xref: /linux/drivers/net/ethernet/netronome/nfp/nfd3/dp.c (revision 51a8f9d7f587290944d6fc733d1f897091c63159)
1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
2 /* Copyright (C) 2015-2019 Netronome Systems, Inc. */
3 
4 #include <linux/bpf_trace.h>
5 #include <linux/netdevice.h>
6 #include <linux/bitfield.h>
7 #include <net/xfrm.h>
8 
9 #include "../nfp_app.h"
10 #include "../nfp_net.h"
11 #include "../nfp_net_dp.h"
12 #include "../nfp_net_xsk.h"
13 #include "../crypto/crypto.h"
14 #include "../crypto/fw.h"
15 #include "nfd3.h"
16 
17 /* Transmit processing
18  *
19  * One queue controller peripheral queue is used for transmit.  The
20  * driver en-queues packets for transmit by advancing the write
21  * pointer.  The device indicates that packets have transmitted by
22  * advancing the read pointer.  The driver maintains a local copy of
23  * the read and write pointer in @struct nfp_net_tx_ring.  The driver
24  * keeps @wr_p in sync with the queue controller write pointer and can
25  * determine how many packets have been transmitted by comparing its
26  * copy of the read pointer @rd_p with the read pointer maintained by
27  * the queue controller peripheral.
28  */
29 
30 /* Wrappers for deciding when to stop and restart TX queues */
31 static int nfp_nfd3_tx_ring_should_wake(struct nfp_net_tx_ring *tx_ring)
32 {
33 	return !nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS * 4);
34 }
35 
36 static int nfp_nfd3_tx_ring_should_stop(struct nfp_net_tx_ring *tx_ring)
37 {
38 	return nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS + 1);
39 }
40 
41 /**
42  * nfp_nfd3_tx_ring_stop() - stop tx ring
43  * @nd_q:    netdev queue
44  * @tx_ring: driver tx queue structure
45  *
46  * Safely stop TX ring.  Remember that while we are running .start_xmit()
47  * someone else may be cleaning the TX ring completions so we need to be
48  * extra careful here.
49  */
50 static void
51 nfp_nfd3_tx_ring_stop(struct netdev_queue *nd_q,
52 		      struct nfp_net_tx_ring *tx_ring)
53 {
54 	netif_tx_stop_queue(nd_q);
55 
56 	/* We can race with the TX completion out of NAPI so recheck */
57 	smp_mb();
58 	if (unlikely(nfp_nfd3_tx_ring_should_wake(tx_ring)))
59 		netif_tx_start_queue(nd_q);
60 }
61 
62 /**
63  * nfp_nfd3_tx_tso() - Set up Tx descriptor for LSO
64  * @r_vec: per-ring structure
65  * @txbuf: Pointer to driver soft TX descriptor
66  * @txd: Pointer to HW TX descriptor
67  * @skb: Pointer to SKB
68  * @md_bytes: Prepend length
69  *
70  * Set up Tx descriptor for LSO, do nothing for non-LSO skbs.
71  * Return error on packet header greater than maximum supported LSO header size.
72  */
73 static void
74 nfp_nfd3_tx_tso(struct nfp_net_r_vector *r_vec, struct nfp_nfd3_tx_buf *txbuf,
75 		struct nfp_nfd3_tx_desc *txd, struct sk_buff *skb, u32 md_bytes)
76 {
77 	u32 l3_offset, l4_offset, hdrlen;
78 	u16 mss;
79 
80 	if (!skb_is_gso(skb))
81 		return;
82 
83 	if (!skb->encapsulation) {
84 		l3_offset = skb_network_offset(skb);
85 		l4_offset = skb_transport_offset(skb);
86 		hdrlen = skb_tcp_all_headers(skb);
87 	} else {
88 		l3_offset = skb_inner_network_offset(skb);
89 		l4_offset = skb_inner_transport_offset(skb);
90 		hdrlen = skb_inner_tcp_all_headers(skb);
91 	}
92 
93 	txbuf->pkt_cnt = skb_shinfo(skb)->gso_segs;
94 	txbuf->real_len += hdrlen * (txbuf->pkt_cnt - 1);
95 
96 	mss = skb_shinfo(skb)->gso_size & NFD3_DESC_TX_MSS_MASK;
97 	txd->l3_offset = l3_offset - md_bytes;
98 	txd->l4_offset = l4_offset - md_bytes;
99 	txd->lso_hdrlen = hdrlen - md_bytes;
100 	txd->mss = cpu_to_le16(mss);
101 	txd->flags |= NFD3_DESC_TX_LSO;
102 
103 	u64_stats_update_begin(&r_vec->tx_sync);
104 	r_vec->tx_lso++;
105 	u64_stats_update_end(&r_vec->tx_sync);
106 }
107 
108 /**
109  * nfp_nfd3_tx_csum() - Set TX CSUM offload flags in TX descriptor
110  * @dp:  NFP Net data path struct
111  * @r_vec: per-ring structure
112  * @txbuf: Pointer to driver soft TX descriptor
113  * @txd: Pointer to TX descriptor
114  * @skb: Pointer to SKB
115  *
116  * This function sets the TX checksum flags in the TX descriptor based
117  * on the configuration and the protocol of the packet to be transmitted.
118  */
119 static void
120 nfp_nfd3_tx_csum(struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec,
121 		 struct nfp_nfd3_tx_buf *txbuf, struct nfp_nfd3_tx_desc *txd,
122 		 struct sk_buff *skb)
123 {
124 	struct ipv6hdr *ipv6h;
125 	struct iphdr *iph;
126 	u8 l4_hdr;
127 
128 	if (!(dp->ctrl & NFP_NET_CFG_CTRL_TXCSUM))
129 		return;
130 
131 	if (skb->ip_summed != CHECKSUM_PARTIAL)
132 		return;
133 
134 	txd->flags |= NFD3_DESC_TX_CSUM;
135 	if (skb->encapsulation)
136 		txd->flags |= NFD3_DESC_TX_ENCAP;
137 
138 	iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
139 	ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);
140 
141 	if (iph->version == 4) {
142 		txd->flags |= NFD3_DESC_TX_IP4_CSUM;
143 		l4_hdr = iph->protocol;
144 	} else if (ipv6h->version == 6) {
145 		l4_hdr = ipv6h->nexthdr;
146 	} else {
147 		nn_dp_warn(dp, "partial checksum but ipv=%x!\n", iph->version);
148 		return;
149 	}
150 
151 	switch (l4_hdr) {
152 	case IPPROTO_TCP:
153 		txd->flags |= NFD3_DESC_TX_TCP_CSUM;
154 		break;
155 	case IPPROTO_UDP:
156 		txd->flags |= NFD3_DESC_TX_UDP_CSUM;
157 		break;
158 	default:
159 		nn_dp_warn(dp, "partial checksum but l4 proto=%x!\n", l4_hdr);
160 		return;
161 	}
162 
163 	u64_stats_update_begin(&r_vec->tx_sync);
164 	if (skb->encapsulation)
165 		r_vec->hw_csum_tx_inner += txbuf->pkt_cnt;
166 	else
