xref: /linux/drivers/net/ethernet/neterion/s2io.c (revision f2ee442115c9b6219083c019939a9cc0c9abb2f8)
1 /************************************************************************
2  * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3  * Copyright(c) 2002-2010 Exar Corp.
4  *
5  * This software may be used and distributed according to the terms of
6  * the GNU General Public License (GPL), incorporated herein by reference.
7  * Drivers based on or derived from this code fall under the GPL and must
8  * retain the authorship, copyright and license notice.  This file is not
9  * a complete program and may only be used when the entire operating
10  * system is licensed under the GPL.
11  * See the file COPYING in this distribution for more information.
12  *
13  * Credits:
14  * Jeff Garzik		: For pointing out the improper error condition
15  *			  check in the s2io_xmit routine and also some
16  *			  issues in the Tx watch dog function. Also for
17  *			  patiently answering all those innumerable
18  *			  questions regaring the 2.6 porting issues.
19  * Stephen Hemminger	: Providing proper 2.6 porting mechanism for some
20  *			  macros available only in 2.6 Kernel.
21  * Francois Romieu	: For pointing out all code part that were
22  *			  deprecated and also styling related comments.
23  * Grant Grundler	: For helping me get rid of some Architecture
24  *			  dependent code.
25  * Christopher Hellwig	: Some more 2.6 specific issues in the driver.
26  *
27  * The module loadable parameters that are supported by the driver and a brief
28  * explanation of all the variables.
29  *
30  * rx_ring_num : This can be used to program the number of receive rings used
31  * in the driver.
32  * rx_ring_sz: This defines the number of receive blocks each ring can have.
33  *     This is also an array of size 8.
34  * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35  *		values are 1, 2.
36  * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37  * tx_fifo_len: This too is an array of 8. Each element defines the number of
38  * Tx descriptors that can be associated with each corresponding FIFO.
39  * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40  *     2(MSI_X). Default value is '2(MSI_X)'
41  * lro_max_pkts: This parameter defines maximum number of packets can be
42  *     aggregated as a single large packet
43  * napi: This parameter used to enable/disable NAPI (polling Rx)
44  *     Possible values '1' for enable and '0' for disable. Default is '1'
45  * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
46  *      Possible values '1' for enable and '0' for disable. Default is '0'
47  * vlan_tag_strip: This can be used to enable or disable vlan stripping.
48  *                 Possible values '1' for enable , '0' for disable.
49  *                 Default is '2' - which means disable in promisc mode
50  *                 and enable in non-promiscuous mode.
51  * multiq: This parameter used to enable/disable MULTIQUEUE support.
52  *      Possible values '1' for enable and '0' for disable. Default is '0'
53  ************************************************************************/
54 
55 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
56 
57 #include <linux/module.h>
58 #include <linux/types.h>
59 #include <linux/errno.h>
60 #include <linux/ioport.h>
61 #include <linux/pci.h>
62 #include <linux/dma-mapping.h>
63 #include <linux/kernel.h>
64 #include <linux/netdevice.h>
65 #include <linux/etherdevice.h>
66 #include <linux/mdio.h>
67 #include <linux/skbuff.h>
68 #include <linux/init.h>
69 #include <linux/delay.h>
70 #include <linux/stddef.h>
71 #include <linux/ioctl.h>
72 #include <linux/timex.h>
73 #include <linux/ethtool.h>
74 #include <linux/workqueue.h>
75 #include <linux/if_vlan.h>
76 #include <linux/ip.h>
77 #include <linux/tcp.h>
78 #include <linux/uaccess.h>
79 #include <linux/io.h>
80 #include <linux/slab.h>
81 #include <linux/prefetch.h>
82 #include <net/tcp.h>
83 
84 #include <asm/system.h>
85 #include <asm/div64.h>
86 #include <asm/irq.h>
87 
88 /* local include */
89 #include "s2io.h"
90 #include "s2io-regs.h"
91 
92 #define DRV_VERSION "2.0.26.28"
93 
94 /* S2io Driver name & version. */
95 static const char s2io_driver_name[] = "Neterion";
96 static const char s2io_driver_version[] = DRV_VERSION;
97 
98 static const int rxd_size[2] = {32, 48};
99 static const int rxd_count[2] = {127, 85};
100 
101 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
102 {
103 	int ret;
104 
105 	ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
106 	       (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
107 
108 	return ret;
109 }
110 
111 /*
112  * Cards with following subsystem_id have a link state indication
113  * problem, 600B, 600C, 600D, 640B, 640C and 640D.
114  * macro below identifies these cards given the subsystem_id.
115  */
116 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid)		\
117 	(dev_type == XFRAME_I_DEVICE) ?					\
118 	((((subid >= 0x600B) && (subid <= 0x600D)) ||			\
119 	  ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
120 
121 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
122 				      ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
123 
124 static inline int is_s2io_card_up(const struct s2io_nic *sp)
125 {
126 	return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
127 }
128 
129 /* Ethtool related variables and Macros. */
130 static const char s2io_gstrings[][ETH_GSTRING_LEN] = {
131 	"Register test\t(offline)",
132 	"Eeprom test\t(offline)",
133 	"Link test\t(online)",
134 	"RLDRAM test\t(offline)",
135 	"BIST Test\t(offline)"
136 };
137 
138 static const char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
139 	{"tmac_frms"},
140 	{"tmac_data_octets"},
141 	{"tmac_drop_frms"},
142 	{"tmac_mcst_frms"},
143 	{"tmac_bcst_frms"},
144 	{"tmac_pause_ctrl_frms"},
145 	{"tmac_ttl_octets"},
146 	{"tmac_ucst_frms"},
147 	{"tmac_nucst_frms"},
148 	{"tmac_any_err_frms"},
149 	{"tmac_ttl_less_fb_octets"},
150 	{"tmac_vld_ip_octets"},
151 	{"tmac_vld_ip"},
152 	{"tmac_drop_ip"},
153 	{"tmac_icmp"},
154 	{"tmac_rst_tcp"},
155 	{"tmac_tcp"},
156 	{"tmac_udp"},
157 	{"rmac_vld_frms"},
158 	{"rmac_data_octets"},
159 	{"rmac_fcs_err_frms"},
160 	{"rmac_drop_frms"},
161 	{"rmac_vld_mcst_frms"},
162 	{"rmac_vld_bcst_frms"},
163 	{"rmac_in_rng_len_err_frms"},
164 	{"rmac_out_rng_len_err_frms"},
165 	{"rmac_long_frms"},
166 	{"rmac_pause_ctrl_frms"},
167 	{"rmac_unsup_ctrl_frms"},
168 	{"rmac_ttl_octets"},
169 	{"rmac_accepted_ucst_frms"},
170 	{"rmac_accepted_nucst_frms"},
171 	{"rmac_discarded_frms"},
172 	{"rmac_drop_events"},
173 	{"rmac_ttl_less_fb_octets"},
174 	{"rmac_ttl_frms"},
175 	{"rmac_usized_frms"},
176 	{"rmac_osized_frms"},
177 	{"rmac_frag_frms"},
178 	{"rmac_jabber_frms"},
179 	{"rmac_ttl_64_frms"},
180 	{"rmac_ttl_65_127_frms"},
181 	{"rmac_ttl_128_255_frms"},
182 	{"rmac_ttl_256_511_frms"},
183 	{"rmac_ttl_512_1023_frms"},
184 	{"rmac_ttl_1024_1518_frms"},
185 	{"rmac_ip"},
186 	{"rmac_ip_octets"},
187 	{"rmac_hdr_err_ip"},
188 	{"rmac_drop_ip"},
189 	{"rmac_icmp"},
190 	{"rmac_tcp"},
191 	{"rmac_udp"},
192 	{"rmac_err_drp_udp"},
193 	{"rmac_xgmii_err_sym"},
194 	{"rmac_frms_q0"},
195 	{"rmac_frms_q1"},
196 	{"rmac_frms_q2"},
197 	{"rmac_frms_q3"},
198 	{"rmac_frms_q4"},
199 	{"rmac_frms_q5"},
200 	{"rmac_frms_q6"},
201 	{"rmac_frms_q7"},
202 	{"rmac_full_q0"},
203 	{"rmac_full_q1"},
204 	{"rmac_full_q2"},
205 	{"rmac_full_q3"},
206 	{"rmac_full_q4"},
207 	{"rmac_full_q5"},
208 	{"rmac_full_q6"},
209 	{"rmac_full_q7"},
210 	{"rmac_pause_cnt"},
211 	{"rmac_xgmii_data_err_cnt"},
212 	{"rmac_xgmii_ctrl_err_cnt"},
213 	{"rmac_accepted_ip"},
214 	{"rmac_err_tcp"},
215 	{"rd_req_cnt"},
216 	{"new_rd_req_cnt"},
217 	{"new_rd_req_rtry_cnt"},
218 	{"rd_rtry_cnt"},
219 	{"wr_rtry_rd_ack_cnt"},
220 	{"wr_req_cnt"},
221 	{"new_wr_req_cnt"},
222 	{"new_wr_req_rtry_cnt"},
223 	{"wr_rtry_cnt"},
224 	{"wr_disc_cnt"},
225 	{"rd_rtry_wr_ack_cnt"},
226 	{"txp_wr_cnt"},
227 	{"txd_rd_cnt"},
228 	{"txd_wr_cnt"},
229 	{"rxd_rd_cnt"},
230 	{"rxd_wr_cnt"},
231 	{"txf_rd_cnt"},
232 	{"rxf_wr_cnt"}
233 };
234 
235 static const char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
236 	{"rmac_ttl_1519_4095_frms"},
237 	{"rmac_ttl_4096_8191_frms"},
238 	{"rmac_ttl_8192_max_frms"},
239 	{"rmac_ttl_gt_max_frms"},
240 	{"rmac_osized_alt_frms"},
241 	{"rmac_jabber_alt_frms"},
242 	{"rmac_gt_max_alt_frms"},
243 	{"rmac_vlan_frms"},
244 	{"rmac_len_discard"},
245 	{"rmac_fcs_discard"},
246 	{"rmac_pf_discard"},
247 	{"rmac_da_discard"},
248 	{"rmac_red_discard"},
249 	{"rmac_rts_discard"},
250 	{"rmac_ingm_full_discard"},
251 	{"link_fault_cnt"}
252 };
253 
254 static const char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
255 	{"\n DRIVER STATISTICS"},
256 	{"single_bit_ecc_errs"},
257 	{"double_bit_ecc_errs"},
258 	{"parity_err_cnt"},
259 	{"serious_err_cnt"},
260 	{"soft_reset_cnt"},
261 	{"fifo_full_cnt"},
262 	{"ring_0_full_cnt"},
263 	{"ring_1_full_cnt"},
264 	{"ring_2_full_cnt"},
265 	{"ring_3_full_cnt"},
266 	{"ring_4_full_cnt"},
267 	{"ring_5_full_cnt"},
268 	{"ring_6_full_cnt"},
269 	{"ring_7_full_cnt"},
270 	{"alarm_transceiver_temp_high"},
271 	{"alarm_transceiver_temp_low"},
272 	{"alarm_laser_bias_current_high"},
273 	{"alarm_laser_bias_current_low"},
274 	{"alarm_laser_output_power_high"},
275 	{"alarm_laser_output_power_low"},
276 	{"warn_transceiver_temp_high"},
277 	{"warn_transceiver_temp_low"},
278 	{"warn_laser_bias_current_high"},
279 	{"warn_laser_bias_current_low"},
280 	{"warn_laser_output_power_high"},
281 	{"warn_laser_output_power_low"},
282 	{"lro_aggregated_pkts"},
283 	{"lro_flush_both_count"},
284 	{"lro_out_of_sequence_pkts"},
285 	{"lro_flush_due_to_max_pkts"},
286 	{"lro_avg_aggr_pkts"},
287 	{"mem_alloc_fail_cnt"},
288 	{"pci_map_fail_cnt"},
289 	{"watchdog_timer_cnt"},
290 	{"mem_allocated"},
291 	{"mem_freed"},
292 	{"link_up_cnt"},
293 	{"link_down_cnt"},
294 	{"link_up_time"},
295 	{"link_down_time"},
296 	{"tx_tcode_buf_abort_cnt"},
297 	{"tx_tcode_desc_abort_cnt"},
298 	{"tx_tcode_parity_err_cnt"},
299 	{"tx_tcode_link_loss_cnt"},
300 	{"tx_tcode_list_proc_err_cnt"},
301 	{"rx_tcode_parity_err_cnt"},
302 	{"rx_tcode_abort_cnt"},
303 	{"rx_tcode_parity_abort_cnt"},
304 	{"rx_tcode_rda_fail_cnt"},
305 	{"rx_tcode_unkn_prot_cnt"},
306 	{"rx_tcode_fcs_err_cnt"},
307 	{"rx_tcode_buf_size_err_cnt"},
308 	{"rx_tcode_rxd_corrupt_cnt"},
309 	{"rx_tcode_unkn_err_cnt"},
310 	{"tda_err_cnt"},
311 	{"pfc_err_cnt"},
312 	{"pcc_err_cnt"},
313 	{"tti_err_cnt"},
314 	{"tpa_err_cnt"},
315 	{"sm_err_cnt"},
316 	{"lso_err_cnt"},
317 	{"mac_tmac_err_cnt"},
318 	{"mac_rmac_err_cnt"},
319 	{"xgxs_txgxs_err_cnt"},
320 	{"xgxs_rxgxs_err_cnt"},
321 	{"rc_err_cnt"},
322 	{"prc_pcix_err_cnt"},
323 	{"rpa_err_cnt"},
324 	{"rda_err_cnt"},
325 	{"rti_err_cnt"},
326 	{"mc_err_cnt"}
327 };
328 
329 #define S2IO_XENA_STAT_LEN	ARRAY_SIZE(ethtool_xena_stats_keys)
330 #define S2IO_ENHANCED_STAT_LEN	ARRAY_SIZE(ethtool_enhanced_stats_keys)
331 #define S2IO_DRIVER_STAT_LEN	ARRAY_SIZE(ethtool_driver_stats_keys)
332 
333 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN)
334 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN)
335 
336 #define XFRAME_I_STAT_STRINGS_LEN (XFRAME_I_STAT_LEN * ETH_GSTRING_LEN)
337 #define XFRAME_II_STAT_STRINGS_LEN (XFRAME_II_STAT_LEN * ETH_GSTRING_LEN)
338 
339 #define S2IO_TEST_LEN	ARRAY_SIZE(s2io_gstrings)
340 #define S2IO_STRINGS_LEN	(S2IO_TEST_LEN * ETH_GSTRING_LEN)
341 
342 #define S2IO_TIMER_CONF(timer, handle, arg, exp)	\
343 	init_timer(&timer);				\
344 	timer.function = handle;			\
345 	timer.data = (unsigned long)arg;		\
346 	mod_timer(&timer, (jiffies + exp))		\
347 
348 /* copy mac addr to def_mac_addr array */
349 static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
350 {
351 	sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
352 	sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
353 	sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
354 	sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
355 	sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
356 	sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
357 }
358 
359 /*
360  * Constants to be programmed into the Xena's registers, to configure
361  * the XAUI.
362  */
363 
364 #define	END_SIGN	0x0
365 static const u64 herc_act_dtx_cfg[] = {
366 	/* Set address */
367 	0x8000051536750000ULL, 0x80000515367500E0ULL,
368 	/* Write data */
369 	0x8000051536750004ULL, 0x80000515367500E4ULL,
370 	/* Set address */
371 	0x80010515003F0000ULL, 0x80010515003F00E0ULL,
372 	/* Write data */
373 	0x80010515003F0004ULL, 0x80010515003F00E4ULL,
374 	/* Set address */
375 	0x801205150D440000ULL, 0x801205150D4400E0ULL,
376 	/* Write data */
377 	0x801205150D440004ULL, 0x801205150D4400E4ULL,
378 	/* Set address */
379 	0x80020515F2100000ULL, 0x80020515F21000E0ULL,
380 	/* Write data */
381 	0x80020515F2100004ULL, 0x80020515F21000E4ULL,
382 	/* Done */
383 	END_SIGN
384 };
385 
386 static const u64 xena_dtx_cfg[] = {
387 	/* Set address */
388 	0x8000051500000000ULL, 0x80000515000000E0ULL,
389 	/* Write data */
390 	0x80000515D9350004ULL, 0x80000515D93500E4ULL,
391 	/* Set address */
392 	0x8001051500000000ULL, 0x80010515000000E0ULL,
393 	/* Write data */
394 	0x80010515001E0004ULL, 0x80010515001E00E4ULL,
395 	/* Set address */
396 	0x8002051500000000ULL, 0x80020515000000E0ULL,
397 	/* Write data */
398 	0x80020515F2100004ULL, 0x80020515F21000E4ULL,
399 	END_SIGN
400 };
401 
402 /*
403  * Constants for Fixing the MacAddress problem seen mostly on
404  * Alpha machines.
405  */
406 static const u64 fix_mac[] = {
407 	0x0060000000000000ULL, 0x0060600000000000ULL,
408 	0x0040600000000000ULL, 0x0000600000000000ULL,
409 	0x0020600000000000ULL, 0x0060600000000000ULL,
410 	0x0020600000000000ULL, 0x0060600000000000ULL,
411 	0x0020600000000000ULL, 0x0060600000000000ULL,
412 	0x0020600000000000ULL, 0x0060600000000000ULL,
413 	0x0020600000000000ULL, 0x0060600000000000ULL,
414 	0x0020600000000000ULL, 0x0060600000000000ULL,
415 	0x0020600000000000ULL, 0x0060600000000000ULL,
416 	0x0020600000000000ULL, 0x0060600000000000ULL,
417 	0x0020600000000000ULL, 0x0060600000000000ULL,
418 	0x0020600000000000ULL, 0x0060600000000000ULL,
419 	0x0020600000000000ULL, 0x0000600000000000ULL,
420 	0x0040600000000000ULL, 0x0060600000000000ULL,
421 	END_SIGN
422 };
423 
424 MODULE_LICENSE("GPL");
425 MODULE_VERSION(DRV_VERSION);
426 
427 
428 /* Module Loadable parameters. */
429 S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM);
430 S2IO_PARM_INT(rx_ring_num, 1);
431 S2IO_PARM_INT(multiq, 0);
432 S2IO_PARM_INT(rx_ring_mode, 1);
433 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
434 S2IO_PARM_INT(rmac_pause_time, 0x100);
435 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
436 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
437 S2IO_PARM_INT(shared_splits, 0);
438 S2IO_PARM_INT(tmac_util_period, 5);
439 S2IO_PARM_INT(rmac_util_period, 5);
440 S2IO_PARM_INT(l3l4hdr_size, 128);
441 /* 0 is no steering, 1 is Priority steering, 2 is Default steering */
442 S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING);
443 /* Frequency of Rx desc syncs expressed as power of 2 */
444 S2IO_PARM_INT(rxsync_frequency, 3);
445 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
446 S2IO_PARM_INT(intr_type, 2);
447 /* Large receive offload feature */
448 
449 /* Max pkts to be aggregated by LRO at one time. If not specified,
450  * aggregation happens until we hit max IP pkt size(64K)
451  */
452 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
453 S2IO_PARM_INT(indicate_max_pkts, 0);
454 
455 S2IO_PARM_INT(napi, 1);
456 S2IO_PARM_INT(ufo, 0);
457 S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
458 
459 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
460 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
461 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
462 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
463 static unsigned int rts_frm_len[MAX_RX_RINGS] =
464 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
465 
466 module_param_array(tx_fifo_len, uint, NULL, 0);
467 module_param_array(rx_ring_sz, uint, NULL, 0);
468 module_param_array(rts_frm_len, uint, NULL, 0);
469 
470 /*
471  * S2IO device table.
472  * This table lists all the devices that this driver supports.
473  */
474 static DEFINE_PCI_DEVICE_TABLE(s2io_tbl) = {
475 	{PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
476 	 PCI_ANY_ID, PCI_ANY_ID},
477 	{PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
478 	 PCI_ANY_ID, PCI_ANY_ID},
479 	{PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
480 	 PCI_ANY_ID, PCI_ANY_ID},
481 	{PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
482 	 PCI_ANY_ID, PCI_ANY_ID},
483 	{0,}
484 };
485 
486 MODULE_DEVICE_TABLE(pci, s2io_tbl);
487 
488 static struct pci_error_handlers s2io_err_handler = {
489 	.error_detected = s2io_io_error_detected,
490 	.slot_reset = s2io_io_slot_reset,
491 	.resume = s2io_io_resume,
492 };
493 
494 static struct pci_driver s2io_driver = {
495 	.name = "S2IO",
496 	.id_table = s2io_tbl,
497 	.probe = s2io_init_nic,
498 	.remove = __devexit_p(s2io_rem_nic),
499 	.err_handler = &s2io_err_handler,
500 };
501 
502 /* A simplifier macro used both by init and free shared_mem Fns(). */
503 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
504 
505 /* netqueue manipulation helper functions */
506 static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp)
507 {
508 	if (!sp->config.multiq) {
509 		int i;
510 
511 		for (i = 0; i < sp->config.tx_fifo_num; i++)
512 			sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP;
513 	}
514 	netif_tx_stop_all_queues(sp->dev);
515 }
516 
517 static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no)
518 {
519 	if (!sp->config.multiq)
520 		sp->mac_control.fifos[fifo_no].queue_state =
521 			FIFO_QUEUE_STOP;
522 
523 	netif_tx_stop_all_queues(sp->dev);
524 }
525 
526 static inline void s2io_start_all_tx_queue(struct s2io_nic *sp)
527 {
528 	if (!sp->config.multiq) {
529 		int i;
530 
531 		for (i = 0; i < sp->config.tx_fifo_num; i++)
532 			sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
533 	}
534 	netif_tx_start_all_queues(sp->dev);
535 }
536 
537 static inline void s2io_start_tx_queue(struct s2io_nic *sp, int fifo_no)
538 {
539 	if (!sp->config.multiq)
540 		sp->mac_control.fifos[fifo_no].queue_state =
541 			FIFO_QUEUE_START;
542 
543 	netif_tx_start_all_queues(sp->dev);
544 }
545 
546 static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp)
547 {
548 	if (!sp->config.multiq) {
549 		int i;
550 
551 		for (i = 0; i < sp->config.tx_fifo_num; i++)
552 			sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
553 	}
554 	netif_tx_wake_all_queues(sp->dev);
555 }
556 
557 static inline void s2io_wake_tx_queue(
558 	struct fifo_info *fifo, int cnt, u8 multiq)
559 {
560 
561 	if (multiq) {
562 		if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no))
563 			netif_wake_subqueue(fifo->dev, fifo->fifo_no);
564 	} else if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) {
565 		if (netif_queue_stopped(fifo->dev)) {
566 			fifo->queue_state = FIFO_QUEUE_START;
567 			netif_wake_queue(fifo->dev);
568 		}
569 	}
570 }
571 
572 /**
573  * init_shared_mem - Allocation and Initialization of Memory
574  * @nic: Device private variable.
575  * Description: The function allocates all the memory areas shared
576  * between the NIC and the driver. This includes Tx descriptors,
577  * Rx descriptors and the statistics block.
578  */
579 
580 static int init_shared_mem(struct s2io_nic *nic)
581 {
582 	u32 size;
583 	void *tmp_v_addr, *tmp_v_addr_next;
584 	dma_addr_t tmp_p_addr, tmp_p_addr_next;
585 	struct RxD_block *pre_rxd_blk = NULL;
586 	int i, j, blk_cnt;
587 	int lst_size, lst_per_page;
588 	struct net_device *dev = nic->dev;
589 	unsigned long tmp;
590 	struct buffAdd *ba;
591 	struct config_param *config = &nic->config;
592 	struct mac_info *mac_control = &nic->mac_control;
593 	unsigned long long mem_allocated = 0;
594 
595 	/* Allocation and initialization of TXDLs in FIFOs */
596 	size = 0;
597 	for (i = 0; i < config->tx_fifo_num; i++) {
598 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
599 
600 		size += tx_cfg->fifo_len;
601 	}
602 	if (size > MAX_AVAILABLE_TXDS) {
603 		DBG_PRINT(ERR_DBG,
604 			  "Too many TxDs requested: %d, max supported: %d\n",
605 			  size, MAX_AVAILABLE_TXDS);
606 		return -EINVAL;
607 	}
608 
609 	size = 0;
610 	for (i = 0; i < config->tx_fifo_num; i++) {
611 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
612 
613 		size = tx_cfg->fifo_len;
614 		/*
615 		 * Legal values are from 2 to 8192
616 		 */
617 		if (size < 2) {
618 			DBG_PRINT(ERR_DBG, "Fifo %d: Invalid length (%d) - "
619 				  "Valid lengths are 2 through 8192\n",
620 				  i, size);
621 			return -EINVAL;
622 		}
623 	}
624 
625 	lst_size = (sizeof(struct TxD) * config->max_txds);
626 	lst_per_page = PAGE_SIZE / lst_size;
627 
628 	for (i = 0; i < config->tx_fifo_num; i++) {
629 		struct fifo_info *fifo = &mac_control->fifos[i];
630 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
631 		int fifo_len = tx_cfg->fifo_len;
632 		int list_holder_size = fifo_len * sizeof(struct list_info_hold);
633 
634 		fifo->list_info = kzalloc(list_holder_size, GFP_KERNEL);
635 		if (!fifo->list_info) {
636 			DBG_PRINT(INFO_DBG, "Malloc failed for list_info\n");
637 			return -ENOMEM;
638 		}
639 		mem_allocated += list_holder_size;
640 	}
641 	for (i = 0; i < config->tx_fifo_num; i++) {
642 		int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
643 						lst_per_page);
644 		struct fifo_info *fifo = &mac_control->fifos[i];
645 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
646 
647 		fifo->tx_curr_put_info.offset = 0;
648 		fifo->tx_curr_put_info.fifo_len = tx_cfg->fifo_len - 1;
649 		fifo->tx_curr_get_info.offset = 0;
650 		fifo->tx_curr_get_info.fifo_len = tx_cfg->fifo_len - 1;
651 		fifo->fifo_no = i;
652 		fifo->nic = nic;
653 		fifo->max_txds = MAX_SKB_FRAGS + 2;
654 		fifo->dev = dev;
655 
656 		for (j = 0; j < page_num; j++) {
657 			int k = 0;
658 			dma_addr_t tmp_p;
659 			void *tmp_v;
660 			tmp_v = pci_alloc_consistent(nic->pdev,
661 						     PAGE_SIZE, &tmp_p);
662 			if (!tmp_v) {
663 				DBG_PRINT(INFO_DBG,
664 					  "pci_alloc_consistent failed for TxDL\n");
665 				return -ENOMEM;
666 			}
667 			/* If we got a zero DMA address(can happen on
668 			 * certain platforms like PPC), reallocate.
669 			 * Store virtual address of page we don't want,
670 			 * to be freed later.
671 			 */
672 			if (!tmp_p) {
673 				mac_control->zerodma_virt_addr = tmp_v;
674 				DBG_PRINT(INIT_DBG,
675 					  "%s: Zero DMA address for TxDL. "
676 					  "Virtual address %p\n",
677 					  dev->name, tmp_v);
678 				tmp_v = pci_alloc_consistent(nic->pdev,
679 							     PAGE_SIZE, &tmp_p);
680 				if (!tmp_v) {
681 					DBG_PRINT(INFO_DBG,
682 						  "pci_alloc_consistent failed for TxDL\n");
683 					return -ENOMEM;
684 				}
685 				mem_allocated += PAGE_SIZE;
686 			}
687 			while (k < lst_per_page) {
688 				int l = (j * lst_per_page) + k;
689 				if (l == tx_cfg->fifo_len)
690 					break;
691 				fifo->list_info[l].list_virt_addr =
692 					tmp_v + (k * lst_size);
693 				fifo->list_info[l].list_phy_addr =
694 					tmp_p + (k * lst_size);
695 				k++;
696 			}
697 		}
698 	}
699 
700 	for (i = 0; i < config->tx_fifo_num; i++) {
701 		struct fifo_info *fifo = &mac_control->fifos[i];
702 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
703 
704 		size = tx_cfg->fifo_len;
705 		fifo->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
706 		if (!fifo->ufo_in_band_v)
707 			return -ENOMEM;
708 		mem_allocated += (size * sizeof(u64));
709 	}
710 
711 	/* Allocation and initialization of RXDs in Rings */
712 	size = 0;
713 	for (i = 0; i < config->rx_ring_num; i++) {
714 		struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
715 		struct ring_info *ring = &mac_control->rings[i];
716 
717 		if (rx_cfg->num_rxd % (rxd_count[nic->rxd_mode] + 1)) {
718 			DBG_PRINT(ERR_DBG, "%s: Ring%d RxD count is not a "
719 				  "multiple of RxDs per Block\n",
720 				  dev->name, i);
721 			return FAILURE;
722 		}
723 		size += rx_cfg->num_rxd;
724 		ring->block_count = rx_cfg->num_rxd /
725 			(rxd_count[nic->rxd_mode] + 1);
726 		ring->pkt_cnt = rx_cfg->num_rxd - ring->block_count;
727 	}
728 	if (nic->rxd_mode == RXD_MODE_1)
729 		size = (size * (sizeof(struct RxD1)));
730 	else
731 		size = (size * (sizeof(struct RxD3)));
732 
733 	for (i = 0; i < config->rx_ring_num; i++) {
734 		struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
735 		struct ring_info *ring = &mac_control->rings[i];
736 
737 		ring->rx_curr_get_info.block_index = 0;
738 		ring->rx_curr_get_info.offset = 0;
739 		ring->rx_curr_get_info.ring_len = rx_cfg->num_rxd - 1;
740 		ring->rx_curr_put_info.block_index = 0;
741 		ring->rx_curr_put_info.offset = 0;
742 		ring->rx_curr_put_info.ring_len = rx_cfg->num_rxd - 1;
743 		ring->nic = nic;
744 		ring->ring_no = i;
745 
746 		blk_cnt = rx_cfg->num_rxd / (rxd_count[nic->rxd_mode] + 1);
747 		/*  Allocating all the Rx blocks */
748 		for (j = 0; j < blk_cnt; j++) {
749 			struct rx_block_info *rx_blocks;
750 			int l;
751 
752 			rx_blocks = &ring->rx_blocks[j];
753 			size = SIZE_OF_BLOCK;	/* size is always page size */
754 			tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
755 							  &tmp_p_addr);
756 			if (tmp_v_addr == NULL) {
757 				/*
758 				 * In case of failure, free_shared_mem()
759 				 * is called, which should free any
760 				 * memory that was alloced till the
761 				 * failure happened.
762 				 */
763 				rx_blocks->block_virt_addr = tmp_v_addr;
764 				return -ENOMEM;
765 			}
766 			mem_allocated += size;
767 			memset(tmp_v_addr, 0, size);
768 
769 			size = sizeof(struct rxd_info) *
770 				rxd_count[nic->rxd_mode];
771 			rx_blocks->block_virt_addr = tmp_v_addr;
772 			rx_blocks->block_dma_addr = tmp_p_addr;
773 			rx_blocks->rxds = kmalloc(size,  GFP_KERNEL);
774 			if (!rx_blocks->rxds)
775 				return -ENOMEM;
776 			mem_allocated += size;
777 			for (l = 0; l < rxd_count[nic->rxd_mode]; l++) {
778 				rx_blocks->rxds[l].virt_addr =
779 					rx_blocks->block_virt_addr +
780 					(rxd_size[nic->rxd_mode] * l);
781 				rx_blocks->rxds[l].dma_addr =
782 					rx_blocks->block_dma_addr +
783 					(rxd_size[nic->rxd_mode] * l);
784 			}
785 		}
786 		/* Interlinking all Rx Blocks */
787 		for (j = 0; j < blk_cnt; j++) {
788 			int next = (j + 1) % blk_cnt;
789 			tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
790 			tmp_v_addr_next = ring->rx_blocks[next].block_virt_addr;
791 			tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
792 			tmp_p_addr_next = ring->rx_blocks[next].block_dma_addr;
793 
794 			pre_rxd_blk = tmp_v_addr;
795 			pre_rxd_blk->reserved_2_pNext_RxD_block =
796 				(unsigned long)tmp_v_addr_next;
797 			pre_rxd_blk->pNext_RxD_Blk_physical =
798 				(u64)tmp_p_addr_next;
799 		}
800 	}
801 	if (nic->rxd_mode == RXD_MODE_3B) {
802 		/*
803 		 * Allocation of Storages for buffer addresses in 2BUFF mode
804 		 * and the buffers as well.
805 		 */
806 		for (i = 0; i < config->rx_ring_num; i++) {
807 			struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
808 			struct ring_info *ring = &mac_control->rings[i];
809 
810 			blk_cnt = rx_cfg->num_rxd /
811 				(rxd_count[nic->rxd_mode] + 1);
812 			size = sizeof(struct buffAdd *) * blk_cnt;
813 			ring->ba = kmalloc(size, GFP_KERNEL);
814 			if (!ring->ba)
815 				return -ENOMEM;
816 			mem_allocated += size;
817 			for (j = 0; j < blk_cnt; j++) {
818 				int k = 0;
819 
820 				size = sizeof(struct buffAdd) *
821 					(rxd_count[nic->rxd_mode] + 1);
822 				ring->ba[j] = kmalloc(size, GFP_KERNEL);
823 				if (!ring->ba[j])
824 					return -ENOMEM;
825 				mem_allocated += size;
826 				while (k != rxd_count[nic->rxd_mode]) {
827 					ba = &ring->ba[j][k];
828 					size = BUF0_LEN + ALIGN_SIZE;
829 					ba->ba_0_org = kmalloc(size, GFP_KERNEL);
830 					if (!ba->ba_0_org)
831 						return -ENOMEM;
832 					mem_allocated += size;
833 					tmp = (unsigned long)ba->ba_0_org;
834 					tmp += ALIGN_SIZE;
835 					tmp &= ~((unsigned long)ALIGN_SIZE);
836 					ba->ba_0 = (void *)tmp;
837 
838 					size = BUF1_LEN + ALIGN_SIZE;
839 					ba->ba_1_org = kmalloc(size, GFP_KERNEL);
840 					if (!ba->ba_1_org)
841 						return -ENOMEM;
842 					mem_allocated += size;
843 					tmp = (unsigned long)ba->ba_1_org;
844 					tmp += ALIGN_SIZE;
845 					tmp &= ~((unsigned long)ALIGN_SIZE);
846 					ba->ba_1 = (void *)tmp;
847 					k++;
848 				}
849 			}
850 		}
851 	}
852 
853 	/* Allocation and initialization of Statistics block */
854 	size = sizeof(struct stat_block);
855 	mac_control->stats_mem =
856 		pci_alloc_consistent(nic->pdev, size,
857 				     &mac_control->stats_mem_phy);
858 
859 	if (!mac_control->stats_mem) {
860 		/*
861 		 * In case of failure, free_shared_mem() is called, which
862 		 * should free any memory that was alloced till the
863 		 * failure happened.
864 		 */
865 		return -ENOMEM;
866 	}
867 	mem_allocated += size;
868 	mac_control->stats_mem_sz = size;
869 
870 	tmp_v_addr = mac_control->stats_mem;
871 	mac_control->stats_info = tmp_v_addr;
872 	memset(tmp_v_addr, 0, size);
873 	DBG_PRINT(INIT_DBG, "%s: Ring Mem PHY: 0x%llx\n",
874 		dev_name(&nic->pdev->dev), (unsigned long long)tmp_p_addr);
875 	mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
876 	return SUCCESS;
877 }
878 
879 /**
880  * free_shared_mem - Free the allocated Memory
881  * @nic:  Device private variable.
882  * Description: This function is to free all memory locations allocated by
883  * the init_shared_mem() function and return it to the kernel.
884  */
885 
886 static void free_shared_mem(struct s2io_nic *nic)
887 {
888 	int i, j, blk_cnt, size;
889 	void *tmp_v_addr;
890 	dma_addr_t tmp_p_addr;
891 	int lst_size, lst_per_page;
892 	struct net_device *dev;
893 	int page_num = 0;
894 	struct config_param *config;
895 	struct mac_info *mac_control;
896 	struct stat_block *stats;
897 	struct swStat *swstats;
898 
899 	if (!nic)
900 		return;
901 
902 	dev = nic->dev;
903 
904 	config = &nic->config;
905 	mac_control = &nic->mac_control;
906 	stats = mac_control->stats_info;
907 	swstats = &stats->sw_stat;
908 
909 	lst_size = sizeof(struct TxD) * config->max_txds;
910 	lst_per_page = PAGE_SIZE / lst_size;
911 
912 	for (i = 0; i < config->tx_fifo_num; i++) {
913 		struct fifo_info *fifo = &mac_control->fifos[i];
914 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
915 
916 		page_num = TXD_MEM_PAGE_CNT(tx_cfg->fifo_len, lst_per_page);
917 		for (j = 0; j < page_num; j++) {
918 			int mem_blks = (j * lst_per_page);
919 			struct list_info_hold *fli;
920 
921 			if (!fifo->list_info)
922 				return;
923 
924 			fli = &fifo->list_info[mem_blks];
925 			if (!fli->list_virt_addr)
926 				break;
927 			pci_free_consistent(nic->pdev, PAGE_SIZE,
928 					    fli->list_virt_addr,
929 					    fli->list_phy_addr);
930 			swstats->mem_freed += PAGE_SIZE;
931 		}
932 		/* If we got a zero DMA address during allocation,
933 		 * free the page now
934 		 */
935 		if (mac_control->zerodma_virt_addr) {
936 			pci_free_consistent(nic->pdev, PAGE_SIZE,
937 					    mac_control->zerodma_virt_addr,
938 					    (dma_addr_t)0);
939 			DBG_PRINT(INIT_DBG,
940 				  "%s: Freeing TxDL with zero DMA address. "
941 				  "Virtual address %p\n",
942 				  dev->name, mac_control->zerodma_virt_addr);
943 			swstats->mem_freed += PAGE_SIZE;
944 		}
945 		kfree(fifo->list_info);
946 		swstats->mem_freed += tx_cfg->fifo_len *
947 			sizeof(struct list_info_hold);
948 	}
949 
950 	size = SIZE_OF_BLOCK;
951 	for (i = 0; i < config->rx_ring_num; i++) {
952 		struct ring_info *ring = &mac_control->rings[i];
953 
954 		blk_cnt = ring->block_count;
955 		for (j = 0; j < blk_cnt; j++) {
956 			tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
957 			tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
958 			if (tmp_v_addr == NULL)
959 				break;
960 			pci_free_consistent(nic->pdev, size,
961 					    tmp_v_addr, tmp_p_addr);
962 			swstats->mem_freed += size;
963 			kfree(ring->rx_blocks[j].rxds);
964 			swstats->mem_freed += sizeof(struct rxd_info) *
965 				rxd_count[nic->rxd_mode];
966 		}
967 	}
968 
969 	if (nic->rxd_mode == RXD_MODE_3B) {
970 		/* Freeing buffer storage addresses in 2BUFF mode. */
971 		for (i = 0; i < config->rx_ring_num; i++) {
972 			struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
973 			struct ring_info *ring = &mac_control->rings[i];
974 
975 			blk_cnt = rx_cfg->num_rxd /
976 				(rxd_count[nic->rxd_mode] + 1);
977 			for (j = 0; j < blk_cnt; j++) {
978 				int k = 0;
979 				if (!ring->ba[j])
980 					continue;
981 				while (k != rxd_count[nic->rxd_mode]) {
982 					struct buffAdd *ba = &ring->ba[j][k];
983 					kfree(ba->ba_0_org);
984 					swstats->mem_freed +=
985 						BUF0_LEN + ALIGN_SIZE;
986 					kfree(ba->ba_1_org);
987 					swstats->mem_freed +=
988 						BUF1_LEN + ALIGN_SIZE;
989 					k++;
990 				}
991 				kfree(ring->ba[j]);
992 				swstats->mem_freed += sizeof(struct buffAdd) *
993 					(rxd_count[nic->rxd_mode] + 1);
994 			}
995 			kfree(ring->ba);
996 			swstats->mem_freed += sizeof(struct buffAdd *) *
997 				blk_cnt;
998 		}
999 	}
1000 
1001 	for (i = 0; i < nic->config.tx_fifo_num; i++) {
1002 		struct fifo_info *fifo = &mac_control->fifos[i];
1003 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
1004 
1005 		if (fifo->ufo_in_band_v) {
1006 			swstats->mem_freed += tx_cfg->fifo_len *
1007 				sizeof(u64);
1008 			kfree(fifo->ufo_in_band_v);
1009 		}
1010 	}
1011 
1012 	if (mac_control->stats_mem) {
1013 		swstats->mem_freed += mac_control->stats_mem_sz;
1014 		pci_free_consistent(nic->pdev,
1015 				    mac_control->stats_mem_sz,
1016 				    mac_control->stats_mem,
1017 				    mac_control->stats_mem_phy);
1018 	}
1019 }
1020 
1021 /**
1022  * s2io_verify_pci_mode -
1023  */
1024 
1025 static int s2io_verify_pci_mode(struct s2io_nic *nic)
1026 {
1027 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
1028 	register u64 val64 = 0;
1029 	int     mode;
1030 
1031 	val64 = readq(&bar0->pci_mode);
1032 	mode = (u8)GET_PCI_MODE(val64);
1033 
1034 	if (val64 & PCI_MODE_UNKNOWN_MODE)
1035 		return -1;      /* Unknown PCI mode */
1036 	return mode;
1037 }
1038 
1039 #define NEC_VENID   0x1033
1040 #define NEC_DEVID   0x0125
1041 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
1042 {
1043 	struct pci_dev *tdev = NULL;
1044 	while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
1045 		if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
1046 			if (tdev->bus == s2io_pdev->bus->parent) {
1047 				pci_dev_put(tdev);
1048 				return 1;
1049 			}
1050 		}
1051 	}
1052 	return 0;
1053 }
1054 
1055 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
1056 /**
1057  * s2io_print_pci_mode -
1058  */
1059 static int s2io_print_pci_mode(struct s2io_nic *nic)
1060 {
1061 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
1062 	register u64 val64 = 0;
1063 	int	mode;
1064 	struct config_param *config = &nic->config;
1065 	const char *pcimode;
1066 
1067 	val64 = readq(&bar0->pci_mode);
1068 	mode = (u8)GET_PCI_MODE(val64);
1069 
1070 	if (val64 & PCI_MODE_UNKNOWN_MODE)
1071 		return -1;	/* Unknown PCI mode */
1072 
1073 	config->bus_speed = bus_speed[mode];
1074 
1075 	if (s2io_on_nec_bridge(nic->pdev)) {
1076 		DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
1077 			  nic->dev->name);
1078 		return mode;
1079 	}
1080 
1081 	switch (mode) {
1082 	case PCI_MODE_PCI_33:
1083 		pcimode = "33MHz PCI bus";
1084 		break;
1085 	case PCI_MODE_PCI_66:
1086 		pcimode = "66MHz PCI bus";
1087 		break;
1088 	case PCI_MODE_PCIX_M1_66:
1089 		pcimode = "66MHz PCIX(M1) bus";
1090 		break;
1091 	case PCI_MODE_PCIX_M1_100:
1092 		pcimode = "100MHz PCIX(M1) bus";
1093 		break;
1094 	case PCI_MODE_PCIX_M1_133:
1095 		pcimode = "133MHz PCIX(M1) bus";
1096 		break;
1097 	case PCI_MODE_PCIX_M2_66:
1098 		pcimode = "133MHz PCIX(M2) bus";
1099 		break;
1100 	case PCI_MODE_PCIX_M2_100:
1101 		pcimode = "200MHz PCIX(M2) bus";
1102 		break;
1103 	case PCI_MODE_PCIX_M2_133:
1104 		pcimode = "266MHz PCIX(M2) bus";
1105 		break;
1106 	default:
1107 		pcimode = "unsupported bus!";
1108 		mode = -1;
1109 	}
1110 
1111 	DBG_PRINT(ERR_DBG, "%s: Device is on %d bit %s\n",
1112 		  nic->dev->name, val64 & PCI_MODE_32_BITS ? 32 : 64, pcimode);
1113 
1114 	return mode;
1115 }
1116 
1117 /**
1118  *  init_tti - Initialization transmit traffic interrupt scheme
1119  *  @nic: device private variable
1120  *  @link: link status (UP/DOWN) used to enable/disable continuous
1121  *  transmit interrupts
1122  *  Description: The function configures transmit traffic interrupts
1123  *  Return Value:  SUCCESS on success and
1124  *  '-1' on failure
1125  */
1126 
1127 static int init_tti(struct s2io_nic *nic, int link)
1128 {
1129 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
1130 	register u64 val64 = 0;
1131 	int i;
1132 	struct config_param *config = &nic->config;
1133 
1134 	for (i = 0; i < config->tx_fifo_num; i++) {
1135 		/*
1136 		 * TTI Initialization. Default Tx timer gets us about
1137 		 * 250 interrupts per sec. Continuous interrupts are enabled
1138 		 * by default.
