xref: /linux/drivers/net/ethernet/netronome/nfp/nfp_net_common.c (revision 02000b55850deeadffe433e4b4930a8831f477de)
1 /*
2  * Copyright (C) 2015-2017 Netronome Systems, Inc.
3  *
4  * This software is dual licensed under the GNU General License Version 2,
5  * June 1991 as shown in the file COPYING in the top-level directory of this
6  * source tree or the BSD 2-Clause License provided below.  You have the
7  * option to license this software under the complete terms of either license.
8  *
9  * The BSD 2-Clause License:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      1. Redistributions of source code must retain the above
16  *         copyright notice, this list of conditions and the following
17  *         disclaimer.
18  *
19  *      2. Redistributions in binary form must reproduce the above
20  *         copyright notice, this list of conditions and the following
21  *         disclaimer in the documentation and/or other materials
22  *         provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 /*
35  * nfp_net_common.c
36  * Netronome network device driver: Common functions between PF and VF
37  * Authors: Jakub Kicinski <jakub.kicinski@netronome.com>
38  *          Jason McMullan <jason.mcmullan@netronome.com>
39  *          Rolf Neugebauer <rolf.neugebauer@netronome.com>
40  *          Brad Petrus <brad.petrus@netronome.com>
41  *          Chris Telfer <chris.telfer@netronome.com>
42  */
43 
44 #include <linux/bitfield.h>
45 #include <linux/bpf.h>
46 #include <linux/bpf_trace.h>
47 #include <linux/module.h>
48 #include <linux/kernel.h>
49 #include <linux/init.h>
50 #include <linux/fs.h>
51 #include <linux/netdevice.h>
52 #include <linux/etherdevice.h>
53 #include <linux/interrupt.h>
54 #include <linux/ip.h>
55 #include <linux/ipv6.h>
56 #include <linux/page_ref.h>
57 #include <linux/pci.h>
58 #include <linux/pci_regs.h>
59 #include <linux/msi.h>
60 #include <linux/ethtool.h>
61 #include <linux/log2.h>
62 #include <linux/if_vlan.h>
63 #include <linux/random.h>
64 #include <linux/vmalloc.h>
65 #include <linux/ktime.h>
66 
67 #include <net/switchdev.h>
68 #include <net/vxlan.h>
69 
70 #include "nfpcore/nfp_nsp.h"
71 #include "nfp_app.h"
72 #include "nfp_net_ctrl.h"
73 #include "nfp_net.h"
74 #include "nfp_net_sriov.h"
75 #include "nfp_port.h"
76 
77 /**
78  * nfp_net_get_fw_version() - Read and parse the FW version
79  * @fw_ver:	Output fw_version structure to read to
80  * @ctrl_bar:	Mapped address of the control BAR
81  */
82 void nfp_net_get_fw_version(struct nfp_net_fw_version *fw_ver,
83 			    void __iomem *ctrl_bar)
84 {
85 	u32 reg;
86 
87 	reg = readl(ctrl_bar + NFP_NET_CFG_VERSION);
88 	put_unaligned_le32(reg, fw_ver);
89 }
90 
91 static dma_addr_t nfp_net_dma_map_rx(struct nfp_net_dp *dp, void *frag)
92 {
93 	return dma_map_single_attrs(dp->dev, frag + NFP_NET_RX_BUF_HEADROOM,
94 				    dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA,
95 				    dp->rx_dma_dir, DMA_ATTR_SKIP_CPU_SYNC);
96 }
97 
98 static void
99 nfp_net_dma_sync_dev_rx(const struct nfp_net_dp *dp, dma_addr_t dma_addr)
100 {
101 	dma_sync_single_for_device(dp->dev, dma_addr,
102 				   dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA,
103 				   dp->rx_dma_dir);
104 }
105 
106 static void nfp_net_dma_unmap_rx(struct nfp_net_dp *dp, dma_addr_t dma_addr)
107 {
108 	dma_unmap_single_attrs(dp->dev, dma_addr,
109 			       dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA,
110 			       dp->rx_dma_dir, DMA_ATTR_SKIP_CPU_SYNC);
111 }
112 
113 static void nfp_net_dma_sync_cpu_rx(struct nfp_net_dp *dp, dma_addr_t dma_addr,
114 				    unsigned int len)
115 {
116 	dma_sync_single_for_cpu(dp->dev, dma_addr - NFP_NET_RX_BUF_HEADROOM,
117 				len, dp->rx_dma_dir);
118 }
119 
120 /* Firmware reconfig
121  *
122  * Firmware reconfig may take a while so we have two versions of it -
123  * synchronous and asynchronous (posted).  All synchronous callers are holding
124  * RTNL so we don't have to worry about serializing them.
125  */
126 static void nfp_net_reconfig_start(struct nfp_net *nn, u32 update)
127 {
128 	nn_writel(nn, NFP_NET_CFG_UPDATE, update);
129 	/* ensure update is written before pinging HW */
130 	nn_pci_flush(nn);
131 	nfp_qcp_wr_ptr_add(nn->qcp_cfg, 1);
132 }
133 
134 /* Pass 0 as update to run posted reconfigs. */
135 static void nfp_net_reconfig_start_async(struct nfp_net *nn, u32 update)
136 {
137 	update |= nn->reconfig_posted;
138 	nn->reconfig_posted = 0;
139 
140 	nfp_net_reconfig_start(nn, update);
141 
142 	nn->reconfig_timer_active = true;
143 	mod_timer(&nn->reconfig_timer, jiffies + NFP_NET_POLL_TIMEOUT * HZ);
144 }
145 
146 static bool nfp_net_reconfig_check_done(struct nfp_net *nn, bool last_check)
147 {
148 	u32 reg;
149 
150 	reg = nn_readl(nn, NFP_NET_CFG_UPDATE);
151 	if (reg == 0)
152 		return true;
153 	if (reg & NFP_NET_CFG_UPDATE_ERR) {
154 		nn_err(nn, "Reconfig error: 0x%08x\n", reg);
155 		return true;
156 	} else if (last_check) {
157 		nn_err(nn, "Reconfig timeout: 0x%08x\n", reg);
158 		return true;
159 	}
160 
161 	return false;
162 }
163 
164 static int nfp_net_reconfig_wait(struct nfp_net *nn, unsigned long deadline)
165 {
166 	bool timed_out = false;
167 
168 	/* Poll update field, waiting for NFP to ack the config */
169 	while (!nfp_net_reconfig_check_done(nn, timed_out)) {
170 		msleep(1);
171 		timed_out = time_is_before_eq_jiffies(deadline);
172 	}
173 
174 	if (nn_readl(nn, NFP_NET_CFG_UPDATE) & NFP_NET_CFG_UPDATE_ERR)
175 		return -EIO;
176 
177 	return timed_out ? -EIO : 0;
178 }
179 
180 static void nfp_net_reconfig_timer(struct timer_list *t)
181 {
182 	struct nfp_net *nn = from_timer(nn, t, reconfig_timer);
183 
184 	spin_lock_bh(&nn->reconfig_lock);
185 
186 	nn->reconfig_timer_active = false;
187 
188 	/* If sync caller is present it will take over from us */
189 	if (nn->reconfig_sync_present)
190 		goto done;
191 
192 	/* Read reconfig status and report errors */
193 	nfp_net_reconfig_check_done(nn, true);
194 
195 	if (nn->reconfig_posted)
196 		nfp_net_reconfig_start_async(nn, 0);
197 done:
198 	spin_unlock_bh(&nn->reconfig_lock);
199 }
200 
201 /**
202  * nfp_net_reconfig_post() - Post async reconfig request
203  * @nn:      NFP Net device to reconfigure
204  * @update:  The value for the update field in the BAR config
205  *
206  * Record FW reconfiguration request.  Reconfiguration will be kicked off
207  * whenever reconfiguration machinery is idle.  Multiple requests can be
208  * merged together!
209  */
210 static void nfp_net_reconfig_post(struct nfp_net *nn, u32 update)
211 {
212 	spin_lock_bh(&nn->reconfig_lock);
213 
214 	/* Sync caller will kick off async reconf when it's done, just post */
215 	if (nn->reconfig_sync_present) {
216 		nn->reconfig_posted |= update;
217 		goto done;
218 	}
219 
220 	/* Opportunistically check if the previous command is done */
221 	if (!nn->reconfig_timer_active ||
222 	    nfp_net_reconfig_check_done(nn, false))
223 		nfp_net_reconfig_start_async(nn, update);
224 	else
225 		nn->reconfig_posted |= update;
226 done:
227 	spin_unlock_bh(&nn->reconfig_lock);
228 }
229 
230 /**
231  * nfp_net_reconfig() - Reconfigure the firmware
232  * @nn:      NFP Net device to reconfigure
233  * @update:  The value for the update field in the BAR config
234  *
235  * Write the update word to the BAR and ping the reconfig queue.  The
236  * poll until the firmware has acknowledged the update by zeroing the
237  * update word.
238  *
239  * Return: Negative errno on error, 0 on success
240  */
241 int nfp_net_reconfig(struct nfp_net *nn, u32 update)
242 {
243 	bool cancelled_timer = false;
244 	u32 pre_posted_requests;
245 	int ret;
246 
247 	spin_lock_bh(&nn->reconfig_lock);
248 
249 	nn->reconfig_sync_present = true;
250 
251 	if (nn->reconfig_timer_active) {
252 		del_timer(&nn->reconfig_timer);
253 		nn->reconfig_timer_active = false;
254 		cancelled_timer = true;
255 	}
256 	pre_posted_requests = nn->reconfig_posted;
257 	nn->reconfig_posted = 0;
258 
259 	spin_unlock_bh(&nn->reconfig_lock);
260 
261 	if (cancelled_timer)
262 		nfp_net_reconfig_wait(nn, nn->reconfig_timer.expires);
263 
264 	/* Run the posted reconfigs which were issued before we started */
265 	if (pre_posted_requests) {
266 		nfp_net_reconfig_start(nn, pre_posted_requests);
267 		nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT);
268 	}
269 
270 	nfp_net_reconfig_start(nn, update);
271 	ret = nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT);
272 
273 	spin_lock_bh(&nn->reconfig_lock);
274 
275 	if (nn->reconfig_posted)
276 		nfp_net_reconfig_start_async(nn, 0);
277 
278 	nn->reconfig_sync_present = false;
279 
280 	spin_unlock_bh(&nn->reconfig_lock);
281 
282 	return ret;
283 }
284 
285 /**
286  * nfp_net_reconfig_mbox() - Reconfigure the firmware via the mailbox
287  * @nn:        NFP Net device to reconfigure
288  * @mbox_cmd:  The value for the mailbox command
289  *
290  * Helper function for mailbox updates
291  *
292  * Return: Negative errno on error, 0 on success
293  */
294 static int nfp_net_reconfig_mbox(struct nfp_net *nn, u32 mbox_cmd)
295 {
296 	u32 mbox = nn->tlv_caps.mbox_off;
297 	int ret;
298 
299 	if (!nfp_net_has_mbox(&nn->tlv_caps)) {
300 		nn_err(nn, "no mailbox present, command: %u\n", mbox_cmd);
301 		return -EIO;
302 	}
303 
304 	nn_writeq(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_CMD, mbox_cmd);
305 
306 	ret = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_MBOX);
307 	if (ret) {
308 		nn_err(nn, "Mailbox update error\n");
309 		return ret;
310 	}
311 
312 	return -nn_readl(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_RET);
313 }
314 
315 /* Interrupt configuration and handling
316  */
317 
318 /**
319  * nfp_net_irq_unmask() - Unmask automasked interrupt
320  * @nn:       NFP Network structure
321  * @entry_nr: MSI-X table entry
322  *
323  * Clear the ICR for the IRQ entry.
324  */
325 static void nfp_net_irq_unmask(struct nfp_net *nn, unsigned int entry_nr)
326 {
327 	nn_writeb(nn, NFP_NET_CFG_ICR(entry_nr), NFP_NET_CFG_ICR_UNMASKED);
328 	nn_pci_flush(nn);
329 }
330 
331 /**
332  * nfp_net_irqs_alloc() - allocates MSI-X irqs
333  * @pdev:        PCI device structure
334  * @irq_entries: Array to be initialized and used to hold the irq entries
335  * @min_irqs:    Minimal acceptable number of interrupts
336  * @wanted_irqs: Target number of interrupts to allocate
337  *
338  * Return: Number of irqs obtained or 0 on error.
339  */
340 unsigned int
341 nfp_net_irqs_alloc(struct pci_dev *pdev, struct msix_entry *irq_entries,
342 		   unsigned int min_irqs, unsigned int wanted_irqs)
343 {
344 	unsigned int i;
345 	int got_irqs;
346 
347 	for (i = 0; i < wanted_irqs; i++)
348 		irq_entries[i].entry = i;
349 
350 	got_irqs = pci_enable_msix_range(pdev, irq_entries,
351 					 min_irqs, wanted_irqs);
352 	if (got_irqs < 0) {
353 		dev_err(&pdev->dev, "Failed to enable %d-%d MSI-X (err=%d)\n",
354 			min_irqs, wanted_irqs, got_irqs);
355 		return 0;
356 	}
357 
358 	if (got_irqs < wanted_irqs)
359 		dev_warn(&pdev->dev, "Unable to allocate %d IRQs got only %d\n",
360 			 wanted_irqs, got_irqs);
361 
362 	return got_irqs;
363 }
364 
365 /**
366  * nfp_net_irqs_assign() - Assign interrupts allocated externally to netdev
367  * @nn:		 NFP Network structure
368  * @irq_entries: Table of allocated interrupts
369  * @n:		 Size of @irq_entries (number of entries to grab)
370  *
371  * After interrupts are allocated with nfp_net_irqs_alloc() this function
372  * should be called to assign them to a specific netdev (port).
373  */
374 void
375 nfp_net_irqs_assign(struct nfp_net *nn, struct msix_entry *irq_entries,
376 		    unsigned int n)
377 {
378 	struct nfp_net_dp *dp = &nn->dp;
379 
380 	nn->max_r_vecs = n - NFP_NET_NON_Q_VECTORS;
381 	dp->num_r_vecs = nn->max_r_vecs;
382 
383 	memcpy(nn->irq_entries, irq_entries, sizeof(*irq_entries) * n);
384 
385 	if (dp->num_rx_rings > dp->num_r_vecs ||
386 	    dp->num_tx_rings > dp->num_r_vecs)
387 		dev_warn(nn->dp.dev, "More rings (%d,%d) than vectors (%d).\n",
388 			 dp->num_rx_rings, dp->num_tx_rings,
389 			 dp->num_r_vecs);
390 
391 	dp->num_rx_rings = min(dp->num_r_vecs, dp->num_rx_rings);
392 	dp->num_tx_rings = min(dp->num_r_vecs, dp->num_tx_rings);
393 	dp->num_stack_tx_rings = dp->num_tx_rings;
394 }
395 
396 /**
397  * nfp_net_irqs_disable() - Disable interrupts
398  * @pdev:        PCI device structure
399  *
400  * Undoes what @nfp_net_irqs_alloc() does.
401  */
402 void nfp_net_irqs_disable(struct pci_dev *pdev)
403 {
404 	pci_disable_msix(pdev);
405 }
406 
407 /**
408  * nfp_net_irq_rxtx() - Interrupt service routine for RX/TX rings.
409  * @irq:      Interrupt
410  * @data:     Opaque data structure
411  *
412  * Return: Indicate if the interrupt has been handled.
413  */
414 static irqreturn_t nfp_net_irq_rxtx(int irq, void *data)
415 {
416 	struct nfp_net_r_vector *r_vec = data;
417 
418 	napi_schedule_irqoff(&r_vec->napi);
419 
420 	/* The FW auto-masks any interrupt, either via the MASK bit in
421 	 * the MSI-X table or via the per entry ICR field.  So there
422 	 * is no need to disable interrupts here.
423 	 */
424 	return IRQ_HANDLED;
425 }
426 
427 static irqreturn_t nfp_ctrl_irq_rxtx(int irq, void *data)
428 {
429 	struct nfp_net_r_vector *r_vec = data;
430 
431 	tasklet_schedule(&r_vec->tasklet);
432 
433 	return IRQ_HANDLED;
434 }
435 
436 /**
437  * nfp_net_read_link_status() - Reread link status from control BAR
438  * @nn:       NFP Network structure
439  */
440 static void nfp_net_read_link_status(struct nfp_net *nn)
441 {
442 	unsigned long flags;
443 	bool link_up;
444 	u32 sts;
445 
446 	spin_lock_irqsave(&nn->link_status_lock, flags);
447 
448 	sts = nn_readl(nn, NFP_NET_CFG_STS);
449 	link_up = !!(sts & NFP_NET_CFG_STS_LINK);
450 
451 	if (nn->link_up == link_up)
452 		goto out;
453 
454 	nn->link_up = link_up;
455 	if (nn->port)
456 		set_bit(NFP_PORT_CHANGED, &nn->port->flags);
457 
458 	if (nn->link_up) {
459 		netif_carrier_on(nn->dp.netdev);
460 		netdev_info(nn->dp.netdev, "NIC Link is Up\n");
461 	} else {
462 		netif_carrier_off(nn->dp.netdev);
463 		netdev_info(nn->dp.netdev, "NIC Link is Down\n");
464 	}
465 out:
466 	spin_unlock_irqrestore(&nn->link_status_lock, flags);
467 }
468 
469 /**
470  * nfp_net_irq_lsc() - Interrupt service routine for link state changes
471  * @irq:      Interrupt
472  * @data:     Opaque data structure
473  *
474  * Return: Indicate if the interrupt has been handled.
475  */
476 static irqreturn_t nfp_net_irq_lsc(int irq, void *data)
477 {
478 	struct nfp_net *nn = data;
479 	struct msix_entry *entry;
480 
481 	entry = &nn->irq_entries[NFP_NET_IRQ_LSC_IDX];
482 
483 	nfp_net_read_link_status(nn);
484 
485 	nfp_net_irq_unmask(nn, entry->entry);
486 
487 	return IRQ_HANDLED;
488 }
489 
490 /**
491  * nfp_net_irq_exn() - Interrupt service routine for exceptions
492  * @irq:      Interrupt
493  * @data:     Opaque data structure
494  *
495  * Return: Indicate if the interrupt has been handled.
496  */
497 static irqreturn_t nfp_net_irq_exn(int irq, void *data)
498 {
499 	struct nfp_net *nn = data;
500 
501 	nn_err(nn, "%s: UNIMPLEMENTED.\n", __func__);
502 	/* XXX TO BE IMPLEMENTED */
503 	return IRQ_HANDLED;
504 }
505 
506 /**
507  * nfp_net_tx_ring_init() - Fill in the boilerplate for a TX ring
508  * @tx_ring:  TX ring structure
509  * @r_vec:    IRQ vector servicing this ring
510  * @idx:      Ring index
511  * @is_xdp:   Is this an XDP TX ring?
