1 /************************************************************************ 2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC 3 * Copyright(c) 2002-2010 Exar Corp. 4 * 5 * This software may be used and distributed according to the terms of 6 * the GNU General Public License (GPL), incorporated herein by reference. 7 * Drivers based on or derived from this code fall under the GPL and must 8 * retain the authorship, copyright and license notice. This file is not 9 * a complete program and may only be used when the entire operating 10 * system is licensed under the GPL. 11 * See the file COPYING in this distribution for more information. 12 * 13 * Credits: 14 * Jeff Garzik : For pointing out the improper error condition 15 * check in the s2io_xmit routine and also some 16 * issues in the Tx watch dog function. Also for 17 * patiently answering all those innumerable 18 * questions regaring the 2.6 porting issues. 19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some 20 * macros available only in 2.6 Kernel. 21 * Francois Romieu : For pointing out all code part that were 22 * deprecated and also styling related comments. 23 * Grant Grundler : For helping me get rid of some Architecture 24 * dependent code. 25 * Christopher Hellwig : Some more 2.6 specific issues in the driver. 26 * 27 * The module loadable parameters that are supported by the driver and a brief 28 * explanation of all the variables. 29 * 30 * rx_ring_num : This can be used to program the number of receive rings used 31 * in the driver. 32 * rx_ring_sz: This defines the number of receive blocks each ring can have. 33 * This is also an array of size 8. 34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid 35 * values are 1, 2. 36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver. 37 * tx_fifo_len: This too is an array of 8. Each element defines the number of 38 * Tx descriptors that can be associated with each corresponding FIFO. 39 * intr_type: This defines the type of interrupt. The values can be 0(INTA), 40 * 2(MSI_X). Default value is '2(MSI_X)' 41 * lro_max_pkts: This parameter defines maximum number of packets can be 42 * aggregated as a single large packet 43 * napi: This parameter used to enable/disable NAPI (polling Rx) 44 * Possible values '1' for enable and '0' for disable. Default is '1' 45 * vlan_tag_strip: This can be used to enable or disable vlan stripping. 46 * Possible values '1' for enable , '0' for disable. 47 * Default is '2' - which means disable in promisc mode 48 * and enable in non-promiscuous mode. 49 * multiq: This parameter used to enable/disable MULTIQUEUE support. 50 * Possible values '1' for enable and '0' for disable. Default is '0' 51 ************************************************************************/ 52 53 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 54 55 #include <linux/module.h> 56 #include <linux/types.h> 57 #include <linux/errno.h> 58 #include <linux/ioport.h> 59 #include <linux/pci.h> 60 #include <linux/dma-mapping.h> 61 #include <linux/kernel.h> 62 #include <linux/netdevice.h> 63 #include <linux/etherdevice.h> 64 #include <linux/mdio.h> 65 #include <linux/skbuff.h> 66 #include <linux/init.h> 67 #include <linux/delay.h> 68 #include <linux/stddef.h> 69 #include <linux/ioctl.h> 70 #include <linux/timex.h> 71 #include <linux/ethtool.h> 72 #include <linux/workqueue.h> 73 #include <linux/if_vlan.h> 74 #include <linux/ip.h> 75 #include <linux/tcp.h> 76 #include <linux/uaccess.h> 77 #include <linux/io.h> 78 #include <linux/io-64-nonatomic-lo-hi.h> 79 #include <linux/slab.h> 80 #include <linux/prefetch.h> 81 #include <net/tcp.h> 82 #include <net/checksum.h> 83 84 #include <asm/div64.h> 85 #include <asm/irq.h> 86 87 /* local include */ 88 #include "s2io.h" 89 #include "s2io-regs.h" 90 91 #define DRV_VERSION "2.0.26.28" 92 93 /* S2io Driver name & version. */ 94 static const char s2io_driver_name[] = "Neterion"; 95 static const char s2io_driver_version[] = DRV_VERSION; 96 97 static const int rxd_size[2] = {32, 48}; 98 static const int rxd_count[2] = {127, 85}; 99 100 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp) 101 { 102 int ret; 103 104 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) && 105 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK)); 106 107 return ret; 108 } 109 110 /* 111 * Cards with following subsystem_id have a link state indication 112 * problem, 600B, 600C, 600D, 640B, 640C and 640D. 113 * macro below identifies these cards given the subsystem_id. 114 */ 115 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \ 116 (dev_type == XFRAME_I_DEVICE) ? \ 117 ((((subid >= 0x600B) && (subid <= 0x600D)) || \ 118 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0 119 120 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \ 121 ADAPTER_STATUS_RMAC_LOCAL_FAULT))) 122 123 static inline int is_s2io_card_up(const struct s2io_nic *sp) 124 { 125 return test_bit(__S2IO_STATE_CARD_UP, &sp->state); 126 } 127 128 /* Ethtool related variables and Macros. */ 129 static const char s2io_gstrings[][ETH_GSTRING_LEN] = { 130 "Register test\t(offline)", 131 "Eeprom test\t(offline)", 132 "Link test\t(online)", 133 "RLDRAM test\t(offline)", 134 "BIST Test\t(offline)" 135 }; 136 137 static const char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = { 138 {"tmac_frms"}, 139 {"tmac_data_octets"}, 140 {"tmac_drop_frms"}, 141 {"tmac_mcst_frms"}, 142 {"tmac_bcst_frms"}, 143 {"tmac_pause_ctrl_frms"}, 144 {"tmac_ttl_octets"}, 145 {"tmac_ucst_frms"}, 146 {"tmac_nucst_frms"}, 147 {"tmac_any_err_frms"}, 148 {"tmac_ttl_less_fb_octets"}, 149 {"tmac_vld_ip_octets"}, 150 {"tmac_vld_ip"}, 151 {"tmac_drop_ip"}, 152 {"tmac_icmp"}, 153 {"tmac_rst_tcp"}, 154 {"tmac_tcp"}, 155 {"tmac_udp"}, 156 {"rmac_vld_frms"}, 157 {"rmac_data_octets"}, 158 {"rmac_fcs_err_frms"}, 159 {"rmac_drop_frms"}, 160 {"rmac_vld_mcst_frms"}, 161 {"rmac_vld_bcst_frms"}, 162 {"rmac_in_rng_len_err_frms"}, 163 {"rmac_out_rng_len_err_frms"}, 164 {"rmac_long_frms"}, 165 {"rmac_pause_ctrl_frms"}, 166 {"rmac_unsup_ctrl_frms"}, 167 {"rmac_ttl_octets"}, 168 {"rmac_accepted_ucst_frms"}, 169 {"rmac_accepted_nucst_frms"}, 170 {"rmac_discarded_frms"}, 171 {"rmac_drop_events"}, 172 {"rmac_ttl_less_fb_octets"}, 173 {"rmac_ttl_frms"}, 174 {"rmac_usized_frms"}, 175 {"rmac_osized_frms"}, 176 {"rmac_frag_frms"}, 177 {"rmac_jabber_frms"}, 178 {"rmac_ttl_64_frms"}, 179 {"rmac_ttl_65_127_frms"}, 180 {"rmac_ttl_128_255_frms"}, 181 {"rmac_ttl_256_511_frms"}, 182 {"rmac_ttl_512_1023_frms"}, 183 {"rmac_ttl_1024_1518_frms"}, 184 {"rmac_ip"}, 185 {"rmac_ip_octets"}, 186 {"rmac_hdr_err_ip"}, 187 {"rmac_drop_ip"}, 188 {"rmac_icmp"}, 189 {"rmac_tcp"}, 190 {"rmac_udp"}, 191 {"rmac_err_drp_udp"}, 192 {"rmac_xgmii_err_sym"}, 193 {"rmac_frms_q0"}, 194 {"rmac_frms_q1"}, 195 {"rmac_frms_q2"}, 196 {"rmac_frms_q3"}, 197 {"rmac_frms_q4"}, 198 {"rmac_frms_q5"}, 199 {"rmac_frms_q6"}, 200 {"rmac_frms_q7"}, 201 {"rmac_full_q0"}, 202 {"rmac_full_q1"}, 203 {"rmac_full_q2"}, 204 {"rmac_full_q3"}, 205 {"rmac_full_q4"}, 206 {"rmac_full_q5"}, 207 {"rmac_full_q6"}, 208 {"rmac_full_q7"}, 209 {"rmac_pause_cnt"}, 210 {"rmac_xgmii_data_err_cnt"}, 211 {"rmac_xgmii_ctrl_err_cnt"}, 212 {"rmac_accepted_ip"}, 213 {"rmac_err_tcp"}, 214 {"rd_req_cnt"}, 215 {"new_rd_req_cnt"}, 216 {"new_rd_req_rtry_cnt"}, 217 {"rd_rtry_cnt"}, 218 {"wr_rtry_rd_ack_cnt"}, 219 {"wr_req_cnt"}, 220 {"new_wr_req_cnt"}, 221 {"new_wr_req_rtry_cnt"}, 222 {"wr_rtry_cnt"}, 223 {"wr_disc_cnt"}, 224 {"rd_rtry_wr_ack_cnt"}, 225 {"txp_wr_cnt"}, 226 {"txd_rd_cnt"}, 227 {"txd_wr_cnt"}, 228 {"rxd_rd_cnt"}, 229 {"rxd_wr_cnt"}, 230 {"txf_rd_cnt"}, 231 {"rxf_wr_cnt"} 232 }; 233 234 static const char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = { 235 {"rmac_ttl_1519_4095_frms"}, 236 {"rmac_ttl_4096_8191_frms"}, 237 {"rmac_ttl_8192_max_frms"}, 238 {"rmac_ttl_gt_max_frms"}, 239 {"rmac_osized_alt_frms"}, 240 {"rmac_jabber_alt_frms"}, 241 {"rmac_gt_max_alt_frms"}, 242 {"rmac_vlan_frms"}, 243 {"rmac_len_discard"}, 244 {"rmac_fcs_discard"}, 245 {"rmac_pf_discard"}, 246 {"rmac_da_discard"}, 247 {"rmac_red_discard"}, 248 {"rmac_rts_discard"}, 249 {"rmac_ingm_full_discard"}, 250 {"link_fault_cnt"} 251 }; 252 253 static const char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = { 254 {"\n DRIVER STATISTICS"}, 255 {"single_bit_ecc_errs"}, 256 {"double_bit_ecc_errs"}, 257 {"parity_err_cnt"}, 258 {"serious_err_cnt"}, 259 {"soft_reset_cnt"}, 260 {"fifo_full_cnt"}, 261 {"ring_0_full_cnt"}, 262 {"ring_1_full_cnt"}, 263 {"ring_2_full_cnt"}, 264 {"ring_3_full_cnt"}, 265 {"ring_4_full_cnt"}, 266 {"ring_5_full_cnt"}, 267 {"ring_6_full_cnt"}, 268 {"ring_7_full_cnt"}, 269 {"alarm_transceiver_temp_high"}, 270 {"alarm_transceiver_temp_low"}, 271 {"alarm_laser_bias_current_high"}, 272 {"alarm_laser_bias_current_low"}, 273 {"alarm_laser_output_power_high"}, 274 {"alarm_laser_output_power_low"}, 275 {"warn_transceiver_temp_high"}, 276 {"warn_transceiver_temp_low"}, 277 {"warn_laser_bias_current_high"}, 278 {"warn_laser_bias_current_low"}, 279 {"warn_laser_output_power_high"}, 280 {"warn_laser_output_power_low"}, 281 {"lro_aggregated_pkts"}, 282 {"lro_flush_both_count"}, 283 {"lro_out_of_sequence_pkts"}, 284 {"lro_flush_due_to_max_pkts"}, 285 {"lro_avg_aggr_pkts"}, 286 {"mem_alloc_fail_cnt"}, 287 {"pci_map_fail_cnt"}, 288 {"watchdog_timer_cnt"}, 289 {"mem_allocated"}, 290 {"mem_freed"}, 291 {"link_up_cnt"}, 292 {"link_down_cnt"}, 293 {"link_up_time"}, 294 {"link_down_time"}, 295 {"tx_tcode_buf_abort_cnt"}, 296 {"tx_tcode_desc_abort_cnt"}, 297 {"tx_tcode_parity_err_cnt"}, 298 {"tx_tcode_link_loss_cnt"}, 299 {"tx_tcode_list_proc_err_cnt"}, 300 {"rx_tcode_parity_err_cnt"}, 301 {"rx_tcode_abort_cnt"}, 302 {"rx_tcode_parity_abort_cnt"}, 303 {"rx_tcode_rda_fail_cnt"}, 304 {"rx_tcode_unkn_prot_cnt"}, 305 {"rx_tcode_fcs_err_cnt"}, 306 {"rx_tcode_buf_size_err_cnt"}, 307 {"rx_tcode_rxd_corrupt_cnt"}, 308 {"rx_tcode_unkn_err_cnt"}, 309 {"tda_err_cnt"}, 310 {"pfc_err_cnt"}, 311 {"pcc_err_cnt"}, 312 {"tti_err_cnt"}, 313 {"tpa_err_cnt"}, 314 {"sm_err_cnt"}, 315 {"lso_err_cnt"}, 316 {"mac_tmac_err_cnt"}, 317 {"mac_rmac_err_cnt"}, 318 {"xgxs_txgxs_err_cnt"}, 319 {"xgxs_rxgxs_err_cnt"}, 320 {"rc_err_cnt"}, 321 {"prc_pcix_err_cnt"}, 322 {"rpa_err_cnt"}, 323 {"rda_err_cnt"}, 324 {"rti_err_cnt"}, 325 {"mc_err_cnt"} 326 }; 327 328 #define S2IO_XENA_STAT_LEN ARRAY_SIZE(ethtool_xena_stats_keys) 329 #define S2IO_ENHANCED_STAT_LEN ARRAY_SIZE(ethtool_enhanced_stats_keys) 330 #define S2IO_DRIVER_STAT_LEN ARRAY_SIZE(ethtool_driver_stats_keys) 331 332 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN) 333 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN) 334 335 #define XFRAME_I_STAT_STRINGS_LEN (XFRAME_I_STAT_LEN * ETH_GSTRING_LEN) 336 #define XFRAME_II_STAT_STRINGS_LEN (XFRAME_II_STAT_LEN * ETH_GSTRING_LEN) 337 338 #define S2IO_TEST_LEN ARRAY_SIZE(s2io_gstrings) 339 #define S2IO_STRINGS_LEN (S2IO_TEST_LEN * ETH_GSTRING_LEN) 340 341 /* copy mac addr to def_mac_addr array */ 342 static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr) 343 { 344 sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr); 345 sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8); 346 sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16); 347 sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24); 348 sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32); 349 sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40); 350 } 351 352 /* 353 * Constants to be programmed into the Xena's registers, to configure 354 * the XAUI. 355 */ 356 357 #define END_SIGN 0x0 358 static const u64 herc_act_dtx_cfg[] = { 359 /* Set address */ 360 0x8000051536750000ULL, 0x80000515367500E0ULL, 361 /* Write data */ 362 0x8000051536750004ULL, 0x80000515367500E4ULL, 363 /* Set address */ 364 0x80010515003F0000ULL, 0x80010515003F00E0ULL, 365 /* Write data */ 366 0x80010515003F0004ULL, 0x80010515003F00E4ULL, 367 /* Set address */ 368 0x801205150D440000ULL, 0x801205150D4400E0ULL, 369 /* Write data */ 370 0x801205150D440004ULL, 0x801205150D4400E4ULL, 371 /* Set address */ 372 0x80020515F2100000ULL, 0x80020515F21000E0ULL, 373 /* Write data */ 374 0x80020515F2100004ULL, 0x80020515F21000E4ULL, 375 /* Done */ 376 END_SIGN 377 }; 378 379 static const u64 xena_dtx_cfg[] = { 380 /* Set address */ 381 0x8000051500000000ULL, 0x80000515000000E0ULL, 382 /* Write data */ 383 0x80000515D9350004ULL, 0x80000515D93500E4ULL, 384 /* Set address */ 385 0x8001051500000000ULL, 0x80010515000000E0ULL, 386 /* Write data */ 387 0x80010515001E0004ULL, 0x80010515001E00E4ULL, 388 /* Set address */ 389 0x8002051500000000ULL, 0x80020515000000E0ULL, 390 /* Write data */ 391 0x80020515F2100004ULL, 0x80020515F21000E4ULL, 392 END_SIGN 393 }; 394 395 /* 396 * Constants for Fixing the MacAddress problem seen mostly on 397 * Alpha machines. 398 */ 399 static const u64 fix_mac[] = { 400 0x0060000000000000ULL, 0x0060600000000000ULL, 401 0x0040600000000000ULL, 0x0000600000000000ULL, 402 0x0020600000000000ULL, 0x0060600000000000ULL, 403 0x0020600000000000ULL, 0x0060600000000000ULL, 404 0x0020600000000000ULL, 0x0060600000000000ULL, 405 0x0020600000000000ULL, 0x0060600000000000ULL, 406 0x0020600000000000ULL, 0x0060600000000000ULL, 407 0x0020600000000000ULL, 0x0060600000000000ULL, 408 0x0020600000000000ULL, 0x0060600000000000ULL, 409 0x0020600000000000ULL, 0x0060600000000000ULL, 410 0x0020600000000000ULL, 0x0060600000000000ULL, 411 0x0020600000000000ULL, 0x0060600000000000ULL, 412 0x0020600000000000ULL, 0x0000600000000000ULL, 413 0x0040600000000000ULL, 0x0060600000000000ULL, 414 END_SIGN 415 }; 416 417 MODULE_LICENSE("GPL"); 418 MODULE_VERSION(DRV_VERSION); 419 420 421 /* Module Loadable parameters. */ 422 S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM); 423 S2IO_PARM_INT(rx_ring_num, 1); 424 S2IO_PARM_INT(multiq, 0); 425 S2IO_PARM_INT(rx_ring_mode, 1); 426 S2IO_PARM_INT(use_continuous_tx_intrs, 1); 427 S2IO_PARM_INT(rmac_pause_time, 0x100); 428 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187); 429 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187); 430 S2IO_PARM_INT(shared_splits, 0); 431 S2IO_PARM_INT(tmac_util_period, 5); 432 S2IO_PARM_INT(rmac_util_period, 5); 433 S2IO_PARM_INT(l3l4hdr_size, 128); 434 /* 0 is no steering, 1 is Priority steering, 2 is Default steering */ 435 S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING); 436 /* Frequency of Rx desc syncs expressed as power of 2 */ 437 S2IO_PARM_INT(rxsync_frequency, 3); 438 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */ 439 S2IO_PARM_INT(intr_type, 2); 440 /* Large receive offload feature */ 441 442 /* Max pkts to be aggregated by LRO at one time. If not specified, 443 * aggregation happens until we hit max IP pkt size(64K) 444 */ 445 S2IO_PARM_INT(lro_max_pkts, 0xFFFF); 446 S2IO_PARM_INT(indicate_max_pkts, 0); 447 448 S2IO_PARM_INT(napi, 1); 449 S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC); 450 451 static unsigned int tx_fifo_len[MAX_TX_FIFOS] = 452 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN}; 453 static unsigned int rx_ring_sz[MAX_RX_RINGS] = 454 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT}; 455 static unsigned int rts_frm_len[MAX_RX_RINGS] = 456 {[0 ...(MAX_RX_RINGS - 1)] = 0 }; 457 458 module_param_array(tx_fifo_len, uint, NULL, 0); 459 module_param_array(rx_ring_sz, uint, NULL, 0); 460 module_param_array(rts_frm_len, uint, NULL, 0); 461 462 /* 463 * S2IO device table. 464 * This table lists all the devices that this driver supports. 465 */ 466 static const struct pci_device_id s2io_tbl[] = { 467 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN, 468 PCI_ANY_ID, PCI_ANY_ID}, 469 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI, 470 PCI_ANY_ID, PCI_ANY_ID}, 471 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN, 472 PCI_ANY_ID, PCI_ANY_ID}, 473 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI, 474 PCI_ANY_ID, PCI_ANY_ID}, 475 {0,} 476 }; 477 478 MODULE_DEVICE_TABLE(pci, s2io_tbl); 479 480 static const struct pci_error_handlers s2io_err_handler = { 481 .error_detected = s2io_io_error_detected, 482 .slot_reset = s2io_io_slot_reset, 483 .resume = s2io_io_resume, 484 }; 485 486 static struct pci_driver s2io_driver = { 487 .name = "S2IO", 488 .id_table = s2io_tbl, 489 .probe = s2io_init_nic, 490 .remove = s2io_rem_nic, 491 .err_handler = &s2io_err_handler, 492 }; 493 494 /* A simplifier macro used both by init and free shared_mem Fns(). */ 495 #define TXD_MEM_PAGE_CNT(len, per_each) DIV_ROUND_UP(len, per_each) 496 497 /* netqueue manipulation helper functions */ 498 static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp) 499 { 500 if (!sp->config.multiq) { 501 int i; 502 503 for (i = 0; i < sp->config.tx_fifo_num; i++) 504 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP; 505 } 506 netif_tx_stop_all_queues(sp->dev); 507 } 508 509 static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no) 510 { 511 if (!sp->config.multiq) 512 sp->mac_control.fifos[fifo_no].queue_state = 513 FIFO_QUEUE_STOP; 514 515 netif_tx_stop_all_queues(sp->dev); 516 } 517 518 static inline void s2io_start_all_tx_queue(struct s2io_nic *sp) 519 { 520 if (!sp->config.multiq) { 521 int i; 522 523 for (i = 0; i < sp->config.tx_fifo_num; i++) 524 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START; 525 } 526 netif_tx_start_all_queues(sp->dev); 527 } 528 529 static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp) 530 { 531 if (!sp->config.multiq) { 532 int i; 533 534 for (i = 0; i < sp->config.tx_fifo_num; i++) 535 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START; 536 } 537 netif_tx_wake_all_queues(sp->dev); 538 } 539 540 static inline void s2io_wake_tx_queue( 541 struct fifo_info *fifo, int cnt, u8 multiq) 542 { 543 544 if (multiq) { 545 if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no)) 546 netif_wake_subqueue(fifo->dev, fifo->fifo_no); 547 } else if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) { 548 if (netif_queue_stopped(fifo->dev)) { 549 fifo->queue_state = FIFO_QUEUE_START; 550 netif_wake_queue(fifo->dev); 551 } 552 } 553 } 554 555 /** 556 * init_shared_mem - Allocation and Initialization of Memory 557 * @nic: Device private variable. 558 * Description: The function allocates all the memory areas shared 559 * between the NIC and the driver. This includes Tx descriptors, 560 * Rx descriptors and the statistics block. 561 */ 562 563 static int init_shared_mem(struct s2io_nic *nic) 564 { 565 u32 size; 566 void *tmp_v_addr, *tmp_v_addr_next; 567 dma_addr_t tmp_p_addr, tmp_p_addr_next; 568 struct RxD_block *pre_rxd_blk = NULL; 569 int i, j, blk_cnt; 570 int lst_size, lst_per_page; 571 struct net_device *dev = nic->dev; 572 unsigned long tmp; 573 struct buffAdd *ba; 574 struct config_param *config = &nic->config; 575 struct mac_info *mac_control = &nic->mac_control; 576 unsigned long long mem_allocated = 0; 577 578 /* Allocation and initialization of TXDLs in FIFOs */ 579 size = 0; 580 for (i = 0; i < config->tx_fifo_num; i++) { 581 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; 582 583 size += tx_cfg->fifo_len; 584 } 585 if (size > MAX_AVAILABLE_TXDS) { 586 DBG_PRINT(ERR_DBG, 587 "Too many TxDs requested: %d, max supported: %d\n", 588 size, MAX_AVAILABLE_TXDS); 589 return -EINVAL; 590 } 591 592 size = 0; 593 for (i = 0; i < config->tx_fifo_num; i++) { 594 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; 595 596 size = tx_cfg->fifo_len; 597 /* 598 * Legal values are from 2 to 8192 599 */ 600 if (size < 2) { 601 DBG_PRINT(ERR_DBG, "Fifo %d: Invalid length (%d) - " 602 "Valid lengths are 2 through 8192\n", 603 i, size); 604 return -EINVAL; 605 } 606 } 607 608 lst_size = (sizeof(struct TxD) * config->max_txds); 609 lst_per_page = PAGE_SIZE / lst_size; 610 611 for (i = 0; i < config->tx_fifo_num; i++) { 612 struct fifo_info *fifo = &mac_control->fifos[i]; 613 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; 614 int fifo_len = tx_cfg->fifo_len; 615 int list_holder_size = fifo_len * sizeof(struct list_info_hold); 616 617 fifo->list_info = kzalloc(list_holder_size, GFP_KERNEL); 618 if (!fifo->list_info) { 619 DBG_PRINT(INFO_DBG, "Malloc failed for list_info\n"); 620 return -ENOMEM; 621 } 622 mem_allocated += list_holder_size; 623 } 624 for (i = 0; i < config->tx_fifo_num; i++) { 625 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len, 626 lst_per_page); 627 struct fifo_info *fifo = &mac_control->fifos[i]; 628 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; 629 630 fifo->tx_curr_put_info.offset = 0; 631 fifo->tx_curr_put_info.fifo_len = tx_cfg->fifo_len - 1; 632 fifo->tx_curr_get_info.offset = 0; 633 fifo->tx_curr_get_info.fifo_len = tx_cfg->fifo_len - 1; 634 fifo->fifo_no = i; 635 fifo->nic = nic; 636 fifo->max_txds = MAX_SKB_FRAGS + 2; 637 fifo->dev = dev; 638 639 for (j = 0; j < page_num; j++) { 640 int k = 0; 641 dma_addr_t tmp_p; 642 void *tmp_v; 643 tmp_v = dma_alloc_coherent(&nic->pdev->dev, PAGE_SIZE, 644 &tmp_p, GFP_KERNEL); 645 if (!tmp_v) { 646 DBG_PRINT(INFO_DBG, 647 "dma_alloc_coherent failed for TxDL\n"); 648 return -ENOMEM; 649 } 650 /* If we got a zero DMA address(can happen on 651 * certain platforms like PPC), reallocate. 652 * Store virtual address of page we don't want, 653 * to be freed later. 654 */ 655 if (!tmp_p) { 656 mac_control->zerodma_virt_addr = tmp_v; 657 DBG_PRINT(INIT_DBG, 658 "%s: Zero DMA address for TxDL. " 659 "Virtual address %p\n", 660 dev->name, tmp_v); 661 tmp_v = dma_alloc_coherent(&nic->pdev->dev, 662 PAGE_SIZE, &tmp_p, 663 GFP_KERNEL); 664 if (!tmp_v) { 665 DBG_PRINT(INFO_DBG, 666 "dma_alloc_coherent failed for TxDL\n"); 667 return -ENOMEM; 668 } 669 mem_allocated += PAGE_SIZE; 670 } 671 while (k < lst_per_page) { 672 int l = (j * lst_per_page) + k; 673 if (l == tx_cfg->fifo_len) 674 break; 675 fifo->list_info[l].list_virt_addr = 676 tmp_v + (k * lst_size); 677 fifo->list_info[l].list_phy_addr = 678 tmp_p + (k * lst_size); 679 k++; 680 } 681 } 682 } 683 684 for (i = 0; i < config->tx_fifo_num; i++) { 685 struct fifo_info *fifo = &mac_control->fifos[i]; 686 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; 687 688 size = tx_cfg->fifo_len; 689 fifo->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL); 690 if (!fifo->ufo_in_band_v) 691 return -ENOMEM; 692 mem_allocated += (size * sizeof(u64)); 693 } 694 695 /* Allocation and initialization of RXDs in Rings */ 696 size = 0; 697 for (i = 0; i < config->rx_ring_num; i++) { 698 struct rx_ring_config *rx_cfg = &config->rx_cfg[i]; 699 struct ring_info *ring = &mac_control->rings[i]; 700 701 if (rx_cfg->num_rxd % (rxd_count[nic->rxd_mode] + 1)) { 702 DBG_PRINT(ERR_DBG, "%s: Ring%d RxD count is not a " 703 "multiple of RxDs per Block\n", 704 dev->name, i); 705 return FAILURE; 706 } 707 size += rx_cfg->num_rxd; 708 ring->block_count = rx_cfg->num_rxd / 709 (rxd_count[nic->rxd_mode] + 1); 710 ring->pkt_cnt = rx_cfg->num_rxd - ring->block_count; 711 } 712 if (nic->rxd_mode == RXD_MODE_1) 713 size = (size * (sizeof(struct RxD1))); 714 else 715 size = (size * (sizeof(struct RxD3))); 716 717 for (i = 0; i < config->rx_ring_num; i++) { 718 struct rx_ring_config *rx_cfg = &config->rx_cfg[i]; 719 struct ring_info *ring = &mac_control->rings[i]; 720 721 ring->rx_curr_get_info.block_index = 0; 722 ring->rx_curr_get_info.offset = 0; 723 ring->rx_curr_get_info.ring_len = rx_cfg->num_rxd - 1; 724 ring->rx_curr_put_info.block_index = 0; 725 ring->rx_curr_put_info.offset = 0; 726 ring->rx_curr_put_info.ring_len = rx_cfg->num_rxd - 1; 727 ring->nic = nic; 728 ring->ring_no = i; 729 730 blk_cnt = rx_cfg->num_rxd / (rxd_count[nic->rxd_mode] + 1); 731 /* Allocating all the Rx blocks */ 732 for (j = 0; j < blk_cnt; j++) { 733 struct rx_block_info *rx_blocks; 734 int l; 735 736 rx_blocks = &ring->rx_blocks[j]; 737 size = SIZE_OF_BLOCK; /* size is always page size */ 738 tmp_v_addr = dma_alloc_coherent(&nic->pdev->dev, size, 739 &tmp_p_addr, GFP_KERNEL); 740 if (tmp_v_addr == NULL) { 741 /* 742 * In case of failure, free_shared_mem() 743 * is called, which should free any 744 * memory that was alloced till the 745 * failure happened. 746 */ 747 rx_blocks->block_virt_addr = tmp_v_addr; 748 return -ENOMEM; 749 } 750 mem_allocated += size; 751 752 size = sizeof(struct rxd_info) * 753 rxd_count[nic->rxd_mode]; 754 rx_blocks->block_virt_addr = tmp_v_addr; 755 rx_blocks->block_dma_addr = tmp_p_addr; 756 rx_blocks->rxds = kmalloc(size, GFP_KERNEL); 757 if (!rx_blocks->rxds) 758 return -ENOMEM; 759 mem_allocated += size; 760 for (l = 0; l < rxd_count[nic->rxd_mode]; l++) { 761 rx_blocks->rxds[l].virt_addr = 762 rx_blocks->block_virt_addr + 763 (rxd_size[nic->rxd_mode] * l); 764 rx_blocks->rxds[l].dma_addr = 765 rx_blocks->block_dma_addr + 766 (rxd_size[nic->rxd_mode] * l); 767 } 768 } 769 /* Interlinking all Rx Blocks */ 770 for (j = 0; j < blk_cnt; j++) { 771 int next = (j + 1) % blk_cnt; 772 tmp_v_addr = ring->rx_blocks[j].block_virt_addr; 773 tmp_v_addr_next = ring->rx_blocks[next].block_virt_addr; 774 tmp_p_addr = ring->rx_blocks[j].block_dma_addr; 775 tmp_p_addr_next = ring->rx_blocks[next].block_dma_addr; 776 777 pre_rxd_blk = tmp_v_addr; 778 pre_rxd_blk->reserved_2_pNext_RxD_block = 779 (unsigned long)tmp_v_addr_next; 780 pre_rxd_blk->pNext_RxD_Blk_physical = 781 (u64)tmp_p_addr_next; 782 } 783 } 784 if (nic->rxd_mode == RXD_MODE_3B) { 785 /* 786 * Allocation of Storages for buffer addresses in 2BUFF mode 787 * and the buffers as well. 788 */ 789 for (i = 0; i < config->rx_ring_num; i++) { 790 struct rx_ring_config *rx_cfg = &config->rx_cfg[i]; 791 struct ring_info *ring = &mac_control->rings[i]; 792 793 blk_cnt = rx_cfg->num_rxd / 794 (rxd_count[nic->rxd_mode] + 1); 795 size = sizeof(struct buffAdd *) * blk_cnt; 796 ring->ba = kmalloc(size, GFP_KERNEL); 797 if (!ring->ba) 798 return -ENOMEM; 799 mem_allocated += size; 800 for (j = 0; j < blk_cnt; j++) { 801 int k = 0; 802 803 size = sizeof(struct buffAdd) * 804 (rxd_count[nic->rxd_mode] + 1); 805 ring->ba[j] = kmalloc(size, GFP_KERNEL); 806 if (!ring->ba[j]) 807 return -ENOMEM; 808 mem_allocated += size; 809 while (k != rxd_count[nic->rxd_mode]) { 810 ba = &ring->ba[j][k]; 811 size = BUF0_LEN + ALIGN_SIZE; 812 ba->ba_0_org = kmalloc(size, GFP_KERNEL); 813 if (!ba->ba_0_org) 814 return -ENOMEM; 815 mem_allocated += size; 816 tmp = (unsigned long)ba->ba_0_org; 817 tmp += ALIGN_SIZE; 818 tmp &= ~((unsigned long)ALIGN_SIZE); 819 ba->ba_0 = (void *)tmp; 820 821 size = BUF1_LEN + ALIGN_SIZE; 822 ba->ba_1_org = kmalloc(size, GFP_KERNEL); 823 if (!ba->ba_1_org) 824 return -ENOMEM; 825 mem_allocated += size; 826 tmp = (unsigned long)ba->ba_1_org; 827 tmp += ALIGN_SIZE; 828 tmp &= ~((unsigned long)ALIGN_SIZE); 829 ba->ba_1 = (void *)tmp; 830 k++; 831 } 832 } 833 } 834 } 835 836 /* Allocation and initialization of Statistics block */ 837 size = sizeof(struct stat_block); 838 mac_control->stats_mem = 839 dma_alloc_coherent(&nic->pdev->dev, size, 840 &mac_control->stats_mem_phy, GFP_KERNEL); 841 842 if (!mac_control->stats_mem) { 843 /* 844 * In case of failure, free_shared_mem() is called, which 845 * should free any memory that was alloced till the 846 * failure happened. 847 */ 848 return -ENOMEM; 849 } 850 mem_allocated += size; 851 mac_control->stats_mem_sz = size; 852 853 tmp_v_addr = mac_control->stats_mem; 854 mac_control->stats_info = tmp_v_addr; 855 memset(tmp_v_addr, 0, size); 856 DBG_PRINT(INIT_DBG, "%s: Ring Mem PHY: 0x%llx\n", 857 dev_name(&nic->pdev->dev), (unsigned long long)tmp_p_addr); 858 mac_control->stats_info->sw_stat.mem_allocated += mem_allocated; 859 return SUCCESS; 860 } 861 862 /** 863 * free_shared_mem - Free the allocated Memory 864 * @nic: Device private variable. 865 * Description: This function is to free all memory locations allocated by 866 * the init_shared_mem() function and return it to the kernel. 867 */ 868 869 static void free_shared_mem(struct s2io_nic *nic) 870 { 871 int i, j, blk_cnt, size; 872 void *tmp_v_addr; 873 dma_addr_t tmp_p_addr; 874 int lst_size, lst_per_page; 875 struct net_device *dev; 876 int page_num = 0; 877 struct config_param *config; 878 struct mac_info *mac_control; 879 struct stat_block *stats; 880 struct swStat *swstats; 881 882 if (!nic) 883 return; 884 885 dev = nic->dev; 886 887 config = &nic->config; 888 mac_control = &nic->mac_control; 889 stats = mac_control->stats_info; 890 swstats = &stats->sw_stat; 891 892 lst_size = sizeof(struct TxD) * config->max_txds; 893 lst_per_page = PAGE_SIZE / lst_size; 894 895 for (i = 0; i < config->tx_fifo_num; i++) { 896 struct fifo_info *fifo = &mac_control->fifos[i]; 897 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; 898 899 page_num = TXD_MEM_PAGE_CNT(tx_cfg->fifo_len, lst_per_page); 900 for (j = 0; j < page_num; j++) { 901 int mem_blks = (j * lst_per_page); 902 struct list_info_hold *fli; 903 904 if (!fifo->list_info) 905 return; 906 907 fli = &fifo->list_info[mem_blks]; 908 if (!fli->list_virt_addr) 909 break; 910 dma_free_coherent(&nic->pdev->dev, PAGE_SIZE, 911 fli->list_virt_addr, 912 fli->list_phy_addr); 913 swstats->mem_freed += PAGE_SIZE; 914 } 915 /* If we got a zero DMA address during allocation, 916 * free the page now 917 */ 918 if (mac_control->zerodma_virt_addr) { 919 dma_free_coherent(&nic->pdev->dev, PAGE_SIZE, 920 mac_control->zerodma_virt_addr, 921 (dma_addr_t)0); 922 DBG_PRINT(INIT_DBG, 923 "%s: Freeing TxDL with zero DMA address. " 924 "Virtual address %p\n", 925 dev->name, mac_control->zerodma_virt_addr); 926 swstats->mem_freed += PAGE_SIZE; 927 } 928 kfree(fifo->list_info); 929 swstats->mem_freed += tx_cfg->fifo_len * 930 sizeof(struct list_info_hold); 931 } 932 933 size = SIZE_OF_BLOCK; 934 for (i = 0; i < config->rx_ring_num; i++) { 935 struct ring_info *ring = &mac_control->rings[i]; 936 937 blk_cnt = ring->block_count; 938 for (j = 0; j < blk_cnt; j++) { 939 tmp_v_addr = ring->rx_blocks[j].block_virt_addr; 940 tmp_p_addr = ring->rx_blocks[j].block_dma_addr; 941 if (tmp_v_addr == NULL) 942 break; 943 dma_free_coherent(&nic->pdev->dev, size, tmp_v_addr, 944 tmp_p_addr); 945 swstats->mem_freed += size; 946 kfree(ring->rx_blocks[j].rxds); 947 swstats->mem_freed += sizeof(struct rxd_info) * 948 rxd_count[nic->rxd_mode]; 949 } 950 } 951 952 if (nic->rxd_mode == RXD_MODE_3B) { 953 /* Freeing buffer storage addresses in 2BUFF mode. */ 954 for (i = 0; i < config->rx_ring_num; i++) { 955 struct rx_ring_config *rx_cfg = &config->rx_cfg[i]; 956 struct ring_info *ring = &mac_control->rings[i]; 957 958 blk_cnt = rx_cfg->num_rxd / 959 (rxd_count[nic->rxd_mode] + 1); 960 for (j = 0; j < blk_cnt; j++) { 961 int k = 0; 962 if (!ring->ba[j]) 963 continue; 964 while (k != rxd_count[nic->rxd_mode]) { 965 struct buffAdd *ba = &ring->ba[j][k]; 966 kfree(ba->ba_0_org); 967 swstats->mem_freed += 968 BUF0_LEN + ALIGN_SIZE; 969 kfree(ba->ba_1_org); 970 swstats->mem_freed += 971 BUF1_LEN + ALIGN_SIZE; 972 k++; 973 } 974 kfree(ring->ba[j]); 975 swstats->mem_freed += sizeof(struct buffAdd) * 976 (rxd_count[nic->rxd_mode] + 1); 977 } 978 kfree(ring->ba); 979 swstats->mem_freed += sizeof(struct buffAdd *) * 980 blk_cnt; 981 } 982 } 983 984 for (i = 0; i < nic->config.tx_fifo_num; i++) { 985 struct fifo_info *fifo = &mac_control->fifos[i]; 986 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; 987 988 if (fifo->ufo_in_band_v) { 989 swstats->mem_freed += tx_cfg->fifo_len * 990 sizeof(u64); 991 kfree(fifo->ufo_in_band_v); 992 } 993 } 994 995 if (mac_control->stats_mem) { 996 swstats->mem_freed += mac_control->stats_mem_sz; 997 dma_free_coherent(&nic->pdev->dev, mac_control->stats_mem_sz, 998 mac_control->stats_mem, 999 mac_control->stats_mem_phy); 1000 } 1001 } 1002 1003 /* 1004 * s2io_verify_pci_mode - 1005 */ 1006 1007 static int s2io_verify_pci_mode(struct s2io_nic *nic) 1008 { 1009 struct XENA_dev_config __iomem *bar0 = nic->bar0; 1010 register u64 val64 = 0; 1011 int mode; 1012 1013 val64 = readq(&bar0->pci_mode); 1014 mode = (u8)GET_PCI_MODE(val64); 1015 1016 if (val64 & PCI_MODE_UNKNOWN_MODE) 1017 return -1; /* Unknown PCI mode */ 1018 return mode; 1019 } 1020 1021 #define NEC_VENID 0x1033 1022 #define NEC_DEVID 0x0125 1023 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev) 1024 { 1025 struct pci_dev *tdev = NULL; 1026 for_each_pci_dev(tdev) { 1027 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) { 1028 if (tdev->bus == s2io_pdev->bus->parent) { 1029 pci_dev_put(tdev); 1030 return 1; 1031 } 1032 } 1033 } 1034 return 0; 1035 } 1036 1037 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266}; 1038 /* 1039 * s2io_print_pci_mode - 1040 */ 1041 static int s2io_print_pci_mode(struct s2io_nic *nic) 1042 { 1043 struct XENA_dev_config __iomem *bar0 = nic->bar0; 1044 register u64 val64 = 0; 1045 int mode; 1046 struct config_param *config = &nic->config; 1047 const char *pcimode; 1048 1049 val64 = readq(&bar0->pci_mode); 1050 mode = (u8)GET_PCI_MODE(val64); 1051 1052 if (val64 & PCI_MODE_UNKNOWN_MODE) 1053 return -1; /* Unknown PCI mode */ 1054 1055 config->bus_speed = bus_speed[mode]; 1056 1057 if (s2io_on_nec_bridge(nic->pdev)) { 1058 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n", 1059 nic->dev->name); 1060 return mode; 1061 } 1062 1063 switch (mode) { 1064 case PCI_MODE_PCI_33: 1065 pcimode = "33MHz PCI bus"; 1066 break; 1067 case PCI_MODE_PCI_66: 1068 pcimode = "66MHz PCI bus"; 1069 break; 1070 case PCI_MODE_PCIX_M1_66: 1071 pcimode = "66MHz PCIX(M1) bus"; 1072 break; 1073 case PCI_MODE_PCIX_M1_100: 1074 pcimode = "100MHz PCIX(M1) bus"; 1075 break; 1076 case PCI_MODE_PCIX_M1_133: 1077 pcimode = "133MHz PCIX(M1) bus"; 1078 break; 1079 case PCI_MODE_PCIX_M2_66: 1080 pcimode = "133MHz PCIX(M2) bus"; 1081 break; 1082 case PCI_MODE_PCIX_M2_100: 1083 pcimode = "200MHz PCIX(M2) bus"; 1084 break; 1085 case PCI_MODE_PCIX_M2_133: 1086 pcimode = "266MHz PCIX(M2) bus"; 1087 break; 1088 default: 1089 pcimode = "unsupported bus!"; 1090 mode = -1; 1091 } 1092 1093 DBG_PRINT(ERR_DBG, "%s: Device is on %d bit %s\n", 1094 nic->dev->name, val64 & PCI_MODE_32_BITS ? 