167 		r_vec->hw_csum_tx += txbuf->pkt_cnt;
168 	u64_stats_update_end(&r_vec->tx_sync);
169 }
170 
171 static int nfp_nfd3_prep_tx_meta(struct nfp_net_dp *dp, struct sk_buff *skb,
172 				 u64 tls_handle, bool *ipsec)
173 {
174 	struct metadata_dst *md_dst = skb_metadata_dst(skb);
175 	struct nfp_ipsec_offload offload_info;
176 	unsigned char *data;
177 	bool vlan_insert;
178 	u32 meta_id = 0;
179 	int md_bytes;
180 
181 #ifdef CONFIG_NFP_NET_IPSEC
182 	if (xfrm_offload(skb))
183 		*ipsec = nfp_net_ipsec_tx_prep(dp, skb, &offload_info);
184 #endif
185 
186 	if (unlikely(md_dst && md_dst->type != METADATA_HW_PORT_MUX))
187 		md_dst = NULL;
188 
189 	vlan_insert = skb_vlan_tag_present(skb) && (dp->ctrl & NFP_NET_CFG_CTRL_TXVLAN_V2);
190 
191 	if (!(md_dst || tls_handle || vlan_insert || *ipsec))
192 		return 0;
193 
194 	md_bytes = sizeof(meta_id) +
195 		   !!md_dst * NFP_NET_META_PORTID_SIZE +
196 		   !!tls_handle * NFP_NET_META_CONN_HANDLE_SIZE +
197 		   vlan_insert * NFP_NET_META_VLAN_SIZE +
198 		   *ipsec * NFP_NET_META_IPSEC_FIELD_SIZE; /* IPsec has 12 bytes of metadata */
199 
200 	if (unlikely(skb_cow_head(skb, md_bytes)))
201 		return -ENOMEM;
202 
203 	data = skb_push(skb, md_bytes) + md_bytes;
204 	if (md_dst) {
205 		data -= NFP_NET_META_PORTID_SIZE;
206 		put_unaligned_be32(md_dst->u.port_info.port_id, data);
207 		meta_id = NFP_NET_META_PORTID;
208 	}
209 	if (tls_handle) {
210 		/* conn handle is opaque, we just use u64 to be able to quickly
211 		 * compare it to zero
212 		 */
213 		data -= NFP_NET_META_CONN_HANDLE_SIZE;
214 		memcpy(data, &tls_handle, sizeof(tls_handle));
215 		meta_id <<= NFP_NET_META_FIELD_SIZE;
216 		meta_id |= NFP_NET_META_CONN_HANDLE;
217 	}
218 	if (vlan_insert) {
219 		data -= NFP_NET_META_VLAN_SIZE;
220 		/* data type of skb->vlan_proto is __be16
221 		 * so it fills metadata without calling put_unaligned_be16
222 		 */
223 		memcpy(data, &skb->vlan_proto, sizeof(skb->vlan_proto));
224 		put_unaligned_be16(skb_vlan_tag_get(skb), data + sizeof(skb->vlan_proto));
225 		meta_id <<= NFP_NET_META_FIELD_SIZE;
226 		meta_id |= NFP_NET_META_VLAN;
227 	}
228 	if (*ipsec) {
229 		/* IPsec has three consecutive 4-bit IPsec metadata types,
230 		 * so in total IPsec has three 4 bytes of metadata.
231 		 */
232 		data -= NFP_NET_META_IPSEC_SIZE;
233 		put_unaligned_be32(offload_info.seq_hi, data);
234 		data -= NFP_NET_META_IPSEC_SIZE;
235 		put_unaligned_be32(offload_info.seq_low, data);
236 		data -= NFP_NET_META_IPSEC_SIZE;
237 		put_unaligned_be32(offload_info.handle - 1, data);
238 		meta_id <<= NFP_NET_META_IPSEC_FIELD_SIZE;
239 		meta_id |= NFP_NET_META_IPSEC << 8 | NFP_NET_META_IPSEC << 4 | NFP_NET_META_IPSEC;
240 	}
241 
242 	data -= sizeof(meta_id);
243 	put_unaligned_be32(meta_id, data);
244 
245 	return md_bytes;
246 }
247 
248 /**
249  * nfp_nfd3_tx() - Main transmit entry point
250  * @skb:    SKB to transmit
251  * @netdev: netdev structure
252  *
253  * Return: NETDEV_TX_OK on success.
254  */
255 netdev_tx_t nfp_nfd3_tx(struct sk_buff *skb, struct net_device *netdev)
256 {
257 	struct nfp_net *nn = netdev_priv(netdev);
258 	int f, nr_frags, wr_idx, md_bytes;
259 	struct nfp_net_tx_ring *tx_ring;
260 	struct nfp_net_r_vector *r_vec;
261 	struct nfp_nfd3_tx_buf *txbuf;
262 	struct nfp_nfd3_tx_desc *txd;
263 	struct netdev_queue *nd_q;
264 	const skb_frag_t *frag;
265 	struct nfp_net_dp *dp;
266 	dma_addr_t dma_addr;
267 	unsigned int fsize;
268 	u64 tls_handle = 0;
269 	bool ipsec = false;
270 	u16 qidx;
271 
272 	dp = &nn->dp;
273 	qidx = skb_get_queue_mapping(skb);
274 	tx_ring = &dp->tx_rings[qidx];
275 	r_vec = tx_ring->r_vec;
276 
277 	nr_frags = skb_shinfo(skb)->nr_frags;
278 
279 	if (unlikely(nfp_net_tx_full(tx_ring, nr_frags + 1))) {
280 		nn_dp_warn(dp, "TX ring %d busy. wrp=%u rdp=%u\n",
281 			   qidx, tx_ring->wr_p, tx_ring->rd_p);
282 		nd_q = netdev_get_tx_queue(dp->netdev, qidx);
283 		netif_tx_stop_queue(nd_q);
284 		nfp_net_tx_xmit_more_flush(tx_ring);
285 		u64_stats_update_begin(&r_vec->tx_sync);
286 		r_vec->tx_busy++;
287 		u64_stats_update_end(&r_vec->tx_sync);
288 		return NETDEV_TX_BUSY;
289 	}
290 
291 	skb = nfp_net_tls_tx(dp, r_vec, skb, &tls_handle, &nr_frags);
292 	if (unlikely(!skb)) {
293 		nfp_net_tx_xmit_more_flush(tx_ring);
294 		return NETDEV_TX_OK;
295 	}
296 
297 	md_bytes = nfp_nfd3_prep_tx_meta(dp, skb, tls_handle, &ipsec);
298 	if (unlikely(md_bytes < 0))
299 		goto err_flush;
300 
301 	/* Start with the head skbuf */
302 	dma_addr = dma_map_single(dp->dev, skb->data, skb_headlen(skb),
303 				  DMA_TO_DEVICE);
304 	if (dma_mapping_error(dp->dev, dma_addr))
305 		goto err_dma_err;
306 
307 	wr_idx = D_IDX(tx_ring, tx_ring->wr_p);
308 
309 	/* Stash the soft descriptor of the head then initialize it */
310 	txbuf = &tx_ring->txbufs[wr_idx];
311 	txbuf->skb = skb;
312 	txbuf->dma_addr = dma_addr;
313 	txbuf->fidx = -1;
314 	txbuf->pkt_cnt = 1;
315 	txbuf->real_len = skb->len;
316 
317 	/* Build TX descriptor */
318 	txd = &tx_ring->txds[wr_idx];
319 	txd->offset_eop = (nr_frags ? 0 : NFD3_DESC_TX_EOP) | md_bytes;
320 	txd->dma_len = cpu_to_le16(skb_headlen(skb));
321 	nfp_desc_set_dma_addr_40b(txd, dma_addr);
322 	txd->data_len = cpu_to_le16(skb->len);
323 
324 	txd->flags = 0;
325 	txd->mss = 0;
326 	txd->lso_hdrlen = 0;
327 
328 	/* Do not reorder - tso may adjust pkt cnt, vlan may override fields */
329 	nfp_nfd3_tx_tso(r_vec, txbuf, txd, skb, md_bytes);
330 	nfp_nfd3_tx_csum(dp, r_vec, txbuf, txd, skb);