1139 		 */
1140 		if (nic->device_type == XFRAME_II_DEVICE) {
1141 			int count = (nic->config.bus_speed * 125)/2;
1142 			val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1143 		} else
1144 			val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1145 
1146 		val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1147 			TTI_DATA1_MEM_TX_URNG_B(0x10) |
1148 			TTI_DATA1_MEM_TX_URNG_C(0x30) |
1149 			TTI_DATA1_MEM_TX_TIMER_AC_EN;
1150 		if (i == 0)
1151 			if (use_continuous_tx_intrs && (link == LINK_UP))
1152 				val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1153 		writeq(val64, &bar0->tti_data1_mem);
1154 
1155 		if (nic->config.intr_type == MSI_X) {
1156 			val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1157 				TTI_DATA2_MEM_TX_UFC_B(0x100) |
1158 				TTI_DATA2_MEM_TX_UFC_C(0x200) |
1159 				TTI_DATA2_MEM_TX_UFC_D(0x300);
1160 		} else {
1161 			if ((nic->config.tx_steering_type ==
1162 			     TX_DEFAULT_STEERING) &&
1163 			    (config->tx_fifo_num > 1) &&
1164 			    (i >= nic->udp_fifo_idx) &&
1165 			    (i < (nic->udp_fifo_idx +
1166 				  nic->total_udp_fifos)))
1167 				val64 = TTI_DATA2_MEM_TX_UFC_A(0x50) |
1168 					TTI_DATA2_MEM_TX_UFC_B(0x80) |
1169 					TTI_DATA2_MEM_TX_UFC_C(0x100) |
1170 					TTI_DATA2_MEM_TX_UFC_D(0x120);
1171 			else
1172 				val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1173 					TTI_DATA2_MEM_TX_UFC_B(0x20) |
1174 					TTI_DATA2_MEM_TX_UFC_C(0x40) |
1175 					TTI_DATA2_MEM_TX_UFC_D(0x80);
1176 		}
1177 
1178 		writeq(val64, &bar0->tti_data2_mem);
1179 
1180 		val64 = TTI_CMD_MEM_WE |
1181 			TTI_CMD_MEM_STROBE_NEW_CMD |
1182 			TTI_CMD_MEM_OFFSET(i);
1183 		writeq(val64, &bar0->tti_command_mem);
1184 
1185 		if (wait_for_cmd_complete(&bar0->tti_command_mem,
1186 					  TTI_CMD_MEM_STROBE_NEW_CMD,
1187 					  S2IO_BIT_RESET) != SUCCESS)
1188 			return FAILURE;
1189 	}
1190 
1191 	return SUCCESS;
1192 }
1193 
1194 /**
1195  *  init_nic - Initialization of hardware
1196  *  @nic: device private variable
1197  *  Description: The function sequentially configures every block
1198  *  of the H/W from their reset values.
1199  *  Return Value:  SUCCESS on success and
1200  *  '-1' on failure (endian settings incorrect).
1201  */
1202 
1203 static int init_nic(struct s2io_nic *nic)
1204 {
1205 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
1206 	struct net_device *dev = nic->dev;
1207 	register u64 val64 = 0;
1208 	void __iomem *add;
1209 	u32 time;
1210 	int i, j;
1211 	int dtx_cnt = 0;
1212 	unsigned long long mem_share;
1213 	int mem_size;
1214 	struct config_param *config = &nic->config;
1215 	struct mac_info *mac_control = &nic->mac_control;
1216 
1217 	/* to set the swapper controle on the card */
1218 	if (s2io_set_swapper(nic)) {
1219 		DBG_PRINT(ERR_DBG, "ERROR: Setting Swapper failed\n");
1220 		return -EIO;
1221 	}
1222 
1223 	/*
1224 	 * Herc requires EOI to be removed from reset before XGXS, so..
1225 	 */
1226 	if (nic->device_type & XFRAME_II_DEVICE) {
1227 		val64 = 0xA500000000ULL;
1228 		writeq(val64, &bar0->sw_reset);
1229 		msleep(500);
1230 		val64 = readq(&bar0->sw_reset);
1231 	}
1232 
1233 	/* Remove XGXS from reset state */
1234 	val64 = 0;
1235 	writeq(val64, &bar0->sw_reset);
1236 	msleep(500);
1237 	val64 = readq(&bar0->sw_reset);
1238 
1239 	/* Ensure that it's safe to access registers by checking
1240 	 * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1241 	 */
1242 	if (nic->device_type == XFRAME_II_DEVICE) {
1243 		for (i = 0; i < 50; i++) {
1244 			val64 = readq(&bar0->adapter_status);
1245 			if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
1246 				break;
1247 			msleep(10);
1248 		}
1249 		if (i == 50)
1250 			return -ENODEV;
1251 	}
1252 
1253 	/*  Enable Receiving broadcasts */
1254 	add = &bar0->mac_cfg;
1255 	val64 = readq(&bar0->mac_cfg);
1256 	val64 |= MAC_RMAC_BCAST_ENABLE;
1257 	writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1258 	writel((u32)val64, add);
1259 	writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1260 	writel((u32) (val64 >> 32), (add + 4));
1261 
1262 	/* Read registers in all blocks */
1263 	val64 = readq(&bar0->mac_int_mask);
1264 	val64 = readq(&bar0->mc_int_mask);
1265 	val64 = readq(&bar0->xgxs_int_mask);
1266 
1267 	/*  Set MTU */
1268 	val64 = dev->mtu;
1269 	writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1270 
1271 	if (nic->device_type & XFRAME_II_DEVICE) {
1272 		while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
1273 			SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1274 					  &bar0->dtx_control, UF);
1275 			if (dtx_cnt & 0x1)
1276 				msleep(1); /* Necessary!! */
1277 			dtx_cnt++;
1278 		}
1279 	} else {
1280 		while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1281 			SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1282 					  &bar0->dtx_control, UF);
1283 			val64 = readq(&bar0->dtx_control);
1284 			dtx_cnt++;
1285 		}
1286 	}
1287 
1288 	/*  Tx DMA Initialization */
1289 	val64 = 0;
1290 	writeq(val64, &bar0->tx_fifo_partition_0);
1291 	writeq(val64, &bar0->tx_fifo_partition_1);
1292 	writeq(val64, &bar0->tx_fifo_partition_2);
1293 	writeq(val64, &bar0->tx_fifo_partition_3);
1294 
1295 	for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1296 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
1297 
1298 		val64 |= vBIT(tx_cfg->fifo_len - 1, ((j * 32) + 19), 13) |
1299 			vBIT(tx_cfg->fifo_priority, ((j * 32) + 5), 3);
1300 
1301 		if (i == (config->tx_fifo_num - 1)) {
1302 			if (i % 2 == 0)
1303 				i++;
1304 		}
1305 
1306 		switch (i) {
1307 		case 1:
1308 			writeq(val64, &bar0->tx_fifo_partition_0);
1309 			val64 = 0;
1310 			j = 0;
1311 			break;
1312 		case 3:
1313 			writeq(val64, &bar0->tx_fifo_partition_1);
1314 			val64 = 0;
1315 			j = 0;
1316 			break;
1317 		case 5:
1318 			writeq(val64, &bar0->tx_fifo_partition_2);
1319 			val64 = 0;
1320 			j = 0;
1321 			break;
1322 		case 7:
1323 			writeq(val64, &bar0->tx_fifo_partition_3);
1324 			val64 = 0;
1325 			j = 0;
1326 			break;
1327 		default:
1328 			j++;
1329 			break;
1330 		}
1331 	}
1332 
1333 	/*
1334 	 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1335 	 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1336 	 */
1337 	if ((nic->device_type == XFRAME_I_DEVICE) && (nic->pdev->revision < 4))
1338 		writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1339 
1340 	val64 = readq(&bar0->tx_fifo_partition_0);
1341 	DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1342 		  &bar0->tx_fifo_partition_0, (unsigned long long)val64);
1343 
1344 	/*
1345 	 * Initialization of Tx_PA_CONFIG register to ignore packet
1346 	 * integrity checking.
1347 	 */
1348 	val64 = readq(&bar0->tx_pa_cfg);
1349 	val64 |= TX_PA_CFG_IGNORE_FRM_ERR |
1350 		TX_PA_CFG_IGNORE_SNAP_OUI |
1351 		TX_PA_CFG_IGNORE_LLC_CTRL |
1352 		TX_PA_CFG_IGNORE_L2_ERR;
1353 	writeq(val64, &bar0->tx_pa_cfg);
1354 
1355 	/* Rx DMA intialization. */
1356 	val64 = 0;
1357 	for (i = 0; i < config->rx_ring_num; i++) {
1358 		struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
1359 
1360 		val64 |= vBIT(rx_cfg->ring_priority, (5 + (i * 8)), 3);
1361 	}
1362 	writeq(val64, &bar0->rx_queue_priority);
1363 
1364 	/*
1365 	 * Allocating equal share of memory to all the
1366 	 * configured Rings.
1367 	 */
1368 	val64 = 0;
1369 	if (nic->device_type & XFRAME_II_DEVICE)
1370 		mem_size = 32;
1371 	else
1372 		mem_size = 64;
1373 
1374 	for (i = 0; i < config->rx_ring_num; i++) {
1375 		switch (i) {
1376 		case 0:
1377 			mem_share = (mem_size / config->rx_ring_num +
1378 				     mem_size % config->rx_ring_num);
1379 			val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1380 			continue;
1381 		case 1:
1382 			mem_share = (mem_size / config->rx_ring_num);
1383 			val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1384 			continue;
1385 		case 2:
1386 			mem_share = (mem_size / config->rx_ring_num);
1387 			val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1388 			continue;
1389 		case 3:
1390 			mem_share = (mem_size / config->rx_ring_num);
1391 			val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1392 			continue;
1393 		case 4:
1394 			mem_share = (mem_size / config->rx_ring_num);
1395 			val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1396 			continue;
1397 		case 5:
1398 			mem_share = (mem_size / config->rx_ring_num);
1399 			val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1400 			continue;
1401 		case 6:
1402 			mem_share = (mem_size / config->rx_ring_num);
1403 			val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1404 			continue;
1405 		case 7:
1406 			mem_share = (mem_size / config->rx_ring_num);
1407 			val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1408 			continue;
1409 		}
1410 	}
1411 	writeq(val64, &bar0->rx_queue_cfg);
1412 
1413 	/*
1414 	 * Filling Tx round robin registers
1415 	 * as per the number of FIFOs for equal scheduling priority
1416 	 */
1417 	switch (config->tx_fifo_num) {
1418 	case 1:
1419 		val64 = 0x0;
1420 		writeq(val64, &bar0->tx_w_round_robin_0);
1421 		writeq(val64, &bar0->tx_w_round_robin_1);
1422 		writeq(val64, &bar0->tx_w_round_robin_2);
1423 		writeq(val64, &bar0->tx_w_round_robin_3);
1424 		writeq(val64, &bar0->tx_w_round_robin_4);
1425 		break;
1426 	case 2:
1427 		val64 = 0x0001000100010001ULL;
1428 		writeq(val64, &bar0->tx_w_round_robin_0);
1429 		writeq(val64, &bar0->tx_w_round_robin_1);
1430 		writeq(val64, &bar0->tx_w_round_robin_2);
1431 		writeq(val64, &bar0->tx_w_round_robin_3);
1432 		val64 = 0x0001000100000000ULL;
1433 		writeq(val64, &bar0->tx_w_round_robin_4);
1434 		break;
1435 	case 3:
1436 		val64 = 0x0001020001020001ULL;
1437 		writeq(val64, &bar0->tx_w_round_robin_0);
1438 		val64 = 0x0200010200010200ULL;
1439 		writeq(val64, &bar0->tx_w_round_robin_1);
1440 		val64 = 0x0102000102000102ULL;
1441 		writeq(val64, &bar0->tx_w_round_robin_2);
1442 		val64 = 0x0001020001020001ULL;
1443 		writeq(val64, &bar0->tx_w_round_robin_3);
1444 		val64 = 0x0200010200000000ULL;
1445 		writeq(val64, &bar0->tx_w_round_robin_4);
1446 		break;
1447 	case 4:
1448 		val64 = 0x0001020300010203ULL;
1449 		writeq(val64, &bar0->tx_w_round_robin_0);
1450 		writeq(val64, &bar0->tx_w_round_robin_1);
1451 		writeq(val64, &bar0->tx_w_round_robin_2);
1452 		writeq(val64, &bar0->tx_w_round_robin_3);
1453 		val64 = 0x0001020300000000ULL;
1454 		writeq(val64, &bar0->tx_w_round_robin_4);
1455 		break;
1456 	case 5:
1457 		val64 = 0x0001020304000102ULL;
1458 		writeq(val64, &bar0->tx_w_round_robin_0);
1459 		val64 = 0x0304000102030400ULL;
1460 		writeq(val64, &bar0->tx_w_round_robin_1);
1461 		val64 = 0x0102030400010203ULL;
1462 		writeq(val64, &bar0->tx_w_round_robin_2);
1463 		val64 = 0x0400010203040001ULL;
1464 		writeq(val64, &bar0->tx_w_round_robin_3);
1465 		val64 = 0x0203040000000000ULL;
1466 		writeq(val64, &bar0->tx_w_round_robin_4);
1467 		break;
1468 	case 6:
1469 		val64 = 0x0001020304050001ULL;
1470 		writeq(val64, &bar0->tx_w_round_robin_0);
1471 		val64 = 0x0203040500010203ULL;
1472 		writeq(val64, &bar0->tx_w_round_robin_1);
1473 		val64 = 0x0405000102030405ULL;
1474 		writeq(val64, &bar0->tx_w_round_robin_2);
1475 		val64 = 0x0001020304050001ULL;
1476 		writeq(val64, &bar0->tx_w_round_robin_3);
1477 		val64 = 0x0203040500000000ULL;
1478 		writeq(val64, &bar0->tx_w_round_robin_4);
1479 		break;
1480 	case 7:
1481 		val64 = 0x0001020304050600ULL;
1482 		writeq(val64, &bar0->tx_w_round_robin_0);
1483 		val64 = 0x0102030405060001ULL;
1484 		writeq(val64, &bar0->tx_w_round_robin_1);
1485 		val64 = 0x0203040506000102ULL;
1486 		writeq(val64, &bar0->tx_w_round_robin_2);
1487 		val64 = 0x0304050600010203ULL;
1488 		writeq(val64, &bar0->tx_w_round_robin_3);
1489 		val64 = 0x0405060000000000ULL;
1490 		writeq(val64, &bar0->tx_w_round_robin_4);
1491 		break;
1492 	case 8:
1493 		val64 = 0x0001020304050607ULL;
1494 		writeq(val64, &bar0->tx_w_round_robin_0);
1495 		writeq(val64, &bar0->tx_w_round_robin_1);
1496 		writeq(val64, &bar0->tx_w_round_robin_2);
1497 		writeq(val64, &bar0->tx_w_round_robin_3);
1498 		val64 = 0x0001020300000000ULL;
1499 		writeq(val64, &bar0->tx_w_round_robin_4);
1500 		break;
1501 	}
1502 
1503 	/* Enable all configured Tx FIFO partitions */
1504 	val64 = readq(&bar0->tx_fifo_partition_0);
1505 	val64 |= (TX_FIFO_PARTITION_EN);
1506 	writeq(val64, &bar0->tx_fifo_partition_0);
1507 
1508 	/* Filling the Rx round robin registers as per the
1509 	 * number of Rings and steering based on QoS with
1510 	 * equal priority.
1511 	 */
1512 	switch (config->rx_ring_num) {
1513 	case 1:
1514 		val64 = 0x0;
1515 		writeq(val64, &bar0->rx_w_round_robin_0);
1516 		writeq(val64, &bar0->rx_w_round_robin_1);
1517 		writeq(val64, &bar0->rx_w_round_robin_2);
1518 		writeq(val64, &bar0->rx_w_round_robin_3);
1519 		writeq(val64, &bar0->rx_w_round_robin_4);
1520 
1521 		val64 = 0x8080808080808080ULL;
1522 		writeq(val64, &bar0->rts_qos_steering);
1523 		break;
1524 	case 2:
1525 		val64 = 0x0001000100010001ULL;
1526 		writeq(val64, &bar0->rx_w_round_robin_0);
1527 		writeq(val64, &bar0->rx_w_round_robin_1);
1528 		writeq(val64, &bar0->rx_w_round_robin_2);
1529 		writeq(val64, &bar0->rx_w_round_robin_3);
1530 		val64 = 0x0001000100000000ULL;
1531 		writeq(val64, &bar0->rx_w_round_robin_4);
1532 
1533 		val64 = 0x8080808040404040ULL;
1534 		writeq(val64, &bar0->rts_qos_steering);
1535 		break;
1536 	case 3:
1537 		val64 = 0x0001020001020001ULL;
1538 		writeq(val64, &bar0->rx_w_round_robin_0);
1539 		val64 = 0x0200010200010200ULL;
1540 		writeq(val64, &bar0->rx_w_round_robin_1);
1541 		val64 = 0x0102000102000102ULL;
1542 		writeq(val64, &bar0->rx_w_round_robin_2);
1543 		val64 = 0x0001020001020001ULL;
1544 		writeq(val64, &bar0->rx_w_round_robin_3);
1545 		val64 = 0x0200010200000000ULL;
1546 		writeq(val64, &bar0->rx_w_round_robin_4);
1547 
1548 		val64 = 0x8080804040402020ULL;
1549 		writeq(val64, &bar0->rts_qos_steering);
1550 		break;
1551 	case 4:
1552 		val64 = 0x0001020300010203ULL;
1553 		writeq(val64, &bar0->rx_w_round_robin_0);
1554 		writeq(val64, &bar0->rx_w_round_robin_1);
1555 		writeq(val64, &bar0->rx_w_round_robin_2);
1556 		writeq(val64, &bar0->rx_w_round_robin_3);
1557 		val64 = 0x0001020300000000ULL;
1558 		writeq(val64, &bar0->rx_w_round_robin_4);
1559 
1560 		val64 = 0x8080404020201010ULL;
1561 		writeq(val64, &bar0->rts_qos_steering);
1562 		break;
1563 	case 5:
1564 		val64 = 0x0001020304000102ULL;
1565 		writeq(val64, &bar0->rx_w_round_robin_0);
1566 		val64 = 0x0304000102030400ULL;
1567 		writeq(val64, &bar0->rx_w_round_robin_1);
1568 		val64 = 0x0102030400010203ULL;
1569 		writeq(val64, &bar0->rx_w_round_robin_2);
1570 		val64 = 0x0400010203040001ULL;
1571 		writeq(val64, &bar0->rx_w_round_robin_3);
1572 		val64 = 0x0203040000000000ULL;
1573 		writeq(val64, &bar0->rx_w_round_robin_4);
1574 
1575 		val64 = 0x8080404020201008ULL;
1576 		writeq(val64, &bar0->rts_qos_steering);
1577 		break;
1578 	case 6:
1579 		val64 = 0x0001020304050001ULL;
1580 		writeq(val64, &bar0->rx_w_round_robin_0);
1581 		val64 = 0x0203040500010203ULL;
1582 		writeq(val64, &bar0->rx_w_round_robin_1);
1583 		val64 = 0x0405000102030405ULL;
1584 		writeq(val64, &bar0->rx_w_round_robin_2);
1585 		val64 = 0x0001020304050001ULL;
1586 		writeq(val64, &bar0->rx_w_round_robin_3);
1587 		val64 = 0x0203040500000000ULL;
1588 		writeq(val64, &bar0->rx_w_round_robin_4);
1589 
1590 		val64 = 0x8080404020100804ULL;
1591 		writeq(val64, &bar0->rts_qos_steering);
1592 		break;
1593 	case 7:
1594 		val64 = 0x0001020304050600ULL;
1595 		writeq(val64, &bar0->rx_w_round_robin_0);
1596 		val64 = 0x0102030405060001ULL;
1597 		writeq(val64, &bar0->rx_w_round_robin_1);
1598 		val64 = 0x0203040506000102ULL;
1599 		writeq(val64, &bar0->rx_w_round_robin_2);
1600 		val64 = 0x0304050600010203ULL;
1601 		writeq(val64, &bar0->rx_w_round_robin_3);
1602 		val64 = 0x0405060000000000ULL;
1603 		writeq(val64, &bar0->rx_w_round_robin_4);
1604 
1605 		val64 = 0x8080402010080402ULL;
1606 		writeq(val64, &bar0->rts_qos_steering);
1607 		break;
1608 	case 8:
1609 		val64 = 0x0001020304050607ULL;
1610 		writeq(val64, &bar0->rx_w_round_robin_0);
1611 		writeq(val64, &bar0->rx_w_round_robin_1);
1612 		writeq(val64, &bar0->rx_w_round_robin_2);
1613 		writeq(val64, &bar0->rx_w_round_robin_3);
1614 		val64 = 0x0001020300000000ULL;
1615 		writeq(val64, &bar0->rx_w_round_robin_4);
1616 
1617 		val64 = 0x8040201008040201ULL;
1618 		writeq(val64, &bar0->rts_qos_steering);
1619 		break;
1620 	}
1621 
1622 	/* UDP Fix */
1623 	val64 = 0;
1624 	for (i = 0; i < 8; i++)
1625 		writeq(val64, &bar0->rts_frm_len_n[i]);
1626 
1627 	/* Set the default rts frame length for the rings configured */
1628 	val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1629 	for (i = 0 ; i < config->rx_ring_num ; i++)
1630 		writeq(val64, &bar0->rts_frm_len_n[i]);
1631 
1632 	/* Set the frame length for the configured rings
1633 	 * desired by the user
1634 	 */
1635 	for (i = 0; i < config->rx_ring_num; i++) {
1636 		/* If rts_frm_len[i] == 0 then it is assumed that user not
1637 		 * specified frame length steering.
1638 		 * If the user provides the frame length then program
1639 		 * the rts_frm_len register for those values or else
1640 		 * leave it as it is.
1641 		 */
1642 		if (rts_frm_len[i] != 0) {
1643 			writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1644 			       &bar0->rts_frm_len_n[i]);
1645 		}
1646 	}
1647 
1648 	/* Disable differentiated services steering logic */
1649 	for (i = 0; i < 64; i++) {
1650 		if (rts_ds_steer(nic, i, 0) == FAILURE) {
1651 			DBG_PRINT(ERR_DBG,
1652 				  "%s: rts_ds_steer failed on codepoint %d\n",
1653 				  dev->name, i);
1654 			return -ENODEV;
1655 		}
1656 	}
1657 
1658 	/* Program statistics memory */
1659 	writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1660 
1661 	if (nic->device_type == XFRAME_II_DEVICE) {
1662 		val64 = STAT_BC(0x320);
1663 		writeq(val64, &bar0->stat_byte_cnt);
1664 	}
1665 
1666 	/*
1667 	 * Initializing the sampling rate for the device to calculate the
1668 	 * bandwidth utilization.
1669 	 */
1670 	val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1671 		MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1672 	writeq(val64, &bar0->mac_link_util);
1673 
1674 	/*
1675 	 * Initializing the Transmit and Receive Traffic Interrupt
1676 	 * Scheme.
1677 	 */
1678 
1679 	/* Initialize TTI */
1680 	if (SUCCESS != init_tti(nic, nic->last_link_state))
1681 		return -ENODEV;
1682 
1683 	/* RTI Initialization */
1684 	if (nic->device_type == XFRAME_II_DEVICE) {
1685 		/*
1686 		 * Programmed to generate Apprx 500 Intrs per
1687 		 * second
1688 		 */
1689 		int count = (nic->config.bus_speed * 125)/4;
1690 		val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1691 	} else
1692 		val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1693 	val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1694 		RTI_DATA1_MEM_RX_URNG_B(0x10) |
1695 		RTI_DATA1_MEM_RX_URNG_C(0x30) |
1696 		RTI_DATA1_MEM_RX_TIMER_AC_EN;
1697 
1698 	writeq(val64, &bar0->rti_data1_mem);
1699 
1700 	val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1701 		RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1702 	if (nic->config.intr_type == MSI_X)
1703 		val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) |
1704 			  RTI_DATA2_MEM_RX_UFC_D(0x40));
1705 	else
1706 		val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) |
1707 			  RTI_DATA2_MEM_RX_UFC_D(0x80));
1708 	writeq(val64, &bar0->rti_data2_mem);
1709 
1710 	for (i = 0; i < config->rx_ring_num; i++) {
1711 		val64 = RTI_CMD_MEM_WE |
1712 			RTI_CMD_MEM_STROBE_NEW_CMD |
1713 			RTI_CMD_MEM_OFFSET(i);
1714 		writeq(val64, &bar0->rti_command_mem);
1715 
1716 		/*
1717 		 * Once the operation completes, the Strobe bit of the
1718 		 * command register will be reset. We poll for this
1719 		 * particular condition. We wait for a maximum of 500ms
1720 		 * for the operation to complete, if it's not complete
1721 		 * by then we return error.
1722 		 */
1723 		time = 0;
1724 		while (true) {
1725 			val64 = readq(&bar0->rti_command_mem);
1726 			if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
1727 				break;
1728 
1729 			if (time > 10) {
1730 				DBG_PRINT(ERR_DBG, "%s: RTI init failed\n",
1731 					  dev->name);
1732 				return -ENODEV;
1733 			}
1734 			time++;
1735 			msleep(50);
1736 		}
1737 	}
1738 
1739 	/*
1740 	 * Initializing proper values as Pause threshold into all
1741 	 * the 8 Queues on Rx side.
1742 	 */
1743 	writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1744 	writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1745 
1746 	/* Disable RMAC PAD STRIPPING */
1747 	add = &bar0->mac_cfg;
1748 	val64 = readq(&bar0->mac_cfg);
1749 	val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1750 	writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1751 	writel((u32) (val64), add);
1752 	writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1753 	writel((u32) (val64 >> 32), (add + 4));
1754 	val64 = readq(&bar0->mac_cfg);
1755 
1756 	/* Enable FCS stripping by adapter */
1757 	add = &bar0->mac_cfg;
1758 	val64 = readq(&bar0->mac_cfg);
1759 	val64 |= MAC_CFG_RMAC_STRIP_FCS;
1760 	if (nic->device_type == XFRAME_II_DEVICE)
1761 		writeq(val64, &bar0->mac_cfg);
1762 	else {
1763 		writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1764 		writel((u32) (val64), add);
1765 		writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1766 		writel((u32) (val64 >> 32), (add + 4));
1767 	}
1768 
1769 	/*
1770 	 * Set the time value to be inserted in the pause frame
1771 	 * generated by xena.
1772 	 */
1773 	val64 = readq(&bar0->rmac_pause_cfg);
1774 	val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1775 	val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1776 	writeq(val64, &bar0->rmac_pause_cfg);
1777 
1778 	/*
1779 	 * Set the Threshold Limit for Generating the pause frame
1780 	 * If the amount of data in any Queue exceeds ratio of
1781 	 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1782 	 * pause frame is generated
1783 	 */
1784 	val64 = 0;
1785 	for (i = 0; i < 4; i++) {
1786 		val64 |= (((u64)0xFF00 |
1787 			   nic->mac_control.mc_pause_threshold_q0q3)
1788 			  << (i * 2 * 8));
1789 	}
1790 	writeq(val64, &bar0->mc_pause_thresh_q0q3);
1791 
1792 	val64 = 0;
1793 	for (i = 0; i < 4; i++) {
1794 		val64 |= (((u64)0xFF00 |
1795 			   nic->mac_control.mc_pause_threshold_q4q7)
1796 			  << (i * 2 * 8));
1797 	}
1798 	writeq(val64, &bar0->mc_pause_thresh_q4q7);
1799 
1800 	/*
1801 	 * TxDMA will stop Read request if the number of read split has
1802 	 * exceeded the limit pointed by shared_splits
1803 	 */
1804 	val64 = readq(&bar0->pic_control);
1805 	val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1806 	writeq(val64, &bar0->pic_control);
1807 
1808 	if (nic->config.bus_speed == 266) {
1809 		writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1810 		writeq(0x0, &bar0->read_retry_delay);
1811 		writeq(0x0, &bar0->write_retry_delay);
1812 	}
1813 
1814 	/*
1815 	 * Programming the Herc to split every write transaction
1816 	 * that does not start on an ADB to reduce disconnects.
1817 	 */
1818 	if (nic->device_type == XFRAME_II_DEVICE) {
1819 		val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1820 			MISC_LINK_STABILITY_PRD(3);
1821 		writeq(val64, &bar0->misc_control);
1822 		val64 = readq(&bar0->pic_control2);
1823 		val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1824 		writeq(val64, &bar0->pic_control2);
1825 	}
1826 	if (strstr(nic->product_name, "CX4")) {
1827 		val64 = TMAC_AVG_IPG(0x17);
1828 		writeq(val64, &bar0->tmac_avg_ipg);
1829 	}
1830 
1831 	return SUCCESS;
1832 }
1833 #define LINK_UP_DOWN_INTERRUPT		1
1834 #define MAC_RMAC_ERR_TIMER		2
1835 
1836 static int s2io_link_fault_indication(struct s2io_nic *nic)
1837 {
1838 	if (nic->device_type == XFRAME_II_DEVICE)
1839 		return LINK_UP_DOWN_INTERRUPT;
1840 	else
1841 		return MAC_RMAC_ERR_TIMER;
1842 }
1843 
1844 /**
1845  *  do_s2io_write_bits -  update alarm bits in alarm register
1846  *  @value: alarm bits
1847  *  @flag: interrupt status
1848  *  @addr: address value
1849  *  Description: update alarm bits in alarm register
1850  *  Return Value:
1851  *  NONE.
1852  */
1853 static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
1854 {
1855 	u64 temp64;
1856 
1857 	temp64 = readq(addr);
1858 
1859 	if (flag == ENABLE_INTRS)
1860 		temp64 &= ~((u64)value);
1861 	else
1862 		temp64 |= ((u64)value);
1863 	writeq(temp64, addr);
1864 }
1865 
1866 static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
1867 {
1868 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
1869 	register u64 gen_int_mask = 0;
1870 	u64 interruptible;
1871 
1872 	writeq(DISABLE_ALL_INTRS, &bar0->general_int_mask);
1873 	if (mask & TX_DMA_INTR) {
1874 		gen_int_mask |= TXDMA_INT_M;
1875 
1876 		do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
1877 				   TXDMA_PCC_INT | TXDMA_TTI_INT |
1878 				   TXDMA_LSO_INT | TXDMA_TPA_INT |
1879 				   TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
1880 
1881 		do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
1882 				   PFC_MISC_0_ERR | PFC_MISC_1_ERR |
1883 				   PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
1884 				   &bar0->pfc_err_mask);
1885 
1886 		do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
1887 				   TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
1888 				   TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
1889 
1890 		do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
1891 				   PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
1892 				   PCC_N_SERR | PCC_6_COF_OV_ERR |
1893 				   PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
1894 				   PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
1895 				   PCC_TXB_ECC_SG_ERR,
1896 				   flag, &bar0->pcc_err_mask);
1897 
1898 		do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
1899 				   TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
1900 
1901 		do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
1902 				   LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
1903 				   LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
1904 				   flag, &bar0->lso_err_mask);
1905 
1906 		do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
1907 				   flag, &bar0->tpa_err_mask);
1908 
1909 		do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
1910 	}
1911 
1912 	if (mask & TX_MAC_INTR) {
1913 		gen_int_mask |= TXMAC_INT_M;
1914 		do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
1915 				   &bar0->mac_int_mask);
1916 		do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
1917 				   TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
1918 				   TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
1919 				   flag, &bar0->mac_tmac_err_mask);
1920 	}
1921 
1922 	if (mask & TX_XGXS_INTR) {
1923 		gen_int_mask |= TXXGXS_INT_M;
1924 		do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
1925 				   &bar0->xgxs_int_mask);
1926 		do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
1927 				   TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
1928 				   flag, &bar0->xgxs_txgxs_err_mask);
1929 	}
1930 
1931 	if (mask & RX_DMA_INTR) {
1932 		gen_int_mask |= RXDMA_INT_M;
1933 		do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
1934 				   RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
1935 				   flag, &bar0->rxdma_int_mask);
1936 		do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
1937 				   RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
1938 				   RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
1939 				   RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
1940 		do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
1941 				   PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
1942 				   PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
1943 				   &bar0->prc_pcix_err_mask);
1944 		do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
1945 				   RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
1946 				   &bar0->rpa_err_mask);
1947 		do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
1948 				   RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
1949 				   RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
1950 				   RDA_FRM_ECC_SG_ERR |
1951 				   RDA_MISC_ERR|RDA_PCIX_ERR,
1952 				   flag, &bar0->rda_err_mask);
1953 		do_s2io_write_bits(RTI_SM_ERR_ALARM |
1954 				   RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
1955 				   flag, &bar0->rti_err_mask);
1956 	}
1957 
1958 	if (mask & RX_MAC_INTR) {
1959 		gen_int_mask |= RXMAC_INT_M;
1960 		do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
1961 				   &bar0->mac_int_mask);
1962 		interruptible = (RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
1963 				 RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
1964 				 RMAC_DOUBLE_ECC_ERR);
1965 		if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER)
1966 			interruptible |= RMAC_LINK_STATE_CHANGE_INT;
1967 		do_s2io_write_bits(interruptible,
1968 				   flag, &bar0->mac_rmac_err_mask);
1969 	}
1970 
1971 	if (mask & RX_XGXS_INTR) {
1972 		gen_int_mask |= RXXGXS_INT_M;
1973 		do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
1974 				   &bar0->xgxs_int_mask);
1975 		do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
1976 				   &bar0->xgxs_rxgxs_err_mask);
1977 	}
1978 
1979 	if (mask & MC_INTR) {
1980 		gen_int_mask |= MC_INT_M;
1981 		do_s2io_write_bits(MC_INT_MASK_MC_INT,
1982 				   flag, &bar0->mc_int_mask);
1983 		do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
1984 				   MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
1985 				   &bar0->mc_err_mask);
1986 	}
1987 	nic->general_int_mask = gen_int_mask;
1988 
1989 	/* Remove this line when alarm interrupts are enabled */
1990 	nic->general_int_mask = 0;
1991 }
1992 
1993 /**
1994  *  en_dis_able_nic_intrs - Enable or Disable the interrupts
1995  *  @nic: device private variable,
1996  *  @mask: A mask indicating which Intr block must be modified and,
1997  *  @flag: A flag indicating whether to enable or disable the Intrs.
1998  *  Description: This function will either disable or enable the interrupts
1999  *  depending on the flag argument. The mask argument can be used to
2000  *  enable/disable any Intr block.
2001  *  Return Value: NONE.
2002  */
2003 
2004 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
2005 {
2006 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
2007 	register u64 temp64 = 0, intr_mask = 0;
2008 
2009 	intr_mask = nic->general_int_mask;
2010 
2011 	/*  Top level interrupt classification */
2012 	/*  PIC Interrupts */
2013 	if (mask & TX_PIC_INTR) {
2014 		/*  Enable PIC Intrs in the general intr mask register */
2015 		intr_mask |= TXPIC_INT_M;
2016 		if (flag == ENABLE_INTRS) {
2017 			/*
2018 			 * If Hercules adapter enable GPIO otherwise
2019 			 * disable all PCIX, Flash, MDIO, IIC and GPIO
2020 			 * interrupts for now.
2021 			 * TODO
2022 			 */
2023 			if (s2io_link_fault_indication(nic) ==
2024 			    LINK_UP_DOWN_INTERRUPT) {
2025 				do_s2io_write_bits(PIC_INT_GPIO, flag,
2026 						   &bar0->pic_int_mask);
2027 				do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
2028 						   &bar0->gpio_int_mask);
2029 			} else
2030 				writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2031 		} else if (flag == DISABLE_INTRS) {
2032 			/*
2033 			 * Disable PIC Intrs in the general
2034 			 * intr mask register
2035 			 */
2036 			writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2037 		}
2038 	}
2039 
2040 	/*  Tx traffic interrupts */
2041 	if (mask & TX_TRAFFIC_INTR) {
2042 		intr_mask |= TXTRAFFIC_INT_M;
2043 		if (flag == ENABLE_INTRS) {
2044 			/*
2045 			 * Enable all the Tx side interrupts
2046 			 * writing 0 Enables all 64 TX interrupt levels
2047 			 */
2048 			writeq(0x0, &bar0->tx_traffic_mask);
2049 		} else if (flag == DISABLE_INTRS) {
2050 			/*
2051 			 * Disable Tx Traffic Intrs in the general intr mask
2052 			 * register.
2053 			 */
2054 			writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
2055 		}
2056 	}
2057 
2058 	/*  Rx traffic interrupts */
2059 	if (mask & RX_TRAFFIC_INTR) {
2060 		intr_mask |= RXTRAFFIC_INT_M;
2061 		if (flag == ENABLE_INTRS) {
2062 			/* writing 0 Enables all 8 RX interrupt levels */
2063 			writeq(0x0, &bar0->rx_traffic_mask);
2064 		} else if (flag == DISABLE_INTRS) {
2065 			/*
2066 			 * Disable Rx Traffic Intrs in the general intr mask
2067 			 * register.
2068 			 */
2069 			writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
2070 		}
2071 	}
2072 
2073 	temp64 = readq(&bar0->general_int_mask);
2074 	if (flag == ENABLE_INTRS)
2075 		temp64 &= ~((u64)intr_mask);
2076 	else
2077 		temp64 = DISABLE_ALL_INTRS;
2078 	writeq(temp64, &bar0->general_int_mask);
2079 
2080 	nic->general_int_mask = readq(&bar0->general_int_mask);
2081 }
2082 
2083 /**
2084  *  verify_pcc_quiescent- Checks for PCC quiescent state
2085  *  Return: 1 If PCC is quiescence
2086  *          0 If PCC is not quiescence
2087  */
2088 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
2089 {
2090 	int ret = 0, herc;
2091 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
2092 	u64 val64 = readq(&bar0->adapter_status);
2093 
2094 	herc = (sp->device_type == XFRAME_II_DEVICE);
2095 
2096 	if (flag == false) {
2097 		if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2098 			if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
2099 				ret = 1;
2100 		} else {
2101 			if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2102 				ret = 1;
2103 		}
2104 	} else {
2105 		if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2106 			if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
2107 			     ADAPTER_STATUS_RMAC_PCC_IDLE))
2108 				ret = 1;
2109 		} else {
2110 			if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
2111 			     ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2112 				ret = 1;
2113 		}
2114 	}
2115 
2116 	return ret;
2117 }
2118 /**
2119  *  verify_xena_quiescence - Checks whether the H/W is ready
2120  *  Description: Returns whether the H/W is ready to go or not. Depending
2121  *  on whether adapter enable bit was written or not the comparison
2122  *  differs and the calling function passes the input argument flag to
2123  *  indicate this.