512  */
513 static void
514 nfp_net_tx_ring_init(struct nfp_net_tx_ring *tx_ring,
515 		     struct nfp_net_r_vector *r_vec, unsigned int idx,
516 		     bool is_xdp)
517 {
518 	struct nfp_net *nn = r_vec->nfp_net;
519 
520 	tx_ring->idx = idx;
521 	tx_ring->r_vec = r_vec;
522 	tx_ring->is_xdp = is_xdp;
523 	u64_stats_init(&tx_ring->r_vec->tx_sync);
524 
525 	tx_ring->qcidx = tx_ring->idx * nn->stride_tx;
526 	tx_ring->qcp_q = nn->tx_bar + NFP_QCP_QUEUE_OFF(tx_ring->qcidx);
527 }
528 
529 /**
530  * nfp_net_rx_ring_init() - Fill in the boilerplate for a RX ring
531  * @rx_ring:  RX ring structure
532  * @r_vec:    IRQ vector servicing this ring
533  * @idx:      Ring index
534  */
535 static void
536 nfp_net_rx_ring_init(struct nfp_net_rx_ring *rx_ring,
537 		     struct nfp_net_r_vector *r_vec, unsigned int idx)
538 {
539 	struct nfp_net *nn = r_vec->nfp_net;
540 
541 	rx_ring->idx = idx;
542 	rx_ring->r_vec = r_vec;
543 	u64_stats_init(&rx_ring->r_vec->rx_sync);
544 
545 	rx_ring->fl_qcidx = rx_ring->idx * nn->stride_rx;
546 	rx_ring->qcp_fl = nn->rx_bar + NFP_QCP_QUEUE_OFF(rx_ring->fl_qcidx);
547 }
548 
549 /**
550  * nfp_net_aux_irq_request() - Request an auxiliary interrupt (LSC or EXN)
551  * @nn:		NFP Network structure
552  * @ctrl_offset: Control BAR offset where IRQ configuration should be written
553  * @format:	printf-style format to construct the interrupt name
554  * @name:	Pointer to allocated space for interrupt name
555  * @name_sz:	Size of space for interrupt name
556  * @vector_idx:	Index of MSI-X vector used for this interrupt
557  * @handler:	IRQ handler to register for this interrupt
558  */
559 static int
560 nfp_net_aux_irq_request(struct nfp_net *nn, u32 ctrl_offset,
561 			const char *format, char *name, size_t name_sz,
562 			unsigned int vector_idx, irq_handler_t handler)
563 {
564 	struct msix_entry *entry;
565 	int err;
566 
567 	entry = &nn->irq_entries[vector_idx];
568 
569 	snprintf(name, name_sz, format, nfp_net_name(nn));
570 	err = request_irq(entry->vector, handler, 0, name, nn);
571 	if (err) {
572 		nn_err(nn, "Failed to request IRQ %d (err=%d).\n",
573 		       entry->vector, err);
574 		return err;
575 	}
576 	nn_writeb(nn, ctrl_offset, entry->entry);
577 	nfp_net_irq_unmask(nn, entry->entry);
578 
579 	return 0;
580 }
581 
582 /**
583  * nfp_net_aux_irq_free() - Free an auxiliary interrupt (LSC or EXN)
584  * @nn:		NFP Network structure
585  * @ctrl_offset: Control BAR offset where IRQ configuration should be written
586  * @vector_idx:	Index of MSI-X vector used for this interrupt
587  */
588 static void nfp_net_aux_irq_free(struct nfp_net *nn, u32 ctrl_offset,
589 				 unsigned int vector_idx)
590 {
591 	nn_writeb(nn, ctrl_offset, 0xff);
592 	nn_pci_flush(nn);
593 	free_irq(nn->irq_entries[vector_idx].vector, nn);
594 }
595 
596 /* Transmit
597  *
598  * One queue controller peripheral queue is used for transmit.  The
599  * driver en-queues packets for transmit by advancing the write
600  * pointer.  The device indicates that packets have transmitted by
601  * advancing the read pointer.  The driver maintains a local copy of
602  * the read and write pointer in @struct nfp_net_tx_ring.  The driver
603  * keeps @wr_p in sync with the queue controller write pointer and can
604  * determine how many packets have been transmitted by comparing its
605  * copy of the read pointer @rd_p with the read pointer maintained by
606  * the queue controller peripheral.
607  */
608 
609 /**
610  * nfp_net_tx_full() - Check if the TX ring is full
611  * @tx_ring: TX ring to check
612  * @dcnt:    Number of descriptors that need to be enqueued (must be >= 1)
613  *
614  * This function checks, based on the *host copy* of read/write
615  * pointer if a given TX ring is full.  The real TX queue may have
616  * some newly made available slots.
617  *
618  * Return: True if the ring is full.
619  */
620 static int nfp_net_tx_full(struct nfp_net_tx_ring *tx_ring, int dcnt)
621 {
622 	return (tx_ring->wr_p - tx_ring->rd_p) >= (tx_ring->cnt - dcnt);
623 }
624 
625 /* Wrappers for deciding when to stop and restart TX queues */
626 static int nfp_net_tx_ring_should_wake(struct nfp_net_tx_ring *tx_ring)
627 {
628 	return !nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS * 4);
629 }
630 
631 static int nfp_net_tx_ring_should_stop(struct nfp_net_tx_ring *tx_ring)
632 {
633 	return nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS + 1);
634 }
635 
636 /**
637  * nfp_net_tx_ring_stop() - stop tx ring
638  * @nd_q:    netdev queue
639  * @tx_ring: driver tx queue structure
640  *
641  * Safely stop TX ring.  Remember that while we are running .start_xmit()
642  * someone else may be cleaning the TX ring completions so we need to be
643  * extra careful here.
644  */
645 static void nfp_net_tx_ring_stop(struct netdev_queue *nd_q,
646 				 struct nfp_net_tx_ring *tx_ring)
647 {
648 	netif_tx_stop_queue(nd_q);
649 
650 	/* We can race with the TX completion out of NAPI so recheck */
651 	smp_mb();
652 	if (unlikely(nfp_net_tx_ring_should_wake(tx_ring)))
653 		netif_tx_start_queue(nd_q);
654 }
655 
656 /**
657  * nfp_net_tx_tso() - Set up Tx descriptor for LSO
658  * @r_vec: per-ring structure
659  * @txbuf: Pointer to driver soft TX descriptor
660  * @txd: Pointer to HW TX descriptor
661  * @skb: Pointer to SKB
662  *
663  * Set up Tx descriptor for LSO, do nothing for non-LSO skbs.
664  * Return error on packet header greater than maximum supported LSO header size.
665  */
666 static void nfp_net_tx_tso(struct nfp_net_r_vector *r_vec,
667 			   struct nfp_net_tx_buf *txbuf,
668 			   struct nfp_net_tx_desc *txd, struct sk_buff *skb)
669 {
670 	u32 hdrlen;
671 	u16 mss;
672 
673 	if (!skb_is_gso(skb))
674 		return;
675 
676 	if (!skb->encapsulation) {
677 		txd->l3_offset = skb_network_offset(skb);
678 		txd->l4_offset = skb_transport_offset(skb);
679 		hdrlen = skb_transport_offset(skb) + tcp_hdrlen(skb);
680 	} else {
681 		txd->l3_offset = skb_inner_network_offset(skb);
682 		txd->l4_offset = skb_inner_transport_offset(skb);
683 		hdrlen = skb_inner_transport_header(skb) - skb->data +
684 			inner_tcp_hdrlen(skb);
685 	}
686 
687 	txbuf->pkt_cnt = skb_shinfo(skb)->gso_segs;
688 	txbuf->real_len += hdrlen * (txbuf->pkt_cnt - 1);
689 
690 	mss = skb_shinfo(skb)->gso_size & PCIE_DESC_TX_MSS_MASK;
691 	txd->lso_hdrlen = hdrlen;
692 	txd->mss = cpu_to_le16(mss);
693 	txd->flags |= PCIE_DESC_TX_LSO;
694 
695 	u64_stats_update_begin(&r_vec->tx_sync);
696 	r_vec->tx_lso++;
697 	u64_stats_update_end(&r_vec->tx_sync);
698 }
699 
700 /**
701  * nfp_net_tx_csum() - Set TX CSUM offload flags in TX descriptor
702  * @dp:  NFP Net data path struct
703  * @r_vec: per-ring structure
704  * @txbuf: Pointer to driver soft TX descriptor
705  * @txd: Pointer to TX descriptor
706  * @skb: Pointer to SKB
707  *
708  * This function sets the TX checksum flags in the TX descriptor based
709  * on the configuration and the protocol of the packet to be transmitted.
710  */
711 static void nfp_net_tx_csum(struct nfp_net_dp *dp,
712 			    struct nfp_net_r_vector *r_vec,
713 			    struct nfp_net_tx_buf *txbuf,
714 			    struct nfp_net_tx_desc *txd, struct sk_buff *skb)
715 {
716 	struct ipv6hdr *ipv6h;
717 	struct iphdr *iph;
718 	u8 l4_hdr;
719 
720 	if (!(dp->ctrl & NFP_NET_CFG_CTRL_TXCSUM))
721 		return;
722 
723 	if (skb->ip_summed != CHECKSUM_PARTIAL)
724 		return;
725 
726 	txd->flags |= PCIE_DESC_TX_CSUM;
727 	if (skb->encapsulation)
728 		txd->flags |= PCIE_DESC_TX_ENCAP;
729 
730 	iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
731 	ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);
732 
733 	if (iph->version == 4) {
734 		txd->flags |= PCIE_DESC_TX_IP4_CSUM;
735 		l4_hdr = iph->protocol;
736 	} else if (ipv6h->version == 6) {
737 		l4_hdr = ipv6h->nexthdr;
738 	} else {
739 		nn_dp_warn(dp, "partial checksum but ipv=%x!\n", iph->version);
740 		return;
741 	}
742 
743 	switch (l4_hdr) {
744 	case IPPROTO_TCP:
745 		txd->flags |= PCIE_DESC_TX_TCP_CSUM;
746 		break;
747 	case IPPROTO_UDP:
748 		txd->flags |= PCIE_DESC_TX_UDP_CSUM;
749 		break;
750 	default:
751 		nn_dp_warn(dp, "partial checksum but l4 proto=%x!\n", l4_hdr);
752 		return;
753 	}
754 
755 	u64_stats_update_begin(&r_vec->tx_sync);
756 	if (skb->encapsulation)
757 		r_vec->hw_csum_tx_inner += txbuf->pkt_cnt;
758 	else
759 		r_vec->hw_csum_tx += txbuf->pkt_cnt;
760 	u64_stats_update_end(&r_vec->tx_sync);
761 }
762 
763 static void nfp_net_tx_xmit_more_flush(struct nfp_net_tx_ring *tx_ring)
764 {
765 	wmb();
766 	nfp_qcp_wr_ptr_add(tx_ring->qcp_q, tx_ring->wr_ptr_add);
767 	tx_ring->wr_ptr_add = 0;
768 }
769 
770 static int nfp_net_prep_port_id(struct sk_buff *skb)
771 {
772 	struct metadata_dst *md_dst = skb_metadata_dst(skb);
773 	unsigned char *data;
774 
775 	if (likely(!md_dst))
776 		return 0;
777 	if (unlikely(md_dst->type != METADATA_HW_PORT_MUX))
778 		return 0;
779 
780 	if (unlikely(skb_cow_head(skb, 8)))
781 		return -ENOMEM;
782 
783 	data = skb_push(skb, 8);
784 	put_unaligned_be32(NFP_NET_META_PORTID, data);
785 	put_unaligned_be32(md_dst->u.port_info.port_id, data + 4);
786 
787 	return 8;
788 }
789 
790 /**
791  * nfp_net_tx() - Main transmit entry point
792  * @skb:    SKB to transmit
793  * @netdev: netdev structure
794  *
795  * Return: NETDEV_TX_OK on success.
796  */
797 static int nfp_net_tx(struct sk_buff *skb, struct net_device *netdev)
798 {
799 	struct nfp_net *nn = netdev_priv(netdev);
800 	const struct skb_frag_struct *frag;
801 	struct nfp_net_tx_desc *txd, txdg;
802 	int f, nr_frags, wr_idx, md_bytes;
803 	struct nfp_net_tx_ring *tx_ring;
804 	struct nfp_net_r_vector *r_vec;
805 	struct nfp_net_tx_buf *txbuf;
806 	struct netdev_queue *nd_q;
807 	struct nfp_net_dp *dp;
808 	dma_addr_t dma_addr;
809 	unsigned int fsize;
810 	u16 qidx;
811 
812 	dp = &nn->dp;
813 	qidx = skb_get_queue_mapping(skb);
814 	tx_ring = &dp->tx_rings[qidx];
815 	r_vec = tx_ring->r_vec;
816 	nd_q = netdev_get_tx_queue(dp->netdev, qidx);
817 
818 	nr_frags = skb_shinfo(skb)->nr_frags;
819 
820 	if (unlikely(nfp_net_tx_full(tx_ring, nr_frags + 1))) {
821 		nn_dp_warn(dp, "TX ring %d busy. wrp=%u rdp=%u\n",
822 			   qidx, tx_ring->wr_p, tx_ring->rd_p);
823 		netif_tx_stop_queue(nd_q);
824 		nfp_net_tx_xmit_more_flush(tx_ring);
825 		u64_stats_update_begin(&r_vec->tx_sync);
826 		r_vec->tx_busy++;
827 		u64_stats_update_end(&r_vec->tx_sync);
828 		return NETDEV_TX_BUSY;
829 	}
830 
831 	md_bytes = nfp_net_prep_port_id(skb);
832 	if (unlikely(md_bytes < 0)) {
833 		nfp_net_tx_xmit_more_flush(tx_ring);
834 		dev_kfree_skb_any(skb);
835 		return NETDEV_TX_OK;
836 	}
837 
838 	/* Start with the head skbuf */
839 	dma_addr = dma_map_single(dp->dev, skb->data, skb_headlen(skb),
840 				  DMA_TO_DEVICE);
841 	if (dma_mapping_error(dp->dev, dma_addr))
842 		goto err_free;
843 
844 	wr_idx = D_IDX(tx_ring, tx_ring->wr_p);
845 
846 	/* Stash the soft descriptor of the head then initialize it */
847 	txbuf = &tx_ring->txbufs[wr_idx];
848 	txbuf->skb = skb;
849 	txbuf->dma_addr = dma_addr;
850 	txbuf->fidx = -1;
851 	txbuf->pkt_cnt = 1;
852 	txbuf->real_len = skb->len;
853 
854 	/* Build TX descriptor */
855 	txd = &tx_ring->txds[wr_idx];
856 	txd->offset_eop = (nr_frags ? 0 : PCIE_DESC_TX_EOP) | md_bytes;
857 	txd->dma_len = cpu_to_le16(skb_headlen(skb));
858 	nfp_desc_set_dma_addr(txd, dma_addr);
859 	txd->data_len = cpu_to_le16(skb->len);
860 
861 	txd->flags = 0;
862 	txd->mss = 0;
863 	txd->lso_hdrlen = 0;
864 
865 	/* Do not reorder - tso may adjust pkt cnt, vlan may override fields */
866 	nfp_net_tx_tso(r_vec, txbuf, txd, skb);
867 	nfp_net_tx_csum(dp, r_vec, txbuf, txd, skb);
868 	if (skb_vlan_tag_present(skb) && dp->ctrl & NFP_NET_CFG_CTRL_TXVLAN) {
869 		txd->flags |= PCIE_DESC_TX_VLAN;
870 		txd->vlan = cpu_to_le16(skb_vlan_tag_get(skb));
871 	}
872 
873 	/* Gather DMA */
874 	if (nr_frags > 0) {
875 		/* all descs must match except for in addr, length and eop */
876 		txdg = *txd;
877 
878 		for (f = 0; f < nr_frags; f++) {
879 			frag = &skb_shinfo(skb)->frags[f];
880 			fsize = skb_frag_size(frag);
881 
882 			dma_addr = skb_frag_dma_map(dp->dev, frag, 0,
883 						    fsize, DMA_TO_DEVICE);
884 			if (dma_mapping_error(dp->dev, dma_addr))
885 				goto err_unmap;
886 
887 			wr_idx = D_IDX(tx_ring, wr_idx + 1);
888 			tx_ring->txbufs[wr_idx].skb = skb;
889 			tx_ring->txbufs[wr_idx].dma_addr = dma_addr;
890 			tx_ring->txbufs[wr_idx].fidx = f;
891 
892 			txd = &tx_ring->txds[wr_idx];
893 			*txd = txdg;
894 			txd->dma_len = cpu_to_le16(fsize);
895 			nfp_desc_set_dma_addr(txd, dma_addr);
896 			txd->offset_eop |=
897 				(f == nr_frags - 1) ? PCIE_DESC_TX_EOP : 0;
898 		}
899 
900 		u64_stats_update_begin(&r_vec->tx_sync);
901 		r_vec->tx_gather++;
902 		u64_stats_update_end(&r_vec->tx_sync);
903 	}
904 
905 	netdev_tx_sent_queue(nd_q, txbuf->real_len);
906 
907 	skb_tx_timestamp(skb);
908 
909 	tx_ring->wr_p += nr_frags + 1;
910 	if (nfp_net_tx_ring_should_stop(tx_ring))
911 		nfp_net_tx_ring_stop(nd_q, tx_ring);
912 
913 	tx_ring->wr_ptr_add += nr_frags + 1;
914 	if (!skb->xmit_more || netif_xmit_stopped(nd_q))
915 		nfp_net_tx_xmit_more_flush(tx_ring);
916 
917 	return NETDEV_TX_OK;
918 
919 err_unmap:
920 	while (--f >= 0) {
921 		frag = &skb_shinfo(skb)->frags[f];
922 		dma_unmap_page(dp->dev, tx_ring->txbufs[wr_idx].dma_addr,
923 			       skb_frag_size(frag), DMA_TO_DEVICE);
924 		tx_ring->txbufs[wr_idx].skb = NULL;
925 		tx_ring->txbufs[wr_idx].dma_addr = 0;
926 		tx_ring->txbufs[wr_idx].fidx = -2;
927 		wr_idx = wr_idx - 1;
928 		if (wr_idx < 0)
929 			wr_idx += tx_ring->cnt;
930 	}
931 	dma_unmap_single(dp->dev, tx_ring->txbufs[wr_idx].dma_addr,
932 			 skb_headlen(skb), DMA_TO_DEVICE);
933 	tx_ring->txbufs[wr_idx].skb = NULL;
934 	tx_ring->txbufs[wr_idx].dma_addr = 0;
935 	tx_ring->txbufs[wr_idx].fidx = -2;
936 err_free:
937 	nn_dp_warn(dp, "Failed to map DMA TX buffer\n");
938 	nfp_net_tx_xmit_more_flush(tx_ring);
939 	u64_stats_update_begin(&r_vec->tx_sync);
940 	r_vec->tx_errors++;
941 	u64_stats_update_end(&r_vec->tx_sync);
942 	dev_kfree_skb_any(skb);
943 	return NETDEV_TX_OK;
944 }
945 
946 /**
947  * nfp_net_tx_complete() - Handled completed TX packets
948  * @tx_ring:	TX ring structure
949  * @budget:	NAPI budget (only used as bool to determine if in NAPI context)
950  *
951  * Return: Number of completed TX descriptors
952  */
953 static void nfp_net_tx_complete(struct nfp_net_tx_ring *tx_ring, int budget)
954 {
955 	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
956 	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
957 	const struct skb_frag_struct *frag;
958 	struct netdev_queue *nd_q;
959 	u32 done_pkts = 0, done_bytes = 0;
960 	struct sk_buff *skb;
961 	int todo, nr_frags;
962 	u32 qcp_rd_p;
963 	int fidx;
964 	int idx;
965 
966 	if (tx_ring->wr_p == tx_ring->rd_p)
967 		return;
968 
969 	/* Work out how many descriptors have been transmitted */
970 	qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q);
971 
972 	if (qcp_rd_p == tx_ring->qcp_rd_p)
973 		return;
974 
975 	todo = D_IDX(tx_ring, qcp_rd_p - tx_ring->qcp_rd_p);
976 
977 	while (todo--) {
978 		idx = D_IDX(tx_ring, tx_ring->rd_p++);
979 
980 		skb = tx_ring->txbufs[idx].skb;
981 		if (!skb)
982 			continue;
983 
984 		nr_frags = skb_shinfo(skb)->nr_frags;
985 		fidx = tx_ring->txbufs[idx].fidx;
986 
987 		if (fidx == -1) {
988 			/* unmap head */
989 			dma_unmap_single(dp->dev, tx_ring->txbufs[idx].dma_addr,
990 					 skb_headlen(skb), DMA_TO_DEVICE);
991 
992 			done_pkts += tx_ring->txbufs[idx].pkt_cnt;
993 			done_bytes += tx_ring->txbufs[idx].real_len;
994 		} else {
995 			/* unmap fragment */
996 			frag = &skb_shinfo(skb)->frags[fidx];
997 			dma_unmap_page(dp->dev, tx_ring->txbufs[idx].dma_addr,
998 				       skb_frag_size(frag), DMA_TO_DEVICE);
999 		}
1000 
1001 		/* check for last gather fragment */
1002 		if (fidx == nr_frags - 1)
1003 			napi_consume_skb(skb, budget);
1004 
1005 		tx_ring->txbufs[idx].dma_addr = 0;