331 	if (skb_vlan_tag_present(skb) && dp->ctrl & NFP_NET_CFG_CTRL_TXVLAN) {
332 		txd->flags |= NFD3_DESC_TX_VLAN;
333 		txd->vlan = cpu_to_le16(skb_vlan_tag_get(skb));
334 	}
335 
336 	if (ipsec)
337 		nfp_nfd3_ipsec_tx(txd, skb);
338 	/* Gather DMA */
339 	if (nr_frags > 0) {
340 		__le64 second_half;
341 
342 		/* all descs must match except for in addr, length and eop */
343 		second_half = txd->vals8[1];
344 
345 		for (f = 0; f < nr_frags; f++) {
346 			frag = &skb_shinfo(skb)->frags[f];
347 			fsize = skb_frag_size(frag);
348 
349 			dma_addr = skb_frag_dma_map(dp->dev, frag, 0,
350 						    fsize, DMA_TO_DEVICE);
351 			if (dma_mapping_error(dp->dev, dma_addr))
352 				goto err_unmap;
353 
354 			wr_idx = D_IDX(tx_ring, wr_idx + 1);
355 			tx_ring->txbufs[wr_idx].skb = skb;
356 			tx_ring->txbufs[wr_idx].dma_addr = dma_addr;
357 			tx_ring->txbufs[wr_idx].fidx = f;
358 
359 			txd = &tx_ring->txds[wr_idx];
360 			txd->dma_len = cpu_to_le16(fsize);
361 			nfp_desc_set_dma_addr_40b(txd, dma_addr);
362 			txd->offset_eop = md_bytes |
363 				((f == nr_frags - 1) ? NFD3_DESC_TX_EOP : 0);
364 			txd->vals8[1] = second_half;
365 		}
366 
367 		u64_stats_update_begin(&r_vec->tx_sync);
368 		r_vec->tx_gather++;
369 		u64_stats_update_end(&r_vec->tx_sync);
370 	}
371 
372 	skb_tx_timestamp(skb);
373 
374 	nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx);
375 
376 	tx_ring->wr_p += nr_frags + 1;
377 	if (nfp_nfd3_tx_ring_should_stop(tx_ring))
378 		nfp_nfd3_tx_ring_stop(nd_q, tx_ring);
379 
380 	tx_ring->wr_ptr_add += nr_frags + 1;
381 	if (__netdev_tx_sent_queue(nd_q, txbuf->real_len, netdev_xmit_more()))
382 		nfp_net_tx_xmit_more_flush(tx_ring);
383 
384 	return NETDEV_TX_OK;
385 
386 err_unmap:
387 	while (--f >= 0) {
388 		frag = &skb_shinfo(skb)->frags[f];
389 		dma_unmap_page(dp->dev, tx_ring->txbufs[wr_idx].dma_addr,
390 			       skb_frag_size(frag), DMA_TO_DEVICE);
391 		tx_ring->txbufs[wr_idx].skb = NULL;
392 		tx_ring->txbufs[wr_idx].dma_addr = 0;
393 		tx_ring->txbufs[wr_idx].fidx = -2;
394 		wr_idx = wr_idx - 1;
395 		if (wr_idx < 0)
396 			wr_idx += tx_ring->cnt;
397 	}
398 	dma_unmap_single(dp->dev, tx_ring->txbufs[wr_idx].dma_addr,
399 			 skb_headlen(skb), DMA_TO_DEVICE);
400 	tx_ring->txbufs[wr_idx].skb = NULL;
401 	tx_ring->txbufs[wr_idx].dma_addr = 0;
402 	tx_ring->txbufs[wr_idx].fidx = -2;
403 err_dma_err:
404 	nn_dp_warn(dp, "Failed to map DMA TX buffer\n");
405 err_flush:
406 	nfp_net_tx_xmit_more_flush(tx_ring);
407 	u64_stats_update_begin(&r_vec->tx_sync);
408 	r_vec->tx_errors++;
409 	u64_stats_update_end(&r_vec->tx_sync);
410 	nfp_net_tls_tx_undo(skb, tls_handle);
411 	dev_kfree_skb_any(skb);
412 	return NETDEV_TX_OK;
413 }
414 
415 /**
416  * nfp_nfd3_tx_complete() - Handled completed TX packets
417  * @tx_ring:	TX ring structure
418  * @budget:	NAPI budget (only used as bool to determine if in NAPI context)
419  */
420 void nfp_nfd3_tx_complete(struct nfp_net_tx_ring *tx_ring, int budget)
421 {
422 	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
423 	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
424 	u32 done_pkts = 0, done_bytes = 0;
425 	struct netdev_queue *nd_q;
426 	u32 qcp_rd_p;
427 	int todo;
428 
429 	if (tx_ring->wr_p == tx_ring->rd_p)
430 		return;
431 
432 	/* Work out how many descriptors have been transmitted */
433 	qcp_rd_p = nfp_net_read_tx_cmpl(tx_ring, dp);
434 
435 	if (qcp_rd_p == tx_ring->qcp_rd_p)
436 		return;
437 
438 	todo = D_IDX(tx_ring, qcp_rd_p - tx_ring->qcp_rd_p);
439 
440 	while (todo--) {
441 		const skb_frag_t *frag;
442 		struct nfp_nfd3_tx_buf *tx_buf;
443 		struct sk_buff *skb;
444 		int fidx, nr_frags;
445 		int idx;
446 
447 		idx = D_IDX(tx_ring, tx_ring->rd_p++);
448 		tx_buf = &tx_ring->txbufs[idx];
449 
450 		skb = tx_buf->skb;
451 		if (!skb)
452 			continue;
453 
454 		nr_frags = skb_shinfo(skb)->nr_frags;
455 		fidx = tx_buf->fidx;
456 
457 		if (fidx == -1) {
458 			/* unmap head */
459 			dma_unmap_single(dp->dev, tx_buf->dma_addr,
460 					 skb_headlen(skb), DMA_TO_DEVICE);
461 
462 			done_pkts += tx_buf->pkt_cnt;
463 			done_bytes += tx_buf->real_len;
464 		} else {
465 			/* unmap fragment */
466 			frag = &skb_shinfo(skb)->frags[fidx];
467 			dma_unmap_page(dp->dev, tx_buf->dma_addr,
468 				       skb_frag_size(frag), DMA_TO_DEVICE);
469 		}
470 
471 		/* check for last gather fragment */
472 		if (fidx == nr_frags - 1)
473 			napi_consume_skb(skb, budget);
474 
475 		tx_buf->dma_addr = 0;
476 		tx_buf->skb = NULL;
477 		tx_buf->fidx = -2;
478 	}
479 
480 	tx_ring->qcp_rd_p = qcp_rd_p;
481 
482 	u64_stats_update_begin(&r_vec->tx_sync);
483 	r_vec->tx_bytes += done_bytes;
484 	r_vec->tx_pkts += done_pkts;
485 	u64_stats_update_end(&r_vec->tx_sync);
486 
487 	if (!dp->netdev)
488 		return;
489 
490 	nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx);
491 	netdev_tx_completed_queue(nd_q, done_pkts, done_bytes);
492 	if (nfp_nfd3_tx_ring_should_wake(tx_ring)) {
493 		/* Make sure TX thread will see updated tx_ring->rd_p */
494 		smp_mb();
495 
496 		if (unlikely(netif_tx_queue_stopped(nd_q)))
497 			netif_tx_wake_queue(nd_q);
498 	}
499 
500 	WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt,
501 		  "TX ring corruption rd_p=%u wr_p=%u cnt=%u\n",
502 		  tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt);
503 }
504 
505 static bool nfp_nfd3_xdp_complete(struct nfp_net_tx_ring *tx_ring)
506 {
507 	struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
508 	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