32 : 64, pcimode); 1095 1096 return mode; 1097 } 1098 1099 /** 1100 * init_tti - Initialization transmit traffic interrupt scheme 1101 * @nic: device private variable 1102 * @link: link status (UP/DOWN) used to enable/disable continuous 1103 * transmit interrupts 1104 * @may_sleep: parameter indicates if sleeping when waiting for 1105 * command complete 1106 * Description: The function configures transmit traffic interrupts 1107 * Return Value: SUCCESS on success and 1108 * '-1' on failure 1109 */ 1110 1111 static int init_tti(struct s2io_nic *nic, int link, bool may_sleep) 1112 { 1113 struct XENA_dev_config __iomem *bar0 = nic->bar0; 1114 register u64 val64 = 0; 1115 int i; 1116 struct config_param *config = &nic->config; 1117 1118 for (i = 0; i < config->tx_fifo_num; i++) { 1119 /* 1120 * TTI Initialization. Default Tx timer gets us about 1121 * 250 interrupts per sec. Continuous interrupts are enabled 1122 * by default. 1123 */ 1124 if (nic->device_type == XFRAME_II_DEVICE) { 1125 int count = (nic->config.bus_speed * 125)/2; 1126 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count); 1127 } else 1128 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078); 1129 1130 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) | 1131 TTI_DATA1_MEM_TX_URNG_B(0x10) | 1132 TTI_DATA1_MEM_TX_URNG_C(0x30) | 1133 TTI_DATA1_MEM_TX_TIMER_AC_EN; 1134 if (i == 0) 1135 if (use_continuous_tx_intrs && (link == LINK_UP)) 1136 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN; 1137 writeq(val64, &bar0->tti_data1_mem); 1138 1139 if (nic->config.intr_type == MSI_X) { 1140 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) | 1141 TTI_DATA2_MEM_TX_UFC_B(0x100) | 1142 TTI_DATA2_MEM_TX_UFC_C(0x200) | 1143 TTI_DATA2_MEM_TX_UFC_D(0x300); 1144 } else { 1145 if ((nic->config.tx_steering_type == 1146 TX_DEFAULT_STEERING) && 1147 (config->tx_fifo_num > 1) && 1148 (i >= nic->udp_fifo_idx) && 1149 (i < (nic->udp_fifo_idx + 1150 nic->total_udp_fifos))) 1151 val64 = TTI_DATA2_MEM_TX_UFC_A(0x50) | 1152 TTI_DATA2_MEM_TX_UFC_B(0x80) | 1153 TTI_DATA2_MEM_TX_UFC_C(0x100) | 1154 TTI_DATA2_MEM_TX_UFC_D(0x120); 1155 else 1156 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) | 1157 TTI_DATA2_MEM_TX_UFC_B(0x20) | 1158 TTI_DATA2_MEM_TX_UFC_C(0x40) | 1159 TTI_DATA2_MEM_TX_UFC_D(0x80); 1160 } 1161 1162 writeq(val64, &bar0->tti_data2_mem); 1163 1164 val64 = TTI_CMD_MEM_WE | 1165 TTI_CMD_MEM_STROBE_NEW_CMD | 1166 TTI_CMD_MEM_OFFSET(i); 1167 writeq(val64, &bar0->tti_command_mem); 1168 1169 if (wait_for_cmd_complete(&bar0->tti_command_mem, 1170 TTI_CMD_MEM_STROBE_NEW_CMD, 1171 S2IO_BIT_RESET, may_sleep) != SUCCESS) 1172 return FAILURE; 1173 } 1174 1175 return SUCCESS; 1176 } 1177 1178 /** 1179 * init_nic - Initialization of hardware 1180 * @nic: device private variable 1181 * Description: The function sequentially configures every block 1182 * of the H/W from their reset values. 1183 * Return Value: SUCCESS on success and 1184 * '-1' on failure (endian settings incorrect). 1185 */ 1186 1187 static int init_nic(struct s2io_nic *nic) 1188 { 1189 struct XENA_dev_config __iomem *bar0 = nic->bar0; 1190 struct net_device *dev = nic->dev; 1191 register u64 val64 = 0; 1192 void __iomem *add; 1193 u32 time; 1194 int i, j; 1195 int dtx_cnt = 0; 1196 unsigned long long mem_share; 1197 int mem_size; 1198 struct config_param *config = &nic->config; 1199 struct mac_info *mac_control = &nic->mac_control; 1200 1201 /* to set the swapper controle on the card */ 1202 if (s2io_set_swapper(nic)) { 1203 DBG_PRINT(ERR_DBG, "ERROR: Setting Swapper failed\n"); 1204 return -EIO; 1205 } 1206 1207 /* 1208 * Herc requires EOI to be removed from reset before XGXS, so.. 1209 */ 1210 if (nic->device_type & XFRAME_II_DEVICE) { 1211 val64 = 0xA500000000ULL; 1212 writeq(val64, &bar0->sw_reset); 1213 msleep(500); 1214 val64 = readq(&bar0->sw_reset); 1215 } 1216 1217 /* Remove XGXS from reset state */ 1218 val64 = 0; 1219 writeq(val64, &bar0->sw_reset); 1220 msleep(500); 1221 val64 = readq(&bar0->sw_reset); 1222 1223 /* Ensure that it's safe to access registers by checking 1224 * RIC_RUNNING bit is reset. Check is valid only for XframeII. 1225 */ 1226 if (nic->device_type == XFRAME_II_DEVICE) { 1227 for (i = 0; i < 50; i++) { 1228 val64 = readq(&bar0->adapter_status); 1229 if (!(val64 & ADAPTER_STATUS_RIC_RUNNING)) 1230 break; 1231 msleep(10); 1232 } 1233 if (i == 50) 1234 return -ENODEV; 1235 } 1236 1237 /* Enable Receiving broadcasts */ 1238 add = &bar0->mac_cfg; 1239 val64 = readq(&bar0->mac_cfg); 1240 val64 |= MAC_RMAC_BCAST_ENABLE; 1241 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); 1242 writel((u32)val64, add); 1243 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); 1244 writel((u32) (val64 >> 32), (add + 4)); 1245 1246 /* Read registers in all blocks */ 1247 val64 = readq(&bar0->mac_int_mask); 1248 val64 = readq(&bar0->mc_int_mask); 1249 val64 = readq(&bar0->xgxs_int_mask); 1250 1251 /* Set MTU */ 1252 val64 = dev->mtu; 1253 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len); 1254 1255 if (nic->device_type & XFRAME_II_DEVICE) { 1256 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) { 1257 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt], 1258 &bar0->dtx_control, UF); 1259 if (dtx_cnt & 0x1) 1260 msleep(1); /* Necessary!! */ 1261 dtx_cnt++; 1262 } 1263 } else { 1264 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) { 1265 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt], 1266 &bar0->dtx_control, UF); 1267 val64 = readq(&bar0->dtx_control); 1268 dtx_cnt++; 1269 } 1270 } 1271 1272 /* Tx DMA Initialization */ 1273 val64 = 0; 1274 writeq(val64, &bar0->tx_fifo_partition_0); 1275 writeq(val64, &bar0->tx_fifo_partition_1); 1276 writeq(val64, &bar0->tx_fifo_partition_2); 1277 writeq(val64, &bar0->tx_fifo_partition_3); 1278 1279 for (i = 0, j = 0; i < config->tx_fifo_num; i++) { 1280 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; 1281 1282 val64 |= vBIT(tx_cfg->fifo_len - 1, ((j * 32) + 19), 13) | 1283 vBIT(tx_cfg->fifo_priority, ((j * 32) + 5), 3); 1284 1285 if (i == (config->tx_fifo_num - 1)) { 1286 if (i % 2 == 0) 1287 i++; 1288 } 1289 1290 switch (i) { 1291 case 1: 1292 writeq(val64, &bar0->tx_fifo_partition_0); 1293 val64 = 0; 1294 j = 0; 1295 break; 1296 case 3: 1297 writeq(val64, &bar0->tx_fifo_partition_1); 1298 val64 = 0; 1299 j = 0; 1300 break; 1301 case 5: 1302 writeq(val64, &bar0->tx_fifo_partition_2); 1303 val64 = 0; 1304 j = 0; 1305 break; 1306 case 7: 1307 writeq(val64, &bar0->tx_fifo_partition_3); 1308 val64 = 0; 1309 j = 0; 1310 break; 1311 default: 1312 j++; 1313 break; 1314 } 1315 } 1316 1317 /* 1318 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug 1319 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE. 1320 */ 1321 if ((nic->device_type == XFRAME_I_DEVICE) && (nic->pdev->revision < 4)) 1322 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable); 1323 1324 val64 = readq(&bar0->tx_fifo_partition_0); 1325 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n", 1326 &bar0->tx_fifo_partition_0, (unsigned long long)val64); 1327 1328 /* 1329 * Initialization of Tx_PA_CONFIG register to ignore packet 1330 * integrity checking. 1331 */ 1332 val64 = readq(&bar0->tx_pa_cfg); 1333 val64 |= TX_PA_CFG_IGNORE_FRM_ERR | 1334 TX_PA_CFG_IGNORE_SNAP_OUI | 1335 TX_PA_CFG_IGNORE_LLC_CTRL | 1336 TX_PA_CFG_IGNORE_L2_ERR; 1337 writeq(val64, &bar0->tx_pa_cfg); 1338 1339 /* Rx DMA initialization. */ 1340 val64 = 0; 1341 for (i = 0; i < config->rx_ring_num; i++) { 1342 struct rx_ring_config *rx_cfg = &config->rx_cfg[i]; 1343 1344 val64 |= vBIT(rx_cfg->ring_priority, (5 + (i * 8)), 3); 1345 } 1346 writeq(val64, &bar0->rx_queue_priority); 1347 1348 /* 1349 * Allocating equal share of memory to all the 1350 * configured Rings. 1351 */ 1352 val64 = 0; 1353 if (nic->device_type & XFRAME_II_DEVICE) 1354 mem_size = 32; 1355 else 1356 mem_size = 64; 1357 1358 for (i = 0; i < config->rx_ring_num; i++) { 1359 switch (i) { 1360 case 0: 1361 mem_share = (mem_size / config->rx_ring_num + 1362 mem_size % config->rx_ring_num); 1363 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share); 1364 continue; 1365 case 1: 1366 mem_share = (mem_size / config->rx_ring_num); 1367 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share); 1368 continue; 1369 case 2: 1370 mem_share = (mem_size / config->rx_ring_num); 1371 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share); 1372 continue; 1373 case 3: 1374 mem_share = (mem_size / config->rx_ring_num); 1375 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share); 1376 continue; 1377 case 4: 1378 mem_share = (mem_size / config->rx_ring_num); 1379 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share); 1380 continue; 1381 case 5: 1382 mem_share = (mem_size / config->rx_ring_num); 1383 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share); 1384 continue; 1385 case 6: 1386 mem_share = (mem_size / config->rx_ring_num); 1387 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share); 1388 continue; 1389 case 7: 1390 mem_share = (mem_size / config->rx_ring_num); 1391 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share); 1392 continue; 1393 } 1394 } 1395 writeq(val64, &bar0->rx_queue_cfg); 1396 1397 /* 1398 * Filling Tx round robin registers 1399 * as per the number of FIFOs for equal scheduling priority 1400 */ 1401 switch (config->tx_fifo_num) { 1402 case 1: 1403 val64 = 0x0; 1404 writeq(val64, &bar0->tx_w_round_robin_0); 1405 writeq(val64, &bar0->tx_w_round_robin_1); 1406 writeq(val64, &bar0->tx_w_round_robin_2); 1407 writeq(val64, &bar0->tx_w_round_robin_3); 1408 writeq(val64, &bar0->tx_w_round_robin_4); 1409 break; 1410 case 2: 1411 val64 = 0x0001000100010001ULL; 1412 writeq(val64, &bar0->tx_w_round_robin_0); 1413 writeq(val64, &bar0->tx_w_round_robin_1); 1414 writeq(val64, &bar0->tx_w_round_robin_2); 1415 writeq(val64, &bar0->tx_w_round_robin_3); 1416 val64 = 0x0001000100000000ULL; 1417 writeq(val64, &bar0->tx_w_round_robin_4); 1418 break; 1419 case 3: 1420 val64 = 0x0001020001020001ULL; 1421 writeq(val64, &bar0->tx_w_round_robin_0); 1422 val64 = 0x0200010200010200ULL; 1423 writeq(val64, &bar0->tx_w_round_robin_1); 1424 val64 = 0x0102000102000102ULL; 1425 writeq(val64, &bar0->tx_w_round_robin_2); 1426 val64 = 0x0001020001020001ULL; 1427 writeq(val64, &bar0->tx_w_round_robin_3); 1428 val64 = 0x0200010200000000ULL; 1429 writeq(val64, &bar0->tx_w_round_robin_4); 1430 break; 1431 case 4: 1432 val64 = 0x0001020300010203ULL; 1433 writeq(val64, &bar0->tx_w_round_robin_0); 1434 writeq(val64, &bar0->tx_w_round_robin_1); 1435 writeq(val64, &bar0->tx_w_round_robin_2); 1436 writeq(val64, &bar0->tx_w_round_robin_3); 1437 val64 = 0x0001020300000000ULL; 1438 writeq(val64, &bar0->tx_w_round_robin_4); 1439 break; 1440 case 5: 1441 val64 = 0x0001020304000102ULL; 1442 writeq(val64, &bar0->tx_w_round_robin_0); 1443 val64 = 0x0304000102030400ULL; 1444 writeq(val64, &bar0->tx_w_round_robin_1); 1445 val64 = 0x0102030400010203ULL; 1446 writeq(val64, &bar0->tx_w_round_robin_2); 1447 val64 = 0x0400010203040001ULL; 1448 writeq(val64, &bar0->tx_w_round_robin_3); 1449 val64 = 0x0203040000000000ULL; 1450 writeq(val64, &bar0->tx_w_round_robin_4); 1451 break; 1452 case 6: 1453 val64 = 0x0001020304050001ULL; 1454 writeq(val64, &bar0->tx_w_round_robin_0); 1455 val64 = 0x0203040500010203ULL; 1456 writeq(val64, &bar0->tx_w_round_robin_1); 1457 val64 = 0x0405000102030405ULL; 1458 writeq(val64, &bar0->tx_w_round_robin_2); 1459 val64 = 0x0001020304050001ULL; 1460 writeq(val64, &bar0->tx_w_round_robin_3); 1461 val64 = 0x0203040500000000ULL; 1462 writeq(val64, &bar0->tx_w_round_robin_4); 1463 break; 1464 case 7: 1465 val64 = 0x0001020304050600ULL; 1466 writeq(val64, &bar0->tx_w_round_robin_0); 1467 val64 = 0x0102030405060001ULL; 1468 writeq(val64, &bar0->tx_w_round_robin_1); 1469 val64 = 0x0203040506000102ULL; 1470 writeq(val64, &bar0->tx_w_round_robin_2); 1471 val64 = 0x0304050600010203ULL; 1472 writeq(val64, &bar0->tx_w_round_robin_3); 1473 val64 = 0x0405060000000000ULL; 1474 writeq(val64, &bar0->tx_w_round_robin_4); 1475 break; 1476 case 8: 1477 val64 = 0x0001020304050607ULL; 1478 writeq(val64, &bar0->tx_w_round_robin_0); 1479 writeq(val64, &bar0->tx_w_round_robin_1); 1480 writeq(val64, &bar0->tx_w_round_robin_2); 1481 writeq(val64, &bar0->tx_w_round_robin_3); 1482 val64 = 0x0001020300000000ULL; 1483 writeq(val64, &bar0->tx_w_round_robin_4); 1484 break; 1485 } 1486 1487 /* Enable all configured Tx FIFO partitions */ 1488 val64 = readq(&bar0->tx_fifo_partition_0); 1489 val64 |= (TX_FIFO_PARTITION_EN); 1490 writeq(val64, &bar0->tx_fifo_partition_0); 1491 1492 /* Filling the Rx round robin registers as per the 1493 * number of Rings and steering based on QoS with 1494 * equal priority. 1495 */ 1496 switch (config->rx_ring_num) { 1497 case 1: 1498 val64 = 0x0; 1499 writeq(val64, &bar0->rx_w_round_robin_0); 1500 writeq(val64, &bar0->rx_w_round_robin_1); 1501 writeq(val64, &bar0->rx_w_round_robin_2); 1502 writeq(val64, &bar0->rx_w_round_robin_3); 1503 writeq(val64, &bar0->rx_w_round_robin_4); 1504 1505 val64 = 0x8080808080808080ULL; 1506 writeq(val64, &bar0->rts_qos_steering); 1507 break; 1508 case 2: 1509 val64 = 0x0001000100010001ULL; 1510 writeq(val64, &bar0->rx_w_round_robin_0); 1511 writeq(val64, &bar0->rx_w_round_robin_1); 1512 writeq(val64, &bar0->rx_w_round_robin_2); 1513 writeq(val64, &bar0->rx_w_round_robin_3); 1514 val64 = 0x0001000100000000ULL; 1515 writeq(val64, &bar0->rx_w_round_robin_4); 1516 1517 val64 = 0x8080808040404040ULL; 1518 writeq(val64, &bar0->rts_qos_steering); 1519 break; 1520 case 3: 1521 val64 = 0x0001020001020001ULL; 1522 writeq(val64, &bar0->rx_w_round_robin_0); 1523 val64 = 0x0200010200010200ULL; 1524 writeq(val64, &bar0->rx_w_round_robin_1); 1525 val64 = 0x0102000102000102ULL; 1526 writeq(val64, &bar0->rx_w_round_robin_2); 1527 val64 = 0x0001020001020001ULL; 1528 writeq(val64, &bar0->rx_w_round_robin_3); 1529 val64 = 0x0200010200000000ULL; 1530 writeq(val64, &bar0->rx_w_round_robin_4); 1531 1532 val64 = 0x8080804040402020ULL; 1533 writeq(val64, &bar0->rts_qos_steering); 1534 break; 1535 case 4: 1536 val64 = 0x0001020300010203ULL; 1537 writeq(val64, &bar0->rx_w_round_robin_0); 1538 writeq(val64, &bar0->rx_w_round_robin_1); 1539 writeq(val64, &bar0->rx_w_round_robin_2); 1540 writeq(val64, &bar0->rx_w_round_robin_3); 1541 val64 = 0x0001020300000000ULL; 1542 writeq(val64, &bar0->rx_w_round_robin_4); 1543 1544 val64 = 0x8080404020201010ULL; 1545 writeq(val64, &bar0->rts_qos_steering); 1546 break; 1547 case 5: 1548 val64 = 0x0001020304000102ULL; 1549 writeq(val64, &bar0->rx_w_round_robin_0); 1550 val64 = 0x0304000102030400ULL; 1551 writeq(val64, &bar0->rx_w_round_robin_1); 1552 val64 = 0x0102030400010203ULL; 1553 writeq(val64, &bar0->rx_w_round_robin_2); 1554 val64 = 0x0400010203040001ULL; 1555 writeq(val64, &bar0->rx_w_round_robin_3); 1556 val64 = 0x0203040000000000ULL; 1557 writeq(val64, &bar0->rx_w_round_robin_4); 1558 1559 val64 = 0x8080404020201008ULL; 1560 writeq(val64, &bar0->rts_qos_steering); 1561 break; 1562 case 6: 1563 val64 = 0x0001020304050001ULL; 1564 writeq(val64, &bar0->rx_w_round_robin_0); 1565 val64 = 0x0203040500010203ULL; 1566 writeq(val64, &bar0->rx_w_round_robin_1); 1567 val64 = 0x0405000102030405ULL; 1568 writeq(val64, &bar0->rx_w_round_robin_2); 1569 val64 = 0x0001020304050001ULL; 1570 writeq(val64, &bar0->rx_w_round_robin_3); 1571 val64 = 0x0203040500000000ULL; 1572 writeq(val64, &bar0->rx_w_round_robin_4); 1573 1574 val64 = 0x8080404020100804ULL; 1575 writeq(val64, &bar0->rts_qos_steering); 1576 break; 1577 case 7: 1578 val64 = 0x0001020304050600ULL; 1579 writeq(val64, &bar0->rx_w_round_robin_0); 1580 val64 = 0x0102030405060001ULL; 1581 writeq(val64, &bar0->rx_w_round_robin_1); 1582 val64 = 0x0203040506000102ULL; 1583 writeq(val64, &bar0->rx_w_round_robin_2); 1584 val64 = 0x0304050600010203ULL; 1585 writeq(val64, &bar0->rx_w_round_robin_3); 1586 val64 = 0x0405060000000000ULL; 1587 writeq(val64, &bar0->rx_w_round_robin_4); 1588 1589 val64 = 0x8080402010080402ULL; 1590 writeq(val64, &bar0->rts_qos_steering); 1591 break; 1592 case 8: 1593 val64 = 0x0001020304050607ULL; 1594 writeq(val64, &bar0->rx_w_round_robin_0); 1595 writeq(val64, &bar0->rx_w_round_robin_1); 1596 writeq(val64, &bar0->rx_w_round_robin_2); 1597 writeq(val64, &bar0->rx_w_round_robin_3); 1598 val64 = 0x0001020300000000ULL; 1599 writeq(val64, &bar0->rx_w_round_robin_4); 1600 1601 val64 = 0x8040201008040201ULL; 1602 writeq(val64, &bar0->rts_qos_steering); 1603 break; 1604 } 1605 1606 /* UDP Fix */ 1607 val64 = 0; 1608 for (i = 0; i < 8; i++) 1609 writeq(val64, &bar0->rts_frm_len_n[i]); 1610 1611 /* Set the default rts frame length for the rings configured */ 1612 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22); 1613 for (i = 0 ; i < config->rx_ring_num ; i++) 1614 writeq(val64, &bar0->rts_frm_len_n[i]); 1615 1616 /* Set the frame length for the configured rings 1617 * desired by the user 1618 */ 1619 for (i = 0; i < config->rx_ring_num; i++) { 1620 /* If rts_frm_len[i] == 0 then it is assumed that user not 1621 * specified frame length steering. 1622 * If the user provides the frame length then program 1623 * the rts_frm_len register for those values or else 1624 * leave it as it is. 1625 */ 1626 if (rts_frm_len[i] != 0) { 1627 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]), 1628 &bar0->rts_frm_len_n[i]); 1629 } 1630 } 1631 1632 /* Disable differentiated services steering logic */ 1633 for (i = 0; i < 64; i++) { 1634 if (rts_ds_steer(nic, i, 0) == FAILURE) { 1635 DBG_PRINT(ERR_DBG, 1636 "%s: rts_ds_steer failed on codepoint %d\n", 1637 dev->name, i); 1638 return -ENODEV; 1639 } 1640 } 1641 1642 /* Program statistics memory */ 1643 writeq(mac_control->stats_mem_phy, &bar0->stat_addr); 1644 1645 if (nic->device_type == XFRAME_II_DEVICE) { 1646 val64 = STAT_BC(0x320); 1647 writeq(val64, &bar0->stat_byte_cnt); 1648 } 1649 1650 /* 1651 * Initializing the sampling rate for the device to calculate the 1652 * bandwidth utilization. 1653 */ 1654 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) | 1655 MAC_RX_LINK_UTIL_VAL(rmac_util_period); 1656 writeq(val64, &bar0->mac_link_util); 1657 1658 /* 1659 * Initializing the Transmit and Receive Traffic Interrupt 1660 * Scheme. 1661 */ 1662 1663 /* Initialize TTI */ 1664 if (SUCCESS != init_tti(nic, nic->last_link_state, true)) 1665 return -ENODEV; 1666 1667 /* RTI Initialization */ 1668 if (nic->device_type == XFRAME_II_DEVICE) { 1669 /* 1670 * Programmed to generate Apprx 500 Intrs per 1671 * second 1672 */ 1673 int count = (nic->config.bus_speed * 125)/4; 1674 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count); 1675 } else 1676 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF); 1677 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) | 1678 RTI_DATA1_MEM_RX_URNG_B(0x10) | 1679 RTI_DATA1_MEM_RX_URNG_C(0x30) | 1680 RTI_DATA1_MEM_RX_TIMER_AC_EN; 1681 1682 writeq(val64, &bar0->rti_data1_mem); 1683 1684 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) | 1685 RTI_DATA2_MEM_RX_UFC_B(0x2) ; 1686 if (nic->config.intr_type == MSI_X) 1687 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | 1688 RTI_DATA2_MEM_RX_UFC_D(0x40)); 1689 else 1690 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | 1691 RTI_DATA2_MEM_RX_UFC_D(0x80)); 1692 writeq(val64, &bar0->rti_data2_mem); 1693 1694 for (i = 0; i < config->rx_ring_num; i++) { 1695 val64 = RTI_CMD_MEM_WE | 1696 RTI_CMD_MEM_STROBE_NEW_CMD | 1697 RTI_CMD_MEM_OFFSET(i); 1698 writeq(val64, &bar0->rti_command_mem); 1699 1700 /* 1701 * Once the operation completes, the Strobe bit of the 1702 * command register will be reset. We poll for this 1703 * particular condition. We wait for a maximum of 500ms 1704 * for the operation to complete, if it's not complete 1705 * by then we return error. 1706 */ 1707 time = 0; 1708 while (true) { 1709 val64 = readq(&bar0->rti_command_mem); 1710 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD)) 1711 break; 1712 1713 if (time > 10) { 1714 DBG_PRINT(ERR_DBG, "%s: RTI init failed\n", 1715 dev->name); 1716 return -ENODEV; 1717 } 1718 time++; 1719 msleep(50); 1720 } 1721 } 1722 1723 /* 1724 * Initializing proper values as Pause threshold into all 1725 * the 8 Queues on Rx side. 1726 */ 1727 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3); 1728 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7); 1729 1730 /* Disable RMAC PAD STRIPPING */ 1731 add = &bar0->mac_cfg; 1732 val64 = readq(&bar0->mac_cfg); 1733 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD); 1734 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); 1735 writel((u32) (val64), add); 1736 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); 1737 writel((u32) (val64 >> 32), (add + 4)); 1738 val64 = readq(&bar0->mac_cfg); 1739 1740 /* Enable FCS stripping by adapter */ 1741 add = &bar0->mac_cfg; 1742 val64 = readq(&bar0->mac_cfg); 1743 val64 |= MAC_CFG_RMAC_STRIP_FCS; 1744 if (nic->device_type == XFRAME_II_DEVICE) 1745 writeq(val64, &bar0->mac_cfg); 1746 else { 1747 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); 1748 writel((u32) (val64), add); 1749 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); 1750 writel((u32) (val64 >> 32), (add + 4)); 1751 } 1752 1753 /* 1754 * Set the time value to be inserted in the pause frame 1755 * generated by xena. 1756 */ 1757 val64 = readq(&bar0->rmac_pause_cfg); 1758 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff)); 1759 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time); 1760 writeq(val64, &bar0->rmac_pause_cfg); 1761 1762 /* 1763 * Set the Threshold Limit for Generating the pause frame 1764 * If the amount of data in any Queue exceeds ratio of 1765 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256 1766 * pause frame is generated 1767 */ 1768 val64 = 0; 1769 for (i = 0; i < 4; i++) { 1770 val64 |= (((u64)0xFF00 | 1771 nic->mac_control.mc_pause_threshold_q0q3) 1772 << (i * 2 * 8)); 1773 } 1774 writeq(val64, &bar0->mc_pause_thresh_q0q3); 1775 1776 val64 = 0; 1777 for (i = 0; i < 4; i++) { 1778 val64 |= (((u64)0xFF00 | 1779 nic->mac_control.mc_pause_threshold_q4q7) 1780 << (i * 2 * 8)); 1781 } 1782 writeq(val64, &bar0->mc_pause_thresh_q4q7); 1783 1784 /* 1785 * TxDMA will stop Read request if the number of read split has 1786 * exceeded the limit pointed by shared_splits 1787 */ 1788 val64 = readq(&bar0->pic_control); 1789 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits); 1790 writeq(val64, &bar0->pic_control); 1791 1792 if (nic->config.bus_speed == 266) { 1793 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout); 1794 writeq(0x0, &bar0->read_retry_delay); 1795 writeq(0x0, &bar0->write_retry_delay); 1796 } 1797 1798 /* 1799 * Programming the Herc to split every write transaction 1800 * that does not start on an ADB to reduce disconnects. 1801 */ 1802 if (nic->device_type == XFRAME_II_DEVICE) { 1803 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN | 1804 MISC_LINK_STABILITY_PRD(3); 1805 writeq(val64, &bar0->misc_control); 1806 val64 = readq(&bar0->pic_control2); 1807 val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15)); 1808 writeq(val64, &bar0->pic_control2); 1809 } 1810 if (strstr(nic->product_name, "CX4")) { 1811 val64 = TMAC_AVG_IPG(0x17); 1812 writeq(val64, &bar0->tmac_avg_ipg); 1813 } 1814 1815 return SUCCESS; 1816 } 1817 #define LINK_UP_DOWN_INTERRUPT 1 1818 #define MAC_RMAC_ERR_TIMER 2 1819 1820 static int s2io_link_fault_indication(struct s2io_nic *nic) 1821 { 1822 if (nic->device_type == XFRAME_II_DEVICE) 1823 return LINK_UP_DOWN_INTERRUPT; 1824 else 1825 return MAC_RMAC_ERR_TIMER; 1826 } 1827 1828 /** 1829 * do_s2io_write_bits - update alarm bits in alarm register 1830 * @value: alarm bits 1831 * @flag: interrupt status 1832 * @addr: address value 1833 * Description: update alarm bits in alarm register 1834 * Return Value: 1835 * NONE. 1836 */ 1837 static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr) 1838 { 1839 u64 temp64; 1840 1841 temp64 = readq(addr); 1842 1843 if (flag == ENABLE_INTRS) 1844 temp64 &= ~((u64)value); 1845 else 1846 temp64 |= ((u64)value); 1847 writeq(temp64, addr); 1848 } 1849 1850 static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag) 1851 { 1852 struct XENA_dev_config __iomem *bar0 = nic->bar0; 1853 register u64 gen_int_mask = 0; 1854 u64 interruptible; 1855 1856 writeq(DISABLE_ALL_INTRS, &bar0->general_int_mask); 1857 if (mask & TX_DMA_INTR) { 1858 gen_int_mask |= TXDMA_INT_M; 1859 1860 do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT | 1861 TXDMA_PCC_INT | TXDMA_TTI_INT | 1862 TXDMA_LSO_INT | TXDMA_TPA_INT | 1863 TXDMA_SM_INT, flag, &bar0->txdma_int_mask); 1864 1865 do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM | 1866 PFC_MISC_0_ERR | PFC_MISC_1_ERR | 1867 PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag, 1868 &bar0->pfc_err_mask); 1869 1870 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM | 1871 TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR | 1872 TDA_PCIX_ERR, flag, &bar0->tda_err_mask); 1873 1874 do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR | 1875 PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM | 1876 PCC_N_SERR | PCC_6_COF_OV_ERR | 1877 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR | 1878 PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR | 1879 PCC_TXB_ECC_SG_ERR, 1880 flag, &bar0->pcc_err_mask); 1881 1882 do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR | 1883 TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask); 1884 1885 do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT | 1886 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM | 1887 LSO6_SEND_OFLOW | LSO7_SEND_OFLOW, 1888 flag, &bar0->lso_err_mask); 1889 1890 do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP, 1891 flag, &bar0->tpa_err_mask); 1892 1893 do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask); 1894 } 1895 1896 if (mask & TX_MAC_INTR) { 1897 gen_int_mask |= TXMAC_INT_M; 1898 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag, 1899 &bar0->mac_int_mask); 1900 do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR | 1901 TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR | 1902 TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR, 1903 flag, &bar0->mac_tmac_err_mask); 1904 } 1905 1906 if (mask & TX_XGXS_INTR) { 1907 gen_int_mask |= TXXGXS_INT_M; 1908 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag, 1909 &bar0->xgxs_int_mask); 1910 do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR | 1911 TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR, 1912 flag, &bar0->xgxs_txgxs_err_mask); 1913 } 1914 1915 if (mask & RX_DMA_INTR) { 1916 gen_int_mask |= RXDMA_INT_M; 1917 do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M | 1918 RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M, 1919 flag, &bar0->rxdma_int_mask); 1920 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR | 1921 RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM | 1922 RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR | 1923 RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask); 1924 do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn | 1925 PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn | 1926 PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag, 1927 &bar0->prc_pcix_err_mask); 1928 do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR | 1929 RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag, 1930 &bar0->rpa_err_mask); 1931 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR | 1932 RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM | 1933 RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR | 1934 RDA_FRM_ECC_SG_ERR | 1935 RDA_MISC_ERR|RDA_PCIX_ERR, 1936 flag, &bar0->rda_err_mask); 1937 do_s2io_write_bits(RTI_SM_ERR_ALARM | 1938 RTI_ECC_SG_ERR | RTI_ECC_DB_ERR, 1939 flag, &bar0->rti_err_mask); 1940 } 1941 1942 if (mask & RX_MAC_INTR) { 1943 gen_int_mask |= RXMAC_INT_M; 1944 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag, 1945 &bar0->mac_int_mask); 1946 interruptible = (RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR | 1947 RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR | 1948 RMAC_DOUBLE_ECC_ERR); 1949 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) 1950 interruptible |= RMAC_LINK_STATE_CHANGE_INT; 1951 do_s2io_write_bits(interruptible, 1952 flag, &bar0->mac_rmac_err_mask); 1953 } 1954 1955 if (mask & RX_XGXS_INTR) { 1956 gen_int_mask |= RXXGXS_INT_M; 1957 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag, 1958 &bar0->xgxs_int_mask); 1959 do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag, 1960 &bar0->xgxs_rxgxs_err_mask); 1961 } 1962 1963 if (mask & MC_INTR) { 1964 gen_int_mask |= MC_INT_M; 1965 do_s2io_write_bits(MC_INT_MASK_MC_INT, 1966 flag, &bar0->mc_int_mask); 1967 do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG | 1968 MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag, 1969 &bar0->mc_err_mask); 1970 } 1971 nic->general_int_mask = gen_int_mask; 1972 1973 /* Remove this line when alarm interrupts are enabled */ 1974 nic->general_int_mask = 0; 1975 } 1976 1977 /** 1978 * en_dis_able_nic_intrs - Enable or Disable the interrupts 1979 * @nic: device private variable, 1980 * @mask: A mask indicating which Intr block must be modified and, 1981 * @flag: A flag indicating whether to enable or disable the Intrs. 1982 * Description: This function will either disable or enable the interrupts 1983 * depending on the flag argument. The mask argument can be used to 1984 * enable/disable any Intr block. 1985 * Return Value: NONE. 1986 */ 1987 1988 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag) 1989 { 1990 struct XENA_dev_config __iomem *bar0 = nic->bar0; 1991 register u64 temp64 = 0, intr_mask = 0; 1992 1993 intr_mask = nic->general_int_mask; 1994 1995 /* Top level interrupt classification */ 1996 /* PIC Interrupts */ 1997 if (mask & TX_PIC_INTR) { 1998 /* Enable PIC Intrs in the general intr mask register */ 1999 intr_mask |= TXPIC_INT_M; 2000 if (flag == ENABLE_INTRS) { 2001 /* 2002 * If Hercules adapter enable GPIO otherwise 2003 * disable all PCIX, Flash, MDIO, IIC and GPIO 2004 * interrupts for now. 2005 * TODO 2006 */ 2007 if (s2io_link_fault_indication(nic) == 2008 LINK_UP_DOWN_INTERRUPT) { 2009 do_s2io_write_bits(PIC_INT_GPIO, flag, 2010 &bar0->pic_int_mask); 2011 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag, 2012 &bar0->gpio_int_mask); 2013 } else 2014 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask); 2015 } else if (flag == DISABLE_INTRS) { 2016 /* 2017 * Disable PIC Intrs in the general 2018 * intr mask register 2019 */ 2020 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask); 2021 } 2022 } 2023 2024 /* Tx traffic interrupts */ 2025 if (mask & TX_TRAFFIC_INTR) { 2026 intr_mask |= TXTRAFFIC_INT_M; 2027 if (flag == ENABLE_INTRS) { 2028 /* 2029 * Enable all the Tx side interrupts 2030 * writing 0 Enables all 64 TX interrupt levels 2031 */ 2032 writeq(0x0, &bar0->tx_traffic_mask); 2033 } else if (flag == DISABLE_INTRS) { 2034 /* 2035 * Disable Tx Traffic Intrs in the general intr mask 2036 * register. 2037 */ 2038 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask); 2039 } 2040 } 2041 2042 /* Rx traffic interrupts */ 2043 if (mask & RX_TRAFFIC_INTR) { 2044 intr_mask |= RXTRAFFIC_INT_M; 2045 if (flag == ENABLE_INTRS) { 2046 /* writing 0 Enables all 8 RX interrupt levels */ 2047 writeq(0x0, &bar0->rx_traffic_mask); 2048 } else if (flag == DISABLE_INTRS) { 2049 /* 2050 * Disable Rx Traffic Intrs in the general intr mask 2051 * register. 2052 */ 2053 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask); 2054 } 2055 } 2056 2057 temp64 = readq(&bar0->general_int_mask); 2058 if (flag == ENABLE_INTRS) 2059 temp64 &= ~((u64)intr_mask); 2060 else 2061 temp64 = DISABLE_ALL_INTRS; 2062 writeq(temp64, &bar0->general_int_mask); 2063 2064 nic->general_int_mask = readq(&bar0->general_int_mask); 2065 } 2066 2067 /** 2068 * verify_pcc_quiescent- Checks for PCC quiescent state 2069 * @sp : private member of the device structure, which is a pointer to the 2070 * s2io_nic structure. 2071 * @flag: boolean controlling function path 2072 * Return: 1 If PCC is quiescence 2073 * 0 If PCC is not quiescence 2074 */ 2075 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag) 2076 { 2077 int ret = 0, herc; 2078 struct XENA_dev_config __iomem *bar0 = sp->bar0; 2079 u64 val64 = readq(&bar0->adapter_status); 2080 2081 herc = (sp->device_type == XFRAME_II_DEVICE); 2082 2083 if (flag == false) { 2084 if ((!herc && (sp->pdev->revision >= 4)) || herc) { 2085 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE)) 2086 ret = 1; 2087 } else { 2088 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE)) 2089 ret = 1; 2090 } 2091 } else { 2092 if ((!herc && (sp->pdev->revision >= 4)) || herc) { 2093 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) == 2094 ADAPTER_STATUS_RMAC_PCC_IDLE)) 2095 ret = 1; 2096 } else { 2097 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) == 2098 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE)) 2099 ret = 1; 2100 } 2101 } 2102 2103 return ret; 2104 } 2105 /** 2106 * verify_xena_quiescence - Checks whether the H/W is ready 2107 * @sp : private member of the device structure, which is a pointer to the 2108 * s2io_nic structure. 2109 * Description: Returns whether the H/W is ready to go or not. Depending 2110 * on whether adapter enable bit was written or not the comparison 2111 * differs and the calling function passes the input argument flag to 2112 * indicate this. 2113 * Return: 1 If xena is quiescence 2114 * 0 If Xena is not quiescence 2115 */ 2116 2117 static int verify_xena_quiescence(struct s2io_nic *sp) 2118 { 2119 int mode; 2120 struct XENA_dev_config __iomem *bar0 = sp->bar0; 2121 u64 val64 = readq(&bar0->adapter_status); 2122 mode = s2io_verify_pci_mode(sp); 2123 2124 if (!