2124  *  Return: 1 If xena is quiescence
2125  *          0 If Xena is not quiescence
2126  */
2127 
2128 static int verify_xena_quiescence(struct s2io_nic *sp)
2129 {
2130 	int  mode;
2131 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
2132 	u64 val64 = readq(&bar0->adapter_status);
2133 	mode = s2io_verify_pci_mode(sp);
2134 
2135 	if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
2136 		DBG_PRINT(ERR_DBG, "TDMA is not ready!\n");
2137 		return 0;
2138 	}
2139 	if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
2140 		DBG_PRINT(ERR_DBG, "RDMA is not ready!\n");
2141 		return 0;
2142 	}
2143 	if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
2144 		DBG_PRINT(ERR_DBG, "PFC is not ready!\n");
2145 		return 0;
2146 	}
2147 	if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
2148 		DBG_PRINT(ERR_DBG, "TMAC BUF is not empty!\n");
2149 		return 0;
2150 	}
2151 	if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
2152 		DBG_PRINT(ERR_DBG, "PIC is not QUIESCENT!\n");
2153 		return 0;
2154 	}
2155 	if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
2156 		DBG_PRINT(ERR_DBG, "MC_DRAM is not ready!\n");
2157 		return 0;
2158 	}
2159 	if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
2160 		DBG_PRINT(ERR_DBG, "MC_QUEUES is not ready!\n");
2161 		return 0;
2162 	}
2163 	if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
2164 		DBG_PRINT(ERR_DBG, "M_PLL is not locked!\n");
2165 		return 0;
2166 	}
2167 
2168 	/*
2169 	 * In PCI 33 mode, the P_PLL is not used, and therefore,
2170 	 * the the P_PLL_LOCK bit in the adapter_status register will
2171 	 * not be asserted.
2172 	 */
2173 	if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
2174 	    sp->device_type == XFRAME_II_DEVICE &&
2175 	    mode != PCI_MODE_PCI_33) {
2176 		DBG_PRINT(ERR_DBG, "P_PLL is not locked!\n");
2177 		return 0;
2178 	}
2179 	if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
2180 	      ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
2181 		DBG_PRINT(ERR_DBG, "RC_PRC is not QUIESCENT!\n");
2182 		return 0;
2183 	}
2184 	return 1;
2185 }
2186 
2187 /**
2188  * fix_mac_address -  Fix for Mac addr problem on Alpha platforms
2189  * @sp: Pointer to device specifc structure
2190  * Description :
2191  * New procedure to clear mac address reading  problems on Alpha platforms
2192  *
2193  */
2194 
2195 static void fix_mac_address(struct s2io_nic *sp)
2196 {
2197 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
2198 	int i = 0;
2199 
2200 	while (fix_mac[i] != END_SIGN) {
2201 		writeq(fix_mac[i++], &bar0->gpio_control);
2202 		udelay(10);
2203 		(void) readq(&bar0->gpio_control);
2204 	}
2205 }
2206 
2207 /**
2208  *  start_nic - Turns the device on
2209  *  @nic : device private variable.
2210  *  Description:
2211  *  This function actually turns the device on. Before this  function is
2212  *  called,all Registers are configured from their reset states
2213  *  and shared memory is allocated but the NIC is still quiescent. On
2214  *  calling this function, the device interrupts are cleared and the NIC is
2215  *  literally switched on by writing into the adapter control register.
2216  *  Return Value:
2217  *  SUCCESS on success and -1 on failure.
2218  */
2219 
2220 static int start_nic(struct s2io_nic *nic)
2221 {
2222 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
2223 	struct net_device *dev = nic->dev;
2224 	register u64 val64 = 0;
2225 	u16 subid, i;
2226 	struct config_param *config = &nic->config;
2227 	struct mac_info *mac_control = &nic->mac_control;
2228 
2229 	/*  PRC Initialization and configuration */
2230 	for (i = 0; i < config->rx_ring_num; i++) {
2231 		struct ring_info *ring = &mac_control->rings[i];
2232 
2233 		writeq((u64)ring->rx_blocks[0].block_dma_addr,
2234 		       &bar0->prc_rxd0_n[i]);
2235 
2236 		val64 = readq(&bar0->prc_ctrl_n[i]);
2237 		if (nic->rxd_mode == RXD_MODE_1)
2238 			val64 |= PRC_CTRL_RC_ENABLED;
2239 		else
2240 			val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2241 		if (nic->device_type == XFRAME_II_DEVICE)
2242 			val64 |= PRC_CTRL_GROUP_READS;
2243 		val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2244 		val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2245 		writeq(val64, &bar0->prc_ctrl_n[i]);
2246 	}
2247 
2248 	if (nic->rxd_mode == RXD_MODE_3B) {
2249 		/* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2250 		val64 = readq(&bar0->rx_pa_cfg);
2251 		val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2252 		writeq(val64, &bar0->rx_pa_cfg);
2253 	}
2254 
2255 	if (vlan_tag_strip == 0) {
2256 		val64 = readq(&bar0->rx_pa_cfg);
2257 		val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2258 		writeq(val64, &bar0->rx_pa_cfg);
2259 		nic->vlan_strip_flag = 0;
2260 	}
2261 
2262 	/*
2263 	 * Enabling MC-RLDRAM. After enabling the device, we timeout
2264 	 * for around 100ms, which is approximately the time required
2265 	 * for the device to be ready for operation.
2266 	 */
2267 	val64 = readq(&bar0->mc_rldram_mrs);
2268 	val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2269 	SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2270 	val64 = readq(&bar0->mc_rldram_mrs);
2271 
2272 	msleep(100);	/* Delay by around 100 ms. */
2273 
2274 	/* Enabling ECC Protection. */
2275 	val64 = readq(&bar0->adapter_control);
2276 	val64 &= ~ADAPTER_ECC_EN;
2277 	writeq(val64, &bar0->adapter_control);
2278 
2279 	/*
2280 	 * Verify if the device is ready to be enabled, if so enable
2281 	 * it.
2282 	 */
2283 	val64 = readq(&bar0->adapter_status);
2284 	if (!verify_xena_quiescence(nic)) {
2285 		DBG_PRINT(ERR_DBG, "%s: device is not ready, "
2286 			  "Adapter status reads: 0x%llx\n",
2287 			  dev->name, (unsigned long long)val64);
2288 		return FAILURE;
2289 	}
2290 
2291 	/*
2292 	 * With some switches, link might be already up at this point.
2293 	 * Because of this weird behavior, when we enable laser,
2294 	 * we may not get link. We need to handle this. We cannot
2295 	 * figure out which switch is misbehaving. So we are forced to
2296 	 * make a global change.
2297 	 */
2298 
2299 	/* Enabling Laser. */
2300 	val64 = readq(&bar0->adapter_control);
2301 	val64 |= ADAPTER_EOI_TX_ON;
2302 	writeq(val64, &bar0->adapter_control);
2303 
2304 	if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2305 		/*
2306 		 * Dont see link state interrupts initially on some switches,
2307 		 * so directly scheduling the link state task here.
2308 		 */
2309 		schedule_work(&nic->set_link_task);
2310 	}
2311 	/* SXE-002: Initialize link and activity LED */
2312 	subid = nic->pdev->subsystem_device;
2313 	if (((subid & 0xFF) >= 0x07) &&
2314 	    (nic->device_type == XFRAME_I_DEVICE)) {
2315 		val64 = readq(&bar0->gpio_control);
2316 		val64 |= 0x0000800000000000ULL;
2317 		writeq(val64, &bar0->gpio_control);
2318 		val64 = 0x0411040400000000ULL;
2319 		writeq(val64, (void __iomem *)bar0 + 0x2700);
2320 	}
2321 
2322 	return SUCCESS;
2323 }
2324 /**
2325  * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2326  */
2327 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data,
2328 					struct TxD *txdlp, int get_off)
2329 {
2330 	struct s2io_nic *nic = fifo_data->nic;
2331 	struct sk_buff *skb;
2332 	struct TxD *txds;
2333 	u16 j, frg_cnt;
2334 
2335 	txds = txdlp;
2336 	if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) {
2337 		pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
2338 				 sizeof(u64), PCI_DMA_TODEVICE);
2339 		txds++;
2340 	}
2341 
2342 	skb = (struct sk_buff *)((unsigned long)txds->Host_Control);
2343 	if (!skb) {
2344 		memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2345 		return NULL;
2346 	}
2347 	pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
2348 			 skb_headlen(skb), PCI_DMA_TODEVICE);
2349 	frg_cnt = skb_shinfo(skb)->nr_frags;
2350 	if (frg_cnt) {
2351 		txds++;
2352 		for (j = 0; j < frg_cnt; j++, txds++) {
2353 			const skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2354 			if (!txds->Buffer_Pointer)
2355 				break;
2356 			pci_unmap_page(nic->pdev,
2357 				       (dma_addr_t)txds->Buffer_Pointer,
2358 				       skb_frag_size(frag), PCI_DMA_TODEVICE);
2359 		}
2360 	}
2361 	memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2362 	return skb;
2363 }
2364 
2365 /**
2366  *  free_tx_buffers - Free all queued Tx buffers
2367  *  @nic : device private variable.
2368  *  Description:
2369  *  Free all queued Tx buffers.
2370  *  Return Value: void
2371  */
2372 
2373 static void free_tx_buffers(struct s2io_nic *nic)
2374 {
2375 	struct net_device *dev = nic->dev;
2376 	struct sk_buff *skb;
2377 	struct TxD *txdp;
2378 	int i, j;
2379 	int cnt = 0;
2380 	struct config_param *config = &nic->config;
2381 	struct mac_info *mac_control = &nic->mac_control;
2382 	struct stat_block *stats = mac_control->stats_info;
2383 	struct swStat *swstats = &stats->sw_stat;
2384 
2385 	for (i = 0; i < config->tx_fifo_num; i++) {
2386 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
2387 		struct fifo_info *fifo = &mac_control->fifos[i];
2388 		unsigned long flags;
2389 
2390 		spin_lock_irqsave(&fifo->tx_lock, flags);
2391 		for (j = 0; j < tx_cfg->fifo_len; j++) {
2392 			txdp = fifo->list_info[j].list_virt_addr;
2393 			skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2394 			if (skb) {
2395 				swstats->mem_freed += skb->truesize;
2396 				dev_kfree_skb(skb);
2397 				cnt++;
2398 			}
2399 		}
2400 		DBG_PRINT(INTR_DBG,
2401 			  "%s: forcibly freeing %d skbs on FIFO%d\n",
2402 			  dev->name, cnt, i);
2403 		fifo->tx_curr_get_info.offset = 0;
2404 		fifo->tx_curr_put_info.offset = 0;
2405 		spin_unlock_irqrestore(&fifo->tx_lock, flags);
2406 	}
2407 }
2408 
2409 /**
2410  *   stop_nic -  To stop the nic
2411  *   @nic ; device private variable.
2412  *   Description:
2413  *   This function does exactly the opposite of what the start_nic()
2414  *   function does. This function is called to stop the device.
2415  *   Return Value:
2416  *   void.
2417  */
2418 
2419 static void stop_nic(struct s2io_nic *nic)
2420 {
2421 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
2422 	register u64 val64 = 0;
2423 	u16 interruptible;
2424 
2425 	/*  Disable all interrupts */
2426 	en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
2427 	interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2428 	interruptible |= TX_PIC_INTR;
2429 	en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2430 
2431 	/* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2432 	val64 = readq(&bar0->adapter_control);
2433 	val64 &= ~(ADAPTER_CNTL_EN);
2434 	writeq(val64, &bar0->adapter_control);
2435 }
2436 
2437 /**
2438  *  fill_rx_buffers - Allocates the Rx side skbs
2439  *  @ring_info: per ring structure
2440  *  @from_card_up: If this is true, we will map the buffer to get
2441  *     the dma address for buf0 and buf1 to give it to the card.
2442  *     Else we will sync the already mapped buffer to give it to the card.
2443  *  Description:
2444  *  The function allocates Rx side skbs and puts the physical
2445  *  address of these buffers into the RxD buffer pointers, so that the NIC
2446  *  can DMA the received frame into these locations.
2447  *  The NIC supports 3 receive modes, viz
2448  *  1. single buffer,
2449  *  2. three buffer and
2450  *  3. Five buffer modes.
2451  *  Each mode defines how many fragments the received frame will be split
2452  *  up into by the NIC. The frame is split into L3 header, L4 Header,
2453  *  L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2454  *  is split into 3 fragments. As of now only single buffer mode is
2455  *  supported.
2456  *   Return Value:
2457  *  SUCCESS on success or an appropriate -ve value on failure.
2458  */
2459 static int fill_rx_buffers(struct s2io_nic *nic, struct ring_info *ring,
2460 			   int from_card_up)
2461 {
2462 	struct sk_buff *skb;
2463 	struct RxD_t *rxdp;
2464 	int off, size, block_no, block_no1;
2465 	u32 alloc_tab = 0;
2466 	u32 alloc_cnt;
2467 	u64 tmp;
2468 	struct buffAdd *ba;
2469 	struct RxD_t *first_rxdp = NULL;
2470 	u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
2471 	int rxd_index = 0;
2472 	struct RxD1 *rxdp1;
2473 	struct RxD3 *rxdp3;
2474 	struct swStat *swstats = &ring->nic->mac_control.stats_info->sw_stat;
2475 
2476 	alloc_cnt = ring->pkt_cnt - ring->rx_bufs_left;
2477 
2478 	block_no1 = ring->rx_curr_get_info.block_index;
2479 	while (alloc_tab < alloc_cnt) {
2480 		block_no = ring->rx_curr_put_info.block_index;
2481 
2482 		off = ring->rx_curr_put_info.offset;
2483 
2484 		rxdp = ring->rx_blocks[block_no].rxds[off].virt_addr;
2485 
2486 		rxd_index = off + 1;
2487 		if (block_no)
2488 			rxd_index += (block_no * ring->rxd_count);
2489 
2490 		if ((block_no == block_no1) &&
2491 		    (off == ring->rx_curr_get_info.offset) &&
2492 		    (rxdp->Host_Control)) {
2493 			DBG_PRINT(INTR_DBG, "%s: Get and Put info equated\n",
2494 				  ring->dev->name);
2495 			goto end;
2496 		}
2497 		if (off && (off == ring->rxd_count)) {
2498 			ring->rx_curr_put_info.block_index++;
2499 			if (ring->rx_curr_put_info.block_index ==
2500 			    ring->block_count)
2501 				ring->rx_curr_put_info.block_index = 0;
2502 			block_no = ring->rx_curr_put_info.block_index;
2503 			off = 0;
2504 			ring->rx_curr_put_info.offset = off;
2505 			rxdp = ring->rx_blocks[block_no].block_virt_addr;
2506 			DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2507 				  ring->dev->name, rxdp);
2508 
2509 		}
2510 
2511 		if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2512 		    ((ring->rxd_mode == RXD_MODE_3B) &&
2513 		     (rxdp->Control_2 & s2BIT(0)))) {
2514 			ring->rx_curr_put_info.offset = off;
2515 			goto end;
2516 		}
2517 		/* calculate size of skb based on ring mode */
2518 		size = ring->mtu +
2519 			HEADER_ETHERNET_II_802_3_SIZE +
2520 			HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2521 		if (ring->rxd_mode == RXD_MODE_1)
2522 			size += NET_IP_ALIGN;
2523 		else
2524 			size = ring->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2525 
2526 		/* allocate skb */
2527 		skb = dev_alloc_skb(size);
2528 		if (!skb) {
2529 			DBG_PRINT(INFO_DBG, "%s: Could not allocate skb\n",
2530 				  ring->dev->name);
2531 			if (first_rxdp) {
2532 				wmb();
2533 				first_rxdp->Control_1 |= RXD_OWN_XENA;
2534 			}
2535 			swstats->mem_alloc_fail_cnt++;
2536 
2537 			return -ENOMEM ;
2538 		}
2539 		swstats->mem_allocated += skb->truesize;
2540 
2541 		if (ring->rxd_mode == RXD_MODE_1) {
2542 			/* 1 buffer mode - normal operation mode */
2543 			rxdp1 = (struct RxD1 *)rxdp;
2544 			memset(rxdp, 0, sizeof(struct RxD1));
2545 			skb_reserve(skb, NET_IP_ALIGN);
2546 			rxdp1->Buffer0_ptr =
2547 				pci_map_single(ring->pdev, skb->data,
2548 					       size - NET_IP_ALIGN,
2549 					       PCI_DMA_FROMDEVICE);
2550 			if (pci_dma_mapping_error(nic->pdev,
2551 						  rxdp1->Buffer0_ptr))
2552 				goto pci_map_failed;
2553 
2554 			rxdp->Control_2 =
2555 				SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2556 			rxdp->Host_Control = (unsigned long)skb;
2557 		} else if (ring->rxd_mode == RXD_MODE_3B) {
2558 			/*
2559 			 * 2 buffer mode -
2560 			 * 2 buffer mode provides 128
2561 			 * byte aligned receive buffers.
2562 			 */
2563 
2564 			rxdp3 = (struct RxD3 *)rxdp;
2565 			/* save buffer pointers to avoid frequent dma mapping */
2566 			Buffer0_ptr = rxdp3->Buffer0_ptr;
2567 			Buffer1_ptr = rxdp3->Buffer1_ptr;
2568 			memset(rxdp, 0, sizeof(struct RxD3));
2569 			/* restore the buffer pointers for dma sync*/
2570 			rxdp3->Buffer0_ptr = Buffer0_ptr;
2571 			rxdp3->Buffer1_ptr = Buffer1_ptr;
2572 
2573 			ba = &ring->ba[block_no][off];
2574 			skb_reserve(skb, BUF0_LEN);
2575 			tmp = (u64)(unsigned long)skb->data;
2576 			tmp += ALIGN_SIZE;
2577 			tmp &= ~ALIGN_SIZE;
2578 			skb->data = (void *) (unsigned long)tmp;
2579 			skb_reset_tail_pointer(skb);
2580 
2581 			if (from_card_up) {
2582 				rxdp3->Buffer0_ptr =
2583 					pci_map_single(ring->pdev, ba->ba_0,
2584 						       BUF0_LEN,
2585 						       PCI_DMA_FROMDEVICE);
2586 				if (pci_dma_mapping_error(nic->pdev,
2587 							  rxdp3->Buffer0_ptr))
2588 					goto pci_map_failed;
2589 			} else
2590 				pci_dma_sync_single_for_device(ring->pdev,
2591 							       (dma_addr_t)rxdp3->Buffer0_ptr,
2592 							       BUF0_LEN,
2593 							       PCI_DMA_FROMDEVICE);
2594 
2595 			rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2596 			if (ring->rxd_mode == RXD_MODE_3B) {
2597 				/* Two buffer mode */
2598 
2599 				/*
2600 				 * Buffer2 will have L3/L4 header plus
2601 				 * L4 payload
2602 				 */
2603 				rxdp3->Buffer2_ptr = pci_map_single(ring->pdev,
2604 								    skb->data,
2605 								    ring->mtu + 4,
2606 								    PCI_DMA_FROMDEVICE);
2607 
2608 				if (pci_dma_mapping_error(nic->pdev,
2609 							  rxdp3->Buffer2_ptr))
2610 					goto pci_map_failed;
2611 
2612 				if (from_card_up) {
2613 					rxdp3->Buffer1_ptr =
2614 						pci_map_single(ring->pdev,
2615 							       ba->ba_1,
2616 							       BUF1_LEN,
2617 							       PCI_DMA_FROMDEVICE);
2618 
2619 					if (pci_dma_mapping_error(nic->pdev,
2620 								  rxdp3->Buffer1_ptr)) {
2621 						pci_unmap_single(ring->pdev,
2622 								 (dma_addr_t)(unsigned long)
2623 								 skb->data,
2624 								 ring->mtu + 4,
2625 								 PCI_DMA_FROMDEVICE);
2626 						goto pci_map_failed;
2627 					}
2628 				}
2629 				rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2630 				rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2631 					(ring->mtu + 4);
2632 			}
2633 			rxdp->Control_2 |= s2BIT(0);
2634 			rxdp->Host_Control = (unsigned long) (skb);
2635 		}
2636 		if (alloc_tab & ((1 << rxsync_frequency) - 1))
2637 			rxdp->Control_1 |= RXD_OWN_XENA;
2638 		off++;
2639 		if (off == (ring->rxd_count + 1))
2640 			off = 0;
2641 		ring->rx_curr_put_info.offset = off;
2642 
2643 		rxdp->Control_2 |= SET_RXD_MARKER;
2644 		if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2645 			if (first_rxdp) {
2646 				wmb();
2647 				first_rxdp->Control_1 |= RXD_OWN_XENA;
2648 			}
2649 			first_rxdp = rxdp;
2650 		}
2651 		ring->rx_bufs_left += 1;
2652 		alloc_tab++;
2653 	}
2654 
2655 end:
2656 	/* Transfer ownership of first descriptor to adapter just before
2657 	 * exiting. Before that, use memory barrier so that ownership
2658 	 * and other fields are seen by adapter correctly.
2659 	 */
2660 	if (first_rxdp) {
2661 		wmb();
2662 		first_rxdp->Control_1 |= RXD_OWN_XENA;
2663 	}
2664 
2665 	return SUCCESS;
2666 
2667 pci_map_failed:
2668 	swstats->pci_map_fail_cnt++;
2669 	swstats->mem_freed += skb->truesize;
2670 	dev_kfree_skb_irq(skb);
2671 	return -ENOMEM;
2672 }
2673 
2674 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2675 {
2676 	struct net_device *dev = sp->dev;
2677 	int j;
2678 	struct sk_buff *skb;
2679 	struct RxD_t *rxdp;
2680 	struct RxD1 *rxdp1;
2681 	struct RxD3 *rxdp3;
2682 	struct mac_info *mac_control = &sp->mac_control;
2683 	struct stat_block *stats = mac_control->stats_info;
2684 	struct swStat *swstats = &stats->sw_stat;
2685 
2686 	for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2687 		rxdp = mac_control->rings[ring_no].
2688 			rx_blocks[blk].rxds[j].virt_addr;
2689 		skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
2690 		if (!skb)
2691 			continue;
2692 		if (sp->rxd_mode == RXD_MODE_1) {
2693 			rxdp1 = (struct RxD1 *)rxdp;
2694 			pci_unmap_single(sp->pdev,
2695 					 (dma_addr_t)rxdp1->Buffer0_ptr,
2696 					 dev->mtu +
2697 					 HEADER_ETHERNET_II_802_3_SIZE +
2698 					 HEADER_802_2_SIZE + HEADER_SNAP_SIZE,
2699 					 PCI_DMA_FROMDEVICE);
2700 			memset(rxdp, 0, sizeof(struct RxD1));
2701 		} else if (sp->rxd_mode == RXD_MODE_3B) {
2702 			rxdp3 = (struct RxD3 *)rxdp;
2703 			pci_unmap_single(sp->pdev,
2704 					 (dma_addr_t)rxdp3->Buffer0_ptr,
2705 					 BUF0_LEN,
2706 					 PCI_DMA_FROMDEVICE);
2707 			pci_unmap_single(sp->pdev,
2708 					 (dma_addr_t)rxdp3->Buffer1_ptr,
2709 					 BUF1_LEN,
2710 					 PCI_DMA_FROMDEVICE);
2711 			pci_unmap_single(sp->pdev,
2712 					 (dma_addr_t)rxdp3->Buffer2_ptr,
2713 					 dev->mtu + 4,
2714 					 PCI_DMA_FROMDEVICE);
2715 			memset(rxdp, 0, sizeof(struct RxD3));
2716 		}
2717 		swstats->mem_freed += skb->truesize;
2718 		dev_kfree_skb(skb);
2719 		mac_control->rings[ring_no].rx_bufs_left -= 1;
2720 	}
2721 }
2722 
2723 /**
2724  *  free_rx_buffers - Frees all Rx buffers
2725  *  @sp: device private variable.
2726  *  Description:
2727  *  This function will free all Rx buffers allocated by host.
2728  *  Return Value:
2729  *  NONE.
2730  */
2731 
2732 static void free_rx_buffers(struct s2io_nic *sp)
2733 {
2734 	struct net_device *dev = sp->dev;
2735 	int i, blk = 0, buf_cnt = 0;
2736 	struct config_param *config = &sp->config;
2737 	struct mac_info *mac_control = &sp->mac_control;
2738 
2739 	for (i = 0; i < config->rx_ring_num; i++) {
2740 		struct ring_info *ring = &mac_control->rings[i];
2741 
2742 		for (blk = 0; blk < rx_ring_sz[i]; blk++)
2743 			free_rxd_blk(sp, i, blk);
2744 
2745 		ring->rx_curr_put_info.block_index = 0;
2746 		ring->rx_curr_get_info.block_index = 0;
2747 		ring->rx_curr_put_info.offset = 0;
2748 		ring->rx_curr_get_info.offset = 0;
2749 		ring->rx_bufs_left = 0;
2750 		DBG_PRINT(INIT_DBG, "%s: Freed 0x%x Rx Buffers on ring%d\n",
2751 			  dev->name, buf_cnt, i);
2752 	}
2753 }
2754 
2755 static int s2io_chk_rx_buffers(struct s2io_nic *nic, struct ring_info *ring)
2756 {
2757 	if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
2758 		DBG_PRINT(INFO_DBG, "%s: Out of memory in Rx Intr!!\n",
2759 			  ring->dev->name);
2760 	}
2761 	return 0;
2762 }
2763 
2764 /**
2765  * s2io_poll - Rx interrupt handler for NAPI support
2766  * @napi : pointer to the napi structure.
2767  * @budget : The number of packets that were budgeted to be processed
2768  * during  one pass through the 'Poll" function.
2769  * Description:
2770  * Comes into picture only if NAPI support has been incorporated. It does
2771  * the same thing that rx_intr_handler does, but not in a interrupt context
2772  * also It will process only a given number of packets.
2773  * Return value:
2774  * 0 on success and 1 if there are No Rx packets to be processed.
2775  */
2776 
2777 static int s2io_poll_msix(struct napi_struct *napi, int budget)
2778 {
2779 	struct ring_info *ring = container_of(napi, struct ring_info, napi);
2780 	struct net_device *dev = ring->dev;
2781 	int pkts_processed = 0;
2782 	u8 __iomem *addr = NULL;
2783 	u8 val8 = 0;
2784 	struct s2io_nic *nic = netdev_priv(dev);
2785 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
2786 	int budget_org = budget;
2787 
2788 	if (unlikely(!is_s2io_card_up(nic)))
2789 		return 0;
2790 
2791 	pkts_processed = rx_intr_handler(ring, budget);
2792 	s2io_chk_rx_buffers(nic, ring);
2793 
2794 	if (pkts_processed < budget_org) {
2795 		napi_complete(napi);
2796 		/*Re Enable MSI-Rx Vector*/
2797 		addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
2798 		addr += 7 - ring->ring_no;
2799 		val8 = (ring->ring_no == 0) ? 0x3f : 0xbf;
2800 		writeb(val8, addr);
2801 		val8 = readb(addr);
2802 	}
2803 	return pkts_processed;
2804 }
2805 
2806 static int s2io_poll_inta(struct napi_struct *napi, int budget)
2807 {
2808 	struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
2809 	int pkts_processed = 0;
2810 	int ring_pkts_processed, i;
2811 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
2812 	int budget_org = budget;
2813 	struct config_param *config = &nic->config;
2814 	struct mac_info *mac_control = &nic->mac_control;
2815 
2816 	if (unlikely(!is_s2io_card_up(nic)))
2817 		return 0;
2818 
2819 	for (i = 0; i < config->rx_ring_num; i++) {
2820 		struct ring_info *ring = &mac_control->rings[i];
2821 		ring_pkts_processed = rx_intr_handler(ring, budget);
2822 		s2io_chk_rx_buffers(nic, ring);
2823 		pkts_processed += ring_pkts_processed;
2824 		budget -= ring_pkts_processed;
2825 		if (budget <= 0)
2826 			break;
2827 	}
2828 	if (pkts_processed < budget_org) {
2829 		napi_complete(napi);
2830 		/* Re enable the Rx interrupts for the ring */
2831 		writeq(0, &bar0->rx_traffic_mask);
2832 		readl(&bar0->rx_traffic_mask);
2833 	}
2834 	return pkts_processed;
2835 }
2836 
2837 #ifdef CONFIG_NET_POLL_CONTROLLER
2838 /**
2839  * s2io_netpoll - netpoll event handler entry point
2840  * @dev : pointer to the device structure.
2841  * Description:
2842  * 	This function will be called by upper layer to check for events on the
2843  * interface in situations where interrupts are disabled. It is used for
2844  * specific in-kernel networking tasks, such as remote consoles and kernel
2845  * debugging over the network (example netdump in RedHat).
2846  */
2847 static void s2io_netpoll(struct net_device *dev)
2848 {
2849 	struct s2io_nic *nic = netdev_priv(dev);
2850 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
2851 	u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2852 	int i;
2853 	struct config_param *config = &nic->config;
2854 	struct mac_info *mac_control = &nic->mac_control;
2855 
2856 	if (pci_channel_offline(nic->pdev))
2857 		return;
2858 
2859 	disable_irq(dev->irq);
2860 
2861 	writeq(val64, &bar0->rx_traffic_int);
2862 	writeq(val64, &bar0->tx_traffic_int);
2863 
2864 	/* we need to free up the transmitted skbufs or else netpoll will
2865 	 * run out of skbs and will fail and eventually netpoll application such
2866 	 * as netdump will fail.
2867 	 */
2868 	for (i = 0; i < config->tx_fifo_num; i++)
2869 		tx_intr_handler(&mac_control->fifos[i]);
2870 
2871 	/* check for received packet and indicate up to network */
2872 	for (i = 0; i < config->rx_ring_num; i++) {
2873 		struct ring_info *ring = &mac_control->rings[i];
2874 
2875 		rx_intr_handler(ring, 0);
2876 	}
2877 
2878 	for (i = 0; i < config->rx_ring_num; i++) {
2879 		struct ring_info *ring = &mac_control->rings[i];
2880 
2881 		if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
2882 			DBG_PRINT(INFO_DBG,
2883 				  "%s: Out of memory in Rx Netpoll!!\n",
2884 				  dev->name);
2885 			break;
2886 		}
2887 	}
2888 	enable_irq(dev->irq);
2889 }
2890 #endif
2891 
2892 /**
2893  *  rx_intr_handler - Rx interrupt handler
2894  *  @ring_info: per ring structure.
2895  *  @budget: budget for napi processing.
2896  *  Description:
2897  *  If the interrupt is because of a received frame or if the
2898  *  receive ring contains fresh as yet un-processed frames,this function is
2899  *  called. It picks out the RxD at which place the last Rx processing had
2900  *  stopped and sends the skb to the OSM's Rx handler and then increments
2901  *  the offset.
2902  *  Return Value:
2903  *  No. of napi packets processed.
2904  */
2905 static int rx_intr_handler(struct ring_info *ring_data, int budget)
2906 {
2907 	int get_block, put_block;
2908 	struct rx_curr_get_info get_info, put_info;
2909 	struct RxD_t *rxdp;
2910 	struct sk_buff *skb;
2911 	int pkt_cnt = 0, napi_pkts = 0;
2912 	int i;
2913 	struct RxD1 *rxdp1;
2914 	struct RxD3 *rxdp3;
2915 
2916 	get_info = ring_data->rx_curr_get_info;
2917 	get_block = get_info.block_index;
2918 	memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
2919 	put_block = put_info.block_index;
2920 	rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2921 
2922 	while (RXD_IS_UP2DT(rxdp)) {
2923 		/*
2924 		 * If your are next to put index then it's
2925 		 * FIFO full condition
2926 		 */
2927 		if ((get_block == put_block) &&
2928 		    (get_info.offset + 1) == put_info.offset) {
2929 			DBG_PRINT(INTR_DBG, "%s: Ring Full\n",
2930 				  ring_data->dev->name);
2931 			break;
2932 		}
2933 		skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
2934 		if (skb == NULL) {
2935 			DBG_PRINT(ERR_DBG, "%s: NULL skb in Rx Intr\n",
2936 				  ring_data->dev->name);
2937 			return 0;
2938 		}
2939 		if (ring_data->rxd_mode == RXD_MODE_1) {
2940 			rxdp1 = (struct RxD1 *)rxdp;
2941 			pci_unmap_single(ring_data->pdev, (dma_addr_t)
2942 					 rxdp1->Buffer0_ptr,
2943 					 ring_data->mtu +
2944 					 HEADER_ETHERNET_II_802_3_SIZE +
2945 					 HEADER_802_2_SIZE +
2946 					 HEADER_SNAP_SIZE,
2947 					 PCI_DMA_FROMDEVICE);
2948 		} else if (ring_data->rxd_mode == RXD_MODE_3B) {
2949 			rxdp3 = (struct RxD3 *)rxdp;
2950 			pci_dma_sync_single_for_cpu(ring_data->pdev,
2951 						    (dma_addr_t)rxdp3->Buffer0_ptr,
2952 						    BUF0_LEN,
2953 						    PCI_DMA_FROMDEVICE);
2954 			pci_unmap_single(ring_data->pdev,
2955 					 (dma_addr_t)rxdp3->Buffer2_ptr,
2956 					 ring_data->mtu + 4,
2957 					 PCI_DMA_FROMDEVICE);
2958 		}
2959 		prefetch(skb->data);
2960 		rx_osm_handler(ring_data, rxdp);
2961 		get_info.offset++;
2962 		ring_data->rx_curr_get_info.offset = get_info.offset;
2963 		rxdp = ring_data->rx_blocks[get_block].
2964 			rxds[get_info.offset].virt_addr;
2965 		if (get_info.offset == rxd_count[ring_data->rxd_mode]) {
2966 			get_info.offset = 0;
2967 			ring_data->rx_curr_get_info.offset = get_info.offset;
2968 			get_block++;
2969 			if (get_block == ring_data->block_count)
2970 				get_block = 0;
2971 			ring_data->rx_curr_get_info.block_index = get_block;
2972 			rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
2973 		}
2974 
2975 		if (ring_data->nic->config.napi) {
2976 			budget--;
2977 			napi_pkts++;
2978 			if (!budget)
2979 				break;
2980 		}
2981 		pkt_cnt++;
2982 		if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
2983 			break;
2984 	}
2985 	if (ring_data->lro) {
2986 		/* Clear all LRO sessions before exiting */
2987 		for (i = 0; i < MAX_LRO_SESSIONS; i++) {
2988 			struct lro *lro = &ring_data->lro0_n[i];
2989 			if (lro->in_use) {
2990 				update_L3L4_header(ring_data->nic, lro);
2991 				queue_rx_frame(lro->parent, lro->vlan_tag);
2992 				clear_lro_session(lro);
2993 			}
2994 		}
2995 	}
2996 	return napi_pkts;
2997 }
2998 
2999 /**
3000  *  tx_intr_handler - Transmit interrupt handler
3001  *  @nic : device private variable
3002  *  Description:
3003  *  If an interrupt was raised to indicate DMA complete of the
3004  *  Tx packet, this function is called. It identifies the last TxD
3005  *  whose buffer was freed and frees all skbs whose data have already
3006  *  DMA'ed into the NICs internal memory.
3007  *  Return Value:
3008  *  NONE
3009  */
3010 
3011 static void tx_intr_handler(struct fifo_info *fifo_data)
3012 {
3013 	struct s2io_nic *nic = fifo_data->nic;
3014 	struct tx_curr_get_info get_info, put_info;
3015 	struct sk_buff *skb = NULL;
3016 	struct TxD *txdlp;
3017 	int pkt_cnt = 0;
3018 	unsigned long flags = 0;
3019 	u8 err_mask;
3020 	struct stat_block *stats = nic->mac_control.stats_info;
3021 	struct swStat *swstats = &stats->sw_stat;
3022 
3023 	if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags))
3024 		return;
3025 
3026 	get_info = fifo_data->tx_curr_get_info;
3027 	memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
3028 	txdlp = fifo_data->list_info[get_info.offset].list_virt_addr;
3029 	while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
3030 	       (get_info.offset != put_info.offset) &&
3031 	       (txdlp->Host_Control)) {
3032 		/* Check for TxD errors */
3033 		if (txdlp->Control_1 & TXD_T_CODE) {
3034 			unsigned long long err;
3035 			err = txdlp->Control_1 & TXD_T_CODE;
3036 			if (err & 0x1) {
3037 				swstats->parity_err_cnt++;
3038 			}
3039 
3040 			/* update t_code statistics */
3041 			err_mask = err >> 48;
3042 			switch (err_mask) {
3043 			case 2:
3044 				swstats->tx_buf_abort_cnt++;
3045 				break;
3046 
3047 			case 3:
3048 				swstats->tx_desc_abort_cnt++;
3049 				break;
3050 
3051 			case 7:
3052 				swstats->tx_parity_err_cnt++;
3053 				break;
3054 
3055 			case 10:
3056 				swstats->tx_link_loss_cnt++;
3057 				break;
3058 
3059 			case 15:
3060 				swstats->tx_list_proc_err_cnt++;
3061 				break;
3062 			}
3063 		}
3064 
3065 		skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
3066 		if (skb == NULL) {
3067 			spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3068 			DBG_PRINT(ERR_DBG, "%s: NULL skb in Tx Free Intr\n",
3069 				  __func__);
3070 			return;
3071 		}
3072 		pkt_cnt++;
3073 
3074 		/* Updating the statistics block */
3075 		swstats->mem_freed += skb->truesize;
3076 		dev_kfree_skb_irq(skb);
3077 
3078 		get_info.offset++;
3079 		if (get_info.offset == get_info.fifo_len + 1)
3080 			get_info.offset = 0;
3081 		txdlp = fifo_data->list_info[get_info.offset].list_virt_addr;
3082 		fifo_data->tx_curr_get_info.offset = get_info.offset;
3083 	}
3084 
3085 	s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq);
3086 
3087 	spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3088 }
3089 
3090 /**
3091  *  s2io_mdio_write - Function to write in to MDIO registers
3092  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3093  *  @addr     : address value
3094  *  @value    : data value
3095  *  @dev      : pointer to net_device structure
3096  *  Description:
3097  *  This function is used to write values to the MDIO registers
3098  *  NONE
3099  */
3100 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value,
3101 			    struct net_device *dev)
3102 {
3103 	u64 val64;
3104 	struct s2io_nic *sp = netdev_priv(dev);
3105 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
3106 
3107 	/* address transaction */
3108 	val64 = MDIO_MMD_INDX_ADDR(addr) |
3109 		MDIO_MMD_DEV_ADDR(mmd_type) |
3110 		MDIO_MMS_PRT_ADDR(0x0);
3111 	writeq(val64, &bar0->mdio_control);
3112 	val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3113 	writeq(val64, &bar0->mdio_control);
3114 	udelay(100);
3115 
3116 	/* Data transaction */
3117 	val64 = MDIO_MMD_INDX_ADDR(addr) |
3118 		MDIO_MMD_DEV_ADDR(mmd_type) |
3119 		MDIO_MMS_PRT_ADDR(0x0) |
3120 		MDIO_MDIO_DATA(value) |
3121 		MDIO_OP(MDIO_OP_WRITE_TRANS);
3122 	writeq(val64, &bar0->mdio_control);
3123 	val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3124 	writeq(val64, &bar0->mdio_control);
3125 	udelay(100);
3126 
3127 	val64 = MDIO_MMD_INDX_ADDR(addr) |
3128 		MDIO_MMD_DEV_ADDR(mmd_type) |
3129 		MDIO_MMS_PRT_ADDR(0x0) |
3130 		MDIO_OP(MDIO_OP_READ_TRANS);
3131 	writeq(val64, &bar0->mdio_control);
3132 	val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3133 	writeq(val64, &bar0->mdio_control);
3134 	udelay(100);
3135 }
3136 
3137 /**
3138  *  s2io_mdio_read - Function to write in to MDIO registers
3139  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3140  *  @addr     : address value
3141  *  @dev      : pointer to net_device structure
3142  *  Description:
3143  *  This function is used to read values to the MDIO registers
3144  *  NONE
3145  */
3146 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3147 {
3148 	u64 val64 = 0x0;
3149 	u64 rval64 = 0x0;
3150 	struct s2io_nic *sp = netdev_priv(dev);
3151 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
3152 
3153 	/* address transaction */
3154 	val64 = val64 | (MDIO_MMD_INDX_ADDR(addr)
3155 			 | MDIO_MMD_DEV_ADDR(mmd_type)
3156 			 | MDIO_MMS_PRT_ADDR(0x0));
3157 	writeq(val64, &bar0->mdio_control);
3158 	val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3159 	writeq(val64, &bar0->mdio_control);
3160 	udelay(100);
3161 
3162 	/* Data transaction */
3163 	val64 = MDIO_MMD_INDX_ADDR(addr) |
3164 		MDIO_MMD_DEV_ADDR(mmd_type) |
3165 		MDIO_MMS_PRT_ADDR(0x0) |
3166 		MDIO_OP(MDIO_OP_READ_TRANS);
3167 	writeq(val64, &bar0->mdio_control);
3168 	val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3169 	writeq(val64, &bar0->mdio_control);
3170 	udelay(100);
3171 
3172 	/* Read the value from regs */
3173 	rval64 = readq(&bar0->mdio_control);
3174 	rval64 = rval64 & 0xFFFF0000;
3175 	rval64 = rval64 >> 16;
3176 	return rval64;
3177 }
3178 
3179 /**
3180  *  s2io_chk_xpak_counter - Function to check the status of the xpak counters
3181  *  @counter      : counter value to be updated
3182  *  @flag         : flag to indicate the status
3183  *  @type         : counter type
3184  *  Description:
3185  *  This function is to check the status of the xpak counters value
3186  *  NONE
3187  */
3188 
3189 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index,
3190 				  u16 flag, u16 type)
3191 {
3192 	u64 mask = 0x3;
3193 	u64 val64;
3194 	int i;
3195 	for (i = 0; i < index; i++)
3196 		mask = mask << 0x2;
3197 
3198 	if (flag > 0) {
3199 		*counter = *counter + 1;
3200 		val64 = *regs_stat & mask;
3201 		val64 = val64 >> (index * 0x2);
3202 		val64 = val64 + 1;
3203 		if (val64 == 3) {
3204 			switch (type) {
3205 			case 1:
3206 				DBG_PRINT(ERR_DBG,
3207 					  "Take Xframe NIC out of service.\n");
3208 				DBG_PRINT(ERR_DBG,
3209 "Excessive temperatures may result in premature transceiver failure.\n");
3210 				break;
3211 			case 2:
3212 				DBG_PRINT(ERR_DBG,
3213 					  "Take Xframe NIC out of service.\n");
3214 				DBG_PRINT(ERR_DBG,
3215 "Excessive bias currents may indicate imminent laser diode failure.\n");
3216 				break;
3217 			case 3:
3218 				DBG_PRINT(ERR_DBG,
3219 					  "Take Xframe NIC out of service.\n");
3220 				DBG_PRINT(ERR_DBG,
3221 "Excessive laser output power may saturate far-end receiver.\n");
3222 				break;
3223 			default:
3224 				DBG_PRINT(ERR_DBG,
3225 					  "Incorrect XPAK Alarm type\n");
3226 			}
3227 			val64 = 0x0;
3228 		}
3229 		val64 = val64 << (index * 0x2);
3230 		*regs_stat = (*regs_stat & (~mask)) | (val64);
3231 
3232 	} else {
3233 		*regs_stat = *regs_stat & (~mask);
3234 	}
3235 }
3236 
3237 /**
3238  *  s2io_updt_xpak_counter - Function to update the xpak counters
3239  *  @dev         : pointer to net_device struct
3240  *  Description:
3241  *  This function is to upate the status of the xpak counters value
3242  *  NONE
3243  */
3244 static void s2io_updt_xpak_counter(struct net_device *dev)
3245 {
3246 	u16 flag  = 0x0;
3247 	u16 type  = 0x0;
3248 	u16 val16 = 0x0;
3249 	u64 val64 = 0x0;
3250 	u64 addr  = 0x0;
3251 
3252 	struct s2io_nic *sp = netdev_priv(dev);
3253 	struct stat_block *stats = sp->mac_control.stats_info;
3254 	struct xpakStat *xstats = &stats->xpak_stat;
3255 
3256 	/* Check the communication with the MDIO slave */
3257 	addr = MDIO_CTRL1;
3258 	val64 = 0x0;
3259 	val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3260 	if ((val64 == 0xFFFF) || (val64 == 0x0000)) {
3261 		DBG_PRINT(ERR_DBG,
3262 			  "ERR: MDIO slave access failed - Returned %llx\n",
3263 			  (unsigned long long)val64);
3264 		return;
3265 	}
3266 
3267 	/* Check for the expected value of control reg 1 */
3268 	if (val64 != MDIO_CTRL1_SPEED10G) {
3269 		DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - "
3270 			  "Returned: %llx- Expected: 0x%x\n",
3271 			  (unsigned long long)val64, MDIO_CTRL1_SPEED10G);
3272 		return;
3273 	}
3274 
3275 	/* Loading the DOM register to MDIO register */
3276 	addr = 0xA100;
3277 	s2io_mdio_write(MDIO_MMD_PMAPMD, addr, val16, dev);
3278 	val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3279 
3280 	/* Reading the Alarm flags */
3281 	addr = 0xA070;
3282 	val64 = 0x0;
3283 	val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3284 
3285 	flag = CHECKBIT(val64, 0x7);
3286 	type = 1;
3287 	s2io_chk_xpak_counter(&xstats->alarm_transceiver_temp_high,
3288 			      &xstats->xpak_regs_stat,
3289 			      0x0, flag, type);
3290 
3291 	if (CHECKBIT(val64, 0x6))
3292 		xstats->alarm_transceiver_temp_low++;
3293 
3294 	flag = CHECKBIT(val64, 0x3);
3295 	type = 2;
3296 	s2io_chk_xpak_counter(&xstats->alarm_laser_bias_current_high,
3297 			      &xstats->xpak_regs_stat,
3298 			      0x2, flag, type);
3299 
3300 	if (CHECKBIT(val64, 0x2))
3301 		xstats->alarm_laser_bias_current_low++;
3302 
3303 	flag = CHECKBIT(val64, 0x1);
3304 	type = 3;
3305 	s2io_chk_xpak_counter(&xstats->alarm_laser_output_power_high,
3306 			      &xstats->xpak_regs_stat,
3307 			      0x4, flag, type);
3308 
3309 	if (CHECKBIT(val64, 0x0))
3310 		xstats->alarm_laser_output_power_low++;
3311 
3312 	/* Reading the Warning flags */
3313 	addr = 0xA074;
3314 	val64 = 0x0;
3315 	val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3316 
3317 	if (CHECKBIT(val64, 0x7))
3318 		xstats->warn_transceiver_temp_high++;
3319 
3320 	if (CHECKBIT(val64, 0x6))
3321 		xstats->warn_transceiver_temp_low++;
3322 
3323 	if (CHECKBIT(val64, 0x3))
3324 		xstats->warn_laser_bias_current_high++;
3325 
3326 	if (CHECKBIT(val64, 0x2))
3327 		xstats->warn_laser_bias_current_low++;
3328 
3329 	if (CHECKBIT(val64, 0x1))
3330 		xstats->warn_laser_output_power_high++;
3331 
3332 	if (CHECKBIT(val64, 0x0))
3333 		xstats->warn_laser_output_power_low++;
3334 }
3335 
3336 /**
3337  *  wait_for_cmd_complete - waits for a command to complete.