509 	u32 done_pkts = 0, done_bytes = 0;
510 	bool done_all;
511 	int idx, todo;
512 	u32 qcp_rd_p;
513 
514 	/* Work out how many descriptors have been transmitted */
515 	qcp_rd_p = nfp_net_read_tx_cmpl(tx_ring, dp);
516 
517 	if (qcp_rd_p == tx_ring->qcp_rd_p)
518 		return true;
519 
520 	todo = D_IDX(tx_ring, qcp_rd_p - tx_ring->qcp_rd_p);
521 
522 	done_all = todo <= NFP_NET_XDP_MAX_COMPLETE;
523 	todo = min(todo, NFP_NET_XDP_MAX_COMPLETE);
524 
525 	tx_ring->qcp_rd_p = D_IDX(tx_ring, tx_ring->qcp_rd_p + todo);
526 
527 	done_pkts = todo;
528 	while (todo--) {
529 		idx = D_IDX(tx_ring, tx_ring->rd_p);
530 		tx_ring->rd_p++;
531 
532 		done_bytes += tx_ring->txbufs[idx].real_len;
533 	}
534 
535 	u64_stats_update_begin(&r_vec->tx_sync);
536 	r_vec->tx_bytes += done_bytes;
537 	r_vec->tx_pkts += done_pkts;
538 	u64_stats_update_end(&r_vec->tx_sync);
539 
540 	WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt,
541 		  "XDP TX ring corruption rd_p=%u wr_p=%u cnt=%u\n",
542 		  tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt);
543 
544 	return done_all;
545 }
546 
547 /* Receive processing
548  */
549 
550 static void *
551 nfp_nfd3_napi_alloc_one(struct nfp_net_dp *dp, dma_addr_t *dma_addr)
552 {
553 	void *frag;
554 
555 	if (!dp->xdp_prog) {
556 		frag = napi_alloc_frag(dp->fl_bufsz);
557 		if (unlikely(!frag))
558 			return NULL;
559 	} else {
560 		struct page *page;
561 
562 		page = dev_alloc_page();
563 		if (unlikely(!page))
564 			return NULL;
565 		frag = page_address(page);
566 	}
567 
568 	*dma_addr = nfp_net_dma_map_rx(dp, frag);
569 	if (dma_mapping_error(dp->dev, *dma_addr)) {
570 		nfp_net_free_frag(frag, dp->xdp_prog);
571 		nn_dp_warn(dp, "Failed to map DMA RX buffer\n");
572 		return NULL;
573 	}
574 
575 	return frag;
576 }
577 
578 /**
579  * nfp_nfd3_rx_give_one() - Put mapped skb on the software and hardware rings
580  * @dp:		NFP Net data path struct
581  * @rx_ring:	RX ring structure
582  * @frag:	page fragment buffer
583  * @dma_addr:	DMA address of skb mapping
584  */
585 static void
586 nfp_nfd3_rx_give_one(const struct nfp_net_dp *dp,
587 		     struct nfp_net_rx_ring *rx_ring,
588 		     void *frag, dma_addr_t dma_addr)
589 {
590 	unsigned int wr_idx;
591 
592 	wr_idx = D_IDX(rx_ring, rx_ring->wr_p);
593 
594 	nfp_net_dma_sync_dev_rx(dp, dma_addr);
595 
596 	/* Stash SKB and DMA address away */
597 	rx_ring->rxbufs[wr_idx].frag = frag;
598 	rx_ring->rxbufs[wr_idx].dma_addr = dma_addr;
599 
600 	/* Fill freelist descriptor */
601 	rx_ring->rxds[wr_idx].fld.reserved = 0;
602 	rx_ring->rxds[wr_idx].fld.meta_len_dd = 0;
603 	/* DMA address is expanded to 48-bit width in freelist for NFP3800,
604 	 * so the *_48b macro is used accordingly, it's also OK to fill
605 	 * a 40-bit address since the top 8 bits are get set to 0.
606 	 */
607 	nfp_desc_set_dma_addr_48b(&rx_ring->rxds[wr_idx].fld,
608 				  dma_addr + dp->rx_dma_off);
609 
610 	rx_ring->wr_p++;
611 	if (!(rx_ring->wr_p % NFP_NET_FL_BATCH)) {
612 		/* Update write pointer of the freelist queue. Make
613 		 * sure all writes are flushed before telling the hardware.
614 		 */
615 		wmb();
616 		nfp_qcp_wr_ptr_add(rx_ring->qcp_fl, NFP_NET_FL_BATCH);
617 	}
618 }
619 
620 /**
621  * nfp_nfd3_rx_ring_fill_freelist() - Give buffers from the ring to FW
622  * @dp:	     NFP Net data path struct
623  * @rx_ring: RX ring to fill
624  */
625 void nfp_nfd3_rx_ring_fill_freelist(struct nfp_net_dp *dp,
626 				    struct nfp_net_rx_ring *rx_ring)
627 {
628 	unsigned int i;
629 
630 	if (nfp_net_has_xsk_pool_slow(dp, rx_ring->idx))
631 		return nfp_net_xsk_rx_ring_fill_freelist(rx_ring);
632 
633 	for (i = 0; i < rx_ring->cnt - 1; i++)
634 		nfp_nfd3_rx_give_one(dp, rx_ring, rx_ring->rxbufs[i].frag,
635 				     rx_ring->rxbufs[i].dma_addr);
636 }
637 
638 /**
639  * nfp_nfd3_rx_csum_has_errors() - group check if rxd has any csum errors
640  * @flags: RX descriptor flags field in CPU byte order
641  */
642 static int nfp_nfd3_rx_csum_has_errors(u16 flags)
643 {
644 	u16 csum_all_checked, csum_all_ok;
645 
646 	csum_all_checked = flags & __PCIE_DESC_RX_CSUM_ALL;
647 	csum_all_ok = flags & __PCIE_DESC_RX_CSUM_ALL_OK;
648 
649 	return csum_all_checked != (csum_all_ok << PCIE_DESC_RX_CSUM_OK_SHIFT);
650 }
651 
652 /**
653  * nfp_nfd3_rx_csum() - set SKB checksum field based on RX descriptor flags
654  * @dp:  NFP Net data path struct
655  * @r_vec: per-ring structure
656  * @rxd: Pointer to RX descriptor
657  * @meta: Parsed metadata prepend
658  * @skb: Pointer to SKB
659  */
660 void
661 nfp_nfd3_rx_csum(const struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec,
662 		 const struct nfp_net_rx_desc *rxd,
663 		 const struct nfp_meta_parsed *meta, struct sk_buff *skb)
664 {
665 	skb_checksum_none_assert(skb);
666 
667 	if (!(dp->netdev->features & NETIF_F_RXCSUM))
668 		return;
669 
670 	if (meta->csum_type) {
671 		skb->ip_summed = meta->csum_type;
672 		skb->csum = meta->csum;
673 		u64_stats_update_begin(&r_vec->rx_sync);
674 		r_vec->hw_csum_rx_complete++;
675 		u64_stats_update_end(&r_vec->rx_sync);
676 		return;
677 	}
678 
679 	if (nfp_nfd3_rx_csum_has_errors(le16_to_cpu(rxd->rxd.flags))) {
680 		u64_stats_update_begin(&r_vec->rx_sync);
681 		r_vec->hw_csum_rx_error++;
682 		u64_stats_update_end(&r_vec->rx_sync);
683 		return;
684 	}
685 
686 	/* Assume that the firmware will never report inner CSUM_OK unless outer
687 	 * L4 headers were successfully parsed. FW will always report zero UDP
688 	 * checksum as CSUM_OK.
