1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause) 2 /* Copyright (C) 2015-2019 Netronome Systems, Inc. */ 3 4 #include <linux/bpf_trace.h> 5 #include <linux/netdevice.h> 6 #include <linux/bitfield.h> 7 #include <net/xfrm.h> 8 9 #include "../nfp_app.h" 10 #include "../nfp_net.h" 11 #include "../nfp_net_dp.h" 12 #include "../nfp_net_xsk.h" 13 #include "../crypto/crypto.h" 14 #include "../crypto/fw.h" 15 #include "nfd3.h" 16 17 /* Transmit processing 18 * 19 * One queue controller peripheral queue is used for transmit. The 20 * driver en-queues packets for transmit by advancing the write 21 * pointer. The device indicates that packets have transmitted by 22 * advancing the read pointer. The driver maintains a local copy of 23 * the read and write pointer in @struct nfp_net_tx_ring. The driver 24 * keeps @wr_p in sync with the queue controller write pointer and can 25 * determine how many packets have been transmitted by comparing its 26 * copy of the read pointer @rd_p with the read pointer maintained by 27 * the queue controller peripheral. 28 */ 29 30 /* Wrappers for deciding when to stop and restart TX queues */ 31 static int nfp_nfd3_tx_ring_should_wake(struct nfp_net_tx_ring *tx_ring) 32 { 33 return !nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS * 4); 34 } 35 36 static int nfp_nfd3_tx_ring_should_stop(struct nfp_net_tx_ring *tx_ring) 37 { 38 return nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS + 1); 39 } 40 41 /** 42 * nfp_nfd3_tx_ring_stop() - stop tx ring 43 * @nd_q: netdev queue 44 * @tx_ring: driver tx queue structure 45 * 46 * Safely stop TX ring. Remember that while we are running .start_xmit() 47 * someone else may be cleaning the TX ring completions so we need to be 48 * extra careful here. 49 */ 50 static void 51 nfp_nfd3_tx_ring_stop(struct netdev_queue *nd_q, 52 struct nfp_net_tx_ring *tx_ring) 53 { 54 netif_tx_stop_queue(nd_q); 55 56 /* We can race with the TX completion out of NAPI so recheck */ 57 smp_mb(); 58 if (unlikely(nfp_nfd3_tx_ring_should_wake(tx_ring))) 59 netif_tx_start_queue(nd_q); 60 } 61 62 /** 63 * nfp_nfd3_tx_tso() - Set up Tx descriptor for LSO 64 * @r_vec: per-ring structure 65 * @txbuf: Pointer to driver soft TX descriptor 66 * @txd: Pointer to HW TX descriptor 67 * @skb: Pointer to SKB 68 * @md_bytes: Prepend length 69 * 70 * Set up Tx descriptor for LSO, do nothing for non-LSO skbs. 71 * Return error on packet header greater than maximum supported LSO header size. 72 */ 73 static void 74 nfp_nfd3_tx_tso(struct nfp_net_r_vector *r_vec, struct nfp_nfd3_tx_buf *txbuf, 75 struct nfp_nfd3_tx_desc *txd, struct sk_buff *skb, u32 md_bytes) 76 { 77 u32 l3_offset, l4_offset, hdrlen, l4_hdrlen; 78 u16 mss; 79 80 if (!skb_is_gso(skb)) 81 return; 82 83 if (!skb->encapsulation) { 84 l3_offset = skb_network_offset(skb); 85 l4_offset = skb_transport_offset(skb); 86 l4_hdrlen = (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ? 87 sizeof(struct udphdr) : tcp_hdrlen(skb); 88 } else { 89 l3_offset = skb_inner_network_offset(skb); 90 l4_offset = skb_inner_transport_offset(skb); 91 l4_hdrlen = (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ? 92 sizeof(struct udphdr) : inner_tcp_hdrlen(skb); 93 } 94 95 hdrlen = l4_offset + l4_hdrlen; 96 txbuf->pkt_cnt = skb_shinfo(skb)->gso_segs; 97 txbuf->real_len += hdrlen * (txbuf->pkt_cnt - 1); 98 99 mss = skb_shinfo(skb)->gso_size & NFD3_DESC_TX_MSS_MASK; 100 txd->l3_offset = l3_offset - md_bytes; 101 txd->l4_offset = l4_offset - md_bytes; 102 txd->lso_hdrlen = hdrlen - md_bytes; 103 txd->mss = cpu_to_le16(mss); 104 txd->flags |= NFD3_DESC_TX_LSO; 105 106 u64_stats_update_begin(&r_vec->tx_sync); 107 r_vec->tx_lso++; 108 u64_stats_update_end(&r_vec->tx_sync); 109 } 110 111 /** 112 * nfp_nfd3_tx_csum() - Set TX CSUM offload flags in TX descriptor 113 * @dp: NFP Net data path struct 114 * @r_vec: per-ring structure 115 * @txbuf: Pointer to driver soft TX descriptor 116 * @txd: Pointer to TX descriptor 117 * @skb: Pointer to SKB 118 * 119 * This function sets the TX checksum flags in the TX descriptor based 120 * on the configuration and the protocol of the packet to be transmitted. 121 */ 122 static void 123 nfp_nfd3_tx_csum(struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec, 124 struct nfp_nfd3_tx_buf *txbuf, struct nfp_nfd3_tx_desc *txd, 125 struct sk_buff *skb) 126 { 127 struct ipv6hdr *ipv6h; 128 struct iphdr *iph; 129 u8 l4_hdr; 130 131 if (!(dp->ctrl & NFP_NET_CFG_CTRL_TXCSUM)) 132 return; 133 134 if (skb->ip_summed != CHECKSUM_PARTIAL) 135 return; 136 137 txd->flags |= NFD3_DESC_TX_CSUM; 138 if (skb->encapsulation) 139 txd->flags |= NFD3_DESC_TX_ENCAP; 140 141 iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb); 142 ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb); 143 144 if (iph->version == 4) { 145 txd->flags |= NFD3_DESC_TX_IP4_CSUM; 146 l4_hdr = iph->protocol; 147 } else if (ipv6h->version == 6) { 148 l4_hdr = ipv6h->nexthdr; 149 } else { 150 nn_dp_warn(dp, "partial checksum but ipv=%x!\n", iph->version); 151 return; 152 } 153 154 switch (l4_hdr) { 155 case IPPROTO_TCP: 156 txd->flags |= NFD3_DESC_TX_TCP_CSUM; 157 break; 158 case IPPROTO_UDP: 159 txd->flags |= NFD3_DESC_TX_UDP_CSUM; 160 break; 161 default: 162 nn_dp_warn(dp, "partial checksum but l4 proto=%x!