726 */ 2727 int nfp_net_netdev_init(struct net_device *netdev) 2728 { 2729 struct nfp_net *nn = netdev_priv(netdev); 2730 int err; 2731 2732 /* Get some of the read-only fields from the BAR */ 2733 nn->cap = nn_readl(nn, NFP_NET_CFG_CAP); 2734 nn->max_mtu = nn_readl(nn, NFP_NET_CFG_MAX_MTU); 2735 2736 nfp_net_write_mac_addr(nn, nn->netdev->dev_addr); 2737 2738 /* Set default MTU and Freelist buffer size */ 2739 if (nn->max_mtu < NFP_NET_DEFAULT_MTU) 2740 netdev->mtu = nn->max_mtu; 2741 else 2742 netdev->mtu = NFP_NET_DEFAULT_MTU; 2743 nn->fl_bufsz = NFP_NET_DEFAULT_RX_BUFSZ; 2744 2745 /* Advertise/enable offloads based on capabilities 2746 * 2747 * Note: netdev->features show the currently enabled features 2748 * and netdev->hw_features advertises which features are 2749 * supported. By default we enable most features. 2750 */ 2751 netdev->hw_features = NETIF_F_HIGHDMA; 2752 if (nn->cap & NFP_NET_CFG_CTRL_RXCSUM) { 2753 netdev->hw_features |= NETIF_F_RXCSUM; 2754 nn->ctrl |= NFP_NET_CFG_CTRL_RXCSUM; 2755 } 2756 if (nn->cap & NFP_NET_CFG_CTRL_TXCSUM) { 2757 netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM; 2758 nn->ctrl |= NFP_NET_CFG_CTRL_TXCSUM; 2759 } 2760 if (nn->cap & NFP_NET_CFG_CTRL_GATHER) { 2761 netdev->hw_features |= NETIF_F_SG; 2762 nn->ctrl |= NFP_NET_CFG_CTRL_GATHER; 2763 } 2764 if ((nn->cap & NFP_NET_CFG_CTRL_LSO) && nn->fw_ver.major > 2) { 2765 netdev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6; 2766 nn->ctrl |= NFP_NET_CFG_CTRL_LSO; 2767 } 2768 if (nn->cap & NFP_NET_CFG_CTRL_RSS) { 2769 netdev->hw_features |= NETIF_F_RXHASH; 2770 nfp_net_rss_init(nn); 2771 nn->ctrl |= NFP_NET_CFG_CTRL_RSS; 2772 } 2773 if (nn->cap & NFP_NET_CFG_CTRL_VXLAN && 2774 nn->cap & NFP_NET_CFG_CTRL_NVGRE) { 2775 if (nn->cap & NFP_NET_CFG_CTRL_LSO) 2776 netdev->hw_features |= NETIF_F_GSO_GRE | 2777 NETIF_F_GSO_UDP_TUNNEL; 2778 nn->ctrl |= NFP_NET_CFG_CTRL_VXLAN | NFP_NET_CFG_CTRL_NVGRE; 2779 2780 netdev->hw_enc_features = netdev->hw_features; 2781 } 2782 2783 netdev->vlan_features = netdev->hw_features; 2784 2785 if (nn->cap & NFP_NET_CFG_CTRL_RXVLAN) { 2786 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 2787 nn->ctrl |= NFP_NET_CFG_CTRL_RXVLAN; 2788 } 2789 if (nn->cap & NFP_NET_CFG_CTRL_TXVLAN) { 2790 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 2791 nn->ctrl |= NFP_NET_CFG_CTRL_TXVLAN; 2792 } 2793 2794 netdev->features = netdev->hw_features; 2795 2796 /* Advertise but disable TSO by default. */ 2797 netdev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6); 2798 2799 /* Allow L2 Broadcast and Multicast through by default, if supported */ 2800 if (nn->cap & NFP_NET_CFG_CTRL_L2BC) 2801 nn->ctrl |= NFP_NET_CFG_CTRL_L2BC; 2802 if (nn->cap & NFP_NET_CFG_CTRL_L2MC) 2803 nn->ctrl |= NFP_NET_CFG_CTRL_L2MC; 2804 2805 /* Allow IRQ moderation, if supported */ 2806 if (nn->cap & NFP_NET_CFG_CTRL_IRQMOD) { 2807 nfp_net_irqmod_init(nn); 2808 nn->ctrl |= NFP_NET_CFG_CTRL_IRQMOD; 2809 } 2810 2811 /* On NFP-3200 enable MSI-X auto-masking, if supported and the 2812 * interrupts are not shared. 2813 */ 2814 if (nn->is_nfp3200 && nn->cap & NFP_NET_CFG_CTRL_MSIXAUTO) 2815 nn->ctrl |= NFP_NET_CFG_CTRL_MSIXAUTO; 2816 2817 /* On NFP4000/NFP6000, determine RX packet/metadata boundary offset */ 2818 if (nn->fw_ver.major >= 2) 2819 nn->rx_offset = nn_readl(nn, NFP_NET_CFG_RX_OFFSET); 2820 else 2821 nn->rx_offset = NFP_NET_RX_OFFSET; 2822 2823 /* Stash the re-configuration queue away. First odd queue in TX Bar */ 2824 nn->qcp_cfg = nn->tx_bar + NFP_QCP_QUEUE_ADDR_SZ; 2825 2826 /* Make sure the FW knows the netdev is supposed to be disabled here */ 2827 nn_writel(nn, NFP_NET_CFG_CTRL, 0); 2828 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0); 2829 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0); 2830 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_RING | 2831 NFP_NET_CFG_UPDATE_GEN); 2832 if (err) 2833 return err; 2834 2835 /* Finalise the netdev setup */ 2836 ether_setup(netdev); 2837 netdev->netdev_ops = &nfp_net_netdev_ops; 2838 netdev->watchdog_timeo = msecs_to_jiffies(5 * 1000); 2839 netif_carrier_off(netdev); 2840 2841 nfp_net_set_ethtool_ops(netdev); 2842 nfp_net_irqs_assign(netdev); 2843 2844 return register_netdev(netdev); 2845 } 2846 2847 /** 2848 * nfp_net_netdev_clean() - Undo what nfp_net_netdev_init() did. 2849 * @netdev: netdev structure 2850 */ 2851 void nfp_net_netdev_clean(struct net_device *netdev) 2852 { 2853 unregister_netdev(netdev); 2854 } 2855