689 	 */
690 	if (rxd->rxd.flags & PCIE_DESC_RX_TCP_CSUM_OK ||
691 	    rxd->rxd.flags & PCIE_DESC_RX_UDP_CSUM_OK) {
692 		__skb_incr_checksum_unnecessary(skb);
693 		u64_stats_update_begin(&r_vec->rx_sync);
694 		r_vec->hw_csum_rx_ok++;
695 		u64_stats_update_end(&r_vec->rx_sync);
696 	}
697 
698 	if (rxd->rxd.flags & PCIE_DESC_RX_I_TCP_CSUM_OK ||
699 	    rxd->rxd.flags & PCIE_DESC_RX_I_UDP_CSUM_OK) {
700 		__skb_incr_checksum_unnecessary(skb);
701 		u64_stats_update_begin(&r_vec->rx_sync);
702 		r_vec->hw_csum_rx_inner_ok++;
703 		u64_stats_update_end(&r_vec->rx_sync);
704 	}
705 }
706 
707 static void
708 nfp_nfd3_set_hash(struct net_device *netdev, struct nfp_meta_parsed *meta,
709 		  unsigned int type, __be32 *hash)
710 {
711 	if (!(netdev->features & NETIF_F_RXHASH))
712 		return;
713 
714 	switch (type) {
715 	case NFP_NET_RSS_IPV4:
716 	case NFP_NET_RSS_IPV6:
717 	case NFP_NET_RSS_IPV6_EX:
718 		meta->hash_type = PKT_HASH_TYPE_L3;
719 		break;
720 	default:
721 		meta->hash_type = PKT_HASH_TYPE_L4;
722 		break;
723 	}
724 
725 	meta->hash = get_unaligned_be32(hash);
726 }
727 
728 static void
729 nfp_nfd3_set_hash_desc(struct net_device *netdev, struct nfp_meta_parsed *meta,
730 		       void *data, struct nfp_net_rx_desc *rxd)
731 {
732 	struct nfp_net_rx_hash *rx_hash = data;
733 
734 	if (!(rxd->rxd.flags & PCIE_DESC_RX_RSS))
735 		return;
736 
737 	nfp_nfd3_set_hash(netdev, meta, get_unaligned_be32(&rx_hash->hash_type),
738 			  &rx_hash->hash);
739 }
740 
741 bool
742 nfp_nfd3_parse_meta(struct net_device *netdev, struct nfp_meta_parsed *meta,
743 		    void *data, void *pkt, unsigned int pkt_len, int meta_len)
744 {
745 	u32 meta_info, vlan_info;
746 
747 	meta_info = get_unaligned_be32(data);
748 	data += 4;
749 
750 	while (meta_info) {
751 		switch (meta_info & NFP_NET_META_FIELD_MASK) {
752 		case NFP_NET_META_HASH:
753 			meta_info >>= NFP_NET_META_FIELD_SIZE;
754 			nfp_nfd3_set_hash(netdev, meta,
755 					  meta_info & NFP_NET_META_FIELD_MASK,
756 					  (__be32 *)data);
757 			data += 4;
758 			break;
759 		case NFP_NET_META_MARK:
760 			meta->mark = get_unaligned_be32(data);
761 			data += 4;
762 			break;
763 		case NFP_NET_META_VLAN:
764 			vlan_info = get_unaligned_be32(data);
765 			if (FIELD_GET(NFP_NET_META_VLAN_STRIP, vlan_info)) {
766 				meta->vlan.stripped = true;
767 				meta->vlan.tpid = FIELD_GET(NFP_NET_META_VLAN_TPID_MASK,
768 							    vlan_info);
769 				meta->vlan.tci = FIELD_GET(NFP_NET_META_VLAN_TCI_MASK,
770 							   vlan_info);
771 			}
772 			data += 4;
773 			break;
774 		case NFP_NET_META_PORTID:
775 			meta->portid = get_unaligned_be32(data);
776 			data += 4;
777 			break;
778 		case NFP_NET_META_CSUM:
779 			meta->csum_type = CHECKSUM_COMPLETE;
780 			meta->csum =
781 				(__force __wsum)__get_unaligned_cpu32(data);
782 			data += 4;
783 			break;
784 		case NFP_NET_META_RESYNC_INFO:
785 			if (nfp_net_tls_rx_resync_req(netdev, data, pkt,
786 						      pkt_len))
787 				return false;
788 			data += sizeof(struct nfp_net_tls_resync_req);
789 			break;
790 #ifdef CONFIG_NFP_NET_IPSEC
791 		case NFP_NET_META_IPSEC:
792 			/* Note: IPsec packet will have zero saidx, so need add 1
793 			 * to indicate packet is IPsec packet within driver.
794 			 */
795 			meta->ipsec_saidx = get_unaligned_be32(data) + 1;
796 			data += 4;
797 			break;
798 #endif
799 		default:
800 			return true;
801 		}
802 
803 		meta_info >>= NFP_NET_META_FIELD_SIZE;
804 	}
805 
806 	return data != pkt;
807 }
808 
809 static void
810 nfp_nfd3_rx_drop(const struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec,
811 		 struct nfp_net_rx_ring *rx_ring, struct nfp_net_rx_buf *rxbuf,
812 		 struct sk_buff *skb)
813 {
814 	u64_stats_update_begin(&r_vec->rx_sync);
815 	r_vec->rx_drops++;
816 	/* If we have both skb and rxbuf the replacement buffer allocation
817 	 * must have failed, count this as an alloc failure.
818 	 */
819 	if (skb && rxbuf)
820 		r_vec->rx_replace_buf_alloc_fail++;
821 	u64_stats_update_end(&r_vec->rx_sync);
822 
823 	/* skb is build based on the frag, free_skb() would free the frag
824 	 * so to be able to reuse it we need an extra ref.
825 	 */
826 	if (skb && rxbuf && skb->head == rxbuf->frag)
827 		page_ref_inc(virt_to_head_page(rxbuf->frag));
828 	if (rxbuf)
829 		nfp_nfd3_rx_give_one(dp, rx_ring, rxbuf->frag, rxbuf->dma_addr);
830 	if (skb)
831 		dev_kfree_skb_any(skb);
832 }
833 
834 static bool
835 nfp_nfd3_tx_xdp_buf(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring,
836 		    struct nfp_net_tx_ring *tx_ring,
837 		    struct nfp_net_rx_buf *rxbuf, unsigned int dma_off,
838 		    unsigned int pkt_len, bool *completed)
839 {
840 	unsigned int dma_map_sz = dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA;
841 	struct nfp_nfd3_tx_buf *txbuf;
842 	struct nfp_nfd3_tx_desc *txd;
843 	int wr_idx;
844 
845 	/* Reject if xdp_adjust_tail grow packet beyond DMA area */
846 	if (pkt_len + dma_off > dma_map_sz)
847 		return false;
848 
849 	if (unlikely(nfp_net_tx_full(tx_ring, 1))) {
850 		if (!*completed) {
851 			nfp_nfd3_xdp_complete(tx_ring);
852 			*completed = true;
853 		}
854 
855 		if (unlikely(nfp_net_tx_full(tx_ring, 1))) {
856 			nfp_nfd3_rx_drop(dp, rx_ring->r_vec, rx_ring, rxbuf,
857 					 NULL);
858 			return false;
859 		}
860 	}
861 
862 	wr_idx = D_IDX(tx_ring, tx_ring->wr_p);
863 
864 	/* Stash the soft descriptor of the head then initialize it */
865 	txbuf = &tx_ring->txbufs[wr_idx];
866 
867 	nfp_nfd3_rx_give_one(dp, rx_ring, txbuf->frag, txbuf->dma_addr);
868 
869 	txbuf->frag = rxbuf->frag;
870 	txbuf->dma_addr = rxbuf->dma_addr;
871 	txbuf->fidx = -1;
872 	txbuf->pkt_cnt = 1;
873 	txbuf->real_len = pkt_len;
874 
875 	dma_sync_single_for_device(dp->dev, rxbuf->dma_addr + dma_off,
876 				   pkt_len, DMA_BIDIRECTIONAL);
877 
878 	/* Build TX descriptor */
879 	txd = &tx_ring->txds[wr_idx];
880 	txd->offset_eop = NFD3_DESC_TX_EOP;
881 	txd->dma_len = cpu_to_le16(pkt_len);
882 	nfp_desc_set_dma_addr_40b(txd, rxbuf->dma_addr + dma_off);
883 	txd->data_len = cpu_to_le16(pkt_len);
884 
885 	txd->flags = 0;
886 	txd->mss = 0;
887 	txd->lso_hdrlen = 0;
888 
889 	tx_ring->wr_p++;
890 	tx_ring->wr_ptr_add++;
891 	return true;
892 }
893 
894 /**
895  * nfp_nfd3_rx() - receive up to @budget packets on @rx_ring
896  * @rx_ring:   RX ring to receive from
897  * @budget:    NAPI budget
898  *
899  * Note, this function is separated out from the napi poll function to
900  * more cleanly separate packet receive code from other bookkeeping
901  * functions performed in the napi poll function.