(val64 & ADAPTER_STATUS_TDMA_READY)) { 2125 DBG_PRINT(ERR_DBG, "TDMA is not ready!\n"); 2126 return 0; 2127 } 2128 if (!(val64 & ADAPTER_STATUS_RDMA_READY)) { 2129 DBG_PRINT(ERR_DBG, "RDMA is not ready!\n"); 2130 return 0; 2131 } 2132 if (!(val64 & ADAPTER_STATUS_PFC_READY)) { 2133 DBG_PRINT(ERR_DBG, "PFC is not ready!\n"); 2134 return 0; 2135 } 2136 if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) { 2137 DBG_PRINT(ERR_DBG, "TMAC BUF is not empty!\n"); 2138 return 0; 2139 } 2140 if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) { 2141 DBG_PRINT(ERR_DBG, "PIC is not QUIESCENT!\n"); 2142 return 0; 2143 } 2144 if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) { 2145 DBG_PRINT(ERR_DBG, "MC_DRAM is not ready!\n"); 2146 return 0; 2147 } 2148 if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) { 2149 DBG_PRINT(ERR_DBG, "MC_QUEUES is not ready!\n"); 2150 return 0; 2151 } 2152 if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) { 2153 DBG_PRINT(ERR_DBG, "M_PLL is not locked!\n"); 2154 return 0; 2155 } 2156 2157 /* 2158 * In PCI 33 mode, the P_PLL is not used, and therefore, 2159 * the P_PLL_LOCK bit in the adapter_status register will 2160 * not be asserted. 2161 */ 2162 if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) && 2163 sp->device_type == XFRAME_II_DEVICE && 2164 mode != PCI_MODE_PCI_33) { 2165 DBG_PRINT(ERR_DBG, "P_PLL is not locked!\n"); 2166 return 0; 2167 } 2168 if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) == 2169 ADAPTER_STATUS_RC_PRC_QUIESCENT)) { 2170 DBG_PRINT(ERR_DBG, "RC_PRC is not QUIESCENT!\n"); 2171 return 0; 2172 } 2173 return 1; 2174 } 2175 2176 /** 2177 * fix_mac_address - Fix for Mac addr problem on Alpha platforms 2178 * @sp: Pointer to device specifc structure 2179 * Description : 2180 * New procedure to clear mac address reading problems on Alpha platforms 2181 * 2182 */ 2183 2184 static void fix_mac_address(struct s2io_nic *sp) 2185 { 2186 struct XENA_dev_config __iomem *bar0 = sp->bar0; 2187 int i = 0; 2188 2189 while (fix_mac[i] != END_SIGN) { 2190 writeq(fix_mac[i++], &bar0->gpio_control); 2191 udelay(10); 2192 (void) readq(&bar0->gpio_control); 2193 } 2194 } 2195 2196 /** 2197 * start_nic - Turns the device on 2198 * @nic : device private variable. 2199 * Description: 2200 * This function actually turns the device on. Before this function is 2201 * called,all Registers are configured from their reset states 2202 * and shared memory is allocated but the NIC is still quiescent. On 2203 * calling this function, the device interrupts are cleared and the NIC is 2204 * literally switched on by writing into the adapter control register. 2205 * Return Value: 2206 * SUCCESS on success and -1 on failure. 2207 */ 2208 2209 static int start_nic(struct s2io_nic *nic) 2210 { 2211 struct XENA_dev_config __iomem *bar0 = nic->bar0; 2212 struct net_device *dev = nic->dev; 2213 register u64 val64 = 0; 2214 u16 subid, i; 2215 struct config_param *config = &nic->config; 2216 struct mac_info *mac_control = &nic->mac_control; 2217 2218 /* PRC Initialization and configuration */ 2219 for (i = 0; i < config->rx_ring_num; i++) { 2220 struct ring_info *ring = &mac_control->rings[i]; 2221 2222 writeq((u64)ring->rx_blocks[0].block_dma_addr, 2223 &bar0->prc_rxd0_n[i]); 2224 2225 val64 = readq(&bar0->prc_ctrl_n[i]); 2226 if (nic->rxd_mode == RXD_MODE_1) 2227 val64 |= PRC_CTRL_RC_ENABLED; 2228 else 2229 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3; 2230 if (nic->device_type == XFRAME_II_DEVICE) 2231 val64 |= PRC_CTRL_GROUP_READS; 2232 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF); 2233 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000); 2234 writeq(val64, &bar0->prc_ctrl_n[i]); 2235 } 2236 2237 if (nic->rxd_mode == RXD_MODE_3B) { 2238 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */ 2239 val64 = readq(&bar0->rx_pa_cfg); 2240 val64 |= RX_PA_CFG_IGNORE_L2_ERR; 2241 writeq(val64, &bar0->rx_pa_cfg); 2242 } 2243 2244 if (vlan_tag_strip == 0) { 2245 val64 = readq(&bar0->rx_pa_cfg); 2246 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG; 2247 writeq(val64, &bar0->rx_pa_cfg); 2248 nic->vlan_strip_flag = 0; 2249 } 2250 2251 /* 2252 * Enabling MC-RLDRAM. After enabling the device, we timeout 2253 * for around 100ms, which is approximately the time required 2254 * for the device to be ready for operation. 2255 */ 2256 val64 = readq(&bar0->mc_rldram_mrs); 2257 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE; 2258 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF); 2259 val64 = readq(&bar0->mc_rldram_mrs); 2260 2261 msleep(100); /* Delay by around 100 ms. */ 2262 2263 /* Enabling ECC Protection. */ 2264 val64 = readq(&bar0->adapter_control); 2265 val64 &= ~ADAPTER_ECC_EN; 2266 writeq(val64, &bar0->adapter_control); 2267 2268 /* 2269 * Verify if the device is ready to be enabled, if so enable 2270 * it. 2271 */ 2272 val64 = readq(&bar0->adapter_status); 2273 if (!verify_xena_quiescence(nic)) { 2274 DBG_PRINT(ERR_DBG, "%s: device is not ready, " 2275 "Adapter status reads: 0x%llx\n", 2276 dev->name, (unsigned long long)val64); 2277 return FAILURE; 2278 } 2279 2280 /* 2281 * With some switches, link might be already up at this point. 2282 * Because of this weird behavior, when we enable laser, 2283 * we may not get link. We need to handle this. We cannot 2284 * figure out which switch is misbehaving. So we are forced to 2285 * make a global change. 2286 */ 2287 2288 /* Enabling Laser. */ 2289 val64 = readq(&bar0->adapter_control); 2290 val64 |= ADAPTER_EOI_TX_ON; 2291 writeq(val64, &bar0->adapter_control); 2292 2293 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) { 2294 /* 2295 * Dont see link state interrupts initially on some switches, 2296 * so directly scheduling the link state task here. 2297 */ 2298 schedule_work(&nic->set_link_task); 2299 } 2300 /* SXE-002: Initialize link and activity LED */ 2301 subid = nic->pdev->subsystem_device; 2302 if (((subid & 0xFF) >= 0x07) && 2303 (nic->device_type == XFRAME_I_DEVICE)) { 2304 val64 = readq(&bar0->gpio_control); 2305 val64 |= 0x0000800000000000ULL; 2306 writeq(val64, &bar0->gpio_control); 2307 val64 = 0x0411040400000000ULL; 2308 writeq(val64, (void __iomem *)bar0 + 0x2700); 2309 } 2310 2311 return SUCCESS; 2312 } 2313 /** 2314 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb 2315 * @fifo_data: fifo data pointer 2316 * @txdlp: descriptor 2317 * @get_off: unused 2318 */ 2319 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data, 2320 struct TxD *txdlp, int get_off) 2321 { 2322 struct s2io_nic *nic = fifo_data->nic; 2323 struct sk_buff *skb; 2324 struct TxD *txds; 2325 u16 j, frg_cnt; 2326 2327 txds = txdlp; 2328 if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) { 2329 dma_unmap_single(&nic->pdev->dev, 2330 (dma_addr_t)txds->Buffer_Pointer, 2331 sizeof(u64), DMA_TO_DEVICE); 2332 txds++; 2333 } 2334 2335 skb = (struct sk_buff *)((unsigned long)txds->Host_Control); 2336 if (!skb) { 2337 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds)); 2338 return NULL; 2339 } 2340 dma_unmap_single(&nic->pdev->dev, (dma_addr_t)txds->Buffer_Pointer, 2341 skb_headlen(skb), DMA_TO_DEVICE); 2342 frg_cnt = skb_shinfo(skb)->nr_frags; 2343 if (frg_cnt) { 2344 txds++; 2345 for (j = 0; j < frg_cnt; j++, txds++) { 2346 const skb_frag_t *frag = &skb_shinfo(skb)->frags[j]; 2347 if (!txds->Buffer_Pointer) 2348 break; 2349 dma_unmap_page(&nic->pdev->dev, 2350 (dma_addr_t)txds->Buffer_Pointer, 2351 skb_frag_size(frag), DMA_TO_DEVICE); 2352 } 2353 } 2354 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds)); 2355 return skb; 2356 } 2357 2358 /** 2359 * free_tx_buffers - Free all queued Tx buffers 2360 * @nic : device private variable. 2361 * Description: 2362 * Free all queued Tx buffers. 2363 * Return Value: void 2364 */ 2365 2366 static void free_tx_buffers(struct s2io_nic *nic) 2367 { 2368 struct net_device *dev = nic->dev; 2369 struct sk_buff *skb; 2370 struct TxD *txdp; 2371 int i, j; 2372 int cnt = 0; 2373 struct config_param *config = &nic->config; 2374 struct mac_info *mac_control = &nic->mac_control; 2375 struct stat_block *stats = mac_control->stats_info; 2376 struct swStat *swstats = &stats->sw_stat; 2377 2378 for (i = 0; i < config->tx_fifo_num; i++) { 2379 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; 2380 struct fifo_info *fifo = &mac_control->fifos[i]; 2381 unsigned long flags; 2382 2383 spin_lock_irqsave(&fifo->tx_lock, flags); 2384 for (j = 0; j < tx_cfg->fifo_len; j++) { 2385 txdp = fifo->list_info[j].list_virt_addr; 2386 skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j); 2387 if (skb) { 2388 swstats->mem_freed += skb->truesize; 2389 dev_kfree_skb(skb); 2390 cnt++; 2391 } 2392 } 2393 DBG_PRINT(INTR_DBG, 2394 "%s: forcibly freeing %d skbs on FIFO%d\n", 2395 dev->name, cnt, i); 2396 fifo->tx_curr_get_info.offset = 0; 2397 fifo->tx_curr_put_info.offset = 0; 2398 spin_unlock_irqrestore(&fifo->tx_lock, flags); 2399 } 2400 } 2401 2402 /** 2403 * stop_nic - To stop the nic 2404 * @nic : device private variable. 2405 * Description: 2406 * This function does exactly the opposite of what the start_nic() 2407 * function does. This function is called to stop the device. 2408 * Return Value: 2409 * void. 2410 */ 2411 2412 static void stop_nic(struct s2io_nic *nic) 2413 { 2414 struct XENA_dev_config __iomem *bar0 = nic->bar0; 2415 register u64 val64 = 0; 2416 u16 interruptible; 2417 2418 /* Disable all interrupts */ 2419 en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS); 2420 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR; 2421 interruptible |= TX_PIC_INTR; 2422 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS); 2423 2424 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */ 2425 val64 = readq(&bar0->adapter_control); 2426 val64 &= ~(ADAPTER_CNTL_EN); 2427 writeq(val64, &bar0->adapter_control); 2428 } 2429 2430 /** 2431 * fill_rx_buffers - Allocates the Rx side skbs 2432 * @nic : device private variable. 2433 * @ring: per ring structure 2434 * @from_card_up: If this is true, we will map the buffer to get 2435 * the dma address for buf0 and buf1 to give it to the card. 2436 * Else we will sync the already mapped buffer to give it to the card. 2437 * Description: 2438 * The function allocates Rx side skbs and puts the physical 2439 * address of these buffers into the RxD buffer pointers, so that the NIC 2440 * can DMA the received frame into these locations. 2441 * The NIC supports 3 receive modes, viz 2442 * 1. single buffer, 2443 * 2. three buffer and 2444 * 3. Five buffer modes. 2445 * Each mode defines how many fragments the received frame will be split 2446 * up into by the NIC. The frame is split into L3 header, L4 Header, 2447 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself 2448 * is split into 3 fragments. As of now only single buffer mode is 2449 * supported. 2450 * Return Value: 2451 * SUCCESS on success or an appropriate -ve value on failure. 2452 */ 2453 static int fill_rx_buffers(struct s2io_nic *nic, struct ring_info *ring, 2454 int from_card_up) 2455 { 2456 struct sk_buff *skb; 2457 struct RxD_t *rxdp; 2458 int off, size, block_no, block_no1; 2459 u32 alloc_tab = 0; 2460 u32 alloc_cnt; 2461 u64 tmp; 2462 struct buffAdd *ba; 2463 struct RxD_t *first_rxdp = NULL; 2464 u64 Buffer0_ptr = 0, Buffer1_ptr = 0; 2465 struct RxD1 *rxdp1; 2466 struct RxD3 *rxdp3; 2467 struct swStat *swstats = &ring->nic->mac_control.stats_info->sw_stat; 2468 2469 alloc_cnt = ring->pkt_cnt - ring->rx_bufs_left; 2470 2471 block_no1 = ring->rx_curr_get_info.block_index; 2472 while (alloc_tab < alloc_cnt) { 2473 block_no = ring->rx_curr_put_info.block_index; 2474 2475 off = ring->rx_curr_put_info.offset; 2476 2477 rxdp = ring->rx_blocks[block_no].rxds[off].virt_addr; 2478 2479 if ((block_no == block_no1) && 2480 (off == ring->rx_curr_get_info.offset) && 2481 (rxdp->Host_Control)) { 2482 DBG_PRINT(INTR_DBG, "%s: Get and Put info equated\n", 2483 ring->dev->name); 2484 goto end; 2485 } 2486 if (off && (off == ring->rxd_count)) { 2487 ring->rx_curr_put_info.block_index++; 2488 if (ring->rx_curr_put_info.block_index == 2489 ring->block_count) 2490 ring->rx_curr_put_info.block_index = 0; 2491 block_no = ring->rx_curr_put_info.block_index; 2492 off = 0; 2493 ring->rx_curr_put_info.offset = off; 2494 rxdp = ring->rx_blocks[block_no].block_virt_addr; 2495 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n", 2496 ring->dev->name, rxdp); 2497 2498 } 2499 2500 if ((rxdp->Control_1 & RXD_OWN_XENA) && 2501 ((ring->rxd_mode == RXD_MODE_3B) && 2502 (rxdp->Control_2 & s2BIT(0)))) { 2503 ring->rx_curr_put_info.offset = off; 2504 goto end; 2505 } 2506 /* calculate size of skb based on ring mode */ 2507 size = ring->mtu + 2508 HEADER_ETHERNET_II_802_3_SIZE + 2509 HEADER_802_2_SIZE + HEADER_SNAP_SIZE; 2510 if (ring->rxd_mode == RXD_MODE_1) 2511 size += NET_IP_ALIGN; 2512 else 2513 size = ring->mtu + ALIGN_SIZE + BUF0_LEN + 4; 2514 2515 /* allocate skb */ 2516 skb = netdev_alloc_skb(nic->dev, size); 2517 if (!skb) { 2518 DBG_PRINT(INFO_DBG, "%s: Could not allocate skb\n", 2519 ring->dev->name); 2520 if (first_rxdp) { 2521 dma_wmb(); 2522 first_rxdp->Control_1 |= RXD_OWN_XENA; 2523 } 2524 swstats->mem_alloc_fail_cnt++; 2525 2526 return -ENOMEM ; 2527 } 2528 swstats->mem_allocated += skb->truesize; 2529 2530 if (ring->rxd_mode == RXD_MODE_1) { 2531 /* 1 buffer mode - normal operation mode */ 2532 rxdp1 = (struct RxD1 *)rxdp; 2533 memset(rxdp, 0, sizeof(struct RxD1)); 2534 skb_reserve(skb, NET_IP_ALIGN); 2535 rxdp1->Buffer0_ptr = 2536 dma_map_single(&ring->pdev->dev, skb->data, 2537 size - NET_IP_ALIGN, 2538 DMA_FROM_DEVICE); 2539 if (dma_mapping_error(&nic->pdev->dev, rxdp1->Buffer0_ptr)) 2540 goto pci_map_failed; 2541 2542 rxdp->Control_2 = 2543 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN); 2544 rxdp->Host_Control = (unsigned long)skb; 2545 } else if (ring->rxd_mode == RXD_MODE_3B) { 2546 /* 2547 * 2 buffer mode - 2548 * 2 buffer mode provides 128 2549 * byte aligned receive buffers. 2550 */ 2551 2552 rxdp3 = (struct RxD3 *)rxdp; 2553 /* save buffer pointers to avoid frequent dma mapping */ 2554 Buffer0_ptr = rxdp3->Buffer0_ptr; 2555 Buffer1_ptr = rxdp3->Buffer1_ptr; 2556 memset(rxdp, 0, sizeof(struct RxD3)); 2557 /* restore the buffer pointers for dma sync*/ 2558 rxdp3->Buffer0_ptr = Buffer0_ptr; 2559 rxdp3->Buffer1_ptr = Buffer1_ptr; 2560 2561 ba = &ring->ba[block_no][off]; 2562 skb_reserve(skb, BUF0_LEN); 2563 tmp = (u64)(unsigned long)skb->data; 2564 tmp += ALIGN_SIZE; 2565 tmp &= ~ALIGN_SIZE; 2566 skb->data = (void *) (unsigned long)tmp; 2567 skb_reset_tail_pointer(skb); 2568 2569 if (from_card_up) { 2570 rxdp3->Buffer0_ptr = 2571 dma_map_single(&ring->pdev->dev, 2572 ba->ba_0, BUF0_LEN, 2573 DMA_FROM_DEVICE); 2574 if (dma_mapping_error(&nic->pdev->dev, rxdp3->Buffer0_ptr)) 2575 goto pci_map_failed; 2576 } else 2577 dma_sync_single_for_device(&ring->pdev->dev, 2578 (dma_addr_t)rxdp3->Buffer0_ptr, 2579 BUF0_LEN, 2580 DMA_FROM_DEVICE); 2581 2582 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN); 2583 if (ring->rxd_mode == RXD_MODE_3B) { 2584 /* Two buffer mode */ 2585 2586 /* 2587 * Buffer2 will have L3/L4 header plus 2588 * L4 payload 2589 */ 2590 rxdp3->Buffer2_ptr = dma_map_single(&ring->pdev->dev, 2591 skb->data, 2592 ring->mtu + 4, 2593 DMA_FROM_DEVICE); 2594 2595 if (dma_mapping_error(&nic->pdev->dev, rxdp3->Buffer2_ptr)) 2596 goto pci_map_failed; 2597 2598 if (from_card_up) { 2599 rxdp3->Buffer1_ptr = 2600 dma_map_single(&ring->pdev->dev, 2601 ba->ba_1, 2602 BUF1_LEN, 2603 DMA_FROM_DEVICE); 2604 2605 if (dma_mapping_error(&nic->pdev->dev, 2606 rxdp3->Buffer1_ptr)) { 2607 dma_unmap_single(&ring->pdev->dev, 2608 (dma_addr_t)(unsigned long) 2609 skb->data, 2610 ring->mtu + 4, 2611 DMA_FROM_DEVICE); 2612 goto pci_map_failed; 2613 } 2614 } 2615 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1); 2616 rxdp->Control_2 |= SET_BUFFER2_SIZE_3 2617 (ring->mtu + 4); 2618 } 2619 rxdp->Control_2 |= s2BIT(0); 2620 rxdp->Host_Control = (unsigned long) (skb); 2621 } 2622 if (alloc_tab & ((1 << rxsync_frequency) - 1)) 2623 rxdp->Control_1 |= RXD_OWN_XENA; 2624 off++; 2625 if (off == (ring->rxd_count + 1)) 2626 off = 0; 2627 ring->rx_curr_put_info.offset = off; 2628 2629 rxdp->Control_2 |= SET_RXD_MARKER; 2630 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) { 2631 if (first_rxdp) { 2632 dma_wmb(); 2633 first_rxdp->Control_1 |= RXD_OWN_XENA; 2634 } 2635 first_rxdp = rxdp; 2636 } 2637 ring->rx_bufs_left += 1; 2638 alloc_tab++; 2639 } 2640 2641 end: 2642 /* Transfer ownership of first descriptor to adapter just before 2643 * exiting. Before that, use memory barrier so that ownership 2644 * and other fields are seen by adapter correctly. 2645 */ 2646 if (first_rxdp) { 2647 dma_wmb(); 2648 first_rxdp->Control_1 |= RXD_OWN_XENA; 2649 } 2650 2651 return SUCCESS; 2652 2653 pci_map_failed: 2654 swstats->pci_map_fail_cnt++; 2655 swstats->mem_freed += skb->truesize; 2656 dev_kfree_skb_irq(skb); 2657 return -ENOMEM; 2658 } 2659 2660 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk) 2661 { 2662 struct net_device *dev = sp->dev; 2663 int j; 2664 struct sk_buff *skb; 2665 struct RxD_t *rxdp; 2666 struct RxD1 *rxdp1; 2667 struct RxD3 *rxdp3; 2668 struct mac_info *mac_control = &sp->mac_control; 2669 struct stat_block *stats = mac_control->stats_info; 2670 struct swStat *swstats = &stats->sw_stat; 2671 2672 for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) { 2673 rxdp = mac_control->rings[ring_no]. 2674 rx_blocks[blk].rxds[j].virt_addr; 2675 skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control); 2676 if (!skb) 2677 continue; 2678 if (sp->rxd_mode == RXD_MODE_1) { 2679 rxdp1 = (struct RxD1 *)rxdp; 2680 dma_unmap_single(&sp->pdev->dev, 2681 (dma_addr_t)rxdp1->Buffer0_ptr, 2682 dev->mtu + 2683 HEADER_ETHERNET_II_802_3_SIZE + 2684 HEADER_802_2_SIZE + HEADER_SNAP_SIZE, 2685 DMA_FROM_DEVICE); 2686 memset(rxdp, 0, sizeof(struct RxD1)); 2687 } else if (sp->rxd_mode == RXD_MODE_3B) { 2688 rxdp3 = (struct RxD3 *)rxdp; 2689 dma_unmap_single(&sp->pdev->dev, 2690 (dma_addr_t)rxdp3->Buffer0_ptr, 2691 BUF0_LEN, DMA_FROM_DEVICE); 2692 dma_unmap_single(&sp->pdev->dev, 2693 (dma_addr_t)rxdp3->Buffer1_ptr, 2694 BUF1_LEN, DMA_FROM_DEVICE); 2695 dma_unmap_single(&sp->pdev->dev, 2696 (dma_addr_t)rxdp3->Buffer2_ptr, 2697 dev->mtu + 4, DMA_FROM_DEVICE); 2698 memset(rxdp, 0, sizeof(struct RxD3)); 2699 } 2700 swstats->mem_freed += skb->truesize; 2701 dev_kfree_skb(skb); 2702 mac_control->rings[ring_no].rx_bufs_left -= 1; 2703 } 2704 } 2705 2706 /** 2707 * free_rx_buffers - Frees all Rx buffers 2708 * @sp: device private variable. 2709 * Description: 2710 * This function will free all Rx buffers allocated by host. 2711 * Return Value: 2712 * NONE. 2713 */ 2714 2715 static void free_rx_buffers(struct s2io_nic *sp) 2716 { 2717 struct net_device *dev = sp->dev; 2718 int i, blk = 0, buf_cnt = 0; 2719 struct config_param *config = &sp->config; 2720 struct mac_info *mac_control = &sp->mac_control; 2721 2722 for (i = 0; i < config->rx_ring_num; i++) { 2723 struct ring_info *ring = &mac_control->rings[i]; 2724 2725 for (blk = 0; blk < rx_ring_sz[i]; blk++) 2726 free_rxd_blk(sp, i, blk); 2727 2728 ring->rx_curr_put_info.block_index = 0; 2729 ring->rx_curr_get_info.block_index = 0; 2730 ring->rx_curr_put_info.offset = 0; 2731 ring->rx_curr_get_info.offset = 0; 2732 ring->rx_bufs_left = 0; 2733 DBG_PRINT(INIT_DBG, "%s: Freed 0x%x Rx Buffers on ring%d\n", 2734 dev->name, buf_cnt, i); 2735 } 2736 } 2737 2738 static int s2io_chk_rx_buffers(struct s2io_nic *nic, struct ring_info *ring) 2739 { 2740 if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) { 2741 DBG_PRINT(INFO_DBG, "%s: Out of memory in Rx Intr!!\n", 2742 ring->dev->name); 2743 } 2744 return 0; 2745 } 2746 2747 /** 2748 * s2io_poll_msix - Rx interrupt handler for NAPI support 2749 * @napi : pointer to the napi structure. 2750 * @budget : The number of packets that were budgeted to be processed 2751 * during one pass through the 'Poll" function. 2752 * Description: 2753 * Comes into picture only if NAPI support has been incorporated. It does 2754 * the same thing that rx_intr_handler does, but not in a interrupt context 2755 * also It will process only a given number of packets. 2756 * Return value: 2757 * 0 on success and 1 if there are No Rx packets to be processed. 2758 */ 2759 2760 static int s2io_poll_msix(struct napi_struct *napi, int budget) 2761 { 2762 struct ring_info *ring = container_of(napi, struct ring_info, napi); 2763 struct net_device *dev = ring->dev; 2764 int pkts_processed = 0; 2765 u8 __iomem *addr = NULL; 2766 u8 val8 = 0; 2767 struct s2io_nic *nic = netdev_priv(dev); 2768 struct XENA_dev_config __iomem *bar0 = nic->bar0; 2769 int budget_org = budget; 2770 2771 if (unlikely(!is_s2io_card_up(nic))) 2772 return 0; 2773 2774 pkts_processed = rx_intr_handler(ring, budget); 2775 s2io_chk_rx_buffers(nic, ring); 2776 2777 if (pkts_processed < budget_org) { 2778 napi_complete_done(napi, pkts_processed); 2779 /*Re Enable MSI-Rx Vector*/ 2780 addr = (u8 __iomem *)&bar0->xmsi_mask_reg; 2781 addr += 7 - ring->ring_no; 2782 val8 = (ring->ring_no == 0) ? 0x3f : 0xbf; 2783 writeb(val8, addr); 2784 val8 = readb(addr); 2785 } 2786 return pkts_processed; 2787 } 2788 2789 static int s2io_poll_inta(struct napi_struct *napi, int budget) 2790 { 2791 struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi); 2792 int pkts_processed = 0; 2793 int ring_pkts_processed, i; 2794 struct XENA_dev_config __iomem *bar0 = nic->bar0; 2795 int budget_org = budget; 2796 struct config_param *config = &nic->config; 2797 struct mac_info *mac_control = &nic->mac_control; 2798 2799 if (unlikely(!is_s2io_card_up(nic))) 2800 return 0; 2801 2802 for (i = 0; i < config->rx_ring_num; i++) { 2803 struct ring_info *ring = &mac_control->rings[i]; 2804 ring_pkts_processed = rx_intr_handler(ring, budget); 2805 s2io_chk_rx_buffers(nic, ring); 2806 pkts_processed += ring_pkts_processed; 2807 budget -= ring_pkts_processed; 2808 if (budget <= 0) 2809 break; 2810 } 2811 if (pkts_processed < budget_org) { 2812 napi_complete_done(napi, pkts_processed); 2813 /* Re enable the Rx interrupts for the ring */ 2814 writeq(0, &bar0->rx_traffic_mask); 2815 readl(&bar0->rx_traffic_mask); 2816 } 2817 return pkts_processed; 2818 } 2819 2820 #ifdef CONFIG_NET_POLL_CONTROLLER 2821 /** 2822 * s2io_netpoll - netpoll event handler entry point 2823 * @dev : pointer to the device structure. 2824 * Description: 2825 * This function will be called by upper layer to check for events on the 2826 * interface in situations where interrupts are disabled. It is used for 2827 * specific in-kernel networking tasks, such as remote consoles and kernel 2828 * debugging over the network (example netdump in RedHat). 2829 */ 2830 static void s2io_netpoll(struct net_device *dev) 2831 { 2832 struct s2io_nic *nic = netdev_priv(dev); 2833 const int irq = nic->pdev->irq; 2834 struct XENA_dev_config __iomem *bar0 = nic->bar0; 2835 u64 val64 = 0xFFFFFFFFFFFFFFFFULL; 2836 int i; 2837 struct config_param *config = &nic->config; 2838 struct mac_info *mac_control = &nic->mac_control; 2839 2840 if (pci_channel_offline(nic->pdev)) 2841 return; 2842 2843 disable_irq(irq); 2844 2845 writeq(val64, &bar0->rx_traffic_int); 2846 writeq(val64, &bar0->tx_traffic_int); 2847 2848 /* we need to free up the transmitted skbufs or else netpoll will 2849 * run out of skbs and will fail and eventually netpoll application such 2850 * as netdump will fail. 2851 */ 2852 for (i = 0; i < config->tx_fifo_num; i++) 2853 tx_intr_handler(&mac_control->fifos[i]); 2854 2855 /* check for received packet and indicate up to network */ 2856 for (i = 0; i < config->rx_ring_num; i++) { 2857 struct ring_info *ring = &mac_control->rings[i]; 2858 2859 rx_intr_handler(ring, 0); 2860 } 2861 2862 for (i = 0; i < config->rx_ring_num; i++) { 2863 struct ring_info *ring = &mac_control->rings[i]; 2864 2865 if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) { 2866 DBG_PRINT(INFO_DBG, 2867 "%s: Out of memory in Rx Netpoll!!\n", 2868 dev->name); 2869 break; 2870 } 2871 } 2872 enable_irq(irq); 2873 } 2874 #endif 2875 2876 /** 2877 * rx_intr_handler - Rx interrupt handler 2878 * @ring_data: per ring structure. 2879 * @budget: budget for napi processing. 2880 * Description: 2881 * If the interrupt is because of a received frame or if the 2882 * receive ring contains fresh as yet un-processed frames,this function is 2883 * called. It picks out the RxD at which place the last Rx processing had 2884 * stopped and sends the skb to the OSM's Rx handler and then increments 2885 * the offset. 2886 * Return Value: 2887 * No. of napi packets processed. 2888 */ 2889 static int rx_intr_handler(struct ring_info *ring_data, int budget) 2890 { 2891 int get_block, put_block; 2892 struct rx_curr_get_info get_info, put_info; 2893 struct RxD_t *rxdp; 2894 struct sk_buff *skb; 2895 int pkt_cnt = 0, napi_pkts = 0; 2896 int i; 2897 struct RxD1 *rxdp1; 2898 struct RxD3 *rxdp3; 2899 2900 if (budget <= 0) 2901 return napi_pkts; 2902 2903 get_info = ring_data->rx_curr_get_info; 2904 get_block = get_info.block_index; 2905 memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info)); 2906 put_block = put_info.block_index; 2907 rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr; 2908 2909 while (RXD_IS_UP2DT(rxdp)) { 2910 /* 2911 * If your are next to put index then it's 2912 * FIFO full condition 2913 */ 2914 if ((get_block == put_block) && 2915 (get_info.offset + 1) == put_info.offset) { 2916 DBG_PRINT(INTR_DBG, "%s: Ring Full\n", 2917 ring_data->dev->name); 2918 break; 2919 } 2920 skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control); 2921 if (skb == NULL) { 2922 DBG_PRINT(ERR_DBG, "%s: NULL skb in Rx Intr\n", 2923 ring_data->dev->name); 2924 return 0; 2925 } 2926 if (ring_data->rxd_mode == RXD_MODE_1) { 2927 rxdp1 = (struct RxD1 *)rxdp; 2928 dma_unmap_single(&ring_data->pdev->dev, 2929 (dma_addr_t)rxdp1->Buffer0_ptr, 2930 ring_data->mtu + 2931 HEADER_ETHERNET_II_802_3_SIZE + 2932 HEADER_802_2_SIZE + 2933 HEADER_SNAP_SIZE, 2934 DMA_FROM_DEVICE); 2935 } else if (ring_data->rxd_mode == RXD_MODE_3B) { 2936 rxdp3 = (struct RxD3 *)rxdp; 2937 dma_sync_single_for_cpu(&ring_data->pdev->dev, 2938 (dma_addr_t)rxdp3->Buffer0_ptr, 2939 BUF0_LEN, DMA_FROM_DEVICE); 2940 dma_unmap_single(&ring_data->pdev->dev, 2941 (dma_addr_t)rxdp3->Buffer2_ptr, 2942 ring_data->mtu + 4, DMA_FROM_DEVICE); 2943 } 2944 prefetch(skb->data); 2945 rx_osm_handler(ring_data, rxdp); 2946 get_info.offset++; 2947 ring_data->rx_curr_get_info.offset = get_info.offset; 2948 rxdp = ring_data->rx_blocks[get_block]. 2949 rxds[get_info.offset].virt_addr; 2950 if (get_info.offset == rxd_count[ring_data->rxd_mode]) { 2951 get_info.offset = 0; 2952 ring_data->rx_curr_get_info.offset = get_info.offset; 2953 get_block++; 2954 if (get_block == ring_data->block_count) 2955 get_block = 0; 2956 ring_data->rx_curr_get_info.block_index = get_block; 2957 rxdp = ring_data->rx_blocks[get_block].block_virt_addr; 2958 } 2959 2960 if (ring_data->nic->config.napi) { 2961 budget--; 2962 napi_pkts++; 2963 if (!budget) 2964 break; 2965 } 2966 pkt_cnt++; 2967 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts)) 2968 break; 2969 } 2970 if (ring_data->lro) { 2971 /* Clear all LRO sessions before exiting */ 2972 for (i = 0; i < MAX_LRO_SESSIONS; i++) { 2973 struct lro *lro = &ring_data->lro0_n[i]; 2974 if (lro->in_use) { 2975 update_L3L4_header(ring_data->nic, lro); 2976 queue_rx_frame(lro->parent, lro->vlan_tag); 2977 clear_lro_session(lro); 2978 } 2979 } 2980 } 2981 return napi_pkts; 2982 } 2983 2984 /** 2985 * tx_intr_handler - Transmit interrupt handler 2986 * @fifo_data : fifo data pointer 2987 * Description: 2988 * If an interrupt was raised to indicate DMA complete of the 2989 * Tx packet, this function is called. It identifies the last TxD 2990 * whose buffer was freed and frees all skbs whose data have already 2991 * DMA'ed into the NICs internal memory. 2992 * Return Value: 2993 * NONE 2994 */ 2995 2996 static void tx_intr_handler(struct fifo_info *fifo_data) 2997 { 2998 struct s2io_nic *nic = fifo_data->nic; 2999 struct tx_curr_get_info get_info, put_info; 3000 struct sk_buff *skb = NULL; 3001 struct TxD *txdlp; 3002 int pkt_cnt = 0; 3003 unsigned long flags = 0; 3004 u8 err_mask; 3005 struct stat_block *stats = nic->mac_control.stats_info; 3006 struct swStat *swstats = &stats->sw_stat; 3007 3008 if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags)) 3009 return; 3010 3011 get_info = fifo_data->tx_curr_get_info; 3012 memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info)); 3013 txdlp = fifo_data->list_info[get_info.offset].list_virt_addr; 3014 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) && 3015 (get_info.offset != put_info.offset) && 3016 (txdlp->Host_Control)) { 3017 /* Check for TxD errors */ 3018 if (txdlp->Control_1 & TXD_T_CODE) { 3019 unsigned long long err; 3020 err = txdlp->Control_1 & TXD_T_CODE; 3021 if (err & 0x1) { 3022 swstats->parity_err_cnt++; 3023 } 3024 3025 /* update t_code statistics */ 3026 err_mask = err >> 48; 3027 switch (err_mask) { 3028 case 2: 3029 swstats->tx_buf_abort_cnt++; 3030 break; 3031 3032 case 3: 3033 swstats->tx_desc_abort_cnt++; 3034 break; 3035 3036 case 7: 3037 swstats->tx_parity_err_cnt++; 3038 break; 3039 3040 case 10: 3041 swstats->tx_link_loss_cnt++; 3042 break; 3043 3044 case 15: 3045 swstats->tx_list_proc_err_cnt++; 3046 break; 3047 } 3048 } 3049 3050 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset); 3051 if (skb == NULL) { 3052 spin_unlock_irqrestore(&fifo_data->tx_lock, flags); 3053 DBG_PRINT(ERR_DBG, "%s: NULL skb in Tx Free Intr\n", 3054 __func__); 3055 return; 3056 } 3057 pkt_cnt++; 3058 3059 /* Updating the statistics block */ 3060 swstats->mem_freed += skb->truesize; 3061 dev_consume_skb_irq(skb); 3062 3063 get_info.offset++; 3064 if (get_info.offset == get_info.fifo_len + 1) 3065 get_info.offset = 0; 3066 txdlp = fifo_data->list_info[get_info.offset].list_virt_addr; 3067 fifo_data->tx_curr_get_info.offset = get_info.offset; 3068 } 3069 3070 s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq); 3071 3072 spin_unlock_irqrestore(&fifo_data->tx_lock, flags); 3073 } 3074 3075 /** 3076 * s2io_mdio_write - Function to write in to MDIO registers 3077 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS) 3078 * @addr : address value 3079 * @value : data value 3080 * @dev : pointer to net_device structure 3081 * Description: 3082 * This function is used to write values to the MDIO registers 3083 * NONE 3084 */ 3085 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, 3086 struct net_device *dev) 3087 { 3088 u64 val64; 3089 struct s2io_nic *sp = netdev_priv(dev); 3090 struct XENA_dev_config __iomem *bar0 = sp->bar0; 3091 3092 /* address transaction */ 3093 val64 = MDIO_MMD_INDX_ADDR(addr) | 3094 MDIO_MMD_DEV_ADDR(mmd_type) | 3095 MDIO_MMS_PRT_ADDR(0x0); 3096 writeq(val64, &bar0->mdio_control); 3097 val64 = val64 | MDIO_CTRL_START_TRANS(0xE); 3098 writeq(val64, &bar0->mdio_control); 3099 udelay(100); 3100 3101 /* Data transaction */ 3102 val64 = MDIO_MMD_INDX_ADDR(addr) | 3103 MDIO_MMD_DEV_ADDR(mmd_type) | 3104 MDIO_MMS_PRT_ADDR(0x0) | 3105 MDIO_MDIO_DATA(value) | 3106 MDIO_OP(MDIO_OP_WRITE_TRANS); 3107 writeq(val64, &bar0->mdio_control); 3108 val64 = val64 | MDIO_CTRL_START_TRANS(0xE); 3109 writeq(val64, &bar0->mdio_control); 3110 udelay(100); 3111 3112 val64 = MDIO_MMD_INDX_ADDR(addr) | 3113 MDIO_MMD_DEV_ADDR(mmd_type) | 3114 MDIO_MMS_PRT_ADDR(0x0) | 3115 MDIO_OP(MDIO_OP_READ_TRANS); 3116 writeq(val64, &bar0->mdio_control); 3117 val64 = val64 | MDIO_CTRL_START_TRANS(0xE); 3118 writeq(val64, &bar0->mdio_control); 3119 udelay(100); 3120 } 3121 3122 /** 3123 * s2io_mdio_read - Function to write in to MDIO registers 3124 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS) 3125 * @addr : address value 3126 * @dev : pointer to net_device structure 3127 * Description: 3128 * This function is used to read values to the MDIO registers 3129 * NONE 3130 */ 3131 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev) 3132 { 3133 u64 val64 = 0x0; 3134 u64 rval64 = 0x0; 3135 struct s2io_nic *sp = netdev_priv(dev); 3136 struct XENA_dev_config __iomem *bar0 = sp->bar0; 3137 3138 /* address transaction */ 3139 val64 = val64 | (MDIO_MMD_INDX_ADDR(addr) 3140 | MDIO_MMD_DEV_ADDR(mmd_type) 3141 | MDIO_MMS_PRT_ADDR(0x0)); 3142 writeq(val64, &bar0->mdio_control); 3143 val64 = val64 | MDIO_CTRL_START_TRANS(0xE); 3144 writeq(val64, &bar0->mdio_control); 3145 udelay(100); 3146 3147 /* Data transaction */ 3148 val64 = MDIO_MMD_INDX_ADDR(addr) | 3149 MDIO_MMD_DEV_ADDR(mmd_type) | 3150 MDIO_MMS_PRT_ADDR(0x0) | 3151 MDIO_OP(MDIO_OP_READ_TRANS); 3152 writeq(val64, &bar0->mdio_control); 3153 val64 = val64 | MDIO_CTRL_START_TRANS(0xE); 3154 writeq(val64, &bar0->mdio_control); 3155 udelay(100); 3156 3157 /* Read the value from regs */ 3158 rval64 = readq(&bar0->mdio_control); 3159 rval64 = rval64 & 0xFFFF0000; 3160 rval64 = rval64 >> 16; 3161 return rval64; 3162 } 3163 3164 /** 3165 * s2io_chk_xpak_counter - Function to check the status of the xpak counters 3166 * @counter : counter value to be updated 3167 * @regs_stat : registers status 3168 * @index : index 3169 * @flag : flag to indicate the status 3170 * @type : counter type 3171 * Description: 3172 * This function is to check the status of the xpak counters value 3173 * NONE 3174 */ 3175 3176 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, 3177 u16 flag, u16 type) 3178 { 3179 u64 mask = 0x3; 3180 u64 val64; 3181 int i; 3182 for (i = 0; i < index; i++) 3183 mask = mask << 0x2; 3184 3185 if (flag > 0) { 3186 *counter = *counter + 1; 3187 val64 = *regs_stat & mask; 3188 val64 = val64 >> (index * 0x2); 3189 val64 = val64 + 1; 3190 if (val64 == 3) { 3191 switch (type) { 3192 case 1: 3193 DBG_PRINT(ERR_DBG, 3194 "Take Xframe NIC out of service.