3338  *  @sp : private member of the device structure, which is a pointer to the
3339  *  s2io_nic structure.
3340  *  Description: Function that waits for a command to Write into RMAC
3341  *  ADDR DATA registers to be completed and returns either success or
3342  *  error depending on whether the command was complete or not.
3343  *  Return value:
3344  *   SUCCESS on success and FAILURE on failure.
3345  */
3346 
3347 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3348 				 int bit_state)
3349 {
3350 	int ret = FAILURE, cnt = 0, delay = 1;
3351 	u64 val64;
3352 
3353 	if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3354 		return FAILURE;
3355 
3356 	do {
3357 		val64 = readq(addr);
3358 		if (bit_state == S2IO_BIT_RESET) {
3359 			if (!(val64 & busy_bit)) {
3360 				ret = SUCCESS;
3361 				break;
3362 			}
3363 		} else {
3364 			if (val64 & busy_bit) {
3365 				ret = SUCCESS;
3366 				break;
3367 			}
3368 		}
3369 
3370 		if (in_interrupt())
3371 			mdelay(delay);
3372 		else
3373 			msleep(delay);
3374 
3375 		if (++cnt >= 10)
3376 			delay = 50;
3377 	} while (cnt < 20);
3378 	return ret;
3379 }
3380 /*
3381  * check_pci_device_id - Checks if the device id is supported
3382  * @id : device id
3383  * Description: Function to check if the pci device id is supported by driver.
3384  * Return value: Actual device id if supported else PCI_ANY_ID
3385  */
3386 static u16 check_pci_device_id(u16 id)
3387 {
3388 	switch (id) {
3389 	case PCI_DEVICE_ID_HERC_WIN:
3390 	case PCI_DEVICE_ID_HERC_UNI:
3391 		return XFRAME_II_DEVICE;
3392 	case PCI_DEVICE_ID_S2IO_UNI:
3393 	case PCI_DEVICE_ID_S2IO_WIN:
3394 		return XFRAME_I_DEVICE;
3395 	default:
3396 		return PCI_ANY_ID;
3397 	}
3398 }
3399 
3400 /**
3401  *  s2io_reset - Resets the card.
3402  *  @sp : private member of the device structure.
3403  *  Description: Function to Reset the card. This function then also
3404  *  restores the previously saved PCI configuration space registers as
3405  *  the card reset also resets the configuration space.
3406  *  Return value:
3407  *  void.
3408  */
3409 
3410 static void s2io_reset(struct s2io_nic *sp)
3411 {
3412 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
3413 	u64 val64;
3414 	u16 subid, pci_cmd;
3415 	int i;
3416 	u16 val16;
3417 	unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3418 	unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3419 	struct stat_block *stats;
3420 	struct swStat *swstats;
3421 
3422 	DBG_PRINT(INIT_DBG, "%s: Resetting XFrame card %s\n",
3423 		  __func__, pci_name(sp->pdev));
3424 
3425 	/* Back up  the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3426 	pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3427 
3428 	val64 = SW_RESET_ALL;
3429 	writeq(val64, &bar0->sw_reset);
3430 	if (strstr(sp->product_name, "CX4"))
3431 		msleep(750);
3432 	msleep(250);
3433 	for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3434 
3435 		/* Restore the PCI state saved during initialization. */
3436 		pci_restore_state(sp->pdev);
3437 		pci_save_state(sp->pdev);
3438 		pci_read_config_word(sp->pdev, 0x2, &val16);
3439 		if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3440 			break;
3441 		msleep(200);
3442 	}
3443 
3444 	if (check_pci_device_id(val16) == (u16)PCI_ANY_ID)
3445 		DBG_PRINT(ERR_DBG, "%s SW_Reset failed!\n", __func__);
3446 
3447 	pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3448 
3449 	s2io_init_pci(sp);
3450 
3451 	/* Set swapper to enable I/O register access */
3452 	s2io_set_swapper(sp);
3453 
3454 	/* restore mac_addr entries */
3455 	do_s2io_restore_unicast_mc(sp);
3456 
3457 	/* Restore the MSIX table entries from local variables */
3458 	restore_xmsi_data(sp);
3459 
3460 	/* Clear certain PCI/PCI-X fields after reset */
3461 	if (sp->device_type == XFRAME_II_DEVICE) {
3462 		/* Clear "detected parity error" bit */
3463 		pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3464 
3465 		/* Clearing PCIX Ecc status register */
3466 		pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3467 
3468 		/* Clearing PCI_STATUS error reflected here */
3469 		writeq(s2BIT(62), &bar0->txpic_int_reg);
3470 	}
3471 
3472 	/* Reset device statistics maintained by OS */
3473 	memset(&sp->stats, 0, sizeof(struct net_device_stats));
3474 
3475 	stats = sp->mac_control.stats_info;
3476 	swstats = &stats->sw_stat;
3477 
3478 	/* save link up/down time/cnt, reset/memory/watchdog cnt */
3479 	up_cnt = swstats->link_up_cnt;
3480 	down_cnt = swstats->link_down_cnt;
3481 	up_time = swstats->link_up_time;
3482 	down_time = swstats->link_down_time;
3483 	reset_cnt = swstats->soft_reset_cnt;
3484 	mem_alloc_cnt = swstats->mem_allocated;
3485 	mem_free_cnt = swstats->mem_freed;
3486 	watchdog_cnt = swstats->watchdog_timer_cnt;
3487 
3488 	memset(stats, 0, sizeof(struct stat_block));
3489 
3490 	/* restore link up/down time/cnt, reset/memory/watchdog cnt */
3491 	swstats->link_up_cnt = up_cnt;
3492 	swstats->link_down_cnt = down_cnt;
3493 	swstats->link_up_time = up_time;
3494 	swstats->link_down_time = down_time;
3495 	swstats->soft_reset_cnt = reset_cnt;
3496 	swstats->mem_allocated = mem_alloc_cnt;
3497 	swstats->mem_freed = mem_free_cnt;
3498 	swstats->watchdog_timer_cnt = watchdog_cnt;
3499 
3500 	/* SXE-002: Configure link and activity LED to turn it off */
3501 	subid = sp->pdev->subsystem_device;
3502 	if (((subid & 0xFF) >= 0x07) &&
3503 	    (sp->device_type == XFRAME_I_DEVICE)) {
3504 		val64 = readq(&bar0->gpio_control);
3505 		val64 |= 0x0000800000000000ULL;
3506 		writeq(val64, &bar0->gpio_control);
3507 		val64 = 0x0411040400000000ULL;
3508 		writeq(val64, (void __iomem *)bar0 + 0x2700);
3509 	}
3510 
3511 	/*
3512 	 * Clear spurious ECC interrupts that would have occurred on
3513 	 * XFRAME II cards after reset.
3514 	 */
3515 	if (sp->device_type == XFRAME_II_DEVICE) {
3516 		val64 = readq(&bar0->pcc_err_reg);
3517 		writeq(val64, &bar0->pcc_err_reg);
3518 	}
3519 
3520 	sp->device_enabled_once = false;
3521 }
3522 
3523 /**
3524  *  s2io_set_swapper - to set the swapper controle on the card
3525  *  @sp : private member of the device structure,
3526  *  pointer to the s2io_nic structure.
3527  *  Description: Function to set the swapper control on the card
3528  *  correctly depending on the 'endianness' of the system.
3529  *  Return value:
3530  *  SUCCESS on success and FAILURE on failure.
3531  */
3532 
3533 static int s2io_set_swapper(struct s2io_nic *sp)
3534 {
3535 	struct net_device *dev = sp->dev;
3536 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
3537 	u64 val64, valt, valr;
3538 
3539 	/*
3540 	 * Set proper endian settings and verify the same by reading
3541 	 * the PIF Feed-back register.
3542 	 */
3543 
3544 	val64 = readq(&bar0->pif_rd_swapper_fb);
3545 	if (val64 != 0x0123456789ABCDEFULL) {
3546 		int i = 0;
3547 		static const u64 value[] = {
3548 			0xC30000C3C30000C3ULL,	/* FE=1, SE=1 */
3549 			0x8100008181000081ULL,	/* FE=1, SE=0 */
3550 			0x4200004242000042ULL,	/* FE=0, SE=1 */
3551 			0			/* FE=0, SE=0 */
3552 		};
3553 
3554 		while (i < 4) {
3555 			writeq(value[i], &bar0->swapper_ctrl);
3556 			val64 = readq(&bar0->pif_rd_swapper_fb);
3557 			if (val64 == 0x0123456789ABCDEFULL)
3558 				break;
3559 			i++;
3560 		}
3561 		if (i == 4) {
3562 			DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, "
3563 				  "feedback read %llx\n",
3564 				  dev->name, (unsigned long long)val64);
3565 			return FAILURE;
3566 		}
3567 		valr = value[i];
3568 	} else {
3569 		valr = readq(&bar0->swapper_ctrl);
3570 	}
3571 
3572 	valt = 0x0123456789ABCDEFULL;
3573 	writeq(valt, &bar0->xmsi_address);
3574 	val64 = readq(&bar0->xmsi_address);
3575 
3576 	if (val64 != valt) {
3577 		int i = 0;
3578 		static const u64 value[] = {
3579 			0x00C3C30000C3C300ULL,	/* FE=1, SE=1 */
3580 			0x0081810000818100ULL,	/* FE=1, SE=0 */
3581 			0x0042420000424200ULL,	/* FE=0, SE=1 */
3582 			0			/* FE=0, SE=0 */
3583 		};
3584 
3585 		while (i < 4) {
3586 			writeq((value[i] | valr), &bar0->swapper_ctrl);
3587 			writeq(valt, &bar0->xmsi_address);
3588 			val64 = readq(&bar0->xmsi_address);
3589 			if (val64 == valt)
3590 				break;
3591 			i++;
3592 		}
3593 		if (i == 4) {
3594 			unsigned long long x = val64;
3595 			DBG_PRINT(ERR_DBG,
3596 				  "Write failed, Xmsi_addr reads:0x%llx\n", x);
3597 			return FAILURE;
3598 		}
3599 	}
3600 	val64 = readq(&bar0->swapper_ctrl);
3601 	val64 &= 0xFFFF000000000000ULL;
3602 
3603 #ifdef __BIG_ENDIAN
3604 	/*
3605 	 * The device by default set to a big endian format, so a
3606 	 * big endian driver need not set anything.
3607 	 */
3608 	val64 |= (SWAPPER_CTRL_TXP_FE |
3609 		  SWAPPER_CTRL_TXP_SE |
3610 		  SWAPPER_CTRL_TXD_R_FE |
3611 		  SWAPPER_CTRL_TXD_W_FE |
3612 		  SWAPPER_CTRL_TXF_R_FE |
3613 		  SWAPPER_CTRL_RXD_R_FE |
3614 		  SWAPPER_CTRL_RXD_W_FE |
3615 		  SWAPPER_CTRL_RXF_W_FE |
3616 		  SWAPPER_CTRL_XMSI_FE |
3617 		  SWAPPER_CTRL_STATS_FE |
3618 		  SWAPPER_CTRL_STATS_SE);
3619 	if (sp->config.intr_type == INTA)
3620 		val64 |= SWAPPER_CTRL_XMSI_SE;
3621 	writeq(val64, &bar0->swapper_ctrl);
3622 #else
3623 	/*
3624 	 * Initially we enable all bits to make it accessible by the
3625 	 * driver, then we selectively enable only those bits that
3626 	 * we want to set.
3627 	 */
3628 	val64 |= (SWAPPER_CTRL_TXP_FE |
3629 		  SWAPPER_CTRL_TXP_SE |
3630 		  SWAPPER_CTRL_TXD_R_FE |
3631 		  SWAPPER_CTRL_TXD_R_SE |
3632 		  SWAPPER_CTRL_TXD_W_FE |
3633 		  SWAPPER_CTRL_TXD_W_SE |
3634 		  SWAPPER_CTRL_TXF_R_FE |
3635 		  SWAPPER_CTRL_RXD_R_FE |
3636 		  SWAPPER_CTRL_RXD_R_SE |
3637 		  SWAPPER_CTRL_RXD_W_FE |
3638 		  SWAPPER_CTRL_RXD_W_SE |
3639 		  SWAPPER_CTRL_RXF_W_FE |
3640 		  SWAPPER_CTRL_XMSI_FE |
3641 		  SWAPPER_CTRL_STATS_FE |
3642 		  SWAPPER_CTRL_STATS_SE);
3643 	if (sp->config.intr_type == INTA)
3644 		val64 |= SWAPPER_CTRL_XMSI_SE;
3645 	writeq(val64, &bar0->swapper_ctrl);
3646 #endif
3647 	val64 = readq(&bar0->swapper_ctrl);
3648 
3649 	/*
3650 	 * Verifying if endian settings are accurate by reading a
3651 	 * feedback register.
3652 	 */
3653 	val64 = readq(&bar0->pif_rd_swapper_fb);
3654 	if (val64 != 0x0123456789ABCDEFULL) {
3655 		/* Endian settings are incorrect, calls for another dekko. */
3656 		DBG_PRINT(ERR_DBG,
3657 			  "%s: Endian settings are wrong, feedback read %llx\n",
3658 			  dev->name, (unsigned long long)val64);
3659 		return FAILURE;
3660 	}
3661 
3662 	return SUCCESS;
3663 }
3664 
3665 static int wait_for_msix_trans(struct s2io_nic *nic, int i)
3666 {
3667 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
3668 	u64 val64;
3669 	int ret = 0, cnt = 0;
3670 
3671 	do {
3672 		val64 = readq(&bar0->xmsi_access);
3673 		if (!(val64 & s2BIT(15)))
3674 			break;
3675 		mdelay(1);
3676 		cnt++;
3677 	} while (cnt < 5);
3678 	if (cnt == 5) {
3679 		DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3680 		ret = 1;
3681 	}
3682 
3683 	return ret;
3684 }
3685 
3686 static void restore_xmsi_data(struct s2io_nic *nic)
3687 {
3688 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
3689 	u64 val64;
3690 	int i, msix_index;
3691 
3692 	if (nic->device_type == XFRAME_I_DEVICE)
3693 		return;
3694 
3695 	for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3696 		msix_index = (i) ? ((i-1) * 8 + 1) : 0;
3697 		writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3698 		writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3699 		val64 = (s2BIT(7) | s2BIT(15) | vBIT(msix_index, 26, 6));
3700 		writeq(val64, &bar0->xmsi_access);
3701 		if (wait_for_msix_trans(nic, msix_index)) {
3702 			DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
3703 				  __func__, msix_index);
3704 			continue;
3705 		}
3706 	}
3707 }
3708 
3709 static void store_xmsi_data(struct s2io_nic *nic)
3710 {
3711 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
3712 	u64 val64, addr, data;
3713 	int i, msix_index;
3714 
3715 	if (nic->device_type == XFRAME_I_DEVICE)
3716 		return;
3717 
3718 	/* Store and display */
3719 	for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3720 		msix_index = (i) ? ((i-1) * 8 + 1) : 0;
3721 		val64 = (s2BIT(15) | vBIT(msix_index, 26, 6));
3722 		writeq(val64, &bar0->xmsi_access);
3723 		if (wait_for_msix_trans(nic, msix_index)) {
3724 			DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
3725 				  __func__, msix_index);
3726 			continue;
3727 		}
3728 		addr = readq(&bar0->xmsi_address);
3729 		data = readq(&bar0->xmsi_data);
3730 		if (addr && data) {
3731 			nic->msix_info[i].addr = addr;
3732 			nic->msix_info[i].data = data;
3733 		}
3734 	}
3735 }
3736 
3737 static int s2io_enable_msi_x(struct s2io_nic *nic)
3738 {
3739 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
3740 	u64 rx_mat;
3741 	u16 msi_control; /* Temp variable */
3742 	int ret, i, j, msix_indx = 1;
3743 	int size;
3744 	struct stat_block *stats = nic->mac_control.stats_info;
3745 	struct swStat *swstats = &stats->sw_stat;
3746 
3747 	size = nic->num_entries * sizeof(struct msix_entry);
3748 	nic->entries = kzalloc(size, GFP_KERNEL);
3749 	if (!nic->entries) {
3750 		DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3751 			  __func__);
3752 		swstats->mem_alloc_fail_cnt++;
3753 		return -ENOMEM;
3754 	}
3755 	swstats->mem_allocated += size;
3756 
3757 	size = nic->num_entries * sizeof(struct s2io_msix_entry);
3758 	nic->s2io_entries = kzalloc(size, GFP_KERNEL);
3759 	if (!nic->s2io_entries) {
3760 		DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3761 			  __func__);
3762 		swstats->mem_alloc_fail_cnt++;
3763 		kfree(nic->entries);
3764 		swstats->mem_freed
3765 			+= (nic->num_entries * sizeof(struct msix_entry));
3766 		return -ENOMEM;
3767 	}
3768 	swstats->mem_allocated += size;
3769 
3770 	nic->entries[0].entry = 0;
3771 	nic->s2io_entries[0].entry = 0;
3772 	nic->s2io_entries[0].in_use = MSIX_FLG;
3773 	nic->s2io_entries[0].type = MSIX_ALARM_TYPE;
3774 	nic->s2io_entries[0].arg = &nic->mac_control.fifos;
3775 
3776 	for (i = 1; i < nic->num_entries; i++) {
3777 		nic->entries[i].entry = ((i - 1) * 8) + 1;
3778 		nic->s2io_entries[i].entry = ((i - 1) * 8) + 1;
3779 		nic->s2io_entries[i].arg = NULL;
3780 		nic->s2io_entries[i].in_use = 0;
3781 	}
3782 
3783 	rx_mat = readq(&bar0->rx_mat);
3784 	for (j = 0; j < nic->config.rx_ring_num; j++) {
3785 		rx_mat |= RX_MAT_SET(j, msix_indx);
3786 		nic->s2io_entries[j+1].arg = &nic->mac_control.rings[j];
3787 		nic->s2io_entries[j+1].type = MSIX_RING_TYPE;
3788 		nic->s2io_entries[j+1].in_use = MSIX_FLG;
3789 		msix_indx += 8;
3790 	}
3791 	writeq(rx_mat, &bar0->rx_mat);
3792 	readq(&bar0->rx_mat);
3793 
3794 	ret = pci_enable_msix(nic->pdev, nic->entries, nic->num_entries);
3795 	/* We fail init if error or we get less vectors than min required */
3796 	if (ret) {
3797 		DBG_PRINT(ERR_DBG, "Enabling MSI-X failed\n");
3798 		kfree(nic->entries);
3799 		swstats->mem_freed += nic->num_entries *
3800 			sizeof(struct msix_entry);
3801 		kfree(nic->s2io_entries);
3802 		swstats->mem_freed += nic->num_entries *
3803 			sizeof(struct s2io_msix_entry);
3804 		nic->entries = NULL;
3805 		nic->s2io_entries = NULL;
3806 		return -ENOMEM;
3807 	}
3808 
3809 	/*
3810 	 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3811 	 * in the herc NIC. (Temp change, needs to be removed later)
3812 	 */
3813 	pci_read_config_word(nic->pdev, 0x42, &msi_control);
3814 	msi_control |= 0x1; /* Enable MSI */
3815 	pci_write_config_word(nic->pdev, 0x42, msi_control);
3816 
3817 	return 0;
3818 }
3819 
3820 /* Handle software interrupt used during MSI(X) test */
3821 static irqreturn_t s2io_test_intr(int irq, void *dev_id)
3822 {
3823 	struct s2io_nic *sp = dev_id;
3824 
3825 	sp->msi_detected = 1;
3826 	wake_up(&sp->msi_wait);
3827 
3828 	return IRQ_HANDLED;
3829 }
3830 
3831 /* Test interrupt path by forcing a a software IRQ */
3832 static int s2io_test_msi(struct s2io_nic *sp)
3833 {
3834 	struct pci_dev *pdev = sp->pdev;
3835 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
3836 	int err;
3837 	u64 val64, saved64;
3838 
3839 	err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
3840 			  sp->name, sp);
3841 	if (err) {
3842 		DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
3843 			  sp->dev->name, pci_name(pdev), pdev->irq);
3844 		return err;
3845 	}
3846 
3847 	init_waitqueue_head(&sp->msi_wait);
3848 	sp->msi_detected = 0;
3849 
3850 	saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
3851 	val64 |= SCHED_INT_CTRL_ONE_SHOT;
3852 	val64 |= SCHED_INT_CTRL_TIMER_EN;
3853 	val64 |= SCHED_INT_CTRL_INT2MSI(1);
3854 	writeq(val64, &bar0->scheduled_int_ctrl);
3855 
3856 	wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
3857 
3858 	if (!sp->msi_detected) {
3859 		/* MSI(X) test failed, go back to INTx mode */
3860 		DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated "
3861 			  "using MSI(X) during test\n",
3862 			  sp->dev->name, pci_name(pdev));
3863 
3864 		err = -EOPNOTSUPP;
3865 	}
3866 
3867 	free_irq(sp->entries[1].vector, sp);
3868 
3869 	writeq(saved64, &bar0->scheduled_int_ctrl);
3870 
3871 	return err;
3872 }
3873 
3874 static void remove_msix_isr(struct s2io_nic *sp)
3875 {
3876 	int i;
3877 	u16 msi_control;
3878 
3879 	for (i = 0; i < sp->num_entries; i++) {
3880 		if (sp->s2io_entries[i].in_use == MSIX_REGISTERED_SUCCESS) {
3881 			int vector = sp->entries[i].vector;
3882 			void *arg = sp->s2io_entries[i].arg;
3883 			free_irq(vector, arg);
3884 		}
3885 	}
3886 
3887 	kfree(sp->entries);
3888 	kfree(sp->s2io_entries);
3889 	sp->entries = NULL;
3890 	sp->s2io_entries = NULL;
3891 
3892 	pci_read_config_word(sp->pdev, 0x42, &msi_control);
3893 	msi_control &= 0xFFFE; /* Disable MSI */
3894 	pci_write_config_word(sp->pdev, 0x42, msi_control);
3895 
3896 	pci_disable_msix(sp->pdev);
3897 }
3898 
3899 static void remove_inta_isr(struct s2io_nic *sp)
3900 {
3901 	struct net_device *dev = sp->dev;
3902 
3903 	free_irq(sp->pdev->irq, dev);
3904 }
3905 
3906 /* ********************************************************* *
3907  * Functions defined below concern the OS part of the driver *
3908  * ********************************************************* */
3909 
3910 /**
3911  *  s2io_open - open entry point of the driver
3912  *  @dev : pointer to the device structure.
3913  *  Description:
3914  *  This function is the open entry point of the driver. It mainly calls a
3915  *  function to allocate Rx buffers and inserts them into the buffer
3916  *  descriptors and then enables the Rx part of the NIC.
3917  *  Return value:
3918  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3919  *   file on failure.
3920  */
3921 
3922 static int s2io_open(struct net_device *dev)
3923 {
3924 	struct s2io_nic *sp = netdev_priv(dev);
3925 	struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
3926 	int err = 0;
3927 
3928 	/*
3929 	 * Make sure you have link off by default every time
3930 	 * Nic is initialized
3931 	 */
3932 	netif_carrier_off(dev);
3933 	sp->last_link_state = 0;
3934 
3935 	/* Initialize H/W and enable interrupts */
3936 	err = s2io_card_up(sp);
3937 	if (err) {
3938 		DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3939 			  dev->name);
3940 		goto hw_init_failed;
3941 	}
3942 
3943 	if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
3944 		DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
3945 		s2io_card_down(sp);
3946 		err = -ENODEV;
3947 		goto hw_init_failed;
3948 	}
3949 	s2io_start_all_tx_queue(sp);
3950 	return 0;
3951 
3952 hw_init_failed:
3953 	if (sp->config.intr_type == MSI_X) {
3954 		if (sp->entries) {
3955 			kfree(sp->entries);
3956 			swstats->mem_freed += sp->num_entries *
3957 				sizeof(struct msix_entry);
3958 		}
3959 		if (sp->s2io_entries) {
3960 			kfree(sp->s2io_entries);
3961 			swstats->mem_freed += sp->num_entries *
3962 				sizeof(struct s2io_msix_entry);
3963 		}
3964 	}
3965 	return err;
3966 }
3967 
3968 /**
3969  *  s2io_close -close entry point of the driver
3970  *  @dev : device pointer.
3971  *  Description:
3972  *  This is the stop entry point of the driver. It needs to undo exactly
3973  *  whatever was done by the open entry point,thus it's usually referred to
3974  *  as the close function.Among other things this function mainly stops the
3975  *  Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3976  *  Return value:
3977  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3978  *  file on failure.
3979  */
3980 
3981 static int s2io_close(struct net_device *dev)
3982 {
3983 	struct s2io_nic *sp = netdev_priv(dev);
3984 	struct config_param *config = &sp->config;
3985 	u64 tmp64;
3986 	int offset;
3987 
3988 	/* Return if the device is already closed               *
3989 	 *  Can happen when s2io_card_up failed in change_mtu    *
3990 	 */
3991 	if (!is_s2io_card_up(sp))
3992 		return 0;
3993 
3994 	s2io_stop_all_tx_queue(sp);
3995 	/* delete all populated mac entries */
3996 	for (offset = 1; offset < config->max_mc_addr; offset++) {
3997 		tmp64 = do_s2io_read_unicast_mc(sp, offset);
3998 		if (tmp64 != S2IO_DISABLE_MAC_ENTRY)
3999 			do_s2io_delete_unicast_mc(sp, tmp64);
4000 	}
4001 
4002 	s2io_card_down(sp);
4003 
4004 	return 0;
4005 }
4006 
4007 /**
4008  *  s2io_xmit - Tx entry point of te driver
4009  *  @skb : the socket buffer containing the Tx data.
4010  *  @dev : device pointer.
4011  *  Description :
4012  *  This function is the Tx entry point of the driver. S2IO NIC supports
4013  *  certain protocol assist features on Tx side, namely  CSO, S/G, LSO.
4014  *  NOTE: when device can't queue the pkt,just the trans_start variable will
4015  *  not be upadted.
4016  *  Return value:
4017  *  0 on success & 1 on failure.
4018  */
4019 
4020 static netdev_tx_t s2io_xmit(struct sk_buff *skb, struct net_device *dev)
4021 {
4022 	struct s2io_nic *sp = netdev_priv(dev);
4023 	u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
4024 	register u64 val64;
4025 	struct TxD *txdp;
4026 	struct TxFIFO_element __iomem *tx_fifo;
4027 	unsigned long flags = 0;
4028 	u16 vlan_tag = 0;
4029 	struct fifo_info *fifo = NULL;
4030 	int do_spin_lock = 1;
4031 	int offload_type;
4032 	int enable_per_list_interrupt = 0;
4033 	struct config_param *config = &sp->config;
4034 	struct mac_info *mac_control = &sp->mac_control;
4035 	struct stat_block *stats = mac_control->stats_info;
4036 	struct swStat *swstats = &stats->sw_stat;
4037 
4038 	DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
4039 
4040 	if (unlikely(skb->len <= 0)) {
4041 		DBG_PRINT(TX_DBG, "%s: Buffer has no data..\n", dev->name);
4042 		dev_kfree_skb_any(skb);
4043 		return NETDEV_TX_OK;
4044 	}
4045 
4046 	if (!is_s2io_card_up(sp)) {
4047 		DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
4048 			  dev->name);
4049 		dev_kfree_skb(skb);
4050 		return NETDEV_TX_OK;
4051 	}
4052 
4053 	queue = 0;
4054 	if (vlan_tx_tag_present(skb))
4055 		vlan_tag = vlan_tx_tag_get(skb);
4056 	if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) {
4057 		if (skb->protocol == htons(ETH_P_IP)) {
4058 			struct iphdr *ip;
4059 			struct tcphdr *th;
4060 			ip = ip_hdr(skb);
4061 
4062 			if (!ip_is_fragment(ip)) {
4063 				th = (struct tcphdr *)(((unsigned char *)ip) +
4064 						       ip->ihl*4);
4065 
4066 				if (ip->protocol == IPPROTO_TCP) {
4067 					queue_len = sp->total_tcp_fifos;
4068 					queue = (ntohs(th->source) +
4069 						 ntohs(th->dest)) &
4070 						sp->fifo_selector[queue_len - 1];
4071 					if (queue >= queue_len)
4072 						queue = queue_len - 1;
4073 				} else if (ip->protocol == IPPROTO_UDP) {
4074 					queue_len = sp->total_udp_fifos;
4075 					queue = (ntohs(th->source) +
4076 						 ntohs(th->dest)) &
4077 						sp->fifo_selector[queue_len - 1];
4078 					if (queue >= queue_len)
4079 						queue = queue_len - 1;
4080 					queue += sp->udp_fifo_idx;
4081 					if (skb->len > 1024)
4082 						enable_per_list_interrupt = 1;
4083 					do_spin_lock = 0;
4084 				}
4085 			}
4086 		}
4087 	} else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING)
4088 		/* get fifo number based on skb->priority value */
4089 		queue = config->fifo_mapping
4090 			[skb->priority & (MAX_TX_FIFOS - 1)];
4091 	fifo = &mac_control->fifos[queue];
4092 
4093 	if (do_spin_lock)
4094 		spin_lock_irqsave(&fifo->tx_lock, flags);
4095 	else {
4096 		if (unlikely(!spin_trylock_irqsave(&fifo->tx_lock, flags)))
4097 			return NETDEV_TX_LOCKED;
4098 	}
4099 
4100 	if (sp->config.multiq) {
4101 		if (__netif_subqueue_stopped(dev, fifo->fifo_no)) {
4102 			spin_unlock_irqrestore(&fifo->tx_lock, flags);
4103 			return NETDEV_TX_BUSY;
4104 		}
4105 	} else if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) {
4106 		if (netif_queue_stopped(dev)) {
4107 			spin_unlock_irqrestore(&fifo->tx_lock, flags);
4108 			return NETDEV_TX_BUSY;
4109 		}
4110 	}
4111 
4112 	put_off = (u16)fifo->tx_curr_put_info.offset;
4113 	get_off = (u16)fifo->tx_curr_get_info.offset;
4114 	txdp = fifo->list_info[put_off].list_virt_addr;
4115 
4116 	queue_len = fifo->tx_curr_put_info.fifo_len + 1;
4117 	/* Avoid "put" pointer going beyond "get" pointer */
4118 	if (txdp->Host_Control ||
4119 	    ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4120 		DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
4121 		s2io_stop_tx_queue(sp, fifo->fifo_no);
4122 		dev_kfree_skb(skb);
4123 		spin_unlock_irqrestore(&fifo->tx_lock, flags);
4124 		return NETDEV_TX_OK;
4125 	}
4126 
4127 	offload_type = s2io_offload_type(skb);
4128 	if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
4129 		txdp->Control_1 |= TXD_TCP_LSO_EN;
4130 		txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
4131 	}
4132 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
4133 		txdp->Control_2 |= (TXD_TX_CKO_IPV4_EN |
4134 				    TXD_TX_CKO_TCP_EN |
4135 				    TXD_TX_CKO_UDP_EN);
4136 	}
4137 	txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4138 	txdp->Control_1 |= TXD_LIST_OWN_XENA;
4139 	txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no);
4140 	if (enable_per_list_interrupt)
4141 		if (put_off & (queue_len >> 5))
4142 			txdp->Control_2 |= TXD_INT_TYPE_PER_LIST;
4143 	if (vlan_tag) {
4144 		txdp->Control_2 |= TXD_VLAN_ENABLE;
4145 		txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4146 	}
4147 
4148 	frg_len = skb_headlen(skb);
4149 	if (offload_type == SKB_GSO_UDP) {
4150 		int ufo_size;
4151 
4152 		ufo_size = s2io_udp_mss(skb);
4153 		ufo_size &= ~7;
4154 		txdp->Control_1 |= TXD_UFO_EN;
4155 		txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
4156 		txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
4157 #ifdef __BIG_ENDIAN
4158 		/* both variants do cpu_to_be64(be32_to_cpu(...)) */
4159 		fifo->ufo_in_band_v[put_off] =
4160 			(__force u64)skb_shinfo(skb)->ip6_frag_id;
4161 #else
4162 		fifo->ufo_in_band_v[put_off] =
4163 			(__force u64)skb_shinfo(skb)->ip6_frag_id << 32;
4164 #endif
4165 		txdp->Host_Control = (unsigned long)fifo->ufo_in_band_v;
4166 		txdp->Buffer_Pointer = pci_map_single(sp->pdev,
4167 						      fifo->ufo_in_band_v,
4168 						      sizeof(u64),
4169 						      PCI_DMA_TODEVICE);
4170 		if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
4171 			goto pci_map_failed;
4172 		txdp++;
4173 	}
4174 
4175 	txdp->Buffer_Pointer = pci_map_single(sp->pdev, skb->data,
4176 					      frg_len, PCI_DMA_TODEVICE);
4177 	if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
4178 		goto pci_map_failed;
4179 
4180 	txdp->Host_Control = (unsigned long)skb;
4181 	txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
4182 	if (offload_type == SKB_GSO_UDP)
4183 		txdp->Control_1 |= TXD_UFO_EN;
4184 
4185 	frg_cnt = skb_shinfo(skb)->nr_frags;
4186 	/* For fragmented SKB. */
4187 	for (i = 0; i < frg_cnt; i++) {
4188 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4189 		/* A '0' length fragment will be ignored */
4190 		if (!skb_frag_size(frag))
4191 			continue;
4192 		txdp++;
4193 		txdp->Buffer_Pointer = (u64)skb_frag_dma_map(&sp->pdev->dev,
4194 							     frag, 0,
4195 							     skb_frag_size(frag),
4196 							     DMA_TO_DEVICE);
4197 		txdp->Control_1 = TXD_BUFFER0_SIZE(skb_frag_size(frag));
4198 		if (offload_type == SKB_GSO_UDP)
4199 			txdp->Control_1 |= TXD_UFO_EN;
4200 	}
4201 	txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4202 
4203 	if (offload_type == SKB_GSO_UDP)
4204 		frg_cnt++; /* as Txd0 was used for inband header */
4205 
4206 	tx_fifo = mac_control->tx_FIFO_start[queue];
4207 	val64 = fifo->list_info[put_off].list_phy_addr;
4208 	writeq(val64, &tx_fifo->TxDL_Pointer);
4209 
4210 	val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4211 		 TX_FIFO_LAST_LIST);
4212 	if (offload_type)
4213 		val64 |= TX_FIFO_SPECIAL_FUNC;
4214 
4215 	writeq(val64, &tx_fifo->List_Control);
4216 
4217 	mmiowb();
4218 
4219 	put_off++;
4220 	if (put_off == fifo->tx_curr_put_info.fifo_len + 1)
4221 		put_off = 0;
4222 	fifo->tx_curr_put_info.offset = put_off;
4223 
4224 	/* Avoid "put" pointer going beyond "get" pointer */
4225 	if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4226 		swstats->fifo_full_cnt++;
4227 		DBG_PRINT(TX_DBG,
4228 			  "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4229 			  put_off, get_off);
4230 		s2io_stop_tx_queue(sp, fifo->fifo_no);
4231 	}
4232 	swstats->mem_allocated += skb->truesize;
4233 	spin_unlock_irqrestore(&fifo->tx_lock, flags);
4234 
4235 	if (sp->config.intr_type == MSI_X)
4236 		tx_intr_handler(fifo);
4237 
4238 	return NETDEV_TX_OK;
4239 
4240 pci_map_failed:
4241 	swstats->pci_map_fail_cnt++;
4242 	s2io_stop_tx_queue(sp, fifo->fifo_no);
4243 	swstats->mem_freed += skb->truesize;
4244 	dev_kfree_skb(skb);
4245 	spin_unlock_irqrestore(&fifo->tx_lock, flags);
4246 	return NETDEV_TX_OK;
4247 }
4248 
4249 static void
4250 s2io_alarm_handle(unsigned long data)
4251 {
4252 	struct s2io_nic *sp = (struct s2io_nic *)data;
4253 	struct net_device *dev = sp->dev;
4254 
4255 	s2io_handle_errors(dev);
4256 	mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4257 }
4258 
4259 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4260 {
4261 	struct ring_info *ring = (struct ring_info *)dev_id;
4262 	struct s2io_nic *sp = ring->nic;
4263 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
4264 
4265 	if (unlikely(!is_s2io_card_up(sp)))
4266 		return IRQ_HANDLED;
4267 
4268 	if (sp->config.napi) {
4269 		u8 __iomem *addr = NULL;
4270 		u8 val8 = 0;
4271 
4272 		addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
4273 		addr += (7 - ring->ring_no);
4274 		val8 = (ring->ring_no == 0) ? 0x7f : 0xff;
4275 		writeb(val8, addr);
4276 		val8 = readb(addr);
4277 		napi_schedule(&ring->napi);
4278 	} else {
4279 		rx_intr_handler(ring, 0);
4280 		s2io_chk_rx_buffers(sp, ring);
4281 	}
4282 
4283 	return IRQ_HANDLED;
4284 }
4285 
4286 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4287 {
4288 	int i;
4289 	struct fifo_info *fifos = (struct fifo_info *)dev_id;
4290 	struct s2io_nic *sp = fifos->nic;
4291 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
4292 	struct config_param *config  = &sp->config;
4293 	u64 reason;
4294 
4295 	if (unlikely(!is_s2io_card_up(sp)))
4296 		return IRQ_NONE;
4297 
4298 	reason = readq(&bar0->general_int_status);
4299 	if (unlikely(reason == S2IO_MINUS_ONE))
4300 		/* Nothing much can be done. Get out */
4301 		return IRQ_HANDLED;
4302 
4303 	if (reason & (GEN_INTR_TXPIC | GEN_INTR_TXTRAFFIC)) {
4304 		writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4305 
4306 		if (reason & GEN_INTR_TXPIC)
4307 			s2io_txpic_intr_handle(sp);
4308 
4309 		if (reason & GEN_INTR_TXTRAFFIC)
4310 			writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4311 
4312 		for (i = 0; i < config->tx_fifo_num; i++)
4313 			tx_intr_handler(&fifos[i]);
4314 
4315 		writeq(sp->general_int_mask, &bar0->general_int_mask);
4316 		readl(&bar0->general_int_status);
4317 		return IRQ_HANDLED;
4318 	}
4319 	/* The interrupt was not raised by us */
4320 	return IRQ_NONE;
4321 }
4322 
4323 static void s2io_txpic_intr_handle(struct s2io_nic *sp)
4324 {
4325 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
4326 	u64 val64;
4327 
4328 	val64 = readq(&bar0->pic_int_status);
4329 	if (val64 & PIC_INT_GPIO) {
4330 		val64 = readq(&bar0->gpio_int_reg);
4331 		if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4332 		    (val64 & GPIO_INT_REG_LINK_UP)) {
4333 			/*
4334 			 * This is unstable state so clear both up/down
4335 			 * interrupt and adapter to re-evaluate the link state.