1006 		tx_ring->txbufs[idx].skb = NULL;
1007 		tx_ring->txbufs[idx].fidx = -2;
1008 	}
1009 
1010 	tx_ring->qcp_rd_p = qcp_rd_p;
1011 
1012 	u64_stats_update_begin(&r_vec->tx_sync);
1013 	r_vec->tx_bytes += done_bytes;
1014 	r_vec->tx_pkts += done_pkts;
1015 	u64_stats_update_end(&r_vec->tx_sync);
1016 
1017 	if (!dp->netdev)
1018 		return;
1019 
1020 	nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx);
1021 	netdev_tx_completed_queue(nd_q, done_pkts, done_bytes);
1022 	if (nfp_net_tx_ring_should_wake(tx_ring)) {
1023 		/* Make sure TX thread will see updated tx_ring->rd_p */
1024 		smp_mb();
1025 
1026 		if (unlikely(netif_tx_queue_stopped(nd_q)))
1027 			netif_tx_wake_queue(nd_q);
1028 	}
1029 
1030 	WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt,
1031 		  "TX ring corruption rd_p=%u wr_p=%u cnt=%u\n",
1032 		  tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt);
1033 }
1034 
1035 static bool nfp_net_xdp_complete(struct nfp_net_tx_ring *tx_ring)
1036 {
1037 	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
1038 	u32 done_pkts = 0, done_bytes = 0;
1039 	bool done_all;
1040 	int idx, todo;
1041 	u32 qcp_rd_p;
1042 
1043 	/* Work out how many descriptors have been transmitted */
1044 	qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q);
1045 
1046 	if (qcp_rd_p == tx_ring->qcp_rd_p)
1047 		return true;
1048 
1049 	todo = D_IDX(tx_ring, qcp_rd_p - tx_ring->qcp_rd_p);
1050 
1051 	done_all = todo <= NFP_NET_XDP_MAX_COMPLETE;
1052 	todo = min(todo, NFP_NET_XDP_MAX_COMPLETE);
1053 
1054 	tx_ring->qcp_rd_p = D_IDX(tx_ring, tx_ring->qcp_rd_p + todo);
1055 
1056 	done_pkts = todo;
1057 	while (todo--) {
1058 		idx = D_IDX(tx_ring, tx_ring->rd_p);
1059 		tx_ring->rd_p++;
1060 
1061 		done_bytes += tx_ring->txbufs[idx].real_len;
1062 	}
1063 
1064 	u64_stats_update_begin(&r_vec->tx_sync);
1065 	r_vec->tx_bytes += done_bytes;
1066 	r_vec->tx_pkts += done_pkts;
1067 	u64_stats_update_end(&r_vec->tx_sync);
1068 
1069 	WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt,
1070 		  "XDP TX ring corruption rd_p=%u wr_p=%u cnt=%u\n",
1071 		  tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt);
1072 
1073 	return done_all;
1074 }
1075 
1076 /**
1077  * nfp_net_tx_ring_reset() - Free any untransmitted buffers and reset pointers
1078  * @dp:		NFP Net data path struct
1079  * @tx_ring:	TX ring structure
1080  *
1081  * Assumes that the device is stopped
1082  */
1083 static void
1084 nfp_net_tx_ring_reset(struct nfp_net_dp *dp, struct nfp_net_tx_ring *tx_ring)
1085 {
1086 	const struct skb_frag_struct *frag;
1087 	struct netdev_queue *nd_q;
1088 
1089 	while (!tx_ring->is_xdp && tx_ring->rd_p != tx_ring->wr_p) {
1090 		struct nfp_net_tx_buf *tx_buf;
1091 		struct sk_buff *skb;
1092 		int idx, nr_frags;
1093 
1094 		idx = D_IDX(tx_ring, tx_ring->rd_p);
1095 		tx_buf = &tx_ring->txbufs[idx];
1096 
1097 		skb = tx_ring->txbufs[idx].skb;
1098 		nr_frags = skb_shinfo(skb)->nr_frags;
1099 
1100 		if (tx_buf->fidx == -1) {
1101 			/* unmap head */
1102 			dma_unmap_single(dp->dev, tx_buf->dma_addr,
1103 					 skb_headlen(skb), DMA_TO_DEVICE);
1104 		} else {
1105 			/* unmap fragment */
1106 			frag = &skb_shinfo(skb)->frags[tx_buf->fidx];
1107 			dma_unmap_page(dp->dev, tx_buf->dma_addr,
1108 				       skb_frag_size(frag), DMA_TO_DEVICE);
1109 		}
1110 
1111 		/* check for last gather fragment */
1112 		if (tx_buf->fidx == nr_frags - 1)
1113 			dev_kfree_skb_any(skb);
1114 
1115 		tx_buf->dma_addr = 0;
1116 		tx_buf->skb = NULL;
1117 		tx_buf->fidx = -2;
1118 
1119 		tx_ring->qcp_rd_p++;
1120 		tx_ring->rd_p++;
1121 	}
1122 
1123 	memset(tx_ring->txds, 0, sizeof(*tx_ring->txds) * tx_ring->cnt);
1124 	tx_ring->wr_p = 0;
1125 	tx_ring->rd_p = 0;
1126 	tx_ring->qcp_rd_p = 0;
1127 	tx_ring->wr_ptr_add = 0;
1128 
1129 	if (tx_ring->is_xdp || !dp->netdev)
1130 		return;
1131 
1132 	nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx);
1133 	netdev_tx_reset_queue(nd_q);
1134 }
1135 
1136 static void nfp_net_tx_timeout(struct net_device *netdev)
1137 {
1138 	struct nfp_net *nn = netdev_priv(netdev);
1139 	int i;
1140 
1141 	for (i = 0; i < nn->dp.netdev->real_num_tx_queues; i++) {
1142 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(netdev, i)))
1143 			continue;
1144 		nn_warn(nn, "TX timeout on ring: %d\n", i);
1145 	}
1146 	nn_warn(nn, "TX watchdog timeout\n");
1147 }
1148 
1149 /* Receive processing
1150  */
1151 static unsigned int
1152 nfp_net_calc_fl_bufsz(struct nfp_net_dp *dp)
1153 {
1154 	unsigned int fl_bufsz;
1155 
1156 	fl_bufsz = NFP_NET_RX_BUF_HEADROOM;
1157 	fl_bufsz += dp->rx_dma_off;
1158 	if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
1159 		fl_bufsz += NFP_NET_MAX_PREPEND;
1160 	else
1161 		fl_bufsz += dp->rx_offset;
1162 	fl_bufsz += ETH_HLEN + VLAN_HLEN * 2 + dp->mtu;
1163 
1164 	fl_bufsz = SKB_DATA_ALIGN(fl_bufsz);
1165 	fl_bufsz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1166 
1167 	return fl_bufsz;
1168 }
1169 
1170 static void
1171 nfp_net_free_frag(void *frag, bool xdp)
1172 {
1173 	if (!xdp)
1174 		skb_free_frag(frag);
1175 	else
1176 		__free_page(virt_to_page(frag));
1177 }
1178 
1179 /**
1180  * nfp_net_rx_alloc_one() - Allocate and map page frag for RX
1181  * @dp:		NFP Net data path struct
1182  * @dma_addr:	Pointer to storage for DMA address (output param)
1183  *
1184  * This function will allcate a new page frag, map it for DMA.
1185  *
1186  * Return: allocated page frag or NULL on failure.
1187  */
1188 static void *nfp_net_rx_alloc_one(struct nfp_net_dp *dp, dma_addr_t *dma_addr)
1189 {
1190 	void *frag;
1191 
1192 	if (!dp->xdp_prog) {
1193 		frag = netdev_alloc_frag(dp->fl_bufsz);
1194 	} else {
1195 		struct page *page;
1196 
1197 		page = alloc_page(GFP_KERNEL);
1198 		frag = page ? page_address(page) : NULL;
1199 	}
1200 	if (!frag) {
1201 		nn_dp_warn(dp, "Failed to alloc receive page frag\n");
1202 		return NULL;
1203 	}
1204 
1205 	*dma_addr = nfp_net_dma_map_rx(dp, frag);
1206 	if (dma_mapping_error(dp->dev, *dma_addr)) {
1207 		nfp_net_free_frag(frag, dp->xdp_prog);
1208 		nn_dp_warn(dp, "Failed to map DMA RX buffer\n");
1209 		return NULL;
1210 	}
1211 
1212 	return frag;
1213 }
1214 
1215 static void *nfp_net_napi_alloc_one(struct nfp_net_dp *dp, dma_addr_t *dma_addr)
1216 {
1217 	void *frag;
1218 
1219 	if (!dp->xdp_prog) {
1220 		frag = napi_alloc_frag(dp->fl_bufsz);
1221 		if (unlikely(!frag))
1222 			return NULL;
1223 	} else {
1224 		struct page *page;
1225 
1226 		page = dev_alloc_page();
1227 		if (unlikely(!page))
1228 			return NULL;
1229 		frag = page_address(page);
1230 	}
1231 
1232 	*dma_addr = nfp_net_dma_map_rx(dp, frag);
1233 	if (dma_mapping_error(dp->dev, *dma_addr)) {
1234 		nfp_net_free_frag(frag, dp->xdp_prog);
1235 		nn_dp_warn(dp, "Failed to map DMA RX buffer\n");
1236 		return NULL;
1237 	}
1238 
1239 	return frag;
1240 }
1241 
1242 /**
1243  * nfp_net_rx_give_one() - Put mapped skb on the software and hardware rings
1244  * @dp:		NFP Net data path struct
1245  * @rx_ring:	RX ring structure
1246  * @frag:	page fragment buffer
1247  * @dma_addr:	DMA address of skb mapping
1248  */
1249 static void nfp_net_rx_give_one(const struct nfp_net_dp *dp,
1250 				struct nfp_net_rx_ring *rx_ring,
1251 				void *frag, dma_addr_t dma_addr)
1252 {
1253 	unsigned int wr_idx;
1254 
1255 	wr_idx = D_IDX(rx_ring, rx_ring->wr_p);
1256 
1257 	nfp_net_dma_sync_dev_rx(dp, dma_addr);
1258 
1259 	/* Stash SKB and DMA address away */
1260 	rx_ring->rxbufs[wr_idx].frag = frag;
1261 	rx_ring->rxbufs[wr_idx].dma_addr = dma_addr;
1262 
1263 	/* Fill freelist descriptor */
1264 	rx_ring->rxds[wr_idx].fld.reserved = 0;
1265 	rx_ring->rxds[wr_idx].fld.meta_len_dd = 0;
1266 	nfp_desc_set_dma_addr(&rx_ring->rxds[wr_idx].fld,
1267 			      dma_addr + dp->rx_dma_off);
1268 
1269 	rx_ring->wr_p++;
1270 	if (!(rx_ring->wr_p % NFP_NET_FL_BATCH)) {
1271 		/* Update write pointer of the freelist queue. Make
1272 		 * sure all writes are flushed before telling the hardware.
1273 		 */
1274 		wmb();
1275 		nfp_qcp_wr_ptr_add(rx_ring->qcp_fl, NFP_NET_FL_BATCH);
1276 	}
1277 }
1278 
1279 /**
1280  * nfp_net_rx_ring_reset() - Reflect in SW state of freelist after disable
1281  * @rx_ring:	RX ring structure
1282  *
1283  * Warning: Do *not* call if ring buffers were never put on the FW freelist
1284  *	    (i.e. device was not enabled)!
1285  */
1286 static void nfp_net_rx_ring_reset(struct nfp_net_rx_ring *rx_ring)
1287 {
1288 	unsigned int wr_idx, last_idx;
1289 
1290 	/* Move the empty entry to the end of the list */
1291 	wr_idx = D_IDX(rx_ring, rx_ring->wr_p);
1292 	last_idx = rx_ring->cnt - 1;
1293 	rx_ring->rxbufs[wr_idx].dma_addr = rx_ring->rxbufs[last_idx].dma_addr;
1294 	rx_ring->rxbufs[wr_idx].frag = rx_ring->rxbufs[last_idx].frag;
1295 	rx_ring->rxbufs[last_idx].dma_addr = 0;
1296 	rx_ring->rxbufs[last_idx].frag = NULL;
1297 
1298 	memset(rx_ring->rxds, 0, sizeof(*rx_ring->rxds) * rx_ring->cnt);
1299 	rx_ring->wr_p = 0;
1300 	rx_ring->rd_p = 0;
1301 }
1302 
1303 /**
1304  * nfp_net_rx_ring_bufs_free() - Free any buffers currently on the RX ring
1305  * @dp:		NFP Net data path struct
1306  * @rx_ring:	RX ring to remove buffers from
1307  *
1308  * Assumes that the device is stopped and buffers are in [0, ring->cnt - 1)
1309  * entries.  After device is disabled nfp_net_rx_ring_reset() must be called
1310  * to restore required ring geometry.
1311  */
1312 static void
1313 nfp_net_rx_ring_bufs_free(struct nfp_net_dp *dp,
1314 			  struct nfp_net_rx_ring *rx_ring)
1315 {
1316 	unsigned int i;
1317 
1318 	for (i = 0; i < rx_ring->cnt - 1; i++) {
1319 		/* NULL skb can only happen when initial filling of the ring
1320 		 * fails to allocate enough buffers and calls here to free
1321 		 * already allocated ones.
1322 		 */
1323 		if (!rx_ring->rxbufs[i].frag)
1324 			continue;
1325 
1326 		nfp_net_dma_unmap_rx(dp, rx_ring->rxbufs[i].dma_addr);
1327 		nfp_net_free_frag(rx_ring->rxbufs[i].frag, dp->xdp_prog);
1328 		rx_ring->rxbufs[i].dma_addr = 0;
1329 		rx_ring->rxbufs[i].frag = NULL;
1330 	}
1331 }
1332 
1333 /**
1334  * nfp_net_rx_ring_bufs_alloc() - Fill RX ring with buffers (don't give to FW)
1335  * @dp:		NFP Net data path struct
1336  * @rx_ring:	RX ring to remove buffers from
1337  */
1338 static int
1339 nfp_net_rx_ring_bufs_alloc(struct nfp_net_dp *dp,
1340 			   struct nfp_net_rx_ring *rx_ring)
1341 {
1342 	struct nfp_net_rx_buf *rxbufs;
1343 	unsigned int i;
1344 
1345 	rxbufs = rx_ring->rxbufs;
1346 
1347 	for (i = 0; i < rx_ring->cnt - 1; i++) {
1348 		rxbufs[i].frag = nfp_net_rx_alloc_one(dp, &rxbufs[i].dma_addr);
1349 		if (!rxbufs[i].frag) {
1350 			nfp_net_rx_ring_bufs_free(dp, rx_ring);
1351 			return -ENOMEM;
1352 		}
1353 	}
1354 
1355 	return 0;
1356 }
1357 
1358 /**
1359  * nfp_net_rx_ring_fill_freelist() - Give buffers from the ring to FW
1360  * @dp:	     NFP Net data path struct
1361  * @rx_ring: RX ring to fill
1362  */
1363 static void
1364 nfp_net_rx_ring_fill_freelist(struct nfp_net_dp *dp,
1365 			      struct nfp_net_rx_ring *rx_ring)
1366 {
1367 	unsigned int i;
1368 
1369 	for (i = 0; i < rx_ring->cnt - 1; i++)
1370 		nfp_net_rx_give_one(dp, rx_ring, rx_ring->rxbufs[i].frag,
1371 				    rx_ring->rxbufs[i].dma_addr);
1372 }
1373 
1374 /**
1375  * nfp_net_rx_csum_has_errors() - group check if rxd has any csum errors
1376  * @flags: RX descriptor flags field in CPU byte order
1377  */
1378 static int nfp_net_rx_csum_has_errors(u16 flags)
1379 {
1380 	u16 csum_all_checked, csum_all_ok;
1381 
1382 	csum_all_checked = flags & __PCIE_DESC_RX_CSUM_ALL;
1383 	csum_all_ok = flags & __PCIE_DESC_RX_CSUM_ALL_OK;
1384 
1385 	return csum_all_checked != (csum_all_ok << PCIE_DESC_RX_CSUM_OK_SHIFT);
1386 }
1387 
1388 /**
1389  * nfp_net_rx_csum() - set SKB checksum field based on RX descriptor flags
1390  * @dp:  NFP Net data path struct
1391  * @r_vec: per-ring structure
1392  * @rxd: Pointer to RX descriptor
1393  * @meta: Parsed metadata prepend
1394  * @skb: Pointer to SKB
1395  */
1396 static void nfp_net_rx_csum(struct nfp_net_dp *dp,
1397 			    struct nfp_net_r_vector *r_vec,
1398 			    struct nfp_net_rx_desc *rxd,
1399 			    struct nfp_meta_parsed *meta, struct sk_buff *skb)
1400 {
1401 	skb_checksum_none_assert(skb);
1402 
1403 	if (!(dp->netdev->features & NETIF_F_RXCSUM))
1404 		return;
1405 
1406 	if (meta->csum_type) {
1407 		skb->ip_summed = meta->csum_type;
1408 		skb->csum = meta->csum;
1409 		u64_stats_update_begin(&r_vec->rx_sync);
1410 		r_vec->hw_csum_rx_complete++;
1411 		u64_stats_update_end(&r_vec->rx_sync);
1412 		return;
1413 	}
1414 
1415 	if (nfp_net_rx_csum_has_errors(le16_to_cpu(rxd->rxd.flags))) {
1416 		u64_stats_update_begin(&r_vec->rx_sync);
1417 		r_vec->hw_csum_rx_error++;
1418 		u64_stats_update_end(&r_vec->rx_sync);
1419 		return;
1420 	}
1421 
1422 	/* Assume that the firmware will never report inner CSUM_OK unless outer
1423 	 * L4 headers were successfully parsed. FW will always report zero UDP
1424 	 * checksum as CSUM_OK.
1425 	 */
1426 	if (rxd->rxd.flags & PCIE_DESC_RX_TCP_CSUM_OK ||
1427 	    rxd->rxd.flags & PCIE_DESC_RX_UDP_CSUM_OK) {
1428 		__skb_incr_checksum_unnecessary(skb);
1429 		u64_stats_update_begin(&r_vec->rx_sync);
1430 		r_vec->hw_csum_rx_ok++;
1431 		u64_stats_update_end(&r_vec->rx_sync);
1432 	}
1433 
1434 	if (rxd->rxd.flags & PCIE_DESC_RX_I_TCP_CSUM_OK ||
1435 	    rxd->rxd.flags & PCIE_DESC_RX_I_UDP_CSUM_OK) {
1436 		__skb_incr_checksum_unnecessary(skb);
1437 		u64_stats_update_begin(&r_vec->rx_sync);
1438 		r_vec->hw_csum_rx_inner_ok++;
1439 		u64_stats_update_end(&r_vec->rx_sync);
1440 	}
1441 }
1442 
1443 static void
1444 nfp_net_set_hash(struct net_device *netdev, struct nfp_meta_parsed *meta,
1445 		 unsigned int type, __be32 *hash)
1446 {
1447 	if (!(netdev->features & NETIF_F_RXHASH))
1448 		return;
1449 
1450 	switch (type) {
1451 	case NFP_NET_RSS_IPV4:
1452 	case NFP_NET_RSS_IPV6:
1453 	case NFP_NET_RSS_IPV6_EX:
1454 		meta->hash_type = PKT_HASH_TYPE_L3;
1455 		break;
1456 	default:
1457 		meta->hash_type = PKT_HASH_TYPE_L4;
1458 		break;
1459 	}
1460 
1461 	meta->hash = get_unaligned_be32(hash);
1462 }
1463 
1464 static void
1465 nfp_net_set_hash_desc(struct net_device *netdev, struct nfp_meta_parsed *meta,
1466 		      void *data, struct nfp_net_rx_desc *rxd)
1467 {
1468 	struct nfp_net_rx_hash *rx_hash = data;
1469 
1470 	if (!(rxd->rxd.flags & PCIE_DESC_RX_RSS))
1471 		return;
1472 
1473 	nfp_net_set_hash(netdev, meta, get_unaligned_be32(&rx_hash->hash_type),
1474 			 &rx_hash->hash);
1475 }
1476 
1477 static void *
1478 nfp_net_parse_meta(struct net_device *netdev, struct nfp_meta_parsed *meta,
1479 		   void *data, int meta_len)
1480 {
1481 	u32 meta_info;
1482 
1483 	meta_info = get_unaligned_be32(data);
1484 	data += 4;
1485 
1486 	while (meta_info) {
1487 		switch (meta_info & NFP_NET_META_FIELD_MASK) {
1488 		case NFP_NET_META_HASH:
1489 			meta_info >>= NFP_NET_META_FIELD_SIZE;
1490 			nfp_net_set_hash(netdev, meta,
1491 					 meta_info & NFP_NET_META_FIELD_MASK,
1492 					 (__be32 *)data);
1493 			data += 4;
1494 			break;
1495 		case NFP_NET_META_MARK:
1496 			meta->mark = get_unaligned_be32(data);
1497 			data += 4;
1498 			break;
1499 		case NFP_NET_META_PORTID:
1500 			meta->portid = get_unaligned_be32(data);
1501 			data += 4;
1502 			break;
1503 		case NFP_NET_META_CSUM:
1504 			meta->csum_type = CHECKSUM_COMPLETE;
1505 			meta->csum =
1506 				(__force __wsum)__get_unaligned_cpu32(data);
1507 			data += 4;
1508 			break;
1509 		default:
1510 			return NULL;
1511 		}
1512 
1513 		meta_info >>= NFP_NET_META_FIELD_SIZE;
1514 	}
1515 
1516 	return data;
1517 }
1518 
1519 static void
1520 nfp_net_rx_drop(const struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec,
1521 		struct nfp_net_rx_ring *rx_ring, struct nfp_net_rx_buf *rxbuf,
1522 		struct sk_buff *skb)
1523 {
1524 	u64_stats_update_begin(&r_vec->rx_sync);
1525 	r_vec->rx_drops++;
1526 	/* If we have both skb and rxbuf the replacement buffer allocation
1527 	 * must have failed, count this as an alloc failure.