\n"); 3195 DBG_PRINT(ERR_DBG, 3196 "Excessive temperatures may result in premature transceiver failure.\n"); 3197 break; 3198 case 2: 3199 DBG_PRINT(ERR_DBG, 3200 "Take Xframe NIC out of service.\n"); 3201 DBG_PRINT(ERR_DBG, 3202 "Excessive bias currents may indicate imminent laser diode failure.\n"); 3203 break; 3204 case 3: 3205 DBG_PRINT(ERR_DBG, 3206 "Take Xframe NIC out of service.\n"); 3207 DBG_PRINT(ERR_DBG, 3208 "Excessive laser output power may saturate far-end receiver.\n"); 3209 break; 3210 default: 3211 DBG_PRINT(ERR_DBG, 3212 "Incorrect XPAK Alarm type\n"); 3213 } 3214 val64 = 0x0; 3215 } 3216 val64 = val64 << (index * 0x2); 3217 *regs_stat = (*regs_stat & (~mask)) | (val64); 3218 3219 } else { 3220 *regs_stat = *regs_stat & (~mask); 3221 } 3222 } 3223 3224 /** 3225 * s2io_updt_xpak_counter - Function to update the xpak counters 3226 * @dev : pointer to net_device struct 3227 * Description: 3228 * This function is to upate the status of the xpak counters value 3229 * NONE 3230 */ 3231 static void s2io_updt_xpak_counter(struct net_device *dev) 3232 { 3233 u16 flag = 0x0; 3234 u16 type = 0x0; 3235 u16 val16 = 0x0; 3236 u64 val64 = 0x0; 3237 u64 addr = 0x0; 3238 3239 struct s2io_nic *sp = netdev_priv(dev); 3240 struct stat_block *stats = sp->mac_control.stats_info; 3241 struct xpakStat *xstats = &stats->xpak_stat; 3242 3243 /* Check the communication with the MDIO slave */ 3244 addr = MDIO_CTRL1; 3245 val64 = 0x0; 3246 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev); 3247 if ((val64 == 0xFFFF) || (val64 == 0x0000)) { 3248 DBG_PRINT(ERR_DBG, 3249 "ERR: MDIO slave access failed - Returned %llx\n", 3250 (unsigned long long)val64); 3251 return; 3252 } 3253 3254 /* Check for the expected value of control reg 1 */ 3255 if (val64 != MDIO_CTRL1_SPEED10G) { 3256 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - " 3257 "Returned: %llx- Expected: 0x%x\n", 3258 (unsigned long long)val64, MDIO_CTRL1_SPEED10G); 3259 return; 3260 } 3261 3262 /* Loading the DOM register to MDIO register */ 3263 addr = 0xA100; 3264 s2io_mdio_write(MDIO_MMD_PMAPMD, addr, val16, dev); 3265 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev); 3266 3267 /* Reading the Alarm flags */ 3268 addr = 0xA070; 3269 val64 = 0x0; 3270 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev); 3271 3272 flag = CHECKBIT(val64, 0x7); 3273 type = 1; 3274 s2io_chk_xpak_counter(&xstats->alarm_transceiver_temp_high, 3275 &xstats->xpak_regs_stat, 3276 0x0, flag, type); 3277 3278 if (CHECKBIT(val64, 0x6)) 3279 xstats->alarm_transceiver_temp_low++; 3280 3281 flag = CHECKBIT(val64, 0x3); 3282 type = 2; 3283 s2io_chk_xpak_counter(&xstats->alarm_laser_bias_current_high, 3284 &xstats->xpak_regs_stat, 3285 0x2, flag, type); 3286 3287 if (CHECKBIT(val64, 0x2)) 3288 xstats->alarm_laser_bias_current_low++; 3289 3290 flag = CHECKBIT(val64, 0x1); 3291 type = 3; 3292 s2io_chk_xpak_counter(&xstats->alarm_laser_output_power_high, 3293 &xstats->xpak_regs_stat, 3294 0x4, flag, type); 3295 3296 if (CHECKBIT(val64, 0x0)) 3297 xstats->alarm_laser_output_power_low++; 3298 3299 /* Reading the Warning flags */ 3300 addr = 0xA074; 3301 val64 = 0x0; 3302 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev); 3303 3304 if (CHECKBIT(val64, 0x7)) 3305 xstats->warn_transceiver_temp_high++; 3306 3307 if (CHECKBIT(val64, 0x6)) 3308 xstats->warn_transceiver_temp_low++; 3309 3310 if (CHECKBIT(val64, 0x3)) 3311 xstats->warn_laser_bias_current_high++; 3312 3313 if (CHECKBIT(val64, 0x2)) 3314 xstats->warn_laser_bias_current_low++; 3315 3316 if (CHECKBIT(val64, 0x1)) 3317 xstats->warn_laser_output_power_high++; 3318 3319 if (CHECKBIT(val64, 0x0)) 3320 xstats->warn_laser_output_power_low++; 3321 } 3322 3323 /** 3324 * wait_for_cmd_complete - waits for a command to complete. 3325 * @addr: address 3326 * @busy_bit: bit to check for busy 3327 * @bit_state: state to check 3328 * @may_sleep: parameter indicates if sleeping when waiting for 3329 * command complete 3330 * Description: Function that waits for a command to Write into RMAC 3331 * ADDR DATA registers to be completed and returns either success or 3332 * error depending on whether the command was complete or not. 3333 * Return value: 3334 * SUCCESS on success and FAILURE on failure. 3335 */ 3336 3337 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit, 3338 int bit_state, bool may_sleep) 3339 { 3340 int ret = FAILURE, cnt = 0, delay = 1; 3341 u64 val64; 3342 3343 if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET)) 3344 return FAILURE; 3345 3346 do { 3347 val64 = readq(addr); 3348 if (bit_state == S2IO_BIT_RESET) { 3349 if (!(val64 & busy_bit)) { 3350 ret = SUCCESS; 3351 break; 3352 } 3353 } else { 3354 if (val64 & busy_bit) { 3355 ret = SUCCESS; 3356 break; 3357 } 3358 } 3359 3360 if (!may_sleep) 3361 mdelay(delay); 3362 else 3363 msleep(delay); 3364 3365 if (++cnt >= 10) 3366 delay = 50; 3367 } while (cnt < 20); 3368 return ret; 3369 } 3370 /** 3371 * check_pci_device_id - Checks if the device id is supported 3372 * @id : device id 3373 * Description: Function to check if the pci device id is supported by driver. 3374 * Return value: Actual device id if supported else PCI_ANY_ID 3375 */ 3376 static u16 check_pci_device_id(u16 id) 3377 { 3378 switch (id) { 3379 case PCI_DEVICE_ID_HERC_WIN: 3380 case PCI_DEVICE_ID_HERC_UNI: 3381 return XFRAME_II_DEVICE; 3382 case PCI_DEVICE_ID_S2IO_UNI: 3383 case PCI_DEVICE_ID_S2IO_WIN: 3384 return XFRAME_I_DEVICE; 3385 default: 3386 return PCI_ANY_ID; 3387 } 3388 } 3389 3390 /** 3391 * s2io_reset - Resets the card. 3392 * @sp : private member of the device structure. 3393 * Description: Function to Reset the card. This function then also 3394 * restores the previously saved PCI configuration space registers as 3395 * the card reset also resets the configuration space. 3396 * Return value: 3397 * void. 3398 */ 3399 3400 static void s2io_reset(struct s2io_nic *sp) 3401 { 3402 struct XENA_dev_config __iomem *bar0 = sp->bar0; 3403 u64 val64; 3404 u16 subid, pci_cmd; 3405 int i; 3406 u16 val16; 3407 unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt; 3408 unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt; 3409 struct stat_block *stats; 3410 struct swStat *swstats; 3411 3412 DBG_PRINT(INIT_DBG, "%s: Resetting XFrame card %s\n", 3413 __func__, pci_name(sp->pdev)); 3414 3415 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */ 3416 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd)); 3417 3418 val64 = SW_RESET_ALL; 3419 writeq(val64, &bar0->sw_reset); 3420 if (strstr(sp->product_name, "CX4")) 3421 msleep(750); 3422 msleep(250); 3423 for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) { 3424 3425 /* Restore the PCI state saved during initialization. */ 3426 pci_restore_state(sp->pdev); 3427 pci_save_state(sp->pdev); 3428 pci_read_config_word(sp->pdev, 0x2, &val16); 3429 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID) 3430 break; 3431 msleep(200); 3432 } 3433 3434 if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) 3435 DBG_PRINT(ERR_DBG, "%s SW_Reset failed!\n", __func__); 3436 3437 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd); 3438 3439 s2io_init_pci(sp); 3440 3441 /* Set swapper to enable I/O register access */ 3442 s2io_set_swapper(sp); 3443 3444 /* restore mac_addr entries */ 3445 do_s2io_restore_unicast_mc(sp); 3446 3447 /* Restore the MSIX table entries from local variables */ 3448 restore_xmsi_data(sp); 3449 3450 /* Clear certain PCI/PCI-X fields after reset */ 3451 if (sp->device_type == XFRAME_II_DEVICE) { 3452 /* Clear "detected parity error" bit */ 3453 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000); 3454 3455 /* Clearing PCIX Ecc status register */ 3456 pci_write_config_dword(sp->pdev, 0x68, 0x7C); 3457 3458 /* Clearing PCI_STATUS error reflected here */ 3459 writeq(s2BIT(62), &bar0->txpic_int_reg); 3460 } 3461 3462 /* Reset device statistics maintained by OS */ 3463 memset(&sp->stats, 0, sizeof(struct net_device_stats)); 3464 3465 stats = sp->mac_control.stats_info; 3466 swstats = &stats->sw_stat; 3467 3468 /* save link up/down time/cnt, reset/memory/watchdog cnt */ 3469 up_cnt = swstats->link_up_cnt; 3470 down_cnt = swstats->link_down_cnt; 3471 up_time = swstats->link_up_time; 3472 down_time = swstats->link_down_time; 3473 reset_cnt = swstats->soft_reset_cnt; 3474 mem_alloc_cnt = swstats->mem_allocated; 3475 mem_free_cnt = swstats->mem_freed; 3476 watchdog_cnt = swstats->watchdog_timer_cnt; 3477 3478 memset(stats, 0, sizeof(struct stat_block)); 3479 3480 /* restore link up/down time/cnt, reset/memory/watchdog cnt */ 3481 swstats->link_up_cnt = up_cnt; 3482 swstats->link_down_cnt = down_cnt; 3483 swstats->link_up_time = up_time; 3484 swstats->link_down_time = down_time; 3485 swstats->soft_reset_cnt = reset_cnt; 3486 swstats->mem_allocated = mem_alloc_cnt; 3487 swstats->mem_freed = mem_free_cnt; 3488 swstats->watchdog_timer_cnt = watchdog_cnt; 3489 3490 /* SXE-002: Configure link and activity LED to turn it off */ 3491 subid = sp->pdev->subsystem_device; 3492 if (((subid & 0xFF) >= 0x07) && 3493 (sp->device_type == XFRAME_I_DEVICE)) { 3494 val64 = readq(&bar0->gpio_control); 3495 val64 |= 0x0000800000000000ULL; 3496 writeq(val64, &bar0->gpio_control); 3497 val64 = 0x0411040400000000ULL; 3498 writeq(val64, (void __iomem *)bar0 + 0x2700); 3499 } 3500 3501 /* 3502 * Clear spurious ECC interrupts that would have occurred on 3503 * XFRAME II cards after reset. 3504 */ 3505 if (sp->device_type == XFRAME_II_DEVICE) { 3506 val64 = readq(&bar0->pcc_err_reg); 3507 writeq(val64, &bar0->pcc_err_reg); 3508 } 3509 3510 sp->device_enabled_once = false; 3511 } 3512 3513 /** 3514 * s2io_set_swapper - to set the swapper controle on the card 3515 * @sp : private member of the device structure, 3516 * pointer to the s2io_nic structure. 3517 * Description: Function to set the swapper control on the card 3518 * correctly depending on the 'endianness' of the system. 3519 * Return value: 3520 * SUCCESS on success and FAILURE on failure. 3521 */ 3522 3523 static int s2io_set_swapper(struct s2io_nic *sp) 3524 { 3525 struct net_device *dev = sp->dev; 3526 struct XENA_dev_config __iomem *bar0 = sp->bar0; 3527 u64 val64, valt, valr; 3528 3529 /* 3530 * Set proper endian settings and verify the same by reading 3531 * the PIF Feed-back register. 3532 */ 3533 3534 val64 = readq(&bar0->pif_rd_swapper_fb); 3535 if (val64 != 0x0123456789ABCDEFULL) { 3536 int i = 0; 3537 static const u64 value[] = { 3538 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */ 3539 0x8100008181000081ULL, /* FE=1, SE=0 */ 3540 0x4200004242000042ULL, /* FE=0, SE=1 */ 3541 0 /* FE=0, SE=0 */ 3542 }; 3543 3544 while (i < 4) { 3545 writeq(value[i], &bar0->swapper_ctrl); 3546 val64 = readq(&bar0->pif_rd_swapper_fb); 3547 if (val64 == 0x0123456789ABCDEFULL) 3548 break; 3549 i++; 3550 } 3551 if (i == 4) { 3552 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, " 3553 "feedback read %llx\n", 3554 dev->name, (unsigned long long)val64); 3555 return FAILURE; 3556 } 3557 valr = value[i]; 3558 } else { 3559 valr = readq(&bar0->swapper_ctrl); 3560 } 3561 3562 valt = 0x0123456789ABCDEFULL; 3563 writeq(valt, &bar0->xmsi_address); 3564 val64 = readq(&bar0->xmsi_address); 3565 3566 if (val64 != valt) { 3567 int i = 0; 3568 static const u64 value[] = { 3569 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */ 3570 0x0081810000818100ULL, /* FE=1, SE=0 */ 3571 0x0042420000424200ULL, /* FE=0, SE=1 */ 3572 0 /* FE=0, SE=0 */ 3573 }; 3574 3575 while (i < 4) { 3576 writeq((value[i] | valr), &bar0->swapper_ctrl); 3577 writeq(valt, &bar0->xmsi_address); 3578 val64 = readq(&bar0->xmsi_address); 3579 if (val64 == valt) 3580 break; 3581 i++; 3582 } 3583 if (i == 4) { 3584 unsigned long long x = val64; 3585 DBG_PRINT(ERR_DBG, 3586 "Write failed, Xmsi_addr reads:0x%llx\n", x); 3587 return FAILURE; 3588 } 3589 } 3590 val64 = readq(&bar0->swapper_ctrl); 3591 val64 &= 0xFFFF000000000000ULL; 3592 3593 #ifdef __BIG_ENDIAN 3594 /* 3595 * The device by default set to a big endian format, so a 3596 * big endian driver need not set anything. 3597 */ 3598 val64 |= (SWAPPER_CTRL_TXP_FE | 3599 SWAPPER_CTRL_TXP_SE | 3600 SWAPPER_CTRL_TXD_R_FE | 3601 SWAPPER_CTRL_TXD_W_FE | 3602 SWAPPER_CTRL_TXF_R_FE | 3603 SWAPPER_CTRL_RXD_R_FE | 3604 SWAPPER_CTRL_RXD_W_FE | 3605 SWAPPER_CTRL_RXF_W_FE | 3606 SWAPPER_CTRL_XMSI_FE | 3607 SWAPPER_CTRL_STATS_FE | 3608 SWAPPER_CTRL_STATS_SE); 3609 if (sp->config.intr_type == INTA) 3610 val64 |= SWAPPER_CTRL_XMSI_SE; 3611 writeq(val64, &bar0->swapper_ctrl); 3612 #else 3613 /* 3614 * Initially we enable all bits to make it accessible by the 3615 * driver, then we selectively enable only those bits that 3616 * we want to set. 3617 */ 3618 val64 |= (SWAPPER_CTRL_TXP_FE | 3619 SWAPPER_CTRL_TXP_SE | 3620 SWAPPER_CTRL_TXD_R_FE | 3621 SWAPPER_CTRL_TXD_R_SE | 3622 SWAPPER_CTRL_TXD_W_FE | 3623 SWAPPER_CTRL_TXD_W_SE | 3624 SWAPPER_CTRL_TXF_R_FE | 3625 SWAPPER_CTRL_RXD_R_FE | 3626 SWAPPER_CTRL_RXD_R_SE | 3627 SWAPPER_CTRL_RXD_W_FE | 3628 SWAPPER_CTRL_RXD_W_SE | 3629 SWAPPER_CTRL_RXF_W_FE | 3630 SWAPPER_CTRL_XMSI_FE | 3631 SWAPPER_CTRL_STATS_FE | 3632 SWAPPER_CTRL_STATS_SE); 3633 if (sp->config.intr_type == INTA) 3634 val64 |= SWAPPER_CTRL_XMSI_SE; 3635 writeq(val64, &bar0->swapper_ctrl); 3636 #endif 3637 val64 = readq(&bar0->swapper_ctrl); 3638 3639 /* 3640 * Verifying if endian settings are accurate by reading a 3641 * feedback register. 3642 */ 3643 val64 = readq(&bar0->pif_rd_swapper_fb); 3644 if (val64 != 0x0123456789ABCDEFULL) { 3645 /* Endian settings are incorrect, calls for another dekko. */ 3646 DBG_PRINT(ERR_DBG, 3647 "%s: Endian settings are wrong, feedback read %llx\n", 3648 dev->name, (unsigned long long)val64); 3649 return FAILURE; 3650 } 3651 3652 return SUCCESS; 3653 } 3654 3655 static int wait_for_msix_trans(struct s2io_nic *nic, int i) 3656 { 3657 struct XENA_dev_config __iomem *bar0 = nic->bar0; 3658 u64 val64; 3659 int ret = 0, cnt = 0; 3660 3661 do { 3662 val64 = readq(&bar0->xmsi_access); 3663 if (!(val64 & s2BIT(15))) 3664 break; 3665 mdelay(1); 3666 cnt++; 3667 } while (cnt < 5); 3668 if (cnt == 5) { 3669 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i); 3670 ret = 1; 3671 } 3672 3673 return ret; 3674 } 3675 3676 static void restore_xmsi_data(struct s2io_nic *nic) 3677 { 3678 struct XENA_dev_config __iomem *bar0 = nic->bar0; 3679 u64 val64; 3680 int i, msix_index; 3681 3682 if (nic->device_type == XFRAME_I_DEVICE) 3683 return; 3684 3685 for (i = 0; i < MAX_REQUESTED_MSI_X; i++) { 3686 msix_index = (i) ? ((i-1) * 8 + 1) : 0; 3687 writeq(nic->msix_info[i].addr, &bar0->xmsi_address); 3688 writeq(nic->msix_info[i].data, &bar0->xmsi_data); 3689 val64 = (s2BIT(7) | s2BIT(15) | vBIT(msix_index, 26, 6)); 3690 writeq(val64, &bar0->xmsi_access); 3691 if (wait_for_msix_trans(nic, msix_index)) 3692 DBG_PRINT(ERR_DBG, "%s: index: %d failed\n", 3693 __func__, msix_index); 3694 } 3695 } 3696 3697 static void store_xmsi_data(struct s2io_nic *nic) 3698 { 3699 struct XENA_dev_config __iomem *bar0 = nic->bar0; 3700 u64 val64, addr, data; 3701 int i, msix_index; 3702 3703 if (nic->device_type == XFRAME_I_DEVICE) 3704 return; 3705 3706 /* Store and display */ 3707 for (i = 0; i < MAX_REQUESTED_MSI_X; i++) { 3708 msix_index = (i) ? ((i-1) * 8 + 1) : 0; 3709 val64 = (s2BIT(15) | vBIT(msix_index, 26, 6)); 3710 writeq(val64, &bar0->xmsi_access); 3711 if (wait_for_msix_trans(nic, msix_index)) { 3712 DBG_PRINT(ERR_DBG, "%s: index: %d failed\n", 3713 __func__, msix_index); 3714 continue; 3715 } 3716 addr = readq(&bar0->xmsi_address); 3717 data = readq(&bar0->xmsi_data); 3718 if (addr && data) { 3719 nic->msix_info[i].addr = addr; 3720 nic->msix_info[i].data = data; 3721 } 3722 } 3723 } 3724 3725 static int s2io_enable_msi_x(struct s2io_nic *nic) 3726 { 3727 struct XENA_dev_config __iomem *bar0 = nic->bar0; 3728 u64 rx_mat; 3729 u16 msi_control; /* Temp variable */ 3730 int ret, i, j, msix_indx = 1; 3731 int size; 3732 struct stat_block *stats = nic->mac_control.stats_info; 3733 struct swStat *swstats = &stats->sw_stat; 3734 3735 size = nic->num_entries * sizeof(struct msix_entry); 3736 nic->entries = kzalloc(size, GFP_KERNEL); 3737 if (!nic->entries) { 3738 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", 3739 __func__); 3740 swstats->mem_alloc_fail_cnt++; 3741 return -ENOMEM; 3742 } 3743 swstats->mem_allocated += size; 3744 3745 size = nic->num_entries * sizeof(struct s2io_msix_entry); 3746 nic->s2io_entries = kzalloc(size, GFP_KERNEL); 3747 if (!nic->s2io_entries) { 3748 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", 3749 __func__); 3750 swstats->mem_alloc_fail_cnt++; 3751 kfree(nic->entries); 3752 swstats->mem_freed 3753 += (nic->num_entries * sizeof(struct msix_entry)); 3754 return -ENOMEM; 3755 } 3756 swstats->mem_allocated += size; 3757 3758 nic->entries[0].entry = 0; 3759 nic->s2io_entries[0].entry = 0; 3760 nic->s2io_entries[0].in_use = MSIX_FLG; 3761 nic->s2io_entries[0].type = MSIX_ALARM_TYPE; 3762 nic->s2io_entries[0].arg = &nic->mac_control.fifos; 3763 3764 for (i = 1; i < nic->num_entries; i++) { 3765 nic->entries[i].entry = ((i - 1) * 8) + 1; 3766 nic->s2io_entries[i].entry = ((i - 1) * 8) + 1; 3767 nic->s2io_entries[i].arg = NULL; 3768 nic->s2io_entries[i].in_use = 0; 3769 } 3770 3771 rx_mat = readq(&bar0->rx_mat); 3772 for (j = 0; j < nic->config.rx_ring_num; j++) { 3773 rx_mat |= RX_MAT_SET(j, msix_indx); 3774 nic->s2io_entries[j+1].arg = &nic->mac_control.rings[j]; 3775 nic->s2io_entries[j+1].type = MSIX_RING_TYPE; 3776 nic->s2io_entries[j+1].in_use = MSIX_FLG; 3777 msix_indx += 8; 3778 } 3779 writeq(rx_mat, &bar0->rx_mat); 3780 readq(&bar0->rx_mat); 3781 3782 ret = pci_enable_msix_range(nic->pdev, nic->entries, 3783 nic->num_entries, nic->num_entries); 3784 /* We fail init if error or we get less vectors than min required */ 3785 if (ret < 0) { 3786 DBG_PRINT(ERR_DBG, "Enabling MSI-X failed\n"); 3787 kfree(nic->entries); 3788 swstats->mem_freed += nic->num_entries * 3789 sizeof(struct msix_entry); 3790 kfree(nic->s2io_entries); 3791 swstats->mem_freed += nic->num_entries * 3792 sizeof(struct s2io_msix_entry); 3793 nic->entries = NULL; 3794 nic->s2io_entries = NULL; 3795 return -ENOMEM; 3796 } 3797 3798 /* 3799 * To enable MSI-X, MSI also needs to be enabled, due to a bug 3800 * in the herc NIC. (Temp change, needs to be removed later) 3801 */ 3802 pci_read_config_word(nic->pdev, 0x42, &msi_control); 3803 msi_control |= 0x1; /* Enable MSI */ 3804 pci_write_config_word(nic->pdev, 0x42, msi_control); 3805 3806 return 0; 3807 } 3808 3809 /* Handle software interrupt used during MSI(X) test */ 3810 static irqreturn_t s2io_test_intr(int irq, void *dev_id) 3811 { 3812 struct s2io_nic *sp = dev_id; 3813 3814 sp->msi_detected = 1; 3815 wake_up(&sp->msi_wait); 3816 3817 return IRQ_HANDLED; 3818 } 3819 3820 /* Test interrupt path by forcing a software IRQ */ 3821 static int s2io_test_msi(struct s2io_nic *sp) 3822 { 3823 struct pci_dev *pdev = sp->pdev; 3824 struct XENA_dev_config __iomem *bar0 = sp->bar0; 3825 int err; 3826 u64 val64, saved64; 3827 3828 err = request_irq(sp->entries[1].vector, s2io_test_intr, 0, 3829 sp->name, sp); 3830 if (err) { 3831 DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n", 3832 sp->dev->name, pci_name(pdev), pdev->irq); 3833 return err; 3834 } 3835 3836 init_waitqueue_head(&sp->msi_wait); 3837 sp->msi_detected = 0; 3838 3839 saved64 = val64 = readq(&bar0->scheduled_int_ctrl); 3840 val64 |= SCHED_INT_CTRL_ONE_SHOT; 3841 val64 |= SCHED_INT_CTRL_TIMER_EN; 3842 val64 |= SCHED_INT_CTRL_INT2MSI(1); 3843 writeq(val64, &bar0->scheduled_int_ctrl); 3844 3845 wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10); 3846 3847 if (!sp->msi_detected) { 3848 /* MSI(X) test failed, go back to INTx mode */ 3849 DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated " 3850 "using MSI(X) during test\n", 3851 sp->dev->name, pci_name(pdev)); 3852 3853 err = -EOPNOTSUPP; 3854 } 3855 3856 free_irq(sp->entries[1].vector, sp); 3857 3858 writeq(saved64, &bar0->scheduled_int_ctrl); 3859 3860 return err; 3861 } 3862 3863 static void remove_msix_isr(struct s2io_nic *sp) 3864 { 3865 int i; 3866 u16 msi_control; 3867 3868 for (i = 0; i < sp->num_entries; i++) { 3869 if (sp->s2io_entries[i].in_use == MSIX_REGISTERED_SUCCESS) { 3870 int vector = sp->entries[i].vector; 3871 void *arg = sp->s2io_entries[i].arg; 3872 free_irq(vector, arg); 3873 } 3874 } 3875 3876 kfree(sp->entries); 3877 kfree(sp->s2io_entries); 3878 sp->entries = NULL; 3879 sp->s2io_entries = NULL; 3880 3881 pci_read_config_word(sp->pdev, 0x42, &msi_control); 3882 msi_control &= 0xFFFE; /* Disable MSI */ 3883 pci_write_config_word(sp->pdev, 0x42, msi_control); 3884 3885 pci_disable_msix(sp->pdev); 3886 } 3887 3888 static void remove_inta_isr(struct s2io_nic *sp) 3889 { 3890 free_irq(sp->pdev->irq, sp->dev); 3891 } 3892 3893 /* ********************************************************* * 3894 * Functions defined below concern the OS part of the driver * 3895 * ********************************************************* */ 3896 3897 /** 3898 * s2io_open - open entry point of the driver 3899 * @dev : pointer to the device structure. 3900 * Description: 3901 * This function is the open entry point of the driver. It mainly calls a 3902 * function to allocate Rx buffers and inserts them into the buffer 3903 * descriptors and then enables the Rx part of the NIC. 3904 * Return value: 3905 * 0 on success and an appropriate (-)ve integer as defined in errno.h 3906 * file on failure. 3907 */ 3908 3909 static int s2io_open(struct net_device *dev) 3910 { 3911 struct s2io_nic *sp = netdev_priv(dev); 3912 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat; 3913 int err = 0; 3914 3915 /* 3916 * Make sure you have link off by default every time 3917 * Nic is initialized 3918 */ 3919 netif_carrier_off(dev); 3920 sp->last_link_state = 0; 3921 3922 /* Initialize H/W and enable interrupts */ 3923 err = s2io_card_up(sp); 3924 if (err) { 3925 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n", 3926 dev->name); 3927 goto hw_init_failed; 3928 } 3929 3930 if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) { 3931 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n"); 3932 s2io_card_down(sp); 3933 err = -ENODEV; 3934 goto hw_init_failed; 3935 } 3936 s2io_start_all_tx_queue(sp); 3937 return 0; 3938 3939 hw_init_failed: 3940 if (sp->config.intr_type == MSI_X) { 3941 if (sp->entries) { 3942 kfree(sp->entries); 3943 swstats->mem_freed += sp->num_entries * 3944 sizeof(struct msix_entry); 3945 } 3946 if (sp->s2io_entries) { 3947 kfree(sp->s2io_entries); 3948 swstats->mem_freed += sp->num_entries * 3949 sizeof(struct s2io_msix_entry); 3950 } 3951 } 3952 return err; 3953 } 3954 3955 /** 3956 * s2io_close -close entry point of the driver 3957 * @dev : device pointer. 3958 * Description: 3959 * This is the stop entry point of the driver. It needs to undo exactly 3960 * whatever was done by the open entry point,thus it's usually referred to 3961 * as the close function.Among other things this function mainly stops the 3962 * Rx side of the NIC and frees all the Rx buffers in the Rx rings. 3963 * Return value: 3964 * 0 on success and an appropriate (-)ve integer as defined in errno.h 3965 * file on failure. 3966 */ 3967 3968 static int s2io_close(struct net_device *dev) 3969 { 3970 struct s2io_nic *sp = netdev_priv(dev); 3971 struct config_param *config = &sp->config; 3972 u64 tmp64; 3973 int offset; 3974 3975 /* Return if the device is already closed * 3976 * Can happen when s2io_card_up failed in change_mtu * 3977 */ 3978 if (!is_s2io_card_up(sp)) 3979 return 0; 3980 3981 s2io_stop_all_tx_queue(sp); 3982 /* delete all populated mac entries */ 3983 for (offset = 1; offset < config->max_mc_addr; offset++) { 3984 tmp64 = do_s2io_read_unicast_mc(sp, offset); 3985 if (tmp64 != S2IO_DISABLE_MAC_ENTRY) 3986 do_s2io_delete_unicast_mc(sp, tmp64); 3987 } 3988 3989 s2io_card_down(sp); 3990 3991 return 0; 3992 } 3993 3994 /** 3995 * s2io_xmit - Tx entry point of te driver 3996 * @skb : the socket buffer containing the Tx data. 3997 * @dev : device pointer. 3998 * Description : 3999 * This function is the Tx entry point of the driver. S2IO NIC supports 4000 * certain protocol assist features on Tx side, namely CSO, S/G, LSO. 4001 * NOTE: when device can't queue the pkt,just the trans_start variable will 4002 * not be upadted. 4003 * Return value: 4004 * 0 on success & 1 on failure. 4005 */ 4006 4007 static netdev_tx_t s2io_xmit(struct sk_buff *skb, struct net_device *dev) 4008 { 4009 struct s2io_nic *sp = netdev_priv(dev); 4010 u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off; 4011 register u64 val64; 4012 struct TxD *txdp; 4013 struct TxFIFO_element __iomem *tx_fifo; 4014 unsigned long flags = 0; 4015 u16 vlan_tag = 0; 4016 struct fifo_info *fifo = NULL; 4017 int offload_type; 4018 int enable_per_list_interrupt = 0; 4019 struct config_param *config = &sp->config; 4020 struct mac_info *mac_control = &sp->mac_control; 4021 struct stat_block *stats = mac_control->stats_info; 4022 struct swStat *swstats = &stats->sw_stat; 4023 4024 DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name); 4025 4026 if (unlikely(skb->len <= 0)) { 4027 DBG_PRINT(TX_DBG, "%s: Buffer has no data..\n", dev->name); 4028 dev_kfree_skb_any(skb); 4029 return NETDEV_TX_OK; 4030 } 4031 4032 if (!is_s2io_card_up(sp)) { 4033 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n", 4034 dev->name); 4035 dev_kfree_skb_any(skb); 4036 return NETDEV_TX_OK; 4037 } 4038 4039 queue = 0; 4040 if (skb_vlan_tag_present(skb)) 4041 vlan_tag = skb_vlan_tag_get(skb); 4042 if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) { 4043 if (skb->protocol == htons(ETH_P_IP)) { 4044 struct iphdr *ip; 4045 struct tcphdr *th; 4046 ip = ip_hdr(skb); 4047 4048 if (!ip_is_fragment(ip)) { 4049 th = (struct tcphdr *)(((unsigned char *)ip) + 4050 ip->ihl*4); 4051 4052 if (ip->protocol == IPPROTO_TCP) { 4053 queue_len = sp->total_tcp_fifos; 4054 queue = (ntohs(th->source) + 4055 ntohs(th->dest)) & 4056 sp->fifo_selector[queue_len - 1]; 4057 if (queue >= queue_len) 4058 queue = queue_len - 1; 4059 } else if (ip->protocol == IPPROTO_UDP) { 4060 queue_len = sp->total_udp_fifos; 4061 queue = (ntohs(th->source) + 4062 ntohs(th->dest)) & 4063 sp->fifo_selector[queue_len - 1]; 4064 if (queue >= queue_len) 4065 queue = queue_len - 1; 4066 queue += sp->udp_fifo_idx; 4067 if (skb->len > 1024) 4068 enable_per_list_interrupt = 1; 4069 } 4070 } 4071 } 4072 } else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING) 4073 /* get fifo number based on skb->priority value */ 4074 queue = config->fifo_mapping 4075 [skb->priority & (MAX_TX_FIFOS - 1)]; 4076 fifo = &mac_control->fifos[queue]; 4077 4078 spin_lock_irqsave(&fifo->tx_lock, flags); 4079 4080 if (sp->config.multiq) { 4081 if (__netif_subqueue_stopped(dev, fifo->fifo_no)) { 4082 spin_unlock_irqrestore(&fifo->tx_lock, flags); 4083 return NETDEV_TX_BUSY; 4084 } 4085 } else if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) { 4086 if (netif_queue_stopped(dev)) { 4087 spin_unlock_irqrestore(&fifo->tx_lock, flags); 4088 return NETDEV_TX_BUSY; 4089 } 4090 } 4091 4092 put_off = (u16)fifo->tx_curr_put_info.offset; 4093 get_off = (u16)fifo->tx_curr_get_info.offset; 4094 txdp = fifo->list_info[put_off].list_virt_addr; 4095 4096 queue_len = fifo->tx_curr_put_info.fifo_len + 1; 4097 /* Avoid "put" pointer going beyond "get" pointer */ 4098 if (txdp->Host_Control || 4099 ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) { 4100 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n"); 4101 s2io_stop_tx_queue(sp, fifo->fifo_no); 4102 dev_kfree_skb_any(skb); 4103 spin_unlock_irqrestore(&fifo->tx_lock, flags); 4104 return NETDEV_TX_OK; 4105 } 4106 4107 offload_type = s2io_offload_type(skb); 4108 if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) { 4109 txdp->Control_1 |= TXD_TCP_LSO_EN; 4110 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb)); 4111 } 4112 if (skb->ip_summed == CHECKSUM_PARTIAL) { 4113 txdp->Control_2 |= (TXD_TX_CKO_IPV4_EN | 4114 TXD_TX_CKO_TCP_EN | 4115 TXD_TX_CKO_UDP_EN); 4116 } 4117 txdp->Control_1 |= TXD_GATHER_CODE_FIRST; 4118 txdp->Control_1 |= TXD_LIST_OWN_XENA; 4119 txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no); 4120 if (enable_per_list_interrupt) 4121 if (put_off & (queue_len >> 5)) 4122 txdp->Control_2 |= TXD_INT_TYPE_PER_LIST; 4123 if (vlan_tag) { 4124 txdp->Control_2 |= TXD_VLAN_ENABLE; 4125 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag); 4126 } 4127 4128 frg_len = skb_headlen(skb); 4129 txdp->Buffer_Pointer = dma_map_single(&sp->pdev->dev, skb->data, 4130 frg_len, DMA_TO_DEVICE); 4131 if (dma_mapping_error(&sp->pdev->dev, txdp->Buffer_Pointer)) 4132 goto pci_map_failed; 4133 4134 txdp->Host_Control = (unsigned long)skb; 4135 txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len); 4136 4137 frg_cnt = skb_shinfo(skb)->nr_frags; 4138 /* For fragmented SKB. */ 4139 for (i = 0; i < frg_cnt; i++) { 4140 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4141 /* A '0' length fragment will be ignored */ 4142 if (!skb_frag_size(frag)) 4143 continue; 4144 txdp++; 4145 txdp->Buffer_Pointer = (u64)skb_frag_dma_map(&sp->pdev->dev, 4146 frag, 0, 4147 skb_frag_size(frag), 4148 DMA_TO_DEVICE); 4149 txdp->Control_1 = TXD_BUFFER0_SIZE(skb_frag_size(frag)); 4150 } 4151 txdp->Control_1 |= TXD_GATHER_CODE_LAST; 4152 4153 tx_fifo = mac_control->tx_FIFO_start[queue]; 4154 val64 = fifo->list_info[put_off].list_phy_addr; 4155 writeq(val64, &tx_fifo->TxDL_Pointer); 4156 4157 val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST | 4158 TX_FIFO_LAST_LIST); 4159 if (offload_type) 4160 val64 |= TX_FIFO_SPECIAL_FUNC; 4161 4162 writeq(val64, &tx_fifo->List_Control); 4163 4164 put_off++; 4165 if (put_off == fifo->tx_curr_put_info.fifo_len + 1) 4166 put_off = 0; 4167 fifo->tx_curr_put_info.offset = put_off; 4168 4169 /* Avoid "put" pointer going beyond "get" pointer */ 4170 if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) { 4171 swstats->fifo_full_cnt++; 4172 DBG_PRINT(TX_DBG, 4173 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n", 4174 put_off, get_off); 4175 s2io_stop_tx_queue(sp, fifo->fifo_no); 4176 } 4177 swstats->mem_allocated += skb->truesize; 4178 spin_unlock_irqrestore(&fifo->tx_lock, flags); 4179 4180 if (sp->config.intr_type == MSI_X) 4181 tx_intr_handler(fifo); 4182 4183 return NETDEV_TX_OK; 4184 4185 pci_map_failed: 4186 swstats->pci_map_fail_cnt++; 4187 s2io_stop_tx_queue(sp, fifo->fifo_no); 4188 swstats->mem_freed += skb->truesize; 4189 dev_kfree_skb_any(skb); 4190 spin_unlock_irqrestore(&fifo->tx_lock, flags); 4191 return NETDEV_TX_OK; 4192 } 4193 4194 static void 4195 s2io_alarm_handle(struct timer_list *t) 4196 { 4197 struct s2io_nic *sp = from_timer(sp, t, alarm_timer); 4198 struct net_device *dev = sp->dev; 4199 4200 s2io_handle_errors(dev); 4201 mod_timer(&sp->alarm_timer, jiffies + HZ / 2); 4202 } 4203 4204 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id) 4205 { 4206 struct ring_info *ring = (struct ring_info *)dev_id; 4207 struct s2io_nic *sp = ring->nic; 4208 struct XENA_dev_config __iomem *bar0 = sp->bar0; 4209 4210 if (unlikely(!is_s2io_card_up(sp))) 4211 return IRQ_HANDLED; 4212 4213 if (sp->config.napi) { 4214 u8 __iomem *addr = NULL; 4215 u8 val8 = 0; 4216 4217 addr = (u8 __iomem *)&bar0->xmsi_mask_reg; 4218 addr += (7 - ring->ring_no); 4219 val8 = (ring->ring_no == 0) ? 0x7f : 0xff; 4220 writeb(val8, addr); 4221 val8 = readb(addr); 4222 napi_schedule(&ring->napi); 4223 } else { 4224 rx_intr_handler(ring, 0); 4225 s2io_chk_rx_buffers(sp, ring); 4226 } 4227 4228 return IRQ_HANDLED; 4229 } 4230 4231 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id) 4232 { 4233 int i; 4234 struct fifo_info *fifos = (struct fifo_info *)dev_id; 4235 struct s2io_nic *sp = fifos->nic; 4236 struct XENA_dev_config __iomem *bar0 = sp->bar0; 4237 struct config_param *config = &sp->config; 4238 u64 reason; 4239 4240 if (unlikely(!is_s2io_card_up(sp))) 4241 return IRQ_NONE; 4242 4243 reason = readq(&bar0->general_int_status); 4244 if (unlikely(reason == S2IO_MINUS_ONE)) 4245 /* Nothing much can be done. Get out */ 4246 return IRQ_HANDLED; 4247 4248 if (reason & (GEN_INTR_TXPIC | GEN_INTR_TXTRAFFIC)) { 4249 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask); 4250 4251 if (reason & GEN_INTR_TXPIC) 4252 s2io_txpic_intr_handle(sp); 4253 4254 if (reason & GEN_INTR_TXTRAFFIC) 4255 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int); 4256 4257 for (i = 0; i < config->tx_fifo_num; i++) 4258 tx_intr_handler(&fifos[i]); 4259 4260 writeq(sp->general_int_mask, &bar0->general_int_mask); 4261 readl(&bar0->general_int_status); 4262 return IRQ_HANDLED; 4263 } 4264 /* The interrupt was not raised by us */ 4265 return IRQ_NONE; 4266 } 4267 4268 static void s2io_txpic_intr_handle(struct s2io_nic *sp) 4269 { 4270 struct XENA_dev_config __iomem *bar0 = sp->bar0; 4271 u64 val64; 4272 4273 val64 = readq(&bar0->pic_int_status); 4274 if (val64 & PIC_INT_GPIO) { 4275 val64 = readq(&bar0->gpio_int_reg); 4276 if ((val64 & GPIO_INT_REG_LINK_DOWN) && 4277 (val64 & GPIO_INT_REG_LINK_UP)) { 4278 /* 4279 * This is unstable state so clear both up/down 4280 * interrupt and adapter to re-evaluate the link state. 