\n", l4_hdr); 163 return; 164 } 165 166 u64_stats_update_begin(&r_vec->tx_sync); 167 if (skb->encapsulation) 168 r_vec->hw_csum_tx_inner += txbuf->pkt_cnt; 169 else 170 r_vec->hw_csum_tx += txbuf->pkt_cnt; 171 u64_stats_update_end(&r_vec->tx_sync); 172 } 173 174 static int nfp_nfd3_prep_tx_meta(struct nfp_net_dp *dp, struct sk_buff *skb, 175 u64 tls_handle, bool *ipsec) 176 { 177 struct metadata_dst *md_dst = skb_metadata_dst(skb); 178 struct nfp_ipsec_offload offload_info; 179 unsigned char *data; 180 bool vlan_insert; 181 u32 meta_id = 0; 182 int md_bytes; 183 184 #ifdef CONFIG_NFP_NET_IPSEC 185 if (xfrm_offload(skb)) 186 *ipsec = nfp_net_ipsec_tx_prep(dp, skb, &offload_info); 187 #endif 188 189 if (unlikely(md_dst && md_dst->type != METADATA_HW_PORT_MUX)) 190 md_dst = NULL; 191 192 vlan_insert = skb_vlan_tag_present(skb) && (dp->ctrl & NFP_NET_CFG_CTRL_TXVLAN_V2); 193 194 if (!(md_dst || tls_handle || vlan_insert || *ipsec)) 195 return 0; 196 197 md_bytes = sizeof(meta_id) + 198 (!!md_dst ? NFP_NET_META_PORTID_SIZE : 0) + 199 (!!tls_handle ? NFP_NET_META_CONN_HANDLE_SIZE : 0) + 200 (vlan_insert ? NFP_NET_META_VLAN_SIZE : 0) + 201 (*ipsec ? NFP_NET_META_IPSEC_FIELD_SIZE : 0); 202 203 if (unlikely(skb_cow_head(skb, md_bytes))) 204 return -ENOMEM; 205 206 data = skb_push(skb, md_bytes) + md_bytes; 207 if (md_dst) { 208 data -= NFP_NET_META_PORTID_SIZE; 209 put_unaligned_be32(md_dst->u.port_info.port_id, data); 210 meta_id = NFP_NET_META_PORTID; 211 } 212 if (tls_handle) { 213 /* conn handle is opaque, we just use u64 to be able to quickly 214 * compare it to zero 215 */ 216 data -= NFP_NET_META_CONN_HANDLE_SIZE; 217 memcpy(data, &tls_handle, sizeof(tls_handle)); 218 meta_id <<= NFP_NET_META_FIELD_SIZE; 219 meta_id |= NFP_NET_META_CONN_HANDLE; 220 } 221 if (vlan_insert) { 222 data -= NFP_NET_META_VLAN_SIZE; 223 /* data type of skb->vlan_proto is __be16 224 * so it fills metadata without calling put_unaligned_be16 225 */ 226 memcpy(data, &skb->vlan_proto, sizeof(skb->vlan_proto)); 227 put_unaligned_be16(skb_vlan_tag_get(skb), data + sizeof(skb->vlan_proto)); 228 meta_id <<= NFP_NET_META_FIELD_SIZE; 229 meta_id |= NFP_NET_META_VLAN; 230 } 231 if (*ipsec) { 232 data -= NFP_NET_META_IPSEC_SIZE; 233 put_unaligned_be32(offload_info.seq_hi, data); 234 data -= NFP_NET_META_IPSEC_SIZE; 235 put_unaligned_be32(offload_info.seq_low, data); 236 data -= NFP_NET_META_IPSEC_SIZE; 237 put_unaligned_be32(offload_info.handle - 1, data); 238 meta_id <<= NFP_NET_META_IPSEC_FIELD_SIZE; 239 meta_id |= NFP_NET_META_IPSEC << 8 | NFP_NET_META_IPSEC << 4 | NFP_NET_META_IPSEC; 240 } 241 242 data -= sizeof(meta_id); 243 put_unaligned_be32(meta_id, data); 244 245 return md_bytes; 246 } 247 248 /** 249 * nfp_nfd3_tx() - Main transmit entry point 250 * @skb: SKB to transmit 251 * @netdev: netdev structure 252 * 253 * Return: NETDEV_TX_OK on success. 254 */ 255 netdev_tx_t nfp_nfd3_tx(struct sk_buff *skb, struct net_device *netdev) 256 { 257 struct nfp_net *nn = netdev_priv(netdev); 258 int f, nr_frags, wr_idx, md_bytes; 259 struct nfp_net_tx_ring *tx_ring; 260 struct nfp_net_r_vector *r_vec; 261 struct nfp_nfd3_tx_buf *txbuf; 262 struct nfp_nfd3_tx_desc *txd; 263 struct netdev_queue *nd_q; 264 const skb_frag_t *frag; 265 struct nfp_net_dp *dp; 266 dma_addr_t dma_addr; 267 unsigned int fsize; 268 u64 tls_handle = 0; 269 bool ipsec = false; 270 u16 qidx; 271 272 dp = &nn->dp; 273 qidx = skb_get_queue_mapping(skb); 274 tx_ring = &dp->tx_rings[qidx]; 275 r_vec = tx_ring->r_vec; 276 277 nr_frags = skb_shinfo(skb)->nr_frags; 278 279 if (unlikely(nfp_net_tx_full(tx_ring, nr_frags + 1))) { 280 nn_dp_warn(dp, "TX ring %d busy. wrp=%u rdp=%u\n", 281 qidx, tx_ring->wr_p, tx_ring->rd_p); 282 nd_q = netdev_get_tx_queue(dp->netdev, qidx); 283 netif_tx_stop_queue(nd_q); 284 nfp_net_tx_xmit_more_flush(tx_ring); 285 u64_stats_update_begin(&r_vec->tx_sync); 286 r_vec->tx_busy++; 287 u64_stats_update_end(&r_vec->tx_sync); 288 return NETDEV_TX_BUSY; 289 } 290 291 skb = nfp_net_tls_tx(dp, r_vec, skb, &tls_handle, &nr_frags); 292 if (unlikely(!skb)) { 293 nfp_net_tx_xmit_more_flush(tx_ring); 294 return NETDEV_TX_OK; 295 } 296 297 md_bytes = nfp_nfd3_prep_tx_meta(dp, skb, tls_handle, &ipsec); 298 if (unlikely(md_bytes < 0)) 299 goto err_flush; 300 301 /* Start with the head skbuf */ 302 dma_addr = dma_map_single(dp->dev, skb->data, skb_headlen(skb), 303 DMA_TO_DEVICE); 304 if (dma_mapping_error(dp->dev, dma_addr)) 305 goto err_dma_err; 306 307 wr_idx = D_IDX(tx_ring, tx_ring->wr_p); 308 309 /* Stash the soft descriptor of the head then initialize it */ 310 txbuf = &tx_ring->txbufs[wr_idx]; 311 txbuf->skb = skb; 312 txbuf->dma_addr = dma_addr; 313 txbuf->fidx = -1; 314 txbuf->pkt_cnt = 1; 315 txbuf->real_len = skb->len; 316 317 /* Build TX descriptor */ 318 txd = &tx_ring->txds[wr_idx]; 319 txd->offset_eop = (nr_frags ? 