4336 			 */
4337 			val64 |= GPIO_INT_REG_LINK_DOWN;
4338 			val64 |= GPIO_INT_REG_LINK_UP;
4339 			writeq(val64, &bar0->gpio_int_reg);
4340 			val64 = readq(&bar0->gpio_int_mask);
4341 			val64 &= ~(GPIO_INT_MASK_LINK_UP |
4342 				   GPIO_INT_MASK_LINK_DOWN);
4343 			writeq(val64, &bar0->gpio_int_mask);
4344 		} else if (val64 & GPIO_INT_REG_LINK_UP) {
4345 			val64 = readq(&bar0->adapter_status);
4346 			/* Enable Adapter */
4347 			val64 = readq(&bar0->adapter_control);
4348 			val64 |= ADAPTER_CNTL_EN;
4349 			writeq(val64, &bar0->adapter_control);
4350 			val64 |= ADAPTER_LED_ON;
4351 			writeq(val64, &bar0->adapter_control);
4352 			if (!sp->device_enabled_once)
4353 				sp->device_enabled_once = 1;
4354 
4355 			s2io_link(sp, LINK_UP);
4356 			/*
4357 			 * unmask link down interrupt and mask link-up
4358 			 * intr
4359 			 */
4360 			val64 = readq(&bar0->gpio_int_mask);
4361 			val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4362 			val64 |= GPIO_INT_MASK_LINK_UP;
4363 			writeq(val64, &bar0->gpio_int_mask);
4364 
4365 		} else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4366 			val64 = readq(&bar0->adapter_status);
4367 			s2io_link(sp, LINK_DOWN);
4368 			/* Link is down so unmaks link up interrupt */
4369 			val64 = readq(&bar0->gpio_int_mask);
4370 			val64 &= ~GPIO_INT_MASK_LINK_UP;
4371 			val64 |= GPIO_INT_MASK_LINK_DOWN;
4372 			writeq(val64, &bar0->gpio_int_mask);
4373 
4374 			/* turn off LED */
4375 			val64 = readq(&bar0->adapter_control);
4376 			val64 = val64 & (~ADAPTER_LED_ON);
4377 			writeq(val64, &bar0->adapter_control);
4378 		}
4379 	}
4380 	val64 = readq(&bar0->gpio_int_mask);
4381 }
4382 
4383 /**
4384  *  do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4385  *  @value: alarm bits
4386  *  @addr: address value
4387  *  @cnt: counter variable
4388  *  Description: Check for alarm and increment the counter
4389  *  Return Value:
4390  *  1 - if alarm bit set
4391  *  0 - if alarm bit is not set
4392  */
4393 static int do_s2io_chk_alarm_bit(u64 value, void __iomem *addr,
4394 				 unsigned long long *cnt)
4395 {
4396 	u64 val64;
4397 	val64 = readq(addr);
4398 	if (val64 & value) {
4399 		writeq(val64, addr);
4400 		(*cnt)++;
4401 		return 1;
4402 	}
4403 	return 0;
4404 
4405 }
4406 
4407 /**
4408  *  s2io_handle_errors - Xframe error indication handler
4409  *  @nic: device private variable
4410  *  Description: Handle alarms such as loss of link, single or
4411  *  double ECC errors, critical and serious errors.
4412  *  Return Value:
4413  *  NONE
4414  */
4415 static void s2io_handle_errors(void *dev_id)
4416 {
4417 	struct net_device *dev = (struct net_device *)dev_id;
4418 	struct s2io_nic *sp = netdev_priv(dev);
4419 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
4420 	u64 temp64 = 0, val64 = 0;
4421 	int i = 0;
4422 
4423 	struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
4424 	struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
4425 
4426 	if (!is_s2io_card_up(sp))
4427 		return;
4428 
4429 	if (pci_channel_offline(sp->pdev))
4430 		return;
4431 
4432 	memset(&sw_stat->ring_full_cnt, 0,
4433 	       sizeof(sw_stat->ring_full_cnt));
4434 
4435 	/* Handling the XPAK counters update */
4436 	if (stats->xpak_timer_count < 72000) {
4437 		/* waiting for an hour */
4438 		stats->xpak_timer_count++;
4439 	} else {
4440 		s2io_updt_xpak_counter(dev);
4441 		/* reset the count to zero */
4442 		stats->xpak_timer_count = 0;
4443 	}
4444 
4445 	/* Handling link status change error Intr */
4446 	if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
4447 		val64 = readq(&bar0->mac_rmac_err_reg);
4448 		writeq(val64, &bar0->mac_rmac_err_reg);
4449 		if (val64 & RMAC_LINK_STATE_CHANGE_INT)
4450 			schedule_work(&sp->set_link_task);
4451 	}
4452 
4453 	/* In case of a serious error, the device will be Reset. */
4454 	if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
4455 				  &sw_stat->serious_err_cnt))
4456 		goto reset;
4457 
4458 	/* Check for data parity error */
4459 	if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
4460 				  &sw_stat->parity_err_cnt))
4461 		goto reset;
4462 
4463 	/* Check for ring full counter */
4464 	if (sp->device_type == XFRAME_II_DEVICE) {
4465 		val64 = readq(&bar0->ring_bump_counter1);
4466 		for (i = 0; i < 4; i++) {
4467 			temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
4468 			temp64 >>= 64 - ((i+1)*16);
4469 			sw_stat->ring_full_cnt[i] += temp64;
4470 		}
4471 
4472 		val64 = readq(&bar0->ring_bump_counter2);
4473 		for (i = 0; i < 4; i++) {
4474 			temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
4475 			temp64 >>= 64 - ((i+1)*16);
4476 			sw_stat->ring_full_cnt[i+4] += temp64;
4477 		}
4478 	}
4479 
4480 	val64 = readq(&bar0->txdma_int_status);
4481 	/*check for pfc_err*/
4482 	if (val64 & TXDMA_PFC_INT) {
4483 		if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
4484 					  PFC_MISC_0_ERR | PFC_MISC_1_ERR |
4485 					  PFC_PCIX_ERR,
4486 					  &bar0->pfc_err_reg,
4487 					  &sw_stat->pfc_err_cnt))
4488 			goto reset;
4489 		do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR,
4490 				      &bar0->pfc_err_reg,
4491 				      &sw_stat->pfc_err_cnt);
4492 	}
4493 
4494 	/*check for tda_err*/
4495 	if (val64 & TXDMA_TDA_INT) {
4496 		if (do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR |
4497 					  TDA_SM0_ERR_ALARM |
4498 					  TDA_SM1_ERR_ALARM,
4499 					  &bar0->tda_err_reg,
4500 					  &sw_stat->tda_err_cnt))
4501 			goto reset;
4502 		do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
4503 				      &bar0->tda_err_reg,
4504 				      &sw_stat->tda_err_cnt);
4505 	}
4506 	/*check for pcc_err*/
4507 	if (val64 & TXDMA_PCC_INT) {
4508 		if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
4509 					  PCC_N_SERR | PCC_6_COF_OV_ERR |
4510 					  PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
4511 					  PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR |
4512 					  PCC_TXB_ECC_DB_ERR,
4513 					  &bar0->pcc_err_reg,
4514 					  &sw_stat->pcc_err_cnt))
4515 			goto reset;
4516 		do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
4517 				      &bar0->pcc_err_reg,
4518 				      &sw_stat->pcc_err_cnt);
4519 	}
4520 
4521 	/*check for tti_err*/
4522 	if (val64 & TXDMA_TTI_INT) {
4523 		if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM,
4524 					  &bar0->tti_err_reg,
4525 					  &sw_stat->tti_err_cnt))
4526 			goto reset;
4527 		do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
4528 				      &bar0->tti_err_reg,
4529 				      &sw_stat->tti_err_cnt);
4530 	}
4531 
4532 	/*check for lso_err*/
4533 	if (val64 & TXDMA_LSO_INT) {
4534 		if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT |
4535 					  LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
4536 					  &bar0->lso_err_reg,
4537 					  &sw_stat->lso_err_cnt))
4538 			goto reset;
4539 		do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
4540 				      &bar0->lso_err_reg,
4541 				      &sw_stat->lso_err_cnt);
4542 	}
4543 
4544 	/*check for tpa_err*/
4545 	if (val64 & TXDMA_TPA_INT) {
4546 		if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM,
4547 					  &bar0->tpa_err_reg,
4548 					  &sw_stat->tpa_err_cnt))
4549 			goto reset;
4550 		do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP,
4551 				      &bar0->tpa_err_reg,
4552 				      &sw_stat->tpa_err_cnt);
4553 	}
4554 
4555 	/*check for sm_err*/
4556 	if (val64 & TXDMA_SM_INT) {
4557 		if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM,
4558 					  &bar0->sm_err_reg,
4559 					  &sw_stat->sm_err_cnt))
4560 			goto reset;
4561 	}
4562 
4563 	val64 = readq(&bar0->mac_int_status);
4564 	if (val64 & MAC_INT_STATUS_TMAC_INT) {
4565 		if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
4566 					  &bar0->mac_tmac_err_reg,
4567 					  &sw_stat->mac_tmac_err_cnt))
4568 			goto reset;
4569 		do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
4570 				      TMAC_DESC_ECC_SG_ERR |
4571 				      TMAC_DESC_ECC_DB_ERR,
4572 				      &bar0->mac_tmac_err_reg,
4573 				      &sw_stat->mac_tmac_err_cnt);
4574 	}
4575 
4576 	val64 = readq(&bar0->xgxs_int_status);
4577 	if (val64 & XGXS_INT_STATUS_TXGXS) {
4578 		if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
4579 					  &bar0->xgxs_txgxs_err_reg,
4580 					  &sw_stat->xgxs_txgxs_err_cnt))
4581 			goto reset;
4582 		do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
4583 				      &bar0->xgxs_txgxs_err_reg,
4584 				      &sw_stat->xgxs_txgxs_err_cnt);
4585 	}
4586 
4587 	val64 = readq(&bar0->rxdma_int_status);
4588 	if (val64 & RXDMA_INT_RC_INT_M) {
4589 		if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR |
4590 					  RC_FTC_ECC_DB_ERR |
4591 					  RC_PRCn_SM_ERR_ALARM |
4592 					  RC_FTC_SM_ERR_ALARM,
4593 					  &bar0->rc_err_reg,
4594 					  &sw_stat->rc_err_cnt))
4595 			goto reset;
4596 		do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR |
4597 				      RC_FTC_ECC_SG_ERR |
4598 				      RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
4599 				      &sw_stat->rc_err_cnt);
4600 		if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn |
4601 					  PRC_PCI_AB_WR_Rn |
4602 					  PRC_PCI_AB_F_WR_Rn,
4603 					  &bar0->prc_pcix_err_reg,
4604 					  &sw_stat->prc_pcix_err_cnt))
4605 			goto reset;
4606 		do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn |
4607 				      PRC_PCI_DP_WR_Rn |
4608 				      PRC_PCI_DP_F_WR_Rn,
4609 				      &bar0->prc_pcix_err_reg,
4610 				      &sw_stat->prc_pcix_err_cnt);
4611 	}
4612 
4613 	if (val64 & RXDMA_INT_RPA_INT_M) {
4614 		if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
4615 					  &bar0->rpa_err_reg,
4616 					  &sw_stat->rpa_err_cnt))
4617 			goto reset;
4618 		do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
4619 				      &bar0->rpa_err_reg,
4620 				      &sw_stat->rpa_err_cnt);
4621 	}
4622 
4623 	if (val64 & RXDMA_INT_RDA_INT_M) {
4624 		if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR |
4625 					  RDA_FRM_ECC_DB_N_AERR |
4626 					  RDA_SM1_ERR_ALARM |
4627 					  RDA_SM0_ERR_ALARM |
4628 					  RDA_RXD_ECC_DB_SERR,
4629 					  &bar0->rda_err_reg,
4630 					  &sw_stat->rda_err_cnt))
4631 			goto reset;
4632 		do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR |
4633 				      RDA_FRM_ECC_SG_ERR |
4634 				      RDA_MISC_ERR |
4635 				      RDA_PCIX_ERR,
4636 				      &bar0->rda_err_reg,
4637 				      &sw_stat->rda_err_cnt);
4638 	}
4639 
4640 	if (val64 & RXDMA_INT_RTI_INT_M) {
4641 		if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM,
4642 					  &bar0->rti_err_reg,
4643 					  &sw_stat->rti_err_cnt))
4644 			goto reset;
4645 		do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
4646 				      &bar0->rti_err_reg,
4647 				      &sw_stat->rti_err_cnt);
4648 	}
4649 
4650 	val64 = readq(&bar0->mac_int_status);
4651 	if (val64 & MAC_INT_STATUS_RMAC_INT) {
4652 		if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
4653 					  &bar0->mac_rmac_err_reg,
4654 					  &sw_stat->mac_rmac_err_cnt))
4655 			goto reset;
4656 		do_s2io_chk_alarm_bit(RMAC_UNUSED_INT |
4657 				      RMAC_SINGLE_ECC_ERR |
4658 				      RMAC_DOUBLE_ECC_ERR,
4659 				      &bar0->mac_rmac_err_reg,
4660 				      &sw_stat->mac_rmac_err_cnt);
4661 	}
4662 
4663 	val64 = readq(&bar0->xgxs_int_status);
4664 	if (val64 & XGXS_INT_STATUS_RXGXS) {
4665 		if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
4666 					  &bar0->xgxs_rxgxs_err_reg,
4667 					  &sw_stat->xgxs_rxgxs_err_cnt))
4668 			goto reset;
4669 	}
4670 
4671 	val64 = readq(&bar0->mc_int_status);
4672 	if (val64 & MC_INT_STATUS_MC_INT) {
4673 		if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR,
4674 					  &bar0->mc_err_reg,
4675 					  &sw_stat->mc_err_cnt))
4676 			goto reset;
4677 
4678 		/* Handling Ecc errors */
4679 		if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
4680 			writeq(val64, &bar0->mc_err_reg);
4681 			if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
4682 				sw_stat->double_ecc_errs++;
4683 				if (sp->device_type != XFRAME_II_DEVICE) {
4684 					/*
4685 					 * Reset XframeI only if critical error
4686 					 */
4687 					if (val64 &
4688 					    (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
4689 					     MC_ERR_REG_MIRI_ECC_DB_ERR_1))
4690 						goto reset;
4691 				}
4692 			} else
4693 				sw_stat->single_ecc_errs++;
4694 		}
4695 	}
4696 	return;
4697 
4698 reset:
4699 	s2io_stop_all_tx_queue(sp);
4700 	schedule_work(&sp->rst_timer_task);
4701 	sw_stat->soft_reset_cnt++;
4702 }
4703 
4704 /**
4705  *  s2io_isr - ISR handler of the device .
4706  *  @irq: the irq of the device.
4707  *  @dev_id: a void pointer to the dev structure of the NIC.
4708  *  Description:  This function is the ISR handler of the device. It
4709  *  identifies the reason for the interrupt and calls the relevant
4710  *  service routines. As a contongency measure, this ISR allocates the
4711  *  recv buffers, if their numbers are below the panic value which is
4712  *  presently set to 25% of the original number of rcv buffers allocated.
4713  *  Return value:
4714  *   IRQ_HANDLED: will be returned if IRQ was handled by this routine
4715  *   IRQ_NONE: will be returned if interrupt is not from our device
4716  */
4717 static irqreturn_t s2io_isr(int irq, void *dev_id)
4718 {
4719 	struct net_device *dev = (struct net_device *)dev_id;
4720 	struct s2io_nic *sp = netdev_priv(dev);
4721 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
4722 	int i;
4723 	u64 reason = 0;
4724 	struct mac_info *mac_control;
4725 	struct config_param *config;
4726 
4727 	/* Pretend we handled any irq's from a disconnected card */
4728 	if (pci_channel_offline(sp->pdev))
4729 		return IRQ_NONE;
4730 
4731 	if (!is_s2io_card_up(sp))
4732 		return IRQ_NONE;
4733 
4734 	config = &sp->config;
4735 	mac_control = &sp->mac_control;
4736 
4737 	/*
4738 	 * Identify the cause for interrupt and call the appropriate
4739 	 * interrupt handler. Causes for the interrupt could be;
4740 	 * 1. Rx of packet.
4741 	 * 2. Tx complete.
4742 	 * 3. Link down.
4743 	 */
4744 	reason = readq(&bar0->general_int_status);
4745 
4746 	if (unlikely(reason == S2IO_MINUS_ONE))
4747 		return IRQ_HANDLED;	/* Nothing much can be done. Get out */
4748 
4749 	if (reason &
4750 	    (GEN_INTR_RXTRAFFIC | GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC)) {
4751 		writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4752 
4753 		if (config->napi) {
4754 			if (reason & GEN_INTR_RXTRAFFIC) {
4755 				napi_schedule(&sp->napi);
4756 				writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
4757 				writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4758 				readl(&bar0->rx_traffic_int);
4759 			}
4760 		} else {
4761 			/*
4762 			 * rx_traffic_int reg is an R1 register, writing all 1's
4763 			 * will ensure that the actual interrupt causing bit
4764 			 * get's cleared and hence a read can be avoided.
4765 			 */
4766 			if (reason & GEN_INTR_RXTRAFFIC)
4767 				writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4768 
4769 			for (i = 0; i < config->rx_ring_num; i++) {
4770 				struct ring_info *ring = &mac_control->rings[i];
4771 
4772 				rx_intr_handler(ring, 0);
4773 			}
4774 		}
4775 
4776 		/*
4777 		 * tx_traffic_int reg is an R1 register, writing all 1's
4778 		 * will ensure that the actual interrupt causing bit get's
4779 		 * cleared and hence a read can be avoided.
4780 		 */
4781 		if (reason & GEN_INTR_TXTRAFFIC)
4782 			writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4783 
4784 		for (i = 0; i < config->tx_fifo_num; i++)
4785 			tx_intr_handler(&mac_control->fifos[i]);
4786 
4787 		if (reason & GEN_INTR_TXPIC)
4788 			s2io_txpic_intr_handle(sp);
4789 
4790 		/*
4791 		 * Reallocate the buffers from the interrupt handler itself.
4792 		 */
4793 		if (!config->napi) {
4794 			for (i = 0; i < config->rx_ring_num; i++) {
4795 				struct ring_info *ring = &mac_control->rings[i];
4796 
4797 				s2io_chk_rx_buffers(sp, ring);
4798 			}
4799 		}
4800 		writeq(sp->general_int_mask, &bar0->general_int_mask);
4801 		readl(&bar0->general_int_status);
4802 
4803 		return IRQ_HANDLED;
4804 
4805 	} else if (!reason) {
4806 		/* The interrupt was not raised by us */
4807 		return IRQ_NONE;
4808 	}
4809 
4810 	return IRQ_HANDLED;
4811 }
4812 
4813 /**
4814  * s2io_updt_stats -
4815  */
4816 static void s2io_updt_stats(struct s2io_nic *sp)
4817 {
4818 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
4819 	u64 val64;
4820 	int cnt = 0;
4821 
4822 	if (is_s2io_card_up(sp)) {
4823 		/* Apprx 30us on a 133 MHz bus */
4824 		val64 = SET_UPDT_CLICKS(10) |
4825 			STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4826 		writeq(val64, &bar0->stat_cfg);
4827 		do {
4828 			udelay(100);
4829 			val64 = readq(&bar0->stat_cfg);
4830 			if (!(val64 & s2BIT(0)))
4831 				break;
4832 			cnt++;
4833 			if (cnt == 5)
4834 				break; /* Updt failed */
4835 		} while (1);
4836 	}
4837 }
4838 
4839 /**
4840  *  s2io_get_stats - Updates the device statistics structure.
4841  *  @dev : pointer to the device structure.
4842  *  Description:
4843  *  This function updates the device statistics structure in the s2io_nic
4844  *  structure and returns a pointer to the same.
4845  *  Return value:
4846  *  pointer to the updated net_device_stats structure.
4847  */
4848 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4849 {
4850 	struct s2io_nic *sp = netdev_priv(dev);
4851 	struct mac_info *mac_control = &sp->mac_control;
4852 	struct stat_block *stats = mac_control->stats_info;
4853 	u64 delta;
4854 
4855 	/* Configure Stats for immediate updt */
4856 	s2io_updt_stats(sp);
4857 
4858 	/* A device reset will cause the on-adapter statistics to be zero'ed.
4859 	 * This can be done while running by changing the MTU.  To prevent the
4860 	 * system from having the stats zero'ed, the driver keeps a copy of the
4861 	 * last update to the system (which is also zero'ed on reset).  This
4862 	 * enables the driver to accurately know the delta between the last
4863 	 * update and the current update.
4864 	 */
4865 	delta = ((u64) le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
4866 		le32_to_cpu(stats->rmac_vld_frms)) - sp->stats.rx_packets;
4867 	sp->stats.rx_packets += delta;
4868 	dev->stats.rx_packets += delta;
4869 
4870 	delta = ((u64) le32_to_cpu(stats->tmac_frms_oflow) << 32 |
4871 		le32_to_cpu(stats->tmac_frms)) - sp->stats.tx_packets;
4872 	sp->stats.tx_packets += delta;
4873 	dev->stats.tx_packets += delta;
4874 
4875 	delta = ((u64) le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
4876 		le32_to_cpu(stats->rmac_data_octets)) - sp->stats.rx_bytes;
4877 	sp->stats.rx_bytes += delta;
4878 	dev->stats.rx_bytes += delta;
4879 
4880 	delta = ((u64) le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
4881 		le32_to_cpu(stats->tmac_data_octets)) - sp->stats.tx_bytes;
4882 	sp->stats.tx_bytes += delta;
4883 	dev->stats.tx_bytes += delta;
4884 
4885 	delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_errors;
4886 	sp->stats.rx_errors += delta;
4887 	dev->stats.rx_errors += delta;
4888 
4889 	delta = ((u64) le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
4890 		le32_to_cpu(stats->tmac_any_err_frms)) - sp->stats.tx_errors;
4891 	sp->stats.tx_errors += delta;
4892 	dev->stats.tx_errors += delta;
4893 
4894 	delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_dropped;
4895 	sp->stats.rx_dropped += delta;
4896 	dev->stats.rx_dropped += delta;
4897 
4898 	delta = le64_to_cpu(stats->tmac_drop_frms) - sp->stats.tx_dropped;
4899 	sp->stats.tx_dropped += delta;
4900 	dev->stats.tx_dropped += delta;
4901 
4902 	/* The adapter MAC interprets pause frames as multicast packets, but
4903 	 * does not pass them up.  This erroneously increases the multicast
4904 	 * packet count and needs to be deducted when the multicast frame count
4905 	 * is queried.
4906 	 */
4907 	delta = (u64) le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
4908 		le32_to_cpu(stats->rmac_vld_mcst_frms);
4909 	delta -= le64_to_cpu(stats->rmac_pause_ctrl_frms);
4910 	delta -= sp->stats.multicast;
4911 	sp->stats.multicast += delta;
4912 	dev->stats.multicast += delta;
4913 
4914 	delta = ((u64) le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
4915 		le32_to_cpu(stats->rmac_usized_frms)) +
4916 		le64_to_cpu(stats->rmac_long_frms) - sp->stats.rx_length_errors;
4917 	sp->stats.rx_length_errors += delta;
4918 	dev->stats.rx_length_errors += delta;
4919 
4920 	delta = le64_to_cpu(stats->rmac_fcs_err_frms) - sp->stats.rx_crc_errors;
4921 	sp->stats.rx_crc_errors += delta;
4922 	dev->stats.rx_crc_errors += delta;
4923 
4924 	return &dev->stats;
4925 }
4926 
4927 /**
4928  *  s2io_set_multicast - entry point for multicast address enable/disable.
4929  *  @dev : pointer to the device structure
4930  *  Description:
4931  *  This function is a driver entry point which gets called by the kernel
4932  *  whenever multicast addresses must be enabled/disabled. This also gets
4933  *  called to set/reset promiscuous mode. Depending on the deivce flag, we
4934  *  determine, if multicast address must be enabled or if promiscuous mode
4935  *  is to be disabled etc.
4936  *  Return value:
4937  *  void.
4938  */
4939 
4940 static void s2io_set_multicast(struct net_device *dev)
4941 {
4942 	int i, j, prev_cnt;
4943 	struct netdev_hw_addr *ha;
4944 	struct s2io_nic *sp = netdev_priv(dev);
4945 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
4946 	u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4947 		0xfeffffffffffULL;
4948 	u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0;
4949 	void __iomem *add;
4950 	struct config_param *config = &sp->config;
4951 
4952 	if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4953 		/*  Enable all Multicast addresses */
4954 		writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4955 		       &bar0->rmac_addr_data0_mem);
4956 		writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4957 		       &bar0->rmac_addr_data1_mem);
4958 		val64 = RMAC_ADDR_CMD_MEM_WE |
4959 			RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4960 			RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1);
4961 		writeq(val64, &bar0->rmac_addr_cmd_mem);
4962 		/* Wait till command completes */
4963 		wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4964 				      RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4965 				      S2IO_BIT_RESET);
4966 
4967 		sp->m_cast_flg = 1;
4968 		sp->all_multi_pos = config->max_mc_addr - 1;
4969 	} else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4970 		/*  Disable all Multicast addresses */
4971 		writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4972 		       &bar0->rmac_addr_data0_mem);
4973 		writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4974 		       &bar0->rmac_addr_data1_mem);
4975 		val64 = RMAC_ADDR_CMD_MEM_WE |
4976 			RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4977 			RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4978 		writeq(val64, &bar0->rmac_addr_cmd_mem);
4979 		/* Wait till command completes */
4980 		wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4981 				      RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4982 				      S2IO_BIT_RESET);
4983 
4984 		sp->m_cast_flg = 0;
4985 		sp->all_multi_pos = 0;
4986 	}
4987 
4988 	if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4989 		/*  Put the NIC into promiscuous mode */
4990 		add = &bar0->mac_cfg;
4991 		val64 = readq(&bar0->mac_cfg);
4992 		val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4993 
4994 		writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4995 		writel((u32)val64, add);
4996 		writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4997 		writel((u32) (val64 >> 32), (add + 4));
4998 
4999 		if (vlan_tag_strip != 1) {
5000 			val64 = readq(&bar0->rx_pa_cfg);
5001 			val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
5002 			writeq(val64, &bar0->rx_pa_cfg);
5003 			sp->vlan_strip_flag = 0;
5004 		}
5005 
5006 		val64 = readq(&bar0->mac_cfg);
5007 		sp->promisc_flg = 1;
5008 		DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
5009 			  dev->name);
5010 	} else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
5011 		/*  Remove the NIC from promiscuous mode */
5012 		add = &bar0->mac_cfg;
5013 		val64 = readq(&bar0->mac_cfg);
5014 		val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
5015 
5016 		writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5017 		writel((u32)val64, add);
5018 		writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5019 		writel((u32) (val64 >> 32), (add + 4));
5020 
5021 		if (vlan_tag_strip != 0) {
5022 			val64 = readq(&bar0->rx_pa_cfg);
5023 			val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
5024 			writeq(val64, &bar0->rx_pa_cfg);
5025 			sp->vlan_strip_flag = 1;
5026 		}
5027 
5028 		val64 = readq(&bar0->mac_cfg);
5029 		sp->promisc_flg = 0;
5030 		DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n", dev->name);
5031 	}
5032 
5033 	/*  Update individual M_CAST address list */
5034 	if ((!sp->m_cast_flg) && netdev_mc_count(dev)) {
5035 		if (netdev_mc_count(dev) >
5036 		    (config->max_mc_addr - config->max_mac_addr)) {
5037 			DBG_PRINT(ERR_DBG,
5038 				  "%s: No more Rx filters can be added - "
5039 				  "please enable ALL_MULTI instead\n",
5040 				  dev->name);
5041 			return;
5042 		}
5043 
5044 		prev_cnt = sp->mc_addr_count;
5045 		sp->mc_addr_count = netdev_mc_count(dev);
5046 
5047 		/* Clear out the previous list of Mc in the H/W. */
5048 		for (i = 0; i < prev_cnt; i++) {
5049 			writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
5050 			       &bar0->rmac_addr_data0_mem);
5051 			writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5052 			       &bar0->rmac_addr_data1_mem);
5053 			val64 = RMAC_ADDR_CMD_MEM_WE |
5054 				RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5055 				RMAC_ADDR_CMD_MEM_OFFSET
5056 				(config->mc_start_offset + i);
5057 			writeq(val64, &bar0->rmac_addr_cmd_mem);
5058 
5059 			/* Wait for command completes */
5060 			if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5061 						  RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5062 						  S2IO_BIT_RESET)) {
5063 				DBG_PRINT(ERR_DBG,
5064 					  "%s: Adding Multicasts failed\n",
5065 					  dev->name);
5066 				return;
5067 			}
5068 		}
5069 
5070 		/* Create the new Rx filter list and update the same in H/W. */
5071 		i = 0;
5072 		netdev_for_each_mc_addr(ha, dev) {
5073 			mac_addr = 0;
5074 			for (j = 0; j < ETH_ALEN; j++) {
5075 				mac_addr |= ha->addr[j];
5076 				mac_addr <<= 8;
5077 			}
5078 			mac_addr >>= 8;
5079 			writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
5080 			       &bar0->rmac_addr_data0_mem);
5081 			writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5082 			       &bar0->rmac_addr_data1_mem);
5083 			val64 = RMAC_ADDR_CMD_MEM_WE |
5084 				RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5085 				RMAC_ADDR_CMD_MEM_OFFSET
5086 				(i + config->mc_start_offset);
5087 			writeq(val64, &bar0->rmac_addr_cmd_mem);
5088 
5089 			/* Wait for command completes */
5090 			if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5091 						  RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5092 						  S2IO_BIT_RESET)) {
5093 				DBG_PRINT(ERR_DBG,
5094 					  "%s: Adding Multicasts failed\n",
5095 					  dev->name);
5096 				return;
5097 			}
5098 			i++;
5099 		}
5100 	}
5101 }
5102 
5103 /* read from CAM unicast & multicast addresses and store it in
5104  * def_mac_addr structure
5105  */
5106 static void do_s2io_store_unicast_mc(struct s2io_nic *sp)
5107 {
5108 	int offset;
5109 	u64 mac_addr = 0x0;
5110 	struct config_param *config = &sp->config;
5111 
5112 	/* store unicast & multicast mac addresses */
5113 	for (offset = 0; offset < config->max_mc_addr; offset++) {
5114 		mac_addr = do_s2io_read_unicast_mc(sp, offset);
5115 		/* if read fails disable the entry */
5116 		if (mac_addr == FAILURE)
5117 			mac_addr = S2IO_DISABLE_MAC_ENTRY;
5118 		do_s2io_copy_mac_addr(sp, offset, mac_addr);
5119 	}
5120 }
5121 
5122 /* restore unicast & multicast MAC to CAM from def_mac_addr structure */
5123 static void do_s2io_restore_unicast_mc(struct s2io_nic *sp)
5124 {
5125 	int offset;
5126 	struct config_param *config = &sp->config;
5127 	/* restore unicast mac address */
5128 	for (offset = 0; offset < config->max_mac_addr; offset++)
5129 		do_s2io_prog_unicast(sp->dev,
5130 				     sp->def_mac_addr[offset].mac_addr);
5131 
5132 	/* restore multicast mac address */
5133 	for (offset = config->mc_start_offset;
5134 	     offset < config->max_mc_addr; offset++)
5135 		do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr);
5136 }
5137 
5138 /* add a multicast MAC address to CAM */
5139 static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr)
5140 {
5141 	int i;
5142 	u64 mac_addr = 0;
5143 	struct config_param *config = &sp->config;
5144 
5145 	for (i = 0; i < ETH_ALEN; i++) {
5146 		mac_addr <<= 8;
5147 		mac_addr |= addr[i];
5148 	}
5149 	if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY))
5150 		return SUCCESS;
5151 
5152 	/* check if the multicast mac already preset in CAM */
5153 	for (i = config->mc_start_offset; i < config->max_mc_addr; i++) {
5154 		u64 tmp64;
5155 		tmp64 = do_s2io_read_unicast_mc(sp, i);
5156 		if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5157 			break;
5158 
5159 		if (tmp64 == mac_addr)
5160 			return SUCCESS;
5161 	}
5162 	if (i == config->max_mc_addr) {
5163 		DBG_PRINT(ERR_DBG,
5164 			  "CAM full no space left for multicast MAC\n");
5165 		return FAILURE;
5166 	}
5167 	/* Update the internal structure with this new mac address */
5168 	do_s2io_copy_mac_addr(sp, i, mac_addr);
5169 
5170 	return do_s2io_add_mac(sp, mac_addr, i);
5171 }
5172 
5173 /* add MAC address to CAM */
5174 static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off)
5175 {
5176 	u64 val64;
5177 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5178 
5179 	writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
5180 	       &bar0->rmac_addr_data0_mem);
5181 
5182 	val64 =	RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5183 		RMAC_ADDR_CMD_MEM_OFFSET(off);
5184 	writeq(val64, &bar0->rmac_addr_cmd_mem);
5185 
5186 	/* Wait till command completes */
5187 	if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5188 				  RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5189 				  S2IO_BIT_RESET)) {
5190 		DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n");
5191 		return FAILURE;
5192 	}
5193 	return SUCCESS;
5194 }
5195 /* deletes a specified unicast/multicast mac entry from CAM */
5196 static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr)
5197 {
5198 	int offset;
5199 	u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64;
5200 	struct config_param *config = &sp->config;
5201 
5202 	for (offset = 1;
5203 	     offset < config->max_mc_addr; offset++) {
5204 		tmp64 = do_s2io_read_unicast_mc(sp, offset);
5205 		if (tmp64 == addr) {
5206 			/* disable the entry by writing  0xffffffffffffULL */
5207 			if (do_s2io_add_mac(sp, dis_addr, offset) ==  FAILURE)
5208 				return FAILURE;
5209 			/* store the new mac list from CAM */
5210 			do_s2io_store_unicast_mc(sp);
5211 			return SUCCESS;
5212 		}
5213 	}
5214 	DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n",
5215 		  (unsigned long long)addr);
5216 	return FAILURE;
5217 }
5218 
5219 /* read mac entries from CAM */
5220 static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset)
5221 {
5222 	u64 tmp64 = 0xffffffffffff0000ULL, val64;
5223 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5224 
5225 	/* read mac addr */
5226 	val64 =	RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5227 		RMAC_ADDR_CMD_MEM_OFFSET(offset);
5228 	writeq(val64, &bar0->rmac_addr_cmd_mem);
5229 
5230 	/* Wait till command completes */
5231 	if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5232 				  RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5233 				  S2IO_BIT_RESET)) {
5234 		DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n");
5235 		return FAILURE;
5236 	}
5237 	tmp64 = readq(&bar0->rmac_addr_data0_mem);
5238 
5239 	return tmp64 >> 16;
5240 }
5241 
5242 /**
5243  * s2io_set_mac_addr driver entry point
5244  */
5245 
5246 static int s2io_set_mac_addr(struct net_device *dev, void *p)
5247 {
5248 	struct sockaddr *addr = p;
5249 
5250 	if (!is_valid_ether_addr(addr->sa_data))
5251 		return -EINVAL;
5252 
5253 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5254 
5255 	/* store the MAC address in CAM */
5256 	return do_s2io_prog_unicast(dev, dev->dev_addr);
5257 }
5258 /**
5259  *  do_s2io_prog_unicast - Programs the Xframe mac address
5260  *  @dev : pointer to the device structure.
5261  *  @addr: a uchar pointer to the new mac address which is to be set.
5262  *  Description : This procedure will program the Xframe to receive
5263  *  frames with new Mac Address
5264  *  Return value: SUCCESS on success and an appropriate (-)ve integer
5265  *  as defined in errno.h file on failure.
5266  */
5267 
5268 static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
5269 {
5270 	struct s2io_nic *sp = netdev_priv(dev);
5271 	register u64 mac_addr = 0, perm_addr = 0;
5272 	int i;
5273 	u64 tmp64;
5274 	struct config_param *config = &sp->config;
5275 
5276 	/*
5277 	 * Set the new MAC address as the new unicast filter and reflect this
5278 	 * change on the device address registered with the OS. It will be
5279 	 * at offset 0.
5280 	 */
5281 	for (i = 0; i < ETH_ALEN; i++) {
5282 		mac_addr <<= 8;
5283 		mac_addr |= addr[i];
5284 		perm_addr <<= 8;
5285 		perm_addr |= sp->def_mac_addr[0].mac_addr[i];
5286 	}
5287 
5288 	/* check if the dev_addr is different than perm_addr */
5289 	if (mac_addr == perm_addr)
5290 		return SUCCESS;
5291 
5292 	/* check if the mac already preset in CAM */
5293 	for (i = 1; i < config->max_mac_addr; i++) {
5294 		tmp64 = do_s2io_read_unicast_mc(sp, i);
5295 		if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5296 			break;
5297 
5298 		if (tmp64 == mac_addr) {
5299 			DBG_PRINT(INFO_DBG,
5300 				  "MAC addr:0x%llx already present in CAM\n",
5301 				  (unsigned long long)mac_addr);
5302 			return SUCCESS;
5303 		}
5304 	}
5305 	if (i == config->max_mac_addr) {
5306 		DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n");
5307 		return FAILURE;
5308 	}
5309 	/* Update the internal structure with this new mac address */
5310 	do_s2io_copy_mac_addr(sp, i, mac_addr);
5311 
5312 	return do_s2io_add_mac(sp, mac_addr, i);
5313 }
5314 
5315 /**
5316  * s2io_ethtool_sset - Sets different link parameters.
5317  * @sp : private member of the device structure, which is a pointer to the  * s2io_nic structure.
5318  * @info: pointer to the structure with parameters given by ethtool to set
5319  * link information.
5320  * Description:
5321  * The function sets different link parameters provided by the user onto
5322  * the NIC.
5323  * Return value:
5324  * 0 on success.
5325  */
5326 
5327 static int s2io_ethtool_sset(struct net_device *dev,
5328 			     struct ethtool_cmd *info)
5329 {
5330 	struct s2io_nic *sp = netdev_priv(dev);
5331 	if ((info->autoneg == AUTONEG_ENABLE) ||
5332 	    (ethtool_cmd_speed(info) != SPEED_10000) ||
5333 	    (info->duplex != DUPLEX_FULL))
5334 		return -EINVAL;
5335 	else {
5336 		s2io_close(sp->dev);
5337 		s2io_open(sp->dev);
5338 	}
5339 
5340 	return 0;
5341 }
5342 
5343 /**
5344  * s2io_ethtol_gset - Return link specific information.
5345  * @sp : private member of the device structure, pointer to the
5346  *      s2io_nic structure.
5347  * @info : pointer to the structure with parameters given by ethtool
5348  * to return link information.
5349  * Description:
5350  * Returns link specific information like speed, duplex etc.. to ethtool.
5351  * Return value :
5352  * return 0 on success.
5353  */
5354 
5355 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
5356 {
5357 	struct s2io_nic *sp = netdev_priv(dev);
5358 	info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5359 	info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5360 	info->port = PORT_FIBRE;
5361 
5362 	/* info->transceiver */
5363 	info->transceiver = XCVR_EXTERNAL;
5364 
5365 	if (netif_carrier_ok(sp->dev)) {
5366 		ethtool_cmd_speed_set(info, SPEED_10000);
5367 		info->duplex = DUPLEX_FULL;
5368 	} else {
5369 		ethtool_cmd_speed_set(info, -1);
5370 		info->duplex = -1;
5371 	}
5372 
5373 	info->autoneg = AUTONEG_DISABLE;
5374 	return 0;
5375 }
5376 
5377 /**
5378  * s2io_ethtool_gdrvinfo - Returns driver specific information.
5379  * @sp : private member of the device structure, which is a pointer to the
5380  * s2io_nic structure.
5381  * @info : pointer to the structure with parameters given by ethtool to
5382  * return driver information.
5383  * Description:
5384  * Returns driver specefic information like name, version etc.. to ethtool.
5385  * Return value:
5386  *  void
5387  */
5388 
5389 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
5390 				  struct ethtool_drvinfo *info)
5391 {
5392 	struct s2io_nic *sp = netdev_priv(dev);
5393 
5394 	strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
5395 	strncpy(info->version, s2io_driver_version, sizeof(info->version));
5396 	strncpy(info->fw_version, "", sizeof(info->fw_version));
5397 	strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
5398 	info->regdump_len = XENA_REG_SPACE;
5399 	info->eedump_len = XENA_EEPROM_SPACE;
5400 }
5401 
5402 /**
5403  *  s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5404  *  @sp: private member of the device structure, which is a pointer to the
5405  *  s2io_nic structure.