1528 	 */
1529 	if (skb && rxbuf)
1530 		r_vec->rx_replace_buf_alloc_fail++;
1531 	u64_stats_update_end(&r_vec->rx_sync);
1532 
1533 	/* skb is build based on the frag, free_skb() would free the frag
1534 	 * so to be able to reuse it we need an extra ref.
1535 	 */
1536 	if (skb && rxbuf && skb->head == rxbuf->frag)
1537 		page_ref_inc(virt_to_head_page(rxbuf->frag));
1538 	if (rxbuf)
1539 		nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag, rxbuf->dma_addr);
1540 	if (skb)
1541 		dev_kfree_skb_any(skb);
1542 }
1543 
1544 static bool
1545 nfp_net_tx_xdp_buf(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring,
1546 		   struct nfp_net_tx_ring *tx_ring,
1547 		   struct nfp_net_rx_buf *rxbuf, unsigned int dma_off,
1548 		   unsigned int pkt_len, bool *completed)
1549 {
1550 	struct nfp_net_tx_buf *txbuf;
1551 	struct nfp_net_tx_desc *txd;
1552 	int wr_idx;
1553 
1554 	if (unlikely(nfp_net_tx_full(tx_ring, 1))) {
1555 		if (!*completed) {
1556 			nfp_net_xdp_complete(tx_ring);
1557 			*completed = true;
1558 		}
1559 
1560 		if (unlikely(nfp_net_tx_full(tx_ring, 1))) {
1561 			nfp_net_rx_drop(dp, rx_ring->r_vec, rx_ring, rxbuf,
1562 					NULL);
1563 			return false;
1564 		}
1565 	}
1566 
1567 	wr_idx = D_IDX(tx_ring, tx_ring->wr_p);
1568 
1569 	/* Stash the soft descriptor of the head then initialize it */
1570 	txbuf = &tx_ring->txbufs[wr_idx];
1571 
1572 	nfp_net_rx_give_one(dp, rx_ring, txbuf->frag, txbuf->dma_addr);
1573 
1574 	txbuf->frag = rxbuf->frag;
1575 	txbuf->dma_addr = rxbuf->dma_addr;
1576 	txbuf->fidx = -1;
1577 	txbuf->pkt_cnt = 1;
1578 	txbuf->real_len = pkt_len;
1579 
1580 	dma_sync_single_for_device(dp->dev, rxbuf->dma_addr + dma_off,
1581 				   pkt_len, DMA_BIDIRECTIONAL);
1582 
1583 	/* Build TX descriptor */
1584 	txd = &tx_ring->txds[wr_idx];
1585 	txd->offset_eop = PCIE_DESC_TX_EOP;
1586 	txd->dma_len = cpu_to_le16(pkt_len);
1587 	nfp_desc_set_dma_addr(txd, rxbuf->dma_addr + dma_off);
1588 	txd->data_len = cpu_to_le16(pkt_len);
1589 
1590 	txd->flags = 0;
1591 	txd->mss = 0;
1592 	txd->lso_hdrlen = 0;
1593 
1594 	tx_ring->wr_p++;
1595 	tx_ring->wr_ptr_add++;
1596 	return true;
1597 }
1598 
1599 /**
1600  * nfp_net_rx() - receive up to @budget packets on @rx_ring
1601  * @rx_ring:   RX ring to receive from
1602  * @budget:    NAPI budget
1603  *
1604  * Note, this function is separated out from the napi poll function to
1605  * more cleanly separate packet receive code from other bookkeeping
1606  * functions performed in the napi poll function.
1607  *
1608  * Return: Number of packets received.
1609  */
1610 static int nfp_net_rx(struct nfp_net_rx_ring *rx_ring, int budget)
1611 {
1612 	struct nfp_net_r_vector *r_vec = rx_ring->r_vec;
1613 	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
1614 	struct nfp_net_tx_ring *tx_ring;
1615 	struct bpf_prog *xdp_prog;
1616 	bool xdp_tx_cmpl = false;
1617 	unsigned int true_bufsz;
1618 	struct sk_buff *skb;
1619 	int pkts_polled = 0;
1620 	struct xdp_buff xdp;
1621 	int idx;
1622 
1623 	rcu_read_lock();
1624 	xdp_prog = READ_ONCE(dp->xdp_prog);
1625 	true_bufsz = xdp_prog ? PAGE_SIZE : dp->fl_bufsz;
1626 	xdp.rxq = &rx_ring->xdp_rxq;
1627 	tx_ring = r_vec->xdp_ring;
1628 
1629 	while (pkts_polled < budget) {
1630 		unsigned int meta_len, data_len, meta_off, pkt_len, pkt_off;
1631 		struct nfp_net_rx_buf *rxbuf;
1632 		struct nfp_net_rx_desc *rxd;
1633 		struct nfp_meta_parsed meta;
1634 		struct net_device *netdev;
1635 		dma_addr_t new_dma_addr;
1636 		u32 meta_len_xdp = 0;
1637 		void *new_frag;
1638 
1639 		idx = D_IDX(rx_ring, rx_ring->rd_p);
1640 
1641 		rxd = &rx_ring->rxds[idx];
1642 		if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD))
1643 			break;
1644 
1645 		/* Memory barrier to ensure that we won't do other reads
1646 		 * before the DD bit.
1647 		 */
1648 		dma_rmb();
1649 
1650 		memset(&meta, 0, sizeof(meta));
1651 
1652 		rx_ring->rd_p++;
1653 		pkts_polled++;
1654 
1655 		rxbuf =	&rx_ring->rxbufs[idx];
1656 		/*         < meta_len >
1657 		 *  <-- [rx_offset] -->
1658 		 *  ---------------------------------------------------------
1659 		 * | [XX] |  metadata  |             packet           | XXXX |
1660 		 *  ---------------------------------------------------------
1661 		 *         <---------------- data_len --------------->
1662 		 *
1663 		 * The rx_offset is fixed for all packets, the meta_len can vary
1664 		 * on a packet by packet basis. If rx_offset is set to zero
1665 		 * (_RX_OFFSET_DYNAMIC) metadata starts at the beginning of the
1666 		 * buffer and is immediately followed by the packet (no [XX]).
1667 		 */
1668 		meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK;
1669 		data_len = le16_to_cpu(rxd->rxd.data_len);
1670 		pkt_len = data_len - meta_len;
1671 
1672 		pkt_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_dma_off;
1673 		if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
1674 			pkt_off += meta_len;
1675 		else
1676 			pkt_off += dp->rx_offset;
1677 		meta_off = pkt_off - meta_len;
1678 
1679 		/* Stats update */
1680 		u64_stats_update_begin(&r_vec->rx_sync);
1681 		r_vec->rx_pkts++;
1682 		r_vec->rx_bytes += pkt_len;
1683 		u64_stats_update_end(&r_vec->rx_sync);
1684 
1685 		if (unlikely(meta_len > NFP_NET_MAX_PREPEND ||
1686 			     (dp->rx_offset && meta_len > dp->rx_offset))) {
1687 			nn_dp_warn(dp, "oversized RX packet metadata %u\n",
1688 				   meta_len);
1689 			nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
1690 			continue;
1691 		}
1692 
1693 		nfp_net_dma_sync_cpu_rx(dp, rxbuf->dma_addr + meta_off,
1694 					data_len);
1695 
1696 		if (!dp->chained_metadata_format) {
1697 			nfp_net_set_hash_desc(dp->netdev, &meta,
1698 					      rxbuf->frag + meta_off, rxd);
1699 		} else if (meta_len) {
1700 			void *end;
1701 
1702 			end = nfp_net_parse_meta(dp->netdev, &meta,
1703 						 rxbuf->frag + meta_off,
1704 						 meta_len);
1705 			if (unlikely(end != rxbuf->frag + pkt_off)) {
1706 				nn_dp_warn(dp, "invalid RX packet metadata\n");
1707 				nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf,
1708 						NULL);
1709 				continue;
1710 			}
1711 		}
1712 
1713 		if (xdp_prog && !(rxd->rxd.flags & PCIE_DESC_RX_BPF &&
1714 				  dp->bpf_offload_xdp) && !meta.portid) {
1715 			void *orig_data = rxbuf->frag + pkt_off;
1716 			unsigned int dma_off;
1717 			int act;
1718 
1719 			xdp.data_hard_start = rxbuf->frag + NFP_NET_RX_BUF_HEADROOM;
1720 			xdp.data = orig_data;
1721 			xdp.data_meta = orig_data;
1722 			xdp.data_end = orig_data + pkt_len;
1723 
1724 			act = bpf_prog_run_xdp(xdp_prog, &xdp);
1725 
1726 			pkt_len = xdp.data_end - xdp.data;
1727 			pkt_off += xdp.data - orig_data;
1728 
1729 			switch (act) {
1730 			case XDP_PASS:
1731 				meta_len_xdp = xdp.data - xdp.data_meta;
1732 				break;
1733 			case XDP_TX:
1734 				dma_off = pkt_off - NFP_NET_RX_BUF_HEADROOM;
1735 				if (unlikely(!nfp_net_tx_xdp_buf(dp, rx_ring,
1736 								 tx_ring, rxbuf,
1737 								 dma_off,
1738 								 pkt_len,
1739 								 &xdp_tx_cmpl)))
1740 					trace_xdp_exception(dp->netdev,
1741 							    xdp_prog, act);
1742 				continue;
1743 			default:
1744 				bpf_warn_invalid_xdp_action(act);
1745 				/* fall through */
1746 			case XDP_ABORTED:
1747 				trace_xdp_exception(dp->netdev, xdp_prog, act);
1748 				/* fall through */
1749 			case XDP_DROP:
1750 				nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag,
1751 						    rxbuf->dma_addr);
1752 				continue;
1753 			}
1754 		}
1755 
1756 		skb = build_skb(rxbuf->frag, true_bufsz);
1757 		if (unlikely(!skb)) {
1758 			nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
1759 			continue;
1760 		}
1761 		new_frag = nfp_net_napi_alloc_one(dp, &new_dma_addr);
1762 		if (unlikely(!new_frag)) {
1763 			nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, skb);
1764 			continue;
1765 		}
1766 
1767 		nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr);
1768 
1769 		nfp_net_rx_give_one(dp, rx_ring, new_frag, new_dma_addr);
1770 
1771 		if (likely(!meta.portid)) {
1772 			netdev = dp->netdev;
1773 		} else {
1774 			struct nfp_net *nn;
1775 
1776 			nn = netdev_priv(dp->netdev);
1777 			netdev = nfp_app_repr_get(nn->app, meta.portid);
1778 			if (unlikely(!netdev)) {
1779 				nfp_net_rx_drop(dp, r_vec, rx_ring, NULL, skb);
1780 				continue;
1781 			}
1782 			nfp_repr_inc_rx_stats(netdev, pkt_len);
1783 		}
1784 
1785 		skb_reserve(skb, pkt_off);
1786 		skb_put(skb, pkt_len);
1787 
1788 		skb->mark = meta.mark;
1789 		skb_set_hash(skb, meta.hash, meta.hash_type);
1790 
1791 		skb_record_rx_queue(skb, rx_ring->idx);
1792 		skb->protocol = eth_type_trans(skb, netdev);
1793 
1794 		nfp_net_rx_csum(dp, r_vec, rxd, &meta, skb);
1795 
1796 		if (rxd->rxd.flags & PCIE_DESC_RX_VLAN)
1797 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1798 					       le16_to_cpu(rxd->rxd.vlan));
1799 		if (meta_len_xdp)
1800 			skb_metadata_set(skb, meta_len_xdp);
1801 
1802 		napi_gro_receive(&rx_ring->r_vec->napi, skb);
1803 	}
1804 
1805 	if (xdp_prog) {
1806 		if (tx_ring->wr_ptr_add)
1807 			nfp_net_tx_xmit_more_flush(tx_ring);
1808 		else if (unlikely(tx_ring->wr_p != tx_ring->rd_p) &&
1809 			 !xdp_tx_cmpl)
1810 			if (!nfp_net_xdp_complete(tx_ring))
1811 				pkts_polled = budget;
1812 	}
1813 	rcu_read_unlock();
1814 
1815 	return pkts_polled;
1816 }
1817 
1818 /**
1819  * nfp_net_poll() - napi poll function
1820  * @napi:    NAPI structure
1821  * @budget:  NAPI budget
1822  *
1823  * Return: number of packets polled.
1824  */
1825 static int nfp_net_poll(struct napi_struct *napi, int budget)
1826 {
1827 	struct nfp_net_r_vector *r_vec =
1828 		container_of(napi, struct nfp_net_r_vector, napi);
1829 	unsigned int pkts_polled = 0;
1830 
1831 	if (r_vec->tx_ring)
1832 		nfp_net_tx_complete(r_vec->tx_ring, budget);
1833 	if (r_vec->rx_ring)
1834 		pkts_polled = nfp_net_rx(r_vec->rx_ring, budget);
1835 
1836 	if (pkts_polled < budget)
1837 		if (napi_complete_done(napi, pkts_polled))
1838 			nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry);
1839 
1840 	return pkts_polled;
1841 }
1842 
1843 /* Control device data path
1844  */
1845 
1846 static bool
1847 nfp_ctrl_tx_one(struct nfp_net *nn, struct nfp_net_r_vector *r_vec,
1848 		struct sk_buff *skb, bool old)
1849 {
1850 	unsigned int real_len = skb->len, meta_len = 0;
1851 	struct nfp_net_tx_ring *tx_ring;
1852 	struct nfp_net_tx_buf *txbuf;
1853 	struct nfp_net_tx_desc *txd;
1854 	struct nfp_net_dp *dp;
1855 	dma_addr_t dma_addr;
1856 	int wr_idx;
1857 
1858 	dp = &r_vec->nfp_net->dp;
1859 	tx_ring = r_vec->tx_ring;
1860 
1861 	if (WARN_ON_ONCE(skb_shinfo(skb)->nr_frags)) {
1862 		nn_dp_warn(dp, "Driver's CTRL TX does not implement gather\n");
1863 		goto err_free;
1864 	}
1865 
1866 	if (unlikely(nfp_net_tx_full(tx_ring, 1))) {
1867 		u64_stats_update_begin(&r_vec->tx_sync);
1868 		r_vec->tx_busy++;
1869 		u64_stats_update_end(&r_vec->tx_sync);
1870 		if (!old)
1871 			__skb_queue_tail(&r_vec->queue, skb);
1872 		else
1873 			__skb_queue_head(&r_vec->queue, skb);
1874 		return true;
1875 	}
1876 
1877 	if (nfp_app_ctrl_has_meta(nn->app)) {
1878 		if (unlikely(skb_headroom(skb) < 8)) {
1879 			nn_dp_warn(dp, "CTRL TX on skb without headroom\n");
1880 			goto err_free;
1881 		}
1882 		meta_len = 8;
1883 		put_unaligned_be32(NFP_META_PORT_ID_CTRL, skb_push(skb, 4));
1884 		put_unaligned_be32(NFP_NET_META_PORTID, skb_push(skb, 4));
1885 	}
1886 
1887 	/* Start with the head skbuf */
1888 	dma_addr = dma_map_single(dp->dev, skb->data, skb_headlen(skb),
1889 				  DMA_TO_DEVICE);
1890 	if (dma_mapping_error(dp->dev, dma_addr))
1891 		goto err_dma_warn;
1892 
1893 	wr_idx = D_IDX(tx_ring, tx_ring->wr_p);
1894 
1895 	/* Stash the soft descriptor of the head then initialize it */
1896 	txbuf = &tx_ring->txbufs[wr_idx];
1897 	txbuf->skb = skb;
1898 	txbuf->dma_addr = dma_addr;
1899 	txbuf->fidx = -1;
1900 	txbuf->pkt_cnt = 1;
1901 	txbuf->real_len = real_len;
1902 
1903 	/* Build TX descriptor */
1904 	txd = &tx_ring->txds[wr_idx];
1905 	txd->offset_eop = meta_len | PCIE_DESC_TX_EOP;
1906 	txd->dma_len = cpu_to_le16(skb_headlen(skb));
1907 	nfp_desc_set_dma_addr(txd, dma_addr);
1908 	txd->data_len = cpu_to_le16(skb->len);
1909 
1910 	txd->flags = 0;
1911 	txd->mss = 0;
1912 	txd->lso_hdrlen = 0;
1913 
1914 	tx_ring->wr_p++;
1915 	tx_ring->wr_ptr_add++;
1916 	nfp_net_tx_xmit_more_flush(tx_ring);
1917 
1918 	return false;
1919 
1920 err_dma_warn:
1921 	nn_dp_warn(dp, "Failed to DMA map TX CTRL buffer\n");
1922 err_free:
1923 	u64_stats_update_begin(&r_vec->tx_sync);
1924 	r_vec->tx_errors++;
1925 	u64_stats_update_end(&r_vec->tx_sync);
1926 	dev_kfree_skb_any(skb);
1927 	return false;
1928 }
1929 
1930 bool __nfp_ctrl_tx(struct nfp_net *nn, struct sk_buff *skb)
1931 {
1932 	struct nfp_net_r_vector *r_vec = &nn->r_vecs[0];
1933 
1934 	return nfp_ctrl_tx_one(nn, r_vec, skb, false);
1935 }
1936 
1937 bool nfp_ctrl_tx(struct nfp_net *nn, struct sk_buff *skb)
1938 {
1939 	struct nfp_net_r_vector *r_vec = &nn->r_vecs[0];
1940 	bool ret;
1941 
1942 	spin_lock_bh(&r_vec->lock);
1943 	ret = nfp_ctrl_tx_one(nn, r_vec, skb, false);
1944 	spin_unlock_bh(&r_vec->lock);
1945 
1946 	return ret;
1947 }
1948 
1949 static void __nfp_ctrl_tx_queued(struct nfp_net_r_vector *r_vec)
1950 {
1951 	struct sk_buff *skb;
1952 
1953 	while ((skb = __skb_dequeue(&r_vec->queue)))
1954 		if (nfp_ctrl_tx_one(r_vec->nfp_net, r_vec, skb, true))
1955 			return;
1956 }
1957 
1958 static bool
1959 nfp_ctrl_meta_ok(struct nfp_net *nn, void *data, unsigned int meta_len)
1960 {
1961 	u32 meta_type, meta_tag;
1962 
1963 	if (!nfp_app_ctrl_has_meta(nn->app))
1964 		return !meta_len;
1965 
1966 	if (meta_len != 8)
1967 		return false;
1968 
1969 	meta_type = get_unaligned_be32(data);
1970 	meta_tag = get_unaligned_be32(data + 4);
1971 
1972 	return (meta_type == NFP_NET_META_PORTID &&
1973 		meta_tag == NFP_META_PORT_ID_CTRL);
1974 }
1975 
1976 static bool
1977 nfp_ctrl_rx_one(struct nfp_net *nn, struct nfp_net_dp *dp,
1978 		struct nfp_net_r_vector *r_vec, struct nfp_net_rx_ring *rx_ring)
1979 {
1980 	unsigned int meta_len, data_len, meta_off, pkt_len, pkt_off;
1981 	struct nfp_net_rx_buf *rxbuf;
1982 	struct nfp_net_rx_desc *rxd;
1983 	dma_addr_t new_dma_addr;
1984 	struct sk_buff *skb;
1985 	void *new_frag;
1986 	int idx;
1987 
1988 	idx = D_IDX(rx_ring, rx_ring->rd_p);
1989 
1990 	rxd = &rx_ring->rxds[idx];
1991 	if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD))
1992 		return false;
1993 
1994 	/* Memory barrier to ensure that we won't do other reads
1995 	 * before the DD bit.