0 : NFD3_DESC_TX_EOP) | md_bytes; 320 txd->dma_len = cpu_to_le16(skb_headlen(skb)); 321 nfp_desc_set_dma_addr_40b(txd, dma_addr); 322 txd->data_len = cpu_to_le16(skb->len); 323 324 txd->flags = 0; 325 txd->mss = 0; 326 txd->lso_hdrlen = 0; 327 328 /* Do not reorder - tso may adjust pkt cnt, vlan may override fields */ 329 nfp_nfd3_tx_tso(r_vec, txbuf, txd, skb, md_bytes); 330 if (ipsec) 331 nfp_nfd3_ipsec_tx(txd, skb); 332 else 333 nfp_nfd3_tx_csum(dp, r_vec, txbuf, txd, skb); 334 if (skb_vlan_tag_present(skb) && dp->ctrl & NFP_NET_CFG_CTRL_TXVLAN) { 335 txd->flags |= NFD3_DESC_TX_VLAN; 336 txd->vlan = cpu_to_le16(skb_vlan_tag_get(skb)); 337 } 338 339 /* Gather DMA */ 340 if (nr_frags > 0) { 341 __le64 second_half; 342 343 /* all descs must match except for in addr, length and eop */ 344 second_half = txd->vals8[1]; 345 346 for (f = 0; f < nr_frags; f++) { 347 frag = &skb_shinfo(skb)->frags[f]; 348 fsize = skb_frag_size(frag); 349 350 dma_addr = skb_frag_dma_map(dp->dev, frag, 0, 351 fsize, DMA_TO_DEVICE); 352 if (dma_mapping_error(dp->dev, dma_addr)) 353 goto err_unmap; 354 355 wr_idx = D_IDX(tx_ring, wr_idx + 1); 356 tx_ring->txbufs[wr_idx].skb = skb; 357 tx_ring->txbufs[wr_idx].dma_addr = dma_addr; 358 tx_ring->txbufs[wr_idx].fidx = f; 359 360 txd = &tx_ring->txds[wr_idx]; 361 txd->dma_len = cpu_to_le16(fsize); 362 nfp_desc_set_dma_addr_40b(txd, dma_addr); 363 txd->offset_eop = md_bytes | 364 ((f == nr_frags - 1) ? NFD3_DESC_TX_EOP : 0); 365 txd->vals8[1] = second_half; 366 } 367 368 u64_stats_update_begin(&r_vec->tx_sync); 369 r_vec->tx_gather++; 370 u64_stats_update_end(&r_vec->tx_sync); 371 } 372 373 skb_tx_timestamp(skb); 374 375 nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx); 376 377 tx_ring->wr_p += nr_frags + 1; 378 if (nfp_nfd3_tx_ring_should_stop(tx_ring)) 379 nfp_nfd3_tx_ring_stop(nd_q, tx_ring); 380 381 tx_ring->wr_ptr_add += nr_frags + 1; 382 if (__netdev_tx_sent_queue(nd_q, txbuf->real_len, netdev_xmit_more())) 383 nfp_net_tx_xmit_more_flush(tx_ring); 384 385 return NETDEV_TX_OK; 386 387 err_unmap: 388 while (--f >= 0) { 389 frag = &skb_shinfo(skb)->frags[f]; 390 dma_unmap_page(dp->dev, tx_ring->txbufs[wr_idx].dma_addr, 391 skb_frag_size(frag), DMA_TO_DEVICE); 392 tx_ring->txbufs[wr_idx].skb = NULL; 393 tx_ring->txbufs[wr_idx].dma_addr = 0; 394 tx_ring->txbufs[wr_idx].fidx = -2; 395 wr_idx = wr_idx - 1; 396 if (wr_idx < 0) 397 wr_idx += tx_ring->cnt; 398 } 399 dma_unmap_single(dp->dev, tx_ring->txbufs[wr_idx].dma_addr, 400 skb_headlen(skb), DMA_TO_DEVICE); 401 tx_ring->txbufs[wr_idx].skb = NULL; 402 tx_ring->txbufs[wr_idx].dma_addr = 0; 403 tx_ring->txbufs[wr_idx].fidx = -2; 404 err_dma_err: 405 nn_dp_warn(dp, "Failed to map DMA TX buffer\n"); 406 err_flush: 407 nfp_net_tx_xmit_more_flush(tx_ring); 408 u64_stats_update_begin(&r_vec->tx_sync); 409 r_vec->tx_errors++; 410 u64_stats_update_end(&r_vec->tx_sync); 411 nfp_net_tls_tx_undo(skb, tls_handle); 412 dev_kfree_skb_any(skb); 413 return NETDEV_TX_OK; 414 } 415 416 /** 417 * nfp_nfd3_tx_complete() - Handled completed TX packets 418 * @tx_ring: TX ring structure 419 * @budget: NAPI budget (only used as bool to determine if in NAPI context) 420 */ 421 void nfp_nfd3_tx_complete(struct nfp_net_tx_ring *tx_ring, int budget) 422 { 423 struct nfp_net_r_vector *r_vec = tx_ring->r_vec; 424 struct nfp_net_dp *dp = &r_vec->nfp_net->dp; 425 u32 done_pkts = 0, done_bytes = 0; 426 struct netdev_queue *nd_q; 427 u32 qcp_rd_p; 428 int todo; 429 430 if (tx_ring->wr_p == tx_ring->rd_p) 431 return; 432 433 /* Work out how many descriptors have been transmitted */ 434 qcp_rd_p = nfp_net_read_tx_cmpl(tx_ring, dp); 435 436 if (qcp_rd_p == tx_ring->qcp_rd_p) 437 return; 438 439 todo = D_IDX(tx_ring, qcp_rd_p - tx_ring->qcp_rd_p); 440 441 while (todo--) { 442 const skb_frag_t *frag; 443 struct nfp_nfd3_tx_buf *tx_buf; 444 struct sk_buff *skb; 445 int fidx, nr_frags; 446 int idx; 447 448 idx = D_IDX(tx_ring, tx_ring->rd_p++); 449 tx_buf = &tx_ring->txbufs[idx]; 450 451 skb = tx_buf->skb; 452 if (!skb) 453 continue; 454 455 nr_frags = skb_shinfo(skb)->nr_frags; 456 fidx = tx_buf->fidx; 457 458 if (fidx == -1) { 459 /* unmap head */ 460 dma_unmap_single(dp->dev, tx_buf->dma_addr, 461 skb_headlen(skb), DMA_TO_DEVICE); 462 463 done_pkts += tx_buf->pkt_cnt; 464 done_bytes += tx_buf->real_len; 465 } else { 466 /* unmap fragment */ 467 frag = &skb_shinfo(skb)->frags[fidx]; 468 dma_unmap_page(dp->dev, tx_buf->dma_addr, 469 skb_frag_size(frag), DMA_TO_DEVICE); 470 } 471 472 /* check for last gather fragment */ 473 if (fidx == nr_frags - 1) 474 napi_consume_skb(skb, budget); 475 476 tx_buf->dma_addr = 0; 477 tx_buf->skb = NULL; 478 tx_buf->fidx = -2; 479 } 480 481 tx_ring->qcp_rd_p = qcp_rd_p; 482 483 u64_stats_update_begin(&r_vec->tx_sync); 484 r_vec->tx_bytes += done_bytes; 485 r_vec->tx_pkts += done_pkts; 486 u64_stats_update_end(&r_vec->tx_sync); 487 488 if (!dp->netdev) 489 return; 490 491 nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx); 492 netdev_tx_completed_queue(nd_q, done_pkts, done_bytes); 493 if (nfp_nfd3_tx_ring_should_wake(tx_ring)) { 494 /* Make sure TX thread will see updated tx_ring->rd_p */ 495 smp_mb(); 496 497 if (unlikely(netif_tx_queue_stopped(nd_q))) 498 netif_tx_wake_queue(nd_q); 499 } 500 501 WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt, 502 "TX ring corruption rd_p=%u wr_p=%u cnt=%u\n", 503 tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt); 504 } 505 506 static bool nfp_nfd3_xdp_complete(struct nfp_net_tx_ring *tx_ring) 507 { 508 struct nfp_net_r_vector *r_vec = tx_ring->r_vec; 509 struct nfp_net_dp *dp = &r_vec->nfp_net->dp; 510 u32 done_pkts = 0, done_bytes = 0; 511 bool done_all; 512 int