902  *
903  * Return: Number of packets received.
904  */
905 static int nfp_nfd3_rx(struct nfp_net_rx_ring *rx_ring, int budget)
906 {
907 	struct nfp_net_r_vector *r_vec = rx_ring->r_vec;
908 	struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
909 	struct nfp_net_tx_ring *tx_ring;
910 	struct bpf_prog *xdp_prog;
911 	int idx, pkts_polled = 0;
912 	bool xdp_tx_cmpl = false;
913 	unsigned int true_bufsz;
914 	struct sk_buff *skb;
915 	struct xdp_buff xdp;
916 
917 	xdp_prog = READ_ONCE(dp->xdp_prog);
918 	true_bufsz = xdp_prog ? PAGE_SIZE : dp->fl_bufsz;
919 	xdp_init_buff(&xdp, PAGE_SIZE - NFP_NET_RX_BUF_HEADROOM,
920 		      &rx_ring->xdp_rxq);
921 	tx_ring = r_vec->xdp_ring;
922 
923 	while (pkts_polled < budget) {
924 		unsigned int meta_len, data_len, meta_off, pkt_len, pkt_off;
925 		struct nfp_net_rx_buf *rxbuf;
926 		struct nfp_net_rx_desc *rxd;
927 		struct nfp_meta_parsed meta;
928 		bool redir_egress = false;
929 		struct net_device *netdev;
930 		dma_addr_t new_dma_addr;
931 		u32 meta_len_xdp = 0;
932 		void *new_frag;
933 
934 		idx = D_IDX(rx_ring, rx_ring->rd_p);
935 
936 		rxd = &rx_ring->rxds[idx];
937 		if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD))
938 			break;
939 
940 		/* Memory barrier to ensure that we won't do other reads
941 		 * before the DD bit.
942 		 */
943 		dma_rmb();
944 
945 		memset(&meta, 0, sizeof(meta));
946 
947 		rx_ring->rd_p++;
948 		pkts_polled++;
949 
950 		rxbuf =	&rx_ring->rxbufs[idx];
951 		/*         < meta_len >
952 		 *  <-- [rx_offset] -->
953 		 *  ---------------------------------------------------------
954 		 * | [XX] |  metadata  |             packet           | XXXX |
955 		 *  ---------------------------------------------------------
956 		 *         <---------------- data_len --------------->
957 		 *
958 		 * The rx_offset is fixed for all packets, the meta_len can vary
959 		 * on a packet by packet basis. If rx_offset is set to zero
960 		 * (_RX_OFFSET_DYNAMIC) metadata starts at the beginning of the
961 		 * buffer and is immediately followed by the packet (no [XX]).
962 		 */
963 		meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK;
964 		data_len = le16_to_cpu(rxd->rxd.data_len);
965 		pkt_len = data_len - meta_len;
966 
967 		pkt_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_dma_off;
968 		if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
969 			pkt_off += meta_len;
970 		else
971 			pkt_off += dp->rx_offset;
972 		meta_off = pkt_off - meta_len;
973 
974 		/* Stats update */
975 		u64_stats_update_begin(&r_vec->rx_sync);
976 		r_vec->rx_pkts++;
977 		r_vec->rx_bytes += pkt_len;
978 		u64_stats_update_end(&r_vec->rx_sync);
979 
980 		if (unlikely(meta_len > NFP_NET_MAX_PREPEND ||
981 			     (dp->rx_offset && meta_len > dp->rx_offset))) {
982 			nn_dp_warn(dp, "oversized RX packet metadata %u\n",
983 				   meta_len);
984 			nfp_nfd3_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
985 			continue;
986 		}
987 
988 		nfp_net_dma_sync_cpu_rx(dp, rxbuf->dma_addr + meta_off,
989 					data_len);
990 
991 		if (!dp->chained_metadata_format) {
992 			nfp_nfd3_set_hash_desc(dp->netdev, &meta,
993 					       rxbuf->frag + meta_off, rxd);
994 		} else if (meta_len) {
995 			if (unlikely(nfp_nfd3_parse_meta(dp->netdev, &meta,
996 							 rxbuf->frag + meta_off,
997 							 rxbuf->frag + pkt_off,
998 							 pkt_len, meta_len))) {
999 				nn_dp_warn(dp, "invalid RX packet metadata\n");
1000 				nfp_nfd3_rx_drop(dp, r_vec, rx_ring, rxbuf,
1001 						 NULL);
1002 				continue;
1003 			}
1004 		}
1005 
1006 		if (xdp_prog && !meta.portid) {
1007 			void *orig_data = rxbuf->frag + pkt_off;
1008 			unsigned int dma_off;
1009 			int act;
1010 
1011 			xdp_prepare_buff(&xdp,
1012 					 rxbuf->frag + NFP_NET_RX_BUF_HEADROOM,
1013 					 pkt_off - NFP_NET_RX_BUF_HEADROOM,
1014 					 pkt_len, true);
1015 
1016 			act = bpf_prog_run_xdp(xdp_prog, &xdp);
1017 
1018 			pkt_len = xdp.data_end - xdp.data;
1019 			pkt_off += xdp.data - orig_data;
1020 
1021 			switch (act) {
1022 			case XDP_PASS:
1023 				meta_len_xdp = xdp.data - xdp.data_meta;
1024 				break;
1025 			case XDP_TX:
1026 				dma_off = pkt_off - NFP_NET_RX_BUF_HEADROOM;
1027 				if (unlikely(!nfp_nfd3_tx_xdp_buf(dp, rx_ring,
1028 								  tx_ring,
1029 								  rxbuf,
1030 								  dma_off,
1031 								  pkt_len,
1032 								  &xdp_tx_cmpl)))
1033 					trace_xdp_exception(dp->netdev,
1034 							    xdp_prog, act);
1035 				continue;
1036 			default:
1037 				bpf_warn_invalid_xdp_action(dp->netdev, xdp_prog, act);
1038 				fallthrough;
1039 			case XDP_ABORTED:
1040 				trace_xdp_exception(dp->netdev, xdp_prog, act);
1041 				fallthrough;
1042 			case XDP_DROP:
1043 				nfp_nfd3_rx_give_one(dp, rx_ring, rxbuf->frag,
1044 						     rxbuf->dma_addr);
1045 				continue;
1046 			}
1047 		}
1048 
1049 		if (likely(!meta.portid)) {
1050 			netdev = dp->netdev;
1051 		} else if (meta.portid == NFP_META_PORT_ID_CTRL) {
1052 			struct nfp_net *nn = netdev_priv(dp->netdev);
1053 
1054 			nfp_app_ctrl_rx_raw(nn->app, rxbuf->frag + pkt_off,
1055 					    pkt_len);
1056 			nfp_nfd3_rx_give_one(dp, rx_ring, rxbuf->frag,
1057 					     rxbuf->dma_addr);
1058 			continue;
1059 		} else {
1060 			struct nfp_net *nn;
1061 
1062 			nn = netdev_priv(dp->netdev);
1063 			netdev = nfp_app_dev_get(nn->app, meta.portid,