1996 	 */
1997 	dma_rmb();
1998 
1999 	rx_ring->rd_p++;
2000 
2001 	rxbuf =	&rx_ring->rxbufs[idx];
2002 	meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK;
2003 	data_len = le16_to_cpu(rxd->rxd.data_len);
2004 	pkt_len = data_len - meta_len;
2005 
2006 	pkt_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_dma_off;
2007 	if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
2008 		pkt_off += meta_len;
2009 	else
2010 		pkt_off += dp->rx_offset;
2011 	meta_off = pkt_off - meta_len;
2012 
2013 	/* Stats update */
2014 	u64_stats_update_begin(&r_vec->rx_sync);
2015 	r_vec->rx_pkts++;
2016 	r_vec->rx_bytes += pkt_len;
2017 	u64_stats_update_end(&r_vec->rx_sync);
2018 
2019 	nfp_net_dma_sync_cpu_rx(dp, rxbuf->dma_addr + meta_off,	data_len);
2020 
2021 	if (unlikely(!nfp_ctrl_meta_ok(nn, rxbuf->frag + meta_off, meta_len))) {
2022 		nn_dp_warn(dp, "incorrect metadata for ctrl packet (%d)\n",
2023 			   meta_len);
2024 		nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
2025 		return true;
2026 	}
2027 
2028 	skb = build_skb(rxbuf->frag, dp->fl_bufsz);
2029 	if (unlikely(!skb)) {
2030 		nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
2031 		return true;
2032 	}
2033 	new_frag = nfp_net_napi_alloc_one(dp, &new_dma_addr);
2034 	if (unlikely(!new_frag)) {
2035 		nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, skb);
2036 		return true;
2037 	}
2038 
2039 	nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr);
2040 
2041 	nfp_net_rx_give_one(dp, rx_ring, new_frag, new_dma_addr);
2042 
2043 	skb_reserve(skb, pkt_off);
2044 	skb_put(skb, pkt_len);
2045 
2046 	nfp_app_ctrl_rx(nn->app, skb);
2047 
2048 	return true;
2049 }
2050 
2051 static void nfp_ctrl_rx(struct nfp_net_r_vector *r_vec)
2052 {
2053 	struct nfp_net_rx_ring *rx_ring = r_vec->rx_ring;
2054 	struct nfp_net *nn = r_vec->nfp_net;
2055 	struct nfp_net_dp *dp = &nn->dp;
2056 
2057 	while (nfp_ctrl_rx_one(nn, dp, r_vec, rx_ring))
2058 		continue;
2059 }
2060 
2061 static void nfp_ctrl_poll(unsigned long arg)
2062 {
2063 	struct nfp_net_r_vector *r_vec = (void *)arg;
2064 
2065 	spin_lock_bh(&r_vec->lock);
2066 	nfp_net_tx_complete(r_vec->tx_ring, 0);
2067 	__nfp_ctrl_tx_queued(r_vec);
2068 	spin_unlock_bh(&r_vec->lock);
2069 
2070 	nfp_ctrl_rx(r_vec);
2071 
2072 	nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry);
2073 }
2074 
2075 /* Setup and Configuration
2076  */
2077 
2078 /**
2079  * nfp_net_vecs_init() - Assign IRQs and setup rvecs.
2080  * @nn:		NFP Network structure
2081  */
2082 static void nfp_net_vecs_init(struct nfp_net *nn)
2083 {
2084 	struct nfp_net_r_vector *r_vec;
2085 	int r;
2086 
2087 	nn->lsc_handler = nfp_net_irq_lsc;
2088 	nn->exn_handler = nfp_net_irq_exn;
2089 
2090 	for (r = 0; r < nn->max_r_vecs; r++) {
2091 		struct msix_entry *entry;
2092 
2093 		entry = &nn->irq_entries[NFP_NET_NON_Q_VECTORS + r];
2094 
2095 		r_vec = &nn->r_vecs[r];
2096 		r_vec->nfp_net = nn;
2097 		r_vec->irq_entry = entry->entry;
2098 		r_vec->irq_vector = entry->vector;
2099 
2100 		if (nn->dp.netdev) {
2101 			r_vec->handler = nfp_net_irq_rxtx;
2102 		} else {
2103 			r_vec->handler = nfp_ctrl_irq_rxtx;
2104 
2105 			__skb_queue_head_init(&r_vec->queue);
2106 			spin_lock_init(&r_vec->lock);
2107 			tasklet_init(&r_vec->tasklet, nfp_ctrl_poll,
2108 				     (unsigned long)r_vec);
2109 			tasklet_disable(&r_vec->tasklet);
2110 		}
2111 
2112 		cpumask_set_cpu(r, &r_vec->affinity_mask);
2113 	}
2114 }
2115 
2116 /**
2117  * nfp_net_tx_ring_free() - Free resources allocated to a TX ring
2118  * @tx_ring:   TX ring to free
2119  */
2120 static void nfp_net_tx_ring_free(struct nfp_net_tx_ring *tx_ring)
2121 {
2122 	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
2123 	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
2124 
2125 	kfree(tx_ring->txbufs);
2126 
2127 	if (tx_ring->txds)
2128 		dma_free_coherent(dp->dev, tx_ring->size,
2129 				  tx_ring->txds, tx_ring->dma);
2130 
2131 	tx_ring->cnt = 0;
2132 	tx_ring->txbufs = NULL;
2133 	tx_ring->txds = NULL;
2134 	tx_ring->dma = 0;
2135 	tx_ring->size = 0;
2136 }
2137 
2138 /**
2139  * nfp_net_tx_ring_alloc() - Allocate resource for a TX ring
2140  * @dp:        NFP Net data path struct
2141  * @tx_ring:   TX Ring structure to allocate
2142  *
2143  * Return: 0 on success, negative errno otherwise.
2144  */
2145 static int
2146 nfp_net_tx_ring_alloc(struct nfp_net_dp *dp, struct nfp_net_tx_ring *tx_ring)
2147 {
2148 	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
2149 	int sz;
2150 
2151 	tx_ring->cnt = dp->txd_cnt;
2152 
2153 	tx_ring->size = sizeof(*tx_ring->txds) * tx_ring->cnt;
2154 	tx_ring->txds = dma_zalloc_coherent(dp->dev, tx_ring->size,
2155 					    &tx_ring->dma, GFP_KERNEL);
2156 	if (!tx_ring->txds)
2157 		goto err_alloc;
2158 
2159 	sz = sizeof(*tx_ring->txbufs) * tx_ring->cnt;
2160 	tx_ring->txbufs = kzalloc(sz, GFP_KERNEL);
2161 	if (!tx_ring->txbufs)
2162 		goto err_alloc;
2163 
2164 	if (!tx_ring->is_xdp && dp->netdev)
2165 		netif_set_xps_queue(dp->netdev, &r_vec->affinity_mask,
2166 				    tx_ring->idx);
2167 
2168 	return 0;
2169 
2170 err_alloc:
2171 	nfp_net_tx_ring_free(tx_ring);
2172 	return -ENOMEM;
2173 }
2174 
2175 static void
2176 nfp_net_tx_ring_bufs_free(struct nfp_net_dp *dp,
2177 			  struct nfp_net_tx_ring *tx_ring)
2178 {
2179 	unsigned int i;
2180 
2181 	if (!tx_ring->is_xdp)
2182 		return;
2183 
2184 	for (i = 0; i < tx_ring->cnt; i++) {
2185 		if (!tx_ring->txbufs[i].frag)
2186 			return;
2187 
2188 		nfp_net_dma_unmap_rx(dp, tx_ring->txbufs[i].dma_addr);
2189 		__free_page(virt_to_page(tx_ring->txbufs[i].frag));
2190 	}
2191 }
2192 
2193 static int
2194 nfp_net_tx_ring_bufs_alloc(struct nfp_net_dp *dp,
2195 			   struct nfp_net_tx_ring *tx_ring)
2196 {
2197 	struct nfp_net_tx_buf *txbufs = tx_ring->txbufs;
2198 	unsigned int i;
2199 
2200 	if (!tx_ring->is_xdp)
2201 		return 0;
2202 
2203 	for (i = 0; i < tx_ring->cnt; i++) {
2204 		txbufs[i].frag = nfp_net_rx_alloc_one(dp, &txbufs[i].dma_addr);
2205 		if (!txbufs[i].frag) {
2206 			nfp_net_tx_ring_bufs_free(dp, tx_ring);
2207 			return -ENOMEM;
2208 		}
2209 	}
2210 
2211 	return 0;
2212 }
2213 
2214 static int nfp_net_tx_rings_prepare(struct nfp_net *nn, struct nfp_net_dp *dp)
2215 {
2216 	unsigned int r;
2217 
2218 	dp->tx_rings = kcalloc(dp->num_tx_rings, sizeof(*dp->tx_rings),
2219 			       GFP_KERNEL);
2220 	if (!dp->tx_rings)
2221 		return -ENOMEM;
2222 
2223 	for (r = 0; r < dp->num_tx_rings; r++) {
2224 		int bias = 0;
2225 
2226 		if (r >= dp->num_stack_tx_rings)
2227 			bias = dp->num_stack_tx_rings;
2228 
2229 		nfp_net_tx_ring_init(&dp->tx_rings[r], &nn->r_vecs[r - bias],
2230 				     r, bias);
2231 
2232 		if (nfp_net_tx_ring_alloc(dp, &dp->tx_rings[r]))
2233 			goto err_free_prev;
2234 
2235 		if (nfp_net_tx_ring_bufs_alloc(dp, &dp->tx_rings[r]))
2236 			goto err_free_ring;
2237 	}
2238 
2239 	return 0;
2240 
2241 err_free_prev:
2242 	while (r--) {
2243 		nfp_net_tx_ring_bufs_free(dp, &dp->tx_rings[r]);
2244 err_free_ring:
2245 		nfp_net_tx_ring_free(&dp->tx_rings[r]);
2246 	}
2247 	kfree(dp->tx_rings);
2248 	return -ENOMEM;
2249 }
2250 
2251 static void nfp_net_tx_rings_free(struct nfp_net_dp *dp)
2252 {
2253 	unsigned int r;
2254 
2255 	for (r = 0; r < dp->num_tx_rings; r++) {
2256 		nfp_net_tx_ring_bufs_free(dp, &dp->tx_rings[r]);
2257 		nfp_net_tx_ring_free(&dp->tx_rings[r]);
2258 	}
2259 
2260 	kfree(dp->tx_rings);
2261 }
2262 
2263 /**
2264  * nfp_net_rx_ring_free() - Free resources allocated to a RX ring
2265  * @rx_ring:  RX ring to free
2266  */
2267 static void nfp_net_rx_ring_free(struct nfp_net_rx_ring *rx_ring)
2268 {
2269 	struct nfp_net_r_vector *r_vec = rx_ring->r_vec;
2270 	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
2271 
2272 	if (dp->netdev)
2273 		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
2274 	kfree(rx_ring->rxbufs);
2275 
2276 	if (rx_ring->rxds)
2277 		dma_free_coherent(dp->dev, rx_ring->size,
2278 				  rx_ring->rxds, rx_ring->dma);
2279 
2280 	rx_ring->cnt = 0;
2281 	rx_ring->rxbufs = NULL;
2282 	rx_ring->rxds = NULL;
2283 	rx_ring->dma = 0;
2284 	rx_ring->size = 0;
2285 }
2286 
2287 /**
2288  * nfp_net_rx_ring_alloc() - Allocate resource for a RX ring
2289  * @dp:	      NFP Net data path struct
2290  * @rx_ring:  RX ring to allocate
2291  *
2292  * Return: 0 on success, negative errno otherwise.
2293  */
2294 static int
2295 nfp_net_rx_ring_alloc(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring)
2296 {
2297 	int sz, err;
2298 
2299 	if (dp->netdev) {
2300 		err = xdp_rxq_info_reg(&rx_ring->xdp_rxq, dp->netdev,
2301 				       rx_ring->idx);
2302 		if (err < 0)
2303 			return err;
2304 	}
2305 
2306 	rx_ring->cnt = dp->rxd_cnt;
2307 	rx_ring->size = sizeof(*rx_ring->rxds) * rx_ring->cnt;
2308 	rx_ring->rxds = dma_zalloc_coherent(dp->dev, rx_ring->size,
2309 					    &rx_ring->dma, GFP_KERNEL);
2310 	if (!rx_ring->rxds)
2311 		goto err_alloc;
2312 
2313 	sz = sizeof(*rx_ring->rxbufs) * rx_ring->cnt;
2314 	rx_ring->rxbufs = kzalloc(sz, GFP_KERNEL);
2315 	if (!rx_ring->rxbufs)
2316 		goto err_alloc;
2317 
2318 	return 0;
2319 
2320 err_alloc:
2321 	nfp_net_rx_ring_free(rx_ring);
2322 	return -ENOMEM;
2323 }
2324 
2325 static int nfp_net_rx_rings_prepare(struct nfp_net *nn, struct nfp_net_dp *dp)
2326 {
2327 	unsigned int r;
2328 
2329 	dp->rx_rings = kcalloc(dp->num_rx_rings, sizeof(*dp->rx_rings),
2330 			       GFP_KERNEL);
2331 	if (!dp->rx_rings)
2332 		return -ENOMEM;
2333 
2334 	for (r = 0; r < dp->num_rx_rings; r++) {
2335 		nfp_net_rx_ring_init(&dp->rx_rings[r], &nn->r_vecs[r], r);
2336 
2337 		if (nfp_net_rx_ring_alloc(dp, &dp->rx_rings[r]))
2338 			goto err_free_prev;
2339 
2340 		if (nfp_net_rx_ring_bufs_alloc(dp, &dp->rx_rings[r]))
2341 			goto err_free_ring;
2342 	}
2343 
2344 	return 0;
2345 
2346 err_free_prev:
2347 	while (r--) {
2348 		nfp_net_rx_ring_bufs_free(dp, &dp->rx_rings[r]);
2349 err_free_ring:
2350 		nfp_net_rx_ring_free(&dp->rx_rings[r]);
2351 	}
2352 	kfree(dp->rx_rings);
2353 	return -ENOMEM;
2354 }
2355 
2356 static void nfp_net_rx_rings_free(struct nfp_net_dp *dp)
2357 {
2358 	unsigned int r;
2359 
2360 	for (r = 0; r < dp->num_rx_rings; r++) {
2361 		nfp_net_rx_ring_bufs_free(dp, &dp->rx_rings[r]);
2362 		nfp_net_rx_ring_free(&dp->rx_rings[r]);
2363 	}
2364 
2365 	kfree(dp->rx_rings);
2366 }
2367 
2368 static void
2369 nfp_net_vector_assign_rings(struct nfp_net_dp *dp,
2370 			    struct nfp_net_r_vector *r_vec, int idx)
2371 {
2372 	r_vec->rx_ring = idx < dp->num_rx_rings ? &dp->rx_rings[idx] : NULL;
2373 	r_vec->tx_ring =
2374 		idx < dp->num_stack_tx_rings ? &dp->tx_rings[idx] : NULL;
2375 
2376 	r_vec->xdp_ring = idx < dp->num_tx_rings - dp->num_stack_tx_rings ?
2377 		&dp->tx_rings[dp->num_stack_tx_rings + idx] : NULL;
2378 }
2379 
2380 static int
2381 nfp_net_prepare_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec,
2382 		       int idx)
2383 {
2384 	int err;
2385 
2386 	/* Setup NAPI */
2387 	if (nn->dp.netdev)
2388 		netif_napi_add(nn->dp.netdev, &r_vec->napi,
2389 			       nfp_net_poll, NAPI_POLL_WEIGHT);
2390 	else
2391 		tasklet_enable(&r_vec->tasklet);
2392 
2393 	snprintf(r_vec->name, sizeof(r_vec->name),
2394 		 "%s-rxtx-%d", nfp_net_name(nn), idx);
2395 	err = request_irq(r_vec->irq_vector, r_vec->handler, 0, r_vec->name,
2396 			  r_vec);
2397 	if (err) {
2398 		if (nn->dp.netdev)
2399 			netif_napi_del(&r_vec->napi);
2400 		else
2401 			tasklet_disable(&r_vec->tasklet);
2402 
2403 		nn_err(nn, "Error requesting IRQ %d\n", r_vec->irq_vector);
2404 		return err;
2405 	}
2406 	disable_irq(r_vec->irq_vector);
2407 
2408 	irq_set_affinity_hint(r_vec->irq_vector, &r_vec->affinity_mask);
2409 
2410 	nn_dbg(nn, "RV%02d: irq=%03d/%03d\n", idx, r_vec->irq_vector,
2411 	       r_vec->irq_entry);
2412 
2413 	return 0;
2414 }
2415 
2416 static void
2417 nfp_net_cleanup_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec)
2418 {
2419 	irq_set_affinity_hint(r_vec->irq_vector, NULL);
2420 	if (nn->dp.netdev)
2421 		netif_napi_del(&r_vec->napi);
2422 	else
2423 		tasklet_disable(&r_vec->tasklet);
2424 
2425 	free_irq(r_vec->irq_vector, r_vec);
2426 }
2427 
2428 /**
2429  * nfp_net_rss_write_itbl() - Write RSS indirection table to device
2430  * @nn:      NFP Net device to reconfigure
2431  */
2432 void nfp_net_rss_write_itbl(struct nfp_net *nn)
2433 {
2434 	int i;
2435 
2436 	for (i = 0; i < NFP_NET_CFG_RSS_ITBL_SZ; i += 4)
2437 		nn_writel(nn, NFP_NET_CFG_RSS_ITBL + i,
2438 			  get_unaligned_le32(nn->rss_itbl + i));
2439 }
2440 
2441 /**
2442  * nfp_net_rss_write_key() - Write RSS hash key to device
2443  * @nn:      NFP Net device to reconfigure
2444  */
2445 void nfp_net_rss_write_key(struct nfp_net *nn)
2446 {
2447 	int i;
2448 
2449 	for (i = 0; i < nfp_net_rss_key_sz(nn); i += 4)
2450 		nn_writel(nn, NFP_NET_CFG_RSS_KEY + i,
2451 			  get_unaligned_le32(nn->rss_key + i));
2452 }
2453 
2454 /**
2455  * nfp_net_coalesce_write_cfg() - Write irq coalescence configuration to HW
2456  * @nn:      NFP Net device to reconfigure
2457  */
2458 void nfp_net_coalesce_write_cfg(struct nfp_net *nn)
2459 {
2460 	u8 i;
2461 	u32 factor;
2462 	u32 value;
2463 
2464 	/* Compute factor used to convert coalesce '_usecs' parameters to
2465 	 * ME timestamp ticks.  There are 16 ME clock cycles for each timestamp
2466 	 * count.
2467 	 */
2468 	factor = nn->tlv_caps.me_freq_mhz / 16;
2469 
2470 	/* copy RX interrupt coalesce parameters */
2471 	value = (nn->rx_coalesce_max_frames << 16) |
2472 		(factor * nn->rx_coalesce_usecs);
2473 	for (i = 0; i < nn->dp.num_rx_rings; i++)
2474 		nn_writel(nn, NFP_NET_CFG_RXR_IRQ_MOD(i), value);
2475 
2476 	/* copy TX interrupt coalesce parameters */
2477 	value = (nn->tx_coalesce_max_frames << 16) |
2478 		(factor * nn->tx_coalesce_usecs);
2479 	for (i = 0; i < nn->dp.num_tx_rings; i++)
2480 		nn_writel(nn, NFP_NET_CFG_TXR_IRQ_MOD(i), value);
2481 }
2482 
2483 /**
2484  * nfp_net_write_mac_addr() - Write mac address to the device control BAR
2485  * @nn:      NFP Net device to reconfigure
2486  * @addr:    MAC address to write
2487  *
2488  * Writes the MAC address from the netdev to the device control BAR.  Does not
2489  * perform the required reconfig.  We do a bit of byte swapping dance because
2490  * firmware is LE.