idx, todo; 513 u32 qcp_rd_p; 514 515 /* Work out how many descriptors have been transmitted */ 516 qcp_rd_p = nfp_net_read_tx_cmpl(tx_ring, dp); 517 518 if (qcp_rd_p == tx_ring->qcp_rd_p) 519 return true; 520 521 todo = D_IDX(tx_ring, qcp_rd_p - tx_ring->qcp_rd_p); 522 523 done_all = todo <= NFP_NET_XDP_MAX_COMPLETE; 524 todo = min(todo, NFP_NET_XDP_MAX_COMPLETE); 525 526 tx_ring->qcp_rd_p = D_IDX(tx_ring, tx_ring->qcp_rd_p + todo); 527 528 done_pkts = todo; 529 while (todo--) { 530 idx = D_IDX(tx_ring, tx_ring->rd_p); 531 tx_ring->rd_p++; 532 533 done_bytes += tx_ring->txbufs[idx].real_len; 534 } 535 536 u64_stats_update_begin(&r_vec->tx_sync); 537 r_vec->tx_bytes += done_bytes; 538 r_vec->tx_pkts += done_pkts; 539 u64_stats_update_end(&r_vec->tx_sync); 540 541 WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt, 542 "XDP TX ring corruption rd_p=%u wr_p=%u cnt=%u\n", 543 tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt); 544 545 return done_all; 546 } 547 548 /* Receive processing 549 */ 550 551 static void * 552 nfp_nfd3_napi_alloc_one(struct nfp_net_dp *dp, dma_addr_t *dma_addr) 553 { 554 void *frag; 555 556 if (!dp->xdp_prog) { 557 frag = napi_alloc_frag(dp->fl_bufsz); 558 if (unlikely(!frag)) 559 return NULL; 560 } else { 561 struct page *page; 562 563 page = dev_alloc_page(); 564 if (unlikely(!page)) 565 return NULL; 566 frag = page_address(page); 567 } 568 569 *dma_addr = nfp_net_dma_map_rx(dp, frag); 570 if (dma_mapping_error(dp->dev, *dma_addr)) { 571 nfp_net_free_frag(frag, dp->xdp_prog); 572 nn_dp_warn(dp, "Failed to map DMA RX buffer\n"); 573 return NULL; 574 } 575 576 return frag; 577 } 578 579 /** 580 * nfp_nfd3_rx_give_one() - Put mapped skb on the software and hardware rings 581 * @dp: NFP Net data path struct 582 * @rx_ring: RX ring structure 583 * @frag: page fragment buffer 584 * @dma_addr: DMA address of skb mapping 585 */ 586 static void 587 nfp_nfd3_rx_give_one(const struct nfp_net_dp *dp, 588 struct nfp_net_rx_ring *rx_ring, 589 void *frag, dma_addr_t dma_addr) 590 { 591 unsigned int wr_idx; 592 593 wr_idx = D_IDX(rx_ring, rx_ring->wr_p); 594 595 nfp_net_dma_sync_dev_rx(dp, dma_addr); 596 597 /* Stash SKB and DMA address away */ 598 rx_ring->rxbufs[wr_idx].frag = frag; 599 rx_ring->rxbufs[wr_idx].dma_addr = dma_addr; 600 601 /* Fill freelist descriptor */ 602 rx_ring->rxds[wr_idx].fld.reserved = 0; 603 rx_ring->rxds[wr_idx].fld.meta_len_dd = 0; 604 /* DMA address is expanded to 48-bit width in freelist for NFP3800, 605 * so the *_48b macro is used accordingly, it's also OK to fill 606 * a 40-bit address since the top 8 bits are get set to 0. 607 */ 608 nfp_desc_set_dma_addr_48b(&rx_ring->rxds[wr_idx].fld, 609 dma_addr + dp->rx_dma_off); 610 611 rx_ring->wr_p++; 612 if (!(rx_ring->wr_p % NFP_NET_FL_BATCH)) { 613 /* Update write pointer of the freelist queue. Make 614 * sure all writes are flushed before telling the hardware. 615 */ 616 wmb(); 617 nfp_qcp_wr_ptr_add(rx_ring->qcp_fl, NFP_NET_FL_BATCH); 618 } 619 } 620 621 /** 622 * nfp_nfd3_rx_ring_fill_freelist() - Give buffers from the ring to FW 623 * @dp: NFP Net data path struct 624 * @rx_ring: RX ring to fill 625 */ 626 void nfp_nfd3_rx_ring_fill_freelist(struct nfp_net_dp *dp, 627 struct nfp_net_rx_ring *rx_ring) 628 { 629 unsigned int i; 630 631 if (nfp_net_has_xsk_pool_slow(dp, rx_ring->idx)) 632 return nfp_net_xsk_rx_ring_fill_freelist(rx_ring); 633 634 for (i = 0; i < rx_ring->cnt - 1; i++) 635 nfp_nfd3_rx_give_one(dp, rx_ring, rx_ring->rxbufs[i].frag, 636 rx_ring->rxbufs[i].dma_addr); 637 } 638 639 /** 640 * nfp_nfd3_rx_csum_has_errors() - group check if rxd has any csum errors 641 * @flags: RX descriptor flags field in CPU byte order 642 */ 643 static int nfp_nfd3_rx_csum_has_errors(u16 flags) 644 { 645 u16 csum_all_checked, csum_all_ok; 646 647 csum_all_checked = flags & __PCIE_DESC_RX_CSUM_ALL; 648 csum_all_ok = flags & __PCIE_DESC_RX_CSUM_ALL_OK; 649 650 return csum_all_checked != (csum_all_ok << PCIE_DESC_RX_CSUM_OK_SHIFT); 651 } 652 653 /** 654 * nfp_nfd3_rx_csum() - set SKB checksum field based on RX descriptor flags 655 * @dp: NFP Net data path struct 656 * @r_vec: per-ring structure 657 * @rxd: Pointer to RX descriptor 658 * @meta: Parsed metadata prepend 659 * @skb: Pointer to SKB 660 */ 661 void 662 nfp_nfd3_rx_csum(const struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec, 663 const struct nfp_net_rx_desc *rxd, 664 const struct nfp_meta_parsed *meta, struct sk_buff *skb) 665 { 666 skb_checksum_none_assert(skb); 667 668 if (!(dp->netdev->features & NETIF_F_RXCSUM)) 669 return; 670 671 if (meta->csum_type) { 672 skb->ip_summed = meta->csum_type; 673 skb->csum = meta->csum; 674 u64_stats_update_begin(&r_vec->rx_sync); 675 r_vec->hw_csum_rx_complete++; 676 u64_stats_update_end(&r_vec->rx_sync); 677 return; 678 } 679 680 if (nfp_nfd3_rx_csum_has_errors(le16_to_cpu(rxd->rxd.flags))) { 681 u64_stats_update_begin(&r_vec->rx_sync); 682 r_vec->hw_csum_rx_error++; 683 u64_stats_update_end(&r_vec->rx_sync); 684 return; 685 } 686 687 /* Assume that the firmware will never report inner CSUM_OK unless outer 688 * L4 headers were successfully parsed. FW will always report zero UDP 689 * checksum as CSUM_OK. 690 */ 691 if (rxd->rxd.flags & PCIE_DESC_RX_TCP_CSUM_OK || 692 rxd->rxd.flags & PCIE_DESC_RX_UDP_CSUM_OK) { 693 __skb_incr_checksum_unnecessary(skb); 694 u64_stats_update_begin(&r_vec->rx_sync); 695 r_vec->hw_csum_rx_ok++; 696 u64_stats_update_end(&r_vec->rx_sync); 697 } 698 699 if (rxd->rxd.flags & PCIE_DESC_RX_I_TCP_CSUM_OK || 700 rxd->rxd.flags & PCIE_DESC_RX_I_UDP_CSUM_OK) { 701 __skb_incr_checksum_unnecessary(skb); 702 u64_stats_update_begin(&r_vec->rx_sync); 703 r_vec->hw_csum_rx_inner_ok++; 704 u64_stats_update_end(&r_vec->rx_sync); 705 } 706 } 707 708 static void 709 nfp_nfd3_set_hash(struct net_device *netdev, struct nfp_meta_parsed *meta, 710 unsigned int type, __be32 *hash) 711 { 712 if (!