1064 						 &redir_egress);
1065 			if (unlikely(!netdev)) {
1066 				nfp_nfd3_rx_drop(dp, r_vec, rx_ring, rxbuf,
1067 						 NULL);
1068 				continue;
1069 			}
1070 
1071 			if (nfp_netdev_is_nfp_repr(netdev))
1072 				nfp_repr_inc_rx_stats(netdev, pkt_len);
1073 		}
1074 
1075 		skb = build_skb(rxbuf->frag, true_bufsz);
1076 		if (unlikely(!skb)) {
1077 			nfp_nfd3_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
1078 			continue;
1079 		}
1080 		new_frag = nfp_nfd3_napi_alloc_one(dp, &new_dma_addr);
1081 		if (unlikely(!new_frag)) {
1082 			nfp_nfd3_rx_drop(dp, r_vec, rx_ring, rxbuf, skb);
1083 			continue;
1084 		}
1085 
1086 		nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr);
1087 
1088 		nfp_nfd3_rx_give_one(dp, rx_ring, new_frag, new_dma_addr);
1089 
1090 		skb_reserve(skb, pkt_off);
1091 		skb_put(skb, pkt_len);
1092 
1093 		skb->mark = meta.mark;
1094 		skb_set_hash(skb, meta.hash, meta.hash_type);
1095 
1096 		skb_record_rx_queue(skb, rx_ring->idx);
1097 		skb->protocol = eth_type_trans(skb, netdev);
1098 
1099 		nfp_nfd3_rx_csum(dp, r_vec, rxd, &meta, skb);
1100 
1101 #ifdef CONFIG_TLS_DEVICE
1102 		if (rxd->rxd.flags & PCIE_DESC_RX_DECRYPTED) {
1103 			skb->decrypted = true;
1104 			u64_stats_update_begin(&r_vec->rx_sync);
1105 			r_vec->hw_tls_rx++;
1106 			u64_stats_update_end(&r_vec->rx_sync);
1107 		}
1108 #endif
1109 
1110 		if (unlikely(!nfp_net_vlan_strip(skb, rxd, &meta))) {
1111 			nfp_nfd3_rx_drop(dp, r_vec, rx_ring, NULL, skb);
1112 			continue;
1113 		}
1114 
1115 #ifdef CONFIG_NFP_NET_IPSEC
1116 		if (meta.ipsec_saidx != 0 && unlikely(nfp_net_ipsec_rx(&meta, skb))) {
1117 			nfp_nfd3_rx_drop(dp, r_vec, rx_ring, NULL, skb);
1118 			continue;
1119 		}
1120 #endif
1121 
1122 		if (meta_len_xdp)
1123 			skb_metadata_set(skb, meta_len_xdp);
1124 
1125 		if (likely(!redir_egress)) {
1126 			napi_gro_receive(&rx_ring->r_vec->napi, skb);
1127 		} else {
1128 			skb->dev = netdev;
1129 			skb_reset_network_header(skb);
1130 			__skb_push(skb, ETH_HLEN);
1131 			dev_queue_xmit(skb);
1132 		}
1133 	}
1134 
1135 	if (xdp_prog) {
1136 		if (tx_ring->wr_ptr_add)
1137 			nfp_net_tx_xmit_more_flush(tx_ring);
1138 		else if (unlikely(tx_ring->wr_p != tx_ring->rd_p) &&
1139 			 !xdp_tx_cmpl)
1140 			if (!nfp_nfd3_xdp_complete(tx_ring))
1141 				pkts_polled = budget;
1142 	}
1143 
1144 	return pkts_polled;
1145 }
1146 
1147 /**
1148  * nfp_nfd3_poll() - napi poll function
1149  * @napi:    NAPI structure
1150  * @budget:  NAPI budget
1151  *
1152  * Return: number of packets polled.
1153  */
1154 int nfp_nfd3_poll(struct napi_struct *napi, int budget)
1155 {
1156 	struct nfp_net_r_vector *r_vec =
1157 		container_of(napi, struct nfp_net_r_vector, napi);
1158 	unsigned int pkts_polled = 0;
1159 
1160 	if (r_vec->tx_ring)
1161 		nfp_nfd3_tx_complete(r_vec->tx_ring, budget);
1162 	if (r_vec->rx_ring)
1163 		pkts_polled = nfp_nfd3_rx(r_vec->rx_ring, budget);
1164 
1165 	if (pkts_polled < budget)
1166 		if (napi_complete_done(napi, pkts_polled))
1167 			nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry);
1168 
1169 	if (r_vec->nfp_net->rx_coalesce_adapt_on && r_vec->rx_ring) {
1170 		struct dim_sample dim_sample = {};
1171 		unsigned int start;
1172 		u64 pkts, bytes;
1173 
1174 		do {
1175 			start = u64_stats_fetch_begin(&r_vec->rx_sync);
1176 			pkts = r_vec->rx_pkts;
1177 			bytes = r_vec->rx_bytes;
1178 		} while (u64_stats_fetch_retry(&r_vec->rx_sync, start));
1179 
1180 		dim_update_sample(r_vec->event_ctr, pkts, bytes, &dim_sample);
1181 		net_dim(&r_vec->rx_dim, dim_sample);
1182 	}
1183 
1184 	if (r_vec->nfp_net->tx_coalesce_adapt_on && r_vec->tx_ring) {
1185 		struct dim_sample dim_sample = {};
1186 		unsigned int start;
1187 		u64 pkts, bytes;
1188 
1189 		do {
1190 			start = u64_stats_fetch_begin(&r_vec->tx_sync);
1191 			pkts = r_vec->tx_pkts;
1192 			bytes = r_vec->tx_bytes;
1193 		} while (u64_stats_fetch_retry(&r_vec->tx_sync, start));
1194 
1195 		dim_update_sample(r_vec->event_ctr, pkts, bytes, &dim_sample);
1196 		net_dim(&r_vec->tx_dim, dim_sample);
1197 	}
1198 
1199 	return pkts_polled;
1200 }
1201 
1202 /* Control device data path
1203  */
1204 
1205 bool
1206 nfp_nfd3_ctrl_tx_one(struct nfp_net *nn, struct nfp_net_r_vector *r_vec,
1207 		     struct sk_buff *skb, bool old)
1208 {
1209 	unsigned int real_len = skb->len, meta_len = 0;
1210 	struct nfp_net_tx_ring *tx_ring;
1211 	struct nfp_nfd3_tx_buf *txbuf;
1212 	struct nfp_nfd3_tx_desc *txd;
1213 	struct nfp_net_dp *dp;
1214 	dma_addr_t dma_addr;
1215 	int wr_idx;
1216 
1217 	dp = &r_vec->nfp_net->dp;
1218 	tx_ring = r_vec->tx_ring;
1219 
1220 	if (WARN_ON_ONCE(skb_shinfo(skb)->nr_frags)) {
1221 		nn_dp_warn(dp, "Driver's CTRL TX does not implement gather\n");
1222 		goto err_free;
1223 	}
1224 
1225 	if (unlikely(nfp_net_tx_full(tx_ring, 1))) {
1226 		u64_stats_update_begin(&r_vec->tx_sync);
1227 		r_vec->tx_busy++;
1228 		u64_stats_update_end(&r_vec->tx_sync);
1229 		if (!old)
1230 			__skb_queue_tail(&r_vec->queue, skb);
1231 		else
1232 			__skb_queue_head(&r_vec->queue, skb);
1233 		return true;
1234 	}
1235 
1236 	if (nfp_app_ctrl_has_meta(nn->app)) {
1237 		if (unlikely(skb_headroom(skb) < 8)) {
1238 			nn_dp_warn(dp, "CTRL TX on skb without headroom\n");
1239 			goto err_free;
1240 		}
1241 		meta_len = 8;
1242 		put_unaligned_be32(NFP_META_PORT_ID_CTRL, skb_push(skb, 4));