2491  */
2492 static void nfp_net_write_mac_addr(struct nfp_net *nn, const u8 *addr)
2493 {
2494 	nn_writel(nn, NFP_NET_CFG_MACADDR + 0, get_unaligned_be32(addr));
2495 	nn_writew(nn, NFP_NET_CFG_MACADDR + 6, get_unaligned_be16(addr + 4));
2496 }
2497 
2498 static void nfp_net_vec_clear_ring_data(struct nfp_net *nn, unsigned int idx)
2499 {
2500 	nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), 0);
2501 	nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), 0);
2502 	nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), 0);
2503 
2504 	nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), 0);
2505 	nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), 0);
2506 	nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), 0);
2507 }
2508 
2509 /**
2510  * nfp_net_clear_config_and_disable() - Clear control BAR and disable NFP
2511  * @nn:      NFP Net device to reconfigure
2512  */
2513 static void nfp_net_clear_config_and_disable(struct nfp_net *nn)
2514 {
2515 	u32 new_ctrl, update;
2516 	unsigned int r;
2517 	int err;
2518 
2519 	new_ctrl = nn->dp.ctrl;
2520 	new_ctrl &= ~NFP_NET_CFG_CTRL_ENABLE;
2521 	update = NFP_NET_CFG_UPDATE_GEN;
2522 	update |= NFP_NET_CFG_UPDATE_MSIX;
2523 	update |= NFP_NET_CFG_UPDATE_RING;
2524 
2525 	if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG)
2526 		new_ctrl &= ~NFP_NET_CFG_CTRL_RINGCFG;
2527 
2528 	nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0);
2529 	nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0);
2530 
2531 	nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
2532 	err = nfp_net_reconfig(nn, update);
2533 	if (err)
2534 		nn_err(nn, "Could not disable device: %d\n", err);
2535 
2536 	for (r = 0; r < nn->dp.num_rx_rings; r++)
2537 		nfp_net_rx_ring_reset(&nn->dp.rx_rings[r]);
2538 	for (r = 0; r < nn->dp.num_tx_rings; r++)
2539 		nfp_net_tx_ring_reset(&nn->dp, &nn->dp.tx_rings[r]);
2540 	for (r = 0; r < nn->dp.num_r_vecs; r++)
2541 		nfp_net_vec_clear_ring_data(nn, r);
2542 
2543 	nn->dp.ctrl = new_ctrl;
2544 }
2545 
2546 static void
2547 nfp_net_rx_ring_hw_cfg_write(struct nfp_net *nn,
2548 			     struct nfp_net_rx_ring *rx_ring, unsigned int idx)
2549 {
2550 	/* Write the DMA address, size and MSI-X info to the device */
2551 	nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), rx_ring->dma);
2552 	nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), ilog2(rx_ring->cnt));
2553 	nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), rx_ring->r_vec->irq_entry);
2554 }
2555 
2556 static void
2557 nfp_net_tx_ring_hw_cfg_write(struct nfp_net *nn,
2558 			     struct nfp_net_tx_ring *tx_ring, unsigned int idx)
2559 {
2560 	nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), tx_ring->dma);
2561 	nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), ilog2(tx_ring->cnt));
2562 	nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), tx_ring->r_vec->irq_entry);
2563 }
2564 
2565 /**
2566  * nfp_net_set_config_and_enable() - Write control BAR and enable NFP
2567  * @nn:      NFP Net device to reconfigure
2568  */
2569 static int nfp_net_set_config_and_enable(struct nfp_net *nn)
2570 {
2571 	u32 bufsz, new_ctrl, update = 0;
2572 	unsigned int r;
2573 	int err;
2574 
2575 	new_ctrl = nn->dp.ctrl;
2576 
2577 	if (nn->dp.ctrl & NFP_NET_CFG_CTRL_RSS_ANY) {
2578 		nfp_net_rss_write_key(nn);
2579 		nfp_net_rss_write_itbl(nn);
2580 		nn_writel(nn, NFP_NET_CFG_RSS_CTRL, nn->rss_cfg);
2581 		update |= NFP_NET_CFG_UPDATE_RSS;
2582 	}
2583 
2584 	if (nn->dp.ctrl & NFP_NET_CFG_CTRL_IRQMOD) {
2585 		nfp_net_coalesce_write_cfg(nn);
2586 		update |= NFP_NET_CFG_UPDATE_IRQMOD;
2587 	}
2588 
2589 	for (r = 0; r < nn->dp.num_tx_rings; r++)
2590 		nfp_net_tx_ring_hw_cfg_write(nn, &nn->dp.tx_rings[r], r);
2591 	for (r = 0; r < nn->dp.num_rx_rings; r++)
2592 		nfp_net_rx_ring_hw_cfg_write(nn, &nn->dp.rx_rings[r], r);
2593 
2594 	nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, nn->dp.num_tx_rings == 64 ?
2595 		  0xffffffffffffffffULL : ((u64)1 << nn->dp.num_tx_rings) - 1);
2596 
2597 	nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, nn->dp.num_rx_rings == 64 ?
2598 		  0xffffffffffffffffULL : ((u64)1 << nn->dp.num_rx_rings) - 1);
2599 
2600 	if (nn->dp.netdev)
2601 		nfp_net_write_mac_addr(nn, nn->dp.netdev->dev_addr);
2602 
2603 	nn_writel(nn, NFP_NET_CFG_MTU, nn->dp.mtu);
2604 
2605 	bufsz = nn->dp.fl_bufsz - nn->dp.rx_dma_off - NFP_NET_RX_BUF_NON_DATA;
2606 	nn_writel(nn, NFP_NET_CFG_FLBUFSZ, bufsz);
2607 
2608 	/* Enable device */
2609 	new_ctrl |= NFP_NET_CFG_CTRL_ENABLE;
2610 	update |= NFP_NET_CFG_UPDATE_GEN;
2611 	update |= NFP_NET_CFG_UPDATE_MSIX;
2612 	update |= NFP_NET_CFG_UPDATE_RING;
2613 	if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG)
2614 		new_ctrl |= NFP_NET_CFG_CTRL_RINGCFG;
2615 
2616 	nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
2617 	err = nfp_net_reconfig(nn, update);
2618 	if (err) {
2619 		nfp_net_clear_config_and_disable(nn);
2620 		return err;
2621 	}
2622 
2623 	nn->dp.ctrl = new_ctrl;
2624 
2625 	for (r = 0; r < nn->dp.num_rx_rings; r++)
2626 		nfp_net_rx_ring_fill_freelist(&nn->dp, &nn->dp.rx_rings[r]);
2627 
2628 	/* Since reconfiguration requests while NFP is down are ignored we
2629 	 * have to wipe the entire VXLAN configuration and reinitialize it.
2630 	 */
2631 	if (nn->dp.ctrl & NFP_NET_CFG_CTRL_VXLAN) {
2632 		memset(&nn->vxlan_ports, 0, sizeof(nn->vxlan_ports));
2633 		memset(&nn->vxlan_usecnt, 0, sizeof(nn->vxlan_usecnt));
2634 		udp_tunnel_get_rx_info(nn->dp.netdev);
2635 	}
2636 
2637 	return 0;
2638 }
2639 
2640 /**
2641  * nfp_net_close_stack() - Quiesce the stack (part of close)
2642  * @nn:	     NFP Net device to reconfigure
2643  */
2644 static void nfp_net_close_stack(struct nfp_net *nn)
2645 {
2646 	unsigned int r;
2647 
2648 	disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2649 	netif_carrier_off(nn->dp.netdev);
2650 	nn->link_up = false;
2651 
2652 	for (r = 0; r < nn->dp.num_r_vecs; r++) {
2653 		disable_irq(nn->r_vecs[r].irq_vector);
2654 		napi_disable(&nn->r_vecs[r].napi);
2655 	}
2656 
2657 	netif_tx_disable(nn->dp.netdev);
2658 }
2659 
2660 /**
2661  * nfp_net_close_free_all() - Free all runtime resources
2662  * @nn:      NFP Net device to reconfigure
2663  */
2664 static void nfp_net_close_free_all(struct nfp_net *nn)
2665 {
2666 	unsigned int r;
2667 
2668 	nfp_net_tx_rings_free(&nn->dp);
2669 	nfp_net_rx_rings_free(&nn->dp);
2670 
2671 	for (r = 0; r < nn->dp.num_r_vecs; r++)
2672 		nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
2673 
2674 	nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX);
2675 	nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX);
2676 }
2677 
2678 /**
2679  * nfp_net_netdev_close() - Called when the device is downed
2680  * @netdev:      netdev structure
2681  */
2682 static int nfp_net_netdev_close(struct net_device *netdev)
2683 {
2684 	struct nfp_net *nn = netdev_priv(netdev);
2685 
2686 	/* Step 1: Disable RX and TX rings from the Linux kernel perspective
2687 	 */
2688 	nfp_net_close_stack(nn);
2689 
2690 	/* Step 2: Tell NFP
2691 	 */
2692 	nfp_net_clear_config_and_disable(nn);
2693 	nfp_port_configure(netdev, false);
2694 
2695 	/* Step 3: Free resources
2696 	 */
2697 	nfp_net_close_free_all(nn);
2698 
2699 	nn_dbg(nn, "%s down", netdev->name);
2700 	return 0;
2701 }
2702 
2703 void nfp_ctrl_close(struct nfp_net *nn)
2704 {
2705 	int r;
2706 
2707 	rtnl_lock();
2708 
2709 	for (r = 0; r < nn->dp.num_r_vecs; r++) {
2710 		disable_irq(nn->r_vecs[r].irq_vector);
2711 		tasklet_disable(&nn->r_vecs[r].tasklet);
2712 	}
2713 
2714 	nfp_net_clear_config_and_disable(nn);
2715 
2716 	nfp_net_close_free_all(nn);
2717 
2718 	rtnl_unlock();
2719 }
2720 
2721 /**
2722  * nfp_net_open_stack() - Start the device from stack's perspective
2723  * @nn:      NFP Net device to reconfigure
2724  */
2725 static void nfp_net_open_stack(struct nfp_net *nn)
2726 {
2727 	unsigned int r;
2728 
2729 	for (r = 0; r < nn->dp.num_r_vecs; r++) {
2730 		napi_enable(&nn->r_vecs[r].napi);
2731 		enable_irq(nn->r_vecs[r].irq_vector);
2732 	}
2733 
2734 	netif_tx_wake_all_queues(nn->dp.netdev);
2735 
2736 	enable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2737 	nfp_net_read_link_status(nn);
2738 }
2739 
2740 static int nfp_net_open_alloc_all(struct nfp_net *nn)
2741 {
2742 	int err, r;
2743 
2744 	err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_EXN, "%s-exn",
2745 				      nn->exn_name, sizeof(nn->exn_name),
2746 				      NFP_NET_IRQ_EXN_IDX, nn->exn_handler);
2747 	if (err)
2748 		return err;
2749 	err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_LSC, "%s-lsc",
2750 				      nn->lsc_name, sizeof(nn->lsc_name),
2751 				      NFP_NET_IRQ_LSC_IDX, nn->lsc_handler);
2752 	if (err)
2753 		goto err_free_exn;
2754 	disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2755 
2756 	for (r = 0; r < nn->dp.num_r_vecs; r++) {
2757 		err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r);
2758 		if (err)
2759 			goto err_cleanup_vec_p;
2760 	}
2761 
2762 	err = nfp_net_rx_rings_prepare(nn, &nn->dp);
2763 	if (err)
2764 		goto err_cleanup_vec;
2765 
2766 	err = nfp_net_tx_rings_prepare(nn, &nn->dp);
2767 	if (err)
2768 		goto err_free_rx_rings;
2769 
2770 	for (r = 0; r < nn->max_r_vecs; r++)
2771 		nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r);
2772 
2773 	return 0;
2774 
2775 err_free_rx_rings:
2776 	nfp_net_rx_rings_free(&nn->dp);
2777 err_cleanup_vec:
2778 	r = nn->dp.num_r_vecs;
2779 err_cleanup_vec_p:
2780 	while (r--)
2781 		nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
2782 	nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX);
2783 err_free_exn:
2784 	nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX);
2785 	return err;
2786 }
2787 
2788 static int nfp_net_netdev_open(struct net_device *netdev)
2789 {
2790 	struct nfp_net *nn = netdev_priv(netdev);
2791 	int err;
2792 
2793 	/* Step 1: Allocate resources for rings and the like
2794 	 * - Request interrupts
2795 	 * - Allocate RX and TX ring resources
2796 	 * - Setup initial RSS table
2797 	 */
2798 	err = nfp_net_open_alloc_all(nn);
2799 	if (err)
2800 		return err;
2801 
2802 	err = netif_set_real_num_tx_queues(netdev, nn->dp.num_stack_tx_rings);
2803 	if (err)
2804 		goto err_free_all;
2805 
2806 	err = netif_set_real_num_rx_queues(netdev, nn->dp.num_rx_rings);
2807 	if (err)
2808 		goto err_free_all;
2809 
2810 	/* Step 2: Configure the NFP
2811 	 * - Ifup the physical interface if it exists
2812 	 * - Enable rings from 0 to tx_rings/rx_rings - 1.
2813 	 * - Write MAC address (in case it changed)
2814 	 * - Set the MTU
2815 	 * - Set the Freelist buffer size
2816 	 * - Enable the FW
2817 	 */
2818 	err = nfp_port_configure(netdev, true);
2819 	if (err)
2820 		goto err_free_all;
2821 
2822 	err = nfp_net_set_config_and_enable(nn);
2823 	if (err)
2824 		goto err_port_disable;
2825 
2826 	/* Step 3: Enable for kernel
2827 	 * - put some freelist descriptors on each RX ring
2828 	 * - enable NAPI on each ring
2829 	 * - enable all TX queues
2830 	 * - set link state
2831 	 */
2832 	nfp_net_open_stack(nn);
2833 
2834 	return 0;
2835 
2836 err_port_disable:
2837 	nfp_port_configure(netdev, false);
2838 err_free_all:
2839 	nfp_net_close_free_all(nn);
2840 	return err;
2841 }
2842 
2843 int nfp_ctrl_open(struct nfp_net *nn)
2844 {
2845 	int err, r;
2846 
2847 	/* ring dumping depends on vNICs being opened/closed under rtnl */
2848 	rtnl_lock();
2849 
2850 	err = nfp_net_open_alloc_all(nn);
2851 	if (err)
2852 		goto err_unlock;
2853 
2854 	err = nfp_net_set_config_and_enable(nn);
2855 	if (err)
2856 		goto err_free_all;
2857 
2858 	for (r = 0; r < nn->dp.num_r_vecs; r++)
2859 		enable_irq(nn->r_vecs[r].irq_vector);
2860 
2861 	rtnl_unlock();
2862 
2863 	return 0;
2864 
2865 err_free_all:
2866 	nfp_net_close_free_all(nn);
2867 err_unlock:
2868 	rtnl_unlock();
2869 	return err;
2870 }
2871 
2872 static void nfp_net_set_rx_mode(struct net_device *netdev)
2873 {
2874 	struct nfp_net *nn = netdev_priv(netdev);
2875 	u32 new_ctrl;
2876 
2877 	new_ctrl = nn->dp.ctrl;
2878 
2879 	if (!netdev_mc_empty(netdev) || netdev->flags & IFF_ALLMULTI)
2880 		new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_L2MC;
2881 	else
2882 		new_ctrl &= ~NFP_NET_CFG_CTRL_L2MC;
2883 
2884 	if (netdev->flags & IFF_PROMISC) {
2885 		if (nn->cap & NFP_NET_CFG_CTRL_PROMISC)
2886 			new_ctrl |= NFP_NET_CFG_CTRL_PROMISC;
2887 		else
2888 			nn_warn(nn, "FW does not support promiscuous mode\n");
2889 	} else {
2890 		new_ctrl &= ~NFP_NET_CFG_CTRL_PROMISC;
2891 	}
2892 
2893 	if (new_ctrl == nn->dp.ctrl)
2894 		return;
2895 
2896 	nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
2897 	nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_GEN);
2898 
2899 	nn->dp.ctrl = new_ctrl;
2900 }
2901 
2902 static void nfp_net_rss_init_itbl(struct nfp_net *nn)
2903 {
2904 	int i;
2905 
2906 	for (i = 0; i < sizeof(nn->rss_itbl); i++)
2907 		nn->rss_itbl[i] =
2908 			ethtool_rxfh_indir_default(i, nn->dp.num_rx_rings);
2909 }
2910 
2911 static void nfp_net_dp_swap(struct nfp_net *nn, struct nfp_net_dp *dp)
2912 {
2913 	struct nfp_net_dp new_dp = *dp;
2914 
2915 	*dp = nn->dp;
2916 	nn->dp = new_dp;
2917 
2918 	nn->dp.netdev->mtu = new_dp.mtu;
2919 
2920 	if (!netif_is_rxfh_configured(nn->dp.netdev))
2921 		nfp_net_rss_init_itbl(nn);
2922 }
2923 
2924 static int nfp_net_dp_swap_enable(struct nfp_net *nn, struct nfp_net_dp *dp)
2925 {
2926 	unsigned int r;
2927 	int err;
2928 
2929 	nfp_net_dp_swap(nn, dp);
2930 
2931 	for (r = 0; r <	nn->max_r_vecs; r++)
2932 		nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r);
2933 
2934 	err = netif_set_real_num_rx_queues(nn->dp.netdev, nn->dp.num_rx_rings);
2935 	if (err)
2936 		return err;
2937 
2938 	if (nn->dp.netdev->real_num_tx_queues != nn->dp.num_stack_tx_rings) {
2939 		err = netif_set_real_num_tx_queues(nn->dp.netdev,
2940 						   nn->dp.num_stack_tx_rings);
2941 		if (err)
2942 			return err;
2943 	}
2944 
2945 	return nfp_net_set_config_and_enable(nn);
2946 }
2947 
2948 struct nfp_net_dp *nfp_net_clone_dp(struct nfp_net *nn)
2949 {
2950 	struct nfp_net_dp *new;
2951 
2952 	new = kmalloc(sizeof(*new), GFP_KERNEL);
2953 	if (!new)
2954 		return NULL;
2955 
2956 	*new = nn->dp;
2957 
2958 	/* Clear things which need to be recomputed */
2959 	new->fl_bufsz = 0;
2960 	new->tx_rings = NULL;
2961 	new->rx_rings = NULL;
2962 	new->num_r_vecs = 0;
2963 	new->num_stack_tx_rings = 0;
2964 
2965 	return new;
2966 }
2967 
2968 static int
2969 nfp_net_check_config(struct nfp_net *nn, struct nfp_net_dp *dp,
2970 		     struct netlink_ext_ack *extack)
2971 {
2972 	/* XDP-enabled tests */
2973 	if (!dp->xdp_prog)
2974 		return 0;
2975 	if (dp->fl_bufsz > PAGE_SIZE) {
2976 		NL_SET_ERR_MSG_MOD(extack, "MTU too large w/ XDP enabled");
2977 		return -EINVAL;
2978 	}
2979 	if (dp->num_tx_rings > nn->max_tx_rings) {
2980 		NL_SET_ERR_MSG_MOD(extack, "Insufficient number of TX rings w/ XDP enabled");
2981 		return -EINVAL;
2982 	}
2983 
2984 	return 0;
2985 }
2986 
2987 int nfp_net_ring_reconfig(struct nfp_net *nn, struct nfp_net_dp *dp,
2988 			  struct netlink_ext_ack *extack)
2989 {
2990 	int r, err;
2991 
2992 	dp->fl_bufsz = nfp_net_calc_fl_bufsz(dp);
2993 
2994 	dp->num_stack_tx_rings = dp->num_tx_rings;
2995 	if (dp->xdp_prog)
2996 		dp->num_stack_tx_rings -= dp->num_rx_rings;
2997 
2998 	dp->num_r_vecs = max(dp->num_rx_rings, dp->num_stack_tx_rings);
2999 
3000 	err = nfp_net_check_config(nn, dp, extack);
3001 	if (err)
3002 		goto exit_free_dp;
3003 
3004 	if (!netif_running(dp->netdev)) {
3005 		nfp_net_dp_swap(nn, dp);
3006 		err = 0;
3007 		goto exit_free_dp;
3008 	}
3009 
3010 	/* Prepare new rings */
3011 	for (r = nn->dp.num_r_vecs; r < dp->num_r_vecs; r++) {
3012 		err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r);
3013 		if (err) {
3014 			dp->num_r_vecs = r;
3015 			goto err_cleanup_vecs;
3016 		}
3017 	}
3018 
3019 	err = nfp_net_rx_rings_prepare(nn, dp);
3020 	if (err)
3021 		goto err_cleanup_vecs;
3022 
3023 	err = nfp_net_tx_rings_prepare(nn, dp);
3024 	if (err)
3025 		goto err_free_rx;
3026 
3027 	/* Stop device, swap in new rings, try to start the firmware */
3028 	nfp_net_close_stack(nn);
3029 	nfp_net_clear_config_and_disable(nn);
3030 
3031 	err = nfp_net_dp_swap_enable(nn, dp);
3032 	if (err) {
3033 		int err2;
3034 
3035 		nfp_net_clear_config_and_disable(nn);
3036 
3037 		/* Try with old configuration and old rings */
3038 		err2 = nfp_net_dp_swap_enable(nn, dp);
3039 		if (err2)
3040 			nn_err(nn, "Can't restore ring config - FW communication failed (%d,%d)\n",
3041 			       err, err2);
3042 	}
3043 	for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--)
3044 		nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
3045 
3046 	nfp_net_rx_rings_free(dp);
3047 	nfp_net_tx_rings_free(dp);
3048 
3049 	nfp_net_open_stack(nn);
3050 exit_free_dp:
3051 	kfree(dp);
3052 
3053 	return err;
3054 
3055 err_free_rx:
3056 	nfp_net_rx_rings_free(dp);
3057 err_cleanup_vecs:
3058 	for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--)
3059 		nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
3060 	kfree(dp);
3061 	return err;
3062 }
3063 
3064 static int nfp_net_change_mtu(struct net_device *netdev, int new_mtu)
3065 {
3066 	struct nfp_net *nn = netdev_priv(netdev);
3067 	struct nfp_net_dp *dp;
3068 	int err;
3069 
3070 	err = nfp_app_check_mtu(nn->app, netdev, new_mtu);
3071 	if (err)
3072 		return err;
3073 
3074 	dp = nfp_net_clone_dp(nn);
3075 	if (!dp)
3076 		return -ENOMEM;
3077 
3078 	dp->mtu = new_mtu;
3079 
3080 	return nfp_net_ring_reconfig(nn, dp, NULL);
3081 }
3082 
3083 static int
3084 nfp_net_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid)
3085 {
3086 	struct nfp_net *nn = netdev_priv(netdev);
3087 
3088 	/* Priority tagged packets with vlan id 0 are processed by the
3089 	 * NFP as untagged packets
3090 	 */
3091 	if (!vid)
3092 		return 0;
3093 
3094 	nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_VID, vid);
3095 	nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_PROTO,
3096 		  ETH_P_8021Q);
3097 
3098 	return nfp_net_reconfig_mbox(nn, NFP_NET_CFG_MBOX_CMD_CTAG_FILTER_ADD);
3099 }
3100 
3101 static int
3102 nfp_net_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
3103 {
3104 	struct nfp_net *nn = netdev_priv(netdev);
3105 
3106 	/* Priority tagged packets with vlan id 0 are processed by the
3107 	 * NFP as untagged packets
3108 	 */
3109 	if (!vid)
3110 		return 0;
3111 
3112 	nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_VID, vid);
3113 	nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_PROTO,
3114 		  ETH_P_8021Q);
3115 
3116 	return nfp_net_reconfig_mbox(nn, NFP_NET_CFG_MBOX_CMD_CTAG_FILTER_KILL);
3117 }
3118 
3119 #ifdef CONFIG_NET_POLL_CONTROLLER
3120 static void nfp_net_netpoll(struct net_device *netdev)
3121 {
3122 	struct nfp_net *nn = netdev_priv(netdev);
3123 	int i;
3124 
3125 	/* nfp_net's NAPIs are statically allocated so even if there is a race
3126 	 * with reconfig path this will simply try to schedule some disabled
3127 	 * NAPI instances.