5406  *  @regs : pointer to the structure with parameters given by ethtool for
5407  *  dumping the registers.
5408  *  @reg_space: The input argumnet into which all the registers are dumped.
5409  *  Description:
5410  *  Dumps the entire register space of xFrame NIC into the user given
5411  *  buffer area.
5412  * Return value :
5413  * void .
5414  */
5415 
5416 static void s2io_ethtool_gregs(struct net_device *dev,
5417 			       struct ethtool_regs *regs, void *space)
5418 {
5419 	int i;
5420 	u64 reg;
5421 	u8 *reg_space = (u8 *)space;
5422 	struct s2io_nic *sp = netdev_priv(dev);
5423 
5424 	regs->len = XENA_REG_SPACE;
5425 	regs->version = sp->pdev->subsystem_device;
5426 
5427 	for (i = 0; i < regs->len; i += 8) {
5428 		reg = readq(sp->bar0 + i);
5429 		memcpy((reg_space + i), &reg, 8);
5430 	}
5431 }
5432 
5433 /*
5434  *  s2io_set_led - control NIC led
5435  */
5436 static void s2io_set_led(struct s2io_nic *sp, bool on)
5437 {
5438 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5439 	u16 subid = sp->pdev->subsystem_device;
5440 	u64 val64;
5441 
5442 	if ((sp->device_type == XFRAME_II_DEVICE) ||
5443 	    ((subid & 0xFF) >= 0x07)) {
5444 		val64 = readq(&bar0->gpio_control);
5445 		if (on)
5446 			val64 |= GPIO_CTRL_GPIO_0;
5447 		else
5448 			val64 &= ~GPIO_CTRL_GPIO_0;
5449 
5450 		writeq(val64, &bar0->gpio_control);
5451 	} else {
5452 		val64 = readq(&bar0->adapter_control);
5453 		if (on)
5454 			val64 |= ADAPTER_LED_ON;
5455 		else
5456 			val64 &= ~ADAPTER_LED_ON;
5457 
5458 		writeq(val64, &bar0->adapter_control);
5459 	}
5460 
5461 }
5462 
5463 /**
5464  * s2io_ethtool_set_led - To physically identify the nic on the system.
5465  * @dev : network device
5466  * @state: led setting
5467  *
5468  * Description: Used to physically identify the NIC on the system.
5469  * The Link LED will blink for a time specified by the user for
5470  * identification.
5471  * NOTE: The Link has to be Up to be able to blink the LED. Hence
5472  * identification is possible only if it's link is up.
5473  */
5474 
5475 static int s2io_ethtool_set_led(struct net_device *dev,
5476 				enum ethtool_phys_id_state state)
5477 {
5478 	struct s2io_nic *sp = netdev_priv(dev);
5479 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5480 	u16 subid = sp->pdev->subsystem_device;
5481 
5482 	if ((sp->device_type == XFRAME_I_DEVICE) && ((subid & 0xFF) < 0x07)) {
5483 		u64 val64 = readq(&bar0->adapter_control);
5484 		if (!(val64 & ADAPTER_CNTL_EN)) {
5485 			pr_err("Adapter Link down, cannot blink LED\n");
5486 			return -EAGAIN;
5487 		}
5488 	}
5489 
5490 	switch (state) {
5491 	case ETHTOOL_ID_ACTIVE:
5492 		sp->adapt_ctrl_org = readq(&bar0->gpio_control);
5493 		return 1;	/* cycle on/off once per second */
5494 
5495 	case ETHTOOL_ID_ON:
5496 		s2io_set_led(sp, true);
5497 		break;
5498 
5499 	case ETHTOOL_ID_OFF:
5500 		s2io_set_led(sp, false);
5501 		break;
5502 
5503 	case ETHTOOL_ID_INACTIVE:
5504 		if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid))
5505 			writeq(sp->adapt_ctrl_org, &bar0->gpio_control);
5506 	}
5507 
5508 	return 0;
5509 }
5510 
5511 static void s2io_ethtool_gringparam(struct net_device *dev,
5512 				    struct ethtool_ringparam *ering)
5513 {
5514 	struct s2io_nic *sp = netdev_priv(dev);
5515 	int i, tx_desc_count = 0, rx_desc_count = 0;
5516 
5517 	if (sp->rxd_mode == RXD_MODE_1) {
5518 		ering->rx_max_pending = MAX_RX_DESC_1;
5519 		ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
5520 	} else {
5521 		ering->rx_max_pending = MAX_RX_DESC_2;
5522 		ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
5523 	}
5524 
5525 	ering->tx_max_pending = MAX_TX_DESC;
5526 
5527 	for (i = 0; i < sp->config.rx_ring_num; i++)
5528 		rx_desc_count += sp->config.rx_cfg[i].num_rxd;
5529 	ering->rx_pending = rx_desc_count;
5530 	ering->rx_jumbo_pending = rx_desc_count;
5531 
5532 	for (i = 0; i < sp->config.tx_fifo_num; i++)
5533 		tx_desc_count += sp->config.tx_cfg[i].fifo_len;
5534 	ering->tx_pending = tx_desc_count;
5535 	DBG_PRINT(INFO_DBG, "max txds: %d\n", sp->config.max_txds);
5536 }
5537 
5538 /**
5539  * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
5540  * @sp : private member of the device structure, which is a pointer to the
5541  *	s2io_nic structure.
5542  * @ep : pointer to the structure with pause parameters given by ethtool.
5543  * Description:
5544  * Returns the Pause frame generation and reception capability of the NIC.
5545  * Return value:
5546  *  void
5547  */
5548 static void s2io_ethtool_getpause_data(struct net_device *dev,
5549 				       struct ethtool_pauseparam *ep)
5550 {
5551 	u64 val64;
5552 	struct s2io_nic *sp = netdev_priv(dev);
5553 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5554 
5555 	val64 = readq(&bar0->rmac_pause_cfg);
5556 	if (val64 & RMAC_PAUSE_GEN_ENABLE)
5557 		ep->tx_pause = true;
5558 	if (val64 & RMAC_PAUSE_RX_ENABLE)
5559 		ep->rx_pause = true;
5560 	ep->autoneg = false;
5561 }
5562 
5563 /**
5564  * s2io_ethtool_setpause_data -  set/reset pause frame generation.
5565  * @sp : private member of the device structure, which is a pointer to the
5566  *      s2io_nic structure.
5567  * @ep : pointer to the structure with pause parameters given by ethtool.
5568  * Description:
5569  * It can be used to set or reset Pause frame generation or reception
5570  * support of the NIC.
5571  * Return value:
5572  * int, returns 0 on Success
5573  */
5574 
5575 static int s2io_ethtool_setpause_data(struct net_device *dev,
5576 				      struct ethtool_pauseparam *ep)
5577 {
5578 	u64 val64;
5579 	struct s2io_nic *sp = netdev_priv(dev);
5580 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5581 
5582 	val64 = readq(&bar0->rmac_pause_cfg);
5583 	if (ep->tx_pause)
5584 		val64 |= RMAC_PAUSE_GEN_ENABLE;
5585 	else
5586 		val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5587 	if (ep->rx_pause)
5588 		val64 |= RMAC_PAUSE_RX_ENABLE;
5589 	else
5590 		val64 &= ~RMAC_PAUSE_RX_ENABLE;
5591 	writeq(val64, &bar0->rmac_pause_cfg);
5592 	return 0;
5593 }
5594 
5595 /**
5596  * read_eeprom - reads 4 bytes of data from user given offset.
5597  * @sp : private member of the device structure, which is a pointer to the
5598  *      s2io_nic structure.
5599  * @off : offset at which the data must be written
5600  * @data : Its an output parameter where the data read at the given
5601  *	offset is stored.
5602  * Description:
5603  * Will read 4 bytes of data from the user given offset and return the
5604  * read data.
5605  * NOTE: Will allow to read only part of the EEPROM visible through the
5606  *   I2C bus.
5607  * Return value:
5608  *  -1 on failure and 0 on success.
5609  */
5610 
5611 #define S2IO_DEV_ID		5
5612 static int read_eeprom(struct s2io_nic *sp, int off, u64 *data)
5613 {
5614 	int ret = -1;
5615 	u32 exit_cnt = 0;
5616 	u64 val64;
5617 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5618 
5619 	if (sp->device_type == XFRAME_I_DEVICE) {
5620 		val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5621 			I2C_CONTROL_ADDR(off) |
5622 			I2C_CONTROL_BYTE_CNT(0x3) |
5623 			I2C_CONTROL_READ |
5624 			I2C_CONTROL_CNTL_START;
5625 		SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5626 
5627 		while (exit_cnt < 5) {
5628 			val64 = readq(&bar0->i2c_control);
5629 			if (I2C_CONTROL_CNTL_END(val64)) {
5630 				*data = I2C_CONTROL_GET_DATA(val64);
5631 				ret = 0;
5632 				break;
5633 			}
5634 			msleep(50);
5635 			exit_cnt++;
5636 		}
5637 	}
5638 
5639 	if (sp->device_type == XFRAME_II_DEVICE) {
5640 		val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5641 			SPI_CONTROL_BYTECNT(0x3) |
5642 			SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5643 		SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5644 		val64 |= SPI_CONTROL_REQ;
5645 		SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5646 		while (exit_cnt < 5) {
5647 			val64 = readq(&bar0->spi_control);
5648 			if (val64 & SPI_CONTROL_NACK) {
5649 				ret = 1;
5650 				break;
5651 			} else if (val64 & SPI_CONTROL_DONE) {
5652 				*data = readq(&bar0->spi_data);
5653 				*data &= 0xffffff;
5654 				ret = 0;
5655 				break;
5656 			}
5657 			msleep(50);
5658 			exit_cnt++;
5659 		}
5660 	}
5661 	return ret;
5662 }
5663 
5664 /**
5665  *  write_eeprom - actually writes the relevant part of the data value.
5666  *  @sp : private member of the device structure, which is a pointer to the
5667  *       s2io_nic structure.
5668  *  @off : offset at which the data must be written
5669  *  @data : The data that is to be written
5670  *  @cnt : Number of bytes of the data that are actually to be written into
5671  *  the Eeprom. (max of 3)
5672  * Description:
5673  *  Actually writes the relevant part of the data value into the Eeprom
5674  *  through the I2C bus.
5675  * Return value:
5676  *  0 on success, -1 on failure.
5677  */
5678 
5679 static int write_eeprom(struct s2io_nic *sp, int off, u64 data, int cnt)
5680 {
5681 	int exit_cnt = 0, ret = -1;
5682 	u64 val64;
5683 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5684 
5685 	if (sp->device_type == XFRAME_I_DEVICE) {
5686 		val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5687 			I2C_CONTROL_ADDR(off) |
5688 			I2C_CONTROL_BYTE_CNT(cnt) |
5689 			I2C_CONTROL_SET_DATA((u32)data) |
5690 			I2C_CONTROL_CNTL_START;
5691 		SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5692 
5693 		while (exit_cnt < 5) {
5694 			val64 = readq(&bar0->i2c_control);
5695 			if (I2C_CONTROL_CNTL_END(val64)) {
5696 				if (!(val64 & I2C_CONTROL_NACK))
5697 					ret = 0;
5698 				break;
5699 			}
5700 			msleep(50);
5701 			exit_cnt++;
5702 		}
5703 	}
5704 
5705 	if (sp->device_type == XFRAME_II_DEVICE) {
5706 		int write_cnt = (cnt == 8) ? 0 : cnt;
5707 		writeq(SPI_DATA_WRITE(data, (cnt << 3)), &bar0->spi_data);
5708 
5709 		val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5710 			SPI_CONTROL_BYTECNT(write_cnt) |
5711 			SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5712 		SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5713 		val64 |= SPI_CONTROL_REQ;
5714 		SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5715 		while (exit_cnt < 5) {
5716 			val64 = readq(&bar0->spi_control);
5717 			if (val64 & SPI_CONTROL_NACK) {
5718 				ret = 1;
5719 				break;
5720 			} else if (val64 & SPI_CONTROL_DONE) {
5721 				ret = 0;
5722 				break;
5723 			}
5724 			msleep(50);
5725 			exit_cnt++;
5726 		}
5727 	}
5728 	return ret;
5729 }
5730 static void s2io_vpd_read(struct s2io_nic *nic)
5731 {
5732 	u8 *vpd_data;
5733 	u8 data;
5734 	int i = 0, cnt, len, fail = 0;
5735 	int vpd_addr = 0x80;
5736 	struct swStat *swstats = &nic->mac_control.stats_info->sw_stat;
5737 
5738 	if (nic->device_type == XFRAME_II_DEVICE) {
5739 		strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5740 		vpd_addr = 0x80;
5741 	} else {
5742 		strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5743 		vpd_addr = 0x50;
5744 	}
5745 	strcpy(nic->serial_num, "NOT AVAILABLE");
5746 
5747 	vpd_data = kmalloc(256, GFP_KERNEL);
5748 	if (!vpd_data) {
5749 		swstats->mem_alloc_fail_cnt++;
5750 		return;
5751 	}
5752 	swstats->mem_allocated += 256;
5753 
5754 	for (i = 0; i < 256; i += 4) {
5755 		pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5756 		pci_read_config_byte(nic->pdev,  (vpd_addr + 2), &data);
5757 		pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5758 		for (cnt = 0; cnt < 5; cnt++) {
5759 			msleep(2);
5760 			pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5761 			if (data == 0x80)
5762 				break;
5763 		}
5764 		if (cnt >= 5) {
5765 			DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5766 			fail = 1;
5767 			break;
5768 		}
5769 		pci_read_config_dword(nic->pdev,  (vpd_addr + 4),
5770 				      (u32 *)&vpd_data[i]);
5771 	}
5772 
5773 	if (!fail) {
5774 		/* read serial number of adapter */
5775 		for (cnt = 0; cnt < 252; cnt++) {
5776 			if ((vpd_data[cnt] == 'S') &&
5777 			    (vpd_data[cnt+1] == 'N')) {
5778 				len = vpd_data[cnt+2];
5779 				if (len < min(VPD_STRING_LEN, 256-cnt-2)) {
5780 					memcpy(nic->serial_num,
5781 					       &vpd_data[cnt + 3],
5782 					       len);
5783 					memset(nic->serial_num+len,
5784 					       0,
5785 					       VPD_STRING_LEN-len);
5786 					break;
5787 				}
5788 			}
5789 		}
5790 	}
5791 
5792 	if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
5793 		len = vpd_data[1];
5794 		memcpy(nic->product_name, &vpd_data[3], len);
5795 		nic->product_name[len] = 0;
5796 	}
5797 	kfree(vpd_data);
5798 	swstats->mem_freed += 256;
5799 }
5800 
5801 /**
5802  *  s2io_ethtool_geeprom  - reads the value stored in the Eeprom.
5803  *  @sp : private member of the device structure, which is a pointer to the *       s2io_nic structure.
5804  *  @eeprom : pointer to the user level structure provided by ethtool,
5805  *  containing all relevant information.
5806  *  @data_buf : user defined value to be written into Eeprom.
5807  *  Description: Reads the values stored in the Eeprom at given offset
5808  *  for a given length. Stores these values int the input argument data
5809  *  buffer 'data_buf' and returns these to the caller (ethtool.)
5810  *  Return value:
5811  *  int  0 on success
5812  */
5813 
5814 static int s2io_ethtool_geeprom(struct net_device *dev,
5815 				struct ethtool_eeprom *eeprom, u8 * data_buf)
5816 {
5817 	u32 i, valid;
5818 	u64 data;
5819 	struct s2io_nic *sp = netdev_priv(dev);
5820 
5821 	eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5822 
5823 	if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5824 		eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5825 
5826 	for (i = 0; i < eeprom->len; i += 4) {
5827 		if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5828 			DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5829 			return -EFAULT;
5830 		}
5831 		valid = INV(data);
5832 		memcpy((data_buf + i), &valid, 4);
5833 	}
5834 	return 0;
5835 }
5836 
5837 /**
5838  *  s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5839  *  @sp : private member of the device structure, which is a pointer to the
5840  *  s2io_nic structure.
5841  *  @eeprom : pointer to the user level structure provided by ethtool,
5842  *  containing all relevant information.
5843  *  @data_buf ; user defined value to be written into Eeprom.
5844  *  Description:
5845  *  Tries to write the user provided value in the Eeprom, at the offset
5846  *  given by the user.
5847  *  Return value:
5848  *  0 on success, -EFAULT on failure.
5849  */
5850 
5851 static int s2io_ethtool_seeprom(struct net_device *dev,
5852 				struct ethtool_eeprom *eeprom,
5853 				u8 *data_buf)
5854 {
5855 	int len = eeprom->len, cnt = 0;
5856 	u64 valid = 0, data;
5857 	struct s2io_nic *sp = netdev_priv(dev);
5858 
5859 	if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5860 		DBG_PRINT(ERR_DBG,
5861 			  "ETHTOOL_WRITE_EEPROM Err: "
5862 			  "Magic value is wrong, it is 0x%x should be 0x%x\n",
5863 			  (sp->pdev->vendor | (sp->pdev->device << 16)),
5864 			  eeprom->magic);
5865 		return -EFAULT;
5866 	}
5867 
5868 	while (len) {
5869 		data = (u32)data_buf[cnt] & 0x000000FF;
5870 		if (data)
5871 			valid = (u32)(data << 24);
5872 		else
5873 			valid = data;
5874 
5875 		if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5876 			DBG_PRINT(ERR_DBG,
5877 				  "ETHTOOL_WRITE_EEPROM Err: "
5878 				  "Cannot write into the specified offset\n");
5879 			return -EFAULT;
5880 		}
5881 		cnt++;
5882 		len--;
5883 	}
5884 
5885 	return 0;
5886 }
5887 
5888 /**
5889  * s2io_register_test - reads and writes into all clock domains.
5890  * @sp : private member of the device structure, which is a pointer to the
5891  * s2io_nic structure.
5892  * @data : variable that returns the result of each of the test conducted b
5893  * by the driver.
5894  * Description:
5895  * Read and write into all clock domains. The NIC has 3 clock domains,
5896  * see that registers in all the three regions are accessible.
5897  * Return value:
5898  * 0 on success.
5899  */
5900 
5901 static int s2io_register_test(struct s2io_nic *sp, uint64_t *data)
5902 {
5903 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5904 	u64 val64 = 0, exp_val;
5905 	int fail = 0;
5906 
5907 	val64 = readq(&bar0->pif_rd_swapper_fb);
5908 	if (val64 != 0x123456789abcdefULL) {
5909 		fail = 1;
5910 		DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 1);
5911 	}
5912 
5913 	val64 = readq(&bar0->rmac_pause_cfg);
5914 	if (val64 != 0xc000ffff00000000ULL) {
5915 		fail = 1;
5916 		DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 2);
5917 	}
5918 
5919 	val64 = readq(&bar0->rx_queue_cfg);
5920 	if (sp->device_type == XFRAME_II_DEVICE)
5921 		exp_val = 0x0404040404040404ULL;
5922 	else
5923 		exp_val = 0x0808080808080808ULL;
5924 	if (val64 != exp_val) {
5925 		fail = 1;
5926 		DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 3);
5927 	}
5928 
5929 	val64 = readq(&bar0->xgxs_efifo_cfg);
5930 	if (val64 != 0x000000001923141EULL) {
5931 		fail = 1;
5932 		DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 4);
5933 	}
5934 
5935 	val64 = 0x5A5A5A5A5A5A5A5AULL;
5936 	writeq(val64, &bar0->xmsi_data);
5937 	val64 = readq(&bar0->xmsi_data);
5938 	if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5939 		fail = 1;
5940 		DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 1);
5941 	}
5942 
5943 	val64 = 0xA5A5A5A5A5A5A5A5ULL;
5944 	writeq(val64, &bar0->xmsi_data);
5945 	val64 = readq(&bar0->xmsi_data);
5946 	if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5947 		fail = 1;
5948 		DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 2);
5949 	}
5950 
5951 	*data = fail;
5952 	return fail;
5953 }
5954 
5955 /**
5956  * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5957  * @sp : private member of the device structure, which is a pointer to the
5958  * s2io_nic structure.
5959  * @data:variable that returns the result of each of the test conducted by
5960  * the driver.
5961  * Description:
5962  * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5963  * register.
5964  * Return value:
5965  * 0 on success.
5966  */
5967 
5968 static int s2io_eeprom_test(struct s2io_nic *sp, uint64_t *data)
5969 {
5970 	int fail = 0;
5971 	u64 ret_data, org_4F0, org_7F0;
5972 	u8 saved_4F0 = 0, saved_7F0 = 0;
5973 	struct net_device *dev = sp->dev;
5974 
5975 	/* Test Write Error at offset 0 */
5976 	/* Note that SPI interface allows write access to all areas
5977 	 * of EEPROM. Hence doing all negative testing only for Xframe I.
5978 	 */
5979 	if (sp->device_type == XFRAME_I_DEVICE)
5980 		if (!write_eeprom(sp, 0, 0, 3))
5981 			fail = 1;
5982 
5983 	/* Save current values at offsets 0x4F0 and 0x7F0 */
5984 	if (!read_eeprom(sp, 0x4F0, &org_4F0))
5985 		saved_4F0 = 1;
5986 	if (!read_eeprom(sp, 0x7F0, &org_7F0))
5987 		saved_7F0 = 1;
5988 
5989 	/* Test Write at offset 4f0 */
5990 	if (write_eeprom(sp, 0x4F0, 0x012345, 3))
5991 		fail = 1;
5992 	if (read_eeprom(sp, 0x4F0, &ret_data))
5993 		fail = 1;
5994 
5995 	if (ret_data != 0x012345) {
5996 		DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
5997 			  "Data written %llx Data read %llx\n",
5998 			  dev->name, (unsigned long long)0x12345,
5999 			  (unsigned long long)ret_data);
6000 		fail = 1;
6001 	}
6002 
6003 	/* Reset the EEPROM data go FFFF */
6004 	write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
6005 
6006 	/* Test Write Request Error at offset 0x7c */
6007 	if (sp->device_type == XFRAME_I_DEVICE)
6008 		if (!write_eeprom(sp, 0x07C, 0, 3))
6009 			fail = 1;
6010 
6011 	/* Test Write Request at offset 0x7f0 */
6012 	if (write_eeprom(sp, 0x7F0, 0x012345, 3))
6013 		fail = 1;
6014 	if (read_eeprom(sp, 0x7F0, &ret_data))
6015 		fail = 1;
6016 
6017 	if (ret_data != 0x012345) {
6018 		DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
6019 			  "Data written %llx Data read %llx\n",
6020 			  dev->name, (unsigned long long)0x12345,
6021 			  (unsigned long long)ret_data);
6022 		fail = 1;
6023 	}
6024 
6025 	/* Reset the EEPROM data go FFFF */
6026 	write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
6027 
6028 	if (sp->device_type == XFRAME_I_DEVICE) {
6029 		/* Test Write Error at offset 0x80 */
6030 		if (!write_eeprom(sp, 0x080, 0, 3))
6031 			fail = 1;
6032 
6033 		/* Test Write Error at offset 0xfc */
6034 		if (!write_eeprom(sp, 0x0FC, 0, 3))
6035 			fail = 1;
6036 
6037 		/* Test Write Error at offset 0x100 */
6038 		if (!write_eeprom(sp, 0x100, 0, 3))
6039 			fail = 1;
6040 
6041 		/* Test Write Error at offset 4ec */
6042 		if (!write_eeprom(sp, 0x4EC, 0, 3))
6043 			fail = 1;
6044 	}
6045 
6046 	/* Restore values at offsets 0x4F0 and 0x7F0 */
6047 	if (saved_4F0)
6048 		write_eeprom(sp, 0x4F0, org_4F0, 3);
6049 	if (saved_7F0)
6050 		write_eeprom(sp, 0x7F0, org_7F0, 3);
6051 
6052 	*data = fail;
6053 	return fail;
6054 }
6055 
6056 /**
6057  * s2io_bist_test - invokes the MemBist test of the card .
6058  * @sp : private member of the device structure, which is a pointer to the
6059  * s2io_nic structure.
6060  * @data:variable that returns the result of each of the test conducted by
6061  * the driver.
6062  * Description:
6063  * This invokes the MemBist test of the card. We give around
6064  * 2 secs time for the Test to complete. If it's still not complete
6065  * within this peiod, we consider that the test failed.
6066  * Return value:
6067  * 0 on success and -1 on failure.
6068  */
6069 
6070 static int s2io_bist_test(struct s2io_nic *sp, uint64_t *data)
6071 {
6072 	u8 bist = 0;
6073 	int cnt = 0, ret = -1;
6074 
6075 	pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6076 	bist |= PCI_BIST_START;
6077 	pci_write_config_word(sp->pdev, PCI_BIST, bist);
6078 
6079 	while (cnt < 20) {
6080 		pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6081 		if (!(bist & PCI_BIST_START)) {
6082 			*data = (bist & PCI_BIST_CODE_MASK);
6083 			ret = 0;
6084 			break;
6085 		}
6086 		msleep(100);
6087 		cnt++;
6088 	}
6089 
6090 	return ret;
6091 }
6092 
6093 /**
6094  * s2io-link_test - verifies the link state of the nic
6095  * @sp ; private member of the device structure, which is a pointer to the
6096  * s2io_nic structure.
6097  * @data: variable that returns the result of each of the test conducted by
6098  * the driver.
6099  * Description:
6100  * The function verifies the link state of the NIC and updates the input
6101  * argument 'data' appropriately.
6102  * Return value:
6103  * 0 on success.
6104  */
6105 
6106 static int s2io_link_test(struct s2io_nic *sp, uint64_t *data)
6107 {
6108 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
6109 	u64 val64;
6110 
6111 	val64 = readq(&bar0->adapter_status);
6112 	if (!(LINK_IS_UP(val64)))
6113 		*data = 1;
6114 	else
6115 		*data = 0;
6116 
6117 	return *data;
6118 }
6119 
6120 /**
6121  * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
6122  * @sp - private member of the device structure, which is a pointer to the
6123  * s2io_nic structure.
6124  * @data - variable that returns the result of each of the test
6125  * conducted by the driver.
6126  * Description:
6127  *  This is one of the offline test that tests the read and write
6128  *  access to the RldRam chip on the NIC.
6129  * Return value:
6130  *  0 on success.
6131  */
6132 
6133 static int s2io_rldram_test(struct s2io_nic *sp, uint64_t *data)
6134 {
6135 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
6136 	u64 val64;
6137 	int cnt, iteration = 0, test_fail = 0;
6138 
6139 	val64 = readq(&bar0->adapter_control);
6140 	val64 &= ~ADAPTER_ECC_EN;
6141 	writeq(val64, &bar0->adapter_control);
6142 
6143 	val64 = readq(&bar0->mc_rldram_test_ctrl);
6144 	val64 |= MC_RLDRAM_TEST_MODE;
6145 	SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6146 
6147 	val64 = readq(&bar0->mc_rldram_mrs);
6148 	val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
6149 	SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6150 
6151 	val64 |= MC_RLDRAM_MRS_ENABLE;
6152 	SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6153 
6154 	while (iteration < 2) {
6155 		val64 = 0x55555555aaaa0000ULL;
6156 		if (iteration == 1)
6157 			val64 ^= 0xFFFFFFFFFFFF0000ULL;
6158 		writeq(val64, &bar0->mc_rldram_test_d0);
6159 
6160 		val64 = 0xaaaa5a5555550000ULL;
6161 		if (iteration == 1)
6162 			val64 ^= 0xFFFFFFFFFFFF0000ULL;
6163 		writeq(val64, &bar0->mc_rldram_test_d1);
6164 
6165 		val64 = 0x55aaaaaaaa5a0000ULL;
6166 		if (iteration == 1)
6167 			val64 ^= 0xFFFFFFFFFFFF0000ULL;
6168 		writeq(val64, &bar0->mc_rldram_test_d2);
6169 
6170 		val64 = (u64) (0x0000003ffffe0100ULL);
6171 		writeq(val64, &bar0->mc_rldram_test_add);
6172 
6173 		val64 = MC_RLDRAM_TEST_MODE |
6174 			MC_RLDRAM_TEST_WRITE |
6175 			MC_RLDRAM_TEST_GO;
6176 		SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6177 
6178 		for (cnt = 0; cnt < 5; cnt++) {
6179 			val64 = readq(&bar0->mc_rldram_test_ctrl);
6180 			if (val64 & MC_RLDRAM_TEST_DONE)
6181 				break;
6182 			msleep(200);
6183 		}
6184 
6185 		if (cnt == 5)
6186 			break;
6187 
6188 		val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
6189 		SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6190 
6191 		for (cnt = 0; cnt < 5; cnt++) {
6192 			val64 = readq(&bar0->mc_rldram_test_ctrl);
6193 			if (val64 & MC_RLDRAM_TEST_DONE)
6194 				break;
6195 			msleep(500);
6196 		}
6197 
6198 		if (cnt == 5)
6199 			break;
6200 
6201 		val64 = readq(&bar0->mc_rldram_test_ctrl);
6202 		if (!(val64 & MC_RLDRAM_TEST_PASS))
6203 			test_fail = 1;
6204 
6205 		iteration++;
6206 	}
6207 
6208 	*data = test_fail;
6209 
6210 	/* Bring the adapter out of test mode */
6211 	SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
6212 
6213 	return test_fail;
6214 }
6215 
6216 /**
6217  *  s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6218  *  @sp : private member of the device structure, which is a pointer to the
6219  *  s2io_nic structure.
6220  *  @ethtest : pointer to a ethtool command specific structure that will be
6221  *  returned to the user.
6222  *  @data : variable that returns the result of each of the test
6223  * conducted by the driver.
6224  * Description:
6225  *  This function conducts 6 tests ( 4 offline and 2 online) to determine
6226  *  the health of the card.
6227  * Return value:
6228  *  void
6229  */
6230 
6231 static void s2io_ethtool_test(struct net_device *dev,
6232 			      struct ethtool_test *ethtest,
6233 			      uint64_t *data)
6234 {
6235 	struct s2io_nic *sp = netdev_priv(dev);
6236 	int orig_state = netif_running(sp->dev);
6237 
6238 	if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
6239 		/* Offline Tests. */
6240 		if (orig_state)
6241 			s2io_close(sp->dev);
6242 
6243 		if (s2io_register_test(sp, &data[0]))
6244 			ethtest->flags |= ETH_TEST_FL_FAILED;
6245 
6246 		s2io_reset(sp);
6247 
6248 		if (s2io_rldram_test(sp, &data[3]))
6249 			ethtest->flags |= ETH_TEST_FL_FAILED;
6250 
6251 		s2io_reset(sp);
6252 
6253 		if (s2io_eeprom_test(sp, &data[1]))
6254 			ethtest->flags |= ETH_TEST_FL_FAILED;
6255 
6256 		if (s2io_bist_test(sp, &data[4]))
6257 			ethtest->flags |= ETH_TEST_FL_FAILED;
6258 
6259 		if (orig_state)
6260 			s2io_open(sp->dev);
6261 
6262 		data[2] = 0;
6263 	} else {
6264 		/* Online Tests. */
6265 		if (!orig_state) {
6266 			DBG_PRINT(ERR_DBG, "%s: is not up, cannot run test\n",
6267 				  dev->name);
6268 			data[0] = -1;
6269 			data[1] = -1;
6270 			data[2] = -1;
6271 			data[3] = -1;
6272 			data[4] = -1;
6273 		}
6274 
6275 		if (s2io_link_test(sp, &data[2]))
6276 			ethtest->flags |= ETH_TEST_FL_FAILED;
6277 
6278 		data[0] = 0;
6279 		data[1] = 0;
6280 		data[3] = 0;
6281 		data[4] = 0;
6282 	}
6283 }
6284 
6285 static void s2io_get_ethtool_stats(struct net_device *dev,
6286 				   struct ethtool_stats *estats,
6287 				   u64 *tmp_stats)
6288 {
6289 	int i = 0, k;
6290 	struct s2io_nic *sp = netdev_priv(dev);
6291 	struct stat_block *stats = sp->mac_control.stats_info;
6292 	struct swStat *swstats = &stats->sw_stat;
6293 	struct xpakStat *xstats = &stats->xpak_stat;
6294 
6295 	s2io_updt_stats(sp);
6296 	tmp_stats[i++] =
6297 		(u64)le32_to_cpu(stats->tmac_frms_oflow) << 32  |
6298 		le32_to_cpu(stats->tmac_frms);
6299 	tmp_stats[i++] =
6300 		(u64)le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
6301 		le32_to_cpu(stats->tmac_data_octets);
6302 	tmp_stats[i++] = le64_to_cpu(stats->tmac_drop_frms);
6303 	tmp_stats[i++] =
6304 		(u64)le32_to_cpu(stats->tmac_mcst_frms_oflow) << 32 |
6305 		le32_to_cpu(stats->tmac_mcst_frms);
6306 	tmp_stats[i++] =
6307 		(u64)le32_to_cpu(stats->tmac_bcst_frms_oflow) << 32 |
6308 		le32_to_cpu(stats->tmac_bcst_frms);
6309 	tmp_stats[i++] = le64_to_cpu(stats->tmac_pause_ctrl_frms);
6310 	tmp_stats[i++] =
6311 		(u64)le32_to_cpu(stats->tmac_ttl_octets_oflow) << 32 |
6312 		le32_to_cpu(stats->tmac_ttl_octets);
6313 	tmp_stats[i++] =
6314 		(u64)le32_to_cpu(stats->tmac_ucst_frms_oflow) << 32 |
6315 		le32_to_cpu(stats->tmac_ucst_frms);
6316 	tmp_stats[i++] =
6317 		(u64)le32_to_cpu(stats->tmac_nucst_frms_oflow) << 32 |
6318 		le32_to_cpu(stats->tmac_nucst_frms);
6319 	tmp_stats[i++] =
6320 		(u64)le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
6321 		le32_to_cpu(stats->tmac_any_err_frms);
6322 	tmp_stats[i++] = le64_to_cpu(stats->tmac_ttl_less_fb_octets);
6323 	tmp_stats[i++] = le64_to_cpu(stats->tmac_vld_ip_octets);
6324 	tmp_stats[i++] =
6325 		(u64)le32_to_cpu(stats->tmac_vld_ip_oflow) << 32 |
6326 		le32_to_cpu(stats->tmac_vld_ip);
6327 	tmp_stats[i++] =
6328 		(u64)le32_to_cpu(stats->tmac_drop_ip_oflow) << 32 |
6329 		le32_to_cpu(stats->tmac_drop_ip);
6330 	tmp_stats[i++] =
6331 		(u64)le32_to_cpu(stats->tmac_icmp_oflow) << 32 |
6332 		le32_to_cpu(stats->tmac_icmp);
6333 	tmp_stats[i++] =
6334 		(u64)le32_to_cpu(stats->tmac_rst_tcp_oflow) << 32 |
6335 		le32_to_cpu(stats->tmac_rst_tcp);
6336 	tmp_stats[i++] = le64_to_cpu(stats->tmac_tcp);
6337 	tmp_stats[i++] = (u64)le32_to_cpu(stats->tmac_udp_oflow) << 32 |
6338 		le32_to_cpu(stats->tmac_udp);
6339 	tmp_stats[i++] =
6340 		(u64)le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
6341 		le32_to_cpu(stats->rmac_vld_frms);
6342 	tmp_stats[i++] =
6343 		(u64)le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
6344 		le32_to_cpu(stats->rmac_data_octets);
6345 	tmp_stats[i++] = le64_to_cpu(stats->rmac_fcs_err_frms);
6346 	tmp_stats[i++] = le64_to_cpu(stats->rmac_drop_frms);
6347 	tmp_stats[i++] =
6348 		(u64)le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
6349 		le32_to_cpu(stats->rmac_vld_mcst_frms);
6350 	tmp_stats[i++] =
6351 		(u64)le32_to_cpu(stats->rmac_vld_bcst_frms_oflow) << 32 |
6352 		le32_to_cpu(stats->rmac_vld_bcst_frms);
6353 	tmp_stats[i++] = le32_to_cpu(stats->rmac_in_rng_len_err_frms);
6354 	tmp_stats[i++] = le32_to_cpu(stats->rmac_out_rng_len_err_frms);
6355 	tmp_stats[i++] = le64_to_cpu(stats->rmac_long_frms);
6356 	tmp_stats[i++] = le64_to_cpu(stats->rmac_pause_ctrl_frms);
6357 	tmp_stats[i++] = le64_to_cpu(stats->rmac_unsup_ctrl_frms);
6358 	tmp_stats[i++] =
6359 		(u64)le32_to_cpu(stats->rmac_ttl_octets_oflow) << 32 |
6360 		le32_to_cpu(stats->rmac_ttl_octets);
6361 	tmp_stats[i++] =
6362 		(u64)le32_to_cpu(stats->rmac_accepted_ucst_frms_oflow) << 32
6363 		| le32_to_cpu(stats->rmac_accepted_ucst_frms);
6364 	tmp_stats[i++] =
6365 		(u64)le32_to_cpu(stats->rmac_accepted_nucst_frms_oflow)
6366 		<< 32 | le32_to_cpu(stats->rmac_accepted_nucst_frms);
6367 	tmp_stats[i++] =
6368 		(u64)le32_to_cpu(stats->rmac_discarded_frms_oflow) << 32 |
6369 		le32_to_cpu(stats->rmac_discarded_frms);
6370 	tmp_stats[i++] =
6371 		(u64)le32_to_cpu(stats->rmac_drop_events_oflow)
6372 		<< 32 | le32_to_cpu(stats->rmac_drop_events);
6373 	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_less_fb_octets);
6374 	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_frms);
6375 	tmp_stats[i++] =
6376 		(u64)le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
6377 		le32_to_cpu(stats->rmac_usized_frms);
6378 	tmp_stats[i++] =
6379 		(u64)le32_to_cpu(stats->rmac_osized_frms_oflow) << 32 |
6380 		le32_to_cpu(stats->rmac_osized_frms);
6381 	tmp_stats[i++] =
6382 		(u64)le32_to_cpu(stats->rmac_frag_frms_oflow) << 32 |
6383 		le32_to_cpu(stats->rmac_frag_frms);
6384 	tmp_stats[i++] =
6385 		(u64)le32_to_cpu(stats->rmac_jabber_frms_oflow) << 32 |
6386 		le32_to_cpu(stats->rmac_jabber_frms);
6387 	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_64_frms);
6388 	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_65_127_frms);
6389 	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_128_255_frms);
6390 	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_256_511_frms);
6391 	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_512_1023_frms);
6392 	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_1024_1518_frms);
6393 	tmp_stats[i++] =
6394 		(u64)le32_to_cpu(stats->rmac_ip_oflow) << 32 |
6395 		le32_to_cpu(stats->rmac_ip);
6396 	tmp_stats[i++] = le64_to_cpu(stats->rmac_ip_octets);
6397 	tmp_stats[i++] = le32_to_cpu(stats->rmac_hdr_err_ip);
6398 	tmp_stats[i++] =
6399 		(u64)le32_to_cpu(stats->rmac_drop_ip_oflow) << 32 |
6400 		le32_to_cpu(stats->rmac_drop_ip);
6401 	tmp_stats[i++] =
6402 		(u64)le32_to_cpu(stats->rmac_icmp_oflow) << 32 |
6403 		le32_to_cpu(stats->rmac_icmp);
6404 	tmp_stats[i++] = le64_to_cpu(stats->rmac_tcp);
6405 	tmp_stats[i++] =
6406 		(u64)le32_to_cpu(stats->rmac_udp_oflow) << 32 |
6407 		le32_to_cpu(stats->rmac_udp);
6408 	tmp_stats[i++] =
6409 		(u64)le32_to_cpu(stats->rmac_err_drp_udp_oflow) << 32 |
6410 		le32_to_cpu(stats->rmac_err_drp_udp);
6411 	tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_err_sym);
6412 	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q0);
6413 	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q1);
6414 	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q2);
6415 	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q3);
6416 	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q4);
6417 	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q5);
6418 	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q6);
6419 	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q7);
6420 	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q0);
6421 	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q1);
6422 	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q2);
6423 	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q3);
6424 	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q4);
6425 	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q5);
6426 	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q6);
6427 	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q7);
6428 	tmp_stats[i++] =
6429 		(u64)le32_to_cpu(stats->rmac_pause_cnt_oflow) << 32 |
6430 		le32_to_cpu(stats->rmac_pause_cnt);
6431 	tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_data_err_cnt);
6432 	tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_ctrl_err_cnt);
6433 	tmp_stats[i++] =
6434 		(u64)le32_to_cpu(stats->rmac_accepted_ip_oflow) << 32 |
6435 		le32_to_cpu(stats->rmac_accepted_ip);
6436 	tmp_stats[i++] = le32_to_cpu(stats->rmac_err_tcp);
6437 	tmp_stats[i++] = le32_to_cpu(stats->rd_req_cnt);
6438 	tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_cnt);
6439 	tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_rtry_cnt);
6440 	tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_cnt);
6441 	tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_rd_ack_cnt);
6442 	tmp_stats[i++] = le32_to_cpu(stats->wr_req_cnt);
6443 	tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_cnt);
6444 	tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_rtry_cnt);
6445 	tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_cnt);
6446 	tmp_stats[i++] = le32_to_cpu(stats->wr_disc_cnt);
6447 	tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_wr_ack_cnt);
6448 	tmp_stats[i++] = le32_to_cpu(stats->txp_wr_cnt);
6449 	tmp_stats[i++] = le32_to_cpu(stats->txd_rd_cnt);
6450 	tmp_stats[i++] = le32_to_cpu(stats->txd_wr_cnt);
6451 	tmp_stats[i++] = le32_to_cpu(stats->rxd_rd_cnt);
6452 	tmp_stats[i++] = le32_to_cpu(stats->rxd_wr_cnt);
6453 	tmp_stats[i++] = le32_to_cpu(stats->txf_rd_cnt);
6454 	tmp_stats[i++] = le32_to_cpu(stats->rxf_wr_cnt);
6455 
6456 	/* Enhanced statistics exist only for Hercules */
6457 	if (sp->device_type == XFRAME_II_DEVICE) {
6458 		tmp_stats[i++] =
6459 			le64_to_cpu(stats->rmac_ttl_1519_4095_frms);
6460 		tmp_stats[i++] =
6461 			le64_to_cpu(stats->rmac_ttl_4096_8191_frms);
6462 		tmp_stats[i++] =
6463 			le64_to_cpu(stats->rmac_ttl_8192_max_frms);
6464 		tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_gt_max_frms);
6465 		tmp_stats[i++] = le64_to_cpu(stats->rmac_osized_alt_frms);
6466 		tmp_stats[i++] = le64_to_cpu(stats->rmac_jabber_alt_frms);
6467 		tmp_stats[i++] = le64_to_cpu(stats->rmac_gt_max_alt_frms);
6468 		tmp_stats[i++] = le64_to_cpu(stats->rmac_vlan_frms);
6469 		tmp_stats[i++] = le32_to_cpu(stats->rmac_len_discard);
6470 		tmp_stats[i++] = le32_to_cpu(stats->rmac_fcs_discard);
6471 		tmp_stats[i++] = le32_to_cpu(stats->rmac_pf_discard);
6472 		tmp_stats[i++] = le32_to_cpu(stats->rmac_da_discard);
6473 		tmp_stats[i++] = le32_to_cpu(stats->rmac_red_discard);
6474 		tmp_stats[i++] = le32_to_cpu(stats->rmac_rts_discard);
6475 		tmp_stats[i++] = le32_to_cpu(stats->rmac_ingm_full_discard);
6476 		tmp_stats[i++] = le32_to_cpu(stats->link_fault_cnt);
6477 	}
6478 
6479 	tmp_stats[i++] = 0;
6480 	tmp_stats[i++] = swstats->single_ecc_errs;
6481 	tmp_stats[i++] = swstats->double_ecc_errs;
6482 	tmp_stats[i++] = swstats->parity_err_cnt;
6483 	tmp_stats[i++] = swstats->serious_err_cnt;
6484 	tmp_stats[i++] = swstats->soft_reset_cnt;
6485 	tmp_stats[i++] = swstats->fifo_full_cnt;
6486 	for (k = 0; k < MAX_RX_RINGS; k++)
6487 		tmp_stats[i++] = swstats->ring_full_cnt[k];
6488 	tmp_stats[i++] = xstats->alarm_transceiver_temp_high;
6489 	tmp_stats[i++] = xstats->alarm_transceiver_temp_low;
6490 	tmp_stats[i++] = xstats->alarm_laser_bias_current_high;
6491 	tmp_stats[i++] = xstats->alarm_laser_bias_current_low;
6492 	tmp_stats[i++] = xstats->alarm_laser_output_power_high;
6493 	tmp_stats[i++] = xstats->alarm_laser_output_power_low;
6494 	tmp_stats[i++] = xstats->warn_transceiver_temp_high;
6495 	tmp_stats[i++] = xstats->warn_transceiver_temp_low;
6496 	tmp_stats[i++] = xstats->warn_laser_bias_current_high;
6497 	tmp_stats[i++] = xstats->warn_laser_bias_current_low;
6498 	tmp_stats[i++] = xstats->warn_laser_output_power_high;
6499 	tmp_stats[i++] = xstats->warn_laser_output_power_low;
6500 	tmp_stats[i++] = swstats->clubbed_frms_cnt;
6501 	tmp_stats[i++] = swstats->sending_both;
6502 	tmp_stats[i++] = swstats->outof_sequence_pkts;
6503 	tmp_stats[i++] = swstats->flush_max_pkts;
6504 	if (swstats->num_aggregations) {
6505 		u64 tmp = swstats->sum_avg_pkts_aggregated;
6506 		int count = 0;
6507 		/*
6508 		 * Since 64-bit divide does not work on all platforms,
6509 		 * do repeated subtraction.