1243 		put_unaligned_be32(NFP_NET_META_PORTID, skb_push(skb, 4));
1244 	}
1245 
1246 	/* Start with the head skbuf */
1247 	dma_addr = dma_map_single(dp->dev, skb->data, skb_headlen(skb),
1248 				  DMA_TO_DEVICE);
1249 	if (dma_mapping_error(dp->dev, dma_addr))
1250 		goto err_dma_warn;
1251 
1252 	wr_idx = D_IDX(tx_ring, tx_ring->wr_p);
1253 
1254 	/* Stash the soft descriptor of the head then initialize it */
1255 	txbuf = &tx_ring->txbufs[wr_idx];
1256 	txbuf->skb = skb;
1257 	txbuf->dma_addr = dma_addr;
1258 	txbuf->fidx = -1;
1259 	txbuf->pkt_cnt = 1;
1260 	txbuf->real_len = real_len;
1261 
1262 	/* Build TX descriptor */
1263 	txd = &tx_ring->txds[wr_idx];
1264 	txd->offset_eop = meta_len | NFD3_DESC_TX_EOP;
1265 	txd->dma_len = cpu_to_le16(skb_headlen(skb));
1266 	nfp_desc_set_dma_addr_40b(txd, dma_addr);
1267 	txd->data_len = cpu_to_le16(skb->len);
1268 
1269 	txd->flags = 0;
1270 	txd->mss = 0;
1271 	txd->lso_hdrlen = 0;
1272 
1273 	tx_ring->wr_p++;
1274 	tx_ring->wr_ptr_add++;
1275 	nfp_net_tx_xmit_more_flush(tx_ring);
1276 
1277 	return false;
1278 
1279 err_dma_warn:
1280 	nn_dp_warn(dp, "Failed to DMA map TX CTRL buffer\n");
1281 err_free:
1282 	u64_stats_update_begin(&r_vec->tx_sync);
1283 	r_vec->tx_errors++;
1284 	u64_stats_update_end(&r_vec->tx_sync);
1285 	dev_kfree_skb_any(skb);
1286 	return false;
1287 }
1288 
1289 static void __nfp_ctrl_tx_queued(struct nfp_net_r_vector *r_vec)
1290 {
1291 	struct sk_buff *skb;
1292 
1293 	while ((skb = __skb_dequeue(&r_vec->queue)))
1294 		if (nfp_nfd3_ctrl_tx_one(r_vec->nfp_net, r_vec, skb, true))
1295 			return;
1296 }
1297 
1298 static bool
1299 nfp_ctrl_meta_ok(struct nfp_net *nn, void *data, unsigned int meta_len)
1300 {
1301 	u32 meta_type, meta_tag;
1302 
1303 	if (!nfp_app_ctrl_has_meta(nn->app))
1304 		return !meta_len;
1305 
1306 	if (meta_len != 8)
1307 		return false;
1308 
1309 	meta_type = get_unaligned_be32(data);
1310 	meta_tag = get_unaligned_be32(data + 4);
1311 
1312 	return (meta_type == NFP_NET_META_PORTID &&
1313 		meta_tag == NFP_META_PORT_ID_CTRL);
1314 }
1315 
1316 static bool
1317 nfp_ctrl_rx_one(struct nfp_net *nn, struct nfp_net_dp *dp,
1318 		struct nfp_net_r_vector *r_vec, struct nfp_net_rx_ring *rx_ring)
1319 {
1320 	unsigned int meta_len, data_len, meta_off, pkt_len, pkt_off;
1321 	struct nfp_net_rx_buf *rxbuf;
1322 	struct nfp_net_rx_desc *rxd;
1323 	dma_addr_t new_dma_addr;
1324 	struct sk_buff *skb;
1325 	void *new_frag;
1326 	int idx;
1327 
1328 	idx = D_IDX(rx_ring, rx_ring->rd_p);
1329 
1330 	rxd = &rx_ring->rxds[idx];
1331 	if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD))
1332 		return false;
1333 
1334 	/* Memory barrier to ensure that we won't do other reads
1335 	 * before the DD bit.
1336 	 */
1337 	dma_rmb();
1338 
1339 	rx_ring->rd_p++;
1340 
1341 	rxbuf =	&rx_ring->rxbufs[idx];
1342 	meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK;
1343 	data_len = le16_to_cpu(rxd->rxd.data_len);
1344 	pkt_len = data_len - meta_len;
1345 
1346 	pkt_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_dma_off;
1347 	if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
1348 		pkt_off += meta_len;
1349 	else
1350 		pkt_off += dp->rx_offset;
1351 	meta_off = pkt_off - meta_len;
1352 
1353 	/* Stats update */
1354 	u64_stats_update_begin(&r_vec->rx_sync);
1355 	r_vec->rx_pkts++;
1356 	r_vec->rx_bytes += pkt_len;
1357 	u64_stats_update_end(&r_vec->rx_sync);
1358 
1359 	nfp_net_dma_sync_cpu_rx(dp, rxbuf->dma_addr + meta_off,	data_len);
1360 
1361 	if (unlikely(!nfp_ctrl_meta_ok(nn, rxbuf->frag + meta_off, meta_len))) {
1362 		nn_dp_warn(dp, "incorrect metadata for ctrl packet (%d)\n",
1363 			   meta_len);
1364 		nfp_nfd3_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
1365 		return true;
1366 	}
1367 
1368 	skb = build_skb(rxbuf->frag, dp->fl_bufsz);
1369 	if (unlikely(!skb)) {
1370 		nfp_nfd3_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
1371 		return true;
1372 	}
1373 	new_frag = nfp_nfd3_napi_alloc_one(dp, &new_dma_addr);
1374 	if (unlikely(!new_frag)) {
1375 		nfp_nfd3_rx_drop(dp, r_vec, rx_ring, rxbuf, skb);
1376 		return true;
1377 	}
1378 
1379 	nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr);
1380 
1381 	nfp_nfd3_rx_give_one(dp, rx_ring, new_frag, new_dma_addr);
1382 
1383 	skb_reserve(skb, pkt_off);
1384 	skb_put(skb, pkt_len);
1385 
1386 	nfp_app_ctrl_rx(nn->app, skb);
1387 
1388 	return true;
1389 }
1390 
1391 static bool nfp_ctrl_rx(struct nfp_net_r_vector *r_vec)
1392 {
1393 	struct nfp_net_rx_ring *rx_ring = r_vec->rx_ring;
1394 	struct nfp_net *nn = r_vec->nfp_net;
1395 	struct nfp_net_dp *dp = &nn->dp;
1396 	unsigned int budget = 512;
1397 
1398 	while (nfp_ctrl_rx_one(nn, dp, r_vec, rx_ring) && budget--)
1399 		continue;
1400 
1401 	return budget;
1402 }
1403 
1404 void nfp_nfd3_ctrl_poll(struct tasklet_struct *t)
1405 {
1406 	struct nfp_net_r_vector *r_vec = from_tasklet(r_vec, t, tasklet);
1407 
1408 	spin_lock(&r_vec->lock);
1409 	nfp_nfd3_tx_complete(r_vec->tx_ring, 0);
1410 	__nfp_ctrl_tx_queued(r_vec);
1411 	spin_unlock(&r_vec->lock);
1412 
1413 	if (nfp_ctrl_rx(r_vec)) {
1414 		nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry);
1415 	} else {
1416 		tasklet_schedule(&r_vec->tasklet);
1417 		nn_dp_warn(&r_vec->nfp_net->dp,
1418 			   "control message budget exceeded!\n");
1419 	}
1420 }
1421