(netdev->features & NETIF_F_RXHASH)) 713 return; 714 715 switch (type) { 716 case NFP_NET_RSS_IPV4: 717 case NFP_NET_RSS_IPV6: 718 case NFP_NET_RSS_IPV6_EX: 719 meta->hash_type = PKT_HASH_TYPE_L3; 720 break; 721 default: 722 meta->hash_type = PKT_HASH_TYPE_L4; 723 break; 724 } 725 726 meta->hash = get_unaligned_be32(hash); 727 } 728 729 static void 730 nfp_nfd3_set_hash_desc(struct net_device *netdev, struct nfp_meta_parsed *meta, 731 void *data, struct nfp_net_rx_desc *rxd) 732 { 733 struct nfp_net_rx_hash *rx_hash = data; 734 735 if (!(rxd->rxd.flags & PCIE_DESC_RX_RSS)) 736 return; 737 738 nfp_nfd3_set_hash(netdev, meta, get_unaligned_be32(&rx_hash->hash_type), 739 &rx_hash->hash); 740 } 741 742 bool 743 nfp_nfd3_parse_meta(struct net_device *netdev, struct nfp_meta_parsed *meta, 744 void *data, void *pkt, unsigned int pkt_len, int meta_len) 745 { 746 u32 meta_info, vlan_info; 747 748 meta_info = get_unaligned_be32(data); 749 data += 4; 750 751 while (meta_info) { 752 switch (meta_info & NFP_NET_META_FIELD_MASK) { 753 case NFP_NET_META_HASH: 754 meta_info >>= NFP_NET_META_FIELD_SIZE; 755 nfp_nfd3_set_hash(netdev, meta, 756 meta_info & NFP_NET_META_FIELD_MASK, 757 (__be32 *)data); 758 data += 4; 759 break; 760 case NFP_NET_META_MARK: 761 meta->mark = get_unaligned_be32(data); 762 data += 4; 763 break; 764 case NFP_NET_META_VLAN: 765 vlan_info = get_unaligned_be32(data); 766 if (FIELD_GET(NFP_NET_META_VLAN_STRIP, vlan_info)) { 767 meta->vlan.stripped = true; 768 meta->vlan.tpid = FIELD_GET(NFP_NET_META_VLAN_TPID_MASK, 769 vlan_info); 770 meta->vlan.tci = FIELD_GET(NFP_NET_META_VLAN_TCI_MASK, 771 vlan_info); 772 } 773 data += 4; 774 break; 775 case NFP_NET_META_PORTID: 776 meta->portid = get_unaligned_be32(data); 777 data += 4; 778 break; 779 case NFP_NET_META_CSUM: 780 meta->csum_type = CHECKSUM_COMPLETE; 781 meta->csum = 782 (__force __wsum)__get_unaligned_cpu32(data); 783 data += 4; 784 break; 785 case NFP_NET_META_RESYNC_INFO: 786 if (nfp_net_tls_rx_resync_req(netdev, data, pkt, 787 pkt_len)) 788 return false; 789 data += sizeof(struct nfp_net_tls_resync_req); 790 break; 791 #ifdef CONFIG_NFP_NET_IPSEC 792 case NFP_NET_META_IPSEC: 793 /* Note: IPsec packet will have zero saidx, so need add 1 794 * to indicate packet is IPsec packet within driver. 795 */ 796 meta->ipsec_saidx = get_unaligned_be32(data) + 1; 797 data += 4; 798 break; 799 #endif 800 default: 801 return true; 802 } 803 804 meta_info >>= NFP_NET_META_FIELD_SIZE; 805 } 806 807 return data != pkt; 808 } 809 810 static void 811 nfp_nfd3_rx_drop(const struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec, 812 struct nfp_net_rx_ring *rx_ring, struct nfp_net_rx_buf *rxbuf, 813 struct sk_buff *skb) 814 { 815 u64_stats_update_begin(&r_vec->rx_sync); 816 r_vec->rx_drops++; 817 /* If we have both skb and rxbuf the replacement buffer allocation 818 * must have failed, count this as an alloc failure. 819 */ 820 if (skb && rxbuf) 821 r_vec->rx_replace_buf_alloc_fail++; 822 u64_stats_update_end(&r_vec->rx_sync); 823 824 /* skb is build based on the frag, free_skb() would free the frag 825 * so to be able to reuse it we need an extra ref. 826 */ 827 if (skb && rxbuf && skb->head == rxbuf->frag) 828 page_ref_inc(virt_to_head_page(rxbuf->frag)); 829 if (rxbuf) 830 nfp_nfd3_rx_give_one(dp, rx_ring, rxbuf->frag, rxbuf->dma_addr); 831 if (skb) 832 dev_kfree_skb_any(skb); 833 } 834 835 static bool 836 nfp_nfd3_tx_xdp_buf(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring, 837 struct nfp_net_tx_ring *tx_ring, 838 struct nfp_net_rx_buf *rxbuf, unsigned int dma_off, 839 unsigned int pkt_len, bool *completed) 840 { 841 unsigned int dma_map_sz = dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA; 842 struct nfp_nfd3_tx_buf *txbuf; 843 struct nfp_nfd3_tx_desc *txd; 844 int wr_idx; 845 846 /* Reject if xdp_adjust_tail grow packet beyond DMA area */ 847 if (pkt_len + dma_off > dma_map_sz) 848 return false; 849 850 if (unlikely(nfp_net_tx_full(tx_ring, 1))) { 851 if (!