6510 		 */
6511 		while (tmp >= swstats->num_aggregations) {
6512 			tmp -= swstats->num_aggregations;
6513 			count++;
6514 		}
6515 		tmp_stats[i++] = count;
6516 	} else
6517 		tmp_stats[i++] = 0;
6518 	tmp_stats[i++] = swstats->mem_alloc_fail_cnt;
6519 	tmp_stats[i++] = swstats->pci_map_fail_cnt;
6520 	tmp_stats[i++] = swstats->watchdog_timer_cnt;
6521 	tmp_stats[i++] = swstats->mem_allocated;
6522 	tmp_stats[i++] = swstats->mem_freed;
6523 	tmp_stats[i++] = swstats->link_up_cnt;
6524 	tmp_stats[i++] = swstats->link_down_cnt;
6525 	tmp_stats[i++] = swstats->link_up_time;
6526 	tmp_stats[i++] = swstats->link_down_time;
6527 
6528 	tmp_stats[i++] = swstats->tx_buf_abort_cnt;
6529 	tmp_stats[i++] = swstats->tx_desc_abort_cnt;
6530 	tmp_stats[i++] = swstats->tx_parity_err_cnt;
6531 	tmp_stats[i++] = swstats->tx_link_loss_cnt;
6532 	tmp_stats[i++] = swstats->tx_list_proc_err_cnt;
6533 
6534 	tmp_stats[i++] = swstats->rx_parity_err_cnt;
6535 	tmp_stats[i++] = swstats->rx_abort_cnt;
6536 	tmp_stats[i++] = swstats->rx_parity_abort_cnt;
6537 	tmp_stats[i++] = swstats->rx_rda_fail_cnt;
6538 	tmp_stats[i++] = swstats->rx_unkn_prot_cnt;
6539 	tmp_stats[i++] = swstats->rx_fcs_err_cnt;
6540 	tmp_stats[i++] = swstats->rx_buf_size_err_cnt;
6541 	tmp_stats[i++] = swstats->rx_rxd_corrupt_cnt;
6542 	tmp_stats[i++] = swstats->rx_unkn_err_cnt;
6543 	tmp_stats[i++] = swstats->tda_err_cnt;
6544 	tmp_stats[i++] = swstats->pfc_err_cnt;
6545 	tmp_stats[i++] = swstats->pcc_err_cnt;
6546 	tmp_stats[i++] = swstats->tti_err_cnt;
6547 	tmp_stats[i++] = swstats->tpa_err_cnt;
6548 	tmp_stats[i++] = swstats->sm_err_cnt;
6549 	tmp_stats[i++] = swstats->lso_err_cnt;
6550 	tmp_stats[i++] = swstats->mac_tmac_err_cnt;
6551 	tmp_stats[i++] = swstats->mac_rmac_err_cnt;
6552 	tmp_stats[i++] = swstats->xgxs_txgxs_err_cnt;
6553 	tmp_stats[i++] = swstats->xgxs_rxgxs_err_cnt;
6554 	tmp_stats[i++] = swstats->rc_err_cnt;
6555 	tmp_stats[i++] = swstats->prc_pcix_err_cnt;
6556 	tmp_stats[i++] = swstats->rpa_err_cnt;
6557 	tmp_stats[i++] = swstats->rda_err_cnt;
6558 	tmp_stats[i++] = swstats->rti_err_cnt;
6559 	tmp_stats[i++] = swstats->mc_err_cnt;
6560 }
6561 
6562 static int s2io_ethtool_get_regs_len(struct net_device *dev)
6563 {
6564 	return XENA_REG_SPACE;
6565 }
6566 
6567 
6568 static int s2io_get_eeprom_len(struct net_device *dev)
6569 {
6570 	return XENA_EEPROM_SPACE;
6571 }
6572 
6573 static int s2io_get_sset_count(struct net_device *dev, int sset)
6574 {
6575 	struct s2io_nic *sp = netdev_priv(dev);
6576 
6577 	switch (sset) {
6578 	case ETH_SS_TEST:
6579 		return S2IO_TEST_LEN;
6580 	case ETH_SS_STATS:
6581 		switch (sp->device_type) {
6582 		case XFRAME_I_DEVICE:
6583 			return XFRAME_I_STAT_LEN;
6584 		case XFRAME_II_DEVICE:
6585 			return XFRAME_II_STAT_LEN;
6586 		default:
6587 			return 0;
6588 		}
6589 	default:
6590 		return -EOPNOTSUPP;
6591 	}
6592 }
6593 
6594 static void s2io_ethtool_get_strings(struct net_device *dev,
6595 				     u32 stringset, u8 *data)
6596 {
6597 	int stat_size = 0;
6598 	struct s2io_nic *sp = netdev_priv(dev);
6599 
6600 	switch (stringset) {
6601 	case ETH_SS_TEST:
6602 		memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
6603 		break;
6604 	case ETH_SS_STATS:
6605 		stat_size = sizeof(ethtool_xena_stats_keys);
6606 		memcpy(data, &ethtool_xena_stats_keys, stat_size);
6607 		if (sp->device_type == XFRAME_II_DEVICE) {
6608 			memcpy(data + stat_size,
6609 			       &ethtool_enhanced_stats_keys,
6610 			       sizeof(ethtool_enhanced_stats_keys));
6611 			stat_size += sizeof(ethtool_enhanced_stats_keys);
6612 		}
6613 
6614 		memcpy(data + stat_size, &ethtool_driver_stats_keys,
6615 		       sizeof(ethtool_driver_stats_keys));
6616 	}
6617 }
6618 
6619 static int s2io_set_features(struct net_device *dev, u32 features)
6620 {
6621 	struct s2io_nic *sp = netdev_priv(dev);
6622 	u32 changed = (features ^ dev->features) & NETIF_F_LRO;
6623 
6624 	if (changed && netif_running(dev)) {
6625 		int rc;
6626 
6627 		s2io_stop_all_tx_queue(sp);
6628 		s2io_card_down(sp);
6629 		dev->features = features;
6630 		rc = s2io_card_up(sp);
6631 		if (rc)
6632 			s2io_reset(sp);
6633 		else
6634 			s2io_start_all_tx_queue(sp);
6635 
6636 		return rc ? rc : 1;
6637 	}
6638 
6639 	return 0;
6640 }
6641 
6642 static const struct ethtool_ops netdev_ethtool_ops = {
6643 	.get_settings = s2io_ethtool_gset,
6644 	.set_settings = s2io_ethtool_sset,
6645 	.get_drvinfo = s2io_ethtool_gdrvinfo,
6646 	.get_regs_len = s2io_ethtool_get_regs_len,
6647 	.get_regs = s2io_ethtool_gregs,
6648 	.get_link = ethtool_op_get_link,
6649 	.get_eeprom_len = s2io_get_eeprom_len,
6650 	.get_eeprom = s2io_ethtool_geeprom,
6651 	.set_eeprom = s2io_ethtool_seeprom,
6652 	.get_ringparam = s2io_ethtool_gringparam,
6653 	.get_pauseparam = s2io_ethtool_getpause_data,
6654 	.set_pauseparam = s2io_ethtool_setpause_data,
6655 	.self_test = s2io_ethtool_test,
6656 	.get_strings = s2io_ethtool_get_strings,
6657 	.set_phys_id = s2io_ethtool_set_led,
6658 	.get_ethtool_stats = s2io_get_ethtool_stats,
6659 	.get_sset_count = s2io_get_sset_count,
6660 };
6661 
6662 /**
6663  *  s2io_ioctl - Entry point for the Ioctl
6664  *  @dev :  Device pointer.
6665  *  @ifr :  An IOCTL specefic structure, that can contain a pointer to
6666  *  a proprietary structure used to pass information to the driver.
6667  *  @cmd :  This is used to distinguish between the different commands that
6668  *  can be passed to the IOCTL functions.
6669  *  Description:
6670  *  Currently there are no special functionality supported in IOCTL, hence
6671  *  function always return EOPNOTSUPPORTED
6672  */
6673 
6674 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
6675 {
6676 	return -EOPNOTSUPP;
6677 }
6678 
6679 /**
6680  *  s2io_change_mtu - entry point to change MTU size for the device.
6681  *   @dev : device pointer.
6682  *   @new_mtu : the new MTU size for the device.
6683  *   Description: A driver entry point to change MTU size for the device.
6684  *   Before changing the MTU the device must be stopped.
6685  *  Return value:
6686  *   0 on success and an appropriate (-)ve integer as defined in errno.h
6687  *   file on failure.
6688  */
6689 
6690 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
6691 {
6692 	struct s2io_nic *sp = netdev_priv(dev);
6693 	int ret = 0;
6694 
6695 	if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
6696 		DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n", dev->name);
6697 		return -EPERM;
6698 	}
6699 
6700 	dev->mtu = new_mtu;
6701 	if (netif_running(dev)) {
6702 		s2io_stop_all_tx_queue(sp);
6703 		s2io_card_down(sp);
6704 		ret = s2io_card_up(sp);
6705 		if (ret) {
6706 			DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6707 				  __func__);
6708 			return ret;
6709 		}
6710 		s2io_wake_all_tx_queue(sp);
6711 	} else { /* Device is down */
6712 		struct XENA_dev_config __iomem *bar0 = sp->bar0;
6713 		u64 val64 = new_mtu;
6714 
6715 		writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6716 	}
6717 
6718 	return ret;
6719 }
6720 
6721 /**
6722  * s2io_set_link - Set the LInk status
6723  * @data: long pointer to device private structue
6724  * Description: Sets the link status for the adapter
6725  */
6726 
6727 static void s2io_set_link(struct work_struct *work)
6728 {
6729 	struct s2io_nic *nic = container_of(work, struct s2io_nic,
6730 					    set_link_task);
6731 	struct net_device *dev = nic->dev;
6732 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
6733 	register u64 val64;
6734 	u16 subid;
6735 
6736 	rtnl_lock();
6737 
6738 	if (!netif_running(dev))
6739 		goto out_unlock;
6740 
6741 	if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
6742 		/* The card is being reset, no point doing anything */
6743 		goto out_unlock;
6744 	}
6745 
6746 	subid = nic->pdev->subsystem_device;
6747 	if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6748 		/*
6749 		 * Allow a small delay for the NICs self initiated
6750 		 * cleanup to complete.
6751 		 */
6752 		msleep(100);
6753 	}
6754 
6755 	val64 = readq(&bar0->adapter_status);
6756 	if (LINK_IS_UP(val64)) {
6757 		if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6758 			if (verify_xena_quiescence(nic)) {
6759 				val64 = readq(&bar0->adapter_control);
6760 				val64 |= ADAPTER_CNTL_EN;
6761 				writeq(val64, &bar0->adapter_control);
6762 				if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6763 					    nic->device_type, subid)) {
6764 					val64 = readq(&bar0->gpio_control);
6765 					val64 |= GPIO_CTRL_GPIO_0;
6766 					writeq(val64, &bar0->gpio_control);
6767 					val64 = readq(&bar0->gpio_control);
6768 				} else {
6769 					val64 |= ADAPTER_LED_ON;
6770 					writeq(val64, &bar0->adapter_control);
6771 				}
6772 				nic->device_enabled_once = true;
6773 			} else {
6774 				DBG_PRINT(ERR_DBG,
6775 					  "%s: Error: device is not Quiescent\n",
6776 					  dev->name);
6777 				s2io_stop_all_tx_queue(nic);
6778 			}
6779 		}
6780 		val64 = readq(&bar0->adapter_control);
6781 		val64 |= ADAPTER_LED_ON;
6782 		writeq(val64, &bar0->adapter_control);
6783 		s2io_link(nic, LINK_UP);
6784 	} else {
6785 		if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6786 						      subid)) {
6787 			val64 = readq(&bar0->gpio_control);
6788 			val64 &= ~GPIO_CTRL_GPIO_0;
6789 			writeq(val64, &bar0->gpio_control);
6790 			val64 = readq(&bar0->gpio_control);
6791 		}
6792 		/* turn off LED */
6793 		val64 = readq(&bar0->adapter_control);
6794 		val64 = val64 & (~ADAPTER_LED_ON);
6795 		writeq(val64, &bar0->adapter_control);
6796 		s2io_link(nic, LINK_DOWN);
6797 	}
6798 	clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
6799 
6800 out_unlock:
6801 	rtnl_unlock();
6802 }
6803 
6804 static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6805 				  struct buffAdd *ba,
6806 				  struct sk_buff **skb, u64 *temp0, u64 *temp1,
6807 				  u64 *temp2, int size)
6808 {
6809 	struct net_device *dev = sp->dev;
6810 	struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
6811 
6812 	if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6813 		struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
6814 		/* allocate skb */
6815 		if (*skb) {
6816 			DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6817 			/*
6818 			 * As Rx frame are not going to be processed,
6819 			 * using same mapped address for the Rxd
6820 			 * buffer pointer
6821 			 */
6822 			rxdp1->Buffer0_ptr = *temp0;
6823 		} else {
6824 			*skb = dev_alloc_skb(size);
6825 			if (!(*skb)) {
6826 				DBG_PRINT(INFO_DBG,
6827 					  "%s: Out of memory to allocate %s\n",
6828 					  dev->name, "1 buf mode SKBs");
6829 				stats->mem_alloc_fail_cnt++;
6830 				return -ENOMEM ;
6831 			}
6832 			stats->mem_allocated += (*skb)->truesize;
6833 			/* storing the mapped addr in a temp variable
6834 			 * such it will be used for next rxd whose
6835 			 * Host Control is NULL
6836 			 */
6837 			rxdp1->Buffer0_ptr = *temp0 =
6838 				pci_map_single(sp->pdev, (*skb)->data,
6839 					       size - NET_IP_ALIGN,
6840 					       PCI_DMA_FROMDEVICE);
6841 			if (pci_dma_mapping_error(sp->pdev, rxdp1->Buffer0_ptr))
6842 				goto memalloc_failed;
6843 			rxdp->Host_Control = (unsigned long) (*skb);
6844 		}
6845 	} else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6846 		struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
6847 		/* Two buffer Mode */
6848 		if (*skb) {
6849 			rxdp3->Buffer2_ptr = *temp2;
6850 			rxdp3->Buffer0_ptr = *temp0;
6851 			rxdp3->Buffer1_ptr = *temp1;
6852 		} else {
6853 			*skb = dev_alloc_skb(size);
6854 			if (!(*skb)) {
6855 				DBG_PRINT(INFO_DBG,
6856 					  "%s: Out of memory to allocate %s\n",
6857 					  dev->name,
6858 					  "2 buf mode SKBs");
6859 				stats->mem_alloc_fail_cnt++;
6860 				return -ENOMEM;
6861 			}
6862 			stats->mem_allocated += (*skb)->truesize;
6863 			rxdp3->Buffer2_ptr = *temp2 =
6864 				pci_map_single(sp->pdev, (*skb)->data,
6865 					       dev->mtu + 4,
6866 					       PCI_DMA_FROMDEVICE);
6867 			if (pci_dma_mapping_error(sp->pdev, rxdp3->Buffer2_ptr))
6868 				goto memalloc_failed;
6869 			rxdp3->Buffer0_ptr = *temp0 =
6870 				pci_map_single(sp->pdev, ba->ba_0, BUF0_LEN,
6871 					       PCI_DMA_FROMDEVICE);
6872 			if (pci_dma_mapping_error(sp->pdev,
6873 						  rxdp3->Buffer0_ptr)) {
6874 				pci_unmap_single(sp->pdev,
6875 						 (dma_addr_t)rxdp3->Buffer2_ptr,
6876 						 dev->mtu + 4,
6877 						 PCI_DMA_FROMDEVICE);
6878 				goto memalloc_failed;
6879 			}
6880 			rxdp->Host_Control = (unsigned long) (*skb);
6881 
6882 			/* Buffer-1 will be dummy buffer not used */
6883 			rxdp3->Buffer1_ptr = *temp1 =
6884 				pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
6885 					       PCI_DMA_FROMDEVICE);
6886 			if (pci_dma_mapping_error(sp->pdev,
6887 						  rxdp3->Buffer1_ptr)) {
6888 				pci_unmap_single(sp->pdev,
6889 						 (dma_addr_t)rxdp3->Buffer0_ptr,
6890 						 BUF0_LEN, PCI_DMA_FROMDEVICE);
6891 				pci_unmap_single(sp->pdev,
6892 						 (dma_addr_t)rxdp3->Buffer2_ptr,
6893 						 dev->mtu + 4,
6894 						 PCI_DMA_FROMDEVICE);
6895 				goto memalloc_failed;
6896 			}
6897 		}
6898 	}
6899 	return 0;
6900 
6901 memalloc_failed:
6902 	stats->pci_map_fail_cnt++;
6903 	stats->mem_freed += (*skb)->truesize;
6904 	dev_kfree_skb(*skb);
6905 	return -ENOMEM;
6906 }
6907 
6908 static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6909 				int size)
6910 {
6911 	struct net_device *dev = sp->dev;
6912 	if (sp->rxd_mode == RXD_MODE_1) {
6913 		rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
6914 	} else if (sp->rxd_mode == RXD_MODE_3B) {
6915 		rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6916 		rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6917 		rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu + 4);
6918 	}
6919 }
6920 
6921 static  int rxd_owner_bit_reset(struct s2io_nic *sp)
6922 {
6923 	int i, j, k, blk_cnt = 0, size;
6924 	struct config_param *config = &sp->config;
6925 	struct mac_info *mac_control = &sp->mac_control;
6926 	struct net_device *dev = sp->dev;
6927 	struct RxD_t *rxdp = NULL;
6928 	struct sk_buff *skb = NULL;
6929 	struct buffAdd *ba = NULL;
6930 	u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6931 
6932 	/* Calculate the size based on ring mode */
6933 	size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6934 		HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6935 	if (sp->rxd_mode == RXD_MODE_1)
6936 		size += NET_IP_ALIGN;
6937 	else if (sp->rxd_mode == RXD_MODE_3B)
6938 		size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6939 
6940 	for (i = 0; i < config->rx_ring_num; i++) {
6941 		struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
6942 		struct ring_info *ring = &mac_control->rings[i];
6943 
6944 		blk_cnt = rx_cfg->num_rxd / (rxd_count[sp->rxd_mode] + 1);
6945 
6946 		for (j = 0; j < blk_cnt; j++) {
6947 			for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6948 				rxdp = ring->rx_blocks[j].rxds[k].virt_addr;
6949 				if (sp->rxd_mode == RXD_MODE_3B)
6950 					ba = &ring->ba[j][k];
6951 				if (set_rxd_buffer_pointer(sp, rxdp, ba, &skb,
6952 							   (u64 *)&temp0_64,
6953 							   (u64 *)&temp1_64,
6954 							   (u64 *)&temp2_64,
6955 							   size) == -ENOMEM) {
6956 					return 0;
6957 				}
6958 
6959 				set_rxd_buffer_size(sp, rxdp, size);
6960 				wmb();
6961 				/* flip the Ownership bit to Hardware */
6962 				rxdp->Control_1 |= RXD_OWN_XENA;
6963 			}
6964 		}
6965 	}
6966 	return 0;
6967 
6968 }
6969 
6970 static int s2io_add_isr(struct s2io_nic *sp)
6971 {
6972 	int ret = 0;
6973 	struct net_device *dev = sp->dev;
6974 	int err = 0;
6975 
6976 	if (sp->config.intr_type == MSI_X)
6977 		ret = s2io_enable_msi_x(sp);
6978 	if (ret) {
6979 		DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
6980 		sp->config.intr_type = INTA;
6981 	}
6982 
6983 	/*
6984 	 * Store the values of the MSIX table in
6985 	 * the struct s2io_nic structure
6986 	 */
6987 	store_xmsi_data(sp);
6988 
6989 	/* After proper initialization of H/W, register ISR */
6990 	if (sp->config.intr_type == MSI_X) {
6991 		int i, msix_rx_cnt = 0;
6992 
6993 		for (i = 0; i < sp->num_entries; i++) {
6994 			if (sp->s2io_entries[i].in_use == MSIX_FLG) {
6995 				if (sp->s2io_entries[i].type ==
6996 				    MSIX_RING_TYPE) {
6997 					sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
6998 						dev->name, i);
6999 					err = request_irq(sp->entries[i].vector,
7000 							  s2io_msix_ring_handle,
7001 							  0,
7002 							  sp->desc[i],
7003 							  sp->s2io_entries[i].arg);
7004 				} else if (sp->s2io_entries[i].type ==
7005 					   MSIX_ALARM_TYPE) {
7006 					sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
7007 						dev->name, i);
7008 					err = request_irq(sp->entries[i].vector,
7009 							  s2io_msix_fifo_handle,
7010 							  0,
7011 							  sp->desc[i],
7012 							  sp->s2io_entries[i].arg);
7013 
7014 				}
7015 				/* if either data or addr is zero print it. */
7016 				if (!(sp->msix_info[i].addr &&
7017 				      sp->msix_info[i].data)) {
7018 					DBG_PRINT(ERR_DBG,
7019 						  "%s @Addr:0x%llx Data:0x%llx\n",
7020 						  sp->desc[i],
7021 						  (unsigned long long)
7022 						  sp->msix_info[i].addr,
7023 						  (unsigned long long)
7024 						  ntohl(sp->msix_info[i].data));
7025 				} else
7026 					msix_rx_cnt++;
7027 				if (err) {
7028 					remove_msix_isr(sp);
7029 
7030 					DBG_PRINT(ERR_DBG,
7031 						  "%s:MSI-X-%d registration "
7032 						  "failed\n", dev->name, i);
7033 
7034 					DBG_PRINT(ERR_DBG,
7035 						  "%s: Defaulting to INTA\n",
7036 						  dev->name);
7037 					sp->config.intr_type = INTA;
7038 					break;
7039 				}
7040 				sp->s2io_entries[i].in_use =
7041 					MSIX_REGISTERED_SUCCESS;
7042 			}
7043 		}
7044 		if (!err) {
7045 			pr_info("MSI-X-RX %d entries enabled\n", --msix_rx_cnt);
7046 			DBG_PRINT(INFO_DBG,
7047 				  "MSI-X-TX entries enabled through alarm vector\n");
7048 		}
7049 	}
7050 	if (sp->config.intr_type == INTA) {
7051 		err = request_irq((int)sp->pdev->irq, s2io_isr, IRQF_SHARED,
7052 				  sp->name, dev);
7053 		if (err) {
7054 			DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
7055 				  dev->name);
7056 			return -1;
7057 		}
7058 	}
7059 	return 0;
7060 }
7061 
7062 static void s2io_rem_isr(struct s2io_nic *sp)
7063 {
7064 	if (sp->config.intr_type == MSI_X)
7065 		remove_msix_isr(sp);
7066 	else
7067 		remove_inta_isr(sp);
7068 }
7069 
7070 static void do_s2io_card_down(struct s2io_nic *sp, int do_io)
7071 {
7072 	int cnt = 0;
7073 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
7074 	register u64 val64 = 0;
7075 	struct config_param *config;
7076 	config = &sp->config;
7077 
7078 	if (!is_s2io_card_up(sp))
7079 		return;
7080 
7081 	del_timer_sync(&sp->alarm_timer);
7082 	/* If s2io_set_link task is executing, wait till it completes. */
7083 	while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state)))
7084 		msleep(50);
7085 	clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
7086 
7087 	/* Disable napi */
7088 	if (sp->config.napi) {
7089 		int off = 0;
7090 		if (config->intr_type ==  MSI_X) {
7091 			for (; off < sp->config.rx_ring_num; off++)
7092 				napi_disable(&sp->mac_control.rings[off].napi);
7093 		}
7094 		else
7095 			napi_disable(&sp->napi);
7096 	}
7097 
7098 	/* disable Tx and Rx traffic on the NIC */
7099 	if (do_io)
7100 		stop_nic(sp);
7101 
7102 	s2io_rem_isr(sp);
7103 
7104 	/* stop the tx queue, indicate link down */
7105 	s2io_link(sp, LINK_DOWN);
7106 
7107 	/* Check if the device is Quiescent and then Reset the NIC */
7108 	while (do_io) {
7109 		/* As per the HW requirement we need to replenish the
7110 		 * receive buffer to avoid the ring bump. Since there is
7111 		 * no intention of processing the Rx frame at this pointwe are
7112 		 * just setting the ownership bit of rxd in Each Rx
7113 		 * ring to HW and set the appropriate buffer size
7114 		 * based on the ring mode
7115 		 */
7116 		rxd_owner_bit_reset(sp);
7117 
7118 		val64 = readq(&bar0->adapter_status);
7119 		if (verify_xena_quiescence(sp)) {
7120 			if (verify_pcc_quiescent(sp, sp->device_enabled_once))
7121 				break;
7122 		}
7123 
7124 		msleep(50);
7125 		cnt++;
7126 		if (cnt == 10) {
7127 			DBG_PRINT(ERR_DBG, "Device not Quiescent - "
7128 				  "adapter status reads 0x%llx\n",
7129 				  (unsigned long long)val64);
7130 			break;
7131 		}
7132 	}
7133 	if (do_io)
7134 		s2io_reset(sp);
7135 
7136 	/* Free all Tx buffers */
7137 	free_tx_buffers(sp);
7138 
7139 	/* Free all Rx buffers */
7140 	free_rx_buffers(sp);
7141 
7142 	clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
7143 }
7144 
7145 static void s2io_card_down(struct s2io_nic *sp)
7146 {
7147 	do_s2io_card_down(sp, 1);
7148 }
7149 
7150 static int s2io_card_up(struct s2io_nic *sp)
7151 {
7152 	int i, ret = 0;
7153 	struct config_param *config;
7154 	struct mac_info *mac_control;
7155 	struct net_device *dev = (struct net_device *)sp->dev;
7156 	u16 interruptible;
7157 
7158 	/* Initialize the H/W I/O registers */
7159 	ret = init_nic(sp);
7160 	if (ret != 0) {
7161 		DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
7162 			  dev->name);
7163 		if (ret != -EIO)
7164 			s2io_reset(sp);
7165 		return ret;
7166 	}
7167 
7168 	/*
7169 	 * Initializing the Rx buffers. For now we are considering only 1
7170 	 * Rx ring and initializing buffers into 30 Rx blocks
7171 	 */
7172 	config = &sp->config;
7173 	mac_control = &sp->mac_control;
7174 
7175 	for (i = 0; i < config->rx_ring_num; i++) {
7176 		struct ring_info *ring = &mac_control->rings[i];
7177 
7178 		ring->mtu = dev->mtu;
7179 		ring->lro = !!(dev->features & NETIF_F_LRO);
7180 		ret = fill_rx_buffers(sp, ring, 1);
7181 		if (ret) {
7182 			DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
7183 				  dev->name);
7184 			s2io_reset(sp);
7185 			free_rx_buffers(sp);
7186 			return -ENOMEM;
7187 		}
7188 		DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
7189 			  ring->rx_bufs_left);
7190 	}
7191 
7192 	/* Initialise napi */
7193 	if (config->napi) {
7194 		if (config->intr_type ==  MSI_X) {
7195 			for (i = 0; i < sp->config.rx_ring_num; i++)
7196 				napi_enable(&sp->mac_control.rings[i].napi);
7197 		} else {
7198 			napi_enable(&sp->napi);
7199 		}
7200 	}
7201 
7202 	/* Maintain the state prior to the open */
7203 	if (sp->promisc_flg)
7204 		sp->promisc_flg = 0;
7205 	if (sp->m_cast_flg) {
7206 		sp->m_cast_flg = 0;
7207 		sp->all_multi_pos = 0;
7208 	}
7209 
7210 	/* Setting its receive mode */
7211 	s2io_set_multicast(dev);
7212 
7213 	if (dev->features & NETIF_F_LRO) {
7214 		/* Initialize max aggregatable pkts per session based on MTU */
7215 		sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
7216 		/* Check if we can use (if specified) user provided value */
7217 		if (lro_max_pkts < sp->lro_max_aggr_per_sess)
7218 			sp->lro_max_aggr_per_sess = lro_max_pkts;
7219 	}
7220 
7221 	/* Enable Rx Traffic and interrupts on the NIC */
7222 	if (start_nic(sp)) {
7223 		DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
7224 		s2io_reset(sp);
7225 		free_rx_buffers(sp);
7226 		return -ENODEV;
7227 	}
7228 
7229 	/* Add interrupt service routine */
7230 	if (s2io_add_isr(sp) != 0) {
7231 		if (sp->config.intr_type == MSI_X)
7232 			s2io_rem_isr(sp);
7233 		s2io_reset(sp);
7234 		free_rx_buffers(sp);
7235 		return -ENODEV;
7236 	}
7237 
7238 	S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
7239 
7240 	set_bit(__S2IO_STATE_CARD_UP, &sp->state);
7241 
7242 	/*  Enable select interrupts */
7243 	en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
7244 	if (sp->config.intr_type != INTA) {
7245 		interruptible = TX_TRAFFIC_INTR | TX_PIC_INTR;
7246 		en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7247 	} else {
7248 		interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
7249 		interruptible |= TX_PIC_INTR;
7250 		en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7251 	}
7252 
7253 	return 0;
7254 }
7255 
7256 /**
7257  * s2io_restart_nic - Resets the NIC.
7258  * @data : long pointer to the device private structure
7259  * Description:
7260  * This function is scheduled to be run by the s2io_tx_watchdog
7261  * function after 0.5 secs to reset the NIC. The idea is to reduce
7262  * the run time of the watch dog routine which is run holding a
7263  * spin lock.
7264  */
7265 
7266 static void s2io_restart_nic(struct work_struct *work)
7267 {
7268 	struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
7269 	struct net_device *dev = sp->dev;
7270 
7271 	rtnl_lock();
7272 
7273 	if (!netif_running(dev))
7274 		goto out_unlock;
7275 
7276 	s2io_card_down(sp);
7277 	if (s2io_card_up(sp)) {
7278 		DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n", dev->name);
7279 	}
7280 	s2io_wake_all_tx_queue(sp);
7281 	DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n", dev->name);
7282 out_unlock:
7283 	rtnl_unlock();
7284 }
7285 
7286 /**
7287  *  s2io_tx_watchdog - Watchdog for transmit side.
7288  *  @dev : Pointer to net device structure
7289  *  Description:
7290  *  This function is triggered if the Tx Queue is stopped
7291  *  for a pre-defined amount of time when the Interface is still up.
7292  *  If the Interface is jammed in such a situation, the hardware is
7293  *  reset (by s2io_close) and restarted again (by s2io_open) to
7294  *  overcome any problem that might have been caused in the hardware.
7295  *  Return value:
7296  *  void
7297  */
7298 
7299 static void s2io_tx_watchdog(struct net_device *dev)
7300 {
7301 	struct s2io_nic *sp = netdev_priv(dev);
7302 	struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7303 
7304 	if (netif_carrier_ok(dev)) {
7305 		swstats->watchdog_timer_cnt++;
7306 		schedule_work(&sp->rst_timer_task);
7307 		swstats->soft_reset_cnt++;
7308 	}
7309 }
7310 
7311 /**
7312  *   rx_osm_handler - To perform some OS related operations on SKB.
7313  *   @sp: private member of the device structure,pointer to s2io_nic structure.
7314  *   @skb : the socket buffer pointer.
7315  *   @len : length of the packet
7316  *   @cksum : FCS checksum of the frame.
7317  *   @ring_no : the ring from which this RxD was extracted.
7318  *   Description:
7319  *   This function is called by the Rx interrupt serivce routine to perform
7320  *   some OS related operations on the SKB before passing it to the upper
7321  *   layers. It mainly checks if the checksum is OK, if so adds it to the
7322  *   SKBs cksum variable, increments the Rx packet count and passes the SKB
7323  *   to the upper layer. If the checksum is wrong, it increments the Rx
7324  *   packet error count, frees the SKB and returns error.
7325  *   Return value:
7326  *   SUCCESS on success and -1 on failure.
7327  */
7328 static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
7329 {
7330 	struct s2io_nic *sp = ring_data->nic;
7331 	struct net_device *dev = (struct net_device *)ring_data->dev;
7332 	struct sk_buff *skb = (struct sk_buff *)
7333 		((unsigned long)rxdp->Host_Control);
7334 	int ring_no = ring_data->ring_no;
7335 	u16 l3_csum, l4_csum;
7336 	unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
7337 	struct lro *uninitialized_var(lro);
7338 	u8 err_mask;
7339 	struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7340 
7341 	skb->dev = dev;
7342 
7343 	if (err) {
7344 		/* Check for parity error */
7345 		if (err & 0x1)
7346 			swstats->parity_err_cnt++;
7347 
7348 		err_mask = err >> 48;
7349 		switch (err_mask) {
7350 		case 1:
7351 			swstats->rx_parity_err_cnt++;
7352 			break;
7353 
7354 		case 2:
7355 			swstats->rx_abort_cnt++;
7356 			break;
7357 
7358 		case 3:
7359 			swstats->rx_parity_abort_cnt++;
7360 			break;
7361 
7362 		case 4:
7363 			swstats->rx_rda_fail_cnt++;
7364 			break;
7365 
7366 		case 5:
7367 			swstats->rx_unkn_prot_cnt++;
7368 			break;
7369 
7370 		case 6:
7371 			swstats->rx_fcs_err_cnt++;
7372 			break;
7373 
7374 		case 7:
7375 			swstats->rx_buf_size_err_cnt++;
7376 			break;
7377 
7378 		case 8:
7379 			swstats->rx_rxd_corrupt_cnt++;
7380 			break;
7381 
7382 		case 15:
7383 			swstats->rx_unkn_err_cnt++;
7384 			break;
7385 		}
7386 		/*
7387 		 * Drop the packet if bad transfer code. Exception being
7388 		 * 0x5, which could be due to unsupported IPv6 extension header.
7389 		 * In this case, we let stack handle the packet.
7390 		 * Note that in this case, since checksum will be incorrect,
7391 		 * stack will validate the same.
7392 		 */
7393 		if (err_mask != 0x5) {
7394 			DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
7395 				  dev->name, err_mask);
7396 			dev->stats.rx_crc_errors++;
7397 			swstats->mem_freed
7398 				+= skb->truesize;
7399 			dev_kfree_skb(skb);
7400 			ring_data->rx_bufs_left -= 1;
7401 			rxdp->Host_Control = 0;
7402 			return 0;
7403 		}
7404 	}
7405 
7406 	rxdp->Host_Control = 0;
7407 	if (sp->rxd_mode == RXD_MODE_1) {
7408 		int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
7409 
7410 		skb_put(skb, len);
7411 	} else if (sp->rxd_mode == RXD_MODE_3B) {
7412 		int get_block = ring_data->rx_curr_get_info.block_index;
7413 		int get_off = ring_data->rx_curr_get_info.offset;
7414 		int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
7415 		int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
7416 		unsigned char *buff = skb_push(skb, buf0_len);
7417 
7418 		struct buffAdd *ba = &ring_data->ba[get_block][get_off];
7419 		memcpy(buff, ba->ba_0, buf0_len);
7420 		skb_put(skb, buf2_len);
7421 	}
7422 
7423 	if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) &&
7424 	    ((!ring_data->lro) ||
7425 	     (ring_data->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
7426 	    (dev->features & NETIF_F_RXCSUM)) {
7427 		l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
7428 		l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
7429 		if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
7430 			/*
7431 			 * NIC verifies if the Checksum of the received
7432 			 * frame is Ok or not and accordingly returns
7433 			 * a flag in the RxD.
7434 			 */
7435 			skb->ip_summed = CHECKSUM_UNNECESSARY;
7436 			if (ring_data->lro) {
7437 				u32 tcp_len = 0;
7438 				u8 *tcp;
7439 				int ret = 0;
7440 
7441 				ret = s2io_club_tcp_session(ring_data,
7442 							    skb->data, &tcp,
7443 							    &tcp_len, &lro,
7444 							    rxdp, sp);
7445 				switch (ret) {
7446 				case 3: /* Begin anew */
7447 					lro->parent = skb;
7448 					goto aggregate;
7449 				case 1: /* Aggregate */
7450 					lro_append_pkt(sp, lro, skb, tcp_len);
7451 					goto aggregate;
7452 				case 4: /* Flush session */
7453 					lro_append_pkt(sp, lro, skb, tcp_len);
7454 					queue_rx_frame(lro->parent,
7455 						       lro->vlan_tag);
7456 					clear_lro_session(lro);
7457 					swstats->flush_max_pkts++;
7458 					goto aggregate;
7459 				case 2: /* Flush both */
7460 					lro->parent->data_len = lro->frags_len;
7461 					swstats->sending_both++;
7462 					queue_rx_frame(lro->parent,
7463 						       lro->vlan_tag);
7464 					clear_lro_session(lro);
7465 					goto send_up;
7466 				case 0: /* sessions exceeded */
7467 				case -1: /* non-TCP or not L2 aggregatable */
7468 				case 5: /*
7469 					 * First pkt in session not
7470 					 * L3/L4 aggregatable
7471 					 */
7472 					break;
7473 				default:
7474 					DBG_PRINT(ERR_DBG,
7475 						  "%s: Samadhana!!\n",
7476 						  __func__);
7477 					BUG();
7478 				}
7479 			}
7480 		} else {
7481 			/*
7482 			 * Packet with erroneous checksum, let the
7483 			 * upper layers deal with it.
7484 			 */
7485 			skb_checksum_none_assert(skb);
7486 		}
7487 	} else
7488 		skb_checksum_none_assert(skb);
7489 
7490 	swstats->mem_freed += skb->truesize;
7491 send_up:
7492 	skb_record_rx_queue(skb, ring_no);
7493 	queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2));
7494 aggregate:
7495 	sp->mac_control.rings[ring_no].rx_bufs_left -= 1;
7496 	return SUCCESS;
7497 }
7498 
7499 /**
7500  *  s2io_link - stops/starts the Tx queue.
7501  *  @sp : private member of the device structure, which is a pointer to the
7502  *  s2io_nic structure.
7503  *  @link : inidicates whether link is UP/DOWN.
7504  *  Description:
7505  *  This function stops/starts the Tx queue depending on whether the link
7506  *  status of the NIC is is down or up. This is called by the Alarm
7507  *  interrupt handler whenever a link change interrupt comes up.
7508  *  Return value:
7509  *  void.