4281 */ 4282 val64 |= GPIO_INT_REG_LINK_DOWN; 4283 val64 |= GPIO_INT_REG_LINK_UP; 4284 writeq(val64, &bar0->gpio_int_reg); 4285 val64 = readq(&bar0->gpio_int_mask); 4286 val64 &= ~(GPIO_INT_MASK_LINK_UP | 4287 GPIO_INT_MASK_LINK_DOWN); 4288 writeq(val64, &bar0->gpio_int_mask); 4289 } else if (val64 & GPIO_INT_REG_LINK_UP) { 4290 val64 = readq(&bar0->adapter_status); 4291 /* Enable Adapter */ 4292 val64 = readq(&bar0->adapter_control); 4293 val64 |= ADAPTER_CNTL_EN; 4294 writeq(val64, &bar0->adapter_control); 4295 val64 |= ADAPTER_LED_ON; 4296 writeq(val64, &bar0->adapter_control); 4297 if (!sp->device_enabled_once) 4298 sp->device_enabled_once = 1; 4299 4300 s2io_link(sp, LINK_UP); 4301 /* 4302 * unmask link down interrupt and mask link-up 4303 * intr 4304 */ 4305 val64 = readq(&bar0->gpio_int_mask); 4306 val64 &= ~GPIO_INT_MASK_LINK_DOWN; 4307 val64 |= GPIO_INT_MASK_LINK_UP; 4308 writeq(val64, &bar0->gpio_int_mask); 4309 4310 } else if (val64 & GPIO_INT_REG_LINK_DOWN) { 4311 val64 = readq(&bar0->adapter_status); 4312 s2io_link(sp, LINK_DOWN); 4313 /* Link is down so unmaks link up interrupt */ 4314 val64 = readq(&bar0->gpio_int_mask); 4315 val64 &= ~GPIO_INT_MASK_LINK_UP; 4316 val64 |= GPIO_INT_MASK_LINK_DOWN; 4317 writeq(val64, &bar0->gpio_int_mask); 4318 4319 /* turn off LED */ 4320 val64 = readq(&bar0->adapter_control); 4321 val64 = val64 & (~ADAPTER_LED_ON); 4322 writeq(val64, &bar0->adapter_control); 4323 } 4324 } 4325 val64 = readq(&bar0->gpio_int_mask); 4326 } 4327 4328 /** 4329 * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter 4330 * @value: alarm bits 4331 * @addr: address value 4332 * @cnt: counter variable 4333 * Description: Check for alarm and increment the counter 4334 * Return Value: 4335 * 1 - if alarm bit set 4336 * 0 - if alarm bit is not set 4337 */ 4338 static int do_s2io_chk_alarm_bit(u64 value, void __iomem *addr, 4339 unsigned long long *cnt) 4340 { 4341 u64 val64; 4342 val64 = readq(addr); 4343 if (val64 & value) { 4344 writeq(val64, addr); 4345 (*cnt)++; 4346 return 1; 4347 } 4348 return 0; 4349 4350 } 4351 4352 /** 4353 * s2io_handle_errors - Xframe error indication handler 4354 * @dev_id: opaque handle to dev 4355 * Description: Handle alarms such as loss of link, single or 4356 * double ECC errors, critical and serious errors. 4357 * Return Value: 4358 * NONE 4359 */ 4360 static void s2io_handle_errors(void *dev_id) 4361 { 4362 struct net_device *dev = (struct net_device *)dev_id; 4363 struct s2io_nic *sp = netdev_priv(dev); 4364 struct XENA_dev_config __iomem *bar0 = sp->bar0; 4365 u64 temp64 = 0, val64 = 0; 4366 int i = 0; 4367 4368 struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat; 4369 struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat; 4370 4371 if (!is_s2io_card_up(sp)) 4372 return; 4373 4374 if (pci_channel_offline(sp->pdev)) 4375 return; 4376 4377 memset(&sw_stat->ring_full_cnt, 0, 4378 sizeof(sw_stat->ring_full_cnt)); 4379 4380 /* Handling the XPAK counters update */ 4381 if (stats->xpak_timer_count < 72000) { 4382 /* waiting for an hour */ 4383 stats->xpak_timer_count++; 4384 } else { 4385 s2io_updt_xpak_counter(dev); 4386 /* reset the count to zero */ 4387 stats->xpak_timer_count = 0; 4388 } 4389 4390 /* Handling link status change error Intr */ 4391 if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) { 4392 val64 = readq(&bar0->mac_rmac_err_reg); 4393 writeq(val64, &bar0->mac_rmac_err_reg); 4394 if (val64 & RMAC_LINK_STATE_CHANGE_INT) 4395 schedule_work(&sp->set_link_task); 4396 } 4397 4398 /* In case of a serious error, the device will be Reset. */ 4399 if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source, 4400 &sw_stat->serious_err_cnt)) 4401 goto reset; 4402 4403 /* Check for data parity error */ 4404 if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg, 4405 &sw_stat->parity_err_cnt)) 4406 goto reset; 4407 4408 /* Check for ring full counter */ 4409 if (sp->device_type == XFRAME_II_DEVICE) { 4410 val64 = readq(&bar0->ring_bump_counter1); 4411 for (i = 0; i < 4; i++) { 4412 temp64 = (val64 & vBIT(0xFFFF, (i*16), 16)); 4413 temp64 >>= 64 - ((i+1)*16); 4414 sw_stat->ring_full_cnt[i] += temp64; 4415 } 4416 4417 val64 = readq(&bar0->ring_bump_counter2); 4418 for (i = 0; i < 4; i++) { 4419 temp64 = (val64 & vBIT(0xFFFF, (i*16), 16)); 4420 temp64 >>= 64 - ((i+1)*16); 4421 sw_stat->ring_full_cnt[i+4] += temp64; 4422 } 4423 } 4424 4425 val64 = readq(&bar0->txdma_int_status); 4426 /*check for pfc_err*/ 4427 if (val64 & TXDMA_PFC_INT) { 4428 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM | 4429 PFC_MISC_0_ERR | PFC_MISC_1_ERR | 4430 PFC_PCIX_ERR, 4431 &bar0->pfc_err_reg, 4432 &sw_stat->pfc_err_cnt)) 4433 goto reset; 4434 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR, 4435 &bar0->pfc_err_reg, 4436 &sw_stat->pfc_err_cnt); 4437 } 4438 4439 /*check for tda_err*/ 4440 if (val64 & TXDMA_TDA_INT) { 4441 if (do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR | 4442 TDA_SM0_ERR_ALARM | 4443 TDA_SM1_ERR_ALARM, 4444 &bar0->tda_err_reg, 4445 &sw_stat->tda_err_cnt)) 4446 goto reset; 4447 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR, 4448 &bar0->tda_err_reg, 4449 &sw_stat->tda_err_cnt); 4450 } 4451 /*check for pcc_err*/ 4452 if (val64 & TXDMA_PCC_INT) { 4453 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM | 4454 PCC_N_SERR | PCC_6_COF_OV_ERR | 4455 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR | 4456 PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR | 4457 PCC_TXB_ECC_DB_ERR, 4458 &bar0->pcc_err_reg, 4459 &sw_stat->pcc_err_cnt)) 4460 goto reset; 4461 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR, 4462 &bar0->pcc_err_reg, 4463 &sw_stat->pcc_err_cnt); 4464 } 4465 4466 /*check for tti_err*/ 4467 if (val64 & TXDMA_TTI_INT) { 4468 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM, 4469 &bar0->tti_err_reg, 4470 &sw_stat->tti_err_cnt)) 4471 goto reset; 4472 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR, 4473 &bar0->tti_err_reg, 4474 &sw_stat->tti_err_cnt); 4475 } 4476 4477 /*check for lso_err*/ 4478 if (val64 & TXDMA_LSO_INT) { 4479 if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT | 4480 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM, 4481 &bar0->lso_err_reg, 4482 &sw_stat->lso_err_cnt)) 4483 goto reset; 4484 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW, 4485 &bar0->lso_err_reg, 4486 &sw_stat->lso_err_cnt); 4487 } 4488 4489 /*check for tpa_err*/ 4490 if (val64 & TXDMA_TPA_INT) { 4491 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM, 4492 &bar0->tpa_err_reg, 4493 &sw_stat->tpa_err_cnt)) 4494 goto reset; 4495 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP, 4496 &bar0->tpa_err_reg, 4497 &sw_stat->tpa_err_cnt); 4498 } 4499 4500 /*check for sm_err*/ 4501 if (val64 & TXDMA_SM_INT) { 4502 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM, 4503 &bar0->sm_err_reg, 4504 &sw_stat->sm_err_cnt)) 4505 goto reset; 4506 } 4507 4508 val64 = readq(&bar0->mac_int_status); 4509 if (val64 & MAC_INT_STATUS_TMAC_INT) { 4510 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR, 4511 &bar0->mac_tmac_err_reg, 4512 &sw_stat->mac_tmac_err_cnt)) 4513 goto reset; 4514 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR | 4515 TMAC_DESC_ECC_SG_ERR | 4516 TMAC_DESC_ECC_DB_ERR, 4517 &bar0->mac_tmac_err_reg, 4518 &sw_stat->mac_tmac_err_cnt); 4519 } 4520 4521 val64 = readq(&bar0->xgxs_int_status); 4522 if (val64 & XGXS_INT_STATUS_TXGXS) { 4523 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR, 4524 &bar0->xgxs_txgxs_err_reg, 4525 &sw_stat->xgxs_txgxs_err_cnt)) 4526 goto reset; 4527 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR, 4528 &bar0->xgxs_txgxs_err_reg, 4529 &sw_stat->xgxs_txgxs_err_cnt); 4530 } 4531 4532 val64 = readq(&bar0->rxdma_int_status); 4533 if (val64 & RXDMA_INT_RC_INT_M) { 4534 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR | 4535 RC_FTC_ECC_DB_ERR | 4536 RC_PRCn_SM_ERR_ALARM | 4537 RC_FTC_SM_ERR_ALARM, 4538 &bar0->rc_err_reg, 4539 &sw_stat->rc_err_cnt)) 4540 goto reset; 4541 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR | 4542 RC_FTC_ECC_SG_ERR | 4543 RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg, 4544 &sw_stat->rc_err_cnt); 4545 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn | 4546 PRC_PCI_AB_WR_Rn | 4547 PRC_PCI_AB_F_WR_Rn, 4548 &bar0->prc_pcix_err_reg, 4549 &sw_stat->prc_pcix_err_cnt)) 4550 goto reset; 4551 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn | 4552 PRC_PCI_DP_WR_Rn | 4553 PRC_PCI_DP_F_WR_Rn, 4554 &bar0->prc_pcix_err_reg, 4555 &sw_stat->prc_pcix_err_cnt); 4556 } 4557 4558 if (val64 & RXDMA_INT_RPA_INT_M) { 4559 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR, 4560 &bar0->rpa_err_reg, 4561 &sw_stat->rpa_err_cnt)) 4562 goto reset; 4563 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, 4564 &bar0->rpa_err_reg, 4565 &sw_stat->rpa_err_cnt); 4566 } 4567 4568 if (val64 & RXDMA_INT_RDA_INT_M) { 4569 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR | 4570 RDA_FRM_ECC_DB_N_AERR | 4571 RDA_SM1_ERR_ALARM | 4572 RDA_SM0_ERR_ALARM | 4573 RDA_RXD_ECC_DB_SERR, 4574 &bar0->rda_err_reg, 4575 &sw_stat->rda_err_cnt)) 4576 goto reset; 4577 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR | 4578 RDA_FRM_ECC_SG_ERR | 4579 RDA_MISC_ERR | 4580 RDA_PCIX_ERR, 4581 &bar0->rda_err_reg, 4582 &sw_stat->rda_err_cnt); 4583 } 4584 4585 if (val64 & RXDMA_INT_RTI_INT_M) { 4586 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM, 4587 &bar0->rti_err_reg, 4588 &sw_stat->rti_err_cnt)) 4589 goto reset; 4590 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR, 4591 &bar0->rti_err_reg, 4592 &sw_stat->rti_err_cnt); 4593 } 4594 4595 val64 = readq(&bar0->mac_int_status); 4596 if (val64 & MAC_INT_STATUS_RMAC_INT) { 4597 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR, 4598 &bar0->mac_rmac_err_reg, 4599 &sw_stat->mac_rmac_err_cnt)) 4600 goto reset; 4601 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT | 4602 RMAC_SINGLE_ECC_ERR | 4603 RMAC_DOUBLE_ECC_ERR, 4604 &bar0->mac_rmac_err_reg, 4605 &sw_stat->mac_rmac_err_cnt); 4606 } 4607 4608 val64 = readq(&bar0->xgxs_int_status); 4609 if (val64 & XGXS_INT_STATUS_RXGXS) { 4610 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, 4611 &bar0->xgxs_rxgxs_err_reg, 4612 &sw_stat->xgxs_rxgxs_err_cnt)) 4613 goto reset; 4614 } 4615 4616 val64 = readq(&bar0->mc_int_status); 4617 if (val64 & MC_INT_STATUS_MC_INT) { 4618 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR, 4619 &bar0->mc_err_reg, 4620 &sw_stat->mc_err_cnt)) 4621 goto reset; 4622 4623 /* Handling Ecc errors */ 4624 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) { 4625 writeq(val64, &bar0->mc_err_reg); 4626 if (val64 & MC_ERR_REG_ECC_ALL_DBL) { 4627 sw_stat->double_ecc_errs++; 4628 if (sp->device_type != XFRAME_II_DEVICE) { 4629 /* 4630 * Reset XframeI only if critical error 4631 */ 4632 if (val64 & 4633 (MC_ERR_REG_MIRI_ECC_DB_ERR_0 | 4634 MC_ERR_REG_MIRI_ECC_DB_ERR_1)) 4635 goto reset; 4636 } 4637 } else 4638 sw_stat->single_ecc_errs++; 4639 } 4640 } 4641 return; 4642 4643 reset: 4644 s2io_stop_all_tx_queue(sp); 4645 schedule_work(&sp->rst_timer_task); 4646 sw_stat->soft_reset_cnt++; 4647 } 4648 4649 /** 4650 * s2io_isr - ISR handler of the device . 4651 * @irq: the irq of the device. 4652 * @dev_id: a void pointer to the dev structure of the NIC. 4653 * Description: This function is the ISR handler of the device. It 4654 * identifies the reason for the interrupt and calls the relevant 4655 * service routines. As a contongency measure, this ISR allocates the 4656 * recv buffers, if their numbers are below the panic value which is 4657 * presently set to 25% of the original number of rcv buffers allocated. 4658 * Return value: 4659 * IRQ_HANDLED: will be returned if IRQ was handled by this routine 4660 * IRQ_NONE: will be returned if interrupt is not from our device 4661 */ 4662 static irqreturn_t s2io_isr(int irq, void *dev_id) 4663 { 4664 struct net_device *dev = (struct net_device *)dev_id; 4665 struct s2io_nic *sp = netdev_priv(dev); 4666 struct XENA_dev_config __iomem *bar0 = sp->bar0; 4667 int i; 4668 u64 reason = 0; 4669 struct mac_info *mac_control; 4670 struct config_param *config; 4671 4672 /* Pretend we handled any irq's from a disconnected card */ 4673 if (pci_channel_offline(sp->pdev)) 4674 return IRQ_NONE; 4675 4676 if (!is_s2io_card_up(sp)) 4677 return IRQ_NONE; 4678 4679 config = &sp->config; 4680 mac_control = &sp->mac_control; 4681 4682 /* 4683 * Identify the cause for interrupt and call the appropriate 4684 * interrupt handler. Causes for the interrupt could be; 4685 * 1. Rx of packet. 4686 * 2. Tx complete. 4687 * 3. Link down. 4688 */ 4689 reason = readq(&bar0->general_int_status); 4690 4691 if (unlikely(reason == S2IO_MINUS_ONE)) 4692 return IRQ_HANDLED; /* Nothing much can be done. Get out */ 4693 4694 if (reason & 4695 (GEN_INTR_RXTRAFFIC | GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC)) { 4696 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask); 4697 4698 if (config->napi) { 4699 if (reason & GEN_INTR_RXTRAFFIC) { 4700 napi_schedule(&sp->napi); 4701 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask); 4702 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int); 4703 readl(&bar0->rx_traffic_int); 4704 } 4705 } else { 4706 /* 4707 * rx_traffic_int reg is an R1 register, writing all 1's 4708 * will ensure that the actual interrupt causing bit 4709 * get's cleared and hence a read can be avoided. 4710 */ 4711 if (reason & GEN_INTR_RXTRAFFIC) 4712 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int); 4713 4714 for (i = 0; i < config->rx_ring_num; i++) { 4715 struct ring_info *ring = &mac_control->rings[i]; 4716 4717 rx_intr_handler(ring, 0); 4718 } 4719 } 4720 4721 /* 4722 * tx_traffic_int reg is an R1 register, writing all 1's 4723 * will ensure that the actual interrupt causing bit get's 4724 * cleared and hence a read can be avoided. 4725 */ 4726 if (reason & GEN_INTR_TXTRAFFIC) 4727 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int); 4728 4729 for (i = 0; i < config->tx_fifo_num; i++) 4730 tx_intr_handler(&mac_control->fifos[i]); 4731 4732 if (reason & GEN_INTR_TXPIC) 4733 s2io_txpic_intr_handle(sp); 4734 4735 /* 4736 * Reallocate the buffers from the interrupt handler itself. 4737 */ 4738 if (!config->napi) { 4739 for (i = 0; i < config->rx_ring_num; i++) { 4740 struct ring_info *ring = &mac_control->rings[i]; 4741 4742 s2io_chk_rx_buffers(sp, ring); 4743 } 4744 } 4745 writeq(sp->general_int_mask, &bar0->general_int_mask); 4746 readl(&bar0->general_int_status); 4747 4748 return IRQ_HANDLED; 4749 4750 } else if (!reason) { 4751 /* The interrupt was not raised by us */ 4752 return IRQ_NONE; 4753 } 4754 4755 return IRQ_HANDLED; 4756 } 4757 4758 /* 4759 * s2io_updt_stats - 4760 */ 4761 static void s2io_updt_stats(struct s2io_nic *sp) 4762 { 4763 struct XENA_dev_config __iomem *bar0 = sp->bar0; 4764 u64 val64; 4765 int cnt = 0; 4766 4767 if (is_s2io_card_up(sp)) { 4768 /* Apprx 30us on a 133 MHz bus */ 4769 val64 = SET_UPDT_CLICKS(10) | 4770 STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN; 4771 writeq(val64, &bar0->stat_cfg); 4772 do { 4773 udelay(100); 4774 val64 = readq(&bar0->stat_cfg); 4775 if (!(val64 & s2BIT(0))) 4776 break; 4777 cnt++; 4778 if (cnt == 5) 4779 break; /* Updt failed */ 4780 } while (1); 4781 } 4782 } 4783 4784 /** 4785 * s2io_get_stats - Updates the device statistics structure. 4786 * @dev : pointer to the device structure. 4787 * Description: 4788 * This function updates the device statistics structure in the s2io_nic 4789 * structure and returns a pointer to the same. 4790 * Return value: 4791 * pointer to the updated net_device_stats structure. 4792 */ 4793 static struct net_device_stats *s2io_get_stats(struct net_device *dev) 4794 { 4795 struct s2io_nic *sp = netdev_priv(dev); 4796 struct mac_info *mac_control = &sp->mac_control; 4797 struct stat_block *stats = mac_control->stats_info; 4798 u64 delta; 4799 4800 /* Configure Stats for immediate updt */ 4801 s2io_updt_stats(sp); 4802 4803 /* A device reset will cause the on-adapter statistics to be zero'ed. 4804 * This can be done while running by changing the MTU. To prevent the 4805 * system from having the stats zero'ed, the driver keeps a copy of the 4806 * last update to the system (which is also zero'ed on reset). This 4807 * enables the driver to accurately know the delta between the last 4808 * update and the current update. 4809 */ 4810 delta = ((u64) le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 | 4811 le32_to_cpu(stats->rmac_vld_frms)) - sp->stats.rx_packets; 4812 sp->stats.rx_packets += delta; 4813 dev->stats.rx_packets += delta; 4814 4815 delta = ((u64) le32_to_cpu(stats->tmac_frms_oflow) << 32 | 4816 le32_to_cpu(stats->tmac_frms)) - sp->stats.tx_packets; 4817 sp->stats.tx_packets += delta; 4818 dev->stats.tx_packets += delta; 4819 4820 delta = ((u64) le32_to_cpu(stats->rmac_data_octets_oflow) << 32 | 4821 le32_to_cpu(stats->rmac_data_octets)) - sp->stats.rx_bytes; 4822 sp->stats.rx_bytes += delta; 4823 dev->stats.rx_bytes += delta; 4824 4825 delta = ((u64) le32_to_cpu(stats->tmac_data_octets_oflow) << 32 | 4826 le32_to_cpu(stats->tmac_data_octets)) - sp->stats.tx_bytes; 4827 sp->stats.tx_bytes += delta; 4828 dev->stats.tx_bytes += delta; 4829 4830 delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_errors; 4831 sp->stats.rx_errors += delta; 4832 dev->stats.rx_errors += delta; 4833 4834 delta = ((u64) le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 | 4835 le32_to_cpu(stats->tmac_any_err_frms)) - sp->stats.tx_errors; 4836 sp->stats.tx_errors += delta; 4837 dev->stats.tx_errors += delta; 4838 4839 delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_dropped; 4840 sp->stats.rx_dropped += delta; 4841 dev->stats.rx_dropped += delta; 4842 4843 delta = le64_to_cpu(stats->tmac_drop_frms) - sp->stats.tx_dropped; 4844 sp->stats.tx_dropped += delta; 4845 dev->stats.tx_dropped += delta; 4846 4847 /* The adapter MAC interprets pause frames as multicast packets, but 4848 * does not pass them up. This erroneously increases the multicast 4849 * packet count and needs to be deducted when the multicast frame count 4850 * is queried. 4851 */ 4852 delta = (u64) le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 | 4853 le32_to_cpu(stats->rmac_vld_mcst_frms); 4854 delta -= le64_to_cpu(stats->rmac_pause_ctrl_frms); 4855 delta -= sp->stats.multicast; 4856 sp->stats.multicast += delta; 4857 dev->stats.multicast += delta; 4858 4859 delta = ((u64) le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 | 4860 le32_to_cpu(stats->rmac_usized_frms)) + 4861 le64_to_cpu(stats->rmac_long_frms) - sp->stats.rx_length_errors; 4862 sp->stats.rx_length_errors += delta; 4863 dev->stats.rx_length_errors += delta; 4864 4865 delta = le64_to_cpu(stats->rmac_fcs_err_frms) - sp->stats.rx_crc_errors; 4866 sp->stats.rx_crc_errors += delta; 4867 dev->stats.rx_crc_errors += delta; 4868 4869 return &dev->stats; 4870 } 4871 4872 /** 4873 * s2io_set_multicast - entry point for multicast address enable/disable. 4874 * @dev : pointer to the device structure 4875 * @may_sleep: parameter indicates if sleeping when waiting for command 4876 * complete 4877 * Description: 4878 * This function is a driver entry point which gets called by the kernel 4879 * whenever multicast addresses must be enabled/disabled. This also gets 4880 * called to set/reset promiscuous mode. Depending on the deivce flag, we 4881 * determine, if multicast address must be enabled or if promiscuous mode 4882 * is to be disabled etc. 4883 * Return value: 4884 * void. 4885 */ 4886 static void s2io_set_multicast(struct net_device *dev, bool may_sleep) 4887 { 4888 int i, j, prev_cnt; 4889 struct netdev_hw_addr *ha; 4890 struct s2io_nic *sp = netdev_priv(dev); 4891 struct XENA_dev_config __iomem *bar0 = sp->bar0; 4892 u64 val64 = 0, multi_mac = 0x010203040506ULL, mask = 4893 0xfeffffffffffULL; 4894 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0; 4895 void __iomem *add; 4896 struct config_param *config = &sp->config; 4897 4898 if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) { 4899 /* Enable all Multicast addresses */ 4900 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac), 4901 &bar0->rmac_addr_data0_mem); 4902 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask), 4903 &bar0->rmac_addr_data1_mem); 4904 val64 = RMAC_ADDR_CMD_MEM_WE | 4905 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | 4906 RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1); 4907 writeq(val64, &bar0->rmac_addr_cmd_mem); 4908 /* Wait till command completes */ 4909 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem, 4910 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, 4911 S2IO_BIT_RESET, may_sleep); 4912 4913 sp->m_cast_flg = 1; 4914 sp->all_multi_pos = config->max_mc_addr - 1; 4915 } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) { 4916 /* Disable all Multicast addresses */ 4917 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr), 4918 &bar0->rmac_addr_data0_mem); 4919 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0), 4920 &bar0->rmac_addr_data1_mem); 4921 val64 = RMAC_ADDR_CMD_MEM_WE | 4922 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | 4923 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos); 4924 writeq(val64, &bar0->rmac_addr_cmd_mem); 4925 /* Wait till command completes */ 4926 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem, 4927 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, 4928 S2IO_BIT_RESET, may_sleep); 4929 4930 sp->m_cast_flg = 0; 4931 sp->all_multi_pos = 0; 4932 } 4933 4934 if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) { 4935 /* Put the NIC into promiscuous mode */ 4936 add = &bar0->mac_cfg; 4937 val64 = readq(&bar0->mac_cfg); 4938 val64 |= MAC_CFG_RMAC_PROM_ENABLE; 4939 4940 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); 4941 writel((u32)val64, add); 4942 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); 4943 writel((u32) (val64 >> 32), (add + 4)); 4944 4945 if (vlan_tag_strip != 1) { 4946 val64 = readq(&bar0->rx_pa_cfg); 4947 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG; 4948 writeq(val64, &bar0->rx_pa_cfg); 4949 sp->vlan_strip_flag = 0; 4950 } 4951 4952 val64 = readq(&bar0->mac_cfg); 4953 sp->promisc_flg = 1; 4954 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n", 4955 dev->name); 4956 } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) { 4957 /* Remove the NIC from promiscuous mode */ 4958 add = &bar0->mac_cfg; 4959 val64 = readq(&bar0->mac_cfg); 4960 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE; 4961 4962 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); 4963 writel((u32)val64, add); 4964 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); 4965 writel((u32) (val64 >> 32), (add + 4)); 4966 4967 if (vlan_tag_strip != 0) { 4968 val64 = readq(&bar0->rx_pa_cfg); 4969 val64 |= RX_PA_CFG_STRIP_VLAN_TAG; 4970 writeq(val64, &bar0->rx_pa_cfg); 4971 sp->vlan_strip_flag = 1; 4972 } 4973 4974 val64 = readq(&bar0->mac_cfg); 4975 sp->promisc_flg = 0; 4976 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n", dev->name); 4977 } 4978 4979 /* Update individual M_CAST address list */ 4980 if ((!sp->m_cast_flg) && netdev_mc_count(dev)) { 4981 if (netdev_mc_count(dev) > 4982 (config->max_mc_addr - config->max_mac_addr)) { 4983 DBG_PRINT(ERR_DBG, 4984 "%s: No more Rx filters can be added - " 4985 "please enable ALL_MULTI instead\n", 4986 dev->name); 4987 return; 4988 } 4989 4990 prev_cnt = sp->mc_addr_count; 4991 sp->mc_addr_count = netdev_mc_count(dev); 4992 4993 /* Clear out the previous list of Mc in the H/W. */ 4994 for (i = 0; i < prev_cnt; i++) { 4995 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr), 4996 &bar0->rmac_addr_data0_mem); 4997 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL), 4998 &bar0->rmac_addr_data1_mem); 4999 val64 = RMAC_ADDR_CMD_MEM_WE | 5000 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | 5001 RMAC_ADDR_CMD_MEM_OFFSET 5002 (config->mc_start_offset + i); 5003 writeq(val64, &bar0->rmac_addr_cmd_mem); 5004 5005 /* Wait for command completes */ 5006 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem, 5007 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, 5008 S2IO_BIT_RESET, may_sleep)) { 5009 DBG_PRINT(ERR_DBG, 5010 "%s: Adding Multicasts failed\n", 5011 dev->name); 5012 return; 5013 } 5014 } 5015 5016 /* Create the new Rx filter list and update the same in H/W. */ 5017 i = 0; 5018 netdev_for_each_mc_addr(ha, dev) { 5019 mac_addr = 0; 5020 for (j = 0; j < ETH_ALEN; j++) { 5021 mac_addr |= ha->addr[j]; 5022 mac_addr <<= 8; 5023 } 5024 mac_addr >>= 8; 5025 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr), 5026 &bar0->rmac_addr_data0_mem); 5027 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL), 5028 &bar0->rmac_addr_data1_mem); 5029 val64 = RMAC_ADDR_CMD_MEM_WE | 5030 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | 5031 RMAC_ADDR_CMD_MEM_OFFSET 5032 (i + config->mc_start_offset); 5033 writeq(val64, &bar0->rmac_addr_cmd_mem); 5034 5035 /* Wait for command completes */ 5036 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem, 5037 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, 5038 S2IO_BIT_RESET, may_sleep)) { 5039 DBG_PRINT(ERR_DBG, 5040 "%s: Adding Multicasts failed\n", 5041 dev->name); 5042 return; 5043 } 5044 i++; 5045 } 5046 } 5047 } 5048 5049 /* NDO wrapper for s2io_set_multicast */ 5050 static void s2io_ndo_set_multicast(struct net_device *dev) 5051 { 5052 s2io_set_multicast(dev, false); 5053 } 5054 5055 /* read from CAM unicast & multicast addresses and store it in 5056 * def_mac_addr structure 5057 */ 5058 static void do_s2io_store_unicast_mc(struct s2io_nic *sp) 5059 { 5060 int offset; 5061 u64 mac_addr = 0x0; 5062 struct config_param *config = &sp->config; 5063 5064 /* store unicast & multicast mac addresses */ 5065 for (offset = 0; offset < config->max_mc_addr; offset++) { 5066 mac_addr = do_s2io_read_unicast_mc(sp, offset); 5067 /* if read fails disable the entry */ 5068 if (mac_addr == FAILURE) 5069 mac_addr = S2IO_DISABLE_MAC_ENTRY; 5070 do_s2io_copy_mac_addr(sp, offset, mac_addr); 5071 } 5072 } 5073 5074 /* restore unicast & multicast MAC to CAM from def_mac_addr structure */ 5075 static void do_s2io_restore_unicast_mc(struct s2io_nic *sp) 5076 { 5077 int offset; 5078 struct config_param *config = &sp->config; 5079 /* restore unicast mac address */ 5080 for (offset = 0; offset < config->max_mac_addr; offset++) 5081 do_s2io_prog_unicast(sp->dev, 5082 sp->def_mac_addr[offset].mac_addr); 5083 5084 /* restore multicast mac address */ 5085 for (offset = config->mc_start_offset; 5086 offset < config->max_mc_addr; offset++) 5087 do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr); 5088 } 5089 5090 /* add a multicast MAC address to CAM */ 5091 static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr) 5092 { 5093 int i; 5094 u64 mac_addr = 0; 5095 struct config_param *config = &sp->config; 5096 5097 for (i = 0; i < ETH_ALEN; i++) { 5098 mac_addr <<= 8; 5099 mac_addr |= addr[i]; 5100 } 5101 if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY)) 5102 return SUCCESS; 5103 5104 /* check if the multicast mac already preset in CAM */ 5105 for (i = config->mc_start_offset; i < config->max_mc_addr; i++) { 5106 u64 tmp64; 5107 tmp64 = do_s2io_read_unicast_mc(sp, i); 5108 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */ 5109 break; 5110 5111 if (tmp64 == mac_addr) 5112 return SUCCESS; 5113 } 5114 if (i == config->max_mc_addr) { 5115 DBG_PRINT(ERR_DBG, 5116 "CAM full no space left for multicast MAC\n"); 5117 return FAILURE; 5118 } 5119 /* Update the internal structure with this new mac address */ 5120 do_s2io_copy_mac_addr(sp, i, mac_addr); 5121 5122 return do_s2io_add_mac(sp, mac_addr, i); 5123 } 5124 5125 /* add MAC address to CAM */ 5126 static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off) 5127 { 5128 u64 val64; 5129 struct XENA_dev_config __iomem *bar0 = sp->bar0; 5130 5131 writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr), 5132 &bar0->rmac_addr_data0_mem); 5133 5134 val64 = RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | 5135 RMAC_ADDR_CMD_MEM_OFFSET(off); 5136 writeq(val64, &bar0->rmac_addr_cmd_mem); 5137 5138 /* Wait till command completes */ 5139 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem, 5140 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, 5141 S2IO_BIT_RESET, true)) { 5142 DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n"); 5143 return FAILURE; 5144 } 5145 return SUCCESS; 5146 } 5147 /* deletes a specified unicast/multicast mac entry from CAM */ 5148 static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr) 5149 { 5150 int offset; 5151 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64; 5152 struct config_param *config = &sp->config; 5153 5154 for (offset = 1; 5155 offset < config->max_mc_addr; offset++) { 5156 tmp64 = do_s2io_read_unicast_mc(sp, offset); 5157 if (tmp64 == addr) { 5158 /* disable the entry by writing 0xffffffffffffULL */ 5159 if (do_s2io_add_mac(sp, dis_addr, offset) == FAILURE) 5160 return FAILURE; 5161 /* store the new mac list from CAM */ 5162 do_s2io_store_unicast_mc(sp); 5163 return SUCCESS; 5164 } 5165 } 5166 DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n", 5167 (unsigned long long)addr); 5168 return FAILURE; 5169 } 5170 5171 /* read mac entries from CAM */ 5172 static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset) 5173 { 5174 u64 tmp64, val64; 5175 struct XENA_dev_config __iomem *bar0 = sp->bar0; 5176 5177 /* read mac addr */ 5178 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | 5179 RMAC_ADDR_CMD_MEM_OFFSET(offset); 5180 writeq(val64, &bar0->rmac_addr_cmd_mem); 5181 5182 /* Wait till command completes */ 5183 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem, 5184 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, 5185 S2IO_BIT_RESET, true)) { 5186 DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n"); 5187 return FAILURE; 5188 } 5189 tmp64 = readq(&bar0->rmac_addr_data0_mem); 5190 5191 return tmp64 >> 16; 5192 } 5193 5194 /* 5195 * s2io_set_mac_addr - driver entry point 5196 */ 5197 5198 static int s2io_set_mac_addr(struct net_device *dev, void *p) 5199 { 5200 struct sockaddr *addr = p; 5201 5202 if (!is_valid_ether_addr(addr->sa_data)) 5203 return -EADDRNOTAVAIL; 5204 5205 eth_hw_addr_set(dev, addr->sa_data); 5206 5207 /* store the MAC address in CAM */ 5208 return do_s2io_prog_unicast(dev, dev->dev_addr); 5209 } 5210 /** 5211 * do_s2io_prog_unicast - Programs the Xframe mac address 5212 * @dev : pointer to the device structure. 5213 * @addr: a uchar pointer to the new mac address which is to be set. 5214 * Description : This procedure will program the Xframe to receive 5215 * frames with new Mac Address 5216 * Return value: SUCCESS on success and an appropriate (-)ve integer 5217 * as defined in errno.h file on failure. 5218 */ 5219 5220 static int do_s2io_prog_unicast(struct net_device *dev, const u8 *addr) 5221 { 5222 struct s2io_nic *sp = netdev_priv(dev); 5223 register u64 mac_addr = 0, perm_addr = 0; 5224 int i; 5225 u64 tmp64; 5226 struct config_param *config = &sp->config; 5227 5228 /* 5229 * Set the new MAC address as the new unicast filter and reflect this 5230 * change on the device address registered with the OS. It will be 5231 * at offset 0. 5232 */ 5233 for (i = 0; i < ETH_ALEN; i++) { 5234 mac_addr <<= 8; 5235 mac_addr |= addr[i]; 5236 perm_addr <<= 8; 5237 perm_addr |= sp->def_mac_addr[0].mac_addr[i]; 5238 } 5239 5240 /* check if the dev_addr is different than perm_addr */ 5241 if (mac_addr == perm_addr) 5242 return SUCCESS; 5243 5244 /* check if the mac already preset in CAM */ 5245 for (i = 1; i < config->max_mac_addr; i++) { 5246 tmp64 = do_s2io_read_unicast_mc(sp, i); 5247 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */ 5248 break; 5249 5250 if (tmp64 == mac_addr) { 5251 DBG_PRINT(INFO_DBG, 5252 "MAC addr:0x%llx already present in CAM\n", 5253 (unsigned long long)mac_addr); 5254 return SUCCESS; 5255 } 5256 } 5257 if (i == config->max_mac_addr) { 5258 DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n"); 5259 return FAILURE; 5260 } 5261 /* Update the internal structure with this new mac address */ 5262 do_s2io_copy_mac_addr(sp, i, mac_addr); 5263 5264 return do_s2io_add_mac(sp, mac_addr, i); 5265 } 5266 5267 /** 5268 * s2io_ethtool_set_link_ksettings - Sets different link parameters. 5269 * @dev : pointer to netdev 5270 * @cmd: pointer to the structure with parameters given by ethtool to set 5271 * link information. 5272 * Description: 5273 * The function sets different link parameters provided by the user onto 5274 * the NIC. 5275 * Return value: 5276 * 0 on success. 5277 */ 5278 5279 static int 5280 s2io_ethtool_set_link_ksettings(struct net_device *dev, 5281 const struct ethtool_link_ksettings *cmd) 5282 { 5283 struct s2io_nic *sp = netdev_priv(dev); 5284 if ((cmd->base.autoneg == AUTONEG_ENABLE) || 5285 (cmd->base.speed != SPEED_10000) || 5286 (cmd->base.duplex != DUPLEX_FULL)) 5287 return -EINVAL; 5288 else { 5289 s2io_close(sp->dev); 5290 s2io_open(sp->dev); 5291 } 5292 5293 return 0; 5294 } 5295 5296 /** 5297 * s2io_ethtool_get_link_ksettings - Return link specific information. 5298 * @dev: pointer to netdev 5299 * @cmd : pointer to the structure with parameters given by ethtool 5300 * to return link information. 5301 * Description: 5302 * Returns link specific information like speed, duplex etc.. to ethtool. 5303 * Return value : 5304 * return 0 on success. 5305 */ 5306 5307 static int 5308 s2io_ethtool_get_link_ksettings(struct net_device *dev, 5309 struct ethtool_link_ksettings *cmd) 5310 { 5311 struct s2io_nic *sp = netdev_priv(dev); 5312 5313 ethtool_link_ksettings_zero_link_mode(cmd, supported); 5314 ethtool_link_ksettings_add_link_mode(cmd, supported, 10000baseT_Full); 5315 ethtool_link_ksettings_add_link_mode(cmd, supported, FIBRE); 5316 5317 ethtool_link_ksettings_zero_link_mode(cmd, advertising); 5318 ethtool_link_ksettings_add_link_mode(cmd, advertising, 10000baseT_Full); 5319 ethtool_link_ksettings_add_link_mode(cmd, advertising, FIBRE); 5320 5321 cmd->base.port = PORT_FIBRE; 5322 5323 if (netif_carrier_ok(sp->dev)) { 5324 cmd->base.speed = SPEED_10000; 5325 cmd->base.duplex = DUPLEX_FULL; 5326 } else { 5327 cmd->base.speed = SPEED_UNKNOWN; 5328 cmd->base.duplex = DUPLEX_UNKNOWN; 5329 } 5330 5331 cmd->base.autoneg = AUTONEG_DISABLE; 5332 return 0; 5333 } 5334 5335 /** 5336 * s2io_ethtool_gdrvinfo - Returns driver specific information. 