*completed) { 852 nfp_nfd3_xdp_complete(tx_ring); 853 *completed = true; 854 } 855 856 if (unlikely(nfp_net_tx_full(tx_ring, 1))) { 857 nfp_nfd3_rx_drop(dp, rx_ring->r_vec, rx_ring, rxbuf, 858 NULL); 859 return false; 860 } 861 } 862 863 wr_idx = D_IDX(tx_ring, tx_ring->wr_p); 864 865 /* Stash the soft descriptor of the head then initialize it */ 866 txbuf = &tx_ring->txbufs[wr_idx]; 867 868 nfp_nfd3_rx_give_one(dp, rx_ring, txbuf->frag, txbuf->dma_addr); 869 870 txbuf->frag = rxbuf->frag; 871 txbuf->dma_addr = rxbuf->dma_addr; 872 txbuf->fidx = -1; 873 txbuf->pkt_cnt = 1; 874 txbuf->real_len = pkt_len; 875 876 dma_sync_single_for_device(dp->dev, rxbuf->dma_addr + dma_off, 877 pkt_len, DMA_BIDIRECTIONAL); 878 879 /* Build TX descriptor */ 880 txd = &tx_ring->txds[wr_idx]; 881 txd->offset_eop = NFD3_DESC_TX_EOP; 882 txd->dma_len = cpu_to_le16(pkt_len); 883 nfp_desc_set_dma_addr_40b(txd, rxbuf->dma_addr + dma_off); 884 txd->data_len = cpu_to_le16(pkt_len); 885 886 txd->flags = 0; 887 txd->mss = 0; 888 txd->lso_hdrlen = 0; 889 890 tx_ring->wr_p++; 891 tx_ring->wr_ptr_add++; 892 return true; 893 } 894 895 /** 896 * nfp_nfd3_rx() - receive up to @budget packets on @rx_ring 897 * @rx_ring: RX ring to receive from 898 * @budget: NAPI budget 899 * 900 * Note, this function is separated out from the napi poll function to 901 * more cleanly separate packet receive code from other bookkeeping 902 * functions performed in the napi poll function. 903 * 904 * Return: Number of packets received. 905 */ 906 static int nfp_nfd3_rx(struct nfp_net_rx_ring *rx_ring, int budget) 907 { 908 struct nfp_net_r_vector *r_vec = rx_ring->r_vec; 909 struct nfp_net_dp *dp = &r_vec->nfp_net->dp; 910 struct nfp_net_tx_ring *tx_ring; 911 struct bpf_prog *xdp_prog; 912 int idx, pkts_polled = 0; 913 bool xdp_tx_cmpl = false; 914 unsigned int true_bufsz; 915 struct sk_buff *skb; 916 struct xdp_buff xdp; 917 918 xdp_prog = READ_ONCE(dp->xdp_prog); 919 true_bufsz = xdp_prog ? PAGE_SIZE : dp->fl_bufsz; 920 xdp_init_buff(&xdp, PAGE_SIZE - NFP_NET_RX_BUF_HEADROOM, 921 &rx_ring->xdp_rxq); 922 tx_ring = r_vec->xdp_ring; 923 924 while (pkts_polled < budget) { 925 unsigned int meta_len, data_len, meta_off, pkt_len, pkt_off; 926 struct nfp_net_rx_buf *rxbuf; 927 struct nfp_net_rx_desc *rxd; 928 struct nfp_meta_parsed meta; 929 bool redir_egress = false; 930 struct net_device *netdev; 931 dma_addr_t new_dma_addr; 932 u32 meta_len_xdp = 0; 933 void *new_frag; 934 935 idx = D_IDX(rx_ring, rx_ring->rd_p); 936 937 rxd = &rx_ring->rxds[idx]; 938 if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD)) 939 break; 940 941 /* Memory barrier to ensure that we won't do other reads 942 * before the DD bit. 943 */ 944 dma_rmb(); 945 946 memset(&meta, 0, sizeof(meta)); 947 948 rx_ring->rd_p++; 949 pkts_polled++; 950 951 rxbuf = &rx_ring->rxbufs[idx]; 952 /* < meta_len > 953 * <-- [rx_offset] --> 954 * --------------------------------------------------------- 955 * | [XX] | metadata | packet | XXXX | 956 * --------------------------------------------------------- 957 * <---------------- data_len ---------------> 958 * 959 * The rx_offset is fixed for all packets, the meta_len can vary 960 * on a packet by packet basis. If rx_offset is set to zero 961 * (_RX_OFFSET_DYNAMIC) metadata starts at the beginning of the 962 * buffer and is immediately followed by the packet (no [XX]). 963 */ 964 meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK; 965 data_len = le16_to_cpu(rxd->rxd.data_len); 966 pkt_len = data_len - meta_len; 967 968 pkt_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_dma_off; 969 if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC) 970 pkt_off += meta_len; 971 else 972 pkt_off += dp->rx_offset; 973 meta_off = pkt_off - meta_len; 974 975 /* Stats update */ 976 u64_stats_update_begin(&r_vec->rx_sync); 977 r_vec->rx_pkts++; 978 r_vec->rx_bytes += pkt_len; 979 u64_stats_update_end(&r_vec->rx_sync); 980 981 if (unlikely(meta_len > NFP_NET_MAX_PREPEND || 982 (dp->rx_offset && meta_len > dp->rx_offset))) { 983 nn_dp_warn(dp, "oversized RX packet metadata %u\n", 984 meta_len); 985 nfp_nfd3_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL); 986 continue; 987 } 988 989 nfp_net_dma_sync_cpu_rx(dp, rxbuf->dma_addr + meta_off, 990 data_len); 991 992 if (!dp->chained_metadata_format) { 993 nfp_nfd3_set_hash_desc(dp->netdev, &meta, 994 rxbuf->frag + meta_off, rxd); 995 } else if (meta_len) { 996 if (unlikely(nfp_nfd3_parse_meta(dp->netdev, &meta, 997 rxbuf->frag + meta_off, 998 rxbuf->frag + pkt_off, 999 pkt_len, meta_len))) { 1000 nn_dp_warn(dp, "invalid RX packet metadata\n"); 1001 nfp_nfd3_rx_drop(dp, r_vec, rx_ring, rxbuf, 1002 NULL); 1003 continue; 1004 } 1005 } 1006 1007 if (xdp_prog && !meta.portid) { 1008 void *orig_data = rxbuf->frag + pkt_off; 1009 unsigned int dma_off; 1010 int act; 1011 1012 xdp_prepare_buff(&xdp, 1013 rxbuf->frag + NFP_NET_RX_BUF_HEADROOM, 1014 pkt_off - NFP_NET_RX_BUF_HEADROOM, 1015 pkt_len, true); 1016 1017 act = bpf_prog_run_xdp(xdp_prog, &xdp); 1018 1019 pkt_len = xdp.data_end - xdp.data; 1020 pkt_off += xdp.data - orig_data; 1021 1022 switch (act) { 1023 case XDP_PASS: 1024 meta_len_xdp = xdp.data - xdp.data_meta; 1025 break; 1026 case XDP_TX: 1027 dma_off = pkt_off - NFP_NET_RX_BUF_HEADROOM; 1028 if (unlikely(!nfp_nfd3_tx_xdp_buf(dp, rx_ring, 1029 tx_ring, 1030 rxbuf, 1031 dma_off, 1032 pkt_len, 1033 &xdp_tx_cmpl))) 1034 trace_xdp_exception(dp->netdev, 1035 xdp_prog, act); 1036 continue; 1037 default: 1038 bpf_warn_invalid_xdp_action(dp->netdev, xdp_prog, act); 1039 fallthrough; 1040 case XDP_ABORTED: 1041 trace_xdp_exception(dp->netdev, xdp_prog, act); 1042 fallthrough; 1043 case XDP_DROP: 1044 nfp_nfd3_rx_give_one(dp, rx_ring, rxbuf->frag, 1045 rxbuf->dma_addr); 1046 continue; 1047 } 1048 } 1049 1050 if (likely(!meta.portid)) { 1051 netdev = dp->netdev; 1052 } else if (meta.portid == NFP_META_PORT_ID_CTRL) { 1053 struct