3128 	 */
3129 	for (i = 0; i < nn->dp.num_stack_tx_rings; i++)
3130 		napi_schedule_irqoff(&nn->r_vecs[i].napi);
3131 }
3132 #endif
3133 
3134 static void nfp_net_stat64(struct net_device *netdev,
3135 			   struct rtnl_link_stats64 *stats)
3136 {
3137 	struct nfp_net *nn = netdev_priv(netdev);
3138 	int r;
3139 
3140 	for (r = 0; r < nn->max_r_vecs; r++) {
3141 		struct nfp_net_r_vector *r_vec = &nn->r_vecs[r];
3142 		u64 data[3];
3143 		unsigned int start;
3144 
3145 		do {
3146 			start = u64_stats_fetch_begin(&r_vec->rx_sync);
3147 			data[0] = r_vec->rx_pkts;
3148 			data[1] = r_vec->rx_bytes;
3149 			data[2] = r_vec->rx_drops;
3150 		} while (u64_stats_fetch_retry(&r_vec->rx_sync, start));
3151 		stats->rx_packets += data[0];
3152 		stats->rx_bytes += data[1];
3153 		stats->rx_dropped += data[2];
3154 
3155 		do {
3156 			start = u64_stats_fetch_begin(&r_vec->tx_sync);
3157 			data[0] = r_vec->tx_pkts;
3158 			data[1] = r_vec->tx_bytes;
3159 			data[2] = r_vec->tx_errors;
3160 		} while (u64_stats_fetch_retry(&r_vec->tx_sync, start));
3161 		stats->tx_packets += data[0];
3162 		stats->tx_bytes += data[1];
3163 		stats->tx_errors += data[2];
3164 	}
3165 }
3166 
3167 static int nfp_net_set_features(struct net_device *netdev,
3168 				netdev_features_t features)
3169 {
3170 	netdev_features_t changed = netdev->features ^ features;
3171 	struct nfp_net *nn = netdev_priv(netdev);
3172 	u32 new_ctrl;
3173 	int err;
3174 
3175 	/* Assume this is not called with features we have not advertised */
3176 
3177 	new_ctrl = nn->dp.ctrl;
3178 
3179 	if (changed & NETIF_F_RXCSUM) {
3180 		if (features & NETIF_F_RXCSUM)
3181 			new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY;
3182 		else
3183 			new_ctrl &= ~NFP_NET_CFG_CTRL_RXCSUM_ANY;
3184 	}
3185 
3186 	if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3187 		if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
3188 			new_ctrl |= NFP_NET_CFG_CTRL_TXCSUM;
3189 		else
3190 			new_ctrl &= ~NFP_NET_CFG_CTRL_TXCSUM;
3191 	}
3192 
3193 	if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) {
3194 		if (features & (NETIF_F_TSO | NETIF_F_TSO6))
3195 			new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_LSO2 ?:
3196 					      NFP_NET_CFG_CTRL_LSO;
3197 		else
3198 			new_ctrl &= ~NFP_NET_CFG_CTRL_LSO_ANY;
3199 	}
3200 
3201 	if (changed & NETIF_F_HW_VLAN_CTAG_RX) {
3202 		if (features & NETIF_F_HW_VLAN_CTAG_RX)
3203 			new_ctrl |= NFP_NET_CFG_CTRL_RXVLAN;
3204 		else
3205 			new_ctrl &= ~NFP_NET_CFG_CTRL_RXVLAN;
3206 	}
3207 
3208 	if (changed & NETIF_F_HW_VLAN_CTAG_TX) {
3209 		if (features & NETIF_F_HW_VLAN_CTAG_TX)
3210 			new_ctrl |= NFP_NET_CFG_CTRL_TXVLAN;
3211 		else
3212 			new_ctrl &= ~NFP_NET_CFG_CTRL_TXVLAN;
3213 	}
3214 
3215 	if (changed & NETIF_F_HW_VLAN_CTAG_FILTER) {
3216 		if (features & NETIF_F_HW_VLAN_CTAG_FILTER)
3217 			new_ctrl |= NFP_NET_CFG_CTRL_CTAG_FILTER;
3218 		else
3219 			new_ctrl &= ~NFP_NET_CFG_CTRL_CTAG_FILTER;
3220 	}
3221 
3222 	if (changed & NETIF_F_SG) {
3223 		if (features & NETIF_F_SG)
3224 			new_ctrl |= NFP_NET_CFG_CTRL_GATHER;
3225 		else
3226 			new_ctrl &= ~NFP_NET_CFG_CTRL_GATHER;
3227 	}
3228 
3229 	err = nfp_port_set_features(netdev, features);
3230 	if (err)
3231 		return err;
3232 
3233 	nn_dbg(nn, "Feature change 0x%llx -> 0x%llx (changed=0x%llx)\n",
3234 	       netdev->features, features, changed);
3235 
3236 	if (new_ctrl == nn->dp.ctrl)
3237 		return 0;
3238 
3239 	nn_dbg(nn, "NIC ctrl: 0x%x -> 0x%x\n", nn->dp.ctrl, new_ctrl);
3240 	nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
3241 	err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_GEN);
3242 	if (err)
3243 		return err;
3244 
3245 	nn->dp.ctrl = new_ctrl;
3246 
3247 	return 0;
3248 }
3249 
3250 static netdev_features_t
3251 nfp_net_features_check(struct sk_buff *skb, struct net_device *dev,
3252 		       netdev_features_t features)
3253 {
3254 	u8 l4_hdr;
3255 
3256 	/* We can't do TSO over double tagged packets (802.1AD) */
3257 	features &= vlan_features_check(skb, features);
3258 
3259 	if (!skb->encapsulation)
3260 		return features;
3261 
3262 	/* Ensure that inner L4 header offset fits into TX descriptor field */
3263 	if (skb_is_gso(skb)) {
3264 		u32 hdrlen;
3265 
3266 		hdrlen = skb_inner_transport_header(skb) - skb->data +
3267 			inner_tcp_hdrlen(skb);
3268 
3269 		if (unlikely(hdrlen > NFP_NET_LSO_MAX_HDR_SZ))
3270 			features &= ~NETIF_F_GSO_MASK;
3271 	}
3272 
3273 	/* VXLAN/GRE check */
3274 	switch (vlan_get_protocol(skb)) {
3275 	case htons(ETH_P_IP):
3276 		l4_hdr = ip_hdr(skb)->protocol;
3277 		break;
3278 	case htons(ETH_P_IPV6):
3279 		l4_hdr = ipv6_hdr(skb)->nexthdr;
3280 		break;
3281 	default:
3282 		return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3283 	}
3284 
3285 	if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
3286 	    skb->inner_protocol != htons(ETH_P_TEB) ||
3287 	    (l4_hdr != IPPROTO_UDP && l4_hdr != IPPROTO_GRE) ||
3288 	    (l4_hdr == IPPROTO_UDP &&
3289 	     (skb_inner_mac_header(skb) - skb_transport_header(skb) !=
3290 	      sizeof(struct udphdr) + sizeof(struct vxlanhdr))))
3291 		return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3292 
3293 	return features;
3294 }
3295 
3296 static int
3297 nfp_net_get_phys_port_name(struct net_device *netdev, char *name, size_t len)
3298 {
3299 	struct nfp_net *nn = netdev_priv(netdev);
3300 	int n;
3301 
3302 	if (nn->port)
3303 		return nfp_port_get_phys_port_name(netdev, name, len);
3304 
3305 	if (nn->dp.is_vf || nn->vnic_no_name)
3306 		return -EOPNOTSUPP;
3307 
3308 	n = snprintf(name, len, "n%d", nn->id);
3309 	if (n >= len)
3310 		return -EINVAL;
3311 
3312 	return 0;
3313 }
3314 
3315 /**
3316  * nfp_net_set_vxlan_port() - set vxlan port in SW and reconfigure HW
3317  * @nn:   NFP Net device to reconfigure
3318  * @idx:  Index into the port table where new port should be written
3319  * @port: UDP port to configure (pass zero to remove VXLAN port)
3320  */
3321 static void nfp_net_set_vxlan_port(struct nfp_net *nn, int idx, __be16 port)
3322 {
3323 	int i;
3324 
3325 	nn->vxlan_ports[idx] = port;
3326 
3327 	if (!(nn->dp.ctrl & NFP_NET_CFG_CTRL_VXLAN))
3328 		return;
3329 
3330 	BUILD_BUG_ON(NFP_NET_N_VXLAN_PORTS & 1);
3331 	for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i += 2)
3332 		nn_writel(nn, NFP_NET_CFG_VXLAN_PORT + i * sizeof(port),
3333 			  be16_to_cpu(nn->vxlan_ports[i + 1]) << 16 |
3334 			  be16_to_cpu(nn->vxlan_ports[i]));
3335 
3336 	nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_VXLAN);
3337 }
3338 
3339 /**
3340  * nfp_net_find_vxlan_idx() - find table entry of the port or a free one
3341  * @nn:   NFP Network structure
3342  * @port: UDP port to look for
3343  *
3344  * Return: if the port is already in the table -- it's position;
3345  *	   if the port is not in the table -- free position to use;
3346  *	   if the table is full -- -ENOSPC.
3347  */
3348 static int nfp_net_find_vxlan_idx(struct nfp_net *nn, __be16 port)
3349 {
3350 	int i, free_idx = -ENOSPC;
3351 
3352 	for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i++) {
3353 		if (nn->vxlan_ports[i] == port)
3354 			return i;
3355 		if (!nn->vxlan_usecnt[i])
3356 			free_idx = i;
3357 	}
3358 
3359 	return free_idx;
3360 }
3361 
3362 static void nfp_net_add_vxlan_port(struct net_device *netdev,
3363 				   struct udp_tunnel_info *ti)
3364 {
3365 	struct nfp_net *nn = netdev_priv(netdev);
3366 	int idx;
3367 
3368 	if (ti->type != UDP_TUNNEL_TYPE_VXLAN)
3369 		return;
3370 
3371 	idx = nfp_net_find_vxlan_idx(nn, ti->port);
3372 	if (idx == -ENOSPC)
3373 		return;
3374 
3375 	if (!nn->vxlan_usecnt[idx]++)
3376 		nfp_net_set_vxlan_port(nn, idx, ti->port);
3377 }
3378 
3379 static void nfp_net_del_vxlan_port(struct net_device *netdev,
3380 				   struct udp_tunnel_info *ti)
3381 {
3382 	struct nfp_net *nn = netdev_priv(netdev);
3383 	int idx;
3384 
3385 	if (ti->type != UDP_TUNNEL_TYPE_VXLAN)
3386 		return;
3387 
3388 	idx = nfp_net_find_vxlan_idx(nn, ti->port);
3389 	if (idx == -ENOSPC || !nn->vxlan_usecnt[idx])
3390 		return;
3391 
3392 	if (!--nn->vxlan_usecnt[idx])
3393 		nfp_net_set_vxlan_port(nn, idx, 0);
3394 }
3395 
3396 static int
3397 nfp_net_xdp_setup_drv(struct nfp_net *nn, struct bpf_prog *prog,
3398 		      struct netlink_ext_ack *extack)
3399 {
3400 	struct nfp_net_dp *dp;
3401 
3402 	if (!prog == !nn->dp.xdp_prog) {
3403 		WRITE_ONCE(nn->dp.xdp_prog, prog);
3404 		return 0;
3405 	}
3406 
3407 	dp = nfp_net_clone_dp(nn);
3408 	if (!dp)
3409 		return -ENOMEM;
3410 
3411 	dp->xdp_prog = prog;
3412 	dp->num_tx_rings += prog ? nn->dp.num_rx_rings : -nn->dp.num_rx_rings;
3413 	dp->rx_dma_dir = prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;
3414 	dp->rx_dma_off = prog ? XDP_PACKET_HEADROOM - nn->dp.rx_offset : 0;
3415 
3416 	/* We need RX reconfig to remap the buffers (BIDIR vs FROM_DEV) */
3417 	return nfp_net_ring_reconfig(nn, dp, extack);
3418 }
3419 
3420 static int
3421 nfp_net_xdp_setup(struct nfp_net *nn, struct bpf_prog *prog, u32 flags,
3422 		  struct netlink_ext_ack *extack)
3423 {
3424 	struct bpf_prog *drv_prog, *offload_prog;
3425 	int err;
3426 
3427 	if (nn->xdp_prog && (flags ^ nn->xdp_flags) & XDP_FLAGS_MODES)
3428 		return -EBUSY;
3429 
3430 	/* Load both when no flags set to allow easy activation of driver path
3431 	 * when program is replaced by one which can't be offloaded.