5337 * @dev: pointer to netdev 5338 * @info : pointer to the structure with parameters given by ethtool to 5339 * return driver information. 5340 * Description: 5341 * Returns driver specefic information like name, version etc.. to ethtool. 5342 * Return value: 5343 * void 5344 */ 5345 5346 static void s2io_ethtool_gdrvinfo(struct net_device *dev, 5347 struct ethtool_drvinfo *info) 5348 { 5349 struct s2io_nic *sp = netdev_priv(dev); 5350 5351 strscpy(info->driver, s2io_driver_name, sizeof(info->driver)); 5352 strscpy(info->version, s2io_driver_version, sizeof(info->version)); 5353 strscpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info)); 5354 } 5355 5356 /** 5357 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer. 5358 * @dev: pointer to netdev 5359 * @regs : pointer to the structure with parameters given by ethtool for 5360 * dumping the registers. 5361 * @space: The input argument into which all the registers are dumped. 5362 * Description: 5363 * Dumps the entire register space of xFrame NIC into the user given 5364 * buffer area. 5365 * Return value : 5366 * void . 5367 */ 5368 5369 static void s2io_ethtool_gregs(struct net_device *dev, 5370 struct ethtool_regs *regs, void *space) 5371 { 5372 int i; 5373 u64 reg; 5374 u8 *reg_space = (u8 *)space; 5375 struct s2io_nic *sp = netdev_priv(dev); 5376 5377 regs->len = XENA_REG_SPACE; 5378 regs->version = sp->pdev->subsystem_device; 5379 5380 for (i = 0; i < regs->len; i += 8) { 5381 reg = readq(sp->bar0 + i); 5382 memcpy((reg_space + i), ®, 8); 5383 } 5384 } 5385 5386 /* 5387 * s2io_set_led - control NIC led 5388 */ 5389 static void s2io_set_led(struct s2io_nic *sp, bool on) 5390 { 5391 struct XENA_dev_config __iomem *bar0 = sp->bar0; 5392 u16 subid = sp->pdev->subsystem_device; 5393 u64 val64; 5394 5395 if ((sp->device_type == XFRAME_II_DEVICE) || 5396 ((subid & 0xFF) >= 0x07)) { 5397 val64 = readq(&bar0->gpio_control); 5398 if (on) 5399 val64 |= GPIO_CTRL_GPIO_0; 5400 else 5401 val64 &= ~GPIO_CTRL_GPIO_0; 5402 5403 writeq(val64, &bar0->gpio_control); 5404 } else { 5405 val64 = readq(&bar0->adapter_control); 5406 if (on) 5407 val64 |= ADAPTER_LED_ON; 5408 else 5409 val64 &= ~ADAPTER_LED_ON; 5410 5411 writeq(val64, &bar0->adapter_control); 5412 } 5413 5414 } 5415 5416 /** 5417 * s2io_ethtool_set_led - To physically identify the nic on the system. 5418 * @dev : network device 5419 * @state: led setting 5420 * 5421 * Description: Used to physically identify the NIC on the system. 5422 * The Link LED will blink for a time specified by the user for 5423 * identification. 5424 * NOTE: The Link has to be Up to be able to blink the LED. Hence 5425 * identification is possible only if it's link is up. 5426 */ 5427 5428 static int s2io_ethtool_set_led(struct net_device *dev, 5429 enum ethtool_phys_id_state state) 5430 { 5431 struct s2io_nic *sp = netdev_priv(dev); 5432 struct XENA_dev_config __iomem *bar0 = sp->bar0; 5433 u16 subid = sp->pdev->subsystem_device; 5434 5435 if ((sp->device_type == XFRAME_I_DEVICE) && ((subid & 0xFF) < 0x07)) { 5436 u64 val64 = readq(&bar0->adapter_control); 5437 if (!(val64 & ADAPTER_CNTL_EN)) { 5438 pr_err("Adapter Link down, cannot blink LED\n"); 5439 return -EAGAIN; 5440 } 5441 } 5442 5443 switch (state) { 5444 case ETHTOOL_ID_ACTIVE: 5445 sp->adapt_ctrl_org = readq(&bar0->gpio_control); 5446 return 1; /* cycle on/off once per second */ 5447 5448 case ETHTOOL_ID_ON: 5449 s2io_set_led(sp, true); 5450 break; 5451 5452 case ETHTOOL_ID_OFF: 5453 s2io_set_led(sp, false); 5454 break; 5455 5456 case ETHTOOL_ID_INACTIVE: 5457 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) 5458 writeq(sp->adapt_ctrl_org, &bar0->gpio_control); 5459 } 5460 5461 return 0; 5462 } 5463 5464 static void 5465 s2io_ethtool_gringparam(struct net_device *dev, 5466 struct ethtool_ringparam *ering, 5467 struct kernel_ethtool_ringparam *kernel_ering, 5468 struct netlink_ext_ack *extack) 5469 { 5470 struct s2io_nic *sp = netdev_priv(dev); 5471 int i, tx_desc_count = 0, rx_desc_count = 0; 5472 5473 if (sp->rxd_mode == RXD_MODE_1) { 5474 ering->rx_max_pending = MAX_RX_DESC_1; 5475 ering->rx_jumbo_max_pending = MAX_RX_DESC_1; 5476 } else { 5477 ering->rx_max_pending = MAX_RX_DESC_2; 5478 ering->rx_jumbo_max_pending = MAX_RX_DESC_2; 5479 } 5480 5481 ering->tx_max_pending = MAX_TX_DESC; 5482 5483 for (i = 0; i < sp->config.rx_ring_num; i++) 5484 rx_desc_count += sp->config.rx_cfg[i].num_rxd; 5485 ering->rx_pending = rx_desc_count; 5486 ering->rx_jumbo_pending = rx_desc_count; 5487 5488 for (i = 0; i < sp->config.tx_fifo_num; i++) 5489 tx_desc_count += sp->config.tx_cfg[i].fifo_len; 5490 ering->tx_pending = tx_desc_count; 5491 DBG_PRINT(INFO_DBG, "max txds: %d\n", sp->config.max_txds); 5492 } 5493 5494 /** 5495 * s2io_ethtool_getpause_data -Pause frame generation and reception. 5496 * @dev: pointer to netdev 5497 * @ep : pointer to the structure with pause parameters given by ethtool. 5498 * Description: 5499 * Returns the Pause frame generation and reception capability of the NIC. 5500 * Return value: 5501 * void 5502 */ 5503 static void s2io_ethtool_getpause_data(struct net_device *dev, 5504 struct ethtool_pauseparam *ep) 5505 { 5506 u64 val64; 5507 struct s2io_nic *sp = netdev_priv(dev); 5508 struct XENA_dev_config __iomem *bar0 = sp->bar0; 5509 5510 val64 = readq(&bar0->rmac_pause_cfg); 5511 if (val64 & RMAC_PAUSE_GEN_ENABLE) 5512 ep->tx_pause = true; 5513 if (val64 & RMAC_PAUSE_RX_ENABLE) 5514 ep->rx_pause = true; 5515 ep->autoneg = false; 5516 } 5517 5518 /** 5519 * s2io_ethtool_setpause_data - set/reset pause frame generation. 5520 * @dev: pointer to netdev 5521 * @ep : pointer to the structure with pause parameters given by ethtool. 5522 * Description: 5523 * It can be used to set or reset Pause frame generation or reception 5524 * support of the NIC. 5525 * Return value: 5526 * int, returns 0 on Success 5527 */ 5528 5529 static int s2io_ethtool_setpause_data(struct net_device *dev, 5530 struct ethtool_pauseparam *ep) 5531 { 5532 u64 val64; 5533 struct s2io_nic *sp = netdev_priv(dev); 5534 struct XENA_dev_config __iomem *bar0 = sp->bar0; 5535 5536 val64 = readq(&bar0->rmac_pause_cfg); 5537 if (ep->tx_pause) 5538 val64 |= RMAC_PAUSE_GEN_ENABLE; 5539 else 5540 val64 &= ~RMAC_PAUSE_GEN_ENABLE; 5541 if (ep->rx_pause) 5542 val64 |= RMAC_PAUSE_RX_ENABLE; 5543 else 5544 val64 &= ~RMAC_PAUSE_RX_ENABLE; 5545 writeq(val64, &bar0->rmac_pause_cfg); 5546 return 0; 5547 } 5548 5549 #define S2IO_DEV_ID 5 5550 /** 5551 * read_eeprom - reads 4 bytes of data from user given offset. 5552 * @sp : private member of the device structure, which is a pointer to the 5553 * s2io_nic structure. 5554 * @off : offset at which the data must be written 5555 * @data : Its an output parameter where the data read at the given 5556 * offset is stored. 5557 * Description: 5558 * Will read 4 bytes of data from the user given offset and return the 5559 * read data. 5560 * NOTE: Will allow to read only part of the EEPROM visible through the 5561 * I2C bus. 5562 * Return value: 5563 * -1 on failure and 0 on success. 5564 */ 5565 static int read_eeprom(struct s2io_nic *sp, int off, u64 *data) 5566 { 5567 int ret = -1; 5568 u32 exit_cnt = 0; 5569 u64 val64; 5570 struct XENA_dev_config __iomem *bar0 = sp->bar0; 5571 5572 if (sp->device_type == XFRAME_I_DEVICE) { 5573 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | 5574 I2C_CONTROL_ADDR(off) | 5575 I2C_CONTROL_BYTE_CNT(0x3) | 5576 I2C_CONTROL_READ | 5577 I2C_CONTROL_CNTL_START; 5578 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF); 5579 5580 while (exit_cnt < 5) { 5581 val64 = readq(&bar0->i2c_control); 5582 if (I2C_CONTROL_CNTL_END(val64)) { 5583 *data = I2C_CONTROL_GET_DATA(val64); 5584 ret = 0; 5585 break; 5586 } 5587 msleep(50); 5588 exit_cnt++; 5589 } 5590 } 5591 5592 if (sp->device_type == XFRAME_II_DEVICE) { 5593 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 | 5594 SPI_CONTROL_BYTECNT(0x3) | 5595 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off); 5596 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF); 5597 val64 |= SPI_CONTROL_REQ; 5598 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF); 5599 while (exit_cnt < 5) { 5600 val64 = readq(&bar0->spi_control); 5601 if (val64 & SPI_CONTROL_NACK) { 5602 ret = 1; 5603 break; 5604 } else if (val64 & SPI_CONTROL_DONE) { 5605 *data = readq(&bar0->spi_data); 5606 *data &= 0xffffff; 5607 ret = 0; 5608 break; 5609 } 5610 msleep(50); 5611 exit_cnt++; 5612 } 5613 } 5614 return ret; 5615 } 5616 5617 /** 5618 * write_eeprom - actually writes the relevant part of the data value. 5619 * @sp : private member of the device structure, which is a pointer to the 5620 * s2io_nic structure. 5621 * @off : offset at which the data must be written 5622 * @data : The data that is to be written 5623 * @cnt : Number of bytes of the data that are actually to be written into 5624 * the Eeprom. (max of 3) 5625 * Description: 5626 * Actually writes the relevant part of the data value into the Eeprom 5627 * through the I2C bus. 5628 * Return value: 5629 * 0 on success, -1 on failure. 5630 */ 5631 5632 static int write_eeprom(struct s2io_nic *sp, int off, u64 data, int cnt) 5633 { 5634 int exit_cnt = 0, ret = -1; 5635 u64 val64; 5636 struct XENA_dev_config __iomem *bar0 = sp->bar0; 5637 5638 if (sp->device_type == XFRAME_I_DEVICE) { 5639 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | 5640 I2C_CONTROL_ADDR(off) | 5641 I2C_CONTROL_BYTE_CNT(cnt) | 5642 I2C_CONTROL_SET_DATA((u32)data) | 5643 I2C_CONTROL_CNTL_START; 5644 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF); 5645 5646 while (exit_cnt < 5) { 5647 val64 = readq(&bar0->i2c_control); 5648 if (I2C_CONTROL_CNTL_END(val64)) { 5649 if (!(val64 & I2C_CONTROL_NACK)) 5650 ret = 0; 5651 break; 5652 } 5653 msleep(50); 5654 exit_cnt++; 5655 } 5656 } 5657 5658 if (sp->device_type == XFRAME_II_DEVICE) { 5659 int write_cnt = (cnt == 8) ? 0 : cnt; 5660 writeq(SPI_DATA_WRITE(data, (cnt << 3)), &bar0->spi_data); 5661 5662 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 | 5663 SPI_CONTROL_BYTECNT(write_cnt) | 5664 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off); 5665 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF); 5666 val64 |= SPI_CONTROL_REQ; 5667 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF); 5668 while (exit_cnt < 5) { 5669 val64 = readq(&bar0->spi_control); 5670 if (val64 & SPI_CONTROL_NACK) { 5671 ret = 1; 5672 break; 5673 } else if (val64 & SPI_CONTROL_DONE) { 5674 ret = 0; 5675 break; 5676 } 5677 msleep(50); 5678 exit_cnt++; 5679 } 5680 } 5681 return ret; 5682 } 5683 static void s2io_vpd_read(struct s2io_nic *nic) 5684 { 5685 u8 *vpd_data; 5686 u8 data; 5687 int i = 0, cnt, len, fail = 0; 5688 int vpd_addr = 0x80; 5689 struct swStat *swstats = &nic->mac_control.stats_info->sw_stat; 5690 5691 if (nic->device_type == XFRAME_II_DEVICE) { 5692 strcpy(nic->product_name, "Xframe II 10GbE network adapter"); 5693 vpd_addr = 0x80; 5694 } else { 5695 strcpy(nic->product_name, "Xframe I 10GbE network adapter"); 5696 vpd_addr = 0x50; 5697 } 5698 strcpy(nic->serial_num, "NOT AVAILABLE"); 5699 5700 vpd_data = kmalloc(256, GFP_KERNEL); 5701 if (!vpd_data) { 5702 swstats->mem_alloc_fail_cnt++; 5703 return; 5704 } 5705 swstats->mem_allocated += 256; 5706 5707 for (i = 0; i < 256; i += 4) { 5708 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i); 5709 pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data); 5710 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0); 5711 for (cnt = 0; cnt < 5; cnt++) { 5712 msleep(2); 5713 pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data); 5714 if (data == 0x80) 5715 break; 5716 } 5717 if (cnt >= 5) { 5718 DBG_PRINT(ERR_DBG, "Read of VPD data failed\n"); 5719 fail = 1; 5720 break; 5721 } 5722 pci_read_config_dword(nic->pdev, (vpd_addr + 4), 5723 (u32 *)&vpd_data[i]); 5724 } 5725 5726 if (!fail) { 5727 /* read serial number of adapter */ 5728 for (cnt = 0; cnt < 252; cnt++) { 5729 if ((vpd_data[cnt] == 'S') && 5730 (vpd_data[cnt+1] == 'N')) { 5731 len = vpd_data[cnt+2]; 5732 if (len < min(VPD_STRING_LEN, 256-cnt-2)) { 5733 memcpy(nic->serial_num, 5734 &vpd_data[cnt + 3], 5735 len); 5736 memset(nic->serial_num+len, 5737 0, 5738 VPD_STRING_LEN-len); 5739 break; 5740 } 5741 } 5742 } 5743 } 5744 5745 if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) { 5746 len = vpd_data[1]; 5747 memcpy(nic->product_name, &vpd_data[3], len); 5748 nic->product_name[len] = 0; 5749 } 5750 kfree(vpd_data); 5751 swstats->mem_freed += 256; 5752 } 5753 5754 /** 5755 * s2io_ethtool_geeprom - reads the value stored in the Eeprom. 5756 * @dev: pointer to netdev 5757 * @eeprom : pointer to the user level structure provided by ethtool, 5758 * containing all relevant information. 5759 * @data_buf : user defined value to be written into Eeprom. 5760 * Description: Reads the values stored in the Eeprom at given offset 5761 * for a given length. Stores these values int the input argument data 5762 * buffer 'data_buf' and returns these to the caller (ethtool.) 5763 * Return value: 5764 * int 0 on success 5765 */ 5766 5767 static int s2io_ethtool_geeprom(struct net_device *dev, 5768 struct ethtool_eeprom *eeprom, u8 * data_buf) 5769 { 5770 u32 i, valid; 5771 u64 data; 5772 struct s2io_nic *sp = netdev_priv(dev); 5773 5774 eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16); 5775 5776 if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE)) 5777 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset; 5778 5779 for (i = 0; i < eeprom->len; i += 4) { 5780 if (read_eeprom(sp, (eeprom->offset + i), &data)) { 5781 DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n"); 5782 return -EFAULT; 5783 } 5784 valid = INV(data); 5785 memcpy((data_buf + i), &valid, 4); 5786 } 5787 return 0; 5788 } 5789 5790 /** 5791 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom 5792 * @dev: pointer to netdev 5793 * @eeprom : pointer to the user level structure provided by ethtool, 5794 * containing all relevant information. 5795 * @data_buf : user defined value to be written into Eeprom. 5796 * Description: 5797 * Tries to write the user provided value in the Eeprom, at the offset 5798 * given by the user. 5799 * Return value: 5800 * 0 on success, -EFAULT on failure. 5801 */ 5802 5803 static int s2io_ethtool_seeprom(struct net_device *dev, 5804 struct ethtool_eeprom *eeprom, 5805 u8 *data_buf) 5806 { 5807 int len = eeprom->len, cnt = 0; 5808 u64 valid = 0, data; 5809 struct s2io_nic *sp = netdev_priv(dev); 5810 5811 if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) { 5812 DBG_PRINT(ERR_DBG, 5813 "ETHTOOL_WRITE_EEPROM Err: " 5814 "Magic value is wrong, it is 0x%x should be 0x%x\n", 5815 (sp->pdev->vendor | (sp->pdev->device << 16)), 5816 eeprom->magic); 5817 return -EFAULT; 5818 } 5819 5820 while (len) { 5821 data = (u32)data_buf[cnt] & 0x000000FF; 5822 if (data) 5823 valid = (u32)(data << 24); 5824 else 5825 valid = data; 5826 5827 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) { 5828 DBG_PRINT(ERR_DBG, 5829 "ETHTOOL_WRITE_EEPROM Err: " 5830 "Cannot write into the specified offset\n"); 5831 return -EFAULT; 5832 } 5833 cnt++; 5834 len--; 5835 } 5836 5837 return 0; 5838 } 5839 5840 /** 5841 * s2io_register_test - reads and writes into all clock domains. 5842 * @sp : private member of the device structure, which is a pointer to the 5843 * s2io_nic structure. 5844 * @data : variable that returns the result of each of the test conducted b 5845 * by the driver. 5846 * Description: 5847 * Read and write into all clock domains. The NIC has 3 clock domains, 5848 * see that registers in all the three regions are accessible. 5849 * Return value: 5850 * 0 on success. 5851 */ 5852 5853 static int s2io_register_test(struct s2io_nic *sp, uint64_t *data) 5854 { 5855 struct XENA_dev_config __iomem *bar0 = sp->bar0; 5856 u64 val64 = 0, exp_val; 5857 int fail = 0; 5858 5859 val64 = readq(&bar0->pif_rd_swapper_fb); 5860 if (val64 != 0x123456789abcdefULL) { 5861 fail = 1; 5862 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 1); 5863 } 5864 5865 val64 = readq(&bar0->rmac_pause_cfg); 5866 if (val64 != 0xc000ffff00000000ULL) { 5867 fail = 1; 5868 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 2); 5869 } 5870 5871 val64 = readq(&bar0->rx_queue_cfg); 5872 if (sp->device_type == XFRAME_II_DEVICE) 5873 exp_val = 0x0404040404040404ULL; 5874 else 5875 exp_val = 0x0808080808080808ULL; 5876 if (val64 != exp_val) { 5877 fail = 1; 5878 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 3); 5879 } 5880 5881 val64 = readq(&bar0->xgxs_efifo_cfg); 5882 if (val64 != 0x000000001923141EULL) { 5883 fail = 1; 5884 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 4); 5885 } 5886 5887 val64 = 0x5A5A5A5A5A5A5A5AULL; 5888 writeq(val64, &bar0->xmsi_data); 5889 val64 = readq(&bar0->xmsi_data); 5890 if (val64 != 0x5A5A5A5A5A5A5A5AULL) { 5891 fail = 1; 5892 DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 1); 5893 } 5894 5895 val64 = 0xA5A5A5A5A5A5A5A5ULL; 5896 writeq(val64, &bar0->xmsi_data); 5897 val64 = readq(&bar0->xmsi_data); 5898 if (val64 != 0xA5A5A5A5A5A5A5A5ULL) { 5899 fail = 1; 5900 DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 2); 5901 } 5902 5903 *data = fail; 5904 return fail; 5905 } 5906 5907 /** 5908 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed. 5909 * @sp : private member of the device structure, which is a pointer to the 5910 * s2io_nic structure. 5911 * @data:variable that returns the result of each of the test conducted by 5912 * the driver. 5913 * Description: 5914 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL 5915 * register. 5916 * Return value: 5917 * 0 on success. 5918 */ 5919 5920 static int s2io_eeprom_test(struct s2io_nic *sp, uint64_t *data) 5921 { 5922 int fail = 0; 5923 u64 ret_data, org_4F0, org_7F0; 5924 u8 saved_4F0 = 0, saved_7F0 = 0; 5925 struct net_device *dev = sp->dev; 5926 5927 /* Test Write Error at offset 0 */ 5928 /* Note that SPI interface allows write access to all areas 5929 * of EEPROM. Hence doing all negative testing only for Xframe I. 5930 */ 5931 if (sp->device_type == XFRAME_I_DEVICE) 5932 if (!write_eeprom(sp, 0, 0, 3)) 5933 fail = 1; 5934 5935 /* Save current values at offsets 0x4F0 and 0x7F0 */ 5936 if (!read_eeprom(sp, 0x4F0, &org_4F0)) 5937 saved_4F0 = 1; 5938 if (!read_eeprom(sp, 0x7F0, &org_7F0)) 5939 saved_7F0 = 1; 5940 5941 /* Test Write at offset 4f0 */ 5942 if (write_eeprom(sp, 0x4F0, 0x012345, 3)) 5943 fail = 1; 5944 if (read_eeprom(sp, 0x4F0, &ret_data)) 5945 fail = 1; 5946 5947 if (ret_data != 0x012345) { 5948 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. " 5949 "Data written %llx Data read %llx\n", 5950 dev->name, (unsigned long long)0x12345, 5951 (unsigned long long)ret_data); 5952 fail = 1; 5953 } 5954 5955 /* Reset the EEPROM data go FFFF */ 5956 write_eeprom(sp, 0x4F0, 0xFFFFFF, 3); 5957 5958 /* Test Write Request Error at offset 0x7c */ 5959 if (sp->device_type == XFRAME_I_DEVICE) 5960 if (!write_eeprom(sp, 0x07C, 0, 3)) 5961 fail = 1; 5962 5963 /* Test Write Request at offset 0x7f0 */ 5964 if (write_eeprom(sp, 0x7F0, 0x012345, 3)) 5965 fail = 1; 5966 if (read_eeprom(sp, 0x7F0, &ret_data)) 5967 fail = 1; 5968 5969 if (ret_data != 0x012345) { 5970 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. " 5971 "Data written %llx Data read %llx\n", 5972 dev->name, (unsigned long long)0x12345, 5973 (unsigned long long)ret_data); 5974 fail = 1; 5975 } 5976 5977 /* Reset the EEPROM data go FFFF */ 5978 write_eeprom(sp, 0x7F0, 0xFFFFFF, 3); 5979 5980 if (sp->device_type == XFRAME_I_DEVICE) { 5981 /* Test Write Error at offset 0x80 */ 5982 if (!write_eeprom(sp, 0x080, 0, 3)) 5983 fail = 1; 5984 5985 /* Test Write Error at offset 0xfc */ 5986 if (!write_eeprom(sp, 0x0FC, 0, 3)) 5987 fail = 1; 5988 5989 /* Test Write Error at offset 0x100 */ 5990 if (!write_eeprom(sp, 0x100, 0, 3)) 5991 fail = 1; 5992 5993 /* Test Write Error at offset 4ec */ 5994 if (!write_eeprom(sp, 0x4EC, 0, 3)) 5995 fail = 1; 5996 } 5997 5998 /* Restore values at offsets 0x4F0 and 0x7F0 */ 5999 if (saved_4F0) 6000 write_eeprom(sp, 0x4F0, org_4F0, 3); 6001 if (saved_7F0) 6002 write_eeprom(sp, 0x7F0, org_7F0, 3); 6003 6004 *data = fail; 6005 return fail; 6006 } 6007 6008 /** 6009 * s2io_bist_test - invokes the MemBist test of the card . 6010 * @sp : private member of the device structure, which is a pointer to the 6011 * s2io_nic structure. 6012 * @data:variable that returns the result of each of the test conducted by 6013 * the driver. 6014 * Description: 6015 * This invokes the MemBist test of the card. We give around 6016 * 2 secs time for the Test to complete. If it's still not complete 6017 * within this peiod, we consider that the test failed. 6018 * Return value: 6019 * 0 on success and -1 on failure. 6020 */ 6021 6022 static int s2io_bist_test(struct s2io_nic *sp, uint64_t *data) 6023 { 6024 u8 bist = 0; 6025 int cnt = 0, ret = -1; 6026 6027 pci_read_config_byte(sp->pdev, PCI_BIST, &bist); 6028 bist |= PCI_BIST_START; 6029 pci_write_config_word(sp->pdev, PCI_BIST, bist); 6030 6031 while (cnt < 20) { 6032 pci_read_config_byte(sp->pdev, PCI_BIST, &bist); 6033 if (!(bist & PCI_BIST_START)) { 6034 *data = (bist & PCI_BIST_CODE_MASK); 6035 ret = 0; 6036 break; 6037 } 6038 msleep(100); 6039 cnt++; 6040 } 6041 6042 return ret; 6043 } 6044 6045 /** 6046 * s2io_link_test - verifies the link state of the nic 6047 * @sp: private member of the device structure, which is a pointer to the 6048 * s2io_nic structure. 6049 * @data: variable that returns the result of each of the test conducted by 6050 * the driver. 6051 * Description: 6052 * The function verifies the link state of the NIC and updates the input 6053 * argument 'data' appropriately. 6054 * Return value: 6055 * 0 on success. 6056 */ 6057 6058 static int s2io_link_test(struct s2io_nic *sp, uint64_t *data) 6059 { 6060 struct XENA_dev_config __iomem *bar0 = sp->bar0; 6061 u64 val64; 6062 6063 val64 = readq(&bar0->adapter_status); 6064 if (!(LINK_IS_UP(val64))) 6065 *data = 1; 6066 else 6067 *data = 0; 6068 6069 return *data; 6070 } 6071 6072 /** 6073 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC 6074 * @sp: private member of the device structure, which is a pointer to the 6075 * s2io_nic structure. 6076 * @data: variable that returns the result of each of the test 6077 * conducted by the driver. 6078 * Description: 6079 * This is one of the offline test that tests the read and write 6080 * access to the RldRam chip on the NIC. 6081 * Return value: 6082 * 0 on success. 6083 */ 6084 6085 static int s2io_rldram_test(struct s2io_nic *sp, uint64_t *data) 6086 { 6087 struct XENA_dev_config __iomem *bar0 = sp->bar0; 6088 u64 val64; 6089 int cnt, iteration = 0, test_fail = 0; 6090 6091 val64 = readq(&bar0->adapter_control); 6092 val64 &= ~ADAPTER_ECC_EN; 6093 writeq(val64, &bar0->adapter_control); 6094 6095 val64 = readq(&bar0->mc_rldram_test_ctrl); 6096 val64 |= MC_RLDRAM_TEST_MODE; 6097 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF); 6098 6099 val64 = readq(&bar0->mc_rldram_mrs); 6100 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE; 6101 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF); 6102 6103 val64 |= MC_RLDRAM_MRS_ENABLE; 6104 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF); 6105 6106 while (iteration < 2) { 6107 val64 = 0x55555555aaaa0000ULL; 6108 if (iteration == 1) 6109 val64 ^= 0xFFFFFFFFFFFF0000ULL; 6110 writeq(val64, &bar0->mc_rldram_test_d0); 6111 6112 val64 = 0xaaaa5a5555550000ULL; 6113 if (iteration == 1) 6114 val64 ^= 0xFFFFFFFFFFFF0000ULL; 6115 writeq(val64, &bar0->mc_rldram_test_d1); 6116 6117 val64 = 0x55aaaaaaaa5a0000ULL; 6118 if (iteration == 1) 6119 val64 ^= 0xFFFFFFFFFFFF0000ULL; 6120 writeq(val64, &bar0->mc_rldram_test_d2); 6121 6122 val64 = (u64) (0x0000003ffffe0100ULL); 6123 writeq(val64, &bar0->mc_rldram_test_add); 6124 6125 val64 = MC_RLDRAM_TEST_MODE | 6126 MC_RLDRAM_TEST_WRITE | 6127 MC_RLDRAM_TEST_GO; 6128 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF); 6129 6130 for (cnt = 0; cnt < 5; cnt++) { 6131 val64 = readq(&bar0->mc_rldram_test_ctrl); 6132 if (val64 & MC_RLDRAM_TEST_DONE) 6133 break; 6134 msleep(200); 6135 } 6136 6137 if (cnt == 5) 6138 break; 6139 6140 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO; 6141 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF); 6142 6143 for (cnt = 0; cnt < 5; cnt++) { 6144 val64 = readq(&bar0->mc_rldram_test_ctrl); 6145 if (val64 & MC_RLDRAM_TEST_DONE) 6146 break; 6147 msleep(500); 6148 } 6149 6150 if (cnt == 5) 6151 break; 6152 6153 val64 = readq(&bar0->mc_rldram_test_ctrl); 6154 if (!(val64 & MC_RLDRAM_TEST_PASS)) 6155 test_fail = 1; 6156 6157 iteration++; 6158 } 6159 6160 *data = test_fail; 6161 6162 /* Bring the adapter out of test mode */ 6163 SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF); 6164 6165 return test_fail; 6166 } 6167 6168 /** 6169 * s2io_ethtool_test - conducts 6 tsets to determine the health of card. 6170 * @dev: pointer to netdev 6171 * @ethtest : pointer to a ethtool command specific structure that will be 6172 * returned to the user. 6173 * @data : variable that returns the result of each of the test 6174 * conducted by the driver. 6175 * Description: 6176 * This function conducts 6 tests ( 4 offline and 2 online) to determine 6177 * the health of the card. 6178 * Return value: 6179 * void 6180 */ 6181 6182 static void s2io_ethtool_test(struct net_device *dev, 6183 struct ethtool_test *ethtest, 6184 uint64_t *data) 6185 { 6186 struct s2io_nic *sp = netdev_priv(dev); 6187 int orig_state = netif_running(sp->dev); 6188 6189 if (ethtest->flags == ETH_TEST_FL_OFFLINE) { 6190 /* Offline Tests. */ 6191 if (orig_state) 6192 s2io_close(sp->dev); 6193 6194 if (s2io_register_test(sp, &data[0])) 6195 ethtest->flags |= ETH_TEST_FL_FAILED; 6196 6197 s2io_reset(sp); 6198 6199 if (s2io_rldram_test(sp, &data[3])) 6200 ethtest->flags |= ETH_TEST_FL_FAILED; 6201 6202 s2io_reset(sp); 6203 6204 if (s2io_eeprom_test(sp, &data[1])) 6205 ethtest->flags |= ETH_TEST_FL_FAILED; 6206 6207 if (s2io_bist_test(sp, &data[4])) 6208 ethtest->flags |= ETH_TEST_FL_FAILED; 6209 6210 if (orig_state) 6211 s2io_open(sp->dev); 6212 6213 data[2] = 0; 6214 } else { 6215 /* Online Tests. */ 6216 if (!orig_state) { 6217 DBG_PRINT(ERR_DBG, "%s: is not up, cannot run test\n", 6218 dev->name); 6219 data[0] = -1; 6220 data[1] = -1; 6221 data[2] = -1; 6222 data[3] = -1; 6223 data[4] = -1; 6224 } 6225 6226 if (s2io_link_test(sp, &data[2])) 6227 ethtest->flags |= ETH_TEST_FL_FAILED; 6228 6229 data[0] = 0; 6230 data[1] = 0; 6231 data[3] = 0; 6232 data[4] = 0; 6233 } 6234 } 6235 6236 static void s2io_get_ethtool_stats(struct net_device *dev, 6237 struct ethtool_stats *estats, 6238 u64 *tmp_stats) 6239 { 6240 int i = 0, k; 6241 struct s2io_nic *sp = netdev_priv(dev); 6242 struct stat_block *stats = sp->mac_control.stats_info; 6243 struct swStat *swstats = &stats->sw_stat; 6244 struct xpakStat *xstats = &stats->xpak_stat; 6245 6246 s2io_updt_stats(sp); 6247 tmp_stats[i++] = 6248 (u64)le32_to_cpu(stats->tmac_frms_oflow) << 32 | 6249 le32_to_cpu(stats->tmac_frms); 6250 tmp_stats[i++] = 6251 (u64)le32_to_cpu(stats->tmac_data_octets_oflow) << 32 | 6252 le32_to_cpu(stats->tmac_data_octets); 6253 tmp_stats[i++] = le64_to_cpu(stats->tmac_drop_frms); 6254 tmp_stats[i++] = 6255 (u64)le32_to_cpu(stats->tmac_mcst_frms_oflow) << 32 | 6256 le32_to_cpu(stats->tmac_mcst_frms); 6257 tmp_stats[i++] = 6258 (u64)le32_to_cpu(stats->tmac_bcst_frms_oflow) << 32 | 6259 le32_to_cpu(stats->tmac_bcst_frms); 6260 tmp_stats[i++] = le64_to_cpu(stats->tmac_pause_ctrl_frms); 6261 tmp_stats[i++] = 6262 (u64)le32_to_cpu(stats->tmac_ttl_octets_oflow) << 32 | 6263 le32_to_cpu(stats->tmac_ttl_octets); 6264 tmp_stats[i++] = 6265 (u64)le32_to_cpu(stats->tmac_ucst_frms_oflow) << 32 | 6266 le32_to_cpu(stats->tmac_ucst_frms); 6267 tmp_stats[i++] = 6268 (u64)le32_to_cpu(stats->tmac_nucst_frms_oflow) << 32 | 6269 le32_to_cpu(stats->tmac_nucst_frms); 6270 tmp_stats[i++] = 6271 (u64)le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 | 6272 le32_to_cpu(stats->tmac_any_err_frms); 6273 tmp_stats[i++] = le64_to_cpu(stats->tmac_ttl_less_fb_octets); 6274 tmp_stats[i++] = le64_to_cpu(stats->tmac_vld_ip_octets); 6275 tmp_stats[i++] = 6276 (u64)le32_to_cpu(stats->tmac_vld_ip_oflow) << 32 | 6277 le32_to_cpu(stats->tmac_vld_ip); 6278 tmp_stats[i++] = 6279 (u64)le32_to_cpu(stats->tmac_drop_ip_oflow) << 32 | 6280 le32_to_cpu(stats->tmac_drop_ip); 6281 tmp_stats[i++] = 6282 (u64)le32_to_cpu(stats->tmac_icmp_oflow) << 32 | 6283 le32_to_cpu(stats->tmac_icmp); 6284 tmp_stats[i++] = 6285 (u64)le32_to_cpu(stats->tmac_rst_tcp_oflow) << 32 | 6286 le32_to_cpu(stats->tmac_rst_tcp); 6287 tmp_stats[i++] = le64_to_cpu(stats->tmac_tcp); 6288 tmp_stats[i++] = (u64)le32_to_cpu(stats->tmac_udp_oflow) << 32 | 6289 le32_to_cpu(stats->tmac_udp); 6290 tmp_stats[i++] = 6291 (u64)le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 | 6292 le32_to_cpu(stats->rmac_vld_frms); 6293 tmp_stats[i++] = 6294 (u64)le32_to_cpu(stats->rmac_data_octets_oflow) << 32 | 6295 le32_to_cpu(stats->rmac_data_octets); 6296 tmp_stats[i++] = le64_to_cpu(stats->rmac_fcs_err_frms); 6297 tmp_stats[i++] = le64_to_cpu(stats->rmac_drop_frms); 6298 tmp_stats[i++] = 6299 (u64)le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 | 6300 le32_to_cpu(stats->rmac_vld_mcst_frms); 6301 tmp_stats[i++] = 6302 (u64)le32_to_cpu(stats->rmac_vld_bcst_frms_oflow) << 32 | 6303 le32_to_cpu(stats->rmac_vld_bcst_frms); 6304 tmp_stats[i++] = le32_to_cpu(stats->rmac_in_rng_len_err_frms); 6305 tmp_stats[i++] = le32_to_cpu(stats->rmac_out_rng_len_err_frms); 6306 tmp_stats[i++] = le64_to_cpu(stats->rmac_long_frms); 6307 tmp_stats[i++] = le64_to_cpu(stats->rmac_pause_ctrl_frms); 6308 tmp_stats[i++] = le64_to_cpu(stats->rmac_unsup_ctrl_frms); 6309 tmp_stats[i++] = 6310 (u64)le32_to_cpu(stats->rmac_ttl_octets_oflow) << 32 | 6311 le32_to_cpu(stats->rmac_ttl_octets); 6312 tmp_stats[i++] = 6313 (u64)le32_to_cpu(stats->rmac_accepted_ucst_frms_oflow) << 32 6314 | le32_to_cpu(stats->rmac_accepted_ucst_frms); 6315 tmp_stats[i++] = 6316 (u64)le32_to_cpu(stats->rmac_accepted_nucst_frms_oflow) 6317 << 32 | le32_to_cpu(stats->rmac_accepted_nucst_frms); 6318 tmp_stats[i++] = 6319 (u64)le32_to_cpu(stats->rmac_discarded_frms_oflow) << 32 | 6320 le32_to_cpu(stats->rmac_discarded_frms); 6321 tmp_stats[i++] = 6322 (u64)le32_to_cpu(stats->rmac_drop_events_oflow) 6323 << 32 | le32_to_cpu(stats->rmac_drop_events); 6324 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_less_fb_octets); 6325 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_frms); 6326 tmp_stats[i++] = 6327 (u64)le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 | 6328 le32_to_cpu(stats->rmac_usized_frms); 6329 tmp_stats[i++] = 6330 (u64)le32_to_cpu(stats->rmac_osized_frms_oflow) << 32 | 6331 le32_to_cpu(stats->rmac_osized_frms); 6332 tmp_stats[i++] = 6333 (u64)le32_to_cpu(stats->rmac_frag_frms_oflow) << 32 | 6334 le32_to_cpu(stats->rmac_frag_frms); 6335 tmp_stats[i++] = 6336 (u64)le32_to_cpu(stats->rmac_jabber_frms_oflow) << 32 | 6337 le32_to_cpu(stats->rmac_jabber_frms); 6338 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_64_frms); 6339 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_65_127_frms); 6340 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_128_255_frms); 6341 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_256_511_frms); 6342 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_512_1023_frms); 6343 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_1024_1518_frms); 6344 tmp_stats[i++] = 6345 (u64)le32_to_cpu(stats->rmac_ip_oflow) << 32 | 6346 le32_to_cpu(stats->rmac_ip); 6347 tmp_stats[i++] = le64_to_cpu(stats->rmac_ip_octets); 6348 tmp_stats[i++] = le32_to_cpu(stats->rmac_hdr_err_ip); 6349 tmp_stats[i++] = 6350 (u64)le32_to_cpu(stats->rmac_drop_ip_oflow) << 32 | 6351 le32_to_cpu(stats->rmac_drop_ip); 6352 tmp_stats[i++] = 6353 (u64)le32_to_cpu(stats->rmac_icmp_oflow) << 32 | 6354 le32_to_cpu(stats->rmac_icmp); 6355 tmp_stats[i++] = le64_to_cpu(stats->rmac_tcp); 6356 tmp_stats[i++] = 6357 (u64)le32_to_cpu(stats->rmac_udp_oflow) << 32 | 6358 le32_to_cpu(stats->rmac_udp); 6359 tmp_stats[i++] = 6360 (u64)le32_to_cpu(stats->rmac_err_drp_udp_oflow) << 32 | 6361 le32_to_cpu(stats->rmac_err_drp_udp); 6362 tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_err_sym); 6363 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q0); 6364 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q1); 6365 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q2); 6366 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q3); 6367 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q4); 6368 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q5); 6369 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q6); 6370 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q7); 6371 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q0); 6372 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q1); 6373 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q2); 6374 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q3); 6375 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q4); 6376 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q5); 6377 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q6); 6378 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q7); 6379 tmp_stats[i++] = 6380 (u64)le32_to_cpu(stats->rmac_pause_cnt_oflow) << 32 | 6381 le32_to_cpu(stats->rmac_pause_cnt); 6382 tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_data_err_cnt); 6383 tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_ctrl_err_cnt); 6384 tmp_stats[i++] = 6385 (u64)le32_to_cpu(stats->rmac_accepted_ip_oflow) << 32 | 6386 le32_to_cpu(stats->rmac_accepted_ip); 6387 tmp_stats[i++] = le32_to_cpu(stats->rmac_err_tcp); 6388 tmp_stats[i++] = le32_to_cpu(stats->rd_req_cnt); 6389 tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_cnt); 6390 tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_rtry_cnt); 6391 tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_cnt); 6392 tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_rd_ack_cnt); 6393 tmp_stats[i++] = le32_to_cpu(stats->wr_req_cnt); 6394 tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_cnt); 6395 tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_rtry_cnt); 6396 tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_cnt); 6397 tmp_stats[i++] = le32_to_cpu(stats->wr_disc_cnt); 6398 tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_wr_ack_cnt); 6399 tmp_stats[i++] = le32_to_cpu(stats->txp_wr_cnt); 6400 tmp_stats[i++] = le32_to_cpu(stats->txd_rd_cnt); 6401 tmp_stats[i++] = le32_to_cpu(stats->txd_wr_cnt); 6402 tmp_stats[i++] = le32_to_cpu(stats->rxd_rd_cnt); 6403 tmp_stats[i++] = le32_to_cpu(stats->rxd_wr_cnt); 6404 tmp_stats[i++] = le32_to_cpu(stats->txf_rd_cnt); 6405 tmp_stats[i++] = le32_to_cpu(stats->rxf_wr_cnt); 6406 6407 /* Enhanced statistics exist only for Hercules */ 6408 if (sp->device_type == XFRAME_II_DEVICE) { 6409 tmp_stats[i++] = 6410 le64_to_cpu(stats->rmac_ttl_1519_4095_frms); 6411 tmp_stats[i++] = 6412 le64_to_cpu(stats->rmac_ttl_4096_8191_frms); 6413 tmp_stats[i++] = 6414 le64_to_cpu(stats->rmac_ttl_8192_max_frms); 6415 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_gt_max_frms); 6416 tmp_stats[i++] = le64_to_cpu(stats->rmac_osized_alt_frms); 6417 tmp_stats[i++] = le64_to_cpu(stats->rmac_jabber_alt_frms); 6418 tmp_stats[i++] = le64_to_cpu(stats->rmac_gt_max_alt_frms); 6419 tmp_stats[i++] = le64_to_cpu(stats->rmac_vlan_frms); 6420 tmp_stats[i++] = le32_to_cpu(stats->rmac_len_discard); 6421 tmp_stats[i++] = le32_to_cpu(stats->rmac_fcs_discard); 6422 tmp_stats[i++] = le32_to_cpu(stats->rmac_pf_discard); 6423 tmp_stats[i++] = le32_to_cpu(stats->rmac_da_discard); 6424 tmp_stats[i++] = le32_to_cpu(stats->rmac_red_discard); 6425 tmp_stats[i++] = le32_to_cpu(stats->rmac_rts_discard); 6426 tmp_stats[i++] = le32_to_cpu(stats->rmac_ingm_full_discard); 6427 tmp_stats[i++] = le32_to_cpu(stats->link_fault_cnt); 6428 } 6429 6430 tmp_stats[i++] = 0; 6431 tmp_stats[i++] = swstats->single_ecc_errs; 6432 tmp_stats[i++] = swstats->double_ecc_errs; 6433 tmp_stats[i++] = swstats->parity_err_cnt; 6434 tmp_stats[i++] = swstats->serious_err_cnt; 6435 tmp_stats[i++] = swstats->soft_reset_cnt; 6436 tmp_stats[i++] = swstats->fifo_full_cnt; 6437 for (k = 0; k < MAX_RX_RINGS; k++) 6438 tmp_stats[i++] = swstats->ring_full_cnt[k]; 6439 tmp_stats[i++] = xstats->alarm_transceiver_temp_high; 6440 tmp_stats[i++] = xstats->alarm_transceiver_temp_low; 6441 tmp_stats[i++] = xstats->alarm_laser_bias_current_high; 6442 tmp_stats[i++] = xstats->alarm_laser_bias_current_low; 6443 tmp_stats[i++] = xstats->alarm_laser_output_power_high; 6444 tmp_stats[i++] = xstats->alarm_laser_output_power_low; 6445 tmp_stats[i++] = xstats->warn_transceiver_temp_high; 6446 tmp_stats[i++] = xstats->warn_transceiver_temp_low; 6447 tmp_stats[i++] = xstats->warn_laser_bias_current_high; 6448 tmp_stats[i++] = xstats->warn_laser_bias_current_low; 6449 tmp_stats[i++] = xstats->warn_laser_output_power_high; 6450 tmp_stats[i++] = xstats->warn_laser_output_power_low; 6451 tmp_stats[i++] = swstats->clubbed_frms_cnt; 6452 tmp_stats[i++] = swstats->sending_both; 6453 tmp_stats[i++] = swstats->outof_sequence_pkts; 6454 tmp_stats[i++] = swstats->flush_max_pkts; 6455 if (swstats->num_aggregations) { 6456 u64 tmp = swstats->sum_avg_pkts_aggregated; 6457 int count = 0; 6458 /* 6459 * Since 64-bit divide does not work on all platforms, 6460 * do repeated subtraction. 