nfp_net *nn = netdev_priv(dp->netdev); 1054 1055 nfp_app_ctrl_rx_raw(nn->app, rxbuf->frag + pkt_off, 1056 pkt_len); 1057 nfp_nfd3_rx_give_one(dp, rx_ring, rxbuf->frag, 1058 rxbuf->dma_addr); 1059 continue; 1060 } else { 1061 struct nfp_net *nn; 1062 1063 nn = netdev_priv(dp->netdev); 1064 netdev = nfp_app_dev_get(nn->app, meta.portid, 1065 &redir_egress); 1066 if (unlikely(!netdev)) { 1067 nfp_nfd3_rx_drop(dp, r_vec, rx_ring, rxbuf, 1068 NULL); 1069 continue; 1070 } 1071 1072 if (nfp_netdev_is_nfp_repr(netdev)) 1073 nfp_repr_inc_rx_stats(netdev, pkt_len); 1074 } 1075 1076 skb = napi_build_skb(rxbuf->frag, true_bufsz); 1077 if (unlikely(!skb)) { 1078 nfp_nfd3_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL); 1079 continue; 1080 } 1081 new_frag = nfp_nfd3_napi_alloc_one(dp, &new_dma_addr); 1082 if (unlikely(!new_frag)) { 1083 nfp_nfd3_rx_drop(dp, r_vec, rx_ring, rxbuf, skb); 1084 continue; 1085 } 1086 1087 nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr); 1088 1089 nfp_nfd3_rx_give_one(dp, rx_ring, new_frag, new_dma_addr); 1090 1091 skb_reserve(skb, pkt_off); 1092 skb_put(skb, pkt_len); 1093 1094 skb->mark = meta.mark; 1095 skb_set_hash(skb, meta.hash, meta.hash_type); 1096 1097 skb_record_rx_queue(skb, rx_ring->idx); 1098 skb->protocol = eth_type_trans(skb, netdev); 1099 1100 nfp_nfd3_rx_csum(dp, r_vec, rxd, &meta, skb); 1101 1102 #ifdef CONFIG_TLS_DEVICE 1103 if (rxd->rxd.flags & PCIE_DESC_RX_DECRYPTED) { 1104 skb->decrypted = true; 1105 u64_stats_update_begin(&r_vec->rx_sync); 1106 r_vec->hw_tls_rx++; 1107 u64_stats_update_end(&r_vec->rx_sync); 1108 } 1109 #endif 1110 1111 if (unlikely(!nfp_net_vlan_strip(skb, rxd, &meta))) { 1112 nfp_nfd3_rx_drop(dp, r_vec, rx_ring, NULL, skb); 1113 continue; 1114 } 1115 1116 #ifdef CONFIG_NFP_NET_IPSEC 1117 if (meta.ipsec_saidx != 0 && unlikely(nfp_net_ipsec_rx(&meta, skb))) { 1118 nfp_nfd3_rx_drop(dp, r_vec, rx_ring, NULL, skb); 1119 continue; 1120 } 1121 #endif 1122 1123 if (meta_len_xdp) 1124 skb_metadata_set(skb, meta_len_xdp); 1125 1126 if (likely(!redir_egress)) { 1127 napi_gro_receive(&rx_ring->r_vec->napi, skb); 1128 } else { 1129 skb->dev = netdev; 1130 skb_reset_network_header(skb); 1131 __skb_push(skb, ETH_HLEN); 1132 dev_queue_xmit(skb); 1133 } 1134 } 1135 1136 if (xdp_prog) { 1137 if (tx_ring->wr_ptr_add) 1138 nfp_net_tx_xmit_more_flush(tx_ring); 1139 else if (unlikely(tx_ring->wr_p != tx_ring->rd_p) && 1140 !xdp_tx_cmpl) 1141 if (!nfp_nfd3_xdp_complete(tx_ring)) 1142 pkts_polled = budget; 1143 } 1144 1145 return pkts_polled; 1146 } 1147 1148 /** 1149 * nfp_nfd3_poll() - napi poll function 1150 * @napi: NAPI structure 1151 * @budget: NAPI budget 1152 * 1153 * Return: number of packets polled. 1154 */ 1155 int nfp_nfd3_poll(struct napi_struct *napi, int budget) 1156 { 1157 struct nfp_net_r_vector *r_vec = 1158 container_of(napi, struct nfp_net_r_vector, napi); 1159 unsigned int pkts_polled = 0; 1160 1161 if (r_vec->tx_ring) 1162 nfp_nfd3_tx_complete(r_vec->tx_ring, budget); 1163 if (r_vec->rx_ring) 1164 pkts_polled = nfp_nfd3_rx(r_vec->rx_ring, budget); 1165 1166 if (pkts_polled < budget) 1167 if (napi_complete_done(napi, pkts_polled)) 1168 nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry); 1169 1170 if (r_vec->nfp_net->rx_coalesce_adapt_on && r_vec->rx_ring) { 1171 struct dim_sample dim_sample = {}; 1172 unsigned int start; 1173 u64 pkts, bytes; 1174 1175 do { 1176 start = u64_stats_fetch_begin(&r_vec->rx_sync); 1177 pkts = r_vec->rx_pkts; 1178 bytes = r_vec->rx_bytes; 1179 } while (u64_stats_fetch_retry(&r_vec->rx_sync, start)); 1180 1181 dim_update_sample(r_vec->event_ctr, pkts, bytes, &dim_sample); 1182 net_dim(&r_vec->rx_dim, dim_sample); 1183 } 1184 1185 if (r_vec->nfp_net->tx_coalesce_adapt_on && r_vec->tx_ring) { 1186 struct dim_sample dim_sample = {}; 1187 unsigned int start; 1188 u64 pkts, bytes; 1189 1190 do { 1191 start = u64_stats_fetch_begin(&r_vec->tx_sync); 1192 pkts = r_vec->tx_pkts; 1193 bytes = r_vec->tx_bytes; 1194 } while (u64_stats_fetch_retry(&r_vec->tx_sync, start)); 1195 1196 dim_update_sample(r_vec->event_ctr, pkts, bytes, &dim_sample); 1197 net_dim(&r_vec->tx_dim, dim_sample); 1198 } 1199 1200 return pkts_polled; 1201 } 1202 1203 /* Control device data path 1204 */ 1205 1206 bool 1207 nfp_nfd3_ctrl_tx_one(struct nfp_net *nn, struct nfp_net_r_vector *r_vec, 1208 struct sk_buff *skb, bool old) 1209 { 1210 unsigned int real_len = skb->len, meta_len = 0; 1211 struct nfp_net_tx_ring *tx_ring; 1212 struct nfp_nfd3_tx_buf *txbuf; 1213 struct nfp_nfd3_tx_desc *txd; 1214 struct nfp_net_dp *dp; 1215 dma_addr_t dma_addr; 1216 int wr_idx; 1217 1218 dp = &r_vec->nfp_net->dp; 1219 tx_ring = r_vec->tx_ring; 1220 1221 if (WARN_ON_ONCE(skb_shinfo(skb)->nr_frags)) { 1222 nn_dp_warn(dp, "Driver's CTRL TX does not implement gather\n"); 1223 goto err_free; 1224 } 1225 1226 if (unlikely(nfp_net_tx_full(tx_ring, 1))) { 1227 u64_stats_update_begin(&r_vec->tx_sync); 1228 r_vec->tx_busy++; 1229 u64_stats_update_end(&r_vec->tx_sync); 1230 if (!old) 1231 __skb_queue_tail(&r_vec->queue, skb); 1232 else 1233 __skb_queue_head(&r_vec->queue, skb); 1234 return true; 1235 } 1236 1237 if (nfp_app_ctrl_has_meta(nn->app)) { 1238 if (unlikely(skb_headroom(skb) < 8)) { 1239 nn_dp_warn(dp, "CTRL TX on skb without