3432 	 */
3433 	drv_prog     = flags & XDP_FLAGS_HW_MODE  ? NULL : prog;
3434 	offload_prog = flags & XDP_FLAGS_DRV_MODE ? NULL : prog;
3435 
3436 	err = nfp_net_xdp_setup_drv(nn, drv_prog, extack);
3437 	if (err)
3438 		return err;
3439 
3440 	err = nfp_app_xdp_offload(nn->app, nn, offload_prog, extack);
3441 	if (err && flags & XDP_FLAGS_HW_MODE)
3442 		return err;
3443 
3444 	if (nn->xdp_prog)
3445 		bpf_prog_put(nn->xdp_prog);
3446 	nn->xdp_prog = prog;
3447 	nn->xdp_flags = flags;
3448 
3449 	return 0;
3450 }
3451 
3452 static int nfp_net_xdp(struct net_device *netdev, struct netdev_bpf *xdp)
3453 {
3454 	struct nfp_net *nn = netdev_priv(netdev);
3455 
3456 	switch (xdp->command) {
3457 	case XDP_SETUP_PROG:
3458 	case XDP_SETUP_PROG_HW:
3459 		return nfp_net_xdp_setup(nn, xdp->prog, xdp->flags,
3460 					 xdp->extack);
3461 	case XDP_QUERY_PROG:
3462 		xdp->prog_attached = !!nn->xdp_prog;
3463 		if (nn->dp.bpf_offload_xdp)
3464 			xdp->prog_attached = XDP_ATTACHED_HW;
3465 		xdp->prog_id = nn->xdp_prog ? nn->xdp_prog->aux->id : 0;
3466 		xdp->prog_flags = nn->xdp_prog ? nn->xdp_flags : 0;
3467 		return 0;
3468 	default:
3469 		return nfp_app_bpf(nn->app, nn, xdp);
3470 	}
3471 }
3472 
3473 static int nfp_net_set_mac_address(struct net_device *netdev, void *addr)
3474 {
3475 	struct nfp_net *nn = netdev_priv(netdev);
3476 	struct sockaddr *saddr = addr;
3477 	int err;
3478 
3479 	err = eth_prepare_mac_addr_change(netdev, addr);
3480 	if (err)
3481 		return err;
3482 
3483 	nfp_net_write_mac_addr(nn, saddr->sa_data);
3484 
3485 	err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_MACADDR);
3486 	if (err)
3487 		return err;
3488 
3489 	eth_commit_mac_addr_change(netdev, addr);
3490 
3491 	return 0;
3492 }
3493 
3494 const struct net_device_ops nfp_net_netdev_ops = {
3495 	.ndo_open		= nfp_net_netdev_open,
3496 	.ndo_stop		= nfp_net_netdev_close,
3497 	.ndo_start_xmit		= nfp_net_tx,
3498 	.ndo_get_stats64	= nfp_net_stat64,
3499 	.ndo_vlan_rx_add_vid	= nfp_net_vlan_rx_add_vid,
3500 	.ndo_vlan_rx_kill_vid	= nfp_net_vlan_rx_kill_vid,
3501 #ifdef CONFIG_NET_POLL_CONTROLLER
3502 	.ndo_poll_controller	= nfp_net_netpoll,
3503 #endif
3504 	.ndo_set_vf_mac         = nfp_app_set_vf_mac,
3505 	.ndo_set_vf_vlan        = nfp_app_set_vf_vlan,
3506 	.ndo_set_vf_spoofchk    = nfp_app_set_vf_spoofchk,
3507 	.ndo_get_vf_config	= nfp_app_get_vf_config,
3508 	.ndo_set_vf_link_state  = nfp_app_set_vf_link_state,
3509 	.ndo_setup_tc		= nfp_port_setup_tc,
3510 	.ndo_tx_timeout		= nfp_net_tx_timeout,
3511 	.ndo_set_rx_mode	= nfp_net_set_rx_mode,
3512 	.ndo_change_mtu		= nfp_net_change_mtu,
3513 	.ndo_set_mac_address	= nfp_net_set_mac_address,
3514 	.ndo_set_features	= nfp_net_set_features,
3515 	.ndo_features_check	= nfp_net_features_check,
3516 	.ndo_get_phys_port_name	= nfp_net_get_phys_port_name,
3517 	.ndo_udp_tunnel_add	= nfp_net_add_vxlan_port,
3518 	.ndo_udp_tunnel_del	= nfp_net_del_vxlan_port,
3519 	.ndo_bpf		= nfp_net_xdp,
3520 };
3521 
3522 /**
3523  * nfp_net_info() - Print general info about the NIC
3524  * @nn:      NFP Net device to reconfigure
3525  */
3526 void nfp_net_info(struct nfp_net *nn)
3527 {
3528 	nn_info(nn, "Netronome NFP-6xxx %sNetdev: TxQs=%d/%d RxQs=%d/%d\n",
3529 		nn->dp.is_vf ? "VF " : "",
3530 		nn->dp.num_tx_rings, nn->max_tx_rings,
3531 		nn->dp.num_rx_rings, nn->max_rx_rings);
3532 	nn_info(nn, "VER: %d.%d.%d.%d, Maximum supported MTU: %d\n",
3533 		nn->fw_ver.resv, nn->fw_ver.class,
3534 		nn->fw_ver.major, nn->fw_ver.minor,
3535 		nn->max_mtu);
3536 	nn_info(nn, "CAP: %#x %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
3537 		nn->cap,
3538 		nn->cap & NFP_NET_CFG_CTRL_PROMISC  ? "PROMISC "  : "",
3539 		nn->cap & NFP_NET_CFG_CTRL_L2BC     ? "L2BCFILT " : "",
3540 		nn->cap & NFP_NET_CFG_CTRL_L2MC     ? "L2MCFILT " : "",
3541 		nn->cap & NFP_NET_CFG_CTRL_RXCSUM   ? "RXCSUM "   : "",
3542 		nn->cap & NFP_NET_CFG_CTRL_TXCSUM   ? "TXCSUM "   : "",
3543 		nn->cap & NFP_NET_CFG_CTRL_RXVLAN   ? "RXVLAN "   : "",
3544 		nn->cap & NFP_NET_CFG_CTRL_TXVLAN   ? "TXVLAN "   : "",
3545 		nn->cap & NFP_NET_CFG_CTRL_SCATTER  ? "SCATTER "  : "",
3546 		nn->cap & NFP_NET_CFG_CTRL_GATHER   ? "GATHER "   : "",
3547 		nn->cap & NFP_NET_CFG_CTRL_LSO      ? "TSO1 "     : "",
3548 		nn->cap & NFP_NET_CFG_CTRL_LSO2     ? "TSO2 "     : "",
3549 		nn->cap & NFP_NET_CFG_CTRL_RSS      ? "RSS1 "     : "",
3550 		nn->cap & NFP_NET_CFG_CTRL_RSS2     ? "RSS2 "     : "",
3551 		nn->cap & NFP_NET_CFG_CTRL_CTAG_FILTER ? "CTAG_FILTER " : "",
3552 		nn->cap & NFP_NET_CFG_CTRL_L2SWITCH ? "L2SWITCH " : "",
3553 		nn->cap & NFP_NET_CFG_CTRL_MSIXAUTO ? "AUTOMASK " : "",
3554 		nn->cap & NFP_NET_CFG_CTRL_IRQMOD   ? "IRQMOD "   : "",
3555 		nn->cap & NFP_NET_CFG_CTRL_VXLAN    ? "VXLAN "    : "",
3556 		nn->cap & NFP_NET_CFG_CTRL_NVGRE    ? "NVGRE "	  : "",
3557 		nn->cap & NFP_NET_CFG_CTRL_CSUM_COMPLETE ?
3558 						      "RXCSUM_COMPLETE " : "",
3559 		nn->cap & NFP_NET_CFG_CTRL_LIVE_ADDR ? "LIVE_ADDR " : "",
3560 		nfp_app_extra_cap(nn->app, nn));
3561 }
3562 
3563 /**
3564  * nfp_net_alloc() - Allocate netdev and related structure
3565  * @pdev:         PCI device
3566  * @needs_netdev: Whether to allocate a netdev for this vNIC
3567  * @max_tx_rings: Maximum number of TX rings supported by device
3568  * @max_rx_rings: Maximum number of RX rings supported by device
3569  *
3570  * This function allocates a netdev device and fills in the initial
3571  * part of the @struct nfp_net structure.  In case of control device
3572  * nfp_net structure is allocated without the netdev.
3573  *
3574  * Return: NFP Net device structure, or ERR_PTR on error.
3575  */
3576 struct nfp_net *nfp_net_alloc(struct pci_dev *pdev, bool needs_netdev,
3577 			      unsigned int max_tx_rings,
3578 			      unsigned int max_rx_rings)
3579 {
3580 	struct nfp_net *nn;
3581 
3582 	if (needs_netdev) {
3583 		struct net_device *netdev;
3584 
3585 		netdev = alloc_etherdev_mqs(sizeof(struct nfp_net),
3586 					    max_tx_rings, max_rx_rings);
3587 		if (!netdev)
3588 			return ERR_PTR(-ENOMEM);
3589 
3590 		SET_NETDEV_DEV(netdev, &pdev->dev);
3591 		nn = netdev_priv(netdev);
3592 		nn->dp.netdev = netdev;
3593 	} else {
3594 		nn = vzalloc(sizeof(*nn));
3595 		if (!nn)
3596 			return ERR_PTR(-ENOMEM);
3597 	}
3598 
3599 	nn->dp.dev = &pdev->dev;
3600 	nn->pdev = pdev;
3601 
3602 	nn->max_tx_rings = max_tx_rings;
3603 	nn->max_rx_rings = max_rx_rings;
3604 
3605 	nn->dp.num_tx_rings = min_t(unsigned int,
3606 				    max_tx_rings, num_online_cpus());
3607 	nn->dp.num_rx_rings = min_t(unsigned int, max_rx_rings,
3608 				 netif_get_num_default_rss_queues());
3609 
3610 	nn->dp.num_r_vecs = max(nn->dp.num_tx_rings, nn->dp.num_rx_rings);
3611 	nn->dp.num_r_vecs = min_t(unsigned int,
3612 				  nn->dp.num_r_vecs, num_online_cpus());
3613 
3614 	nn->dp.txd_cnt = NFP_NET_TX_DESCS_DEFAULT;
3615 	nn->dp.rxd_cnt = NFP_NET_RX_DESCS_DEFAULT;
3616 
3617 	spin_lock_init(&nn->reconfig_lock);
3618 	spin_lock_init(&nn->link_status_lock);
3619 
3620 	timer_setup(&nn->reconfig_timer, nfp_net_reconfig_timer, 0);
3621 
3622 	return nn;
3623 }
3624 
3625 /**
3626  * nfp_net_free() - Undo what @nfp_net_alloc() did
3627  * @nn:      NFP Net device to reconfigure
3628  */
3629 void nfp_net_free(struct nfp_net *nn)
3630 {
3631 	if (nn->dp.netdev)
3632 		free_netdev(nn->dp.netdev);
3633 	else
3634 		vfree(nn);
3635 }
3636 
3637 /**
3638  * nfp_net_rss_key_sz() - Get current size of the RSS key
3639  * @nn:		NFP Net device instance
3640  *
3641  * Return: size of the RSS key for currently selected hash function.
3642  */
3643 unsigned int nfp_net_rss_key_sz(struct nfp_net *nn)
3644 {
3645 	switch (nn->rss_hfunc) {
3646 	case ETH_RSS_HASH_TOP:
3647 		return NFP_NET_CFG_RSS_KEY_SZ;
3648 	case ETH_RSS_HASH_XOR:
3649 		return 0;
3650 	case ETH_RSS_HASH_CRC32:
3651 		return 4;
3652 	}
3653 
3654 	nn_warn(nn, "Unknown hash function: %u\n", nn->rss_hfunc);
3655 	return 0;
3656 }
3657 
3658 /**
3659  * nfp_net_rss_init() - Set the initial RSS parameters
3660  * @nn:	     NFP Net device to reconfigure
3661  */
3662 static void nfp_net_rss_init(struct nfp_net *nn)
3663 {
3664 	unsigned long func_bit, rss_cap_hfunc;
3665 	u32 reg;
3666 
3667 	/* Read the RSS function capability and select first supported func */
3668 	reg = nn_readl(nn, NFP_NET_CFG_RSS_CAP);
3669 	rss_cap_hfunc =	FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC, reg);
3670 	if (!rss_cap_hfunc)
3671 		rss_cap_hfunc =	FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC,
3672 					  NFP_NET_CFG_RSS_TOEPLITZ);
3673 
3674 	func_bit = find_first_bit(&rss_cap_hfunc, NFP_NET_CFG_RSS_HFUNCS);
3675 	if (func_bit == NFP_NET_CFG_RSS_HFUNCS) {
3676 		dev_warn(nn->dp.dev,
3677 			 "Bad RSS config, defaulting to Toeplitz hash\n");
3678 		func_bit = ETH_RSS_HASH_TOP_BIT;
3679 	}
3680 	nn->rss_hfunc = 1 << func_bit;
3681 
3682 	netdev_rss_key_fill(nn->rss_key, nfp_net_rss_key_sz(nn));
3683 
3684 	nfp_net_rss_init_itbl(nn);
3685 
3686 	/* Enable IPv4/IPv6 TCP by default */
3687 	nn->rss_cfg = NFP_NET_CFG_RSS_IPV4_TCP |
3688 		      NFP_NET_CFG_RSS_IPV6_TCP |
3689 		      FIELD_PREP(NFP_NET_CFG_RSS_HFUNC, nn->rss_hfunc) |
3690 		      NFP_NET_CFG_RSS_MASK;
3691 }
3692 
3693 /**
3694  * nfp_net_irqmod_init() - Set the initial IRQ moderation parameters
3695  * @nn:	     NFP Net device to reconfigure
3696  */
3697 static void nfp_net_irqmod_init(struct nfp_net *nn)
3698 {
3699 	nn->rx_coalesce_usecs      = 50;
3700 	nn->rx_coalesce_max_frames = 64;
3701 	nn->tx_coalesce_usecs      = 50;
3702 	nn->tx_coalesce_max_frames = 64;
3703 }
3704 
3705 static void nfp_net_netdev_init(struct nfp_net *nn)
3706 {
3707 	struct net_device *netdev = nn->dp.netdev;
3708 
3709 	nfp_net_write_mac_addr(nn, nn->dp.netdev->dev_addr);
3710 
3711 	netdev->mtu = nn->dp.mtu;
3712 
3713 	/* Advertise/enable offloads based on capabilities
3714 	 *
3715 	 * Note: netdev->features show the currently enabled features
3716 	 * and netdev->hw_features advertises which features are
3717 	 * supported.  By default we enable most features.
3718 	 */
3719 	if (nn->cap & NFP_NET_CFG_CTRL_LIVE_ADDR)
3720 		netdev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
3721 
3722 	netdev->hw_features = NETIF_F_HIGHDMA;
3723 	if (nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY) {
3724 		netdev->hw_features |= NETIF_F_RXCSUM;
3725 		nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY;
3726 	}
3727 	if (nn->cap & NFP_NET_CFG_CTRL_TXCSUM) {
3728 		netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
3729 		nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXCSUM;
3730 	}
3731 	if (nn->cap & NFP_NET_CFG_CTRL_GATHER) {
3732 		netdev->hw_features |= NETIF_F_SG;
3733 		nn->dp.ctrl |= NFP_NET_CFG_CTRL_GATHER;
3734 	}
3735 	if ((nn->cap & NFP_NET_CFG_CTRL_LSO && nn->fw_ver.major > 2) ||
3736 	    nn->cap & NFP_NET_CFG_CTRL_LSO2) {
3737 		netdev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
3738 		nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_LSO2 ?:
3739 					 NFP_NET_CFG_CTRL_LSO;
3740 	}
3741 	if (nn->cap & NFP_NET_CFG_CTRL_RSS_ANY)
3742 		netdev->hw_features |= NETIF_F_RXHASH;
3743 	if (nn->cap & NFP_NET_CFG_CTRL_VXLAN &&
3744 	    nn->cap & NFP_NET_CFG_CTRL_NVGRE) {
3745 		if (nn->cap & NFP_NET_CFG_CTRL_LSO)
3746 			netdev->hw_features |= NETIF_F_GSO_GRE |
3747 					       NETIF_F_GSO_UDP_TUNNEL;
3748 		nn->dp.ctrl |= NFP_NET_CFG_CTRL_VXLAN | NFP_NET_CFG_CTRL_NVGRE;
3749 
3750 		netdev->hw_enc_features = netdev->hw_features;
3751 	}
3752 
3753 	netdev->vlan_features = netdev->hw_features;
3754 
3755 	if (nn->cap & NFP_NET_CFG_CTRL_RXVLAN) {
3756 		netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
3757 		nn->dp.ctrl |= NFP_NET_CFG_CTRL_RXVLAN;
3758 	}
3759 	if (nn->cap & NFP_NET_CFG_CTRL_TXVLAN) {
3760 		if (nn->cap & NFP_NET_CFG_CTRL_LSO2) {
3761 			nn_warn(nn, "Device advertises both TSO2 and TXVLAN. Refusing to enable TXVLAN.\n");
3762 		} else {
3763 			netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
3764 			nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXVLAN;
3765 		}
3766 	}
3767 	if (nn->cap & NFP_NET_CFG_CTRL_CTAG_FILTER) {
3768 		netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
3769 		nn->dp.ctrl |= NFP_NET_CFG_CTRL_CTAG_FILTER;
3770 	}
3771 
3772 	netdev->features = netdev->hw_features;
3773 
3774 	if (nfp_app_has_tc(nn->app) && nn->port)
3775 		netdev->hw_features |= NETIF_F_HW_TC;
3776 
3777 	/* Advertise but disable TSO by default. */
3778 	netdev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
3779 	nn->dp.ctrl &= ~NFP_NET_CFG_CTRL_LSO_ANY;
3780 
3781 	/* Finalise the netdev setup */
3782 	netdev->netdev_ops = &nfp_net_netdev_ops;
3783 	netdev->watchdog_timeo = msecs_to_jiffies(5 * 1000);
3784 
3785 	SWITCHDEV_SET_OPS(netdev, &nfp_port_switchdev_ops);
3786 
3787 	/* MTU range: 68 - hw-specific max */
3788 	netdev->min_mtu = ETH_MIN_MTU;
3789 	netdev->max_mtu = nn->max_mtu;
3790 
3791 	netdev->gso_max_segs = NFP_NET_LSO_MAX_SEGS;
3792 
3793 	netif_carrier_off(netdev);
3794 
3795 	nfp_net_set_ethtool_ops(netdev);
3796 }
3797 
3798 static int nfp_net_read_caps(struct nfp_net *nn)
3799 {
3800 	/* Get some of the read-only fields from the BAR */
3801 	nn->cap = nn_readl(nn, NFP_NET_CFG_CAP);
3802 	nn->max_mtu = nn_readl(nn, NFP_NET_CFG_MAX_MTU);
3803 
3804 	/* ABI 4.x and ctrl vNIC always use chained metadata, in other cases
3805 	 * we allow use of non-chained metadata if RSS(v1) is the only
3806 	 * advertised capability requiring metadata.
3807 	 */
3808 	nn->dp.chained_metadata_format = nn->fw_ver.major == 4 ||
3809 					 !nn->dp.netdev ||
3810 					 !(nn->cap & NFP_NET_CFG_CTRL_RSS) ||
3811 					 nn->cap & NFP_NET_CFG_CTRL_CHAIN_META;
3812 	/* RSS(v1) uses non-chained metadata format, except in ABI 4.x where
3813 	 * it has the same meaning as RSSv2.
3814 	 */
3815 	if (nn->dp.chained_metadata_format && nn->fw_ver.major != 4)
3816 		nn->cap &= ~NFP_NET_CFG_CTRL_RSS;
3817 
3818 	/* Determine RX packet/metadata boundary offset */
3819 	if (nn->fw_ver.major >= 2) {
3820 		u32 reg;
3821 
3822 		reg = nn_readl(nn, NFP_NET_CFG_RX_OFFSET);
3823 		if (reg > NFP_NET_MAX_PREPEND) {
3824 			nn_err(nn, "Invalid rx offset: %d\n", reg);
3825 			return -EINVAL;
3826 		}
3827 		nn->dp.rx_offset = reg;
3828 	} else {
3829 		nn->dp.rx_offset = NFP_NET_RX_OFFSET;
3830 	}
3831 
3832 	/* For control vNICs mask out the capabilities app doesn't want. */
3833 	if (!nn->dp.netdev)
3834 		nn->cap &= nn->app->type->ctrl_cap_mask;
3835 
3836 	return 0;
3837 }
3838 
3839 /**
3840  * nfp_net_init() - Initialise/finalise the nfp_net structure
3841  * @nn:		NFP Net device structure
3842  *
3843  * Return: 0 on success or negative errno on error.
3844  */
3845 int nfp_net_init(struct nfp_net *nn)
3846 {
3847 	int err;
3848 
3849 	nn->dp.rx_dma_dir = DMA_FROM_DEVICE;
3850 
3851 	err = nfp_net_read_caps(nn);
3852 	if (err)
3853 		return err;
3854 
3855 	/* Set default MTU and Freelist buffer size */
3856 	if (nn->max_mtu < NFP_NET_DEFAULT_MTU)
3857 		nn->dp.mtu = nn->max_mtu;
3858 	else
3859 		nn->dp.mtu = NFP_NET_DEFAULT_MTU;
3860 	nn->dp.fl_bufsz = nfp_net_calc_fl_bufsz(&nn->dp);
3861 
3862 	if (nn->cap & NFP_NET_CFG_CTRL_RSS_ANY) {
3863 		nfp_net_rss_init(nn);
3864 		nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RSS2 ?:
3865 					 NFP_NET_CFG_CTRL_RSS;
3866 	}
3867 
3868 	/* Allow L2 Broadcast and Multicast through by default, if supported */
3869 	if (nn->cap & NFP_NET_CFG_CTRL_L2BC)
3870 		nn->dp.ctrl |= NFP_NET_CFG_CTRL_L2BC;
3871 
3872 	/* Allow IRQ moderation, if supported */
3873 	if (nn->cap & NFP_NET_CFG_CTRL_IRQMOD) {
3874 		nfp_net_irqmod_init(nn);
3875 		nn->dp.ctrl |= NFP_NET_CFG_CTRL_IRQMOD;
3876 	}
3877 
3878 	err = nfp_net_tlv_caps_parse(&nn->pdev->dev, nn->dp.ctrl_bar,
3879 				     &nn->tlv_caps);
3880 	if (err)
3881 		return err;
3882 
3883 	if (nn->dp.netdev)
3884 		nfp_net_netdev_init(nn);
3885 
3886 	/* Stash the re-configuration queue away.  First odd queue in TX Bar */
3887 	nn->qcp_cfg = nn->tx_bar + NFP_QCP_QUEUE_ADDR_SZ;
3888 
3889 	/* Make sure the FW knows the netdev is supposed to be disabled here */
3890 	nn_writel(nn, NFP_NET_CFG_CTRL, 0);
3891 	nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0);
3892 	nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0);
3893 	err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_RING |
3894 				   NFP_NET_CFG_UPDATE_GEN);
3895 	if (err)
3896 		return err;
3897 
3898 	nfp_net_vecs_init(nn);
3899 
3900 	if (!nn->dp.netdev)
3901 		return 0;
3902 	return register_netdev(nn->dp.netdev);
3903 }
3904 
3905 /**
3906  * nfp_net_clean() - Undo what nfp_net_init() did.
3907  * @nn:		NFP Net device structure
3908  */
3909 void nfp_net_clean(struct nfp_net *nn)
3910 {
3911 	if (!nn->dp.netdev)
3912 		return;
3913 
3914 	unregister_netdev(nn->dp.netdev);
3915 }
3916