6461 */ 6462 while (tmp >= swstats->num_aggregations) { 6463 tmp -= swstats->num_aggregations; 6464 count++; 6465 } 6466 tmp_stats[i++] = count; 6467 } else 6468 tmp_stats[i++] = 0; 6469 tmp_stats[i++] = swstats->mem_alloc_fail_cnt; 6470 tmp_stats[i++] = swstats->pci_map_fail_cnt; 6471 tmp_stats[i++] = swstats->watchdog_timer_cnt; 6472 tmp_stats[i++] = swstats->mem_allocated; 6473 tmp_stats[i++] = swstats->mem_freed; 6474 tmp_stats[i++] = swstats->link_up_cnt; 6475 tmp_stats[i++] = swstats->link_down_cnt; 6476 tmp_stats[i++] = swstats->link_up_time; 6477 tmp_stats[i++] = swstats->link_down_time; 6478 6479 tmp_stats[i++] = swstats->tx_buf_abort_cnt; 6480 tmp_stats[i++] = swstats->tx_desc_abort_cnt; 6481 tmp_stats[i++] = swstats->tx_parity_err_cnt; 6482 tmp_stats[i++] = swstats->tx_link_loss_cnt; 6483 tmp_stats[i++] = swstats->tx_list_proc_err_cnt; 6484 6485 tmp_stats[i++] = swstats->rx_parity_err_cnt; 6486 tmp_stats[i++] = swstats->rx_abort_cnt; 6487 tmp_stats[i++] = swstats->rx_parity_abort_cnt; 6488 tmp_stats[i++] = swstats->rx_rda_fail_cnt; 6489 tmp_stats[i++] = swstats->rx_unkn_prot_cnt; 6490 tmp_stats[i++] = swstats->rx_fcs_err_cnt; 6491 tmp_stats[i++] = swstats->rx_buf_size_err_cnt; 6492 tmp_stats[i++] = swstats->rx_rxd_corrupt_cnt; 6493 tmp_stats[i++] = swstats->rx_unkn_err_cnt; 6494 tmp_stats[i++] = swstats->tda_err_cnt; 6495 tmp_stats[i++] = swstats->pfc_err_cnt; 6496 tmp_stats[i++] = swstats->pcc_err_cnt; 6497 tmp_stats[i++] = swstats->tti_err_cnt; 6498 tmp_stats[i++] = swstats->tpa_err_cnt; 6499 tmp_stats[i++] = swstats->sm_err_cnt; 6500 tmp_stats[i++] = swstats->lso_err_cnt; 6501 tmp_stats[i++] = swstats->mac_tmac_err_cnt; 6502 tmp_stats[i++] = swstats->mac_rmac_err_cnt; 6503 tmp_stats[i++] = swstats->xgxs_txgxs_err_cnt; 6504 tmp_stats[i++] = swstats->xgxs_rxgxs_err_cnt; 6505 tmp_stats[i++] = swstats->rc_err_cnt; 6506 tmp_stats[i++] = swstats->prc_pcix_err_cnt; 6507 tmp_stats[i++] = swstats->rpa_err_cnt; 6508 tmp_stats[i++] = swstats->rda_err_cnt; 6509 tmp_stats[i++] = swstats->rti_err_cnt; 6510 tmp_stats[i++] = swstats->mc_err_cnt; 6511 } 6512 6513 static int s2io_ethtool_get_regs_len(struct net_device *dev) 6514 { 6515 return XENA_REG_SPACE; 6516 } 6517 6518 6519 static int s2io_get_eeprom_len(struct net_device *dev) 6520 { 6521 return XENA_EEPROM_SPACE; 6522 } 6523 6524 static int s2io_get_sset_count(struct net_device *dev, int sset) 6525 { 6526 struct s2io_nic *sp = netdev_priv(dev); 6527 6528 switch (sset) { 6529 case ETH_SS_TEST: 6530 return S2IO_TEST_LEN; 6531 case ETH_SS_STATS: 6532 switch (sp->device_type) { 6533 case XFRAME_I_DEVICE: 6534 return XFRAME_I_STAT_LEN; 6535 case XFRAME_II_DEVICE: 6536 return XFRAME_II_STAT_LEN; 6537 default: 6538 return 0; 6539 } 6540 default: 6541 return -EOPNOTSUPP; 6542 } 6543 } 6544 6545 static void s2io_ethtool_get_strings(struct net_device *dev, 6546 u32 stringset, u8 *data) 6547 { 6548 int stat_size = 0; 6549 struct s2io_nic *sp = netdev_priv(dev); 6550 6551 switch (stringset) { 6552 case ETH_SS_TEST: 6553 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN); 6554 break; 6555 case ETH_SS_STATS: 6556 stat_size = sizeof(ethtool_xena_stats_keys); 6557 memcpy(data, ðtool_xena_stats_keys, stat_size); 6558 if (sp->device_type == XFRAME_II_DEVICE) { 6559 memcpy(data + stat_size, 6560 ðtool_enhanced_stats_keys, 6561 sizeof(ethtool_enhanced_stats_keys)); 6562 stat_size += sizeof(ethtool_enhanced_stats_keys); 6563 } 6564 6565 memcpy(data + stat_size, ðtool_driver_stats_keys, 6566 sizeof(ethtool_driver_stats_keys)); 6567 } 6568 } 6569 6570 static int s2io_set_features(struct net_device *dev, netdev_features_t features) 6571 { 6572 struct s2io_nic *sp = netdev_priv(dev); 6573 netdev_features_t changed = (features ^ dev->features) & NETIF_F_LRO; 6574 6575 if (changed && netif_running(dev)) { 6576 int rc; 6577 6578 s2io_stop_all_tx_queue(sp); 6579 s2io_card_down(sp); 6580 dev->features = features; 6581 rc = s2io_card_up(sp); 6582 if (rc) 6583 s2io_reset(sp); 6584 else 6585 s2io_start_all_tx_queue(sp); 6586 6587 return rc ? rc : 1; 6588 } 6589 6590 return 0; 6591 } 6592 6593 static const struct ethtool_ops netdev_ethtool_ops = { 6594 .get_drvinfo = s2io_ethtool_gdrvinfo, 6595 .get_regs_len = s2io_ethtool_get_regs_len, 6596 .get_regs = s2io_ethtool_gregs, 6597 .get_link = ethtool_op_get_link, 6598 .get_eeprom_len = s2io_get_eeprom_len, 6599 .get_eeprom = s2io_ethtool_geeprom, 6600 .set_eeprom = s2io_ethtool_seeprom, 6601 .get_ringparam = s2io_ethtool_gringparam, 6602 .get_pauseparam = s2io_ethtool_getpause_data, 6603 .set_pauseparam = s2io_ethtool_setpause_data, 6604 .self_test = s2io_ethtool_test, 6605 .get_strings = s2io_ethtool_get_strings, 6606 .set_phys_id = s2io_ethtool_set_led, 6607 .get_ethtool_stats = s2io_get_ethtool_stats, 6608 .get_sset_count = s2io_get_sset_count, 6609 .get_link_ksettings = s2io_ethtool_get_link_ksettings, 6610 .set_link_ksettings = s2io_ethtool_set_link_ksettings, 6611 }; 6612 6613 /** 6614 * s2io_ioctl - Entry point for the Ioctl 6615 * @dev : Device pointer. 6616 * @rq : An IOCTL specefic structure, that can contain a pointer to 6617 * a proprietary structure used to pass information to the driver. 6618 * @cmd : This is used to distinguish between the different commands that 6619 * can be passed to the IOCTL functions. 6620 * Description: 6621 * Currently there are no special functionality supported in IOCTL, hence 6622 * function always return EOPNOTSUPPORTED 6623 */ 6624 6625 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 6626 { 6627 return -EOPNOTSUPP; 6628 } 6629 6630 /** 6631 * s2io_change_mtu - entry point to change MTU size for the device. 6632 * @dev : device pointer. 6633 * @new_mtu : the new MTU size for the device. 6634 * Description: A driver entry point to change MTU size for the device. 6635 * Before changing the MTU the device must be stopped. 6636 * Return value: 6637 * 0 on success and an appropriate (-)ve integer as defined in errno.h 6638 * file on failure. 6639 */ 6640 6641 static int s2io_change_mtu(struct net_device *dev, int new_mtu) 6642 { 6643 struct s2io_nic *sp = netdev_priv(dev); 6644 int ret = 0; 6645 6646 dev->mtu = new_mtu; 6647 if (netif_running(dev)) { 6648 s2io_stop_all_tx_queue(sp); 6649 s2io_card_down(sp); 6650 ret = s2io_card_up(sp); 6651 if (ret) { 6652 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n", 6653 __func__); 6654 return ret; 6655 } 6656 s2io_wake_all_tx_queue(sp); 6657 } else { /* Device is down */ 6658 struct XENA_dev_config __iomem *bar0 = sp->bar0; 6659 u64 val64 = new_mtu; 6660 6661 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len); 6662 } 6663 6664 return ret; 6665 } 6666 6667 /** 6668 * s2io_set_link - Set the LInk status 6669 * @work: work struct containing a pointer to device private structure 6670 * Description: Sets the link status for the adapter 6671 */ 6672 6673 static void s2io_set_link(struct work_struct *work) 6674 { 6675 struct s2io_nic *nic = container_of(work, struct s2io_nic, 6676 set_link_task); 6677 struct net_device *dev = nic->dev; 6678 struct XENA_dev_config __iomem *bar0 = nic->bar0; 6679 register u64 val64; 6680 u16 subid; 6681 6682 rtnl_lock(); 6683 6684 if (!netif_running(dev)) 6685 goto out_unlock; 6686 6687 if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) { 6688 /* The card is being reset, no point doing anything */ 6689 goto out_unlock; 6690 } 6691 6692 subid = nic->pdev->subsystem_device; 6693 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) { 6694 /* 6695 * Allow a small delay for the NICs self initiated 6696 * cleanup to complete. 6697 */ 6698 msleep(100); 6699 } 6700 6701 val64 = readq(&bar0->adapter_status); 6702 if (LINK_IS_UP(val64)) { 6703 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) { 6704 if (verify_xena_quiescence(nic)) { 6705 val64 = readq(&bar0->adapter_control); 6706 val64 |= ADAPTER_CNTL_EN; 6707 writeq(val64, &bar0->adapter_control); 6708 if (CARDS_WITH_FAULTY_LINK_INDICATORS( 6709 nic->device_type, subid)) { 6710 val64 = readq(&bar0->gpio_control); 6711 val64 |= GPIO_CTRL_GPIO_0; 6712 writeq(val64, &bar0->gpio_control); 6713 val64 = readq(&bar0->gpio_control); 6714 } else { 6715 val64 |= ADAPTER_LED_ON; 6716 writeq(val64, &bar0->adapter_control); 6717 } 6718 nic->device_enabled_once = true; 6719 } else { 6720 DBG_PRINT(ERR_DBG, 6721 "%s: Error: device is not Quiescent\n", 6722 dev->name); 6723 s2io_stop_all_tx_queue(nic); 6724 } 6725 } 6726 val64 = readq(&bar0->adapter_control); 6727 val64 |= ADAPTER_LED_ON; 6728 writeq(val64, &bar0->adapter_control); 6729 s2io_link(nic, LINK_UP); 6730 } else { 6731 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type, 6732 subid)) { 6733 val64 = readq(&bar0->gpio_control); 6734 val64 &= ~GPIO_CTRL_GPIO_0; 6735 writeq(val64, &bar0->gpio_control); 6736 val64 = readq(&bar0->gpio_control); 6737 } 6738 /* turn off LED */ 6739 val64 = readq(&bar0->adapter_control); 6740 val64 = val64 & (~ADAPTER_LED_ON); 6741 writeq(val64, &bar0->adapter_control); 6742 s2io_link(nic, LINK_DOWN); 6743 } 6744 clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state)); 6745 6746 out_unlock: 6747 rtnl_unlock(); 6748 } 6749 6750 static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp, 6751 struct buffAdd *ba, 6752 struct sk_buff **skb, u64 *temp0, u64 *temp1, 6753 u64 *temp2, int size) 6754 { 6755 struct net_device *dev = sp->dev; 6756 struct swStat *stats = &sp->mac_control.stats_info->sw_stat; 6757 6758 if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) { 6759 struct RxD1 *rxdp1 = (struct RxD1 *)rxdp; 6760 /* allocate skb */ 6761 if (*skb) { 6762 DBG_PRINT(INFO_DBG, "SKB is not NULL\n"); 6763 /* 6764 * As Rx frame are not going to be processed, 6765 * using same mapped address for the Rxd 6766 * buffer pointer 6767 */ 6768 rxdp1->Buffer0_ptr = *temp0; 6769 } else { 6770 *skb = netdev_alloc_skb(dev, size); 6771 if (!(*skb)) { 6772 DBG_PRINT(INFO_DBG, 6773 "%s: Out of memory to allocate %s\n", 6774 dev->name, "1 buf mode SKBs"); 6775 stats->mem_alloc_fail_cnt++; 6776 return -ENOMEM ; 6777 } 6778 stats->mem_allocated += (*skb)->truesize; 6779 /* storing the mapped addr in a temp variable 6780 * such it will be used for next rxd whose 6781 * Host Control is NULL 6782 */ 6783 rxdp1->Buffer0_ptr = *temp0 = 6784 dma_map_single(&sp->pdev->dev, (*skb)->data, 6785 size - NET_IP_ALIGN, 6786 DMA_FROM_DEVICE); 6787 if (dma_mapping_error(&sp->pdev->dev, rxdp1->Buffer0_ptr)) 6788 goto memalloc_failed; 6789 rxdp->Host_Control = (unsigned long) (*skb); 6790 } 6791 } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) { 6792 struct RxD3 *rxdp3 = (struct RxD3 *)rxdp; 6793 /* Two buffer Mode */ 6794 if (*skb) { 6795 rxdp3->Buffer2_ptr = *temp2; 6796 rxdp3->Buffer0_ptr = *temp0; 6797 rxdp3->Buffer1_ptr = *temp1; 6798 } else { 6799 *skb = netdev_alloc_skb(dev, size); 6800 if (!(*skb)) { 6801 DBG_PRINT(INFO_DBG, 6802 "%s: Out of memory to allocate %s\n", 6803 dev->name, 6804 "2 buf mode SKBs"); 6805 stats->mem_alloc_fail_cnt++; 6806 return -ENOMEM; 6807 } 6808 stats->mem_allocated += (*skb)->truesize; 6809 rxdp3->Buffer2_ptr = *temp2 = 6810 dma_map_single(&sp->pdev->dev, (*skb)->data, 6811 dev->mtu + 4, DMA_FROM_DEVICE); 6812 if (dma_mapping_error(&sp->pdev->dev, rxdp3->Buffer2_ptr)) 6813 goto memalloc_failed; 6814 rxdp3->Buffer0_ptr = *temp0 = 6815 dma_map_single(&sp->pdev->dev, ba->ba_0, 6816 BUF0_LEN, DMA_FROM_DEVICE); 6817 if (dma_mapping_error(&sp->pdev->dev, rxdp3->Buffer0_ptr)) { 6818 dma_unmap_single(&sp->pdev->dev, 6819 (dma_addr_t)rxdp3->Buffer2_ptr, 6820 dev->mtu + 4, 6821 DMA_FROM_DEVICE); 6822 goto memalloc_failed; 6823 } 6824 rxdp->Host_Control = (unsigned long) (*skb); 6825 6826 /* Buffer-1 will be dummy buffer not used */ 6827 rxdp3->Buffer1_ptr = *temp1 = 6828 dma_map_single(&sp->pdev->dev, ba->ba_1, 6829 BUF1_LEN, DMA_FROM_DEVICE); 6830 if (dma_mapping_error(&sp->pdev->dev, rxdp3->Buffer1_ptr)) { 6831 dma_unmap_single(&sp->pdev->dev, 6832 (dma_addr_t)rxdp3->Buffer0_ptr, 6833 BUF0_LEN, DMA_FROM_DEVICE); 6834 dma_unmap_single(&sp->pdev->dev, 6835 (dma_addr_t)rxdp3->Buffer2_ptr, 6836 dev->mtu + 4, 6837 DMA_FROM_DEVICE); 6838 goto memalloc_failed; 6839 } 6840 } 6841 } 6842 return 0; 6843 6844 memalloc_failed: 6845 stats->pci_map_fail_cnt++; 6846 stats->mem_freed += (*skb)->truesize; 6847 dev_kfree_skb(*skb); 6848 return -ENOMEM; 6849 } 6850 6851 static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp, 6852 int size) 6853 { 6854 struct net_device *dev = sp->dev; 6855 if (sp->rxd_mode == RXD_MODE_1) { 6856 rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN); 6857 } else if (sp->rxd_mode == RXD_MODE_3B) { 6858 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN); 6859 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1); 6860 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu + 4); 6861 } 6862 } 6863 6864 static int rxd_owner_bit_reset(struct s2io_nic *sp) 6865 { 6866 int i, j, k, blk_cnt = 0, size; 6867 struct config_param *config = &sp->config; 6868 struct mac_info *mac_control = &sp->mac_control; 6869 struct net_device *dev = sp->dev; 6870 struct RxD_t *rxdp = NULL; 6871 struct sk_buff *skb = NULL; 6872 struct buffAdd *ba = NULL; 6873 u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0; 6874 6875 /* Calculate the size based on ring mode */ 6876 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE + 6877 HEADER_802_2_SIZE + HEADER_SNAP_SIZE; 6878 if (sp->rxd_mode == RXD_MODE_1) 6879 size += NET_IP_ALIGN; 6880 else if (sp->rxd_mode == RXD_MODE_3B) 6881 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4; 6882 6883 for (i = 0; i < config->rx_ring_num; i++) { 6884 struct rx_ring_config *rx_cfg = &config->rx_cfg[i]; 6885 struct ring_info *ring = &mac_control->rings[i]; 6886 6887 blk_cnt = rx_cfg->num_rxd / (rxd_count[sp->rxd_mode] + 1); 6888 6889 for (j = 0; j < blk_cnt; j++) { 6890 for (k = 0; k < rxd_count[sp->rxd_mode]; k++) { 6891 rxdp = ring->rx_blocks[j].rxds[k].virt_addr; 6892 if (sp->rxd_mode == RXD_MODE_3B) 6893 ba = &ring->ba[j][k]; 6894 if (set_rxd_buffer_pointer(sp, rxdp, ba, &skb, 6895 &temp0_64, 6896 &temp1_64, 6897 &temp2_64, 6898 size) == -ENOMEM) { 6899 return 0; 6900 } 6901 6902 set_rxd_buffer_size(sp, rxdp, size); 6903 dma_wmb(); 6904 /* flip the Ownership bit to Hardware */ 6905 rxdp->Control_1 |= RXD_OWN_XENA; 6906 } 6907 } 6908 } 6909 return 0; 6910 6911 } 6912 6913 static int s2io_add_isr(struct s2io_nic *sp) 6914 { 6915 int ret = 0; 6916 struct net_device *dev = sp->dev; 6917 int err = 0; 6918 6919 if (sp->config.intr_type == MSI_X) 6920 ret = s2io_enable_msi_x(sp); 6921 if (ret) { 6922 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name); 6923 sp->config.intr_type = INTA; 6924 } 6925 6926 /* 6927 * Store the values of the MSIX table in 6928 * the struct s2io_nic structure 6929 */ 6930 store_xmsi_data(sp); 6931 6932 /* After proper initialization of H/W, register ISR */ 6933 if (sp->config.intr_type == MSI_X) { 6934 int i, msix_rx_cnt = 0; 6935 6936 for (i = 0; i < sp->num_entries; i++) { 6937 if (sp->s2io_entries[i].in_use == MSIX_FLG) { 6938 if (sp->s2io_entries[i].type == 6939 MSIX_RING_TYPE) { 6940 snprintf(sp->desc[i], 6941 sizeof(sp->desc[i]), 6942 "%s:MSI-X-%d-RX", 6943 dev->name, i); 6944 err = request_irq(sp->entries[i].vector, 6945 s2io_msix_ring_handle, 6946 0, 6947 sp->desc[i], 6948 sp->s2io_entries[i].arg); 6949 } else if (sp->s2io_entries[i].type == 6950 MSIX_ALARM_TYPE) { 6951 snprintf(sp->desc[i], 6952 sizeof(sp->desc[i]), 6953 "%s:MSI-X-%d-TX", 6954 dev->name, i); 6955 err = request_irq(sp->entries[i].vector, 6956 s2io_msix_fifo_handle, 6957 0, 6958 sp->desc[i], 6959 sp->s2io_entries[i].arg); 6960 6961 } 6962 /* if either data or addr is zero print it. */ 6963 if (!(sp->msix_info[i].addr && 6964 sp->msix_info[i].data)) { 6965 DBG_PRINT(ERR_DBG, 6966 "%s @Addr:0x%llx Data:0x%llx\n", 6967 sp->desc[i], 6968 (unsigned long long) 6969 sp->msix_info[i].addr, 6970 (unsigned long long) 6971 ntohl(sp->msix_info[i].data)); 6972 } else 6973 msix_rx_cnt++; 6974 if (err) { 6975 remove_msix_isr(sp); 6976 6977 DBG_PRINT(ERR_DBG, 6978 "%s:MSI-X-%d registration " 6979 "failed\n", dev->name, i); 6980 6981 DBG_PRINT(ERR_DBG, 6982 "%s: Defaulting to INTA\n", 6983 dev->name); 6984 sp->config.intr_type = INTA; 6985 break; 6986 } 6987 sp->s2io_entries[i].in_use = 6988 MSIX_REGISTERED_SUCCESS; 6989 } 6990 } 6991 if (!err) { 6992 pr_info("MSI-X-RX %d entries enabled\n", --msix_rx_cnt); 6993 DBG_PRINT(INFO_DBG, 6994 "MSI-X-TX entries enabled through alarm vector\n"); 6995 } 6996 } 6997 if (sp->config.intr_type == INTA) { 6998 err = request_irq(sp->pdev->irq, s2io_isr, IRQF_SHARED, 6999 sp->name, dev); 7000 if (err) { 7001 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n", 7002 dev->name); 7003 return -1; 7004 } 7005 } 7006 return 0; 7007 } 7008 7009 static void s2io_rem_isr(struct s2io_nic *sp) 7010 { 7011 if (sp->config.intr_type == MSI_X) 7012 remove_msix_isr(sp); 7013 else 7014 remove_inta_isr(sp); 7015 } 7016 7017 static void do_s2io_card_down(struct s2io_nic *sp, int do_io) 7018 { 7019 int cnt = 0; 7020 struct XENA_dev_config __iomem *bar0 = sp->bar0; 7021 register u64 val64 = 0; 7022 struct config_param *config; 7023 config = &sp->config; 7024 7025 if (!is_s2io_card_up(sp)) 7026 return; 7027 7028 del_timer_sync(&sp->alarm_timer); 7029 /* If s2io_set_link task is executing, wait till it completes. */ 7030 while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state))) 7031 msleep(50); 7032 clear_bit(__S2IO_STATE_CARD_UP, &sp->state); 7033 7034 /* Disable napi */ 7035 if (sp->config.napi) { 7036 int off = 0; 7037 if (config->intr_type == MSI_X) { 7038 for (; off < sp->config.rx_ring_num; off++) 7039 napi_disable(&sp->mac_control.rings[off].napi); 7040 } 7041 else 7042 napi_disable(&sp->napi); 7043 } 7044 7045 /* disable Tx and Rx traffic on the NIC */ 7046 if (do_io) 7047 stop_nic(sp); 7048 7049 s2io_rem_isr(sp); 7050 7051 /* stop the tx queue, indicate link down */ 7052 s2io_link(sp, LINK_DOWN); 7053 7054 /* Check if the device is Quiescent and then Reset the NIC */ 7055 while (do_io) { 7056 /* As per the HW requirement we need to replenish the 7057 * receive buffer to avoid the ring bump. Since there is 7058 * no intention of processing the Rx frame at this pointwe are 7059 * just setting the ownership bit of rxd in Each Rx 7060 * ring to HW and set the appropriate buffer size 7061 * based on the ring mode 7062 */ 7063 rxd_owner_bit_reset(sp); 7064 7065 val64 = readq(&bar0->adapter_status); 7066 if (verify_xena_quiescence(sp)) { 7067 if (verify_pcc_quiescent(sp, sp->device_enabled_once)) 7068 break; 7069 } 7070 7071 msleep(50); 7072 cnt++; 7073 if (cnt == 10) { 7074 DBG_PRINT(ERR_DBG, "Device not Quiescent - " 7075 "adapter status reads 0x%llx\n", 7076 (unsigned long long)val64); 7077 break; 7078 } 7079 } 7080 if (do_io) 7081 s2io_reset(sp); 7082 7083 /* Free all Tx buffers */ 7084 free_tx_buffers(sp); 7085 7086 /* Free all Rx buffers */ 7087 free_rx_buffers(sp); 7088 7089 clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state)); 7090 } 7091 7092 static void s2io_card_down(struct s2io_nic *sp) 7093 { 7094 do_s2io_card_down(sp, 1); 7095 } 7096 7097 static int s2io_card_up(struct s2io_nic *sp) 7098 { 7099 int i, ret = 0; 7100 struct config_param *config; 7101 struct mac_info *mac_control; 7102 struct net_device *dev = sp->dev; 7103 u16 interruptible; 7104 7105 /* Initialize the H/W I/O registers */ 7106 ret = init_nic(sp); 7107 if (ret != 0) { 7108 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n", 7109 dev->name); 7110 if (ret != -EIO) 7111 s2io_reset(sp); 7112 return ret; 7113 } 7114 7115 /* 7116 * Initializing the Rx buffers. For now we are considering only 1 7117 * Rx ring and initializing buffers into 30 Rx blocks 7118 */ 7119 config = &sp->config; 7120 mac_control = &sp->mac_control; 7121 7122 for (i = 0; i < config->rx_ring_num; i++) { 7123 struct ring_info *ring = &mac_control->rings[i]; 7124 7125 ring->mtu = dev->mtu; 7126 ring->lro = !!(dev->features & NETIF_F_LRO); 7127 ret = fill_rx_buffers(sp, ring, 1); 7128 if (ret) { 7129 DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n", 7130 dev->name); 7131 s2io_reset(sp); 7132 free_rx_buffers(sp); 7133 return -ENOMEM; 7134 } 7135 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i, 7136 ring->rx_bufs_left); 7137 } 7138 7139 /* Initialise napi */ 7140 if (config->napi) { 7141 if (config->intr_type == MSI_X) { 7142 for (i = 0; i < sp->config.rx_ring_num; i++) 7143 napi_enable(&sp->mac_control.rings[i].napi); 7144 } else { 7145 napi_enable(&sp->napi); 7146 } 7147 } 7148 7149 /* Maintain the state prior to the open */ 7150 if (sp->promisc_flg) 7151 sp->promisc_flg = 0; 7152 if (sp->m_cast_flg) { 7153 sp->m_cast_flg = 0; 7154 sp->all_multi_pos = 0; 7155 } 7156 7157 /* Setting its receive mode */ 7158 s2io_set_multicast(dev, true); 7159 7160 if (dev->features & NETIF_F_LRO) { 7161 /* Initialize max aggregatable pkts per session based on MTU */ 7162 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu; 7163 /* Check if we can use (if specified) user provided value */ 7164 if (lro_max_pkts < sp->lro_max_aggr_per_sess) 7165 sp->lro_max_aggr_per_sess = lro_max_pkts; 7166 } 7167 7168 /* Enable Rx Traffic and interrupts on the NIC */ 7169 if (start_nic(sp)) { 7170 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name); 7171 s2io_reset(sp); 7172 free_rx_buffers(sp); 7173 return -ENODEV; 7174 } 7175 7176 /* Add interrupt service routine */ 7177 if (s2io_add_isr(sp) != 0) { 7178 if (sp->config.intr_type == MSI_X) 7179 s2io_rem_isr(sp); 7180 s2io_reset(sp); 7181 free_rx_buffers(sp); 7182 return -ENODEV; 7183 } 7184 7185 timer_setup(&sp->alarm_timer, s2io_alarm_handle, 0); 7186 mod_timer(&sp->alarm_timer, jiffies + HZ / 2); 7187 7188 set_bit(__S2IO_STATE_CARD_UP, &sp->state); 7189 7190 /* Enable select interrupts */ 7191 en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS); 7192 if (sp->config.intr_type != INTA) { 7193 interruptible = TX_TRAFFIC_INTR | TX_PIC_INTR; 7194 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS); 7195 } else { 7196 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR; 7197 interruptible |= TX_PIC_INTR; 7198 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS); 7199 } 7200 7201 return 0; 7202 } 7203 7204 /** 7205 * s2io_restart_nic - Resets the NIC. 7206 * @work : work struct containing a pointer to the device private structure 7207 * Description: 7208 * This function is scheduled to be run by the s2io_tx_watchdog 7209 * function after 0.5 secs to reset the NIC. The idea is to reduce 7210 * the run time of the watch dog routine which is run holding a 7211 * spin lock. 7212 */ 7213 7214 static void s2io_restart_nic(struct work_struct *work) 7215 { 7216 struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task); 7217 struct net_device *dev = sp->dev; 7218 7219 rtnl_lock(); 7220 7221 if (!netif_running(dev)) 7222 goto out_unlock; 7223 7224 s2io_card_down(sp); 7225 if (s2io_card_up(sp)) { 7226 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n", dev->name); 7227 } 7228 s2io_wake_all_tx_queue(sp); 7229 DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n", dev->name); 7230 out_unlock: 7231 rtnl_unlock(); 7232 } 7233 7234 /** 7235 * s2io_tx_watchdog - Watchdog for transmit side. 7236 * @dev : Pointer to net device structure 7237 * @txqueue: index of the hanging queue 7238 * Description: 7239 * This function is triggered if the Tx Queue is stopped 7240 * for a pre-defined amount of time when the Interface is still up. 7241 * If the Interface is jammed in such a situation, the hardware is 7242 * reset (by s2io_close) and restarted again (by s2io_open) to 7243 * overcome any problem that might have been caused in the hardware. 7244 * Return value: 7245 * void 7246 */ 7247 7248 static void s2io_tx_watchdog(struct net_device *dev, unsigned int txqueue) 7249 { 7250 struct s2io_nic *sp = netdev_priv(dev); 7251 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat; 7252 7253 if (netif_carrier_ok(dev)) { 7254 swstats->watchdog_timer_cnt++; 7255 schedule_work(&sp->rst_timer_task); 7256 swstats->soft_reset_cnt++; 7257 } 7258 } 7259 7260 /** 7261 * rx_osm_handler - To perform some OS related operations on SKB. 7262 * @ring_data : the ring from which this RxD was extracted. 7263 * @rxdp: descriptor 7264 * Description: 7265 * This function is called by the Rx interrupt serivce routine to perform 7266 * some OS related operations on the SKB before passing it to the upper 7267 * layers. It mainly checks if the checksum is OK, if so adds it to the 7268 * SKBs cksum variable, increments the Rx packet count and passes the SKB 7269 * to the upper layer. If the checksum is wrong, it increments the Rx 7270 * packet error count, frees the SKB and returns error. 7271 * Return value: 7272 * SUCCESS on success and -1 on failure. 7273 */ 7274 static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp) 7275 { 7276 struct s2io_nic *sp = ring_data->nic; 7277 struct net_device *dev = ring_data->dev; 7278 struct sk_buff *skb = (struct sk_buff *) 7279 ((unsigned long)rxdp->Host_Control); 7280 int ring_no = ring_data->ring_no; 7281 u16 l3_csum, l4_csum; 7282 unsigned long long err = rxdp->Control_1 & RXD_T_CODE; 7283 struct lro *lro; 7284 u8 err_mask; 7285 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat; 7286 7287 skb->dev = dev; 7288 7289 if (err) { 7290 /* Check for parity error */ 7291 if (err & 0x1) 7292 swstats->parity_err_cnt++; 7293 7294 err_mask = err >> 48; 7295 switch (err_mask) { 7296 case 1: 7297 swstats->rx_parity_err_cnt++; 7298 break; 7299 7300 case 2: 7301 swstats->rx_abort_cnt++; 7302 break; 7303 7304 case 3: 7305 swstats->rx_parity_abort_cnt++; 7306 break; 7307 7308 case 4: 7309 swstats->rx_rda_fail_cnt++; 7310 break; 7311 7312 case 5: 7313 swstats->rx_unkn_prot_cnt++; 7314 break; 7315 7316 case 6: 7317 swstats->rx_fcs_err_cnt++; 7318 break; 7319 7320 case 7: 7321 swstats->rx_buf_size_err_cnt++; 7322 break; 7323 7324 case 8: 7325 swstats->rx_rxd_corrupt_cnt++; 7326 break; 7327 7328 case 15: 7329 swstats->rx_unkn_err_cnt++; 7330 break; 7331 } 7332 /* 7333 * Drop the packet if bad transfer code. Exception being 7334 * 0x5, which could be due to unsupported IPv6 extension header. 7335 * In this case, we let stack handle the packet. 7336 * Note that in this case, since checksum will be incorrect, 7337 * stack will validate the same. 7338 */ 7339 if (err_mask != 0x5) { 7340 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n", 7341 dev->name, err_mask); 7342 dev->stats.rx_crc_errors++; 7343 swstats->mem_freed 7344 += skb->truesize; 7345 dev_kfree_skb(skb); 7346 ring_data->rx_bufs_left -= 1; 7347 rxdp->Host_Control = 0; 7348 return 0; 7349 } 7350 } 7351 7352 rxdp->Host_Control = 0; 7353 if (sp->rxd_mode == RXD_MODE_1) { 7354 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2); 7355 7356 skb_put(skb, len); 7357 } else if (sp->rxd_mode == RXD_MODE_3B) { 7358 int get_block = ring_data->rx_curr_get_info.block_index; 7359 int get_off = ring_data->rx_curr_get_info.offset; 7360 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2); 7361 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2); 7362 7363 struct buffAdd *ba = &ring_data->ba[get_block][get_off]; 7364 skb_put_data(skb, ba->ba_0, buf0_len); 7365 skb_put(skb, buf2_len); 7366 } 7367 7368 if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && 7369 ((!ring_data->lro) || 7370 (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG))) && 7371 (dev->features & NETIF_F_RXCSUM)) { 7372 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1); 7373 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1); 7374 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) { 7375 /* 7376 * NIC verifies if the Checksum of the received 7377 * frame is Ok or not and accordingly returns 7378 * a flag in the RxD. 7379 */ 7380 skb->ip_summed = CHECKSUM_UNNECESSARY; 7381 if (ring_data->lro) { 7382 u32 tcp_len = 0; 7383 u8 *tcp; 7384 int ret = 0; 7385 7386 ret = s2io_club_tcp_session(ring_data, 7387 skb->data, &tcp, 7388 &tcp_len, &lro, 7389 rxdp, sp); 7390 switch (ret) { 7391 case 3: /* Begin anew */ 7392 lro->parent = skb; 7393 goto aggregate; 7394 case 1: /* Aggregate */ 7395 lro_append_pkt(sp, lro, skb, tcp_len); 7396 goto aggregate; 7397 case 4: /* Flush session */ 7398 lro_append_pkt(sp, lro, skb, tcp_len); 7399 queue_rx_frame(lro->parent, 7400 lro->vlan_tag); 7401 clear_lro_session(lro); 7402 swstats->flush_max_pkts++; 7403 goto aggregate; 7404 case 2: /* Flush both */ 7405 lro->parent->data_len = lro->frags_len; 7406 swstats->sending_both++; 7407 queue_rx_frame(lro->parent, 7408 lro->vlan_tag); 7409 clear_lro_session(lro); 7410 goto send_up; 7411 case 0: /* sessions exceeded */ 7412 case -1: /* non-TCP or not L2 aggregatable */ 7413 case 5: /* 7414 * First pkt in session not 7415 * L3/L4 aggregatable 7416 */ 7417 break; 7418 default: 7419 DBG_PRINT(ERR_DBG, 7420 "%s: Samadhana!!\n", 7421 __func__); 7422 BUG(); 7423 } 7424 } 7425 } else { 7426 /* 7427 * Packet with erroneous checksum, let the 7428 * upper layers deal with it. 7429 */ 7430 skb_checksum_none_assert(skb); 7431 } 7432 } else 7433 skb_checksum_none_assert(skb); 7434 7435 swstats->mem_freed += skb->truesize; 7436 send_up: 7437 skb_record_rx_queue(skb, ring_no); 7438 queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2)); 7439 aggregate: 7440 sp->mac_control.rings[ring_no].rx_bufs_left -= 1; 7441 return SUCCESS; 7442 } 7443 7444 /** 7445 * s2io_link - stops/starts the Tx queue. 7446 * @sp : private member of the device structure, which is a pointer to the 7447 * s2io_nic structure. 