headroom\n"); 1240 goto err_free; 1241 } 1242 meta_len = 8; 1243 put_unaligned_be32(NFP_META_PORT_ID_CTRL, skb_push(skb, 4)); 1244 put_unaligned_be32(NFP_NET_META_PORTID, skb_push(skb, 4)); 1245 } 1246 1247 /* Start with the head skbuf */ 1248 dma_addr = dma_map_single(dp->dev, skb->data, skb_headlen(skb), 1249 DMA_TO_DEVICE); 1250 if (dma_mapping_error(dp->dev, dma_addr)) 1251 goto err_dma_warn; 1252 1253 wr_idx = D_IDX(tx_ring, tx_ring->wr_p); 1254 1255 /* Stash the soft descriptor of the head then initialize it */ 1256 txbuf = &tx_ring->txbufs[wr_idx]; 1257 txbuf->skb = skb; 1258 txbuf->dma_addr = dma_addr; 1259 txbuf->fidx = -1; 1260 txbuf->pkt_cnt = 1; 1261 txbuf->real_len = real_len; 1262 1263 /* Build TX descriptor */ 1264 txd = &tx_ring->txds[wr_idx]; 1265 txd->offset_eop = meta_len | NFD3_DESC_TX_EOP; 1266 txd->dma_len = cpu_to_le16(skb_headlen(skb)); 1267 nfp_desc_set_dma_addr_40b(txd, dma_addr); 1268 txd->data_len = cpu_to_le16(skb->len); 1269 1270 txd->flags = 0; 1271 txd->mss = 0; 1272 txd->lso_hdrlen = 0; 1273 1274 tx_ring->wr_p++; 1275 tx_ring->wr_ptr_add++; 1276 nfp_net_tx_xmit_more_flush(tx_ring); 1277 1278 return false; 1279 1280 err_dma_warn: 1281 nn_dp_warn(dp, "Failed to DMA map TX CTRL buffer\n"); 1282 err_free: 1283 u64_stats_update_begin(&r_vec->tx_sync); 1284 r_vec->tx_errors++; 1285 u64_stats_update_end(&r_vec->tx_sync); 1286 dev_kfree_skb_any(skb); 1287 return false; 1288 } 1289 1290 static void __nfp_ctrl_tx_queued(struct nfp_net_r_vector *r_vec) 1291 { 1292 struct sk_buff *skb; 1293 1294 while ((skb = __skb_dequeue(&r_vec->queue))) 1295 if (nfp_nfd3_ctrl_tx_one(r_vec->nfp_net, r_vec, skb, true)) 1296 return; 1297 } 1298 1299 static bool 1300 nfp_ctrl_meta_ok(struct nfp_net *nn, void *data, unsigned int meta_len) 1301 { 1302 u32 meta_type, meta_tag; 1303 1304 if (!nfp_app_ctrl_has_meta(nn->app)) 1305 return !meta_len; 1306 1307 if (meta_len != 8) 1308 return false; 1309 1310 meta_type = get_unaligned_be32(data); 1311 meta_tag = get_unaligned_be32(data + 4); 1312 1313 return (meta_type == NFP_NET_META_PORTID && 1314 meta_tag == NFP_META_PORT_ID_CTRL); 1315 } 1316 1317 static bool 1318 nfp_ctrl_rx_one(struct nfp_net *nn, struct nfp_net_dp *dp, 1319 struct nfp_net_r_vector *r_vec, struct nfp_net_rx_ring *rx_ring) 1320 { 1321 unsigned int meta_len, data_len, meta_off, pkt_len, pkt_off; 1322 struct nfp_net_rx_buf *rxbuf; 1323 struct nfp_net_rx_desc *rxd; 1324 dma_addr_t new_dma_addr; 1325 struct sk_buff *skb; 1326 void *new_frag; 1327 int idx; 1328 1329 idx = D_IDX(rx_ring, rx_ring->rd_p); 1330 1331 rxd = &rx_ring->rxds[idx]; 1332 if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD)) 1333 return false; 1334 1335 /* Memory barrier to ensure that we won't do other reads 1336 * before the DD bit. 1337 */ 1338 dma_rmb(); 1339 1340 rx_ring->rd_p++; 1341 1342 rxbuf = &rx_ring->rxbufs[idx]; 1343 meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK; 1344 data_len = le16_to_cpu(rxd->rxd.data_len); 1345 pkt_len = data_len - meta_len; 1346 1347 pkt_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_dma_off; 1348 if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC) 1349 pkt_off += meta_len; 1350 else 1351 pkt_off += dp->rx_offset; 1352 meta_off = pkt_off - meta_len; 1353 1354 /* Stats update */ 1355 u64_stats_update_begin(&r_vec->rx_sync); 1356 r_vec->rx_pkts++; 1357 r_vec->rx_bytes += pkt_len; 1358 u64_stats_update_end(&r_vec->rx_sync); 1359 1360 nfp_net_dma_sync_cpu_rx(dp, rxbuf->dma_addr + meta_off, data_len); 1361 1362 if (unlikely(!nfp_ctrl_meta_ok(nn, rxbuf->frag + meta_off, meta_len))) { 1363 nn_dp_warn(dp, "incorrect metadata for ctrl packet (%d)\n", 1364 meta_len); 1365 nfp_nfd3_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL); 1366 return true; 1367 } 1368 1369 skb = build_skb(rxbuf->frag, dp->fl_bufsz); 1370 if (unlikely(!skb)) { 1371 nfp_nfd3_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL); 1372 return true; 1373 } 1374 new_frag = nfp_nfd3_napi_alloc_one(dp, &new_dma_addr); 1375 if (unlikely(!new_frag)) { 1376 nfp_nfd3_rx_drop(dp, r_vec, rx_ring, rxbuf, skb); 1377 return true; 1378 } 1379 1380 nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr); 1381 1382 nfp_nfd3_rx_give_one(dp, rx_ring, new_frag, new_dma_addr); 1383 1384 skb_reserve(skb, pkt_off); 1385 skb_put(skb, pkt_len); 1386 1387 nfp_app_ctrl_rx(nn->app, skb); 1388 1389 return true; 1390 } 1391 1392 static bool nfp_ctrl_rx(struct nfp_net_r_vector *r_vec) 1393 { 1394 struct nfp_net_rx_ring *rx_ring = r_vec->rx_ring; 1395 struct nfp_net *nn = r_vec->nfp_net; 1396 struct nfp_net_dp *dp = &nn->dp; 1397 unsigned int budget = 512; 1398 1399 while (nfp_ctrl_rx_one(nn, dp, r_vec, rx_ring) && budget--) 1400 continue; 1401 1402 return budget; 1403 } 1404 1405 void nfp_nfd3_ctrl_poll(struct tasklet_struct *t) 1406 { 1407 struct nfp_net_r_vector *r_vec = from_tasklet(r_vec, t, tasklet); 1408 1409 spin_lock(&r_vec->lock); 1410 nfp_nfd3_tx_complete(r_vec->tx_ring, 0); 1411 __nfp_ctrl_tx_queued(r_vec); 1412 spin_unlock(&r_vec->lock); 1413 1414 if (nfp_ctrl_rx(r_vec)) { 1415 nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry); 1416 } else { 1417 tasklet_schedule(&r_vec->tasklet); 1418 nn_dp_warn(&r_vec->nfp_net->dp, 1419 "control message budget exceeded!\n"); 1420 } 1421 } 1422