7510  */
7511 
7512 static void s2io_link(struct s2io_nic *sp, int link)
7513 {
7514 	struct net_device *dev = (struct net_device *)sp->dev;
7515 	struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7516 
7517 	if (link != sp->last_link_state) {
7518 		init_tti(sp, link);
7519 		if (link == LINK_DOWN) {
7520 			DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
7521 			s2io_stop_all_tx_queue(sp);
7522 			netif_carrier_off(dev);
7523 			if (swstats->link_up_cnt)
7524 				swstats->link_up_time =
7525 					jiffies - sp->start_time;
7526 			swstats->link_down_cnt++;
7527 		} else {
7528 			DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
7529 			if (swstats->link_down_cnt)
7530 				swstats->link_down_time =
7531 					jiffies - sp->start_time;
7532 			swstats->link_up_cnt++;
7533 			netif_carrier_on(dev);
7534 			s2io_wake_all_tx_queue(sp);
7535 		}
7536 	}
7537 	sp->last_link_state = link;
7538 	sp->start_time = jiffies;
7539 }
7540 
7541 /**
7542  *  s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7543  *  @sp : private member of the device structure, which is a pointer to the
7544  *  s2io_nic structure.
7545  *  Description:
7546  *  This function initializes a few of the PCI and PCI-X configuration registers
7547  *  with recommended values.
7548  *  Return value:
7549  *  void
7550  */
7551 
7552 static void s2io_init_pci(struct s2io_nic *sp)
7553 {
7554 	u16 pci_cmd = 0, pcix_cmd = 0;
7555 
7556 	/* Enable Data Parity Error Recovery in PCI-X command register. */
7557 	pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7558 			     &(pcix_cmd));
7559 	pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7560 			      (pcix_cmd | 1));
7561 	pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7562 			     &(pcix_cmd));
7563 
7564 	/* Set the PErr Response bit in PCI command register. */
7565 	pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7566 	pci_write_config_word(sp->pdev, PCI_COMMAND,
7567 			      (pci_cmd | PCI_COMMAND_PARITY));
7568 	pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7569 }
7570 
7571 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type,
7572 			    u8 *dev_multiq)
7573 {
7574 	int i;
7575 
7576 	if ((tx_fifo_num > MAX_TX_FIFOS) || (tx_fifo_num < 1)) {
7577 		DBG_PRINT(ERR_DBG, "Requested number of tx fifos "
7578 			  "(%d) not supported\n", tx_fifo_num);
7579 
7580 		if (tx_fifo_num < 1)
7581 			tx_fifo_num = 1;
7582 		else
7583 			tx_fifo_num = MAX_TX_FIFOS;
7584 
7585 		DBG_PRINT(ERR_DBG, "Default to %d tx fifos\n", tx_fifo_num);
7586 	}
7587 
7588 	if (multiq)
7589 		*dev_multiq = multiq;
7590 
7591 	if (tx_steering_type && (1 == tx_fifo_num)) {
7592 		if (tx_steering_type != TX_DEFAULT_STEERING)
7593 			DBG_PRINT(ERR_DBG,
7594 				  "Tx steering is not supported with "
7595 				  "one fifo. Disabling Tx steering.\n");
7596 		tx_steering_type = NO_STEERING;
7597 	}
7598 
7599 	if ((tx_steering_type < NO_STEERING) ||
7600 	    (tx_steering_type > TX_DEFAULT_STEERING)) {
7601 		DBG_PRINT(ERR_DBG,
7602 			  "Requested transmit steering not supported\n");
7603 		DBG_PRINT(ERR_DBG, "Disabling transmit steering\n");
7604 		tx_steering_type = NO_STEERING;
7605 	}
7606 
7607 	if (rx_ring_num > MAX_RX_RINGS) {
7608 		DBG_PRINT(ERR_DBG,
7609 			  "Requested number of rx rings not supported\n");
7610 		DBG_PRINT(ERR_DBG, "Default to %d rx rings\n",
7611 			  MAX_RX_RINGS);
7612 		rx_ring_num = MAX_RX_RINGS;
7613 	}
7614 
7615 	if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
7616 		DBG_PRINT(ERR_DBG, "Wrong intr_type requested. "
7617 			  "Defaulting to INTA\n");
7618 		*dev_intr_type = INTA;
7619 	}
7620 
7621 	if ((*dev_intr_type == MSI_X) &&
7622 	    ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7623 	     (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
7624 		DBG_PRINT(ERR_DBG, "Xframe I does not support MSI_X. "
7625 			  "Defaulting to INTA\n");
7626 		*dev_intr_type = INTA;
7627 	}
7628 
7629 	if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
7630 		DBG_PRINT(ERR_DBG, "Requested ring mode not supported\n");
7631 		DBG_PRINT(ERR_DBG, "Defaulting to 1-buffer mode\n");
7632 		rx_ring_mode = 1;
7633 	}
7634 
7635 	for (i = 0; i < MAX_RX_RINGS; i++)
7636 		if (rx_ring_sz[i] > MAX_RX_BLOCKS_PER_RING) {
7637 			DBG_PRINT(ERR_DBG, "Requested rx ring size not "
7638 				  "supported\nDefaulting to %d\n",
7639 				  MAX_RX_BLOCKS_PER_RING);
7640 			rx_ring_sz[i] = MAX_RX_BLOCKS_PER_RING;
7641 		}
7642 
7643 	return SUCCESS;
7644 }
7645 
7646 /**
7647  * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7648  * or Traffic class respectively.
7649  * @nic: device private variable
7650  * Description: The function configures the receive steering to
7651  * desired receive ring.
7652  * Return Value:  SUCCESS on success and
7653  * '-1' on failure (endian settings incorrect).
7654  */
7655 static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7656 {
7657 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
7658 	register u64 val64 = 0;
7659 
7660 	if (ds_codepoint > 63)
7661 		return FAILURE;
7662 
7663 	val64 = RTS_DS_MEM_DATA(ring);
7664 	writeq(val64, &bar0->rts_ds_mem_data);
7665 
7666 	val64 = RTS_DS_MEM_CTRL_WE |
7667 		RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7668 		RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7669 
7670 	writeq(val64, &bar0->rts_ds_mem_ctrl);
7671 
7672 	return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
7673 				     RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7674 				     S2IO_BIT_RESET);
7675 }
7676 
7677 static const struct net_device_ops s2io_netdev_ops = {
7678 	.ndo_open	        = s2io_open,
7679 	.ndo_stop	        = s2io_close,
7680 	.ndo_get_stats	        = s2io_get_stats,
7681 	.ndo_start_xmit    	= s2io_xmit,
7682 	.ndo_validate_addr	= eth_validate_addr,
7683 	.ndo_set_rx_mode	= s2io_set_multicast,
7684 	.ndo_do_ioctl	   	= s2io_ioctl,
7685 	.ndo_set_mac_address    = s2io_set_mac_addr,
7686 	.ndo_change_mtu	   	= s2io_change_mtu,
7687 	.ndo_set_features	= s2io_set_features,
7688 	.ndo_tx_timeout	   	= s2io_tx_watchdog,
7689 #ifdef CONFIG_NET_POLL_CONTROLLER
7690 	.ndo_poll_controller    = s2io_netpoll,
7691 #endif
7692 };
7693 
7694 /**
7695  *  s2io_init_nic - Initialization of the adapter .
7696  *  @pdev : structure containing the PCI related information of the device.
7697  *  @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7698  *  Description:
7699  *  The function initializes an adapter identified by the pci_dec structure.
7700  *  All OS related initialization including memory and device structure and
7701  *  initlaization of the device private variable is done. Also the swapper
7702  *  control register is initialized to enable read and write into the I/O
7703  *  registers of the device.
7704  *  Return value:
7705  *  returns 0 on success and negative on failure.
7706  */
7707 
7708 static int __devinit
7709 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7710 {
7711 	struct s2io_nic *sp;
7712 	struct net_device *dev;
7713 	int i, j, ret;
7714 	int dma_flag = false;
7715 	u32 mac_up, mac_down;
7716 	u64 val64 = 0, tmp64 = 0;
7717 	struct XENA_dev_config __iomem *bar0 = NULL;
7718 	u16 subid;
7719 	struct config_param *config;
7720 	struct mac_info *mac_control;
7721 	int mode;
7722 	u8 dev_intr_type = intr_type;
7723 	u8 dev_multiq = 0;
7724 
7725 	ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq);
7726 	if (ret)
7727 		return ret;
7728 
7729 	ret = pci_enable_device(pdev);
7730 	if (ret) {
7731 		DBG_PRINT(ERR_DBG,
7732 			  "%s: pci_enable_device failed\n", __func__);
7733 		return ret;
7734 	}
7735 
7736 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
7737 		DBG_PRINT(INIT_DBG, "%s: Using 64bit DMA\n", __func__);
7738 		dma_flag = true;
7739 		if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
7740 			DBG_PRINT(ERR_DBG,
7741 				  "Unable to obtain 64bit DMA "
7742 				  "for consistent allocations\n");
7743 			pci_disable_device(pdev);
7744 			return -ENOMEM;
7745 		}
7746 	} else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
7747 		DBG_PRINT(INIT_DBG, "%s: Using 32bit DMA\n", __func__);
7748 	} else {
7749 		pci_disable_device(pdev);
7750 		return -ENOMEM;
7751 	}
7752 	ret = pci_request_regions(pdev, s2io_driver_name);
7753 	if (ret) {
7754 		DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x\n",
7755 			  __func__, ret);
7756 		pci_disable_device(pdev);
7757 		return -ENODEV;
7758 	}
7759 	if (dev_multiq)
7760 		dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num);
7761 	else
7762 		dev = alloc_etherdev(sizeof(struct s2io_nic));
7763 	if (dev == NULL) {
7764 		DBG_PRINT(ERR_DBG, "Device allocation failed\n");
7765 		pci_disable_device(pdev);
7766 		pci_release_regions(pdev);
7767 		return -ENODEV;
7768 	}
7769 
7770 	pci_set_master(pdev);
7771 	pci_set_drvdata(pdev, dev);
7772 	SET_NETDEV_DEV(dev, &pdev->dev);
7773 
7774 	/*  Private member variable initialized to s2io NIC structure */
7775 	sp = netdev_priv(dev);
7776 	sp->dev = dev;
7777 	sp->pdev = pdev;
7778 	sp->high_dma_flag = dma_flag;
7779 	sp->device_enabled_once = false;
7780 	if (rx_ring_mode == 1)
7781 		sp->rxd_mode = RXD_MODE_1;
7782 	if (rx_ring_mode == 2)
7783 		sp->rxd_mode = RXD_MODE_3B;
7784 
7785 	sp->config.intr_type = dev_intr_type;
7786 
7787 	if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7788 	    (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7789 		sp->device_type = XFRAME_II_DEVICE;
7790 	else
7791 		sp->device_type = XFRAME_I_DEVICE;
7792 
7793 
7794 	/* Initialize some PCI/PCI-X fields of the NIC. */
7795 	s2io_init_pci(sp);
7796 
7797 	/*
7798 	 * Setting the device configuration parameters.
7799 	 * Most of these parameters can be specified by the user during
7800 	 * module insertion as they are module loadable parameters. If
7801 	 * these parameters are not not specified during load time, they
7802 	 * are initialized with default values.
7803 	 */
7804 	config = &sp->config;
7805 	mac_control = &sp->mac_control;
7806 
7807 	config->napi = napi;
7808 	config->tx_steering_type = tx_steering_type;
7809 
7810 	/* Tx side parameters. */
7811 	if (config->tx_steering_type == TX_PRIORITY_STEERING)
7812 		config->tx_fifo_num = MAX_TX_FIFOS;
7813 	else
7814 		config->tx_fifo_num = tx_fifo_num;
7815 
7816 	/* Initialize the fifos used for tx steering */
7817 	if (config->tx_fifo_num < 5) {
7818 		if (config->tx_fifo_num  == 1)
7819 			sp->total_tcp_fifos = 1;
7820 		else
7821 			sp->total_tcp_fifos = config->tx_fifo_num - 1;
7822 		sp->udp_fifo_idx = config->tx_fifo_num - 1;
7823 		sp->total_udp_fifos = 1;
7824 		sp->other_fifo_idx = sp->total_tcp_fifos - 1;
7825 	} else {
7826 		sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM -
7827 				       FIFO_OTHER_MAX_NUM);
7828 		sp->udp_fifo_idx = sp->total_tcp_fifos;
7829 		sp->total_udp_fifos = FIFO_UDP_MAX_NUM;
7830 		sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM;
7831 	}
7832 
7833 	config->multiq = dev_multiq;
7834 	for (i = 0; i < config->tx_fifo_num; i++) {
7835 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7836 
7837 		tx_cfg->fifo_len = tx_fifo_len[i];
7838 		tx_cfg->fifo_priority = i;
7839 	}
7840 
7841 	/* mapping the QoS priority to the configured fifos */
7842 	for (i = 0; i < MAX_TX_FIFOS; i++)
7843 		config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i];
7844 
7845 	/* map the hashing selector table to the configured fifos */
7846 	for (i = 0; i < config->tx_fifo_num; i++)
7847 		sp->fifo_selector[i] = fifo_selector[i];
7848 
7849 
7850 	config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7851 	for (i = 0; i < config->tx_fifo_num; i++) {
7852 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7853 
7854 		tx_cfg->f_no_snoop = (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7855 		if (tx_cfg->fifo_len < 65) {
7856 			config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7857 			break;
7858 		}
7859 	}
7860 	/* + 2 because one Txd for skb->data and one Txd for UFO */
7861 	config->max_txds = MAX_SKB_FRAGS + 2;
7862 
7863 	/* Rx side parameters. */
7864 	config->rx_ring_num = rx_ring_num;
7865 	for (i = 0; i < config->rx_ring_num; i++) {
7866 		struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7867 		struct ring_info *ring = &mac_control->rings[i];
7868 
7869 		rx_cfg->num_rxd = rx_ring_sz[i] * (rxd_count[sp->rxd_mode] + 1);
7870 		rx_cfg->ring_priority = i;
7871 		ring->rx_bufs_left = 0;
7872 		ring->rxd_mode = sp->rxd_mode;
7873 		ring->rxd_count = rxd_count[sp->rxd_mode];
7874 		ring->pdev = sp->pdev;
7875 		ring->dev = sp->dev;
7876 	}
7877 
7878 	for (i = 0; i < rx_ring_num; i++) {
7879 		struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7880 
7881 		rx_cfg->ring_org = RING_ORG_BUFF1;
7882 		rx_cfg->f_no_snoop = (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
7883 	}
7884 
7885 	/*  Setting Mac Control parameters */
7886 	mac_control->rmac_pause_time = rmac_pause_time;
7887 	mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7888 	mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7889 
7890 
7891 	/*  initialize the shared memory used by the NIC and the host */
7892 	if (init_shared_mem(sp)) {
7893 		DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", dev->name);
7894 		ret = -ENOMEM;
7895 		goto mem_alloc_failed;
7896 	}
7897 
7898 	sp->bar0 = pci_ioremap_bar(pdev, 0);
7899 	if (!sp->bar0) {
7900 		DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
7901 			  dev->name);
7902 		ret = -ENOMEM;
7903 		goto bar0_remap_failed;
7904 	}
7905 
7906 	sp->bar1 = pci_ioremap_bar(pdev, 2);
7907 	if (!sp->bar1) {
7908 		DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
7909 			  dev->name);
7910 		ret = -ENOMEM;
7911 		goto bar1_remap_failed;
7912 	}
7913 
7914 	dev->irq = pdev->irq;
7915 	dev->base_addr = (unsigned long)sp->bar0;
7916 
7917 	/* Initializing the BAR1 address as the start of the FIFO pointer. */
7918 	for (j = 0; j < MAX_TX_FIFOS; j++) {
7919 		mac_control->tx_FIFO_start[j] = sp->bar1 + (j * 0x00020000);
7920 	}
7921 
7922 	/*  Driver entry points */
7923 	dev->netdev_ops = &s2io_netdev_ops;
7924 	SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
7925 	dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM |
7926 		NETIF_F_TSO | NETIF_F_TSO6 |
7927 		NETIF_F_RXCSUM | NETIF_F_LRO;
7928 	dev->features |= dev->hw_features |
7929 		NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
7930 	if (sp->device_type & XFRAME_II_DEVICE) {
7931 		dev->hw_features |= NETIF_F_UFO;
7932 		if (ufo)
7933 			dev->features |= NETIF_F_UFO;
7934 	}
7935 	if (sp->high_dma_flag == true)
7936 		dev->features |= NETIF_F_HIGHDMA;
7937 	dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
7938 	INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
7939 	INIT_WORK(&sp->set_link_task, s2io_set_link);
7940 
7941 	pci_save_state(sp->pdev);
7942 
7943 	/* Setting swapper control on the NIC, for proper reset operation */
7944 	if (s2io_set_swapper(sp)) {
7945 		DBG_PRINT(ERR_DBG, "%s: swapper settings are wrong\n",
7946 			  dev->name);
7947 		ret = -EAGAIN;
7948 		goto set_swap_failed;
7949 	}
7950 
7951 	/* Verify if the Herc works on the slot its placed into */
7952 	if (sp->device_type & XFRAME_II_DEVICE) {
7953 		mode = s2io_verify_pci_mode(sp);
7954 		if (mode < 0) {
7955 			DBG_PRINT(ERR_DBG, "%s: Unsupported PCI bus mode\n",
7956 				  __func__);
7957 			ret = -EBADSLT;
7958 			goto set_swap_failed;
7959 		}
7960 	}
7961 
7962 	if (sp->config.intr_type == MSI_X) {
7963 		sp->num_entries = config->rx_ring_num + 1;
7964 		ret = s2io_enable_msi_x(sp);
7965 
7966 		if (!ret) {
7967 			ret = s2io_test_msi(sp);
7968 			/* rollback MSI-X, will re-enable during add_isr() */
7969 			remove_msix_isr(sp);
7970 		}
7971 		if (ret) {
7972 
7973 			DBG_PRINT(ERR_DBG,
7974 				  "MSI-X requested but failed to enable\n");
7975 			sp->config.intr_type = INTA;
7976 		}
7977 	}
7978 
7979 	if (config->intr_type ==  MSI_X) {
7980 		for (i = 0; i < config->rx_ring_num ; i++) {
7981 			struct ring_info *ring = &mac_control->rings[i];
7982 
7983 			netif_napi_add(dev, &ring->napi, s2io_poll_msix, 64);
7984 		}
7985 	} else {
7986 		netif_napi_add(dev, &sp->napi, s2io_poll_inta, 64);
7987 	}
7988 
7989 	/* Not needed for Herc */
7990 	if (sp->device_type & XFRAME_I_DEVICE) {
7991 		/*
7992 		 * Fix for all "FFs" MAC address problems observed on
7993 		 * Alpha platforms
7994 		 */
7995 		fix_mac_address(sp);
7996 		s2io_reset(sp);
7997 	}
7998 
7999 	/*
8000 	 * MAC address initialization.
8001 	 * For now only one mac address will be read and used.
8002 	 */
8003 	bar0 = sp->bar0;
8004 	val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
8005 		RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET);
8006 	writeq(val64, &bar0->rmac_addr_cmd_mem);
8007 	wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
8008 			      RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
8009 			      S2IO_BIT_RESET);
8010 	tmp64 = readq(&bar0->rmac_addr_data0_mem);
8011 	mac_down = (u32)tmp64;
8012 	mac_up = (u32) (tmp64 >> 32);
8013 
8014 	sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
8015 	sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
8016 	sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
8017 	sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
8018 	sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
8019 	sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
8020 
8021 	/*  Set the factory defined MAC address initially   */
8022 	dev->addr_len = ETH_ALEN;
8023 	memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
8024 	memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN);
8025 
8026 	/* initialize number of multicast & unicast MAC entries variables */
8027 	if (sp->device_type == XFRAME_I_DEVICE) {
8028 		config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES;
8029 		config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES;
8030 		config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET;
8031 	} else if (sp->device_type == XFRAME_II_DEVICE) {
8032 		config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES;
8033 		config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES;
8034 		config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET;
8035 	}
8036 
8037 	/* store mac addresses from CAM to s2io_nic structure */
8038 	do_s2io_store_unicast_mc(sp);
8039 
8040 	/* Configure MSIX vector for number of rings configured plus one */
8041 	if ((sp->device_type == XFRAME_II_DEVICE) &&
8042 	    (config->intr_type == MSI_X))
8043 		sp->num_entries = config->rx_ring_num + 1;
8044 
8045 	/* Store the values of the MSIX table in the s2io_nic structure */
8046 	store_xmsi_data(sp);
8047 	/* reset Nic and bring it to known state */
8048 	s2io_reset(sp);
8049 
8050 	/*
8051 	 * Initialize link state flags
8052 	 * and the card state parameter
8053 	 */
8054 	sp->state = 0;
8055 
8056 	/* Initialize spinlocks */
8057 	for (i = 0; i < sp->config.tx_fifo_num; i++) {
8058 		struct fifo_info *fifo = &mac_control->fifos[i];
8059 
8060 		spin_lock_init(&fifo->tx_lock);
8061 	}
8062 
8063 	/*
8064 	 * SXE-002: Configure link and activity LED to init state
8065 	 * on driver load.
8066 	 */
8067 	subid = sp->pdev->subsystem_device;
8068 	if ((subid & 0xFF) >= 0x07) {
8069 		val64 = readq(&bar0->gpio_control);
8070 		val64 |= 0x0000800000000000ULL;
8071 		writeq(val64, &bar0->gpio_control);
8072 		val64 = 0x0411040400000000ULL;
8073 		writeq(val64, (void __iomem *)bar0 + 0x2700);
8074 		val64 = readq(&bar0->gpio_control);
8075 	}
8076 
8077 	sp->rx_csum = 1;	/* Rx chksum verify enabled by default */
8078 
8079 	if (register_netdev(dev)) {
8080 		DBG_PRINT(ERR_DBG, "Device registration failed\n");
8081 		ret = -ENODEV;
8082 		goto register_failed;
8083 	}
8084 	s2io_vpd_read(sp);
8085 	DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2010 Exar Corp.\n");
8086 	DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n", dev->name,
8087 		  sp->product_name, pdev->revision);
8088 	DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
8089 		  s2io_driver_version);
8090 	DBG_PRINT(ERR_DBG, "%s: MAC Address: %pM\n", dev->name, dev->dev_addr);
8091 	DBG_PRINT(ERR_DBG, "Serial number: %s\n", sp->serial_num);
8092 	if (sp->device_type & XFRAME_II_DEVICE) {
8093 		mode = s2io_print_pci_mode(sp);
8094 		if (mode < 0) {
8095 			ret = -EBADSLT;
8096 			unregister_netdev(dev);
8097 			goto set_swap_failed;
8098 		}
8099 	}
8100 	switch (sp->rxd_mode) {
8101 	case RXD_MODE_1:
8102 		DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
8103 			  dev->name);
8104 		break;
8105 	case RXD_MODE_3B:
8106 		DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
8107 			  dev->name);
8108 		break;
8109 	}
8110 
8111 	switch (sp->config.napi) {
8112 	case 0:
8113 		DBG_PRINT(ERR_DBG, "%s: NAPI disabled\n", dev->name);
8114 		break;
8115 	case 1:
8116 		DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
8117 		break;
8118 	}
8119 
8120 	DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name,
8121 		  sp->config.tx_fifo_num);
8122 
8123 	DBG_PRINT(ERR_DBG, "%s: Using %d Rx ring(s)\n", dev->name,
8124 		  sp->config.rx_ring_num);
8125 
8126 	switch (sp->config.intr_type) {
8127 	case INTA:
8128 		DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
8129 		break;
8130 	case MSI_X:
8131 		DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
8132 		break;
8133 	}
8134 	if (sp->config.multiq) {
8135 		for (i = 0; i < sp->config.tx_fifo_num; i++) {
8136 			struct fifo_info *fifo = &mac_control->fifos[i];
8137 
8138 			fifo->multiq = config->multiq;
8139 		}
8140 		DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n",
8141 			  dev->name);
8142 	} else
8143 		DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n",
8144 			  dev->name);
8145 
8146 	switch (sp->config.tx_steering_type) {
8147 	case NO_STEERING:
8148 		DBG_PRINT(ERR_DBG, "%s: No steering enabled for transmit\n",
8149 			  dev->name);
8150 		break;
8151 	case TX_PRIORITY_STEERING:
8152 		DBG_PRINT(ERR_DBG,
8153 			  "%s: Priority steering enabled for transmit\n",
8154 			  dev->name);
8155 		break;
8156 	case TX_DEFAULT_STEERING:
8157 		DBG_PRINT(ERR_DBG,
8158 			  "%s: Default steering enabled for transmit\n",
8159 			  dev->name);
8160 	}
8161 
8162 	DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
8163 		  dev->name);
8164 	if (ufo)
8165 		DBG_PRINT(ERR_DBG,
8166 			  "%s: UDP Fragmentation Offload(UFO) enabled\n",
8167 			  dev->name);
8168 	/* Initialize device name */
8169 	sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
8170 
8171 	if (vlan_tag_strip)
8172 		sp->vlan_strip_flag = 1;
8173 	else
8174 		sp->vlan_strip_flag = 0;
8175 
8176 	/*
8177 	 * Make Link state as off at this point, when the Link change
8178 	 * interrupt comes the state will be automatically changed to
8179 	 * the right state.
8180 	 */
8181 	netif_carrier_off(dev);
8182 
8183 	return 0;
8184 
8185 register_failed:
8186 set_swap_failed:
8187 	iounmap(sp->bar1);
8188 bar1_remap_failed:
8189 	iounmap(sp->bar0);
8190 bar0_remap_failed:
8191 mem_alloc_failed:
8192 	free_shared_mem(sp);
8193 	pci_disable_device(pdev);
8194 	pci_release_regions(pdev);
8195 	pci_set_drvdata(pdev, NULL);
8196 	free_netdev(dev);
8197 
8198 	return ret;
8199 }
8200 
8201 /**
8202  * s2io_rem_nic - Free the PCI device
8203  * @pdev: structure containing the PCI related information of the device.
8204  * Description: This function is called by the Pci subsystem to release a
8205  * PCI device and free up all resource held up by the device. This could
8206  * be in response to a Hot plug event or when the driver is to be removed
8207  * from memory.
8208  */
8209 
8210 static void __devexit s2io_rem_nic(struct pci_dev *pdev)
8211 {
8212 	struct net_device *dev = pci_get_drvdata(pdev);
8213 	struct s2io_nic *sp;
8214 
8215 	if (dev == NULL) {
8216 		DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
8217 		return;
8218 	}
8219 
8220 	sp = netdev_priv(dev);
8221 
8222 	cancel_work_sync(&sp->rst_timer_task);
8223 	cancel_work_sync(&sp->set_link_task);
8224 
8225 	unregister_netdev(dev);
8226 
8227 	free_shared_mem(sp);
8228 	iounmap(sp->bar0);
8229 	iounmap(sp->bar1);
8230 	pci_release_regions(pdev);
8231 	pci_set_drvdata(pdev, NULL);
8232 	free_netdev(dev);
8233 	pci_disable_device(pdev);
8234 }
8235 
8236 /**
8237  * s2io_starter - Entry point for the driver
8238  * Description: This function is the entry point for the driver. It verifies
8239  * the module loadable parameters and initializes PCI configuration space.
8240  */
8241 
8242 static int __init s2io_starter(void)
8243 {
8244 	return pci_register_driver(&s2io_driver);
8245 }
8246 
8247 /**
8248  * s2io_closer - Cleanup routine for the driver
8249  * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
8250  */
8251 
8252 static __exit void s2io_closer(void)
8253 {
8254 	pci_unregister_driver(&s2io_driver);
8255 	DBG_PRINT(INIT_DBG, "cleanup done\n");
8256 }
8257 
8258 module_init(s2io_starter);
8259 module_exit(s2io_closer);
8260 
8261 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
8262 				struct tcphdr **tcp, struct RxD_t *rxdp,
8263 				struct s2io_nic *sp)
8264 {
8265 	int ip_off;
8266 	u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
8267 
8268 	if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
8269 		DBG_PRINT(INIT_DBG,
8270 			  "%s: Non-TCP frames not supported for LRO\n",
8271 			  __func__);
8272 		return -1;
8273 	}
8274 
8275 	/* Checking for DIX type or DIX type with VLAN */
8276 	if ((l2_type == 0) || (l2_type == 4)) {
8277 		ip_off = HEADER_ETHERNET_II_802_3_SIZE;
8278 		/*
8279 		 * If vlan stripping is disabled and the frame is VLAN tagged,
8280 		 * shift the offset by the VLAN header size bytes.
8281 		 */
8282 		if ((!sp->vlan_strip_flag) &&
8283 		    (rxdp->Control_1 & RXD_FRAME_VLAN_TAG))
8284 			ip_off += HEADER_VLAN_SIZE;
8285 	} else {
8286 		/* LLC, SNAP etc are considered non-mergeable */
8287 		return -1;
8288 	}
8289 
8290 	*ip = (struct iphdr *)((u8 *)buffer + ip_off);
8291 	ip_len = (u8)((*ip)->ihl);
8292 	ip_len <<= 2;
8293 	*tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
8294 
8295 	return 0;
8296 }
8297 
8298 static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
8299 				  struct tcphdr *tcp)
8300 {
8301 	DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8302 	if ((lro->iph->saddr != ip->saddr) ||
8303 	    (lro->iph->daddr != ip->daddr) ||
8304 	    (lro->tcph->source != tcp->source) ||
8305 	    (lro->tcph->dest != tcp->dest))
8306 		return -1;
8307 	return 0;
8308 }
8309 
8310 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
8311 {
8312 	return ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2);
8313 }
8314 
8315 static void initiate_new_session(struct lro *lro, u8 *l2h,
8316 				 struct iphdr *ip, struct tcphdr *tcp,
8317 				 u32 tcp_pyld_len, u16 vlan_tag)
8318 {
8319 	DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8320 	lro->l2h = l2h;
8321 	lro->iph = ip;
8322 	lro->tcph = tcp;
8323 	lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
8324 	lro->tcp_ack = tcp->ack_seq;
8325 	lro->sg_num = 1;
8326 	lro->total_len = ntohs(ip->tot_len);
8327 	lro->frags_len = 0;
8328 	lro->vlan_tag = vlan_tag;
8329 	/*
8330 	 * Check if we saw TCP timestamp.
8331 	 * Other consistency checks have already been done.
8332 	 */
8333 	if (tcp->doff == 8) {
8334 		__be32 *ptr;
8335 		ptr = (__be32 *)(tcp+1);
8336 		lro->saw_ts = 1;
8337 		lro->cur_tsval = ntohl(*(ptr+1));
8338 		lro->cur_tsecr = *(ptr+2);
8339 	}
8340 	lro->in_use = 1;
8341 }
8342 
8343 static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
8344 {
8345 	struct iphdr *ip = lro->iph;
8346 	struct tcphdr *tcp = lro->tcph;
8347 	__sum16 nchk;
8348 	struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8349 
8350 	DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8351 
8352 	/* Update L3 header */
8353 	ip->tot_len = htons(lro->total_len);
8354 	ip->check = 0;
8355 	nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
8356 	ip->check = nchk;
8357 
8358 	/* Update L4 header */
8359 	tcp->ack_seq = lro->tcp_ack;
8360 	tcp->window = lro->window;
8361 
8362 	/* Update tsecr field if this session has timestamps enabled */
8363 	if (lro->saw_ts) {
8364 		__be32 *ptr = (__be32 *)(tcp + 1);
8365 		*(ptr+2) = lro->cur_tsecr;
8366 	}
8367 
8368 	/* Update counters required for calculation of
8369 	 * average no. of packets aggregated.
8370 	 */
8371 	swstats->sum_avg_pkts_aggregated += lro->sg_num;
8372 	swstats->num_aggregations++;
8373 }
8374 
8375 static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
8376 			     struct tcphdr *tcp, u32 l4_pyld)
8377 {
8378 	DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8379 	lro->total_len += l4_pyld;
8380 	lro->frags_len += l4_pyld;
8381 	lro->tcp_next_seq += l4_pyld;
8382 	lro->sg_num++;
8383 
8384 	/* Update ack seq no. and window ad(from this pkt) in LRO object */
8385 	lro->tcp_ack = tcp->ack_seq;
8386 	lro->window = tcp->window;
8387 
8388 	if (lro->saw_ts) {
8389 		__be32 *ptr;
8390 		/* Update tsecr and tsval from this packet */
8391 		ptr = (__be32 *)(tcp+1);
8392 		lro->cur_tsval = ntohl(*(ptr+1));
8393 		lro->cur_tsecr = *(ptr + 2);
8394 	}
8395 }
8396 
8397 static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
8398 				    struct tcphdr *tcp, u32 tcp_pyld_len)
8399 {
8400 	u8 *ptr;
8401 
8402 	DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8403 
8404 	if (!tcp_pyld_len) {
8405 		/* Runt frame or a pure ack */
8406 		return -1;
8407 	}
8408 
8409 	if (ip->ihl != 5) /* IP has options */
8410 		return -1;
8411 
8412 	/* If we see CE codepoint in IP header, packet is not mergeable */
8413 	if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
8414 		return -1;
8415 
8416 	/* If we see ECE or CWR flags in TCP header, packet is not mergeable */
8417 	if (tcp->urg || tcp->psh || tcp->rst ||
8418 	    tcp->syn || tcp->fin ||
8419 	    tcp->ece || tcp->cwr || !tcp->ack) {
8420 		/*
8421 		 * Currently recognize only the ack control word and
8422 		 * any other control field being set would result in
8423 		 * flushing the LRO session
8424 		 */
8425 		return -1;
8426 	}
8427 
8428 	/*
8429 	 * Allow only one TCP timestamp option. Don't aggregate if
8430 	 * any other options are detected.
8431 	 */
8432 	if (tcp->doff != 5 && tcp->doff != 8)
8433 		return -1;
8434 
8435 	if (tcp->doff == 8) {
8436 		ptr = (u8 *)(tcp + 1);
8437 		while (*ptr == TCPOPT_NOP)
8438 			ptr++;
8439 		if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
8440 			return -1;
8441 
8442 		/* Ensure timestamp value increases monotonically */
8443 		if (l_lro)
8444 			if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2))))
8445 				return -1;
8446 
8447 		/* timestamp echo reply should be non-zero */
8448 		if (*((__be32 *)(ptr+6)) == 0)
8449 			return -1;
8450 	}
8451 
8452 	return 0;
8453 }
8454 
8455 static int s2io_club_tcp_session(struct ring_info *ring_data, u8 *buffer,
8456 				 u8 **tcp, u32 *tcp_len, struct lro **lro,
8457 				 struct RxD_t *rxdp, struct s2io_nic *sp)
8458 {
8459 	struct iphdr *ip;
8460 	struct tcphdr *tcph;
8461 	int ret = 0, i;
8462 	u16 vlan_tag = 0;
8463 	struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8464 
8465 	ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
8466 				   rxdp, sp);
8467 	if (ret)
8468 		return ret;
8469 
8470 	DBG_PRINT(INFO_DBG, "IP Saddr: %x Daddr: %x\n", ip->saddr, ip->daddr);
8471 
8472 	vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2);
8473 	tcph = (struct tcphdr *)*tcp;
8474 	*tcp_len = get_l4_pyld_length(ip, tcph);
8475 	for (i = 0; i < MAX_LRO_SESSIONS; i++) {
8476 		struct lro *l_lro = &ring_data->lro0_n[i];
8477 		if (l_lro->in_use) {
8478 			if (check_for_socket_match(l_lro, ip, tcph))
8479 				continue;
8480 			/* Sock pair matched */
8481 			*lro = l_lro;
8482 
8483 			if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
8484 				DBG_PRINT(INFO_DBG, "%s: Out of sequence. "
8485 					  "expected 0x%x, actual 0x%x\n",
8486 					  __func__,
8487 					  (*lro)->tcp_next_seq,
8488 					  ntohl(tcph->seq));
8489 
8490 				swstats->outof_sequence_pkts++;
8491 				ret = 2;
8492 				break;
8493 			}
8494 
8495 			if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,
8496 						      *tcp_len))
8497 				ret = 1; /* Aggregate */
8498 			else
8499 				ret = 2; /* Flush both */
8500 			break;
8501 		}
8502 	}
8503 
8504 	if (ret == 0) {
8505 		/* Before searching for available LRO objects,
8506 		 * check if the pkt is L3/L4 aggregatable. If not
8507 		 * don't create new LRO session. Just send this
8508 		 * packet up.
8509 		 */
8510 		if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len))
8511 			return 5;
8512 
8513 		for (i = 0; i < MAX_LRO_SESSIONS; i++) {
8514 			struct lro *l_lro = &ring_data->lro0_n[i];
8515 			if (!(l_lro->in_use)) {
8516 				*lro = l_lro;
8517 				ret = 3; /* Begin anew */
8518 				break;
8519 			}
8520 		}
8521 	}
8522 
8523 	if (ret == 0) { /* sessions exceeded */
8524 		DBG_PRINT(INFO_DBG, "%s: All LRO sessions already in use\n",
8525 			  __func__);
8526 		*lro = NULL;
8527 		return ret;
8528 	}
8529 
8530 	switch (ret) {
8531 	case 3:
8532 		initiate_new_session(*lro, buffer, ip, tcph, *tcp_len,
8533 				     vlan_tag);
8534 		break;
8535 	case 2:
8536 		update_L3L4_header(sp, *lro);
8537 		break;
8538 	case 1:
8539 		aggregate_new_rx(*lro, ip, tcph, *tcp_len);
8540 		if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
8541 			update_L3L4_header(sp, *lro);
8542 			ret = 4; /* Flush the LRO */
8543 		}
8544 		break;
8545 	default:
8546 		DBG_PRINT(ERR_DBG, "%s: Don't know, can't say!!\n", __func__);
8547 		break;
8548 	}
8549 
8550 	return ret;
8551 }
8552 
8553 static void clear_lro_session(struct lro *lro)
8554 {
8555 	static u16 lro_struct_size = sizeof(struct lro);
8556 
8557 	memset(lro, 0, lro_struct_size);
8558 }
8559 
8560 static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag)
8561 {
8562 	struct net_device *dev = skb->dev;
8563 	struct s2io_nic *sp = netdev_priv(dev);
8564 
8565 	skb->protocol = eth_type_trans(skb, dev);
8566 	if (vlan_tag && sp->vlan_strip_flag)
8567 		__vlan_hwaccel_put_tag(skb, vlan_tag);
8568 	if (sp->config.napi)
8569 		netif_receive_skb(skb);
8570 	else
8571 		netif_rx(skb);
8572 }
8573 
8574 static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
8575 			   struct sk_buff *skb, u32 tcp_len)
8576 {
8577 	struct sk_buff *first = lro->parent;
8578 	struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8579 
8580 	first->len += tcp_len;
8581 	first->data_len = lro->frags_len;
8582 	skb_pull(skb, (skb->len - tcp_len));
8583 	if (skb_shinfo(first)->frag_list)
8584 		lro->last_frag->next = skb;
8585 	else
8586 		skb_shinfo(first)->frag_list = skb;
8587 	first->truesize += skb->truesize;
8588 	lro->last_frag = skb;
8589 	swstats->clubbed_frms_cnt++;
8590 }
8591 
8592 /**
8593  * s2io_io_error_detected - called when PCI error is detected
8594  * @pdev: Pointer to PCI device
8595  * @state: The current pci connection state
8596  *
8597  * This function is called after a PCI bus error affecting
8598  * this device has been detected.
8599  */
8600 static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
8601 					       pci_channel_state_t state)
8602 {
8603 	struct net_device *netdev = pci_get_drvdata(pdev);
8604 	struct s2io_nic *sp = netdev_priv(netdev);
8605 
8606 	netif_device_detach(netdev);
8607 
8608 	if (state == pci_channel_io_perm_failure)
8609 		return PCI_ERS_RESULT_DISCONNECT;
8610 
8611 	if (netif_running(netdev)) {
8612 		/* Bring down the card, while avoiding PCI I/O */
8613 		do_s2io_card_down(sp, 0);
8614 	}
8615 	pci_disable_device(pdev);
8616 
8617 	return PCI_ERS_RESULT_NEED_RESET;
8618 }
8619 
8620 /**
8621  * s2io_io_slot_reset - called after the pci bus has been reset.
8622  * @pdev: Pointer to PCI device
8623  *
8624  * Restart the card from scratch, as if from a cold-boot.
8625  * At this point, the card has exprienced a hard reset,
8626  * followed by fixups by BIOS, and has its config space
8627  * set up identically to what it was at cold boot.
8628  */
8629 static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8630 {
8631 	struct net_device *netdev = pci_get_drvdata(pdev);
8632 	struct s2io_nic *sp = netdev_priv(netdev);
8633 
8634 	if (pci_enable_device(pdev)) {
8635 		pr_err("Cannot re-enable PCI device after reset.\n");
8636 		return PCI_ERS_RESULT_DISCONNECT;
8637 	}
8638 
8639 	pci_set_master(pdev);
8640 	s2io_reset(sp);
8641 
8642 	return PCI_ERS_RESULT_RECOVERED;
8643 }
8644 
8645 /**
8646  * s2io_io_resume - called when traffic can start flowing again.
8647  * @pdev: Pointer to PCI device
8648  *
8649  * This callback is called when the error recovery driver tells
8650  * us that its OK to resume normal operation.
8651  */
8652 static void s2io_io_resume(struct pci_dev *pdev)
8653 {
8654 	struct net_device *netdev = pci_get_drvdata(pdev);
8655 	struct s2io_nic *sp = netdev_priv(netdev);
8656 
8657 	if (netif_running(netdev)) {
8658 		if (s2io_card_up(sp)) {
8659 			pr_err("Can't bring device back up after reset.\n");
8660 			return;
8661 		}
8662 
8663 		if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
8664 			s2io_card_down(sp);
8665 			pr_err("Can't restore mac addr after reset.\n");
8666 			return;
8667 		}
8668 	}
8669 
8670 	netif_device_attach(netdev);
8671 	netif_tx_wake_all_queues(netdev);
8672 }
8673