7448 * @link : inidicates whether link is UP/DOWN. 7449 * Description: 7450 * This function stops/starts the Tx queue depending on whether the link 7451 * status of the NIC is down or up. This is called by the Alarm 7452 * interrupt handler whenever a link change interrupt comes up. 7453 * Return value: 7454 * void. 7455 */ 7456 7457 static void s2io_link(struct s2io_nic *sp, int link) 7458 { 7459 struct net_device *dev = sp->dev; 7460 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat; 7461 7462 if (link != sp->last_link_state) { 7463 init_tti(sp, link, false); 7464 if (link == LINK_DOWN) { 7465 DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name); 7466 s2io_stop_all_tx_queue(sp); 7467 netif_carrier_off(dev); 7468 if (swstats->link_up_cnt) 7469 swstats->link_up_time = 7470 jiffies - sp->start_time; 7471 swstats->link_down_cnt++; 7472 } else { 7473 DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name); 7474 if (swstats->link_down_cnt) 7475 swstats->link_down_time = 7476 jiffies - sp->start_time; 7477 swstats->link_up_cnt++; 7478 netif_carrier_on(dev); 7479 s2io_wake_all_tx_queue(sp); 7480 } 7481 } 7482 sp->last_link_state = link; 7483 sp->start_time = jiffies; 7484 } 7485 7486 /** 7487 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers . 7488 * @sp : private member of the device structure, which is a pointer to the 7489 * s2io_nic structure. 7490 * Description: 7491 * This function initializes a few of the PCI and PCI-X configuration registers 7492 * with recommended values. 7493 * Return value: 7494 * void 7495 */ 7496 7497 static void s2io_init_pci(struct s2io_nic *sp) 7498 { 7499 u16 pci_cmd = 0, pcix_cmd = 0; 7500 7501 /* Enable Data Parity Error Recovery in PCI-X command register. */ 7502 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, 7503 &(pcix_cmd)); 7504 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, 7505 (pcix_cmd | 1)); 7506 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, 7507 &(pcix_cmd)); 7508 7509 /* Set the PErr Response bit in PCI command register. */ 7510 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd); 7511 pci_write_config_word(sp->pdev, PCI_COMMAND, 7512 (pci_cmd | PCI_COMMAND_PARITY)); 7513 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd); 7514 } 7515 7516 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type, 7517 u8 *dev_multiq) 7518 { 7519 int i; 7520 7521 if ((tx_fifo_num > MAX_TX_FIFOS) || (tx_fifo_num < 1)) { 7522 DBG_PRINT(ERR_DBG, "Requested number of tx fifos " 7523 "(%d) not supported\n", tx_fifo_num); 7524 7525 if (tx_fifo_num < 1) 7526 tx_fifo_num = 1; 7527 else 7528 tx_fifo_num = MAX_TX_FIFOS; 7529 7530 DBG_PRINT(ERR_DBG, "Default to %d tx fifos\n", tx_fifo_num); 7531 } 7532 7533 if (multiq) 7534 *dev_multiq = multiq; 7535 7536 if (tx_steering_type && (1 == tx_fifo_num)) { 7537 if (tx_steering_type != TX_DEFAULT_STEERING) 7538 DBG_PRINT(ERR_DBG, 7539 "Tx steering is not supported with " 7540 "one fifo. Disabling Tx steering.\n"); 7541 tx_steering_type = NO_STEERING; 7542 } 7543 7544 if ((tx_steering_type < NO_STEERING) || 7545 (tx_steering_type > TX_DEFAULT_STEERING)) { 7546 DBG_PRINT(ERR_DBG, 7547 "Requested transmit steering not supported\n"); 7548 DBG_PRINT(ERR_DBG, "Disabling transmit steering\n"); 7549 tx_steering_type = NO_STEERING; 7550 } 7551 7552 if (rx_ring_num > MAX_RX_RINGS) { 7553 DBG_PRINT(ERR_DBG, 7554 "Requested number of rx rings not supported\n"); 7555 DBG_PRINT(ERR_DBG, "Default to %d rx rings\n", 7556 MAX_RX_RINGS); 7557 rx_ring_num = MAX_RX_RINGS; 7558 } 7559 7560 if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) { 7561 DBG_PRINT(ERR_DBG, "Wrong intr_type requested. " 7562 "Defaulting to INTA\n"); 7563 *dev_intr_type = INTA; 7564 } 7565 7566 if ((*dev_intr_type == MSI_X) && 7567 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) && 7568 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) { 7569 DBG_PRINT(ERR_DBG, "Xframe I does not support MSI_X. " 7570 "Defaulting to INTA\n"); 7571 *dev_intr_type = INTA; 7572 } 7573 7574 if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) { 7575 DBG_PRINT(ERR_DBG, "Requested ring mode not supported\n"); 7576 DBG_PRINT(ERR_DBG, "Defaulting to 1-buffer mode\n"); 7577 rx_ring_mode = 1; 7578 } 7579 7580 for (i = 0; i < MAX_RX_RINGS; i++) 7581 if (rx_ring_sz[i] > MAX_RX_BLOCKS_PER_RING) { 7582 DBG_PRINT(ERR_DBG, "Requested rx ring size not " 7583 "supported\nDefaulting to %d\n", 7584 MAX_RX_BLOCKS_PER_RING); 7585 rx_ring_sz[i] = MAX_RX_BLOCKS_PER_RING; 7586 } 7587 7588 return SUCCESS; 7589 } 7590 7591 /** 7592 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS or Traffic class respectively. 7593 * @nic: device private variable 7594 * @ds_codepoint: data 7595 * @ring: ring index 7596 * Description: The function configures the receive steering to 7597 * desired receive ring. 7598 * Return Value: SUCCESS on success and 7599 * '-1' on failure (endian settings incorrect). 7600 */ 7601 static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring) 7602 { 7603 struct XENA_dev_config __iomem *bar0 = nic->bar0; 7604 register u64 val64 = 0; 7605 7606 if (ds_codepoint > 63) 7607 return FAILURE; 7608 7609 val64 = RTS_DS_MEM_DATA(ring); 7610 writeq(val64, &bar0->rts_ds_mem_data); 7611 7612 val64 = RTS_DS_MEM_CTRL_WE | 7613 RTS_DS_MEM_CTRL_STROBE_NEW_CMD | 7614 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint); 7615 7616 writeq(val64, &bar0->rts_ds_mem_ctrl); 7617 7618 return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl, 7619 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED, 7620 S2IO_BIT_RESET, true); 7621 } 7622 7623 static const struct net_device_ops s2io_netdev_ops = { 7624 .ndo_open = s2io_open, 7625 .ndo_stop = s2io_close, 7626 .ndo_get_stats = s2io_get_stats, 7627 .ndo_start_xmit = s2io_xmit, 7628 .ndo_validate_addr = eth_validate_addr, 7629 .ndo_set_rx_mode = s2io_ndo_set_multicast, 7630 .ndo_eth_ioctl = s2io_ioctl, 7631 .ndo_set_mac_address = s2io_set_mac_addr, 7632 .ndo_change_mtu = s2io_change_mtu, 7633 .ndo_set_features = s2io_set_features, 7634 .ndo_tx_timeout = s2io_tx_watchdog, 7635 #ifdef CONFIG_NET_POLL_CONTROLLER 7636 .ndo_poll_controller = s2io_netpoll, 7637 #endif 7638 }; 7639 7640 /** 7641 * s2io_init_nic - Initialization of the adapter . 7642 * @pdev : structure containing the PCI related information of the device. 7643 * @pre: List of PCI devices supported by the driver listed in s2io_tbl. 7644 * Description: 7645 * The function initializes an adapter identified by the pci_dec structure. 7646 * All OS related initialization including memory and device structure and 7647 * initlaization of the device private variable is done. Also the swapper 7648 * control register is initialized to enable read and write into the I/O 7649 * registers of the device. 7650 * Return value: 7651 * returns 0 on success and negative on failure. 7652 */ 7653 7654 static int 7655 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre) 7656 { 7657 struct s2io_nic *sp; 7658 struct net_device *dev; 7659 int i, j, ret; 7660 u32 mac_up, mac_down; 7661 u64 val64 = 0, tmp64 = 0; 7662 struct XENA_dev_config __iomem *bar0 = NULL; 7663 u16 subid; 7664 struct config_param *config; 7665 struct mac_info *mac_control; 7666 int mode; 7667 u8 dev_intr_type = intr_type; 7668 u8 dev_multiq = 0; 7669 7670 ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq); 7671 if (ret) 7672 return ret; 7673 7674 ret = pci_enable_device(pdev); 7675 if (ret) { 7676 DBG_PRINT(ERR_DBG, 7677 "%s: pci_enable_device failed\n", __func__); 7678 return ret; 7679 } 7680 7681 if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) { 7682 DBG_PRINT(INIT_DBG, "%s: Using 64bit DMA\n", __func__); 7683 } else { 7684 pci_disable_device(pdev); 7685 return -ENOMEM; 7686 } 7687 ret = pci_request_regions(pdev, s2io_driver_name); 7688 if (ret) { 7689 DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x\n", 7690 __func__, ret); 7691 pci_disable_device(pdev); 7692 return -ENODEV; 7693 } 7694 if (dev_multiq) 7695 dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num); 7696 else 7697 dev = alloc_etherdev(sizeof(struct s2io_nic)); 7698 if (dev == NULL) { 7699 pci_disable_device(pdev); 7700 pci_release_regions(pdev); 7701 return -ENODEV; 7702 } 7703 7704 pci_set_master(pdev); 7705 pci_set_drvdata(pdev, dev); 7706 SET_NETDEV_DEV(dev, &pdev->dev); 7707 7708 /* Private member variable initialized to s2io NIC structure */ 7709 sp = netdev_priv(dev); 7710 sp->dev = dev; 7711 sp->pdev = pdev; 7712 sp->device_enabled_once = false; 7713 if (rx_ring_mode == 1) 7714 sp->rxd_mode = RXD_MODE_1; 7715 if (rx_ring_mode == 2) 7716 sp->rxd_mode = RXD_MODE_3B; 7717 7718 sp->config.intr_type = dev_intr_type; 7719 7720 if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) || 7721 (pdev->device == PCI_DEVICE_ID_HERC_UNI)) 7722 sp->device_type = XFRAME_II_DEVICE; 7723 else 7724 sp->device_type = XFRAME_I_DEVICE; 7725 7726 7727 /* Initialize some PCI/PCI-X fields of the NIC. */ 7728 s2io_init_pci(sp); 7729 7730 /* 7731 * Setting the device configuration parameters. 7732 * Most of these parameters can be specified by the user during 7733 * module insertion as they are module loadable parameters. If 7734 * these parameters are not specified during load time, they 7735 * are initialized with default values. 7736 */ 7737 config = &sp->config; 7738 mac_control = &sp->mac_control; 7739 7740 config->napi = napi; 7741 config->tx_steering_type = tx_steering_type; 7742 7743 /* Tx side parameters. */ 7744 if (config->tx_steering_type == TX_PRIORITY_STEERING) 7745 config->tx_fifo_num = MAX_TX_FIFOS; 7746 else 7747 config->tx_fifo_num = tx_fifo_num; 7748 7749 /* Initialize the fifos used for tx steering */ 7750 if (config->tx_fifo_num < 5) { 7751 if (config->tx_fifo_num == 1) 7752 sp->total_tcp_fifos = 1; 7753 else 7754 sp->total_tcp_fifos = config->tx_fifo_num - 1; 7755 sp->udp_fifo_idx = config->tx_fifo_num - 1; 7756 sp->total_udp_fifos = 1; 7757 sp->other_fifo_idx = sp->total_tcp_fifos - 1; 7758 } else { 7759 sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM - 7760 FIFO_OTHER_MAX_NUM); 7761 sp->udp_fifo_idx = sp->total_tcp_fifos; 7762 sp->total_udp_fifos = FIFO_UDP_MAX_NUM; 7763 sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM; 7764 } 7765 7766 config->multiq = dev_multiq; 7767 for (i = 0; i < config->tx_fifo_num; i++) { 7768 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; 7769 7770 tx_cfg->fifo_len = tx_fifo_len[i]; 7771 tx_cfg->fifo_priority = i; 7772 } 7773 7774 /* mapping the QoS priority to the configured fifos */ 7775 for (i = 0; i < MAX_TX_FIFOS; i++) 7776 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i]; 7777 7778 /* map the hashing selector table to the configured fifos */ 7779 for (i = 0; i < config->tx_fifo_num; i++) 7780 sp->fifo_selector[i] = fifo_selector[i]; 7781 7782 7783 config->tx_intr_type = TXD_INT_TYPE_UTILZ; 7784 for (i = 0; i < config->tx_fifo_num; i++) { 7785 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; 7786 7787 tx_cfg->f_no_snoop = (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER); 7788 if (tx_cfg->fifo_len < 65) { 7789 config->tx_intr_type = TXD_INT_TYPE_PER_LIST; 7790 break; 7791 } 7792 } 7793 /* + 2 because one Txd for skb->data and one Txd for UFO */ 7794 config->max_txds = MAX_SKB_FRAGS + 2; 7795 7796 /* Rx side parameters. */ 7797 config->rx_ring_num = rx_ring_num; 7798 for (i = 0; i < config->rx_ring_num; i++) { 7799 struct rx_ring_config *rx_cfg = &config->rx_cfg[i]; 7800 struct ring_info *ring = &mac_control->rings[i]; 7801 7802 rx_cfg->num_rxd = rx_ring_sz[i] * (rxd_count[sp->rxd_mode] + 1); 7803 rx_cfg->ring_priority = i; 7804 ring->rx_bufs_left = 0; 7805 ring->rxd_mode = sp->rxd_mode; 7806 ring->rxd_count = rxd_count[sp->rxd_mode]; 7807 ring->pdev = sp->pdev; 7808 ring->dev = sp->dev; 7809 } 7810 7811 for (i = 0; i < rx_ring_num; i++) { 7812 struct rx_ring_config *rx_cfg = &config->rx_cfg[i]; 7813 7814 rx_cfg->ring_org = RING_ORG_BUFF1; 7815 rx_cfg->f_no_snoop = (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER); 7816 } 7817 7818 /* Setting Mac Control parameters */ 7819 mac_control->rmac_pause_time = rmac_pause_time; 7820 mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3; 7821 mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7; 7822 7823 7824 /* initialize the shared memory used by the NIC and the host */ 7825 if (init_shared_mem(sp)) { 7826 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", dev->name); 7827 ret = -ENOMEM; 7828 goto mem_alloc_failed; 7829 } 7830 7831 sp->bar0 = pci_ioremap_bar(pdev, 0); 7832 if (!sp->bar0) { 7833 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n", 7834 dev->name); 7835 ret = -ENOMEM; 7836 goto bar0_remap_failed; 7837 } 7838 7839 sp->bar1 = pci_ioremap_bar(pdev, 2); 7840 if (!sp->bar1) { 7841 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n", 7842 dev->name); 7843 ret = -ENOMEM; 7844 goto bar1_remap_failed; 7845 } 7846 7847 /* Initializing the BAR1 address as the start of the FIFO pointer. */ 7848 for (j = 0; j < MAX_TX_FIFOS; j++) { 7849 mac_control->tx_FIFO_start[j] = sp->bar1 + (j * 0x00020000); 7850 } 7851 7852 /* Driver entry points */ 7853 dev->netdev_ops = &s2io_netdev_ops; 7854 dev->ethtool_ops = &netdev_ethtool_ops; 7855 dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | 7856 NETIF_F_TSO | NETIF_F_TSO6 | 7857 NETIF_F_RXCSUM | NETIF_F_LRO; 7858 dev->features |= dev->hw_features | 7859 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX | 7860 NETIF_F_HIGHDMA; 7861 dev->watchdog_timeo = WATCH_DOG_TIMEOUT; 7862 INIT_WORK(&sp->rst_timer_task, s2io_restart_nic); 7863 INIT_WORK(&sp->set_link_task, s2io_set_link); 7864 7865 pci_save_state(sp->pdev); 7866 7867 /* Setting swapper control on the NIC, for proper reset operation */ 7868 if (s2io_set_swapper(sp)) { 7869 DBG_PRINT(ERR_DBG, "%s: swapper settings are wrong\n", 7870 dev->name); 7871 ret = -EAGAIN; 7872 goto set_swap_failed; 7873 } 7874 7875 /* Verify if the Herc works on the slot its placed into */ 7876 if (sp->device_type & XFRAME_II_DEVICE) { 7877 mode = s2io_verify_pci_mode(sp); 7878 if (mode < 0) { 7879 DBG_PRINT(ERR_DBG, "%s: Unsupported PCI bus mode\n", 7880 __func__); 7881 ret = -EBADSLT; 7882 goto set_swap_failed; 7883 } 7884 } 7885 7886 if (sp->config.intr_type == MSI_X) { 7887 sp->num_entries = config->rx_ring_num + 1; 7888 ret = s2io_enable_msi_x(sp); 7889 7890 if (!ret) { 7891 ret = s2io_test_msi(sp); 7892 /* rollback MSI-X, will re-enable during add_isr() */ 7893 remove_msix_isr(sp); 7894 } 7895 if (ret) { 7896 7897 DBG_PRINT(ERR_DBG, 7898 "MSI-X requested but failed to enable\n"); 7899 sp->config.intr_type = INTA; 7900 } 7901 } 7902 7903 if (config->intr_type == MSI_X) { 7904 for (i = 0; i < config->rx_ring_num ; i++) { 7905 struct ring_info *ring = &mac_control->rings[i]; 7906 7907 netif_napi_add(dev, &ring->napi, s2io_poll_msix); 7908 } 7909 } else { 7910 netif_napi_add(dev, &sp->napi, s2io_poll_inta); 7911 } 7912 7913 /* Not needed for Herc */ 7914 if (sp->device_type & XFRAME_I_DEVICE) { 7915 /* 7916 * Fix for all "FFs" MAC address problems observed on 7917 * Alpha platforms 7918 */ 7919 fix_mac_address(sp); 7920 s2io_reset(sp); 7921 } 7922 7923 /* 7924 * MAC address initialization. 7925 * For now only one mac address will be read and used. 7926 */ 7927 bar0 = sp->bar0; 7928 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | 7929 RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET); 7930 writeq(val64, &bar0->rmac_addr_cmd_mem); 7931 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem, 7932 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, 7933 S2IO_BIT_RESET, true); 7934 tmp64 = readq(&bar0->rmac_addr_data0_mem); 7935 mac_down = (u32)tmp64; 7936 mac_up = (u32) (tmp64 >> 32); 7937 7938 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up); 7939 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8); 7940 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16); 7941 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24); 7942 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16); 7943 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24); 7944 7945 /* Set the factory defined MAC address initially */ 7946 dev->addr_len = ETH_ALEN; 7947 eth_hw_addr_set(dev, sp->def_mac_addr[0].mac_addr); 7948 7949 /* initialize number of multicast & unicast MAC entries variables */ 7950 if (sp->device_type == XFRAME_I_DEVICE) { 7951 config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES; 7952 config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES; 7953 config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET; 7954 } else if (sp->device_type == XFRAME_II_DEVICE) { 7955 config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES; 7956 config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES; 7957 config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET; 7958 } 7959 7960 /* MTU range: 46 - 9600 */ 7961 dev->min_mtu = MIN_MTU; 7962 dev->max_mtu = S2IO_JUMBO_SIZE; 7963 7964 /* store mac addresses from CAM to s2io_nic structure */ 7965 do_s2io_store_unicast_mc(sp); 7966 7967 /* Configure MSIX vector for number of rings configured plus one */ 7968 if ((sp->device_type == XFRAME_II_DEVICE) && 7969 (config->intr_type == MSI_X)) 7970 sp->num_entries = config->rx_ring_num + 1; 7971 7972 /* Store the values of the MSIX table in the s2io_nic structure */ 7973 store_xmsi_data(sp); 7974 /* reset Nic and bring it to known state */ 7975 s2io_reset(sp); 7976 7977 /* 7978 * Initialize link state flags 7979 * and the card state parameter 7980 */ 7981 sp->state = 0; 7982 7983 /* Initialize spinlocks */ 7984 for (i = 0; i < sp->config.tx_fifo_num; i++) { 7985 struct fifo_info *fifo = &mac_control->fifos[i]; 7986 7987 spin_lock_init(&fifo->tx_lock); 7988 } 7989 7990 /* 7991 * SXE-002: Configure link and activity LED to init state 7992 * on driver load. 7993 */ 7994 subid = sp->pdev->subsystem_device; 7995 if ((subid & 0xFF) >= 0x07) { 7996 val64 = readq(&bar0->gpio_control); 7997 val64 |= 0x0000800000000000ULL; 7998 writeq(val64, &bar0->gpio_control); 7999 val64 = 0x0411040400000000ULL; 8000 writeq(val64, (void __iomem *)bar0 + 0x2700); 8001 val64 = readq(&bar0->gpio_control); 8002 } 8003 8004 sp->rx_csum = 1; /* Rx chksum verify enabled by default */ 8005 8006 if (register_netdev(dev)) { 8007 DBG_PRINT(ERR_DBG, "Device registration failed\n"); 8008 ret = -ENODEV; 8009 goto register_failed; 8010 } 8011 s2io_vpd_read(sp); 8012 DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2010 Exar Corp.\n"); 8013 DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n", dev->name, 8014 sp->product_name, pdev->revision); 8015 DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name, 8016 s2io_driver_version); 8017 DBG_PRINT(ERR_DBG, "%s: MAC Address: %pM\n", dev->name, dev->dev_addr); 8018 DBG_PRINT(ERR_DBG, "Serial number: %s\n", sp->serial_num); 8019 if (sp->device_type & XFRAME_II_DEVICE) { 8020 mode = s2io_print_pci_mode(sp); 8021 if (mode < 0) { 8022 ret = -EBADSLT; 8023 unregister_netdev(dev); 8024 goto set_swap_failed; 8025 } 8026 } 8027 switch (sp->rxd_mode) { 8028 case RXD_MODE_1: 8029 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n", 8030 dev->name); 8031 break; 8032 case RXD_MODE_3B: 8033 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n", 8034 dev->name); 8035 break; 8036 } 8037 8038 switch (sp->config.napi) { 8039 case 0: 8040 DBG_PRINT(ERR_DBG, "%s: NAPI disabled\n", dev->name); 8041 break; 8042 case 1: 8043 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name); 8044 break; 8045 } 8046 8047 DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name, 8048 sp->config.tx_fifo_num); 8049 8050 DBG_PRINT(ERR_DBG, "%s: Using %d Rx ring(s)\n", dev->name, 8051 sp->config.rx_ring_num); 8052 8053 switch (sp->config.intr_type) { 8054 case INTA: 8055 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name); 8056 break; 8057 case MSI_X: 8058 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name); 8059 break; 8060 } 8061 if (sp->config.multiq) { 8062 for (i = 0; i < sp->config.tx_fifo_num; i++) { 8063 struct fifo_info *fifo = &mac_control->fifos[i]; 8064 8065 fifo->multiq = config->multiq; 8066 } 8067 DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n", 8068 dev->name); 8069 } else 8070 DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n", 8071 dev->name); 8072 8073 switch (sp->config.tx_steering_type) { 8074 case NO_STEERING: 8075 DBG_PRINT(ERR_DBG, "%s: No steering enabled for transmit\n", 8076 dev->name); 8077 break; 8078 case TX_PRIORITY_STEERING: 8079 DBG_PRINT(ERR_DBG, 8080 "%s: Priority steering enabled for transmit\n", 8081 dev->name); 8082 break; 8083 case TX_DEFAULT_STEERING: 8084 DBG_PRINT(ERR_DBG, 8085 "%s: Default steering enabled for transmit\n", 8086 dev->name); 8087 } 8088 8089 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n", 8090 dev->name); 8091 /* Initialize device name */ 8092 snprintf(sp->name, sizeof(sp->name), "%s Neterion %s", dev->name, 8093 sp->product_name); 8094 8095 if (vlan_tag_strip) 8096 sp->vlan_strip_flag = 1; 8097 else 8098 sp->vlan_strip_flag = 0; 8099 8100 /* 8101 * Make Link state as off at this point, when the Link change 8102 * interrupt comes the state will be automatically changed to 8103 * the right state. 8104 */ 8105 netif_carrier_off(dev); 8106 8107 return 0; 8108 8109 register_failed: 8110 set_swap_failed: 8111 iounmap(sp->bar1); 8112 bar1_remap_failed: 8113 iounmap(sp->bar0); 8114 bar0_remap_failed: 8115 mem_alloc_failed: 8116 free_shared_mem(sp); 8117 pci_disable_device(pdev); 8118 pci_release_regions(pdev); 8119 free_netdev(dev); 8120 8121 return ret; 8122 } 8123 8124 /** 8125 * s2io_rem_nic - Free the PCI device 8126 * @pdev: structure containing the PCI related information of the device. 8127 * Description: This function is called by the Pci subsystem to release a 8128 * PCI device and free up all resource held up by the device. This could 8129 * be in response to a Hot plug event or when the driver is to be removed 8130 * from memory. 8131 */ 8132 8133 static void s2io_rem_nic(struct pci_dev *pdev) 8134 { 8135 struct net_device *dev = pci_get_drvdata(pdev); 8136 struct s2io_nic *sp; 8137 8138 if (dev == NULL) { 8139 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n"); 8140 return; 8141 } 8142 8143 sp = netdev_priv(dev); 8144 8145 cancel_work_sync(&sp->rst_timer_task); 8146 cancel_work_sync(&sp->set_link_task); 8147 8148 unregister_netdev(dev); 8149 8150 free_shared_mem(sp); 8151 iounmap(sp->bar0); 8152 iounmap(sp->bar1); 8153 pci_release_regions(pdev); 8154 free_netdev(dev); 8155 pci_disable_device(pdev); 8156 } 8157 8158 module_pci_driver(s2io_driver); 8159 8160 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip, 8161 struct tcphdr **tcp, struct RxD_t *rxdp, 8162 struct s2io_nic *sp) 8163 { 8164 int ip_off; 8165 u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len; 8166 8167 if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) { 8168 DBG_PRINT(INIT_DBG, 8169 "%s: Non-TCP frames not supported for LRO\n", 8170 __func__); 8171 return -1; 8172 } 8173 8174 /* Checking for DIX type or DIX type with VLAN */ 8175 if ((l2_type == 0) || (l2_type == 4)) { 8176 ip_off = HEADER_ETHERNET_II_802_3_SIZE; 8177 /* 8178 * If vlan stripping is disabled and the frame is VLAN tagged, 8179 * shift the offset by the VLAN header size bytes. 8180 */ 8181 if ((!sp->vlan_strip_flag) && 8182 (rxdp->Control_1 & RXD_FRAME_VLAN_TAG)) 8183 ip_off += HEADER_VLAN_SIZE; 8184 } else { 8185 /* LLC, SNAP etc are considered non-mergeable */ 8186 return -1; 8187 } 8188 8189 *ip = (struct iphdr *)(buffer + ip_off); 8190 ip_len = (u8)((*ip)->ihl); 8191 ip_len <<= 2; 8192 *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len); 8193 8194 return 0; 8195 } 8196 8197 static int check_for_socket_match(struct lro *lro, struct iphdr *ip, 8198 struct tcphdr *tcp) 8199 { 8200 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__); 8201 if ((lro->iph->saddr != ip->saddr) || 8202 (lro->iph->daddr != ip->daddr) || 8203 (lro->tcph->source != tcp->source) || 8204 (lro->tcph->dest != tcp->dest)) 8205 return -1; 8206 return 0; 8207 } 8208 8209 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp) 8210 { 8211 return ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2); 8212 } 8213 8214 static void initiate_new_session(struct lro *lro, u8 *l2h, 8215 struct iphdr *ip, struct tcphdr *tcp, 8216 u32 tcp_pyld_len, u16 vlan_tag) 8217 { 8218 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__); 8219 lro->l2h = l2h; 8220 lro->iph = ip; 8221 lro->tcph = tcp; 8222 lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq); 8223 lro->tcp_ack = tcp->ack_seq; 8224 lro->sg_num = 1; 8225 lro->total_len = ntohs(ip->tot_len); 8226 lro->frags_len = 0; 8227 lro->vlan_tag = vlan_tag; 8228 /* 8229 * Check if we saw TCP timestamp. 8230 * Other consistency checks have already been done. 8231 */ 8232 if (tcp->doff == 8) { 8233 __be32 *ptr; 8234 ptr = (__be32 *)(tcp+1); 8235 lro->saw_ts = 1; 8236 lro->cur_tsval = ntohl(*(ptr+1)); 8237 lro->cur_tsecr = *(ptr+2); 8238 } 8239 lro->in_use = 1; 8240 } 8241 8242 static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro) 8243 { 8244 struct iphdr *ip = lro->iph; 8245 struct tcphdr *tcp = lro->tcph; 8246 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat; 8247 8248 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__); 8249 8250 /* Update L3 header */ 8251 csum_replace2(&ip->check, ip->tot_len, htons(lro->total_len)); 8252 ip->tot_len = htons(lro->total_len); 8253 8254 /* Update L4 header */ 8255 tcp->ack_seq = lro->tcp_ack; 8256 tcp->window = lro->window; 8257 8258 /* Update tsecr field if this session has timestamps enabled */ 8259 if (lro->saw_ts) { 8260 __be32 *ptr = (__be32 *)(tcp + 1); 8261 *(ptr+2) = lro->cur_tsecr; 8262 } 8263 8264 /* Update counters required for calculation of 8265 * average no. of packets aggregated. 8266 */ 8267 swstats->sum_avg_pkts_aggregated += lro->sg_num; 8268 swstats->num_aggregations++; 8269 } 8270 8271 static void aggregate_new_rx(struct lro *lro, struct iphdr *ip, 8272 struct tcphdr *tcp, u32 l4_pyld) 8273 { 8274 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__); 8275 lro->total_len += l4_pyld; 8276 lro->frags_len += l4_pyld; 8277 lro->tcp_next_seq += l4_pyld; 8278 lro->sg_num++; 8279 8280 /* Update ack seq no. and window ad(from this pkt) in LRO object */ 8281 lro->tcp_ack = tcp->ack_seq; 8282 lro->window = tcp->window; 8283 8284 if (lro->saw_ts) { 8285 __be32 *ptr; 8286 /* Update tsecr and tsval from this packet */ 8287 ptr = (__be32 *)(tcp+1); 8288 lro->cur_tsval = ntohl(*(ptr+1)); 8289 lro->cur_tsecr = *(ptr + 2); 8290 } 8291 } 8292 8293 static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip, 8294 struct tcphdr *tcp, u32 tcp_pyld_len) 8295 { 8296 u8 *ptr; 8297 8298 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__); 8299 8300 if (!tcp_pyld_len) { 8301 /* Runt frame or a pure ack */ 8302 return -1; 8303 } 8304 8305 if (ip->ihl != 5) /* IP has options */ 8306 return -1; 8307 8308 /* If we see CE codepoint in IP header, packet is not mergeable */ 8309 if (INET_ECN_is_ce(ipv4_get_dsfield(ip))) 8310 return -1; 8311 8312 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */ 8313 if (tcp->urg || tcp->psh || tcp->rst || 8314 tcp->syn || tcp->fin || 8315 tcp->ece || tcp->cwr || !tcp->ack) { 8316 /* 8317 * Currently recognize only the ack control word and 8318 * any other control field being set would result in 8319 * flushing the LRO session 8320 */ 8321 return -1; 8322 } 8323 8324 /* 8325 * Allow only one TCP timestamp option. Don't aggregate if 8326 * any other options are detected. 8327 */ 8328 if (tcp->doff != 5 && tcp->doff != 8) 8329 return -1; 8330 8331 if (tcp->doff == 8) { 8332 ptr = (u8 *)(tcp + 1); 8333 while (*ptr == TCPOPT_NOP) 8334 ptr++; 8335 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP) 8336 return -1; 8337 8338 /* Ensure timestamp value increases monotonically */ 8339 if (l_lro) 8340 if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2)))) 8341 return -1; 8342 8343 /* timestamp echo reply should be non-zero */ 8344 if (*((__be32 *)(ptr+6)) == 0) 8345 return -1; 8346 } 8347 8348 return 0; 8349 } 8350 8351 static int s2io_club_tcp_session(struct ring_info *ring_data, u8 *buffer, 8352 u8 **tcp, u32 *tcp_len, struct lro **lro, 8353 struct RxD_t *rxdp, struct s2io_nic *sp) 8354 { 8355 struct iphdr *ip; 8356 struct tcphdr *tcph; 8357 int ret = 0, i; 8358 u16 vlan_tag = 0; 8359 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat; 8360 8361 ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp, 8362 rxdp, sp); 8363 if (ret) 8364 return ret; 8365 8366 DBG_PRINT(INFO_DBG, "IP Saddr: %x Daddr: %x\n", ip->saddr, ip->daddr); 8367 8368 vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2); 8369 tcph = (struct tcphdr *)*tcp; 8370 *tcp_len = get_l4_pyld_length(ip, tcph); 8371 for (i = 0; i < MAX_LRO_SESSIONS; i++) { 8372 struct lro *l_lro = &ring_data->lro0_n[i]; 8373 if (l_lro->in_use) { 8374 if (check_for_socket_match(l_lro, ip, tcph)) 8375 continue; 8376 /* Sock pair matched */ 8377 *lro = l_lro; 8378 8379 if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) { 8380 DBG_PRINT(INFO_DBG, "%s: Out of sequence. " 8381 "expected 0x%x, actual 0x%x\n", 8382 __func__, 8383 (*lro)->tcp_next_seq, 8384 ntohl(tcph->seq)); 8385 8386 swstats->outof_sequence_pkts++; 8387 ret = 2; 8388 break; 8389 } 8390 8391 if (!verify_l3_l4_lro_capable(l_lro, ip, tcph, 8392 *tcp_len)) 8393 ret = 1; /* Aggregate */ 8394 else 8395 ret = 2; /* Flush both */ 8396 break; 8397 } 8398 } 8399 8400 if (ret == 0) { 8401 /* Before searching for available LRO objects, 8402 * check if the pkt is L3/L4 aggregatable. If not 8403 * don't create new LRO session. Just send this 8404 * packet up. 8405 */ 8406 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) 8407 return 5; 8408 8409 for (i = 0; i < MAX_LRO_SESSIONS; i++) { 8410 struct lro *l_lro = &ring_data->lro0_n[i]; 8411 if (!(l_lro->in_use)) { 8412 *lro = l_lro; 8413 ret = 3; /* Begin anew */ 8414 break; 8415 } 8416 } 8417 } 8418 8419 if (ret == 0) { /* sessions exceeded */ 8420 DBG_PRINT(INFO_DBG, "%s: All LRO sessions already in use\n", 8421 __func__); 8422 *lro = NULL; 8423 return ret; 8424 } 8425 8426 switch (ret) { 8427 case 3: 8428 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len, 8429 vlan_tag); 8430 break; 8431 case 2: 8432 update_L3L4_header(sp, *lro); 8433 break; 8434 case 1: 8435 aggregate_new_rx(*lro, ip, tcph, *tcp_len); 8436 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) { 8437 update_L3L4_header(sp, *lro); 8438 ret = 4; /* Flush the LRO */ 8439 } 8440 break; 8441 default: 8442 DBG_PRINT(ERR_DBG, "%s: Don't know, can't say!!\n", __func__); 8443 break; 8444 } 8445 8446 return ret; 8447 } 8448 8449 static void clear_lro_session(struct lro *lro) 8450 { 8451 static u16 lro_struct_size = sizeof(struct lro); 8452 8453 memset(lro, 0, lro_struct_size); 8454 } 8455 8456 static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag) 8457 { 8458 struct net_device *dev = skb->dev; 8459 struct s2io_nic *sp = netdev_priv(dev); 8460 8461 skb->protocol = eth_type_trans(skb, dev); 8462 if (vlan_tag && sp->vlan_strip_flag) 8463 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag); 8464 if (sp->config.napi) 8465 netif_receive_skb(skb); 8466 else 8467 netif_rx(skb); 8468 } 8469 8470 static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro, 8471 struct sk_buff *skb, u32 tcp_len) 8472 { 8473 struct sk_buff *first = lro->parent; 8474 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat; 8475 8476 first->len += tcp_len; 8477 first->data_len = lro->frags_len; 8478 skb_pull(skb, (skb->len - tcp_len)); 8479 if (skb_shinfo(first)->frag_list) 8480 lro->last_frag->next = skb; 8481 else 8482 skb_shinfo(first)->frag_list = skb; 8483 first->truesize += skb->truesize; 8484 lro->last_frag = skb; 8485 swstats->clubbed_frms_cnt++; 8486 } 8487 8488 /** 8489 * s2io_io_error_detected - called when PCI error is detected 8490 * @pdev: Pointer to PCI device 8491 * @state: The current pci connection state 8492 * 8493 * This function is called after a PCI bus error affecting 8494 * this device has been detected. 8495 */ 8496 static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev, 8497 pci_channel_state_t state) 8498 { 8499 struct net_device *netdev = pci_get_drvdata(pdev); 8500 struct s2io_nic *sp = netdev_priv(netdev); 8501 8502 netif_device_detach(netdev); 8503 8504 if (state == pci_channel_io_perm_failure) 8505 return PCI_ERS_RESULT_DISCONNECT; 8506 8507 if (netif_running(netdev)) { 8508 /* Bring down the card, while avoiding PCI I/O */ 8509 do_s2io_card_down(sp, 0); 8510 } 8511 pci_disable_device(pdev); 8512 8513 return PCI_ERS_RESULT_NEED_RESET; 8514 } 8515 8516 /** 8517 * s2io_io_slot_reset - called after the pci bus has been reset. 8518 * @pdev: Pointer to PCI device 8519 * 8520 * Restart the card from scratch, as if from a cold-boot. 8521 * At this point, the card has exprienced a hard reset, 8522 * followed by fixups by BIOS, and has its config space 8523 * set up identically to what it was at cold boot. 8524 */ 8525 static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev) 8526 { 8527 struct net_device *netdev = pci_get_drvdata(pdev); 8528 struct s2io_nic *sp = netdev_priv(netdev); 8529 8530 if (pci_enable_device(pdev)) { 8531 pr_err("Cannot re-enable PCI device after reset.\n"); 8532 return PCI_ERS_RESULT_DISCONNECT; 8533 } 8534 8535 pci_set_master(pdev); 8536 s2io_reset(sp); 8537 8538 return PCI_ERS_RESULT_RECOVERED; 8539 } 8540 8541 /** 8542 * s2io_io_resume - called when traffic can start flowing again. 8543 * @pdev: Pointer to PCI device 8544 * 8545 * This callback is called when the error recovery driver tells 8546 * us that its OK to resume normal operation. 8547 */ 8548 static void s2io_io_resume(struct pci_dev *pdev) 8549 { 8550 struct net_device *netdev = pci_get_drvdata(pdev); 8551 struct s2io_nic *sp = netdev_priv(netdev); 8552 8553 if (netif_running(netdev)) { 8554 if (s2io_card_up(sp)) { 8555 pr_err("Can't bring device back up after reset.\n"); 8556 return; 8557 } 8558 8559 if (do_s2io_prog_unicast(netdev, netdev->dev_addr) == FAILURE) { 8560 s2io_card_down(sp); 8561 pr_err("Can't restore mac addr after reset.\n"); 8562 return; 8563 } 8564 } 8565 8566 netif_device_attach(netdev); 8567 netif_tx_wake_all_queues(netdev); 8568 } 8569